Can lid closure

Information

  • Patent Grant
  • 7673768
  • Patent Number
    7,673,768
  • Date Filed
    Tuesday, June 3, 2008
    16 years ago
  • Date Issued
    Tuesday, March 9, 2010
    14 years ago
Abstract
A preferred embodiment of the disclosed can lid has a center panel having a central axis that is perpendicular to a diameter of the outer rim, or peripheral curl portion, of the can lid, an annular countersink surrounding the center panel, an arcuate portion extending radially outward from the annular countersink, a step portion extending radially upward and outward from the arcuate portion, a first transitional portion extending radially outward from the step portion, a second transitional portion extending radially outward and upward from the first transitional portion, and a peripheral curl portion extending outwardly from the second transitional portion.
Description
TECHNICAL FIELD

The present invention relates generally to metal containers, and more particularly to metal cans.


BACKGROUND OF THE INVENTION

Aluminum cans are used primarily as containers for retail sale of beverages in individual portions. Annual sales of such cans are in the billions and consequently, over the years, their design has been refined to reduce cost and improve performance. Other refinements have been made for ecological purposes, to improve reclamation and promote recycling.


Cost reductions may be realized in material savings, scrap reduction and improved production rates. Performance improvements may be functional in nature, such as better sealing and higher ultimate pressure capacity. Such improvements can allow the use of thinner sheet metal, which leads directly to material cost reductions. Performance improvements may also be ergonomic in nature, such as a can end configured to allow for easier pull tab access or better lip contact.


Aluminum cans are usually formed from a precoated aluminum alloy, such as the aluminum alloy 5182. The cans, which are typically made from relatively thin sheet metal, must be capable of withstanding pressures approaching 100 psi, with 90 psi being an industry recognized requirement. The cans are usually formed from a can body to which is joined a can lid or closure. Each of these components has certain specifications and requirements. For instance, the upper surface of the can lids must be configured to nest with the lower surface of the can bottoms so that the cans can be easily stacked one on top of the other. It is also desirable to have the can lids themselves nest with each other in a stacked arrangement for handling and shipping purposes prior to attaching the can lid to the can body. The ability to satisfy these functional requirements with the use of ever less material continues to develop.


Patent Cooperation Treaty International Publication Number WO 96/37414 describes a can lid design for reduced metal usage. This can lid comprises a peripheral portion or “curl,” a frustoconical chuckwall depending from the interior of the peripheral curl, an outwardly concave annular reinforcing bead or “countersink” extending radially inwards from the chuckwall, and a center panel supported by the inner portion of the countersink. The frustoconical chuckwall is inclined at an angle of between 20° and 60° with respect to an axis perpendicular to the center panel. The chuckwall connects the countersink and peripheral curl and is the portion of the lid the seaming chuck contacts during the seaming process. A double seam is formed between the can end and a can body by a process wherein the peripheral curl is centered on the can body flange by a chuck that is partially frustoconical and partially cylindrical. The frustoconical portion of the chuck is designed to contact the frustoconical chuckwall of the can lid. The overlap of the peripheral curl on the lid with the can body flange is described to be by a conventional amount. Rotation of the can lid/can body, first against a seaming roll and then a flattening roll completes a double seam between the two parts. During the flattening portion of the operation, the portion of the chuckwall adjacent to the peripheral curl is bent and flattened against the cylindrical surface of the chuck. The lid of International Publication Number WO 96/37414 incorporates known dimensions for the peripheral curl portion which is seamed to the can.


The can lid of International Publication Number WO 96/37414 is also susceptible to increased metal deformation during seaming and failure at lower pressures. U.S. Pat. No. 6,065,634 (Brifcani), describes the same can lid design as described in International Publication Number WO 96/37414.


Another Patent Cooperation Treaty International Publication, Number WO 98/34743, describes a can lid design which is a modification of the WO 96/37414 can lid wherein the chuckwall is in two parts. This can lid comprises a peripheral portion or “curl,” a two-part chuckwall depending from the interior of the peripheral curl, an outwardly concave annular reinforcing bead or “countersink” extending radially inwards from the chuckwall, and a center panel supported by the inner portion of the countersink. The first part of the chuckwall is frustoconical and adjacent to the curl, and is inclined to an axis perpendicular to the central panel at an angle between 1 and 39 degrees, typically between 7 and 14 degrees. The second part of the chuckwall is frustoconical and adjacent to the reinforcing bead, and is inclined to an axis perpendicular to the central panel at an angle between 30 and 60 degrees, preferably between 40 and 45 degrees. A double seam is formed between the can end and a can body by a process wherein the peripheral curl is centered on the can body flange by a two-part chuck having frustoconical and cylindrical portions as in WO 96/37414. Rotation of the can lid/can body, first against a seaming tool and then a flattening roll completes a double seam between the two parts. During the seaming operations, the first portion of the chuckwall, adjacent to the peripheral curl, is deformed to contact the cylindrical surface of the chuck.


SUMMARY OF THE INVENTION

The present invention contemplates improved aluminum can lids with reduced aluminum usage, reduced reforming of the lid during seaming operations and an improved seam between the lid and the can body. A preferred embodiment of the disclosed can lid has a center panel having a central axis that is perpendicular to a diameter of the outer rim of the can lid, an annular countersink extending radially outward from the center panel, an arcuate portion extending radially outward and upward from the annular countersink, a step portion extending radially outward and upward from the arcuate portion, a first transitional portion extending radially outward and upward from the step portion, a second transitional portion extending radially outward from the first transitional portion, and a peripheral curl extending radially outward from the second transitional portion. The preferred embodiment is adapted for use with a seaming chuck having an upper frustoconical drive portion, a recessed portion, and a lower drive portion.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are incorporated into and form a part of the specification to assist in explaining the present invention. The drawings are intended for illustrative purposes only and are not intended as exact representations of the embodiments of the present invention. The drawings further illustrate preferred examples of how the invention can be made and used and are not to be construed as limiting the invention to only those examples illustrated and described. The various advantages and features of the present invention will be apparent from a consideration of the drawings in which:



FIG. 1 shows an elevational cross-sectional view of a portion of a can lid constructed in accordance with the invention;



FIG. 2 shows an elevational cross-sectional view of a portion of a can lid constructed in accordance with the invention;



FIG. 3 shows an elevational cross-sectional view of a portion of a can lid on a can body before forming of a double seam;



FIG. 4 shows an elevational cross-sectional view of a portion of a can lid on a can body as it appears during the first step of forming a double seam;



FIG. 5 shows an elevational cross-sectional view of a portion of a can lid on a can body as it appears during the final step of forming a double seam;



FIG. 6 shows an elevational cross-sectional view of the manner of stacking can lids prior to seaming constructed in accordance with the invention;



FIG. 7 shows an elevational cross-sectional view of the manner of stacking filled cans of the present invention; and



FIG. 8 shows an elevational cross-sectional view of the chuck.





DETAILED DESCRIPTION OF THE DRAWINGS

The present invention is described in the following text by reference to drawings of examples of how the invention can be made and used. The drawings are for illustrative purposes only and are not necessarily exact scale representations of the embodiments of the present invention. In these drawings, the same reference characters are used throughout the views to indicate like or corresponding parts. The embodiments shown and described herein are exemplary. Many details are well known in the art, and as such are neither shown nor described. It is not claimed that all of the details, parts, elements, or steps described and shown were invented herein. Even though numerous characteristics and advantages of the present invention have been described in the drawings and accompanying text, the description is illustrative only, and changes may be made, especially in matters of arrangement, shape and size of the parts, within the principles of the invention to the full extent indicated by the broad general meaning of the terms used in the claims. The dimensions provided in the description of the lids are tooling dimensions and the actual


Before describing the present invention, Applicant notes that due to further development of the can lid described and claimed in previous U.S. application Ser. No. 09/456,345, of which the current application is a continuation-in-part, the nomenclature used to describe parts of the lid of the current invention has been changed from that used in the prior application. These changes relate to further development of the chuck and lid designs, particularly with respect to the points of engagement between the chuck and the lid during the seaming process. These changes, detailed below, reflect an accurate description of the parts of the current invention relative to that of the prior application.


In the Ser. No. 09/456,345 application, and specifically referring to FIG. 4 of that application, the chuck 44 was designed to have a driving surface 46 configured to contact and engage with arcuate chuckwall 132 during the seaming process, hence the use of the term “chuckwall” in describing the portion designated as 132. Additionally, the Ser. No. 09/456,345 application disclosed a step portion 34 that extends radially outward from the arcuate chuckwall, a transitional portion 36 that extends radially outward from the step portion, and a peripheral curl portion 38 that extends radially outward from the transitional portion.


As described in detail below, the lid of the current invention has been further developed and modified, primarily with respect to the portion previously referred to as the “chuckwall,” and its surrounding portions, and the points of contact for the chuck during seaming. The portion of the lid referred to as the chuckwall 132 in the Ser. No. 09/456,345 application generally corresponds to the portion referred to as arcuate portion 132 in the current invention, although the range of the radius of curvature of these two arcuate portions are not the same. The designation as “chuckwall” has been removed because the chuck 144 of the present invention does not contact or engage with arcuate portion 132 as the chuck 44 contacted the chuckwall 132 in the previous application. The points of contact for the chuck in the current invention are apparent in the detailed description of the drawings below.


Applicant notes that step portion 34 in the Ser. No. 09/456,345 application corresponds to the step portion 134 described herein, with both portions having the same range of radius of curvature. The transitional portion 36 in the Ser. No. 09/456,345 application now consists of two discrete parts in the current invention, generally corresponding to the first transitional portion 136 and the second transitional portion 137. As described below, the first transitional portion 136 is angular relative to the central axis and the second transitional portion 137 has approximately the same ranges for the radius of curvature described for the transitional portion 36 in the previous application. Finally, the peripheral curl portion 38 in the Ser. No. 09/456,345 application generally corresponds to the peripheral curl portion 138 in the current invention, with approximately the same ranges for the radius of curvature for these portions.


Applicant believes that the forgoing clarifies the changes in nomenclature used to describe portions of the present invention relative to related application Ser. No. 09/456,345. The details of the developments, relating to the chuck and lid designs, and particularly the points of engagement between the chuck and the lid during the seaming process, of the invention are described in detail in the following description of the drawings.



FIG. 1 is a cross-sectional view of a portion of a can lid 110, illustrative of the currently preferred embodiment of the present invention. Can lid 110 is preferably made from aluminum sheet metal. Typically, an aluminum alloy is used, such as aluminum alloy 5182. The sheet metal typically has a thickness of from about 0.007 to about 0.010 inches, more preferably from about 0.0075 to about 0.0088 inches, and still more preferably from about 0.0078 to about 0.0083 inches. The sheet metal may be coated with a coating (not shown) on at least one side. This coating is usually provided on that side of the sheet metal that will form the interior of the can. Those skilled in the art will be well acquainted with the methods of forming can lids to provide the general configuration and geometry of the can lid 110 as described herein.


The can lid 110 has a center panel 112. The center panel 112 is generally circular in shape but may be intentionally noncircular. The center panel 112 may have a diameter d1 of from about 1.4 to about 2.0 inches, more preferably from about 1.6 to about 1.8 inches, still more preferably from about 1.65 to about 1.75 inches, and most preferably 1.69 inches. Although the center panel 112 is shown as being flat, it may also have a peaked or domed configuration as well, and is not necessarily limited to the flat or planar configuration shown. The center panel 112 has a central axis 114 that is perpendicular to a diameter d2 of the outer rim, or peripheral curl portion 138, of can lid 110. Diameter d2 is from about 2.25 to 2.50 inches, with a target diameter of 2.34 inches. The diameter d1 of center panel 112 is preferably less than 80% of the diameter d2 of the outer rim.


Surrounding the center panel is an annular countersink 116 that is formed from an interior wall 120 and an exterior wall 128, which are spaced apart and extend radially outward from a curved bottom portion 124. The inner and outer walls 120, 128 are generally flat and may be parallel to one another and to the central axis 114 but either or both may diverge by an angle of about as much as 15°. The annular counter sink 116 extends radially downward from the center panel 112 along the upper edge of the interior wall 120. The curved juncture 118 extending radially inward from interior wall 120 toward the center panel 112 has a radius of curvature r1 that is from about 0.013 to about 0.017 inches, more preferably from about 0.014 to about 0.016 inches, still more preferably from about 0.01475 to about 0.01525 inches, and most preferably 0.015 inches. Bottom portion 124 preferably has a radius of curvature r2. Radius of curvature r2 is from about 0.030 to about 0.060 inches, and still more preferably from about 0.035 to about 0.05 inches, and most preferably about 0.038 inches. The center-point of radius of curvature r2 is located below the profile of can lid 110. The annular countersink 116 has a height h1 of from about 0.03 to about 0.115 inches,


The outer wall 128 contains a second chuck contacting portion 228 that is one of two points at which the chuck comes in contact with the interior of the can lid 110 during the seaming operation. An arcuate portion 132 extends radially outward and upward from the outer wall 128 by means of curved juncture 130 having a radius of curvature r4 of from about 0.03 to about 0.07 inches, more preferably from about 0.035 to about 0.06 inches, still more preferably from about 0.0375 to about 0.05 inches, and most preferably about 0.04 inches. The center-point of radius of curvature r4 is located below the profile of can lid 110. The arcuate portion 132 is shown as having a radius of curvature r5 that is from about 0.100 to about 0.300 inches, more preferably from about 0.160 to about 0.220 inches, and still more preferably from about 0.180 to about 0.200 inches. The current design parameter for radius of curvature r5 is 0.0187 inches. The center-point of radius of curvature r5 is located below the profile of can lid 110. The arcuate portion 132 is configured such that a line passing through the innermost end of arcuate portion 132, near the terminus of curved juncture 130, and the outermost end of the arcuate portion 132, near the beginning of step portion 134, forms an acute angle with respect to central axis 114 of the center panel 112. This acute angle is from about 20° to about 80°, and more preferably from about 35° to about 65°, and still more preferably from about 45° to about 55°. The current lid design uses an angle of about 50°.


The step portion 134 extends radially outward from the arcuate portion 132. Step portion 134 is preferably curved with a radius of curvature r6 of from about 0.02 to about 0.06 inches, more preferably from about 0.025 to about 0.055 inches, still more preferably from about 0.03 to about 0.05 inches, and most preferably from about 0.035 to about 0.045 inches. The current lid design parameter for radius of curvature r6 is 0.040 inches. The radius of curvature r6 has a center-point located above the profile of the can lid 110.


First transitional portion 136 extends radially upward and slightly outward from step portion 134. First transitional portion 136 forms an angle a1 with respect to central axis 114 of the center panel 112. This angle is from about 4° to about 12°, more preferably from about 5° to about 7°, and most preferably about 6°. As shown in FIG. 3, angle a1 is intended to be slightly larger than angle a2, which is formed by driving surface 146 of chuck 144 with respect to central axis 114 of the center panel 112. Preferably, the difference between angle a1 and angle a2 is no greater than about 4°, and at least about 0.5°. More preferably, the difference between angle a1 and angle a2 is at least about 1°, and not more than about 3°. Most preferably, the difference between angle a1 and angle a2 is about 2°. Angle a2 is preferably at least about 2° to aid in removing the can from the chuck 144 after the seaming operation and preferably not greater than about 8°. The current design parameter for angle a2 is about 4°.


Second transitional portion 137 extends radially outward from first transitional portion 136. Second transitional portion 137 has a radius of curvature r7 of from about 0.04 to about 0.09 inches, more preferably from about 0.045 to about 0.08 inches, and still more preferably from about 0.05 to about 0.065 inches. Peripheral curl portion 138 extends radially outward from second transitional portion 137. Peripheral curl portion 138 has a height h2 of from about 0.04 to about 0.09 inches, more preferably from about 0.0475 to about 0.0825 inches, still more preferably from about 0.065 to about 0.0825 inches, and most preferably from about 0.075 to about 0.0825 inches. The current design parameter for height h2 is 0.078 inches.



FIG. 2 shows the combined height h6 of the first transitional portion 136 and second transitional portion 137 as being approximately 0.105 inches for the current design parameter. This height is slightly greater than the height of the finished double seam, which is from about 0.096 to about 0.100 inches on the current can design. A reduced seam version of the can has a finished double seam with a height of from about 0.068 to about 0.080 inches, with the height h6 of first transitional portion 136 and second transitional portion 137 being approximately 0.082 inches. A micro-seam version of the can has a finished double seam with a height of from about 0.050 to about 0.055 inches, with the height h6 of the first transitional portion 136 and second transitional portion 137 being approximately 0.060 inches. The greater height h6 provides an area to generate a finished seam pressure ridge, at the bottom of the double seam, which tightens the final seam and prevents leakage.



FIG. 3 shows can lid 110 resting on can body 140, and particularly resting on flange 142 of can body 140. The radius of the can flange 142 is slightly smaller than the second transitional portion or second arcuate member radius r7. Because the flange radius and second transitional portion radius are very similar, the lid easily centralizes on the can for seaming. The can body has an inside neck diameter d3 from about 2.051 to about 2.065 inches, with a target diameter of about 2.058 inches. Can body 140 is supported by a base plate 145 (not shown) which together with chuck 144 is mounted for rotation about axis 114. Chuck 144 includes an upper driving surface 146 configured to match and engage with the surface of step portion 134. As shown in FIG. 8, upper driving surface 146 is comprised of an upper frustoconical portion 146a characterized by angle a2 and a lower curved portion 146b characterized by a radius selected to engage with step portion 134 having a radius r6. Chuck 144 also includes a lower driving surface 148 configured to match and engage with the second chuck contacting portion 228 of the annular countersink 116. Recessed portion 232 of the chuck 144 extends between the driving surfaces 146 and 148 and is configured not to contact or deform the arcuate portion or first arcuate member 132 of lid 110. The size of the gap between recessed portion 232 and arcuate portion 132 as shown in FIG. 3 is not shown to scale. Additionally, the approximately 6° angle a1 which first transitional portion or frustoconical member 136 forms with respect to central axis 114 of the center panel 112, coupled with the two chuck driving points, the step portion 134, and the second chuck contacting portion 228, further improves the alignment between the chuck 144 and the lid 110. The first transitional portion 136 is also generally frustoconical in shape. A limited clamping force between chuck 144 and base plate 145 (not shown) provides adequate friction between chuck 144 and step portion 134 and second chuck contacting portion 228 for positive rotation of can lid 110 and can body 140. Because the chuck 144 drives the lid at two points, the step portion 134 and second chuck contacting portion 228, the clamping force required to prevent skidding of the lid during the seaming process is reduced to a range of about 70 to about 140 pounds. This reduction in clamping force reduces the potential for can



FIG. 4 shows the initial stage of double seam formation between can lid 110 and can body 140. Roller 150 bears against peripheral curl portion 138 and the centering force exerted by chuck 144. Chuck 144, using upper driving surface 146 and lower driving surface 148, drives can lid 110 and can body 140 to rotate, generating a rolling, swaging action that reforms second transitional portion 137, peripheral curl portion 138, and flange 142 into an intermediate peripheral seam 152. Step portion 134 bears against upper driving surface 146 to support second transitional portion 137, and peripheral curl portion 138 leads the rolling deformation against roller 150. Note that there is very little movement of first transitional portion 136 during seaming because it is at nearly the same angle as that of the upper driving surface 146 of chuck 144. When pressure from roller 150 is applied to the peripheral curl portion 138, the second transitional portion 137 is pressed against the chuck 144, further improving the driving of the lid 110. Thus positive support and guidance work together to achieve consistent and reliable results in producing intermediate peripheral seam 152.



FIG. 5 shows the final stage of forming a double seam between can lid 110 and can body 140. Here, roller 160 bears against intermediate peripheral seam 152 as it is supported by chuck 144. Chuck 144 drives can lid 110 and can body 140 to rotate, so that the pressure of roller 160 flattens intermediate peripheral seam 152 against upper portion 148 of chuck 144, producing double seam 154. Upper portion 148 of chuck 144 has a draft angle for ease of separation of can lid 110 after this operation.



FIG. 6 shows the manner in which a plurality of can lids 110a and 110b stack for handling, packaging, and feeding a seaming machine. Underside of peripheral curl 138a bears down against upper portion of peripheral curl 138b of adjacent can lid 110b. Can lid 110a is supported and separated from can lid 110b by a height h3 sufficient to accommodate the thickness of a pull-tab (not shown). In this manner, can lids 110 are compactly and efficiently handled and are more readily positioned for magazine feeding of a mechanized seaming operation.



FIG. 7 shows the manner of stacking filled can 164a, closed and sealed according to the present invention on a like filled can 164b. Stand bead 166a rests upon double seam 154b.



FIG. 8 shows those portions of the chuck 144 shown in FIG. 3, and described above, and also provides a more detailed view of the upper frustoconical portion 146a and lower curved portion 146b of the upper driving surface 146.


The embodiments shown and described above are exemplary. Many details are often found in the art and, therefore, many such details are neither shown nor described. It is not claimed that all of the details, parts, elements, or steps described and shown were invented herein. Even though numerous characteristics and advantages of the present invention have been described in the drawings and accompanying text, the description is illustrative only, and changes may be made in the detail, especially in matters of shape, size, and arrangement of the parts within the principles of the invention to the full extent indicated by the broad meaning of the terms of the attached claims.


The restrictive description and drawings of the specific examples above do not point out what an infringement of this patent would be, but are to provide at least one explanation of how to use and make the invention. The limits of the invention and the bounds of the patent protection are measured by and defined in the following claims.

Claims
  • 1. A lid for a can body comprising: a center panel having a central axis that is perpendicular to the center panel;a countersink that extends radially from the periphery of the center panel;a first nonlinear member that extends radially from the periphery of the countersink, the first nonlinear member having first and second ends and a radius of curvature of less than about 0.5 inches, the center point of the radius of curvature of the first nonlinear member being below the surface of the lid, and wherein a line passing through the first and second ends is at a first angle from about 20 to about 80 degrees with respect to the central axis;a step portion extending radially outward from the second end of the first nonlinear member, the step portion having a radius of curvature of from about 0.02 to about 0.06 inches, and the center point of the radius of curvature of the step portion being above the surface of the lid;a frustoconical member that extends radially from the step portion and that is inclined at a second angle with respect to the central axis from about 4 to about 12 degrees;a second nonlinear member that extends from the periphery of the frustoconical member, the second nonlinear member having a radius of curvature of from about 0.04 to about 0.09 inches with a center point below the surface of the lid; anda peripheral curl that extends from the periphery of the second nonlinear member.
  • 2. The can lid according to claim 1 wherein the first angle is from about 35 to about 65 degrees.
  • 3. The can lid according to claim 1 wherein the first angle is from about 45 to about 55 degrees.
  • 4. The can lid according to claim 1 wherein the height of the peripheral curl is from about 0.04 to about 0.09 inches.
  • 5. The can lid according to claim 1 wherein the center panel is substantially flat or planar.
  • 6. The can lid according to claim 1 wherein the center panel is arcuate.
  • 7. The can lid according to claim 1 wherein the diameter of the center panel is from about 1.4 to about 2.0 inches.
  • 8. The can lid according to claim 1 wherein the countersink has a height of from about 0.030 to about 0.115 inches.
  • 9. The can lid according to claim 1 wherein the radius of curvature of the first nonlinear member is from about 0.1 to about 0.3 inches.
  • 10. The can lid according to claim 1 wherein the second angle is from about 5 to about 7 degrees with respect to the central axis.
  • 11. The can lid according to claim 1 wherein the second angle is about 6 degrees with respect to the central axis.
  • 12. A lid for a can body comprising: a center panel having a central axis that is perpendicular to the center panel;a countersink that extends radially from the periphery of the center panel;a first curvilinear member that extends radially from the periphery of the countersink, the first curvilinear member having first and second ends and a radius of curvature of less than about 0.5 inches, the center point of the radius of curvature of the first curvilinear member being below the surface of the lid, and wherein a line passing through the first and second ends is at a first angle between about 20 and about 80 degrees with respect to the central axis;a step portion extending radially outward from the second end of the first curvilinear member, the step portion having a radius of curvature between about 0.02 and about 0.06 inches, and the center point of the radius of curvature of the step portion being above the surface of the lid;a frustoconical member that extends radially from the step portion and that is inclined at a second angle with respect to the central axis between about 4 and about 12 degrees;a second curvilinear member that extends from the periphery of the frustoconical member, the second curvilinear member having a radius of curvature of between about 0.04 and about 0.09 inches with a center point below the surface of the lid; anda peripheral curl that extends from the periphery of the second curvilinear member.
  • 13. The can lid according to claim 12 wherein the first angle is between about 35 and about 65 degrees.
  • 14. The can lid according to claim 12 wherein the first angle is between about 45 and about 55 degrees.
  • 15. The can lid according to claim 12 wherein the height of the peripheral curl is between about 0.04 and about 0.09 inches.
  • 16. The can lid according to claim 12 wherein the center panel is substantially flat or planar.
  • 17. The can lid according to claim 12 wherein the center panel is curvilinear.
  • 18. The can lid according to claim 12 wherein the diameter of the center panel is between about 1.4 and about 2.0 inches.
  • 19. The can lid according to claim 12 wherein the countersink has a height of between about 0.030 and about 0.115 inches.
  • 20. The can lid according to claim 12 wherein the radius of curvature of the first nonlinear member is between about 0.1 and about 0.3 inches.
  • 21. The can lid according to claim 12 wherein the second angle is between about 5 and about 7 degrees with respect to the central axis.
  • 22. The can lid according to claim 12 wherein the second angle is about 6degrees with respect to the central axis.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 10/916,866 filed Aug. 12, 2004, now U.S. Pat No. 7,380,684, which is a continuation-in-part of U.S. patent application Ser. No. 10/340,535 filed Jan. 10, 2003, now U.S. Pat. No. 7,100,789, entitled “METALLIC BEVERAGE CAN END WITH IMPROVED CHUCK WALL AND COUNTERSINK,” filed on Jan. 10, 2003, which claims priority to U.S. Provisional Patent Application Ser. No. 60/347,282 filed on Jan. 10, 2002; and is a continuation-in-part of U.S. Pat. No. 6,702,142, which was filed on May 22, 2002 as U.S. patent application Ser. No. 10/153,364, which claimed priority to U.S. Pat. No. 6,499,622, which was filed on Dec. 8, 1999 as U.S. patent application Ser. No. 09/456,345; and is a continuation-in-part of U.S. Pat. No. 6,561,004, which was filed on Nov. 28, 2000 as U.S. patent application Ser. No. 09/724,637, which was a continuation-in-part of U.S. Pat. No. 6,499,622, which was filed on Dec. 8, 1999 as U.S. patent application Ser. No. 09/456,345, each of these named applications or issued patents being incorporated herein in their entirety by reference.

US Referenced Citations (153)
Number Name Date Kind
91754 Lawrence Jun 1869 A
163747 Cummings May 1875 A
706296 Bradley Aug 1902 A
766604 Dilg Aug 1904 A
801683 Penfold Oct 1905 A
818438 Heindorf Apr 1906 A
868916 Dieckmann Oct 1907 A
1045055 Mittinger, Jr. Nov 1912 A
2318603 Erb May 1943 A
D141415 Wargel et al. May 1945 S
2759628 Sokoloff Aug 1956 A
2894844 Shakman Jul 1959 A
3023927 Ehman Aug 1962 A
3105765 Creegan Oct 1963 A
3176872 Zundel Apr 1965 A
3208627 Lipske Sep 1965 A
3251515 Henchert et al. May 1966 A
3268105 Geiger Aug 1966 A
D206500 Nissen et al. Dec 1966 S
3397811 Lipske Aug 1968 A
3417898 Bozek et al. Dec 1968 A
3480175 Khoury Nov 1969 A
3650387 Hornsby et al. Mar 1972 A
3734338 Schubert May 1973 A
3744667 Fraze et al. Jul 1973 A
3749277 Kinney Jul 1973 A
D229396 Zundel Nov 1973 S
3774801 Gedde Nov 1973 A
3814279 Rayzal Jun 1974 A
3836038 Cudzik Sep 1974 A
3843014 Cospen Oct 1974 A
3874553 Schultz et al. Apr 1975 A
3904069 Toukmanian Sep 1975 A
3967752 Cudzik Jul 1976 A
3982657 Keller et al. Sep 1976 A
3983827 Meadors Oct 1976 A
4015744 Brown Apr 1977 A
4024981 Brown May 1977 A
4030631 Brown Jun 1977 A
4031837 Jordan Jun 1977 A
4037550 Zofko Jul 1977 A
4043168 Mazurek Aug 1977 A
4093102 Kraska Jun 1978 A
4109599 Schultz Aug 1978 A
4127212 Waterbury Nov 1978 A
4148410 Brown Apr 1979 A
4150765 Mazurek Apr 1979 A
4210257 Radtke Jul 1980 A
4213324 Kelley et al. Jul 1980 A
4215795 Elser Aug 1980 A
4217843 Kraska Aug 1980 A
4271778 Le Bret Jun 1981 A
4276993 Hassegaun Jul 1981 A
4286728 Fraze et al. Sep 1981 A
4341321 Gombas Jul 1982 A
4387827 Ruemer, Jr. Jun 1983 A
4402419 MacPherson Sep 1983 A
4420283 Post Dec 1983 A
4434641 Nguyen Mar 1984 A
4448322 Kraska May 1984 A
4467933 Wilkinson et al. Aug 1984 A
D279265 Turner et al. Jun 1985 S
4530631 Kaminski et al. Jul 1985 A
D281581 MacEwen Dec 1985 S
4559801 Smith et al. Dec 1985 A
4571978 Taube Feb 1986 A
4578007 Diekhoff Mar 1986 A
4606472 Taube Aug 1986 A
D285661 Brownbill Sep 1986 S
4641761 Smith et al. Feb 1987 A
4674649 Pavely Jun 1987 A
4681238 Sanchez Jul 1987 A
4685582 Pulciani et al. Aug 1987 A
4704887 Bachmann et al. Nov 1987 A
4713958 Bulso, Jr. et al. Dec 1987 A
4715208 Bulso, Jr. et al. Dec 1987 A
4716755 Bulso, Jr. et al. Jan 1988 A
4722215 Taube et al. Feb 1988 A
4735863 Bachmann et al. Apr 1988 A
4790705 Wilkinson et al. Dec 1988 A
4808052 Bulso, Jr. et al. Feb 1989 A
4809861 Wilkinson Mar 1989 A
D300607 Ball Apr 1989 S
D300608 Taylor et al. Apr 1989 S
4823973 Jewitt et al. Apr 1989 A
4832236 Greaves May 1989 A
4865506 Kaminski Sep 1989 A
D304302 Dalli et al. Oct 1989 S
4890759 Scanga et al. Jan 1990 A
4893725 Ball Jan 1990 A
4895012 Cook et al. Jan 1990 A
4919294 Kawamoto Apr 1990 A
RE33217 Nguyen May 1990 E
4930658 McEldowney Jun 1990 A
4934168 Osmanski et al. Jun 1990 A
4955223 Stodd et al. Sep 1990 A
4967538 Leftault, Jr. et al. Nov 1990 A
4991735 Biondich Feb 1991 A
4994009 McEldowney Feb 1991 A
5027580 Hymes et al. Jul 1991 A
5042284 Stodd et al. Aug 1991 A
5046637 Kysh Sep 1991 A
5064087 Koch Nov 1991 A
5066184 Taura et al. Nov 1991 A
5129541 Voigt et al. Jul 1992 A
5143504 Braakman Sep 1992 A
5145086 Krause Sep 1992 A
5149238 McEldowney et al. Sep 1992 A
D337521 McNulty Jul 1993 S
5253781 Van Melle et al. Oct 1993 A
5289938 Sanchez Mar 1994 A
D347172 Heynen et al. May 1994 S
5309749 Stodd May 1994 A
5320469 Katou et al. Jun 1994 A
5356256 Turner et al. Oct 1994 A
D352898 Vacher Nov 1994 S
5381683 Cowling Jan 1995 A
D356498 Strawser Mar 1995 S
5494184 Noguchi et al. Feb 1996 A
5502995 Stodd Apr 1996 A
5527143 Turner et al. Jun 1996 A
5582319 Heyes et al. Dec 1996 A
5590807 Forrest et al. Jan 1997 A
5598734 Forrest et al. Feb 1997 A
5634366 Stodd Jun 1997 A
5636761 Diamond et al. Jun 1997 A
5653355 Tominaga et al. Aug 1997 A
5685189 Nguyen et al. Nov 1997 A
5829623 Otsuka et al. Nov 1998 A
5857374 Stodd Jan 1999 A
D406236 Brifcani et al. Mar 1999 S
5911551 Moran Jun 1999 A
5950858 Sergeant Sep 1999 A
5969605 McIntyre et al. Oct 1999 A
5975344 Stevens Nov 1999 A
6065634 Brifcani et al. May 2000 A
6089072 Fields Jul 2000 A
6102243 Fields et al. Aug 2000 A
6126034 Borden et al. Oct 2000 A
6131761 Cheng et al. Oct 2000 A
D452155 Stodd Dec 2001 S
6419110 Stodd Jul 2002 B1
6460723 Nguyen et al. Oct 2002 B2
6499622 Neiner Dec 2002 B1
6516968 Stodd Feb 2003 B2
6561004 Neiner et al. May 2003 B1
6702142 Neiner Mar 2004 B2
6748789 Turner et al. Jun 2004 B2
6848875 Brifcani et al. Feb 2005 B2
6877941 Brifcani et al. Apr 2005 B2
6932234 D'Amato Aug 2005 B2
7100789 Nguyen et al. Sep 2006 B2
7380684 Reed et al. Jun 2008 B2
Foreign Referenced Citations (56)
Number Date Country
734942 May 1943 DE
G 92 11 788.0 Feb 1993 DE
0 139 282 May 1985 EP
153115 Aug 1985 EP
0 340 955 Nov 1989 EP
917771 Jan 1947 FR
2 196 891 May 1988 GB
2 218 024 Nov 1989 GB
2 315 478 Nov 1996 GB
49-096887 Sep 1974 JP
50-144580 Nov 1975 JP
54-074184 Jun 1979 JP
55-122945 Feb 1980 JP
S57-117323 Jan 1981 JP
56-053835 May 1981 JP
56-053836 May 1981 JP
57-044435 Mar 1982 JP
57-094436 Jun 1982 JP
58-035028 Mar 1983 JP
58-035029 Mar 1983 JP
1983-35028 Mar 1983 JP
59-144535 Aug 1984 JP
61-023533 Feb 1986 JP
63-125152 May 1988 JP
401167050 Jun 1989 JP
01-170538 Jul 1989 JP
01-289526 Nov 1989 JP
02-092426 Apr 1990 JP
402192837 Jul 1990 JP
02-131931 Nov 1990 JP
03-032835 Feb 1991 JP
2058975 Dec 1991 JP
3275443 Dec 1991 JP
04-55028 Feb 1992 JP
406179445 Dec 1992 JP
405032255 Feb 1993 JP
H3-333819 May 1993 JP
H5-112357 May 1993 JP
5 185170 Jul 1993 JP
406127547 May 1994 JP
6-179445 Jun 1994 JP
07-171645 Jul 1995 JP
08-168837 Jul 1996 JP
08-192840 Jul 1996 JP
2000-109068 Apr 2000 JP
2002-178072 Jun 2002 JP
2002-308263 Oct 2002 JP
2003-136168 May 2003 JP
2003-205940 Jul 2003 JP
62179828 Jul 1962 NL
8910216 Nov 1989 WO
9317864 Sep 1993 WO
9637414 Nov 1996 WO
9834743 Aug 1998 WO
0012243 Mar 2000 WO
2005032953 Apr 2005 WO
Related Publications (1)
Number Date Country
20080230548 A1 Sep 2008 US
Provisional Applications (1)
Number Date Country
60347282 Jan 2002 US
Continuations (1)
Number Date Country
Parent 10916866 Aug 2004 US
Child 12132308 US
Continuation in Parts (4)
Number Date Country
Parent 10340535 Jan 2003 US
Child 10916866 US
Parent 10153364 May 2002 US
Child 10340535 US
Parent 09724637 Nov 2000 US
Child 10153364 US
Parent 09456345 Dec 1999 US
Child 09724637 US