The present invention relates to a camshaft phaser for varying the phase relationship between a crankshaft and a camshaft in an internal combustion engine; more particularly to such a camshaft phaser which is a vane-type camshaft phaser; even more particularly to a vane-type camshaft phaser which uses torque reversals of the camshaft to actuate the camshaft phaser; and still even more particularly to such a camshaft phaser which uses check valve members biased toward respective check valve seats by centrifugal force to facilitate use of the torque reversals for actuating the camshaft phaser.
A typical vane-type camshaft phaser for changing the phase relationship between a crankshaft and a camshaft of an internal combustion engine generally comprises a plurality of outwardly-extending vanes on a rotor interspersed with a plurality of inwardly-extending lobes on a stator, forming alternating advance and retard chambers between the vanes and lobes. Engine oil is selectively supplied to one of the advance and retard chambers and vacated from the other of the advance and retard chambers by a phasing oil control valve in order to rotate the rotor within the stator and thereby change the phase relationship between the camshaft and the crankshaft. One such camshaft phaser is described in U.S. Pat. No. 8,534,246 to Lichti et al., the disclosure of which is incorporated herein by reference in its entirety and hereinafter referred to as Lichti et al.
While the camshaft phaser of Lichti et al. may be effective, the camshaft phaser may be parasitic on the lubrication system of the internal combustion engine which also supplies the oil for rotating the rotor relative to the stator, thereby requiring increased capacity of an oil pump of the internal combustion engine which adds load to the internal combustion engine. In an effort to reduce the parasitic nature of camshaft phasers, so-called cam torque actuated camshaft phasers have also been developed. In a cam torque actuated camshaft phaser, oil is moved directly from the advance chambers to the retard chambers or directly from the retard chambers to the advance chambers based on torque reversals imparted on the camshaft from intake and exhaust valves of the internal combustion engine. The torque reversals are predictable and cyclical in nature and alternate from tending to urge the rotor in the advance direction to tending to urge the rotor in the retard direction. The effects of the torque reversals on oil flow are known to be controlled by a valve spool positioned by a solenoid actuator. Accordingly, in order to advance the camshaft phaser, the valve spool is positioned by the solenoid actuator to create a passage with a first check valve therein which allows torque reversals to transfer oil from the advance chambers to the retard chambers while preventing torque reversals from transferring oil from the retard chambers to the advance chambers. Conversely, in order to retard the camshaft phaser, the valve spool is positioned by the solenoid actuator to create a passage with a second check valve therein which allows torque reversals to transfer oil from the retard chambers to the advance chambers while preventing torque reversals from transferring oil from the advance chambers to the retard chambers. One such camshaft phaser is described in U.S. Pat. No. 7,000,580 to Smith et al. However, packaging of the first check valve and the second check valve within the camshaft phaser, particularly packaging check valve springs needed for biasing check valve members of the first check valve and the second check valve toward respective check valve seats, results in added complexity.
What is needed is camshaft phaser which minimizes or eliminates one or more the shortcomings as set forth above.
Briefly described, a camshaft phaser is provided for use with an internal combustion engine for controllably varying the phase relationship between a crankshaft and a camshaft in the internal combustion engine. The camshaft phaser includes a stator having a plurality of lobes and is connectable to the crankshaft of the internal combustion engine to provide a fixed ratio of rotation between the stator and the crankshaft about an axis; a rotor coaxially disposed within the stator, the rotor having a plurality of vanes interspersed with the lobes defining a plurality of alternating advance chambers and retard chambers; a camshaft phaser attachment bolt for attaching the camshaft phaser to the camshaft, the camshaft phaser attachment bolt defining a valve bore that is coaxial with the stator. A supply passage extends radially outward from the valve bore, the supply passage having a supply passage downstream end that is proximal to the valve bore and a supply passage upstream end that is distal from the valve bore, the supply passage downstream end and the supply passage upstream end being separated by a check valve seat. A check valve member in the supply passage prevents flow of oil past the check valve seat from the supply passage downstream end to the supply passage upstream end and allows flow of oil past the check valve seat from the supply passage upstream end to the supply passage downstream end, wherein the check valve member is biased toward the check valve seat by centrifugal force. A valve spool is moveable within the valve bore such that the valve spool directs oil that has passed through the supply passage to the valve bore.
Further features and advantages of the invention will appear more clearly on a reading of the following detail description of the preferred embodiment of the invention, which is given by way of non-limiting example only and with reference to the accompanying drawings.
This invention will be further described with reference to the accompanying drawings in which:
In accordance with a preferred embodiment of this invention and referring to
Camshaft phaser 12 generally includes a stator 18 which acts as an input member, a rotor 20 disposed coaxially within stator 18 which acts as an output member, a back cover 22 closing off one end of stator 18, a front cover 24 closing off the other end of stator 18, a lock pin 26, a camshaft phaser attachment bolt 28 for attaching camshaft phaser 12 to camshaft 14, and a valve spool 30. The various elements of camshaft phaser 12 will be described in greater detail in the paragraphs that follow. It should be noted that camshaft phaser attachment bolt 28 and valve spool 30 are sectioned in the same location for all of the axial cross-sectional views (
Stator 18 is generally cylindrical and includes a plurality of radial chambers 32 defined by a plurality of lobes 34 extending radially inward. In the embodiment shown, there are three lobes 34 defining three radial chambers 32, however, it is to be understood that a different number of lobes 34 may be provided to define radial chambers 32 equal in quantity to the number of lobes 34.
Rotor 20 includes a central hub 36 with a plurality of vanes 38 extending radially outward therefrom and a rotor central through bore 40 extending axially therethrough. The number of vanes 38 is equal to the number of radial chambers 32 provided in stator 18. Rotor 20 is coaxially disposed within stator 18 such that each vane 38 divides each radial chamber 32 into advance chambers 42 and retard chambers 44. The radial tips of lobes 34 are mateable with central hub 36 in order to separate radial chambers 32 from each other. Each of the radial tips of vanes 38 may include one of a plurality of wiper seals 46 to substantially seal adjacent advance chambers 42 and retard chambers 44 from each other. While not shown, each of the radial tips of lobes 34 may also include one of a plurality of wiper seals 46.
Back cover 22 is sealingly secured, using cover bolts 48, to the axial end of stator 18 that is proximal to camshaft 14. Tightening of cover bolts 48 prevents relative rotation between back cover 22 and stator 18. Back cover 22 includes a back cover central bore 50 extending coaxially therethrough. The end of camshaft 14 is received coaxially within back cover central bore 50 such that camshaft 14 is allowed to rotate relative to back cover 22. Stator 18 may also include a sprocket 52 formed integrally therewith or otherwise fixed thereto. Sprocket 52 is configured to be driven by a chain that is driven by the crankshaft of internal combustion engine 10. Alternatively, sprocket 52 may be a pulley driven by a belt or may be any other known drive member known for driving camshaft phaser 12 by the crankshaft.
Similarly, front cover 24 is sealingly secured, using cover bolts 48, to the axial end of stator 18 that is opposite back cover 22. Cover bolts 48 pass through back cover 22 and stator 18 and threadably engage front cover 24, thereby clamping stator 18 between back cover 22 and front cover 24 to prevent relative rotation between stator 18, back cover 22, and front cover 24. In this way, advance chambers 42 and retard chambers 44 are defined axially between back cover 22 and front cover 24.
Camshaft phaser 12 is attached to camshaft 14 with camshaft phaser attachment bolt 28 which extends coaxially through rotor central through bore 40 of rotor 20 and threadably engages camshaft 14, thereby by clamping rotor 20 securely to camshaft 14. In this way, relative rotation between stator 18 and rotor 20 results in a change in phase or timing between the crankshaft of internal combustion engine 10 and camshaft 14.
Oil is selectively transferred to advance chambers 42 from retard chambers 44, as a result of torque applied to camshaft 14 from the valve train of internal combustion engine 10, i.e. torque reversals of camshaft 14, in order to cause relative rotation between stator 18 and rotor 20 which results in retarding the timing of camshaft 14 relative to the crankshaft of internal combustion engine 10. Conversely, oil is selectively transferred to retard chambers 44 from advance chambers 42, as a result of torque applied to camshaft 14 from the valve train of internal combustion engine 10, in order to cause relative rotation between stator 18 and rotor 20 which results in advancing the timing of camshaft 14 relative to the crankshaft of internal combustion engine 10. Rotor advance passages 56 may be provided in rotor 20 for supplying and venting oil to and from advance chambers 42 while rotor retard passages 58 may be provided in rotor 20 for supplying and venting oil to and from retard chambers 44. Transferring oil to advance chambers 42 from retard chambers 44 and transferring oil to retard chambers 44 from advance chambers 42 is controlled by valve spool 30, an advance check valve member 60, and a retard check valve member 62, as will be described in detail later, such that valve spool 30 is coaxially disposed slidably within a valve bore 64 of camshaft phaser attachment bolt 28 where valve bore 64 is centered about camshaft axis 16.
Lock pin 26 selectively prevents relative rotation between stator 18 and rotor 20 at a predetermined aligned position of rotor 20 within stator 18, which as shown, may be a full advance position, i.e. rotor 20 is rotated as far as possible within stator 18 in the advance direction of rotation. Lock pin 26 is slidably disposed within a lock pin bore 66 formed in one vane 38 of rotor 20. A lock pin seat 68 is provided in front cover 24 for selectively receiving lock pin 26 therewithin. Lock pin 26 and lock pin seat 68 are sized to substantially prevent rotation between stator 18 and rotor 20 when lock pin 26 is received within lock pin seat 68. When lock pin 26 is not desired to be seated within lock pin seat 68, pressurized oil is supplied to lock pin bore 66 through a rotor lock pin passage 70 formed in rotor 20, thereby urging lock pin 26 out of lock pin seat 68 and compressing a lock pin spring 72. Conversely, when lock pin 26 is desired to be seated within lock pin seat 68, the pressurized oil is vented from lock pin bore 66 through rotor lock pin passage 70, thereby allowing lock pin spring 72 to urge lock pin 26 toward front cover 24. In this way, lock pin 26 is seated within lock pin seat 68 by lock pin spring 72 when rotor 20 is positioned within stator 18 to allow alignment of lock pin 26 with lock pin seat 68. Supplying and venting of pressurized oil to and from lock pin 26 is controlled by valve spool 30 as will be described later.
Camshaft phaser attachment bolt 28 and valve spool 30, which act together to function as a valve, will now be described in greater detail with continued reference to
Camshaft phaser attachment bolt 28 also includes a bolt lock pin supply passage 82 which extends radially inward from bolt supply passage 74 to valve bore 64 and a bolt lock pin passage 84 which extends radially inward from the outer circumference of camshaft phaser attachment bolt 28 to valve bore 64 such that bolt lock pin supply passage 82 and bolt lock pin passage 84 are axially aligned, i.e. bolt lock pin supply passage 82 and bolt lock pin passage 84 are located at the same position along camshaft axis 16. It should be noted that bolt lock pin supply passage 82 diametrically opposes bolt lock pin passage 84 in order to facilitate formation of bolt lock pin supply passage 82. Bolt lock pin passage 84 is axially aligned with a rotor annular lock pin groove 86 which extends radially outward from rotor central through bore 40 such that rotor lock pin passage 70 extends from rotor annular lock pin groove 86 to lock pin bore 66. In this way, fluid communication is provided between valve bore 64 and lock pin bore 66.
Camshaft phaser attachment bolt 28 also includes a bolt advance supply passage 88 which extends radially inward from bolt supply passage 74 to valve bore 64 and a bolt advance passage 90 which extends radially inward from the outer circumference of camshaft phaser attachment bolt 28 to valve bore 64 such that bolt advance supply passage 88 and bolt advance passage 90 are axially aligned, i.e. bolt advance supply passage 88 and bolt advance passage 90 are located at the same position along camshaft axis 16. Bolt advance supply passage 88 and bolt advance passage 90 are axially spaced from bolt lock pin supply passage 82 and bolt lock pin passage 84 in a direction away from camshaft 14. Bolt advance passage 90 is axially aligned with a rotor annular advance groove 92 which extends radially outward from rotor central through bore 40 such that rotor advance passages 56 extend from rotor annular advance groove 92 to advance chambers 42. In this way, fluid communication is provided between valve bore 64 and advance chambers 42.
Bolt advance supply passage 88 includes a bolt advance supply passage downstream end 94 (labeled only in
Camshaft phaser attachment bolt 28 also includes a bolt recirculation passage 104 which extends radially inward from bolt supply passage 74 to valve bore 64. Bolt recirculation passage 104 is axially spaced from bolt advance supply passage 88 and bolt advance passage 90 in a direction away from camshaft 14.
Camshaft phaser attachment bolt 28 also includes a bolt retard supply passage 106 which extends radially inward from bolt supply passage 74 to valve bore 64 and a bolt retard passage 108 which extends radially inward from the outer circumference of camshaft phaser attachment bolt 28 to valve bore 64 such that bolt retard supply passage 106 and bolt retard passage 108 are axially aligned, i.e. bolt retard supply passage 106 and bolt retard passage 108 are located at the same position along camshaft axis 16. Bolt retard supply passage 106 and bolt retard passage 108 are axially spaced from bolt recirculation passage 104 in a direction away from camshaft 14. Bolt retard passage 108 is axially aligned with a rotor annular retard groove 110 which extends radially outward from rotor central through bore 40 such that rotor retard passages 58 extend from rotor annular retard groove 110 to retard chambers 44. In this way, fluid communication is provided between valve bore 64 and retard chambers 44.
Bolt retard supply passage 106 includes a bolt retard supply passage downstream end 112 (labeled only in
A supply check valve seat 122 is located within bolt supply passage 74 between bolt lock pin supply passage 82 and bolt advance supply passage 88. A supply check valve member 124, illustrated as a ball, is located within bolt supply passage 74 and biased toward supply check valve seat 122 by a supply check valve spring 126 which is grounded to camshaft phaser attachment bolt 28, for example by a bolt supply passage plug 128 which is sealing disposed in the end of bolt supply passage 74 that is distal from camshaft 14. Bolt supply passage plug 128 is installed within bolt supply passage 74 after supply check valve member 124 and supply check valve spring 126 have been installed within bolt supply passage 74. Supply check valve seat 122 divides bolt supply passage 74 into a bolt supply passage lock pin portion 130 which is in constant fluid communication with bolt lock pin supply passage 82 and a bolt supply passage phasing portion 132 which is in constant fluid communication with bolt advance supply passage 88, bolt recirculation passage 104, and bolt retard supply passage 106. Consequently supply check valve member 124 seats with supply check valve seat 122 to prevent fluid communication from bolt supply passage lock pin portion 130 to bolt supply passage phasing portion 132 when the pressure within bolt supply passage phasing portion 132 is greater than the pressure within bolt supply passage lock pin portion 130. Also consequently, supply check valve member 124 unseats from supply check valve seat 122 to permit fluid communication from bolt supply passage lock pin portion 130 to bolt supply passage phasing portion 132 when the pressure within bolt supply passage phasing portion 132 is less than the pressure within bolt supply passage lock pin portion 130.
Valve spool 30 is moved axially within valve bore 64 of camshaft phaser attachment bolt 28 by an actuator 134 and a valve spring 136 to achieve desired operational states of camshaft phaser 12 by controlling flow and pressure through bolt lock pin supply passage 82, bolt lock pin passage 84, bolt advance supply passage 88, bolt advance passage 90, bolt recirculation passage 104, bolt retard supply passage 106, and bolt retard passage 108 as will be described in the subsequent paragraphs. Valve spool 30 includes a valve spool bore 138 extending axially thereinto from the end of valve spool 30 that is proximal to camshaft 14. Valve spring 136 is received within valve spool bore 138 such that valve spring 136 is captured between the bottom of valve spool bore 138 and the bottom of valve bore 64 of camshaft phaser attachment bolt 28.
Valve spool 30 also includes a lock pin land 140 which is sized to fit within valve bore 64 in a close sliding relationship such that oil is substantially prevented from passing between the interface between lock pin land 140 and valve bore 64 while allowing valve spool 30 to be displaced axially within valve bore 64 substantially uninhibited. Lock pin land 140 is located at the end of valve spool 30 that is proximal to the bottom of valve bore 64 of camshaft phaser attachment bolt 28.
Valve spool 30 also includes an advance land 142 which is axially spaced from lock pin land 140, thereby defining a spool annular lock pin groove 144 axially between lock pin land 140 and advance land 142. Advance land 142 is sized to fit within valve bore 64 in a close sliding relationship such that oil is substantially prevented from passing between the interface between advance land 142 and valve bore 64 while allowing valve spool 30 to be displaced axially within valve bore 64 substantially uninhibited.
Valve spool 30 also includes a recirculation land 146 which is axially spaced from advance land 142, thereby defining a spool annular advance groove 148 axially between advance land 142 and recirculation land 146. Recirculation land 146 is sized to fit within valve bore 64 in a close sliding relationship such that oil is substantially prevented from passing between the interface between recirculation land 146 and valve bore 64 while allowing valve spool 30 to be displaced axially within valve bore 64 substantially uninhibited.
Valve spool 30 also includes a retard land 150 which is axially spaced from recirculation land 146, thereby defining a spool annular retard groove 152 axially between recirculation land 146 and retard land 150. Retard land 150 is sized to fit within valve bore 64 in a close sliding relationship such that oil is substantially prevented from passing between the interface between retard land 150 and valve bore 64 while allowing valve spool 30 to be displaced axially within valve bore 64 substantially uninhibited.
Valve spool 30 also includes a pair of opposing vent apertures 154 which extend radially outward through valve spool 30 from valve spool bore 138 such that vent apertures 154 are located to the axial side of retard land 150 that is opposite spool annular retard groove 152. Vent apertures 154 provide fluid communication between valve spool bore 138 and the end of valve bore 64 of camshaft phaser attachment bolt 28 that is distal from camshaft 14, thereby allowing oil in valve spool bore 138 to be vented out of camshaft phaser 12 and back to oil source 76.
Actuator 134 may be a solenoid actuator that is selectively energized with an electric current of varying magnitude in order to position valve spool 30 within valve bore 64 at desired axial positions, thereby controlling oil flow to achieve desired operation of camshaft phaser 12. In a default position, when no electric current is supplied to actuator 134 as shown in
In an advance position, when an electric current of a first magnitude is supplied to actuator 134 as shown in
In a hold position, when an electric current of a second magnitude is supplied to actuator 134 as shown in
In a retard position, when an electric current of a third magnitude is supplied to actuator 134 as shown in
While camshaft phaser 12 has been described as defaulting to full advance, it should now be understood that camshaft phaser 12 may alternatively default to full retard by simply rearranging oil passages. Similarly, while full advance has been described as full clockwise rotation of rotor 20 within stator 18 as shown in
As described herein, advance check valve member 60 and retard check valve member 62 are biased toward advance check valve seat 98 and retard check valve seat 116 by centrifugal force caused by rotation of camshaft phaser 12 about camshaft axis 16 in use. As used herein, being biased by centrifugal force implies the absence of a mechanical biasing means, for example a spring, which is typically used to bias a check valve member toward a seat. Using centrifugal force rather than a mechanical biasing means allows for advantageous packaging which requires minimal space and can reduce the number of components which may lower assembly cost and assembly time.
In order to increase flow to achieve desired phasing rates, it should now be understood that duplicates of advance check valve member 60, retard check valve member 62, and related passages in camshaft phaser attachment bolt 28 may be provided.
While camshaft phaser 12 has been described herein as being of the cam torque actuated variety, it should now be understood that camshaft phaser 12 may alternatively be of the oil pressure actuated variety, i.e. pressurized oil from a source is supplied to the advance chambers or the retard chambers while oil is vented from the advance chambers and returned to the source if oil is supplied to the retard chambers and oil is vented from the retard chambers and returned to the source if oil is supplied to the advance chambers. When camshaft phaser 12 is of the oil pressure actuated variety, one of advance check valve member 60 and retard check valve member 62 may be omitted and the remaining check valve member is used as an inlet check valve member. The inlet check valve member operates on the same principle of being biased toward its seat by centrifugal force. Furthermore, supply check valve member 124 may be substituted with an inlet check valve which operates on the principle of being biased toward its seat by centrifugal force.
While this invention has been described in terms of preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow.