The present invention relates to a hydraulically actuated camshaft phaser for varying the phase relationship between a crankshaft and a camshaft in an internal combustion engine; more particularly to such a camshaft phaser that is a vane-type camshaft phaser; even more particularly to a vane-type camshaft phaser which includes a hydraulic circuit to return the camshaft phaser to a predetermined aligned position.
A typical vane-type camshaft phaser for changing the phase relationship between a crankshaft and a camshaft of an internal combustion engine generally comprises a plurality of outwardly-extending vanes on a rotor interspersed with a plurality of inwardly-extending lobes on a stator, forming alternating advance and retard chambers between the vanes and lobes. Engine oil is selectively supplied to one of the advance and retard chambers and vacated from the other of the advance and retard chambers by a phasing oil control valve in order to rotate the rotor within the stator and thereby change the phase relationship between an engine camshaft and an engine crankshaft. Camshaft phasers also commonly include an intermediate lock pin which selectively prevents relative rotation between the rotor and the stator at a predetermined aligned position that is intermediate of a full advance and a full retard position. The intermediate lock pin is engaged and disengaged by venting oil from the intermediate lock pin and supplying pressurized oil to the intermediate lock pin respectively by a lock pin oil control valve.
Upon failure of the phasing oil control valve, it may be desirable to use the intermediate lock pin to lock the camshaft phaser at the predetermined aligned position because the predetermined aligned position may provide valve timing which allows the internal combustion engine to start and run under all conditions. Prior art camshaft phasers commonly employ a bias spring to assist in returning the camshaft phaser to the predetermined aligned position if the phasing oil control valve fails. Examples of such a bias spring are shown in U.S. Pat. No. 7,363,897 to Fischer et al. and U.S. Pat. No. 8,127,728 also to Fischer et al. While bias springs may be effective, it may be desirable to provide another arrangement in addition to or in alternative to using a bias spring to ensure engagement of the intermediate lock pin with its corresponding seat.
What is needed is camshaft phaser which minimizes or eliminates one or more the shortcomings as set forth above.
Briefly described, a camshaft phaser is provided for controllably varying the phase relationship between a crankshaft and a camshaft in an internal combustion engine where the camshaft phaser includes a hydraulic circuit which aides in returning the camshaft phaser to a predetermined aligned position. The camshaft phaser includes a stator having a plurality of lobes and connectable to the crankshaft of the internal combustion engine to provide a fixed ratio of rotation between the stator and the crankshaft; a rotor coaxially disposed within the stator, the rotor having a plurality of vanes interspersed with the lobes defining a plurality of alternating advance chambers and retard chambers, wherein the advance chambers receive pressurized oil from a phasing oil control valve in order to change the phase relationship between the crankshaft and the camshaft in an advance direction and the retard chambers receive pressurized oil from the phasing oil control valve in order to change the phase relationship between the camshaft and the crankshaft in a retard direction, the rotor being rotatable within the stator from a full retard position to a full advance position and being attachable to the camshaft of the internal combustion engine to prevent relative rotation between the rotor and the camshaft; a lock pin disposed within one of the rotor and the stator for selective engagement with a lock pin seat for preventing a change in phase relationship between the rotor and the stator at a predetermined aligned position between the full advance position and the full retard position when the lock pin is engaged with the lock pin seat; a first diverter valve that is switchable between two positions of 1) blocking communication between the phasing oil control valve and only one of the advance chambers while permitting communication between the one of the advance chambers and a first check valve and of 2) permitting communication between the phasing oil control valve and the one of the advance chambers while blocking communication between the one of the advance chambers and the first check valve; and a second diverter valve that is switchable between two positions of 1) blocking communication between the phasing oil control valve and only one of the retard chambers while permitting communication between the one of the retard chambers and a second check valve and of 2) permitting communication between the phasing oil control valve and the one of the retard chambers while blocking communication between the one of the retard chambers and the second check valve. The first check valve allows oil to flow from the one of the retard chambers to the one of the advance chambers when the first diverter valve permits communication between the one of the advance chambers and the first check valve and the second check valve allows oil to flow from the one of the advance chambers to the one of the retard chambers when the second diverter valve permits communication between the one of the retard chambers and the second check valve.
Further features and advantages of the invention will appear more clearly on a reading of the following detail description of the preferred embodiment of the invention, which is given by way of non-limiting example only and with reference to the accompanying drawings.
This invention will be further described with reference to the accompanying drawings in which:
In accordance with a preferred embodiment of this invention and referring to
Camshaft phaser 12 generally includes a stator 16, a rotor 18 disposed coaxially within stator 16, a back cover 20 closing off one end of stator 16, a front cover 22 closing off the other end of stator 16, a bias spring 24 for urging rotor 18 in one direction relative to stator 16, a primary lock pin 28, a secondary lock pin 30, and a camshaft phaser attachment bolt 32 for attaching camshaft phaser 12 to camshaft 14. The various elements of camshaft phaser 12 will be described in greater detail in the paragraphs that follow.
Stator 16 is generally cylindrical and includes a plurality of radial chambers 34 defined by a plurality of lobes 36a, 36b, 36c extending radially inward. From this point forward, lobes 36a, 36b, 36c will be referred to generically as lobes 36 unless reference is being made to a specific lobe 36. In the embodiment shown, there are three lobes 36 defining three radial chambers 34, however, it is to be understood that a different number of lobes 36 may be provided to define radial chambers 34 equal in quantity to the number of lobes 36. Stator 16 may also include a sprocket 38 formed integrally therewith or otherwise fixed thereto. Sprocket 38 is configured to be driven by a chain or gear (not shown) that is driven by the crankshaft of internal combustion engine 10. Alternatively, sprocket 38 may be a pulley driven by a belt.
Rotor 18 includes a central hub 40 with a plurality of vanes 42a, 42b, 42c extending radially outward therefrom and a central through bore 44 extending axially therethrough. From this point forward, vanes 42a, 42b, 42c will be referred to generically as vanes 42 unless reference is being made to a specific vane 42. The number of vanes 42 is equal to the number of radial chambers 34 provided in stator 16. Rotor 18 is coaxially disposed within stator 16 such that each vane 42 divides each radial chamber 34 into advance chambers 46a, 46b, 46c and retard chambers 48a, 48b, 48c. From this point forward, advance chambers 46a, 46b 46c will be referred to generically as advance chambers 46 unless reference is being made to a specific advance chamber 46. Similarly, from this point forward, retard chambers 48a, 48b, 48c will be referred to generically as retard chambers 48 unless reference is being made to a specific retard chamber 48. The radial tips of lobes 36 are mateable with central hub 40 in order to separate radial chambers 34 from each other. Each of the radial tips of lobes 36 and vanes 42 may include one of a plurality of wiper seals 50 to substantially seal adjacent advance chambers 46 and retard chambers 48 from each other.
Back cover 20 is sealingly secured, using cover bolts 52, to the axial end of stator 16 that is proximal to camshaft 14. Tightening of cover bolts 52 prevents relative rotation between back cover 20 and stator 16. Back cover 20 includes a back cover central bore 54 extending coaxially therethrough. The end of camshaft 14 is received coaxially within back cover central bore 54 such that camshaft 14 is allowed to rotate relative to back cover 20. In an alternative arrangement, sprocket 38 may be integrally formed or otherwise attached to back cover 20 rather than stator 16.
Similarly, front cover 22 is sealingly secured, using cover bolts 52, to the axial end of stator 16 that is opposite back cover 20. Cover bolts 52 pass through back cover 20 and stator 16 and threadably engage front cover 22, thereby clamping stator 16 between back cover 20 and front cover 22 to prevent relative rotation between stator 16, back cover 20, and front cover 22. In this way, advance chambers 46 and retard chambers 48 are defined axially between back cover 20 and front cover 22.
Camshaft phaser 12 is attached to camshaft 14 with camshaft phaser attachment bolt 32 which extends coaxially through central through bore 44 of rotor 18 and threadably engages camshaft 14, thereby by clamping rotor 18 securely to camshaft 14. In this way, relative rotation between stator 16 and rotor 18 results in a change in phase or timing between the crankshaft of internal combustion engine 10 and camshaft 14.
Pressurized oil is selectively supplied to advance chambers 46 and vented from retard chambers 48 in order to cause relative rotation between stator 16 and rotor 18 which results in advancing the timing of camshaft 14 relative to the crankshaft of internal combustion engine 10. Conversely, oil is selectively supplied to retard chambers 48 and vented from advance chambers 46 in order to cause relative rotation between stator 16 and rotor 18 which results in retarding the timing of camshaft 14 relative to the crankshaft of internal combustion engine 10. Advance oil passages 56 may be provided in rotor 18 for supplying and venting oil to and from advance chambers 46 while retard oil passages 58 may be provided in rotor 18 for supplying and venting oil to and from retard chambers 48. Supplying and venting of oil to and from advance chambers 46 and retard chambers 48 may be controlled by a phasing oil control valve 60 located external to camshaft phaser 12, for example, within internal combustion engine 10. Phasing oil control valve 60 is shown in schematic form in
Bias spring 24 is disposed within an annular pocket 72 formed in rotor 18 and within a central bore 74 of front cover 22. Bias spring 24 is grounded at one end thereof to front cover 22 and is attached at the other end thereof to rotor 18. In this way, bias spring 24 is used to either partially or completely offset the natural retarding torque induced by the overall valve train friction, balance performance times, or to help return the phaser to a predetermined aligned position of rotor 18 within stator 16 which is between the full advance and full retard positions. When internal combustion engine 10 is shut down or if there is a malfunction of phasing oil control valve 60, bias spring 24 helps to urge rotor 18 to the predetermined aligned position within stator 16 in a way that will be described in more detail in the subsequent paragraphs. While camshaft phaser 12 has been described as including bias spring 24, it should now be understood that bias spring 24 may be omitted.
Primary lock pin 28 and secondary lock pin 30 define a staged dual lock pin system for selectively preventing relative rotation between stator 16 and rotor 18 at the predetermined aligned position which is between the full retard and full advance positions. Primary lock pin 28 is slidably disposed within a primary lock pin bore 76 formed in vane 42a of rotor 18. A primary lock pin seat 78 is formed in front cover 22 for selectively receiving primary lock pin 28 therewithin. Primary lock pin seat 78 is larger than primary lock pin 28 to allow rotor 18 to rotate relative to stator 16 about 5° on each side of the predetermined aligned position when primary lock pin 28 is seated within primary lock pin seat 78. The enlarged nature of primary lock pin seat 78 allows primary lock pin 28 to be easily received therewithin. When primary lock pin 28 is not desired to be seated within primary lock pin seat 78, pressurized oil is supplied to primary lock pin 28, thereby urging primary lock pin 28 out of primary lock pin seat 78 and compressing a primary lock pin spring 80. Conversely, when primary lock pin 28 is desired to be seated within primary lock pin seat 78, the pressurized oil is vented from primary lock pin 28, thereby allowing primary lock pin spring 80 to urge primary lock pin 28 toward front cover 22. In this way, primary lock pin 28 is seated within primary lock pin seat 78 by primary lock pin spring 80 when rotor 18 is positioned within stator 16 to allow alignment of primary lock pin 28 with primary lock pin seat 78.
Secondary lock pin 30 is slidably disposed within a secondary lock pin bore 82 formed in vane 42b of rotor 18. A secondary lock pin seat 84 is formed in front cover 22 for selectively receiving secondary lock pin 30 therewithin. Secondary lock pin 30 fits within secondary lock pin seat 84 in a close sliding relationship, thereby substantially preventing relative rotation between rotor 18 and stator 16 when secondary lock pin 30 is received within secondary lock pin seat 84. When secondary lock pin 30 is not desired to be seated within secondary lock pin seat 84, pressurized oil is supplied to secondary lock pin 30, thereby urging secondary lock pin 30 out of secondary lock pin seat 84 and compressing a secondary lock pin spring 86. Conversely, when secondary lock pin 30 is desired to be seated within secondary lock pin seat 84, the pressurized oil is vented from secondary lock pin 30, thereby allowing secondary lock pin spring 86 to urge secondary lock pin 30 toward front cover 22. In this way, secondary lock pin 30 is seated within secondary lock pin seat 84 by secondary lock pin spring 86 when rotor 18 is positioned within stator 16 to allow alignment of secondary lock pin 30 with secondary lock pin seat 84.
Further features and details of operation of primary lock pin 28 and secondary lock pin 30 are describe in U.S. Pat. No. 8,056,519 to Cuatt et al. which is incorporated herein by reference in its entirety.
When it is desired to prevent relative rotation between rotor 18 and stator 16 at the predetermined aligned position, the pressurized oil is vented from both primary lock pin 28 and secondary lock pin 30, thereby allowing primary lock pin spring 80 and secondary lock pin spring 86 to urge primary lock pin 28 and secondary lock pin 30 respectively toward front cover 22. In order to align primary lock pin 28 and secondary lock pin 30 with primary lock pin seat 78 and secondary lock pin seat 84 respectively, rotor 18 may be rotated with respect to stator 16 by one or more of supplying pressurized oil to advance chambers 46, supplying pressurized oil to retard chambers 48, urging from bias spring 24, and torque from camshaft 14. Since primary lock pin seat 78 is enlarged, primary lock pin 28 will be seated within primary lock pin seat 78 before secondary lock pin 30 is seated within secondary lock pin seat 84. With primary lock pin 28 seated within primary lock pin seat 78, rotor 18 is allowed to rotate with respect to stator 16 by about 10°. Rotor 18 may be further rotated with respect to stator 16 by one or more of supplying pressurized oil to advance chambers 46, supplying pressurized oil to retard chambers 48, urging from bias spring 24, and torque from camshaft 14 in order to align secondary lock pin 30 with secondary lock pin seat 84, thereby allowing secondary lock pin 30 to be seated within secondary lock pin seat 84.
A lock pin oil control valve 88 may control the supply and venting of pressurized oil to and from primary lock pin 28 and secondary lock pin 30. Lock pin oil control valve 88 may be slidably disposed within a valve bore 90 of camshaft phaser attachment bolt 32 such that valve bore 90 is centered about axis A. Lock pin oil control valve 88 includes lands 92 and is axially displaced within valve bore 90 by an actuator 94 and a valve spring 96. Actuator 94 may be a solenoid actuator and may urge lock pin oil control valve 88 to a lock pin disengaged position by applying an electric current to actuator 94. Application of an electric current to actuator 94 causes lock pin oil control valve 88 to move toward the bottom of valve bore 90, thereby compressing valve spring 96 and positioning lands 92 to prevent oil from being vented from to primary lock pin 28 and secondary lock pin 30 while allowing pressurized oil to be supplied to primary lock pin 28 and secondary lock pin 30 via a primary lock pin oil passage 98 and a secondary lock pin oil passage 100 in rotor 18 from valve bore 90 which is supplied by oil source 62, for example, by a camshaft lock pin valve oil passage 102 in camshaft 14 and camshaft phaser attachment bolt 32. Conversely, valve spring 96 may urge lock pin oil control valve 88 to a lock pin engaged position when no electric current is applied to actuator 94. When no electric current is applied to actuator 94, lock pin oil control valve 88 is moved away from the bottom of valve bore 90 by valve spring 96, thereby positioning lands 92 to prevent pressurized oil from being supplied to primary lock pin 28 and secondary lock pin 30 and to vent oil from primary lock pin 28 and secondary lock pin 30. Further details of the operation of operation of lock pin oil control valve 88 and oil passages associate therewith are describe in copending U.S. patent application Ser. No. 13/667,127; now United States Patent Application Publication No. 2014/0123920 A1; to Lichti et al., the disclosure of which is incorporated herein by reference in its entirety. While lock pin oil control valve 88 has been described as being located within camshaft phaser 12, it should be understood that a valve external to camshaft phaser 12 may alternatively be used as is known in the art, for example as shown in United States Patent Application Publication No. US 2012/0255509 A1 to Lichti et al. which is incorporated herein by reference in its entirety.
With continued reference to
First diverter valve 104 is responsive to lock pin oil control valve 88 such that when lock pin oil control valve 88 vents oil from primary lock pin 28 and secondary lock pin 30, first diverter valve 104 is positioned to block communication between phasing oil control valve 60 and advance chamber 46a while permitting communication between advance chamber 46a and first check valve 108 as shown in
Second diverter valve 106 is responsive to lock pin oil control valve 88 such that when lock pin valve control valve spool 88 vents oil from primary lock pin 28 and secondary lock pin 30, second diverter valve 106 is positioned to block communication between phasing oil control valve 60 and retard chamber 48c while permitting communication between retard chamber 48c and second check valve 110 as shown in
First check valve 108 is in fluid communication with retard chamber 48c only when rotor 18 is retarded of the predetermined aligned position as shown in
Similarly, second check valve 110 is in fluid communication with advance chamber 46a only when rotor 18 is advanced of the predetermined aligned position as shown in
Reference will now be made to
First diverter valve 104 may be slidably disposed within a first diverter valve bore 112 which extends axially into the face of rotor 18 that is proximal to camshaft 14. Advance oil passage 56 extends radially inward and radially outward from first diverter valve bore 112 while a first diverter valve bore passage 114 extends radially outward from first diverter valve bore 112 to advance chamber 46a. A first diverter valve spring 116 provides a biasing force to urge first diverter valve 104 downward as viewed in
Second diverter valve 106 may be slidably disposed within a second diverter valve bore 122 which extends axially into the face of rotor 18 that is proximal to camshaft 14. Retard oil passage 58 extends radially inward and radially outward from second diverter valve bore 122 while a second diverter valve bore passage 124 extends radially outward from second diverter valve bore 122 to retard chamber 48c. A second diverter valve spring 126 provides a biasing force to urge second diverter valve 106 downward as viewed in
The hydraulic circuit described in the preceding paragraphs provides an improved fail-safe engagement of primary lock pin 28 and secondary lock pin 30 with primary lock pin seat 78 and secondary lock pin seat 84 respectively without the need to redesign phasing oil control valve 60 or other aspects of internal combustion engine 10.
In an alternative arrangement as shown in
When first diverter valve 104 is positioned to block communication between advance chamber 46a and first check valve 108 while allowing communication between advance chamber 46a and phasing oil control valve 60, pressurized oil from first diverter valve connecting passage 118 may apply a side load to first diverter valve land 120 that is at the bottom of first diverter valve 104 as oriented in
Similarly, when second diverter valve 106 is positioned to block communication between retard chamber 48c and second check valve 110 while allowing communication between retard chamber 48c and phasing oil control valve 60, pressurized oil from second diverter valve connecting passage 128 may apply a side load to second diverter valve land 130 that is at the bottom of second diverter valve 106 as oriented in
While this invention has been described in terms of preferred embodiments thereof, it is not intended to be so limited.
This patent application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/952,279 filed on Mar. 13, 2014 and U.S. Provisional Patent Application Ser. No. 62/013,064 filed on Jun. 17, 2014, the disclosures of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61952279 | Mar 2014 | US | |
62013064 | Jun 2014 | US |