The invention relates to can ends for two-piece beverage containers. More particularly, the present invention relates to such a can end having an annular reinforcing bead located on a circumferential wall.
Common easy open end closures for beer and beverage containers have a central or center panel that has a frangible panel (sometimes called a “tear panel,” “opening panel,” or “pour panel”) defined by a score formed on the outer surface, the “consumer side,” of the end closure. Popular “ecology” can ends are designed to provide a way of opening the end by fracturing the scored metal of the panel, while not allowing separation of any parts of the end. For example, the most common such beverage container end has a tear panel that is retained to the end by a non-scored hinge region joining the tear panel to the reminder of the end, with a rivet to attach a leverage tab provided for opening the tear panel. This type of container end, typically called a “stay-on-tab” (“SOT”) end has a tear panel that is defined by an incomplete circular-shaped score, with the non-scored segment serving as the retaining fragment of metal at the hinge-line of the displacement of the tear panel.
The container is typically a drawn and ironed metal can, usually constructed from a thin sheet of aluminum or steel. End closures, or can ends, for such containers are also typically constructed from a cut-edge of thin sheet of aluminum or steel, formed into a blank end, and manufactured into a finished end by a process often referred to as end conversion. These ends are formed in the process of first forming a cut-edge of thin metal, forming a blank end from the cut-edge, and converting the blank into an end closure which may be seamed onto a container. Although not presently a popular alternative, such containers and/or ends may be constructed of plastic material, with similar construction of non-detachable parts provided for openability.
One goal of the can end manufacturers is to provide a buckle resistant end. Another goal of the manufacturers of can ends is to reduce the amount of metal in the blank which is provided to form the can end while at the same time maintaining the strength of the end. A number of recent disclosures, including U.S. Pat. Nos. 6,736,283, 6,460,723, 6,516,968, 6,419,110, 6,065,634, 6,848,875, 6,877,941, 6,935,826, 6,561,004, 6,499,622, 6,702,142, and US Publication Nos. 2004/0074911, 2003/0121924, 2004/0238546, 2005/0115976, 2005/0247717, 2005/0252922, 2005/0006395, 2004/0140312, 2003/0173367, 2002/0158071, 2005/0029269, are directed to achieving these goals by altering the angles and/or orientations of the chuck wall.
For example, U.S. Pat. No. 6,065,634 describes a can end having an annular reinforcing bead and an angled chuckwall to improve strength. The annular reinforcing bead, often called an anti-peaking bead or a countersink, has been described in many publications as a method of strengthening a can end.
Other publications have described the use of embossed or debossed beads to improve strength of can ends. For example, U.S. Pat. No. 6,889,862 describes a reinforcing cent bead located near the rivet. U.S. Pat. No. 6,330,954 described deboss and emboss tear panel stiffening beads.
The present invention is provided to solve the problems discussed above and other problems, and to provide advantages and aspects not provided by prior can ends of this type. A full discussion of the features and advantages of the present invention is deferred to the following detailed description, which proceeds with reference to the accompanying drawings.
One aspect of the present invention provides a can end for a two-piece beverage can. The can end comprises a center panel, a wall, a circumferential strengthening member, a curl, and a reinforcing bead. The center panel is positioned about a vertical center axis and includes a means for opening the can end located on a public side. The circumferential strengthening member is located about the center panel. The wall extends upwardly from the circumferential strengthening member. The curl is joined to an upper end of the wall and defines an outer perimeter of the can end. The reinforcing bead is located on the wall between an uppermost portion of the wall and a lowermost portion of the wall.
In one embodiment of the invention, the reinforcing bead extends radially inwardly relative to the vertical center axis of the can end. The reinforcing bead may be concave, and/or it may have a depth which is substantially less than a length of the wall.
In another embodiment, the reinforcing bead extends radially outwardly relative to the vertical axis of the can end. The reinforcing bead may be convex, and/or it may have a radially outermost portion having a greater distance from the vertical center axis than a distance of a radially innermost portion of the wall to the center vertical axis.
In another embodiment, the reinforcing bead has a radially outermost portion having a distance from the vertical center less than a distance of a radially outermost portion of the wall to the vertical axis.
In another embodiment, the reinforcing bead is an annular reinforcing bead.
In another embodiment, the reinforcing bead has a lower end joined to an upper end by an arcuate segment. The upper end of the reinforcing bead is located radially outwardly of the lower end.
In another embodiment, the strengthening member is a countersink. The countersink may be U-shaped.
In another embodiment, the strengthening member is a fold. The fold may have a first end joined to an outer peripheral edge of the center panel. The first end is joined to a second end by an intermediate segment. The intermediate segment extends upwardly and outwardly relative to the vertical center axis. The intermediate segment may have a vertical extent having a height greater than or equal to a height of the first end.
In another embodiment, the reinforcing bead has a substantially semi-elliptical cross-section. The reinforcing bead may be convex or concave.
Another aspect of the invention is also directed to a can end for a two-piece beverage can. This can end comprises a center panel, an annular strengthening member, a wall, a curl, and a convex reinforcing bead. The center panel is positioned about a vertical center axis, and has a means for opening the center panel located on a public side of the center panel. The annular strengthening member is located about the center panel, and has a first end joined to an outer peripheral edge of the center panel. The wall has a lowermost portion joined to a second end of the strengthening member. The wall extends upwardly and outwardly relative to the vertical center axis. The curl defines a perimeter of the can end. The curl has an innermost portion joined to an uppermost portion of the wall. The convex reinforcing bead is located on the wall between the upper most portion of the wall and the lowermost portion of the wall.
Another aspect of the invention is also directed to a can end for a two-piece beverage can. This can end comprises a center panel, an annular strengthening member, a wall, a curl, and a convex reinforcing bead. The center panel is positioned about a vertical center axis, and has a means for opening the center panel located on a public side of the center panel. The annular strengthening member is located about the center panel, and has a first end joined to an outer peripheral edge of the center panel. The wall has a lowermost portion joined to a second end of the strengthening member. The wall extends upwardly and outwardly relative to the vertical center axis. The curl defines a perimeter of the can end. The curl has an innermost portion joined to an uppermost portion of the wall. The concave reinforcing bead is located on the wall between the upper most portion of the wall and the lowermost portion of the wall.
Other features and advantages of the invention will be apparent from the following specification taken in conjunction with the following drawings.
To understand the present invention, it will now be described by way of example, with reference to the accompanying drawings in which:
While this invention is susceptible of embodiments in many different forms, there is shown in the drawings and will herein be described in detail preferred embodiments of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspect of the invention to the embodiments illustrated.
The present invention is directed to a can end for a two-piece beverage can. The container end of the present invention is a stay-on-tab end member with improved physical properties including strength. The can end of the present invention has a novel reinforcing bead located on a circumferential wall. It is believed that such a reinforcing bead improves the overall strength of the can end. Therefore, can ends of the present invention can be produced from a lower volume of metal, in cut-edge, thickness, or both, than previously designed can ends covering the same can body opening. Essentially, the present invention provides a lightweight end member which embodies the physical characteristics and properties required in the beverage container market, as explained below.
Referring to
As illustrated in
The container is typically a drawn and ironed metal can such as the common beer and beverage containers, usually constructed from a thin sheet of aluminum or steel that is delivered from a large roll called coil stock of roll stock. End closures for such containers are also typically constructed from a cut edge of thin sheet of aluminum or steel delivered from coil stock, formed into blank end, and manufactured into a finished end by a process often referred to as end conversion. In the embodiment shown in the figures, the end member 10 is joined to a container by the curl 12 which is joined to a mating curl of the container body. The seaming curl 12 of the end closure 10 is integral with the circumferential wall 14 which is joined to a radially outer peripheral edge portion 20 of the center panel 18 by the annular strengthening member 16. This type of means for joining the end member 10 to a container body is presently the typical means for joining used in the industry, and the structure described above is formed in the process of forming the blank end from a cut edge of metal sheet, prior to the end conversion process. However, other means for joining the end member 10 to a container may be employed with the present invention.
The center panel 18 has a means for opening the end 10. The means for opening the end 10 may include a displaceable foil closure member or, as shown in
The frangible score 24 is preferably a generally V-shaped groove formed into a public side 32 of the center panel 18. A residual is formed between the V-shaped groove and a product side 34 of the end member 10.
The end member 10 has a tab 28 secured to the center panel 18 adjacent the tear panel 22 by a rivet 38. The rivet 38 is formed in the typical manner.
During opening of the end member 10 by the user, the user lifts a lift end 40 of the tab 28 to displace a nose portion 42 downward against the tear panel 22. The force of the nose portion 42 against the tear panel 22 causes the score 24 to fracture. As the tab 28 displacement is continued, the fracture of the score 24 propagates around the tear panel 22, preferably in progression from the first end of the score 24 toward the second end 30 of the score 24.
Referring to
The annular strengthening member 16 extends circumferentially about the center panel 18. One or more panel radii 54 join the radially outer peripheral edge 20 of the center panel 18 to the annular strengthening member 16.
The circumferential wall 14 joins the annular strengthening member 16 with the curl 12 so that an uppermost portion 68 of the wall 14 is directly connected to the curl 12 and a lowermost portion 72 of the wall 14 is directly connected to an end of the strengthening member 16. As illustrated in
As illustrated in
As illustrated in
The present invention provides the reinforcing bead 90 between the upper and lower ends 68,72 of the circumferential wall 14. Prior art can ends have used reinforcing beads at various locations along the center panel to provide strength and stiffen the center panel 18. In fact, the annular countersink is often referred to as a bead, reinforcing bead, anti-peaking bead, etc. Up until now, however, it is believed that an annular bead 90 has not been located on the circumferential wall 14 to improve performance of the can end 10. The term “bead” is intended to include any narrow concave or convex groove.
Thus, the reinforcing bead 90 is located between the curl 12 and the strengthening member 16. The reinforcing bead 90 is preferably circumferential and may be directed radially inwardly and convex (embossed) as shown in
Referring to
With further reference to
In another aspect of the invention, illustrated in
The bead center portion 96 which may have a height HB above a straight line connecting the first and second bends 94,98 which is constant around the bead circumference and may be about 0.003 to 0.015 inches (0.076 mm to 0.38 mm) and preferably 0.004 to 0.010 inches (0.10 mm to 0.254 mm) and most preferably 0.005 to 0.008 inches (0.13 mm to 0.20 mm). The bead 96 width WB between the first and second bends 94,98 may be about 0.046 inches (1.17 mm).
Referring to
The terms “first,” “second,” “upper,” “lower,” etc. are used for illustrative purposes only and are not intended to limit the embodiments in any way. The term “plurality” if used herein is intended to indicate any number greater than one, either disjunctively or conjunctively as necessary, up to an infinite number. The terms “joined” and “connected” as used herein are intended to put or bring two elements together so as to form a unit, and any number of elements, devices, fasteners, etc. may be provided between the joined or connected elements unless otherwise specified by the use of the term “directly” and supported by the drawings.
While the specific embodiments have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention, and the scope of protection is only limited by the scope of the accompanying Claims.
Number | Name | Date | Kind |
---|---|---|---|
3186583 | Zundel | Jun 1965 | A |
3434623 | Cookson | Mar 1969 | A |
3525455 | Saunders | Aug 1970 | A |
3705563 | Elser | Dec 1972 | A |
3765352 | Schubert et al. | Oct 1973 | A |
3837524 | Schubert et al. | Sep 1974 | A |
3853080 | Zundel | Dec 1974 | A |
3868919 | Schrecker et al. | Mar 1975 | A |
3871314 | Stargell | Mar 1975 | A |
3905513 | Klein | Sep 1975 | A |
3941277 | McKinney et al. | Mar 1976 | A |
3945334 | Ostrem et al. | Mar 1976 | A |
3990376 | Schubert et al. | Nov 1976 | A |
4031837 | Jordan | Jun 1977 | A |
4055134 | Ostrem et al. | Oct 1977 | A |
4084721 | Perry | Apr 1978 | A |
4093102 | Kraska | Jun 1978 | A |
4116361 | Stargell | Sep 1978 | A |
4217843 | Kraska | Aug 1980 | A |
4262815 | Klein | Apr 1981 | A |
4324343 | Moller | Apr 1982 | A |
4386713 | Baumeyer et al. | Jun 1983 | A |
4434641 | Nguyen | Mar 1984 | A |
4448322 | Kraska | May 1984 | A |
4571978 | Taube et al. | Feb 1986 | A |
4577774 | Nguyen | Mar 1986 | A |
4641761 | Smith et al. | Feb 1987 | A |
4680917 | Hambleton et al. | Jul 1987 | A |
4685849 | LaBarge et al. | Aug 1987 | A |
4704887 | Bachmann et al. | Nov 1987 | A |
4722215 | Taube et al. | Feb 1988 | A |
4804106 | Saunders | Feb 1989 | A |
4832223 | Kalenak et al. | May 1989 | A |
4991735 | Biondich | Feb 1991 | A |
5069355 | Matuszak | Dec 1991 | A |
5105977 | Taniuchi | Apr 1992 | A |
5143504 | Braakman | Sep 1992 | A |
5149238 | McEldowney et al. | Sep 1992 | A |
5174706 | Taniuchi | Dec 1992 | A |
5346087 | Klein | Sep 1994 | A |
5538744 | Miller et al. | Jul 1996 | A |
5823730 | La Rovere | Oct 1998 | A |
5950858 | Sergeant | Sep 1999 | A |
5964366 | Hurst et al. | Oct 1999 | A |
6024239 | Turner et al. | Feb 2000 | A |
6065634 | Brifcani et al. | May 2000 | A |
6089072 | Fields | Jul 2000 | A |
6234337 | Huber et al. | May 2001 | B1 |
6330954 | Turner et al. | Dec 2001 | B1 |
6419110 | Stodd | Jul 2002 | B1 |
6460723 | Nguyen et al. | Oct 2002 | B2 |
6499622 | Neiner | Dec 2002 | B1 |
6516968 | Stodd | Feb 2003 | B2 |
6561004 | Neiner et al. | May 2003 | B1 |
6702142 | Neiner | Mar 2004 | B2 |
6736283 | Santamaria et al. | May 2004 | B1 |
6772900 | Turner et al. | Aug 2004 | B2 |
6848875 | Brifcani et al. | Feb 2005 | B2 |
6877941 | Brifcani et al. | Apr 2005 | B2 |
6889862 | Vaughn | May 2005 | B2 |
6935826 | Brifcani et al. | Aug 2005 | B2 |
7004345 | Turner et al. | Feb 2006 | B2 |
7036348 | McClung | May 2006 | B2 |
7174762 | Turner et al. | Feb 2007 | B2 |
7278548 | Rieck et al. | Oct 2007 | B2 |
20010037668 | Fields | Nov 2001 | A1 |
20020050493 | Ball et al. | May 2002 | A1 |
20020088500 | Turner et al. | Jul 2002 | A1 |
20020158071 | Chasteen et al. | Oct 2002 | A1 |
20030042258 | Turner et al. | Mar 2003 | A1 |
20030121924 | Stodd | Jul 2003 | A1 |
20030173367 | Nguyen et al. | Sep 2003 | A1 |
20040065663 | Turner et al. | Apr 2004 | A1 |
20040074911 | Stodd | Apr 2004 | A1 |
20040140312 | Neiner | Jul 2004 | A1 |
20040200838 | Turner et al. | Oct 2004 | A1 |
20040206764 | Gardiner | Oct 2004 | A1 |
20040211780 | Turner et al. | Oct 2004 | A1 |
20040238546 | Watson | Dec 2004 | A1 |
20050006388 | Turner et al. | Jan 2005 | A1 |
20050006395 | Reed | Jan 2005 | A1 |
20050029269 | Stodd et al. | Feb 2005 | A1 |
20050115976 | Watson | Jun 2005 | A1 |
20050247717 | Brifcani et al. | Nov 2005 | A1 |
20050252922 | Reed | Nov 2005 | A1 |
20060071005 | Bulso | Apr 2006 | A1 |
20060096994 | Turner et al. | May 2006 | A1 |
Number | Date | Country |
---|---|---|
107340 | May 1939 | AU |
2303943 | May 1974 | DE |
2554264 | Jun 1977 | DE |
8228681 | Oct 1983 | DE |
422052 | Jun 1934 | GB |
2001151232 | Jun 2001 | JP |
2006-069570 | Mar 2006 | JP |
1013957 | Jun 2001 | NL |
WO-03016155 | Feb 1993 | WO |
WO-9637414 | Nov 1996 | WO |
WO-9834743 | Aug 1998 | WO |
WO-0141948 | Jun 2001 | WO |
WO-0200512 | Jan 2002 | WO |
WO-0243895 | Jun 2002 | WO |
WO-02057137 | Jul 2002 | WO |
WO-02057148 | Jul 2002 | WO |
02068281 | Sep 2002 | WO |
03059764 | Jul 2003 | WO |
2005113351 | Jan 2005 | WO |
2005113352 | Dec 2005 | WO |
2007005564 | Jan 2007 | WO |
Entry |
---|
International Search Report mailed Oct. 13, 2008 in co-pending Application No. PCT/US2008/072593. |
The Korean Intellectual Property Office, English Translation of Notice of Provisional Rejection of corresponding Rexam Beverage Can Company Korean Application No. 10-2010-7005332, Mar. 2012. |
Number | Date | Country | |
---|---|---|---|
20090039090 A1 | Feb 2009 | US |