The present invention relates to the field of cans for containing a liquid. In particular, it concerns beverage cans, such as beer, soda, tonic and the like, comprising a first dispensing aperture and a second vent aperture, wherein both apertures can be opened in a single movement.
Beverage cans have been on the market for several decades, undergoing a series of evolutions, such as the progressive passage from a “detachable pull tab,” wherein a closed loop scored section is coupled to a ring tab, to a “push-in tab” type, wherein no element is detached from the can upon opening. Since in both instances an actuating end of a tab must be pulled off the plane formed by the can top end to open a dispense area, such tabs are herein referred to indiscriminately as “pull tabs”.
Rapidly, it appeared that cans comprising a single, dispense aperture leads to gurgling of the beverage, due to the difficulty for such systems to balance the pressures inside and outside the can upon dispensing. It has been found that providing the can top with a second, vent aperture, spaced apart from the dispense aperture, yielded a much smoother flow of the liquid out of the can, since the pressure inside the can could instantly adapt to the ambient pressure through said vent aperture. Many two-opening can systems were proposed in the art with widely differing opening mechanisms.
U.S. Pat. No. 4,213,538 proposes a can having a can top provided with two score lines forming closed loops defining two areas to be pushed in with a finger or an external tool. An alternative solution is to fix a pull tab to a rivet located between two areas defined by score lines, such that the tab can be tilted both ways to push a first and then a second areas inside the can like a seesaw such as disclosed in U.S. Pat. No. 5,695,085 or 5,397,014. In some cases, a single pull tab is first pulled up to push in the dispensing area and then pushed back to its initial position and further down to press in the vent area, such as in US2010/0018976, US2011/0056946, WO2009/078738. These systems, however, have the problem that the vent can be accidentally opened in case a pressure is applied onto the tab. To solve this problem, it has been proposed to not align the first and second apertures with the rivet coupling the tab to the can top. This way, after opening the dispensing opening the pull tab must be swiveled about the rivet axis by the corresponding offsetting angle to face the vent area and only then pushed down to press the vent area Inside the can such as disclosed in WO2008/023983. In an alternative embodiment, the actuating end of a tab is first pulled up to open the dispense aperture, then swiveled 180° to face the diametrically opposed vent area, the actuating end is pulled up again to open the vent aperture the same way the dispensing aperture was opened, as in U.S. Pat. No. 5,494,184. WO2010/046516 discloses a can comprising a main pull tab and a secondary lever, both fixed to the can top by a single rivet, wherein the secondary lever is brought into puncturing position upon lifting the main pull tab to puncture the dispense area, whereafter the main tab is brought back to its original position, with the secondary lever brought into puncturing position in front of the vent area, which is opened by pressing further down the main pull tab. This system allows to prevent any accidental opening of the vent. All these systems have in common that several movements are required to open both dispense and vent openings, which is rather inconvenient, in particular when the user has only one hand free to open a can.
Solutions for opening both dispense and vent apertures in a single movement have been proposed in the art. U.S. Pat. No. 3,307,737 discloses a single pull tab coupled to a dispense and a vent areas each forming a closed loop. By pulling one free end of the pull tab, the vent is first pulled off the top can, followed by the dispense area. The inconvenient of this rather old system is well known, in that it generates waste which generally ends on the ground and represents both an ecological threat and a source of injuries. CA2280461 proposes to couple with a rivet the ring end of a pull tab to a vent score line forming a closed loop. By pulling up said ring end to puncture the dispense area, the vent area is pulled off the can top. This system has the inconvenient that a strong force is needed to pull off the vent area from the can top with no leverage offered by said design. US2003/0098306 proposes an improvement to the foregoing system by providing a second lever hinged to the main pull tab at the level of the rivet of the vent area, so that the main pull tab is pulled by pulling the second lever, thus yielding a higher couple. WO2004/035399 and U.S. Pat. No. 3,326,406 disclose systems wherein a single pull tab is coupled to the can top with a first rivet and to a vent area with a second rivet. Unlike the preceding systems, here both dispense and vent areas are pushed into the can by pulling up the pull tab at a point forming a triangle with the first and second rivets forming acute angles. The leverage is provided by the altitude of the triangle intersecting the line between the two rivets.
The present invention provides yet an alternative solution for opening simultaneously a dispensing and vent apertures with a single movement of the hand.
The present invention is defined in the appended independent claims. Preferred embodiments are defined in the dependent claims. In particular, the present invention concerns a can for containing a liquid and comprising a top end, said top end comprising:
In order to promote the bending of the torsion stripe upon lifting the actuating end of the pull tab, said torsion stripe may comprise secondary score lines which are much shallower than the first and second score lines such that they would not break but bend. The secondary score lines may be discontinuous. In an alternative embodiment, the torsion stripe comprises no score line.
Upon opening the dispense and vent apertures, it is highly desired that the corresponding dispense and vent areas remain attached to the can top end, to avoid littering with small pieces of metal. This can be achieved by forming the first and/or second score lines into an open loop. Upon lifting the actuating end of the pull tab, the dispense area and/or vent area would thus be bent about a line defined between the two open ends of the respective score lines. In an alternative embodiment, the first and/or second score lines form a closed loop, but a section of said closed loop has a much shallower score than the rest of the score line. The bending line of the dispense area and/or vent area would thus be defined by the shallow score line section.
In one preferred embodiment, the first and second score lines are substantially in the shape of two Ω's facing each other by their open sides, separated by a torsion stripe comprising the rivet. In this configuration, the torsion stripe is therefore defined by the area separating the substantially straight legs of the opposed Ω's. The curved portion of the Ω of the second score line defines the vent area and is substantially smaller than the curved portion of the Ω of the first score line which defines the dispense area.
In an alternative embodiment, the second score line is partially nested within the first score line on either side of the rivet forming two torsion stripes on either side of the rivet, where a section of the first score line overlaps a section of the second score line. The rivet may be partially circumscribed within the second score line defining the vent area.
To facilitate the breaking of the second score line to pull open the vent area, the second score line may be deeper than the first score line. To get yet a larger dispense aperture, the rivet may be offset in the direction of the vent area, with respect to the centre of the can top end, such that the vent area is brought closer to the rim of the can top end, leaving more room for the dispense area.
A can according to the present invention is particularly suitable for containing a beverage such as alcoholic or non-alcoholic beer or other fermented beverages, soda, tonic, juice, energetic beverages, soup, long drink, and the like. Such can, and in particular the top end thereof is preferably made of aluminium, an aluminium alloy or tin plated steel.
For a fuller understanding of the nature of the present invention, reference is made to the following detailed description taken in conjunction with the accompanying drawings in which:
As can be seen in
The vent area (3B) is defined by a second score line (31B), and is located on the can top end opposite the dispense area (3A) with respect to the rivet (4). The vent area (3B) should most preferably not be separated from the can top end upon opening the vent aperture. Like for the dispense area (3A) discussed supra the score line (31B) defining the vent area (3) should define an open path, or comprise a portion of shallower score, to allow outward folding of the vent area (3B) about said unscored or shallow scored line portion. It is preferred, however, that if the second score line (31B) forms a closed loop with a shallower score portion, the rivet (4) is preferably circumscribed within said second score line. Indeed, it is important that the tongue of metal extending between rivet (4) and the point of the second score line (31B) furthest away from the dispense area (3A) be sufficiently stiff so that the tilting of the rivet upon lifting the actuating end of the pull tab triggers the rupture of the score line. The vent area (3B) is generally smaller in size than the dispense area (3A), since the former needs only to ensure pressure balance during dispensing of the liquid out of the can, and a smooth depressurization upon opening of the can.
Opening of the vent aperture (13B) is possible by the torsion or bending of a torsion stripe (5) (cf. shaded areas in
The dispense area (3A), the rivet (4), and the vent area (3B) are preferably aligned on a first diameter of the can top end in this order. The at least one torsion stripe (5), acting as a hinge about which the rivet (4) can tilt, may generally be substantially normal to said first diameter. Since the rivet coupling the pull tab (2) to the can top end defines an area of higher bending stiffness, pulling the actuating end (22) of the pull tab (2)—which is sandwiched between the can top end and the head of the rivet (4)—is necessarily accompanied by some tilting of the rivet and by the creation of a bending field in the can top end surrounding it. The creation of a torsion stripe (5) of lower bending stiffness increases the difference in bending stiffness between the rivet area and the area surrounding it, allowing to increase the magnitude of the bending field behind the rivet area with respect to the dispense area (3A). To further enhance the hinge effect, the torsion stripe (5) may be provided with secondary score lines, which are much shallower than the first and second score lines (31A, 31B) since they are not intended to break but only to facilitate bending of the stripe. By designing the score lines properly, however, secondary score lines are not necessary to yield the desired hinge effect.
In a first embodiment represented in
In a second embodiment, illustrated in
A third embodiment, illustrated in
In order to further facilitate the opening of the vent aperture (13B), the second score line (31B) defining the vent area (3B) may be deeper than the score line (31A) defining the dispense area (3A). This way, less force is required to break the second score line (31B), and since the vent area (3B) is generally substantially smaller than the dispense area (3A), the force applied by the pressurized gas inside the can to the second score line is lower than the one applied on the dispense area, thus reducing the risk of accidental blowing of the vent area.
In a preferred embodiment represented in
The present invention allows the provision of a vent aperture (13B) which combined opening with the dispense aperture (13A) can be triggered by the same single move as has been used by generations of consumers with traditional single aperture cans. Contrary to the solution proposed in CA2280461, the force required to open both openings is not much different from the one required to open traditional single aperture cans, because the geometry of the opening system of the present invention allows for a substantial leverage effect. For example, it is possible to open both apertures of a can according to the present invention in a single move with one hand only.
A can according to the present invention is particularly suitable for containing beverages. For example, alcoholic or non-alcoholic beer or other fermented beverages, such as cider, low malt content beer like beverages, sparkling wine, and the like, soda, tonic, juice, energetic beverages, premixed long drinks of a spirit and a soda, milk, condensed milk, soup, sauce, and the like. The can may be made of aluminium, an aluminium alloy or tin plated steel.
Number | Date | Country | Kind |
---|---|---|---|
12150045.8 | Jan 2012 | EP | regional |
Number | Date | Country | |
---|---|---|---|
Parent | 15954531 | Apr 2018 | US |
Child | 16847593 | US | |
Parent | 14370756 | Jul 2014 | US |
Child | 15954531 | US |