The invention relates to a camshaft adjuster having a stator and a rotor with several radially protruding vanes moving against stops in order to limit the hydraulically controlled adjustment motion.
It is commonly known that a camshaft adjuster can be used to adjust the relative angle, fixed in stationary operation, of the camshaft to the drive shaft driving it, with the shafts being coupled to one another via a control chain or a control belt, in order to be able to vary the timing of the intake and/or exhaust valves operated by the camshaft. Known camshaft adjusters operating according to the vane-cell principle or the rotating vane principle, are provided with a rotor having several protruding vanes, which may be provided in one piece with the rotor, or which may be arranged using a radially outward spring force, and an exterior stator. At the stator, which usually comprises a sintered component, stops protruding radially inwards are formed, which limit the adjustment motion of the rotor in the one circumferential direction or the other one, by the vanes moving against said stops. The vanes contact the stator with the edges of their faces, so that a chamber is formed between one side of the vane and the adjacent side of a stop each, into which fluid, usually motor oil, is transported via a valve allocated at the camshaft adjuster, serving to adjust the rotor in reference to the stator. Here, in the known camshaft adjusters, the stator has a double function, namely, on the one hand to separate the fluid chambers and, on the other hand, to determine the adjustment angle.
Different, type-specific adjustment angles are necessary for the various motor types depending on the embodiment of the camshaft and/or the valves etc. This means that a type-specific stator is required for each application, according to which the stator is provided with the stops defined for maximum adjustment angles. This particularly increases the expenses for the production of the stator, because each stator type is to be produced separately, e.g., by way of sheet metal forming or aluminum extrusion molding or by way of cutting, or requires a special type of sintering, and the storage is also very expensive, because a multitude of various types must be kept at hand.
The invention is based on the objective of providing a camshaft adjuster, which is constructed in an easier fashion, particularly regarding its production technology.
This objective is attained according to the invention in a camshaft adjuster of the type mentioned at the outset such that the stops are provided at the lateral cover plate or a side wall or a disc shaped or ring shaped stop element arranged inside the cover plate or the side wall.
In the camshaft adjuster according to the invention the stops limiting the adjustment motion are, in contrast to the one of prior art, no longer provided at the stator, yet rather either at the lateral cover plate itself, which is encapsulated towards the outside by the camshaft adjuster, and at which, for example, a sprocket or a locking device, etc. is arranged. The stops may also be provided at the laterally limiting side wall, which, for example, is part of a third part, onto which the adjuster is placed. As an alternative to positioning the stops at the cover plate/the side wall, there is the possibility to integrate a disc-shaped or ring-shaped stop element inside the cover plate, on which the stops are provided. The stator itself merely has the function to separate the fluid chambers, i.e. there are still protrusion provided, now considerably narrower ones, which still protrude radially inward, however, they no longer act in a stop function. This means that the stator may de facto provided as a standard component, because the separation of the oil chambers is identical for many types of adjusters. The individualization regarding the adjustment angles occurs solely via the cover plate/the side wall provided with the stops and/or via the stop element provided with stops, so that merely those parts need to be manufactured individually. These components usually comprise simple metal pieces, in particular sheet metal parts, which are easy to produce with respect to the stops to be provided here. For reasons of simplification, the entire description following merely mentions cover plates, however the embodiments similarly apply to the arrangement of stops on a side wall.
Therefore, since the stator can be standardized for many different types, an essentially simpler structure of the adjuster itself results, and the production costs can be reduced as well. Additionally, since the stops at the sintered stator are no longer provided, rather merely relatively small protrusions limiting the fluid chambers, a reduction in weight and structural space results.
As described above, the cover plate and/or the stop element beneficially comprise a relatively thin-walled metal component. Therefore, it is beneficial if the stops are made from the metal cover plate or the metal cover element by way of forming. In this context a multitude of different forming techniques can be used that are known in the field of sheet metal formation.
According to a first embodiment of the invention, each stop may be provided in the form of a closed or open impression. In this context, impression defines a deformation-related parts-formation, which results in the respective part being profiled in order to form stops. Usually a die is used here, which forms the deformation pattern. In this embodiment according to the invention the stops are formed by way of deformation from the metal sections protruding out from the level of the cover plate or the stop element. Depending on the type of deformation, they may be closed, i.e. the metal sections were merely pushed outward, the cover plate overall however remains closed. Alternatively, an open impression may be realized as well, as for example by way of completely punching through. In this case it is also possible to provide the open impression with an internal thread, which allows the screwing in of a bolt, which simultaneously serves to provide a means for fastening the cover to the adjustment housing during the deformation of the cover, for example. This means, here, the impression has a double function. In the event that the impression is formed in an area, which does not allow a threaded connection of the cover plate to the adjustment housing, the integration of the interior thread offers the chance to seal the cover plate by way of screwing in the screw at this location. In the case, an open impression is realized without any interior thread at a cover plate, an appropriate sealant were certainly to be inserted into the open impression in order to prevent the fluid to drain through the cover plate. The cover plate is certainly not necessary when the open impression is provided at a stop element integrated inside the cover plate, after the adjuster seal has been applied over the mounted cover plate.
In general, a slight radius forms during the impression at the area of the transition of the impression to the deformed body, which acts like a ramp when the vane runs against the stop, sometimes resulting in the vane becoming jammed since the vane can contact the ramp-like radius regardless of its relatively small size. In order to counteract that, an advantageous further development of the invention provides for the impression to be upset in the area of its free end in order to widen it. This means that at the opposite, free end of the impression, a radial enlargement is formed by way of upsetting, which serves as the exterior stop shoulder and prevents any buffing of the interior ramp-like radius. Alternatively it is possible to slightly reverse the entire impression by way of deformation in the opposite direction of the impression so that the radius formed is returned to the level of the component.
Alternatively to the formation of an impression it is also possible to realize the stops by way of flap-like bends, for which an interrupted, for example U-shaped cut is inserted, in order to bend the flap formed out of the level of the component. Naturally, the opening must be resealed when it is mounted to the cover plate; this is not necessary in a flap formation at a stop element.
As a further alternative to the deformation of the cover plate or the stop element for the formation of stops made from the component itself, the invention provides for the stops also to be formed by way of stop pieces mounted to a cover plate or a stop element. Here, rivets, particularly pressed ones, or pins, inserted into the respective openings are possible, as well as pins or bends or the like welded, soldered, or glued to the cover plate or the element. Any element or any other object, which can form a stop, is suitable. Here, screws screwed into the cover plate or the element are also included, which can be screwed into the openings, provided with the appropriate interior threads, or which can be screwed to the cover plate or the element, preferably to interior threads mounted at their outside.
It is generally understood that in the respective case, if necessary, seals in the appropriate form can be used, e.g., gaskets, sealants, glues etc. Additionally, there is certainly the possibility to provide to the two opposite adjuster sides, at which a cover plate is to be provided, with a cover plate provided with stops, so that the rotor runs on both sides against stops, so to speak, and of course the appropriate stop elements may also be integrated here.
As described, it is the sole function of the protrusions 4 to separate the chambers. In order to limit the bilateral adjustment movement indicated by the double arrow A, stops 9 are provided, which according to the invention are provided at a cover plate or a stop element, not shown in greater detail in
As shown in
In the right half in
The following figures show a multitude of various stop forms, each of which shows a cross-section through the stop, which may be provided with an arbitrary shape as described.
Another alternative to avoid it is shown in
Finally,
While
Thus,
However,
While the pin shown in
Finally,
The stop is not limited to the shown embodiments, and other embodiments are possible. Depending on the stop form, additionally an appropriate sealing agent such as a glue, a sealant, or a gasket might be required. Open stops, for example open impressions, are beneficially provided at stop elements, the sealing then occurs via the cover plate. Closed impressions or closed stop forms, e.g., by way of pressed-in pins or rivets or screws etc. may be realized in either of the two components.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 032 141.8 | Jul 2004 | DE | national |