The present invention relates to a camshaft assembly comprising an inner shaft, an outer tube surrounding and rotatable relative to the inner shaft, and two groups of cam lobes mounted on the outer tube, the first group of cam lobes being fast in rotation with the outer tube and the second group being rotatably mounted on the outer surface of the tube and connected for rotation with the inner shaft by means of pins that pass with clearance through slots in the outer tube.
An adjustable camshaft assembly as set forth above, herein also termed an SCP (single cam phaser) camshaft, allows variable valve timing to be implemented in engines having different valves operated by lobes on the same camshaft. A phaser mounted on one end of the SCP camshaft allows the inner shaft and/or the outer tube to be rotated relative to a crankshaft driven pulley to permit the timing of at least one of the two groups of cam lobes to be altered in relation to the crankshaft timing.
There are numerous known types of phase change mechanisms, or phasers, some of which, for example vane-type phasers, are hydraulically operated. Within such phasers intended for use with a solid camshaft, it is known to incorporate a spring to bias the phaser into an extreme end position, to enable the engine to start and idle correctly while there is still insufficient oil pressure to operate the phaser. An example of such a phaser is described in U.S. 2003/0217718.
A problem is however encountered in the prior art in finding sufficient space within a phaser to accommodate a spring to bias the inner shaft of an SCP camshaft relative to the outer tube, bearing in mind that there are severe constraints on the overall size of the phaser.
With a view to mitigating the foregoing disadvantages, the present invention provides a camshaft assembly comprising an inner shaft, an outer tube surrounding and rotatable relative to the inner shaft, and two groups of cam lobes mounted on the outer tube, the first group of cam lobes being fast in rotation with the outer tube and the second group being rotatably mounted on the outer tube and connected for rotation with the inner shaft by means of pins that pass with clearance through slots in the outer tube, wherein a compliant member is incorporated in the camshaft assembly to bias the inner shaft relative to the outer tube towards one extreme of its angular range.
In the invention, the spring biasing the components of an SCP camshaft into a position suitable for starting the engine forms part of the camshaft not the phaser driving the camshaft. As will be clear from the ensuing description, there are numerous suitable locations for such a spring on the camshaft that do not create the packaging problems that occur when attempting to integrate such a spring into the phaser.
The compliant member, which is preferably a spring, may suitably be connected to the outer tube via a camshaft bearing, a camshaft lobe or a sensor ring.
The compliant member may be connected to the inner shaft via an intermediate component fixed in rotation to the drive shaft, for example a cam lobe or a sensor ring.
One or more compliant members may be housed inside one of the camshaft bearings, between two adjacent cam lobes, or in a bore of the outer tube.
The invention will now be described further, by way of example, with reference to the accompanying drawings, in which:
Throughout the drawings, like parts in the different embodiments have been allocated the same reference numerals and modified components serving the same function have been allocated reference numerals differing from one another by multiples of one hundred.
FIGS. 1 to 3 show an SCP camshaft 10 connected at its front end to drive sprocket 11 which incorporates a vane-type phaser. The principle of operation of an SCP camshaft and a vane-type phaser are both known and well documented in the prior art and they need not therefore be described herein in detail. It suffices in the present context to understand that the SCP camshaft is formed of an inner shaft 12 and an outer tube 14 that can be rotated relative to one another through a limited angular range by means of the phaser 11. The outer tube 14 carries two groups of lobes of which the first group of lobes 16 is fast in rotation with the outer tube 14 and the second group 18 can rotate on the outer surface of the outer tube 14 and is connected for rotation with the inner shaft 12 by means of pins 20 that pass with clearance through circumferentially elongated slots in the outer tube 14. When the inner shaft 12 is rotated relative to the outer tube 14, the two groups of lobes rotate relative to one another and thereby vary the timing of valve operated by the respective cam lobes.
It is desirable in such a camshaft to provide a spring to bias the inner shaft 12 relative to the outer tube 14 towards one angular position establishing suitable valve timing conditions for the engine to start and to idle until sufficient hydraulic pressure has been built up to enable the phaser 11 to function correctly. Hitherto, such a spring has been incorporated into the phaser 11 but, because space within a phaser is at a premium, the present invention incorporates a biasing spring in the camshaft, the different embodiments illustrated in the drawings showing various methods by which this may be achieved.
In the embodiment of FIGS. 1 to 3, a bearing sleeve 30 having slots 32 to allow it to form part of an angular position sensor is mounted at one end for rotation with the outer tube 14 of the camshaft. A helical torsion spring 38 has its axially outer end bent radially inwards and its opposite end bent to projecting axially from the coil of the spring. The axially projecting end is received in a hole in the sleeve 30 while the radially bent end is received in a radial slot 35 in the end of the inner shaft 12. An end plate 34 fitted over the end of the inner shaft 12 and retained on it by means of a circlip 36 serves to hold the spring 38 in position within the sleeve 30 and also prevents the sleeve 30 and the outer tube 14 from moving axially and sliding off the end of the inner shaft 12.
The embodiment of
To assemble the camshaft of
In the embodiment of
In the embodiment shown in
All of these return spring embodiments described above require a physical stop to limit the angular motion of the SCP camshaft.
It is also important in all the above embodiments for the outer tube of the camshaft not to move axially relative to the inner shaft and in addition to the plates that act as end stops it is possible to provide a spring or other compliant member to bias the two apart in an axial direction.
Number | Date | Country | Kind |
---|---|---|---|
0505296.4 | Mar 2005 | GB | national |