Can end

Information

  • Patent Grant
  • 9199763
  • Patent Number
    9,199,763
  • Date Filed
    Tuesday, January 13, 2009
    16 years ago
  • Date Issued
    Tuesday, December 1, 2015
    9 years ago
Abstract
This invention relates to a can end (1) providing improved tab access for a consumer. A further aspect of the present invention relates to a container incorporating such a can end (1). The can end (1) includes a moveable portion (30) located beneath all or part of the handle (20b) of the can end, with the moveable portion deformable from an ‘up’ position (30a) to a ‘down’ position (30b) to provide increased tab access for a consumer. The can end (1) is provided with one or more downwardly inclined annular steps (31), which has been found to greatly increase the force required to deform the panel from the ‘down’ to the ‘up’ position, therefore resulting in a far greater likelihood of the consumer receiving a container (40) incorporating the can end (1) with the moveable portion (30) in the ‘down’ position (30b), thereby facilitating tab access.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the National Stage of International Application No. PCT/EP2009/050326 filed Jan. 13, 2009, which claims the benefit of EP application number 08150424.3, filed Jan. 18, 2008, the disclosures of which are incorporated herein by reference in their entirety.


TECHNICAL FIELD

This invention relates to a can end providing improved tab access for a consumer. A further aspect of the present invention relates to a container incorporating such a can end.


BACKGROUND ART

In the field of metal packaging, easy open ends for metal cans are well known. Typically, an easy open can end takes the form of a metal panel including a score line defining an opening area on the can end. A tab is provided on the can end, with lifting of the tab by a consumer initiating fracture of the score line and subsequent pulling on the tab resulting in opening of the can end about the opening area. Historically, the opening of such easy open ends was made difficult by limited clearance between the tab and the can end, thereby making it hard for a consumer to engage the tab with their fingers. WO 03/104092 A (MAEIL DAIRY INDUSTRY CO., LTD) 18.12.2003 (subsequently assigned to CROWN Packaging Technology, Inc for US and EP designations) provided a solution to this problem, with the can end including a collapsible protrusion located beneath the tab. The collapsible protrusion of WO 03/104092 A is deformable from an upward position to a downward position. In the upward position, the can ends are readily stackable for transportation (i.e. before being attached to a container), but provide little or no clearance between the can end and the tab. When deformed into the downward position (typically after being attached to a can body), the protrusion then provides clearance between the tab and can end to enable a user to engage their fingers with the tab and open the can.


However, it has been found that during subsequent handling of containers incorporating can ends of the type described in WO 03/104092 A (i.e. after filling and any retort processing), there can be a tendency for the protrusion to “pop up” back into its upward position, thereby hindering tab access for a consumer. The cause of the popping-up could be, for example, impacting of the container against other containers or being dropped onto the floor. Similarly, the protrusion could pop back up when transported at high altitudes, where the lower atmospheric pressure would result in a lower pressure differential between the inside and outside of the container.


Consequently, there is a need for an improved easy open can end providing increased assurance of maintaining tab access for a consumer.


DISCLOSURE OF INVENTION

Accordingly, there is provided an easy open can end suitable for attachment to a container body, comprising:


a central panel formed with a score line, and


a tab attached to the can end,


the score line defining the periphery of an openable panel portion on the central panel, the tab having a nose portion and a handle portion, the central panel further comprising a moveable portion extending under all or part of the handle portion of the tab, the moveable portion having:


an “up” position: where the moveable portion is convex when viewed from above the can end; and


a “down” position: where the moveable portion is concave when viewed from above the can end,


the moveable portion being deformable from the up position to the down position,


characterised in that the moveable portion includes at least one downwardly inclined annular step.


For the avoidance of any doubt, by “convex” is meant that all or part of the moveable portion protrudes generally upwardly from the central panel. Similarly, by “concave” is meant that all or part of the moveable portion protrudes generally downwardly from the central panel. Therefore, the moveable portion need not define a perfectly smoothly curved surface as would be found in the lens of a camera.


Typically, it would be expected that in the “down” position, a gap would thereby be defined between the handle portion of the tab and the moveable portion which is suitable for enabling finger access by a user.


For the purposes of the present invention, the “openable panel portion” includes both of the following types of can end:


i. where the openable panel portion is entirely detachable from the can end on opening; and/or


ii. where part of the openable panel portion is retainable by the can end after opening.


In each case, severing of the score line defines an aperture on the can end through which product may be dispensed.


Can ends of type (i) are particularly common for food applications; for example, for products which contain solid chunks or viscous material that cannot easily be poured. In these cases, it is desirable to maximise the size of the aperture to enable easy dispensing of food products. In this case, the nose portion of the tab would typically be situated adjacent the score line so that lifting of the handle of the tab would cause the nose portion of the tab to sever the score line.


Can ends of type (ii) are often used for beverage applications for which a smaller aperture is desirable to enable the product to be drunk or poured straight from the can. The smaller aperture size makes it practical for the openable panel portion to be retained by the can end; e.g. by being folded inwards into the container body. The retaining of the openable panel portion reduces litter.


The moveable portion may be located radially inward or outward of the score line. The location of the moveable portion would be dependent on the type of can end. For example, where the score line defines an aperture covering nearly all of the area of the central panel (i.e. a so-called “full-aperture” can end), both the moveable portion and the tab would be formed on the openable panel portion, i.e. inwards of the score line. Alternatively, where the score line defines an aperture covering only part of the area of the central panel (i.e. a so-called “partial aperture” can end, as is found on beverage cans), it may be practicable for the moveable portion and tab to be provided outward of the score line.


Conveniently, the moveable portion is formed as an integral part of the can end. It has been found beneficial to use a press to form the moveable portion in the material of the can end. In simple terms, the moveable portion results in a can end which is bi-stable. By “bi-stable”, it is meant that the moveable portion can adopt one of two different states: the “up” (convex) position, and the “down” (concave) position. However, it has been found that incorporating the downwardly inclined annular step of the present invention provides additional stiffening to the moveable portion. The stiffening effect is such that it increases the force required for the moveable portion to “pop-up” from the down position to the up position, relative to the same can end without the annular step. As the stiffening effect due to the annular step increases, the moveable portion behaves more like a mono-stable end in that once the moveable portion has been deformed into its “down” (concave) position, it is highly resistive to being deformed back into an “up” (convex) position. Further, this increase in stiffening is achieved without increasing the thickness of the metal used to form the can end. Increasing the metal thickness would result in increased material costs. In summary, when used on a container body, the present invention results in a container better able to withstand impacts and/or transportation at high altitudes (where the atmospheric pressure is reduced), without the moveable portion of the can end reverting or popping back into the “up” (convex) position. Therefore, there is a greater likelihood of a consumer receiving a container/can end providing adequate tab access for a consumer's finger. Whilst the can end may remain bi-stable, the annular step results in a higher force being required to deform the moveable portion back into the “up” (convex) position, i.e. an increase in the “pop-up” force.


For the purposes of the present invention, by “annular” is meant extending through at least 180° angular extent.


Conveniently, the annular step is formed as continuous without break or gap; for example, describing the shape of a concentric circle, an ellipse or being irregular in shape when viewed in plan. However, alternatively the annular step may be formed as a series of two or more discontinuous step portions each separated by a gap, the step portions together describing an annular step. Advantageously, one or more of the discontinuous step portions are radially dispersed from each other. More preferably, the discontinuous step portions are circumferentially dispersed from each other; for example, an annular step may be made up of several discontinuous step portions that together define the general shape of a circle, with the circumferential gaps in the “circle” being responsible for the discontinuous nature of the annular step. A combination of radial and circumferential gaps may be used to separate each of the discontinuous step portions. Preferably, the annular step—whether continuous or discontinuous—is formed to occupy a substantially common plane. Where there are a plurality of annular steps located one inside the other, each annular step is preferably formed to occupy its own respective plane.


Although it is possible for two or more annular steps to be formed in the moveable portion, tests detailed in Table 1 below have demonstrated a significant increase in “pop-up” force (relative to a can end without an annular step) with the use of only a single downwardly inclined annular step.


The can end of the present invention may be manufactured with the moveable portion initially in either the “up” position or the “down” position. Where the can ends are transported between locations for later attachment to a can body, it is preferred that the moveable portion is deformed into the “up” position because this allows for easy stackability of the can ends.


To demonstrate the effectiveness of the annular step, tests were performed using two distinct designs of can end of 73 mm nominal diameter made of 0.21 mm gauge, double-reduced (DR) tinplate to material specification DR550N and incorporating a moveable portion. The moveable portion was provided by a protrusion which was formed in the central panel of the can end by a press. The only differences in the design of each can end were that in the first design (Design ‘A’) the protrusion did not include an annular step; and in the second design (Design ‘B’) the protrusion included a single, downwardly inclined annular step. The annular step employed was in the form of a continuous concentric circle (when viewed in plan from above the can end). The tests established the nominal pressure required to cause the protrusion to:


i. pop down from the “up” (convex) position to the “down” (concave) position; and


ii. pop back up into the “up” (convex) position.


The results are as shown in Table 1 below:












TABLE 1







Vacuum Pressure to
Pressure to



“Pop-down” (mbar)
“Pop-up” (mbar)


















Design ‘A’: No Annular
>1000
350


Step


Design ‘B’: With Annular
830
790


Step









The table illustrates that the inclusion of a single downwardly inclined annular step (Design ‘B’) greatly increased the pressure differential required to cause the protrusion to “pop-up” relative to Design ‘A’. It also had the effect of increasing the pressure differential required to cause “pop-down” relative to Design ‘A’. In these particular tests, the annular step resulted in a 126% increase in the pressure required to cause pop-up of the protrusion.


Preferably, the downwardly inclined annular step is generally linear in cross-section. However, this is not an essential requirement and the downwardly inclined annular step may also be curved in cross-section.


Preferably, the downwardly inclined step is formed such that when the moveable portion is in the down position, the step is inclined downwardly at between 8° to 17° to the horizontal at a given location on the step.


In a further embodiment, it has been found preferable for the step to be inclined downwardly at between 8° to 17° to the horizontal, with an axial depth of between 0.007 inches to 0.013 inches (measured along the central axis of the can end) at a given location on the step.


Where the annular step is curved in cross-section, the angle of inclination of the step would be measured between the uppermost and lowermost points for a given location on the step.


It is an essential requirement for the downwardly inclined annular step to be located on or to extend onto the moveable portion itself. In order to maximise the force required to cause “pop-up”, it has been found preferable for the annular step to be located near the periphery of the moveable portion. Conveniently, the annular step is formed at a location on or between the periphery of the moveable portion and a distance of up to 50% radially inwardly of the periphery of the moveable portion. Locating the annular step close to the centre of the moveable portion would have the disadvantage of reducing the stiffening effect provided by the annular step and would result in a lower increase in pop-up pressure.


The annular step is preferably circular in plan because this shape maximises the force required to cause the moveable portion to pop back up into the “up” (convex) position. In other words, it has been found to provide the optimum stiffening effect. However, other profiles for the annular step (e.g. elliptical or irregular in plan) may also be used.


Although it is generally envisaged that the annular step(s) will conveniently be in the form of one or more continuous concentric circles, in an alternative embodiment, the downwardly inclined annular step may be provided as a spirally-formed annular step when viewed from above. When implemented on the moveable portion of the present invention, the spiral would more correctly be known as a conic helix, i.e. a hybrid of both a spiral and a helix. In its simplest form, the moveable portion includes a single spirally-formed annular step. However, there may also be multiple spirally-formed annular steps. Advantageously, there are two annular steps, each annular step provided as a spirally-formed annular step, the spirally-formed steps being wound in contra-directional relationship to each other. Regardless of whether a single or multiple spirally-formed annular step(s) are used, the effect of the spiral configuration will be to cause the moveable portion to behave more like a mono-stable end in that once the moveable portion has been deformed into its “down” (concave) position, it is highly resistive to being deformed into an “up” (convex) position.


Conveniently, the can end would include a seaming panel to enable the end to be seamed to a can body by conventional means (for example, by double seaming). Conveniently, the can end comprises an upwardly inclined wall at the periphery of the central panel, the wall extending laterally to form the seaming panel to enable the can end to be seamed onto a can body.


In a second aspect of the invention there is provided a container comprising the can end of the present invention attached to a container body.





BRIEF DESCRIPTION OF FIGURES IN THE DRAWINGS

Various embodiments of the invention are described with reference to the following drawings:



FIG. 1 shows a top perspective view of a first embodiment of can end according to the present invention.



FIG. 2 shows a cross-section view in the direction of arrows X-X for the can end of FIG. 1, with moveable portion in an “up” (convex) position.



FIG. 3 shows a cross-section view in the direction of arrows X-X for the can end of FIG. 1, with moveable portion in a “down” (concave) position.



FIG. 4 shows a detail cross-section view of the moveable portion and annular step of the can end of FIG. 1, showing the moveable portion in both “up” (convex) and “down” (concave) positions.



FIG. 5 shows a perspective view of the can end of FIG. 1 when seamed onto a container body.



FIG. 6 shows a further perspective view of the can end of FIG. 1 when seamed onto a container body.



FIG. 7 shows a plan view of a second embodiment of moveable portion, the moveable portion having an annular step made up of circumferentially-dispersed discontinuous step portions.



FIG. 8 shows a plan view of a third embodiment of moveable portion, the movable portion having an annular step made up of radially-dispersed discontinuous step portions.



FIG. 9 shows a plan view of a fourth embodiment of moveable portion, the moveable portion having a single spirally-formed annular step.



FIG. 10 shows a plan view of a fifth embodiment of moveable portion, the moveable portion having two spirally-formed annular steps.



FIG. 11 shows a plan view of a sixth embodiment of moveable portion having a single spirally-formed annular step (similar to that of FIG. 9), but extending through approximately 270° angular extent.



FIG. 12 shows a plan view of a seventh embodiment of moveable portion corresponding to that of FIG. 11, but with the annular step being formed of discontinuous step portions each separated by a circumferential gap.





MODE(S) FOR CARRYING OUT THE INVENTION


FIG. 1 shows can end 1. In the embodiment shown, the can end 1 is formed of 0.21 mm gauge DR550N material. The can end 1 has a central panel 2 with a countersink 3 at its periphery. The countersink 3 extends upwardly into a chuck wall 4, with the chuck wall extending radially outwards to form a seaming panel 5. A circular score line 6 is formed in the can end 1, defining an openable panel portion 7 inwards of the score line. The score line 6 (once severed) defines an aperture through which product (not shown) is dispensed, with the openable panel portion 7 being completely detachable from the can end 1. Beading 8 is provided on the central panel 2 for the purpose of strengthening the central panel 2.


A tab 20 is attached to the central panel 2 by means of a rivet 21. One end of the tab 20 is provided with a nose portion 20a situated adjacent to the score line 6. The opposite end of the tab 20 is provided with a handle portion 20b in the form of a ring.


A moveable portion is provided on the can end 1 as a protrusion 30. The protrusion 30 is formed by the use of a press (not shown) acting on the material of the can end 1. The protrusion 30 is generally circular in plan and of radius Rp—as shown in FIG. 1.


The protrusion 30 can revert between two different states: in one state it would be in an “up” position, have a convex profile 30a when viewed from above the can end (see FIGS. 2 & 4); in the other state it would be in a “down” position, having a concave profile 30b when viewed from above the can end 1 (see FIGS. 3 & 4); Mechanical means (not shown) may be used to cause the protrusion to revert from one state to another, i.e. “pop-up” or “pop-down”. Alternatively, in-can pressure differentials may be used to cause the protrusion to revert from one state to another; for example, where the can end is attached to container body, negative pressure may be used to suck or pull down the protrusion.


A downwardly inclined annular step 31 is provided at the periphery of the protrusion 30 and is also circular in plan. As stated earlier in the general disclosure of the invention, in an alternative embodiment the annular step 31 may instead be located some distance radially inwards of the periphery of the protrusion 30, whilst still being effective in increasing the pop-up force of the protrusion relative to a similar can end without the annular step.


In the example shown in the figures (see especially FIG. 4), the annular step 31 is inclined downwardly at an angle ‘α’ of 12.5° to the horizontal and defines an axial depth ‘d’ of 0.010 inches (0.025 mm) measured along the central axis 9 of the can end 1. These measurements are taken with the protrusion 30 in the “down” (concave) position 30b. In the embodiment shown, the annular step 31 defines an outer diameter ‘O/D’ of 0.950 inches (24.1 mm) and an inner diameter ‘I/D’ of 0.860 inches (21.8 mm). In the embodiment shown in FIGS. 1 to 6, the above dimensions are uniform about the entire annular step.


Line 32 (see FIG. 1) represents a witness mark resulting from the forming process of the press used to form the protrusion 30. In this embodiment, the witness mark 32 is functionally insignificant to the performance of the can end.


On leaving the press (not shown), the protrusion 30 of the can end 1 is initially in the “down” (concave) position 30b (as shown in FIGS. 3 & 4). However, where the can ends 1 are to be transported between different sites for later fixing to a can body (for example, where a filler attaches the can end to the can body), mechanical or other means (not shown) would be used to apply an upward force to the protrusion 30 so that the protrusion reverts or clicks into the “up” (convex) position 30a prior to transportation (see FIGS. 2 & 4). The reason for this is because the can end 1 is most efficiently stacked with the protrusion 30 in the “up” position 30a, with the recess formed by the protrusion 30 providing space for the tab of an underlying can end.


In an alternative embodiment, the protrusion 30 may initially be formed in the press in the “up” (convex) position 30a (as shown in FIGS. 2 & 4). As can be seen in FIG. 2, with the protrusion 30 in this “up” position, there is limited/no clearance between the handle portion 20b of the tab 20 and the can end 1. However, as referred to in the above paragraph, in this condition the can ends are easy to stack, which is particularly good when transporting can ends in bulk.



FIGS. 5 & 6 shows a container 40 resulting from seaming of the can end 1 onto a metal can body 41. If not already done, the protrusion 30 is pressed/clicked into the “down” (concave) position before attachment of the can end 1 onto the can body 41. Alternatively, in-can negative pressure can be used to suck or pull the protrusion into the “down” (concave) position; for example, by careful control of filling and processing conditions. The container 40 is shown in FIG. 5 with the protrusion 30 in its “down” (concave) position 30b, resulting in a gap Δh between the handle portion 20b and the protrusion 30 of approximately 2 mm (see FIGS. 3 & 5). As previously discussed, it is intended that a consumer should receive the container 40 with the protrusion 30 remaining in the “down” (concave) position, because this maximises tab access and consequently, ease of opening. The presence of the downwardly inclined annular step 31 and the consequent increase in pop-up force provides assurance against ‘popping-up’ of the protrusion 30, even when the container 40 is subjected to impacts with adjacent containers or other objects, or transported at high altitudes (for example, at altitudes of around 5,250 feet above sea level, which is typical of Denver, USA).


In use, a consumer (not shown) would engage their fingers with the handle portion 20b of the tab 20 to first lever the tab upwardly (in the direction of arrow A—see FIG. 5) about the rivet 21 to cause the nose portion 20a to initiate rupture of the score line 6. Thereafter, the consumer would pull back on the tab 20 (in the direction of arrow B—see FIG. 5) to propagate tearing of the remainder of the score line 6 and cause removal of the openable panel portion 7 from the can end 1.


In the embodiment shown, the openable panel portion 7 is completely separable from the can end 1 and defines an aperture covering nearly all the area of the can end (i.e. a so-called “full-aperture” end), with the protrusion 30 and the tab 20 defined on this openable panel portion. The embodiment shown is particularly suitable for cans containing food products, where the size of the aperture and, by implication, the portion 7 needs to be maximised.


However, in another embodiment, the openable panel portion 7 may instead extend over only a minor part of the area of the can end 1, with the protrusion 30 defined outwards of the openable panel portion and score line 6. This embodiment would be particularly suitable for beverage applications, where a relatively small pouring aperture is desirable.



FIG. 7 shows a plan view of a can end localised to the area of the moveable portion 30, but showing a different configuration of downwardly inclined annular step 131. In the embodiment of FIG. 7, the annular step 131 is made up of several discontinuous step portions 131a-h, each separated by a circumferential gap ‘c’ (i.e. the step portions 131a-h are circumferentially-dispersed relative to each other). The discontinuous step portions together define a generally circular profile when viewed in plan, with each of the step portions occupying a common radial location. Together, the discontinuous step portions 131a-h extend through a full revolution (i.e. 360°). A thick line is used to represent the path of each of the discontinuous step portions 131a-h.


The embodiment of FIG. 8 differs from that of FIG. 7 in that the discontinuous step portions 131a-h are radially-dispersed (see radial gap ‘r’) from each other in an alternate manner at two different radial locations.



FIGS. 9 & 10 again show plan views of a can end 1 localised to the area of the moveable portion, but showing further alternative configurations of downwardly inclined annular step to those seen in the embodiments of FIGS. 1 to 8. In the embodiment of FIG. 9, the moveable portion 30 has a downwardly inclined annular step provided as a single spirally-formed annular step 131 when viewed from above the can end. A thick line is used to represent the path of this single spirally-formed annular step 131. The start and end points of the annular step are labelled as Start131 and End131 respectively.


The embodiment of FIG. 10 differs from that of FIG. 9 in having two downwardly inclined annular steps, each provided as separate spirally-formed annular steps 131, 231 wound in contra-directional relationship to each other. The start and end points of each annular step 131, 231 are labelled Start131,231 and End131,231 respectively.


For the embodiments shown in FIGS. 9 & 10, each spirally-formed annular step 131, 231 extends through two revolutions (i.e. 720°).


For the further alternative embodiment shown in FIG. 11, there is a single annular step 131 (in this case, spirally-formed) extending through only 270° of a revolution. The final embodiment shown in FIG. 12 corresponds to that of FIG. 11, but with the annular step 131 being a series of seven discontinuous step portions 131a-g each separated by a circumferential gap ‘c’, the step portions together describing the annular step 131.


It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims
  • 1. An easy open can end suitable for attachment to a container body, comprising: a central panel having a score line;a tab attached to the can end, the tab having a nose portion and a handle portion;an openable panel portion on the central panel defined by the score line;the openable panel portion comprising a bistable section and a downwardly inclined annular step, the bistable section disposed radially inward from the downwardly inclined annular step, the bistable section extending under all or part of the handle portion of the tab, the bistable section being deformable between:an up position: in which at least a portion the bistable section is convex when viewed from above the can end; anda down position: in which at least a portion of the invertible bistable section is concave when viewed from above the can end such that a first gap between the tab and the bistable section is defined so as to enable finger access to the tab.
  • 2. An easy open can end as claimed in claim 1, wherein the annular step includes a series of two or more discontinuous step portions each separated by a second gap, the step portions together comprising the annular step.
  • 3. An easy open can end as claimed in claim 2, the discontinuous step portions are: i. radially dispersed from each other, and/orii. circumferentially dispersed from each other.
  • 4. An easy open can end as claimed in claim 1, wherein the annular step is formed such that when the bistable section is in the down position, the step has a portion that, in cross section along a diameter of the can end, is flat and inclined downwardly at between 8° to 17° to the horizontal.
  • 5. An easy open can end as claimed in claim 4, wherein the annular step is formed with an axial depth (d) of between 0.007 inches to 0.013 inches at a given location on the step.
  • 6. An easy open can end as claimed in claim 1, wherein the annular step is formed at a location on or between the periphery (Rp) of the bistable section and a distance of up to 50% inwardly of the radial location of the periphery of the bistable section.
  • 7. An easy open can end as claimed in claim 1, wherein the annular step is circular or elliptical in plan view.
  • 8. An easy open can end as claimed in claim 1, wherein the annular step is provided as a spirally-formed annular step when viewed from above the can end.
  • 9. An easy open can end as claimed in claim 8, further comprising a second annular step, each annular step provided as a spirally-formed annular step, the spirally-formed steps being wound in contra-directional relationship to each other.
  • 10. An easy open can end as claimed in claim 8, further comprising a second annular step, each annular step provided as a spirally-formed annular step, the spirally-formed steps being wound in contra-directional relationship to each other.
  • 11. An easy open can end as claimed in claim 1, wherein the annular step is circular or elliptical in plan view.
  • 12. An easy open can end as claimed in claim 1, wherein the annular step is provided as a spirally-formed annular step when viewed from above the can end.
  • 13. An easy open can end as claimed in claim 1, further comprising a second annular step, and at least one of the steps is formed as a series of two or more discontinuous step portions each separated by a second gap.
  • 14. An easy open can end as claimed in claim 13, wherein the discontinuous step portions are: i. radially dispersed from each other, and/orii. circumferentially dispersed from each other.
  • 15. An easy open can end as claimed in claim 1, wherein the annular step resists unintended movement from the down position to the up position.
  • 16. The easy open can end of claim 1 wherein the bistable section is stable in at least the down position when the score line is ruptured.
  • 17. A container comprising a can body and a can end attached to the can body, the can end including: a central panel formed with a score line;a tab attached to the can end, the tab having a nose portion and a handle portion;an openable panel portion on the central panel defined by the score line;the openable panel portion comprising a bistable section and a downwardly inclined annular step, the bistable section extending under all or part of the handle portion of the tab, the bistable section being deformable between:an up position: in which at least a portion the bistable section is convex when viewed from above the can end; anda down position: in which at least a portion of the bistable section is concave when viewed from above the can end, such that the first gap is formed between the tab and the bistable section so as to enable finger to the tab.
  • 18. A container as claimed in claim 17, wherein the annular step is formed as a series of two or more discontinuous step portions each separated by a second gap.
  • 19. A container as claimed in claim 18, wherein the discontinuous step portions are: i. radially dispersed from each other, and/orii. circumferentially dispersed from each other.
  • 20. A container as claimed in claim 17, wherein the annular step is formed such that when the bistable section is in the down position, the step has a flat portion that, in cross section along a diameter of the can end, is flat and inclined downwardly at between 8° to 17° to the horizontal.
  • 21. A container as claimed in claim 20, wherein the annular step is formed with an axial depth (d) of between 0.007 inches to 0.013 inches at a given location on the step.
  • 22. A container as claimed in claim 17, wherein the annular step is formed at a location on or between the periphery (Rp) of the bistable section and a distance of up to 50% inwardly of the radial location of the periphery of the bistable section.
  • 23. A container as claimed in claim 17, further comprising a second annular step, at least one of the annular steps formed as a series of two or more discontinuous step portions each separated by a second gap.
  • 24. A container as claimed in claim 23, wherein the discontinuous step portions are: i. radially dispersed from each other, and/orii. circumferentially dispersed from each other.
  • 25. A container as claimed in claim 17, wherein the annular step resists unintended movement from the down position to the up position.
  • 26. The container of claim 17 wherein the bistable section is stable in at least the down position when the score line is ruptured.
Priority Claims (1)
Number Date Country Kind
08150424 Jan 2008 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2009/050326 1/13/2009 WO 00 7/8/2010
Publishing Document Publishing Date Country Kind
WO2009/090171 7/23/2009 WO A
US Referenced Citations (143)
Number Name Date Kind
601787 Bloch Apr 1898 A
1570732 Emerson Jan 1926 A
2054066 Samuel et al. Sep 1936 A
2124959 Vogel Jul 1938 A
2261117 Jack, Jr. Nov 1941 A
2759307 Eolkin Aug 1956 A
2971671 Shakman Feb 1961 A
3152711 Mumford et al. Oct 1964 A
3160302 Chaplin Dec 1964 A
D200021 Bozek Jan 1965 S
3221924 Harvey et al. Dec 1965 A
3369689 Dodge Feb 1968 A
3400853 Kjell Sep 1968 A
3401821 Bozek Sep 1968 A
3404801 Silver Oct 1968 A
3477608 Fraze Nov 1969 A
D219370 Saunders Dec 1970 S
3559843 Kern Feb 1971 A
D221930 Saunders Sep 1971 S
3643833 Fraze et al. Feb 1972 A
3650387 Hornsby et al. Mar 1972 A
3662916 Holk May 1972 A
D224209 Kinkel et al. Jul 1972 S
3674171 Fahlbusch Jul 1972 A
3703979 Douty Nov 1972 A
3704140 Petit et al. Nov 1972 A
D226071 Saunders Jan 1973 S
D226073 Wesphal Jan 1973 S
3724709 Westphal Apr 1973 A
3744662 Zundel Jul 1973 A
3762596 Henning et al. Oct 1973 A
3779417 Klein Dec 1973 A
3838788 Stargell Oct 1974 A
3839843 Stewart, Jr. Oct 1974 A
3863801 Pillnik Feb 1975 A
3905513 Klein Sep 1975 A
3929251 Urmston Dec 1975 A
3930592 Dilanni Jan 1976 A
3938696 Herbst Feb 1976 A
3941277 McKinney et al. Mar 1976 A
3950592 Hahn et al. Apr 1976 A
3951299 Khoury Apr 1976 A
3952911 Bozek et al. Apr 1976 A
3967752 Cudzik Jul 1976 A
3986633 Jordan Oct 1976 A
D243833 Markert Mar 1977 S
4015744 Brown Apr 1977 A
4030631 Brown Jun 1977 A
4150777 Cyr et al. Apr 1979 A
4205760 Hasegawa Jun 1980 A
4252247 Asbury Feb 1981 A
4266688 Reid May 1981 A
D263803 Fraze Apr 1982 S
4333581 Flansburg Jun 1982 A
4361244 Walter Nov 1982 A
4369888 Walter Jan 1983 A
4397400 Walter Aug 1983 A
4442950 Wilson Apr 1984 A
4458469 Dunn Jul 1984 A
4463866 Mandel Aug 1984 A
4503989 Brown et al. Mar 1985 A
D278980 Brown et al. May 1985 S
4524879 Fundom et al. Jun 1985 A
4557398 Hambleton et al. Dec 1985 A
4559729 White Dec 1985 A
4571978 Taube et al. Feb 1986 A
4674649 Pavely Jun 1987 A
4680917 Hambleton et al. Jul 1987 A
4701090 Smith Oct 1987 A
4716755 Bulso et al. Jan 1988 A
4722215 Taube et al. Feb 1988 A
4747511 Dutt et al. May 1988 A
4836398 Leftault, Jr. et al. Jun 1989 A
D307720 Saunders May 1990 S
D312404 Bray et al. Nov 1990 S
5011037 Moen et al. Apr 1991 A
D321326 Harwood Nov 1991 S
5064087 Koch Nov 1991 A
5069356 Zysset Dec 1991 A
5169017 Cooper et al. Dec 1992 A
D332402 Harwood et al. Jan 1993 S
5199618 Reil et al. Apr 1993 A
5307947 Moen et al. May 1994 A
5335808 Lee Aug 1994 A
D352898 Vacher Nov 1994 S
5502995 Stodd Apr 1996 A
5581978 Hekal et al. Dec 1996 A
5593063 Claydon et al. Jan 1997 A
5622273 Kelly Apr 1997 A
D382481 McEldowney Aug 1997 S
5671860 Louwerse et al. Sep 1997 A
5685189 Nguyen et al. Nov 1997 A
5730314 Wiemann et al. Mar 1998 A
5743445 Benarrouch Apr 1998 A
5749257 McEldowney May 1998 A
5804237 Diamond et al. Sep 1998 A
5813561 Chang et al. Sep 1998 A
5947317 Hall Sep 1999 A
6024239 Turner et al. Feb 2000 A
D421907 Benge et al. Mar 2000 S
6059137 Westwood et al. May 2000 A
6089072 Fields Jul 2000 A
6105806 Stasiuk Aug 2000 A
D432015 Holiday Oct 2000 S
6138856 Ghim et al. Oct 2000 A
6202881 Chiang Mar 2001 B1
6206220 Stodd Mar 2001 B1
6290447 Siemonsen et al. Sep 2001 B1
6427861 Cho Aug 2002 B1
6702538 Heinicke et al. Mar 2004 B1
6723360 Dunaway Apr 2004 B1
D520358 Heinicke May 2006 S
7168586 Jeon Jan 2007 B2
7174762 Turner et al. Feb 2007 B2
7305861 Turner et al. Dec 2007 B2
7341163 Stodd Mar 2008 B2
D565406 Foskett Apr 2008 S
D568741 Foskett May 2008 S
7407061 Fares et al. Aug 2008 B2
D579771 Cherian Nov 2008 S
7500376 Bathurst et al. Mar 2009 B2
7617945 Cherian Nov 2009 B2
7909196 Turner et al. Mar 2011 B2
8104319 Turner et al. Jan 2012 B2
20020113069 Forrest et al. Aug 2002 A1
20030110736 Boyd Jun 2003 A1
20040259235 Fares et al. Dec 2004 A1
20050150889 Perra Jul 2005 A1
20050210835 Tamis Sep 2005 A1
20050224497 Wook Oct 2005 A1
20050263481 Tanaka et al. Dec 2005 A1
20060060582 Martinez Mar 2006 A1
20070068943 Ramsey Mar 2007 A1
20070108209 Jeon et al. May 2007 A1
20070215620 Kasper Sep 2007 A1
20070278230 McEldowney et al. Dec 2007 A1
20080078764 McEldowney et al. Apr 2008 A1
20080110888 Turner et al. May 2008 A1
20080197132 Hasegawa et al. Aug 2008 A1
20080314906 Butcher et al. Dec 2008 A1
20100021270 McEldowney et al. Jan 2010 A1
20100116374 Wilson et al. May 2010 A1
20100287886 Saucedo et al. Nov 2010 A1
Foreign Referenced Citations (24)
Number Date Country
2540362 Mar 1977 DE
0088185 Sep 1983 EP
1577222 Sep 2005 EP
1919786 May 2008 EP
1958882 Aug 2008 EP
2826939 Jan 2003 FR
1316484 May 1973 GB
1533959 Nov 1978 GB
23 200 08 Jun 1998 GB
61-48128 Mar 1986 JP
01182247 Jul 1989 JP
04044950 Feb 1992 JP
2002-160733 Jun 2002 JP
2003-054549 Feb 2003 JP
2003-112735 Apr 2003 JP
2004-182256 Jul 2004 JP
2000-17742 Apr 2000 KR
7416818 Jul 1975 NL
WO 0128875 Apr 2001 WO
WO 0208074 Jan 2002 WO
WO 03104092 Dec 2003 WO
WO 2006112765 Oct 2006 WO
WO 2007039367 Apr 2007 WO
WO 2008098761 Aug 2008 WO
Non-Patent Literature Citations (33)
Entry
Definition of “Offset”, Webster's New World Dictionary, 3rd College Edition, 1988.
U.S. Appl. No. 12/465,894, filed May 14, 2009, Saucedo.
U.S. Appl. No. 61/113,490, filed Nov. 11, 2008, Hall.
“Advertisement for Boa Housewares′, Canpull”, The Canmaker, Jun. 2002, vol. 15, 2 pages.
“Advertisement for Buhrke Tech's New End Opens Easier and Costs Less to Make”, The Canmaker, Jan. 1998, vol. 11, 4 pages.
“Cannex Asia's Seamlingly Endless Possibilities”, The Canmaker, Feb. 2003, vol. 16, 2 pages.
“Contains 100% of Your Daily EOE Requirements”, The Canmaker, Jul. 2000, vol. 13, 3 pages.
“Heinz Takes the Easy Way”, The Canmaker, Jun. 1999, vol. 12, 5 pages.
“HL Foods Chooses Easy-Open Ends”, The Canmaker, Nov. 1999, vol. 12, 4 pages.
“Impress Grabs Heinz Contract”, The Canmaker, Jul. 1999, vol. 12, 6 pages.
“Interesting Openings, Part 3”, The Canmaker, Sep. 1999, vol. 12, 2 pages.
“Modelling Helps Easy-Open End Choice”, The Canmaker, Apr. 2003, vol. 16, 3 pages.
“New Generation of Easy Open Ends”, The Canmaker, Oct. 1998, vol. 11, 2 pages.
“Stacking Giant in France”, The Canmaker, Mar. 1998, vol. 11, 3 pages.
“Tab Orientation for Better Easy-Open Performance”, The Canmaker, May 2001, vol. 14, 2 pages.
“The Ergonomic and Hygienic Can-End”, The Easy Can Company, The Canmaker, Apr. 1998, vol. 11, 5 pages.
“Winter Theme for Toyo's TULC Can”, The Canmaker, Dec. 2002, vol. 15, 6 pages.
Bailey, “Making it Easier”, The Canmaker, Dec. 1998, vol. 11, 4 pages.
Bailey, “Quality, Not Commodity”, The Canmaker, Feb. 2000, vol. 13, 5 pages.
Glendenning, “Ends Are Just the Beginning”, The Canmaker, Jul. 2001, vol. 11, 8 pages.
Higuera, “Into the Spotlight”, The Canmaker, Jun. 2003, vol. 16, 2 pages.
Nutting, “Canned Convenience”, The Canmaker, Sep. 2000, vol. 13, 4 pages.
Nutting, “Corned Beef Comes of Age”, The Canmaker, Aug. 2003, vol. 16, 3 pages.
Nutting, “Legendary Success, UK Awards”, The Canmaker, Nov. 2003, vol. 16, 4 pages.
Nutting, “Performance Proposal”, The Canmaker, Oct. 2000, vol. 13, 4 pages.
Nutting, “The Sweet Aroma of Success”, The Canmaker, Jun. 2001, vol. 14, 3 pages.
Nutting, “Thinner, Lighter, Easier”, The Canmaker, Nov. 2000, vol. 13, 3 pages.
Nutting, “Uncrowned Champs”, The Cammaker, Aug. 2001, vol. 14, 3 pages.
Nutting, “Uphill Struggle”, The Canmaker, Jul. 2003, vol. 16, 4 pages.
Page, “The Rigours of Processing”, The Canmaker, Jan. 1999, vol. 12, 3 pages.
Pye, “Visible Benefits . . . Easy Does it”, The Canmaker, Jun. 1998, vol. 11, 4 pages.
Searle, “A Century of Ends”, The Canmaker, Jul. 2006, vol. 19, 4 pages.
Supplementary European Search report dated Jul. 30, 2007, issued in EP patent application No. 03730882, now EP publication No. 1919786.
Related Publications (1)
Number Date Country
20110186575 A1 Aug 2011 US