The invention relates to a camshaft adjuster for an internal combustion engine. Such camshaft adjusters are used to adjust the relative angular position between a driving element, such as a driving wheel, which is in driven connection with a crankshaft of the internal combustion engine via traction element, such as a chain or a belt, and a driven element driving a camshaft. In this way control times of valve movements of the internal combustion engine are changed, for example, for improving the emission values, the fuel consumption, and the power profile. Such camshaft adjusters have a locking unit with a locking element, which produces a positive-fit connection between the driving element and the driven element in a locked operating position. In this way, in partial operating ranges of the internal combustion engine, for example, when the internal combustion engine is started or there is a drop in hydraulic pressure or there is a constant power demand, a set angle of the camshaft adjuster is fixed.
For example, due to times that the motor is stopped, it can occur that the camshaft adjuster is no longer completely filled with oil. After restarting the internal combustion engine, under some circumstances it takes a few seconds until the adjuster is completely filled with oil again. In this transition time, the absence of a locking unit can lead to control problems in the phase reference between the crankshaft and camshaft. This can cause worse exhaust-gas values and/or power values and can have negative effects on the service life and noise generation.
From the publication DE 197 55 497 A1, a camshaft adjuster with a vane-cell construction is known, in which the driving element is firmly connected to the driving wheel, while the driven element is connected rigidly to the camshaft. The driven element carries a piston, which is acted upon on one side by a spring and upon which a hydraulic force acts in the opposite direction. For a drop in hydraulic pressure below a threshold set by the spring, the spring moves the piston in the direction of the driving element, so that the piston enters into a corresponding recess of the driving element with a projection in the circumferential direction, forming a positive fit, which achieves a locking effect. The adjustment movement is here oriented in the axial direction of the camshaft adjuster.
From the publication DE 199 83 890 T1, a locking mechanism is known, with which a rotational movement of a driven element relative to a driving element can be limited. With this locking mechanism, a radial movement of a locking element takes place.
From the publication DE 197 24 989 A1, a construction of a camshaft adjuster is known, in which the driving element has external helical gearing and also the driven element has internal helical gearing and an adjustment element that can move axially depending on the action of a hydraulic force engages with the two helical gearings noted above for generating an adjustment movement. The driven element carries a spring-loaded hydraulic piston, which can move axially and which has radial gearing that can be brought into corresponding gearing of the driven element in the locked operating position in the axial direction.
In an alternative embodiment of publication DE 195 41 769, locking is realized not between the driving wheel and camshaft, but instead between the adjustment element noted above, which in this case forms the driven element in the sense of the invention, and driving element locked in rotation with the driving wheel. For this locking, the adjustment element has a projection, which can be displaced hydraulically in the radial direction and which can enter into a corresponding recess of the driving element.
From publication DE 196 23 818 A1, a camshaft adjuster with a vane-cell construction is known, in which a locking pin that can move axially, is spring loaded, and can be pressurized hydraulically in the axial direction into a vane formed with the driving element. In the locked operating position, the locking element constructed as a locking pin with a cone enters into a corresponding recess of the driven element in the axial direction. A guiding ring, which is to influence the guiding and sliding properties between the locking element and the driving element, is connected loosely between the driving element and the locking element.
Additional state of the art in terms of locking elements are known, for example, from publications DE 196 30 662 A1, DE 197 00 866 A1, DE 197 23 945 A1, DE 197 16 203 A1, DE 197 00 866 A1, DE 100 36 546 A1, DE 199 61 193 A1, DE 100 39 923 A1, DE 100 31 974 A1, and DE 100 55 334 C2.
From publication WO 03/076771 A1, it is known to produce components of the camshaft adjuster from a high load bearing, non-metallic material with at least one high load bearing plastic, by means of which advantages in terms of cost and energy are to be achieved. The high load bearing, non-metallic materials should be produced from one part or integrally for parts of the adjustment assembly, driving wheel, stator, covers, and sealing rings. Insert parts, such as screws, nuts, sleeves, and seals, and the like can be injection molded in the high load bearing plastic, wherein threading should also be cut or injected molded directly in the plastic.
The invention is based on the objective of providing a camshaft adjuster, which is improved in terms of
The present invention is based on the knowledge that—for example, corresponding to the publication WO 03/076771 A1—the use of a plastic part for the driving element and/or the driven element is advantageous. However, according to the state of the art, such plastic parts are used exclusively for camshaft adjusters, which have no locking unit. Such known, non-lockable camshaft adjusters with plastic parts involve the preconception of those skilled in the art that the forces appearing in the region of a locking unit cannot be absorbed by a plastic part, because these could lead to cracks in the plastic part or failure of these parts, for example, due to excess large-area pressure forces or stresses. Here it must be taken into account that the plastic parts must feature the necessary mechanical properties in a wide temperature range. For a locking unit, a reduction of the appearing stresses and surface-area pressure forces is not possible or only with difficulty, in that the contact surfaces between the locking element and driving element or driven element are increased, because the locking unit and the locking element should have relatively small dimensions, so that a structurally compact camshaft adjuster is produced.
The solution forming the basis of the invention involves the use of at least one insert, which contacts the locking element with a positive fit in the locked operating position at least in one adjustment direction. Thus, for the insert, which forms the contact surface with the locking element, a suitable material is selectively chosen, for example, an iron, steel, aluminum, or a high-strength plastic. The insert can be prepared in the region of the named contact surfaces with suitable processing methods for the necessary stress. In this way, the insert can be optimally prepared for the contact and the transmission of the locking force between the locking element and the insert. In addition, in the region of an outer surface of the insert, the locking force is transmitted to the plastic part. Here, the outer surface of the insert can have an arbitrary shape, in order to guarantee an optimum transmission of the locking force. For example, the outer surface can be increased nearly arbitrarily, so that a contact surface between the insert and plastic part is increased. In addition, the contour of the outer surface can be shaped suitably for the transmission of the locking force.
The driving element according to the invention involves a component of the camshaft adjuster, whose movement correlates with the driving movement of the crankshaft of the internal combustion engine, while the movement of the driven element correlates with the movement of the camshaft of the internal combustion engine. Here, the driving and/or driven element can be connected rigidly to the driving wheel or the camshaft of the camshaft adjuster and thus can execute the same rotational angle movements like the driving wheel or the camshaft. Alternatively, the driving and/or driven element can be connected to the driving wheel or the camshaft by a geared connection with suitable step-up or step-down gearing. In the course of an adjustment movement of the camshaft adjuster, the relative angular position between the driving element and the driven element is changed.
In its locked operating position, the locking unit according to the invention can completely fix the driving and driven elements in both adjustment directions, can provide play, can implement fixing in only one adjustment direction, or else can represent a stop for limiting an adjustment movement.
According to another construction of the camshaft adjuster according to the invention, an improved connection and transmission of the locking force is produced if the insert has an enlarged extent in a direction of the locking force, wherein this can be a straight-line extension or an enlargement in a circumferential direction of the camshaft adjuster. In this way, the transmission length and also the transmission surface of the locking force can be increased without requiring a special installation space transverse to the locking force. For example, an enlarged extent is understood, in this sense, to be a length that is longer than the diameter or a transverse extent of the locking element or a dimension of a contact surface between the locking element and insert. The enlarged extent equals, in particular, at least two, three, or four times the transverse extent of the locking element or its diameter.
According to another aspect of the invention, the insert transmits the locking force at least partially frictionally engaged to the plastic part. A normal force for such a friction fit can be generated, for example, by pressing the insert into the plastic part, especially under radial compression, by means of cross-sectional expansion due to the resulting locking force, an elastic deformation of the insert or plastic part for inserting the insert into the plastic part and/or a movement of the camshaft adjuster. It is similarly conceivable that the insert will be tensioned against the plastic part by a tensioning or fastening element, such as, for example, the central screw for producing a connection of the camshaft adjuster with the camshaft, by means of which the normal force of the friction fit is given. Such a friction fit has advantages, for example, for mounting, because the locking position can be fine adjusted during mounting.
Alternatively or additionally, it is possible that the insert transmits the locking force at least partially frictionally engaged to the plastic part. Through such a positive-fit connection, initially the relative position of the insert relative to the plastic part can be given by the structure, wherein the need for fine adjustments during mounting can be avoided. Furthermore, a positive-fit transfer of the locking force between the insert and the plastic part guarantees an especially rigid, under some circumstances, play-free and reliable transmission of the locking force.
The insert can be connected detachably to the plastic part to form a driving or driven element. An integral driving or driven element can be formed, such that the insert and the plastic part are connected to each other by a non-positive fit. The non-positive fit can be provided in the form of an adhesive. Alternatively, the plastic part can be sprayed onto the insert, through which an economical and simple production method is given with simultaneously good connection between the insert and plastic part.
Preferably, the insert has external gearing, projections, ribs, or recesses, which engage with a positive fit in corresponding counter gearing, projections, ribs, or recesses of the plastic part. In this way, force-transmission surfaces are created, which are preferably oriented perpendicular to a direction of the locking force, and guarantee good force transmission with low surface-area pressure forces. For the case that the insert has a large extent in the direction of the locking force or circumferential direction, for a compact construction, several teeth of the gearing, projections, ribs, or recesses can be arranged one behind the other in the direction of the locking force.
Furthermore, it can be advantageous when the insert extends over a circumferential angle of 50° to 300°. In this way, the active surface areas of positive-fit connections can be further enlarged and/or the surface of friction-fit contacts can be extended over the circumferential angle. For such large circumferential angles and a construction of the insert and the plastic part with corresponding gearing, in principle the gearing of the insert at first contacts the corresponding counter gearing of the plastic part only in the region of one tooth or a few teeth due to the finite production accuracy. In this respect, the invention is based on the knowledge that plastic has a relatively low modulus of elasticity, so that the number of contacting teeth increases with also only a small locking force, so that the force is distributed over a large contact surface and many teeth, by means of which the life expectancy of the gearing made from plastic can be significantly increased. For a construction of a friction-fit connection between the insert and plastic part, the transferable friction force can be increased significantly according to the measure of the wrap-around angle and the elastic deformation of the insert.
According to one special proposal of the invention, the insert is constructed as a circular-ring disk, which, on its own, already represents a rigid, closed ring structure. The circular-ring disk has an axial or radial projection, gearing or the like, or a recess, which interacts with a positive fit at least in one circumferential direction with a projection or a corresponding recess of the plastic part. The positive-fit connection first sets the mounting of the insert relative to the plastic part, so that incorrect mounting is excluded. Furthermore, through the contact between the projection and recess, a reliable transmission of the locking force is guaranteed. This construction also comprises a non-round outer geometry of the circular-ring, disk-shaped insert, which can be inserted into a corresponding inner geometry of the plastic part.
The plastic can involve, for example, a duroplastic. However, the use of other kinds of plastic is also conceivable.
Additional features of the invention emerge from the following description and the associated drawings, in which embodiments of the invention are shown schematically. Shown are:
The invention relates to a camshaft adjuster in any construction, for example, with a vane-cell construction, axial-piston construction, or with a triple-shaft gear mechanism or an eccentric gear mechanism, wherein the adjustment movement is preferably performed on the basis of a hydraulic adjustment assembly or an electric adjustment assembly. In the figures, a camshaft adjuster with a vane-cell construction is shown merely as an example.
A camshaft adjuster 1 has a driving wheel 2, which is in driven connection with a crankshaft of an internal combustion engine by a traction element. A housing 3 of the camshaft adjuster 1 is connected rigidly to the driving wheel 2 and essentially has a U-shaped half cross section with a base leg 4, which forms a casing surface closed radially outwardly and also two parallel side legs 5, 6 extending radially inwardly from the base leg 4. Chambers 7, which are defined in the circumferential direction by projections or vanes 8 of the housing 3 projecting radially inwardly, are formed in the housing 3 with the U-shaped half cross section and radially outwardly by the base leg 4 and in the axial direction 10-10 by the side legs 5, 6. The side leg 5 or the housing 3 with the driving wheel 2 connected rigidly to this housing forms a driving element 9.
A driven element 11 is supported in the housing 3 so that it can rotate about a longitudinal axis 10-10 to a limited extent relative to the driving element 9. The driven element 11 is connected to a camshaft, which is allocated to intake and/or exhaust valves, through a central borehole 12 oriented in the axial direction. The driven element 11 has a cylindrical body 13, from which vanes 14 extend radially outward into the chambers 7. In the circumferential direction on both sides of the vane 14, pressure chambers 15, 16 are formed, which are each allocated to different adjustment directions of the camshaft adjuster. The pressure chambers 15, 16 are closed in the axial direction by the side legs 5, 6 and in the cross section shown in
A pressure chamber 16 is connected hydraulically to the end face of the front region 21 of the pin 19 via a hydraulic connection 24, so that a hydraulic pressure in the pressure chamber 16 forces the pin 19 in the direction of the unlocked operating position. A compression spring 25, which is supported on the pin 19 in one end region and on the base of the borehole 20 in the opposite end region, extends into the blind borehole 23 of the pin 19. For a drop in pressure in the pressure chamber 16 and thus of the hydraulic connection and also in the region of the end face of the front region 21, the compression spring 25 forces the pin 19 in the direction of the locked operating position, in which the pin 19 enters into the blind borehole 22.
Additional details on the principle function of a camshaft adjuster 1 are to be taken from the publication WO 01/02703 A1 by the applicant.
According to
The insert 26 has an approximately circular ring segment-shaped geometry with circular segment-shaped or partial cylinder-shaped inner contour 27, concentric partial circular-shaped or partial cylinder-shaped outer contour 28, and also end faces 29, 30 oriented radially or perpendicular to the contours 27, 28. The outer contour 28 is provided with gearing 31, which is here provided with teeth with an arbitrary, known tooth geometry, here trapezoidal teeth. The insert 26 is inserted in the viewing direction according to
In the circumferential direction, the locking element 18 is supported on the end face 29 of the insert 26, wherein the casing surface of the front region 21 of the pin 19 contacts the end face 30.
Deviating from the embodiment of the insert 26 according to
An alternative construction of the insert 26b is shown in
According to the embodiment shown in
Alternatively or additionally, the compressive internal stresses can be generated by tensioning of the components during the mounting.
The insert preferably is a steel part, a sintered part, a hard-metal part, or a ceramic part. For the case that the insert is constructed as a circular ring disk, it is possible that this is tightened onto the plastic part via the central screw of the camshaft adjuster or via a different connection element, such as a screw. This application is suitable for high stresses and uses the contact surface and the coefficient of friction between the plastic and insert for uniform load introduction of the locking element. The power capacity of this combination is reinforced by the joint between the closing screw and the connecting element and insert, in which the plastic lies as a sandwich between the two friction partners.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 020 529 | May 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/003065 | 4/5/2006 | WO | 00 | 11/5/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/117049 | 11/9/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6651600 | Schafer et al. | Nov 2003 | B1 |
20010054405 | Miyasaka | Dec 2001 | A1 |
20030037741 | Kohrs | Feb 2003 | A1 |
Number | Date | Country |
---|---|---|
19623818 | Dec 1996 | DE |
19541769 | May 1997 | DE |
19755497 | Jul 1997 | DE |
19630662 | Feb 1998 | DE |
19700866 | Jul 1998 | DE |
19716203 | Oct 1998 | DE |
19723945 | Oct 1998 | DE |
19724989 | Dec 1998 | DE |
10039923 | Mar 2001 | DE |
19961193 | Jun 2001 | DE |
10031974 | Jan 2002 | DE |
10036546 | Feb 2002 | DE |
19983890 | Mar 2002 | DE |
10055334 | Oct 2003 | DE |
0102703 | Jan 2001 | WO |
03076711 | Sep 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080190388 A1 | Aug 2008 | US |