This application is a 371 of PCT/EP2008/067862 filed Dec. 18, 2008, which in turn claims the priority of DE 10 2008 005 292.2 filed Jan. 19, 2008, and U.S. 61/057,347, filed May 30, 2008 the priority of these applications is hereby claimed and these applications arc incorporated by reference herein.
The invention relates to a camshaft adjusting system of an internal combustion engine.
Camshafts of internal combustion engines are generally driven by crankshafts via a chain or a toothed belt and, in the process, are continuously adjusted in a closed control circuit, wherein typical adjustment ranges lie within crank angles of 40 to 60°. Crank angles which can be set are deposited in characteristic diagrams. Adjustments take place, for example, hydraulically, fed from the engine oil circuit via an electrically actuated control valve, and permit optimum valve timings for the engine load and engine speed parameters. Depending on the engine concept and number of adjusters, a significant reduction in fuel consumption and exhaust emissions and an increase in the power and torque can thus be achieved.
DE 42 26 798 A1 discloses an internal combustion engine with a camshaft adjusting system for rotating two concentrically arranged camshaft in order to change phase angles of cams on the first of the concentrically arranged camshafts with respect to the cams on the second of the concentrically arranged camshafts. The two concentrically arranged camshafts are an external shaft and an internal shaft each with cams of identical function, wherein the cams arranged on the internal shaft are mounted on the external shaft and are connected to the internal shaft by a carry-along element configured in the form of a bolt connection. By means of a camshaft adjusting system of this type, it is possible to adjust inlet cams relative to outlet cams without parallel inlet and outlet camshafts, as, for example, in the case of double overhead camshaft (DOHC) engines. A disadvantage of camshaft adjusting systems having two concentrically arranged camshafts is the exacting design required if the rotation of the camshafts is intended to be activated by means of vane cells which require exacting component tolerances and bearing clearances for high adjusting speeds. In a vane cell, the radial clearance between the rotor and stator is restricted to a few hundredth of a millimeter. By connecting the rotor and stator to one of the concentrically arranged camshafts each, the radial position of said rotor and stator with respect to each other is also determined by shape differences and positional differences, in particular by concentricity errors, eccentricities and assembly of the concentrically arranged camshafts. The sum of said differences may be significantly greater than the still permissible, function-determining radial clearance between the rotor and stator. A camshaft adjusting system of this type could jam.
It is the object of the invention to provide a camshaft adjusting system which does not jam and in which the rotation of camshafts connected to the rotor and stator is activated by means of vane cells.
According to the invention, a camshaft adjusting system of an internal combustion engine has a rotor and a stator, in which the rotor is mounted rotatably, and first and second concentrically arranged camshafts, one of which is driven by the stator and the other by the rotor, wherein the first and second camshafts can be rotated with respect to each other in order to change phase angles of cams on the first of said camshafts with respect to cams on the second of said camshafts. At least one vane cell is provided between the rotor and stator. The sum of the shape differences and positional differences between the first and second camshafts is smaller than bearing gaps in at least one bearing point between the rotor and stator, and sealing elements which can be matched to the bearing gaps are provided in the bearing gaps between the rotor and stator. It advantageously emerges with the radial clearance between the rotor and stator, which radial clearance is increased, according to the invention, to an extent greater than the sum of the unfavorable shape differences and positional differences between the first and second camshafts, that the camshaft adjusting system does not jam and the function thereof is reliably ensured. Enlarged bearing gaps caused by the increased radial clearance are closed by sealing elements, and therefore losses in power arising from the enlarged bearing gaps for the adjusting speeds of rotor with respect to stator do not occur.
According to an advantageous refinement of the invention, the sealing elements are designed as sealing strips which are pressed into the bearing gaps by means of spring elements such that bearing gaps of between 0 and 2 mm can be flexibly compensated for even when concentricity differences between the first and second camshafts are variable.
According to another advantageous refinement of the invention, at least one vane element of the vane cell is mounted resiliently between the rotor and stator to provide advantages with regard to construction space and weight in particular in comparison to camshaft adjusting systems in which rotating vanes are used for controlling the rotation of the rotor relative to the stator.
The invention is described below with reference to preferred exemplary embodiments. In the drawings:
Sealing elements 16 which are designed as sealing strips are held in the stator 2 and can be pressed in a flexible manner by means of spring elements into the bearing gaps 10 between the stator 2 and rotor 3. The vane elements 12 are mounted resiliently in a radial direction in the rotor 3.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 005 292 | Jan 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/067862 | 12/18/2008 | WO | 00 | 7/15/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/089983 | 7/23/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1527456 | Woydt et al. | Feb 1925 | A |
3516394 | Nichols | Jun 1970 | A |
5161429 | Elrod et al. | Nov 1992 | A |
6484678 | Kinugawa | Nov 2002 | B2 |
6920853 | Nakajima et al. | Jul 2005 | B2 |
20030168032 | Miyazaka | Sep 2003 | A1 |
Number | Date | Country |
---|---|---|
727 987 | Nov 1942 | DE |
42 26 798 | Feb 1994 | DE |
199 22 194 | Jun 2000 | DE |
10 2004 028 869 | Jan 2006 | DE |
2 369 175 | May 2002 | GB |
2 415 480 | Dec 2005 | GB |
2 415 745 | Jan 2006 | GB |
2 432 645 | May 2007 | GB |
2 433 974 | Jul 2007 | GB |
9500748 | Jan 1995 | WO |
2006108494 | Oct 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20110041788 A1 | Feb 2011 | US |