The invention relates to a camshaft having a decompression device for an internal combustion engine.
In the past, the predecessor of the camshaft with a decompression device was the decompression lever. The decompression lever actuates, in particular in the case of single-cylinder two-stroke internal combustion engines, a so-called separate decompression valve in the cylinder head or, in the case of four-stroke internal combustion engines, opens one or more exhaust valves in order to reduce the cylinder interior pressure for easier starting. In this case, it is also described as a valve lifter lever. During the starting of the internal combustion engine, the decompression valve allows a part of the gas to escape from the cylinder. Because of this, the force required for cranking the internal combustion engine during starting is significantly reduced. Such decompression devices are employed mainly in single-cylinder internal combustion engines of older motor vehicles, in particular of motorcycles, mopeds, and occasionally also in smaller automobiles or tractors with single-cylinder diesel-operated internal combustion engines.
Accordingly, an automatic decompression device for internal combustion engines is known from the German publication DE 42 21 394 A1. This is a decompression device with a flyweight revolving with the camshaft of the internal combustion engine. In the position pivoted back in the stationary state and at low camshaft rotational speeds, it has a tappet lifting element protruding in the region of the cam running surface of a valve tappet and shifting the same in the valve opening direction, which through the flyweight which swings outward with rising rotational speeds is guided into a position in which it is set out of engagement with the cam running surface of the tappet.
Furthermore, an automatic decompression device for an internal combustion engine, in particular a single-cylinder diesel engine, with at least one exhaust valve and one inlet valve, which are driven by a camshaft with at least one cam, is known from German publication DE 196 36 811 A1, wherein for reducing the cranking resistance during the starting of the internal combustion engine the exhaust valve is lifted. The automatic decompression device for lifting the exhaust valve below a switching speed for the switching from decompression to compression comprises a fully automatic lifting device engaging in the cam of the exhaust valve, which brings about the exhaust valve being lifted off the valve seat.
A further generic camshaft with a decompression device is known, for example, from the European patent application EP 0 407 699 A1.
Disadvantageous in all these known decompression devices is that the decompression function can generate stochastic clicking, which has an undesirable effect on the noise emission of the internal combustion engine. This clicking is caused by an unstable flyweight of the decompression device.
The object of the present invention is to prevent or at least reduce the acoustically conspicuous clicking of the decompression device.
This and other objects are achieved by a camshaft with a decompression device for an internal combustion engine, wherein in a base circle of a cam, which can be operationally connected with a gas exchange valve through rotation, a valve lifter is rotatably mounted, which is operationally connected with a rotatably mounted flyweight arranged coaxially to the camshaft in such a manner that the valve lifter from a certain rotational speed of the camshaft forms a contour of the base circle in the operational region with the gas exchange valve. The camshaft in the region of the flyweight has a cavity to which lubricant pressure can be applied and in the camshaft a radial first bore from the cavity to the flyweight is arranged, wherein in the first bore a slideable element that is displaceable by the lubricant pressure is arranged.
A slideable element installed in the camshaft is supplied with lubricant from the lubricating circuit. As soon as the internal combustion engine starts, this slideable element is radially shifted to the outside by centrifugal force. At the same time, the slideable element is supported by lubricant pressure and remains in the desired position and pushes the flyweight to the outside. In the process, the flyweight is held stable in the deflection position and, according to the invention, can no longer cause the clicking. Accordingly, the clicking is prevented through the configuration of the decompression function according to the invention and no unpleasant noises of the internal combustion engine are created.
With the configuration wherein lubricant can be applied to the cavity via a second bore from a bearing region of the camshaft it is ensured that adequate lubricant with adequate lubricant pressure is always available in order to push the slideable element in the direction of the flyweight.
The measure wherein the element is displaceable by the lubricant in the direction of the flyweight against a spring force of a spring element serves for the general stabilization of the decompression device.
The configurations wherein the flyweight comprises a stop for the element, and wherein the camshaft is a needle roller are preferred embodiments.
The configuration wherein the camshaft is an exhaust camshaft is a particularly preferred embodiment.
Preferentially, the camshaft according to the invention is installed in an internal combustion engine.
Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of one or more preferred embodiments when considered in conjunction with the accompanying drawings.
In the following, the same reference numbers apply to identical components in the
In a base circle 2 of a cam 3, a valve lifter 4 is rotatably mounted, which is operationally connected with a rotatably mounted flyweight 5 that is arranged coaxially with the camshaft 1 such that the valve lifter 4 from a certain rotational speed of the camshaft 1, is turned by the flyweight 5 in such a manner that the valve lifter 4 constitutes a contour of the base circle 2. This means that from a certain rotational speed of the camshaft 1 the valve lifter 4 is quasi ineffective, and the gas exchange valve remains closed as usual.
During the starting of the internal combustion engine, or at a rotational speed that is less than the defined rotational speed, the flyweight, as is evident in
The camshaft 1 with the decompression device according to the invention is characterized in that the camshaft 1 in the region of the flyweight 5 has a cavity 6 (
In the present exemplary embodiment, the cams 3 each have a recess 12 for weight saving.
Through the slideably arranged element 8, a section A-A in
In the stationary state of the camshaft 1, the spring element 10, via a pressure element 13, pushes the flyweight 5 about the axis of rotation 14 with the stop 11 onto the slideable element 8. On the side facing away from the spring element 10, the flyweight 5 is operationally connected to the valve lifter 4. In the position shown in
When the internal combustion engine is now started, a lubricant pressure builds up in the cavity 6 while the flyweight 5 at the same time turns radially to the outside with a support of the lubricant pressure which pushes the slideable element 8 likewise radially to the outside. In the process, the flyweight 5 turns according to the arrow in clockwise direction and turns the valve lifter 4 in such a manner that it assumes the same contour in the base circle 2 as the base circle 2 itself. A decompression is thus securely avoided from a defined rotational speed.
As shown in
In other words, the slideable element 8 installed in the camshaft 1 is supplied with lubricant from the lubricant circuit. As soon as the internal combustion engine fires, the slideable element 8, preferably a needle roller, is radially displaced to the outside by the lubricant pressure that builds up in the cavity 6. As soon as the internal combustion engine fires, the slideable element 8 is displaced to the outside by centrifugal force. At the same time, the slideable element 8 is supported by lubricant pressure in the cavity 6 and remains in the desired radially outer position. In the process, the flyweight 5 is held stable in the deflection position and can no longer cause the acoustic abnormality. In the manner of the invention, this means no clicking of the decompression device and thus no unpleasant noises of the internal combustion engine.
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 204 550.1 | Mar 2015 | DE | national |
This application is a continuation of PCT International Application No. PCT/EP2016/051629, filed Jan. 27, 2016, which claims priority under 35 U.S.C. §119 from German Patent Application No. 10 2015 204 550.1, filed Mar. 13, 2015, the entire disclosures of which are herein expressly incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2016/051629 | Jan 2016 | US |
Child | 15634164 | US |