The present disclosure relates to a camshaft phaser with a modular rotor nose oil feed adapter configured to receive oil in radially aligned opening and flow oil in axially aligned channels to chambers for phasing the phaser. In particular, the rotor for the phaser includes axially aligned channels to receive the oil.
It is known to receive oil for chambers in a camshaft phaser, formed by a rotor and a stator for the phaser and used to control phasing of the phaser, in radially aligned channels opening to a radially central space. However, the requirement for a radially central space increases both the radial extent of the phaser and limits the spaces into which the phaser can be installed as well as the options for supplying oil to the chambers.
According to aspects illustrated herein, there is provided a camshaft phaser, including: a drive sprocket arranged to receive torque; a phaser section including a stator non-rotatably connected to the drive sprocket, a rotor at least partially rotatable with respect to the stator and including a first plurality of radially aligned channels, a first plurality of axially aligned channels connected to the first plurality of radially aligned channels, and a plurality of chambers formed by the rotor and the stator and open to the first plurality of radially aligned channels; and a rotor nose separately formed from the phaser section and non-rotatably connected to the phaser section, extending past a front side of the phaser section in a first axial direction, and including a second plurality of radially aligned channels in a radially outer surface of the rotor nose assembly and a second plurality of axially aligned channels connected to the second plurality of radially aligned channels and in hydraulic communication with the first plurality of axially aligned channels. The plurality of chambers is arranged to circumferentially position, in response to fluid pressure in the plurality of chambers, the rotor with respect to the drive sprocket. The second plurality of radially aligned channels is arranged to receive fluid for the plurality of chambers. The first plurality of radially aligned channels and the first and second pluralities of axially aligned channels form respective flow paths for the fluid to the plurality of chambers.
According to aspects illustrated herein, there is provided a camshaft phaser, including: a drive sprocket arranged to receive torque; a phaser section; and a rotor nose. The phaser section includes: a stator non-rotatably connected to the drive sprocket; a rotor at least partially rotatable with respect to the stator and including a first plurality of radially aligned channels; a rotor plate non-rotatably connected to the rotor; a first plurality of axially aligned channels connected to the first plurality of radially aligned channels; and a plurality of chambers formed by the rotor and the stator and open to the first plurality of radially aligned channels. The rotor nose is separately formed from the phaser section and non-rotatably connected to the rotor plate; extends past a front side of the phaser section in a first axial direction; and includes second and third pluralities of radially aligned channels in a radially outer surface of the rotor nose assembly and a second plurality of axially aligned channels connected to the first plurality of axially aligned channels and to respective channels in the second and third pluralities of radially aligned channels. The plurality of chambers is arranged to circumferentially position, in response to fluid pressure in the plurality of chambers, the rotor with respect to the drive sprocket. The second and third pluralities of radially aligned channels are arranged to receive fluid for the plurality of chambers. The first plurality of radially aligned channels and the first and second pluralities of axially aligned channels form respective flow paths for the fluid to the plurality of chambers. The second plurality of radially aligned channels is axially offset with respect to the third plurality of radially aligned channels.
According to aspects illustrated herein, there is provided a method of fabricating a camshaft phaser, including: fixedly securing a stator to a drive sprocket arranged to receive torque; inserting a rotor within a space formed by the stator such that the rotor is at least partially rotatable with respect to the stator, wherein the rotor includes a first plurality of radially aligned channels and a first plurality of axially aligned channels; forming a plurality of chambers bounded by the stator and the rotor; fixedly connecting a rotor plate to the rotor, wherein the rotor plate includes a second plurality of axially aligned channels; fixedly connecting a rotor nose to the rotor plate such that the rotor nose extends axially past the rotor and the rotor plate, wherein the rotor nose includes a third plurality of axially aligned channels and a second plurality of radially aligned channels; and hydraulically connecting the first and second radially aligned channels via the first, second, and third pluralities of axially aligned channels. The plurality of chambers is arranged to circumferentially position, in response to fluid pressure in the plurality of chambers, the rotor with respect to the drive sprocket. The second plurality of radially aligned channels is arranged to receive fluid for the plurality of chambers.
Various embodiments are disclosed, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, in which:
At the outset, it should be appreciated that like drawing numbers on different drawing views identify identical, or functionally similar, structural elements of the disclosure. It is to be understood that the disclosure as claimed is not limited to the disclosed aspects.
Furthermore, it is understood that this disclosure is not limited to the particular methodology, materials and modifications described and as such may, of course, vary. It is also understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to limit the scope of the present disclosure.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. It should be understood that any methods, devices or materials similar or equivalent to those described herein can be used in the practice or testing of the disclosure.
The adverbs “axially,” “radially,” and “circumferentially” are with respect to an orientation parallel to axis 81, radius 82, or circumference 83, respectively. The adverbs “axially,” “radially,” and “circumferentially” also are regarding orientation parallel to respective planes.
Rotor nose 102 includes radially aligned channels 120 in radially outer surface 122 of the rotor nose, and axially aligned channels 124 connected to radially aligned channels 122 and in hydraulic communication with axially aligned channels 114. Channels 120 and 124 form respective portions or flow paths FP. By “hydraulic communication” we mean that fluid is able to flow between the two sets of channels. Chambers 116 are arranged to circumferentially position, in response to fluid pressure in chambers 116, the rotor with respect to the drive sprocket. Radially aligned channels 120 are arranged to receive fluid for flow paths FP and chambers 116.
Rotor 110 includes vanes 126. In an example embodiment, radial channels 112 include pairs of channels 112A and 112B and axial channels 114 includes pairs of channels 128A and 128B in the rotor connected to channels 112A and 112B, respectively. Each vane forms a portion of a respective pair of chambers 116, for example, vane 126A forms chambers 116A and 116B in conjunction with the stator. Channels 112A and 112B open to chambers 116A and 116B, respectively.
In an example embodiment, section 106 includes rotor plate 130 non-rotatably connected to the rotor and pairs of axially aligned channels 132A and 132B in hydraulic communication with axially aligned channels 128A and 128B, respectively. Channels 132A and 132B are included in channels 114 and flow paths FP.
In an example embodiment, radial channels 120 include pairs of channels 120A and 120B and axial channels 124 includes channels 124A and 124B connected to channels 120A and 120B, respectively. In an example embodiment, channels 120A are axially off-set from channels 120B, for example, in axial direction AD1. In an example embodiment, seals 134 are used to hydraulically isolate channels 120A and 120B.
In an example embodiment, spring 136 is used to provide a default positioning force for rotor 110 as is known in the art. For example, tab 138 is engaged with slot 140 in plate 130. Spring 136 is preloaded such that tab 138 urges plate 130 (and hence rotor 110 which is non-rotatably connected to plate 130) in rotational direction RD1. As a result, rotor 110 is positioned as best seen in
In an example embodiment, seal plate 142 is used to seal chambers 116. In an example embodiment, bolt/bushing assembly 144 is used to non-rotatably connect plate 142, stator 108 and sprocket 104. Bolts 144 also are used to anchor spring 136. In an example embodiment, fastener/bushing 146 is used to non-rotatably connect plate 130 and rotor 110. In an example embodiment, locking pin assembly 148 is used to lock rotor 110 in a default position as is known in the art. In an example embodiment, alignment pegs 150 on rotor nose are arranged to engage alignment holes 152 in plate 130 to align rotor nose 102 with plate 130 and to non-rotatably fix rotor nose 102 to plate 130.
The size of the opening for space 202 and the dimensions of space 202 itself also limit an extent of diameter 162 for phaser 100. Advantageously, channels 112 and 114 eliminate the need for a radial feed to chambers 116 from a radially central space. Hence, the radially central space is eliminated with a subsequent reduction in diameter 162. All of the preceding factors enable phaser 100 to be used in applications with space and access restrictions that eliminate the use of known camshaft phaser configurations.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/824,033, filed May 16, 2013, which application is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61824033 | May 2013 | US |