Can shell and double-seamed can end

Information

  • Patent Grant
  • 10843845
  • Patent Number
    10,843,845
  • Date Filed
    Wednesday, January 3, 2018
    6 years ago
  • Date Issued
    Tuesday, November 24, 2020
    3 years ago
Abstract
A drawn aluminum can shell has a peripheral crown which is double-seamed with an end portion of an aluminum can body to provide a can end having a generally flat center panel connected by an inclined curved or straight panel wall to an inclined inner wall of an annular U-shaped countersink. The countersink has an outer wall which connects with an inclined lower wall portion of a chuck wall at a junction below the center panel, and the chuck wall has a curved or inclined upper wall portion which connects with an inner wall of the crown. The chuck wall also has an intermediate wall portion forming a break, and the inner bottom width of the countersink is less than the radial width of the panel wall. The inclined upper wall portion of the chuck wall extends at an angle greater than the angle of the inclined lower wall portion of the chuck wall.
Description
BACKGROUND OF THE INVENTION

This invention relates to the construction or forming of a sheet metal or aluminum can shell and can end having a peripheral rim or crown which is double-seamed to the upper edge portion of a sheet metal or aluminum can body. Such a can end is formed from a drawn sheet metal can shell, for example, a shell produced by tooling as disclosed in applicant's U.S. Pat. No. 5,857,374 the disclosure of which is herein incorporated by reference. Commonly, the formed can shell includes a circular center panel which extends to a panel wall which extends to or also forms the inner wall of a reinforcing rib or countersink having a U-shaped cross-sectional configuration. The countersink is connected by a generally frusto-conical chuckwall to an annular crown which is formed with a peripheral curl. For beverage containers, the center panel of the shell is commonly provided with an E-Z open tab, and after the can body is filled with a beverage, the peripherally curled crown of the shell is double-seamed to the upper end portion of the can body.


When the can body is filled with a carbonated beverage or a beverage which must be pasteurized at a high temperature, it is essential for the can end to have a substantial buckle strength to withstand the pressurized beverage, for example, a buckle strength of at least 90 psi. Such resistance to “buckle” pressure and “rock” pressure is described in detail in U.S. Pat. No. 4,448,322, the disclosure of which is incorporated by reference. It is also desirable to minimize the weight of sheet metal or aluminum within the can end without reducing the buckle strength. This is accomplished by either reducing the thickness or gage of the flat sheet metal from which the can shell is drawn and formed and/or by reducing the diameter of the circular blank cut from the sheet metal to form the can shell.


There have been many sheet metal shells and can ends constructed or proposed for increasing the buckle strength of the can end and/or reducing the weight of sheet metal within the can end without reducing the buckle strength. For example, U.S. Pat. Nos. 3,843,014, 4,031,837, 4,093,102, above-mentioned U.S. Pat. Nos. 4,448,322, 4,790,705, 4,808,052, 5,046,637, 5,527,143, 5,685,189, 6,065,634, 6,089,072, 6,102,243, 6,460,723 and 6,499,622 disclose various forms and configurations of can shells and can ends and the various dimensions and configurations which have been proposed or used for increasing the buckle strength of a can end and/or reducing the metal in the can end. Also, published PCT application No. WO 98/34743 discloses a modification of the can shell and can end disclosed in above-mentioned U.S. Pat. No. 6,065,634. In addition to increasing the buckle strength/weight ratio of a can end, it is desirable to form the can shell so that there is minimal modifications required to the extensive tooling existing in the field for adding the E-Z open tabs to the can shells and for double-seaming the can shells to the can bodies. While some of the can shells and can ends disclosed in the above patents provide some of desirable structural features, none of the patents provide all of the features.


SUMMARY OF THE INVENTION

The present invention is directed to an improved sheet metal shell and can end and a method of forming the can end which provides the desirable features and advantages mentioned above, including a significant reduction in the blank diameter for forming a can shell and a significant increase in strength/weight ratio of the resulting can end. A can shell and can end formed in accordance with the invention not only increases the buckle strength of the can end but also minimizes the changes or modifications in the existing tooling for adding E-Z open tabs to the can shells and for double-seaming the can shells to the can bodies.


In accordance with one embodiment of the invention, the can shell and can end are formed with an overall height between the crown and the countersink of less than 0.240 inch and preferably less than 0.230 inch, and the countersink has a generally cylindrical outer wall and an inner wall connected to a curved panel wall. A generally frusto-conical chuckwall extends from the outer wall of the countersink to the inner wall of the crown and has an upper wall portion extending at an angle of at least 16° relative to the center axis of the shell, and preferably between 25° and 30°. The countersink may have a generally flat bottom wall or inclined inner wall which connects with the countersink outer wall with a small radius substantially less than the radial width of the bottom wall, and the inside width of the countersink at its bottom is less than the radius of the panel wall.


In accordance with modifications of the invention, a can shell and can end have some of the above structure and with the junction of a lower wall portion of the chuckwall and the outer countersink wall being substantially below the center panel. The lower wall portion of the chuckwall extends at an angle less than the angle of the upper wall portion relative to the center axis and is connected to the upper wall portion by a short wall portion which provides the chuckwall with a break or kick or a slight S-curved configuration. The countersink has a radius of curvature substantially smaller than the radius of curvature or radial width of the panel wall, and the inner bottom width of the countersink is also less than the radius or radial width of the panel wall, and preferably less than 0.035 inch. In a preferred embodiment, the countersink has an inclined bottom wall portion, and the panel wall has an inclined linear portion when viewed in cross section.


U.S. Pat. No. 7,341,163, which relates to a can shell and double-seamed can end, is hereby incorporated by reference in its entirety.


Other features and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a vertical cross-section through a sheet metal can shell formed in accordance with the invention;



FIG. 2 is an enlarged fragmentary section of the can shell in FIG. 1 and showing the configuration of one embodiment;



FIG. 3 is a smaller fragmentary section of the can shell of FIG. 2 and showing the can shell becoming a can end with a double-seaming chuck and a first stage roller;



FIG. 4 is a fragmentary section similar to FIG. 3 and showing a double-seamed can end with the chuck and a second stage roller;



FIG. 5 is an enlarged fragmentary section of the double-seamed can end shown in FIG. 4 and with a fragment of the modified double-seaming chuck;



FIG. 6 is a section similar to FIG. 1 and showing a double-seamed can end formed in accordance with the invention;



FIG. 7 is an enlarged fragmentary section similar to FIG. 2 and showing a can shell formed in accordance with a modification of the invention;



FIG. 8 is an enlarged fragmentary section similar to FIG. 5 and showing the can shell of FIG. 7 double-seamed onto a can body;



FIG. 9 is an enlarged fragmentary section similar to FIG. 7 and showing a can shell formed in accordance with another modification of the invention;



FIG. 10 illustrates the stacking and nesting of can shells formed as shown in FIG. 9;



FIG. 11 is an enlarged fragmentary section of the chuckwall of the can shell shown in FIG. 9,



FIG. 12 is an enlarged fragmentary section similar to FIG. 9 and showing a can shell formed in accordance with another modification of the invention; and



FIG. 13 is an enlarged fragmentary section similar to FIG. 12 and showing a can shell formed in accordance with a further modification of the invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 illustrates a one-piece shell 10 which is formed from a substantially circular blank of sheet metal or aluminum, preferably having a thickness of about 0.0085 inch and a blank diameter of about 2.705 inches. The shell 10 has a center axis 11 and includes a slightly crowned center panel 12 with an annular portion 14 extending to a curved panel wall 16. The center panel wall portion 14 and panel wall 16 may be formed by a series of blended curved walls having radii wherein R1 is 1.489 inch, R2 is 0.321 inch, R3 is 0.031 inch, and R4 is 0.055 inch. The curved panel wall 16 has a bottom inner diameter D1 of about 1.855 inch.


The curved panel wall 16 with the radius R4 extends from an inner wall 17 of a reinforcing rib or countersink 18 having a U-shaped cross-sectional configuration and including a flat annular bottom wall 22 and a generally cylindrical outer wall 24 having an inner diameter D2, for example, of about 1.957 inches. The flat bottom wall 22 of the countersink 18 is connected to the inner panel wall 16 and the outer countersink wall 24 by curved corner walls 26 each having an inner radius R5 of about 0.010 inch. The radial width W of the flat bottom wall 22 is preferably about 0.022 inch so that the inner bottom width W1 of the countersink 18 is about 0.042 inch.


The outer wall 24 of the countersink 18 connects with a generally frusto-conical chuckwall 32 by a curved wall 34 having a radius R6 of about 0.054 inch. The chuckwall 32 extends at an angle A1 of at least 16° with respect to the center axis 11 or a vertical reference line 36 which is parallel to the center axis 11 of the shell. Preferably, the angle A1 is between 25° and 30° and on the order of 29°. The upper end of the chuckwall 32 connects with the bottom of a curved inner wall 38 of a rounded crown 42 having a curled outer wall 44. Preferably, the inner wall 38 of the crown 42 has a radius R7 of about 0.070 inch, the inner diameter D3 at the bottom of the curved inner wall 38 is about 2.039 inch, and the outer diameter D4 of the curled outer wall 44 is about 2.340 inches. The height C of the curled outer wall 44 is within the range of 0.075 inch and 0.095 inch and is preferably about 0.079 inch. The depth D from the bottom of the outer curled wall 44 or the junction 46 of the chuckwall 32 and the inner crown wall 38 to the inner surface of the countersink bottom wall 22 is within the range between 0.108 inch and 0.148 inch, and preferably about 0.126 inch. The junction 47 or the center point for the radius R6 has a depth G of about 0.079 from the junction 46 or bottom of the curled outer wall 44 of the crown 42.



FIG. 3 shows the crown 42 of the shell 10 being double-seamed onto an upper peripheral end portion 48 of a sheet metal or aluminum can body 50. The double-seaming operation is performed between a rotating double-seaming circular chuck 55 which engages the shell 10 and has an outer surface 58 which may be slightly tapered between an angle of 0° and 10° with respect to the center axis of the chuck 55 and the common center axis 11 of the shell 10. Preferably, the surface 58 has a slight taper of about 4° and is engaged by the inner wall 38 of the crown 42 in response to radially inward movement of a first stage double-seaming roller 60 while the can body 50 and its contents and the shell 10 are rotating or spinning with the chuck 55. The chuck 55 also has a frusto-conical surface 62 which mates with and engages the frusto-conical chuckwall 32 of the shell 10, and a downwardly projecting annular lip portion 64 of the chuck 55 extends into the countersink 18 and has a bottom surface 66 (FIG. 5) and a cylindrical outer surface 68 which engage the bottom wall 22 and the outer wall 24 of the countersink 18, respectively.



FIGS. 4 & 5 illustrates the completion of the double-seaming operation to form a double-seamed crown 70 between the rotating chuck 55 and a second stage double-seaming roller 72 which also moves radially inwardly while the chuck 55, shell 10 and can body 50 are spinning to convert the shell 10 into a can end 75 which is positively attached and sealed to the upper end portion 48 of the can body 50. The double-seamed rim or crown 70 has an inner wall 74 which is formed from the inner wall 38 of the shell crown 42 and also has an outer wall 76 formed from the shell crown 42 including the outer curled wall 44. The double-seamed crown 70 has a height H2 within the range between 0.090 inch and 0.110 inch and preferably about 0.100 inch. The can end 75 has an overall height H1 between the top of the crown 70 and the bottom of the countersink 18 within the range of 0.170 inch and 0.240 inch, and preferably about 0.235 inch. Since the can end 75 has the same cross-sectional configuration as the shell 10 with the exception of the double-seamed crown 70, the same common reference numbers are used in FIGS. 4-6 for the common structure.


As apparent from FIG. 6, the center portion of the center panel 12 defines a plane 80 which substantially intersects the junction 46 of the chuckwall 32 with the inner wall 74 of the double-seamed crown 70. The E-Z open tab has been omitted from FIG. 6 for purposes of clarity and simplification and since the E-Z open tab forms no part of the present invention.



FIGS. 7 & 8 show another embodiment or modification of the invention including a can shell (FIG. 7) and a double-seamed can end (FIG. 8). Accordingly, the structural components corresponding to the components described above in connection with FIGS. 1-6, have the same reference numbers but with the addition of prime marks. Thus referring to FIG. 7, a can shell 10′ has a center axis which is the same as the axis 11 and includes a circular center panel 12′ connected to a peripheral curved panel wall 16′ which connects with an inclined inner wall 17′ of a countersink 18′ having a U-shaped cross-sectional configuration. The countersink has a generally cylindrical outer wall 24′ which extends at an angle less than 10° and connects with a chuckwall having a frusto-conical upper wall portion 32′ and a slightly curved lower wall portion 34′. The wall portions 32′ and 34′ are connected by a kick or generally vertical short riser portion 35′ having relatively sharp inside and outside radii, for example, on the order of 0.020 inch. The upper chuckwall portion 32′ is connected by a curved wall 37′ to the inner curved wall 38′ of a crown 42′ having a curved outer wall 44′.


The inner wall 38′ of the crown 42′ connects with the upper chuckwall portion 32′ at a junction 46′, and the outer wall 24′ of the countersink 18′ connects with the lower chuckwall portion 34′ at a junction 47′. The vertical height G1 from the bottom of the countersink 18′ to the kick or riser portion 35′ is about 0.086. The radius R10 is about 0.051 inch, and the lower wall portion 34′ extends at an angle A3 of about 15°. The countersink 18′ has a radius R9 of about 0.009 to 0.011 inch. Other approximate dimensions and angles for the shell 10′ shown in FIG. 7 are as follows:






















C1
 .082 inch
W1
.024 inch
H5
.078 inch



C2
 .153 inch
W2
.063 inch
H6
.149 inch



D6
1.910 inch
W3
.034 inch





D7
2.036 inch
A2
.29°





D8
2.337 inch
A3
 15°





D9
1.731 inch
A4
 16°







A6
 13°










The particular cross-sectional configuration of the can shell 10′ has been found to provide performance results superior to the performance results provided by the can shell 10. Accordingly, the details of the configuration of the can shell 10′ include a chuckwall upper wall portion 32′ having an angle A2 relative to the center axis of at least 16° and preferably within the range of 25° to 30°. The lower wall portion 34′ of the chuckwall forms an angle A3 which is about 15°. The inner wall 38′ of the crown 42 forms an angle A4 preferably within the range of 5° to 30° and preferably about 16°. The inner wall 17′ of the countersink 18′ forms an angle A6 which is greater than 10° and about 13°. The width W1 of the countersink at the bottom between the inner wall 17′ and the outer wall 24′ is less than 0.040 inch and preferably about 0.024 inch. The radius R8 of the curved inner panel wall 16′ is substantially greater than the width W1 of the countersink 18′ and is about 0.049 inch.


The crown 42′ of the shell 10′ has a height C1 within the range of 0.075 inch to 0.095 inch and preferably about 0.082 inch and a height C2 within the range of 0.120 inch and 0.170 inch and preferably about 0.153 inch. The overall diameter D8 of the shell 10′ is about 2.337 inch, and the diameter D7 to the junction 46′ is about 2.036 inch. The inner bottom diameter D6 of the outer countersink wall 24′ is about 1.910 inch, and the difference W2 between D7 and D6 is greater than the countersink width W1, or about 0.063 inch. The diameter D9 for the center of the radius R8 is about 1.731 inch. It is understood that if a different diameter shell is desired, the diameters D6-D9 vary proportionately. The height H5 of the center panel 12′ above the bottom of the countersink 18′ is within the range of 0.070 inch and 0.110 inch and preferably about 0.078 inch. The height H6 of the shell 10′ between the top of the center panel 12′ and the top of the crown 42′, is within the range of 0.125 inch and 0.185 inch, and preferably about 0.149 inch.


Referring to FIG. 8, the shell 10′ is double-seamed with the upper end portion 48′ of a formed can body 50′ using tooling substantially the same as described above in connection with FIGS. 3-5 to form a can end 75′. That is, a seamer chuck (not shown), similar to the chuck 55, includes a lower portion similar to the portion 64 which projects into the countersink 18′ and has surfaces corresponding to the surfaces 58, 62 and 68 of the seamer chuck 55 for engaging the outer countersink wall 24′, the chuckwall portion 32′, and for forming the inner wall 74′ of the double-seamed crown 70′. As also shown in FIG. 8, the inner wall 74′ of the double-seamed crown 70′ extends at a slight angle A5 of about 4°, and the overall height H3 of the can end 75′ is less than 0.240 inch and preferably about 0.235 inch. The height H4 of the double-seamed crown 70′ is on the order of 0.100 inch and the height H7 from the top of the crown 70′ to the top of the center panel 12′ is greater than the center panel height H5, preferably about 0.148 inch.



FIGS. 9-11 show another embodiment or modification of the invention including a can shell (FIG. 9) wherein the structural components corresponding to the components described above in connection with FIGS. 7 & 8 have the same reference numbers but with the addition of double prime marks. Thus referring to FIG. 9, a can shell 10″ has a center axis which is the same as the axis 11 and includes a circular center panel 12″ connected to a peripheral curved panel wall 16″ which connects with an inclined inner wall 17″ of a countersink 18″ having a U-shaped cross-sectional configuration. The countersink has a generally cylindrical outer wall 24″ which extends at an angle less than 10° and connects with a chuckwall having a frusto-conical upper wall portion 32″ and slightly curved lower wall portion 34″.


The wall portions 32″ and 34″ are connected by a kick or generally vertical or generally cylindrical short riser wall portion 35″ having relatively sharp inside and outside radii, for example, on the order of 0.020 inch. The upper chuckwall portion 32″ is connected to an inner wall 38″ of a crown 42″ having a curved outer wall 44″. As shown in FIG. 11, the riser wall portion 35″ has a coined outer surface 105 which results in the wall portion 35″ having a thickness slightly less than the wall thickness of the adjacent wall portions 32″ and 34″.


The inner wall 38″ of the crown 42″ connects with the upper chuckwall portion 32″ at a junction 46″, and the outer wall 24″ of the countersink 18″ connects with the lower chuckwall portion 34″ at a junction 47″. The vertical height G1 from the bottom of the countersink 18″ to the kick or riser wall portion 35″ is about 0.099. The radius R10 is about 0.100 inch, and the lower wall portion 34″ extends at an angle A3 of about 15°. The countersink 18″ has an inner radius R9 of about 0.021 inch and an outer radius R11 of about 0.016 inch. Other approximate dimensions and angles for the shell 10″ shown in FIG. 9 are as follows:






















C3
 .249 inch
W1
.030 inch
G3
.045 inch



D6
1.900 inch
W2
.047 inch
G4
.117 inch



D8
2.336 inch
W3
.043 inch
H5
.081 inch



D9
1.722 inch
A2
.29°
R8
.051 inch





A6
 .8°










The particular cross-sectional configuration of the can shell 10″ has been found to provide performance results somewhat superior to the performance results provided by the can shell 10′. Accordingly, the details of the configuration of the can shell 10″ include a chuckwall upper wall portion 32″ having an angle A2 relative to the center axis of at least 16° and preferably within the range of 25° to 30°. The lower wall portion 34″ of the chuckwall forms an angle A3 which is about 15°. The inner wall 17″ of the countersink 18″ forms an angle A6 which is less than 10° and about 8°. The width W1 of the countersink at the bottom between the inner wall 17″ and the outer wall 24″ is less than 0.040 inch and preferably about 0.030 inch. The radius R8 of the curved inner panel wall 16″ is substantially greater than the width W1 of the countersink 18″ and is about 0.051 inch.


The crown 42″ of the shell 10″ has a height C3 from the bottom of the countersink 18″ of about 0.249 inch. The overall diameter D8 of the shell 10″ is about 2.336 inch. The inner bottom diameter D6 of the outer countersink wall 24″ is about 1.900 inch, and the difference in diameter W2 is greater than the countersink width W1, or about 0.047 inch. The diameter D9 for the center of the radius R8 is about 1.722 inch. It is understood that if a different diameter shell is desired, the diameters D6, D8 & D9 vary proportionately. The height H5 of the center panel 12″ above the bottom of the countersink 18″ is preferably about 0.081 inch. As shown in FIG. 9, the curved panel wall 16″ has a coined portion 107 with a thickness less than the thickness of the adjacent portions of the panel wall 16″.



FIG. 12 shows another embodiment or modification of the invention and wherein a can shell 110 has structural components corresponding to the components described above in connection with FIGS. 7-9 and having the same reference numbers as used in FIG. 9 but with the addition of “100”. Thus referring to FIG. 12, the can shell 110 has a center axis which is the same as the axis 11 and includes a center panel 112 connected to a peripherally extending curved panel wall 116 having a radius between about 0.040 and 0.060 inch. The panel wall 116 forms a curved bevel and connects with an inclined inner wall 117 of a countersink 118 having a U-shaped cross-sectional configuration. The inner wall 117 extends at an angle A7 of at least about 30°, and the countersink has an outer wall 124 which extends at an angle between 3° and 19° and connects with an inclined chuckwall having a generally frusto-conical upper wall portion 132 and a slightly curved lower wall portion 134.


The wall portions 132 and 134 are integrally connected by a curved portion 135 resulting in an angular break or a slightly reverse curve configuration formed by radii R10, R12 and R13. The upper chuckwall portion 132 is connected to an inner wall portion 138 of a crown 142 having a curved outer wall 144. The inner wall 138 of the crown 142 connects with the upper chuckwall portion 132 at a first junction 146, and the outer wall portion 124 of the countersink 118 connects with the lower chuckwall portion 134 at a second junction 147.


The approximate preferred dimensions and angles for the shell 110 shown in FIG. 12 are as follows:
























C3
.246
inch
W1
.030
inch
R8
.050
G1
.091
inch


D6
1.895

W2
.042

R9
.022
G3
.047



D8
2.335

W3
.043

R10
.054
G4
.101

















D9
1.718

A2
29°
R11
.009
H5
.082


















A3
15°
R12
.031







A7
42°
R13
.190









The cross-sectional configuration of the can shell 110 having the above dimensions and angles has been found to provide performance results slightly superior to the performance results provided by the can shell 10′ and 10″. The added benefit of the angular or inclined inner countersink wall 117 is set forth in above mentioned U.S. Pat. No. 5,685,189, the disclosure of which is incorporated by reference. In addition, the combination of the beveled panel wall 116 and the inclined inner countersink wall 117 provide for increased buckle strength. Also, the above statements and advantages of the can shell 10′ and 10″ also apply to the can shell 110 shown in FIG. 12.



FIG. 13 shows another embodiment or modification of the invention and wherein a can shell 210 has structural components corresponding to the components described above in connection with FIGS. 7-9 and 12 and having the same reference numbers as used in FIGS. 9 & 12, but with the addition of “200”. Thus referring to FIG. 13, the can shell 210 has a vertical center axis which is the same as the axis 11 and includes a circular center panel 212 connected to an inclined or beveled panel wall 216. As shown in FIG. 13, the inclined or beveled panel wall 216 has straight inner and outer surfaces and extends at an acute angle A6 which is within the range of 30° to 60° and connects through a vertical wall with an inclined inner wall 217 of a countersink 218 formed by radii R9 and R11 and having a generally U-shaped cross-sectional configuration. The countersink 218 has an inclined outer wall 224 and connects with a chuckwall having an inclined or curved upper wall portion 232 formed by radii R12 and R14 and an inclined lower wall portion 234. The outer wall 224 of the countersink 218 and the lower wall portion 234 of the chuckwall extend at an angle A3 which is within the range of 3° to 19°.


The chuckwall portions 232 and 234 are integrally connected by a short wall portion 235 forming a kick or break between the upper and lower chuckwall portions 232 and 234 and formed by radius R10. The upper chuckwall portion 232 is connected to an inner wall portion 238 of a crown 242 having a curved outer wall 244. The inner wall 238 of the crown 242 extends at an angle less than 16° and connects by a radius R15 with the upper chuckwall portion 232 at a junction 246. As apparent from FIG. 13, this angle of the inner wall 238 is less than the angle of the inclined or curved upper chuckwall portion 232 formed by a straight line connecting its end points at the junction 246 and break forming wall portion 235. The outer wall portion 224 of the countersink 218 connects with the lower chuckwall portion 234 at a junction 247.


The approximate and preferred dimensions and angles for the shell 210 shown in FIG. 13 are as follows:
























C3
.235
inch
W1
.029
inch
R8
.014
R14
.035
inch


D6
1.873

W2
.068

R9
.029
R15
.018



D7
2.008

W3
.044

R10
.022
G1
.068



D8
2.337

W4
0.36

R11
.009
G3
.031

















D9
1.728

A3
14°
R12
.077
G4
.102






A6
45°
R13
.021
H5
.084










H6
.151










The cross-sectional configuration of the can shell 210 having the above approximate dimensions and angles has been found to provide performance results somewhat superior to the performance results provided by the can shells 10′, 10″ and 110. The inclined or beveled panel wall 216 cooperates with the inclined inner wall 217 of the countersink 218 and the relative small radius R11 to increase buckle strength, and the inclined walls 224 and 234 and break-forming wall portion 235 cooperate to increase strength and prevent leaking during a drop test. The curved panel wall 116 (FIG. 12) or the linear wall 216 (FIG. 13) may also be formed with short linear wall sections in axial cross-section thereby providing a faceted inclined annular panel wall. In addition, the above statements and advantages of the can shell 10′, 10″ and 110 also apply to the can shell 210 shown in FIG. 13.


By forming a shell and can end with the profile or configuration and dimension described above, and especially the profile of the bevel panel wall 216, countersink 218 and wall portion 234 shown in FIG. 13, it has been found that the seamed can end may be formed from aluminum sheet having a thickness of about 0.0082 inch, and the seamed can end will withstand a pressure within the can of over 110 psi before the can end will buckle. The configuration and relative shallow profile of the can shell also result in a seamed can end having an overall height of less than 0.240 inch, thus providing for a significant reduction of over 0.040 inch in the diameter of the circular blank which is used to form the shell. This reduction in diameter results in a significant reduction in the width of aluminum sheet or web used to produce the shells, thus a reduction in the weight and cost of aluminum to form can ends, which is especially important in view of the large volume of can ends produced each year.


The shell of the invention also minimizes the modifications required in the tooling existing in the field for forming the double-seamed crown 70 or 70′ or for double-seaming the crown 42″ or 142 or 242. That is, the only required modification in the tooling for forming the double-seamed crown is the replacement of a conventional or standard double-seaming chuck with a new chuck having the frusto-conical or mating surface 62 (FIG. 5) and the mating surface 68 on the bottom chuck portion 64 which extends into the countersink and engages the outer countersink wall. Conventional double-seaming chucks commonly have the slightly tapered surface 58 which extends at an angle of about 4° with respect to the center axis of the double-seaming chuck. As also shown in FIG. 10, the slight break or S-curve configuration of the intermediate portion 35″ or 135 or 235 of the chuckwall of the shell provides for stacking the shells in closely nested relation in addition to increasing the buckle strength of the can end formed from the shell.


As appreciated by one skilled in the art, the end closures or shells described herein in FIGS. 1-11 may generally be manufactured using end closure forming tools commonly known in the art. With respect to FIGS. 12 and 13 and the end closure or shell geometry or profiles disclosed in reference thereto, it is believed that numerous advantages in the manufacturing process and formed end closure can be realized using an improved process and apparatus as described in pending U.S. Provisional Patent Application filed on Jul. 29, 2004 and entitled “Method and Apparatus for Shaping a Metallic End Closure” which is incorporated herein by reference in its entirety.


While the forms of can shell and can end herein described and the method of forming the shell and can end constitute preferred embodiments of the invention, it is to be understood that the invention is not limited to these precise forms of can shell and can end, and that changes may be made therein without departing from the scope and spirit of the invention as defined in the appended claims.

Claims
  • 1. A one-piece metallic end closure adapted for double seaming to a container, comprising: a substantially arcuate-shaped center panel when viewed in cross-section with a vertical center axis;a peripheral curl having a curved outer wall, a top portion, and an inclined wall portion extending downwardly at a first angle less than about 16° relative to said vertical center axis when viewed in cross-section;a chuck wall comprising an inclined lower wall portion and an arcuate shaped upper wall portion interconnected to a lower end of said inclined wall portion of said peripheral curl at a junction;a countersink comprising an inner wall portion having an upper end, an outer wall portion interconnected to said chuck wall inclined lower wall portion, and a curved lowermost portion having a first radius of curvature when viewed in cross-section, wherein said center panel is raised above said lowermost portion of said countersink a distance of at least about 0.082 inches; anda curved panel wall having an upper end interconnected to said substantially arcuate-shaped center panel, a lower end integrally interconnected to said upper end of said countersink inner wall portion, a curved middle portion positioned between said upper end and said lower end, and a substantially uniform thickness when viewed in cross-section, wherein said curved panel wall is oriented at a second angle between about 30° and about 60° relative to said vertical center axis as measured from the upper end to the lower end of said curved panel wall, wherein said curved panel wall has a second radius of curvature between about 0.040 inches and about 0.060 inches when viewed in cross-section, and wherein said substantially arcuate-shaped center panel has a center portion elevated above an outer portion.
  • 2. The end closure of claim 1, wherein said countersink has a generally U-shaped cross-sectional configuration when viewed in cross-section.
  • 3. The end closure of claim 1, wherein said first radius of curvature is about 0.009 inches.
  • 4. The end closure of claim 1, wherein said junction is positioned about 0.098 inches below an uppermost portion of said peripheral curl prior to double seaming.
  • 5. The end closure of claim 1, wherein said countersink outer wall portion oriented at a third angle between about 3 degrees and about 19 degrees with respect to said vertical center axis.
  • 6. A one-piece metallic end closure adapted for double seaming to a neck of a container, comprising: a substantially circular-shaped center panel when viewed in plan view with a vertical center axis;a peripheral curl having a first end and a second end, said first end adapted for interconnection to the neck of the container;a countersink having an outer panel wall, an upwardly and inwardly oriented inner panel wall, and a curved portion therebetween, said outer panel wall oriented at a first angle between about 3 degrees and about 19 degrees with respect to said vertical center axis, wherein said countersink is further defined by said curved portion having a first radius of curvature when viewed in cross-section;an arcuate-shaped panel wall interconnected on an upper end to said substantially circular-shaped center panel and integrally interconnected on a lower end to an upper end of said upwardly and inwardly oriented countersink inner panel wall, said arcuate-shaped panel wall oriented at a second angle between about 30 and 60 degrees with respect to said vertical center axis and having a substantially uniform thickness and a second radius of curvature when viewed in cross-section, wherein said countersink first radius of curvature is smaller than the second radius of curvature of the arcuate-shaped panel wall; anda chuck wall comprising a generally frusto-conical upper wall portion interconnected to said second end of said peripheral curl and a slightly curved lower wall portion when viewed in cross-section extending inwardly and downwardly and interconnected to said countersink outer panel wall, wherein said upper wall portion is integrally interconnected to said lower wall portion by a curved portion when viewed in cross-section.
  • 7. The end closure of claim 6, wherein said chuck wall upper wall portion is oriented at a third angle with respect to said vertical center axis and said chuck wall lower wall portion is oriented at a fourth angle with respect to said vertical center axis, and wherein said fourth angle is less than said third angle.
  • 8. The end closure of claim 6, wherein said first radius of curvature is about 0.009 inches.
  • 9. The end closure of claim 6, wherein said second radius of curvature of said arcuate-shaped panel wall is about 0.050 inches.
  • 10. A one-piece metallic end closure adapted for double seaming to a neck of a container, comprising: a vertical center axis;a peripheral curl having a curved outer wall adapted for interconnection to the neck of the container and an inner wall portion;a chuck wall comprising an upper wall portion and a lower wall portion, said upper wall portion oriented at a first angle with respect to said vertical center axis and interconnected to said inner wall portion of said peripheral curl through a first junction, said lower wall portion extending inwardly at a second angle with respect to said vertical center axis, and wherein said second angle is less than said first angle;a generally U-shaped countersink having an outer wall extending at a third angle and interconnected to said chuck wall lower wall portion at a second junction and an upwardly oriented inner wall extending at a fourth angle, wherein said outer wall is interconnected to said inner wall through a first curve having a first radius of curvature when viewed in cross-section;a panel wall forming a curved bevel and having an upper end and a lower end, the curved bevel having a second radius of curvature when viewed in cross-section, said lower end of said panel wall interconnected to an upper end of said countersink inner wall at a third curve with a third radius of curvature of about 0.022 inches when viewed in cross-section, wherein said second radius of curvature is different than said third radius of curvature, and said panel wall having a substantially uniform thickness when viewed in cross-section; anda substantially arcuate-shaped center panel when viewed in cross-section interconnected to said upper end of said panel wall.
  • 11. The end closure of claim 10, wherein said upper wall portion of said chuck wall is frusto-conical and said lower wall portion of said chuck wall is slightly curved when viewed in cross-section.
  • 12. The end closure of claim 10, wherein said panel wall is positioned at a fifth angle between 30 degrees and 60 degrees as measured between said upper end and said lower end and when viewed in cross-section.
  • 13. The end closure of claim 10, wherein said substantially arcuate-shaped center panel has a center portion elevated above an outer portion.
  • 14. The end closure of claim 10, wherein said chuck wall lower wall portion is interconnected to said chuck wall upper wall portion by a curved portion resulting in an angular break when viewed in cross-section.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. patent application Ser. No. 15/187,520, filed Jun. 20, 2016, now U.S. Pat. No. 10,246,217, which is a Continuation of U.S. patent application Ser. No. 14/593,914, filed Jan. 9, 2015, now U.S. Pat. No. 9,371,152, which is a Continuation of U.S. patent application Ser. No. 13/682,260, filed Nov. 20, 2012, now U.S. Pat. No. 8,931,660, which is a Continuation of U.S. patent application Ser. No. 12/904,532, filed Oct. 14, 2010, now U.S. Pat. No. 8,313,004, which is a Continuation of U.S. patent application Ser. No. 10/936,834, filed Sep. 9, 2004, now U.S. Pat. No. 7,819,275, which is a Continuation-In-Part of U.S. patent application Ser. No. 10/675,370, filed Sep. 30, 2003, now U.S. Pat. No. 7,341,163, which is a Continuation-In-Part of abandoned U.S. patent application Ser. No. 10/361,245, filed Feb. 10, 2003, which is a Continuation-In-Part of U.S. patent application Ser. No. 10/078,152, filed Feb. 19, 2002, now U.S. Pat. No. 6,516,968, which is a Continuation-In-Part of U.S. patent application Ser. No. 09/898,802, filed Jul. 3, 2001, now U.S. Pat. No. 6,419,110, the entire disclosures of which are incorporated by reference herein.

US Referenced Citations (284)
Number Name Date Kind
91754 Lawrence Jun 1869 A
163747 Cummings May 1875 A
706296 Bradley Aug 1902 A
766604 Dilg Aug 1904 A
801683 Penfold Oct 1905 A
818438 Heindorf Apr 1906 A
868916 Dieckmann Oct 1907 A
1045055 Mittinger, Jr. Nov 1912 A
1957639 Goodwin Jun 1932 A
2027430 Hilmer Jan 1936 A
2060145 Vogel Nov 1936 A
2119533 Fink Jun 1938 A
2318603 Erb May 1943 A
D141415 Wargel et al. May 1945 S
2759628 Sokoloff Aug 1956 A
2819006 Magill et al. Jan 1958 A
2894844 Shakman Jul 1959 A
3023927 Ehman Mar 1962 A
3025814 Currie et al. Mar 1962 A
3057537 Pollick Oct 1962 A
3105765 Creegan Oct 1963 A
3176872 Zundel Apr 1965 A
3208627 Lipske Sep 1965 A
3251515 Henchert et al. May 1966 A
3268105 Geiger Aug 1966 A
D206500 Nissen et al. Dec 1966 S
3383748 Galimberti et al. May 1968 A
3397811 Lipske Aug 1968 A
3417898 Bozek et al. Dec 1968 A
3480175 Khoury Nov 1969 A
3525455 Saunders Aug 1970 A
3564895 Pfanner et al. Feb 1971 A
3650387 Hornsby et al. Mar 1972 A
3715054 Gedde Feb 1973 A
3734338 Schubert May 1973 A
3744667 Fraze et al. Jul 1973 A
3745623 Wentorf, Jr. et al. Jul 1973 A
3757716 Gedde Sep 1973 A
3762005 Erkfritz Oct 1973 A
3765352 Schubert et al. Oct 1973 A
D229396 Zundel Nov 1973 S
3774801 Gedde Nov 1973 A
3814279 Rayzal Jun 1974 A
3836038 Cudzik Sep 1974 A
3843014 Cospen et al. Oct 1974 A
3868919 Schrecker et al. Mar 1975 A
3871314 Stargell Mar 1975 A
3874553 Schultz et al. Apr 1975 A
3904069 Toukmanian Sep 1975 A
3907152 Wessely Sep 1975 A
3967752 Cudzik Jul 1976 A
3982657 Keller et al. Sep 1976 A
3983827 Meadors Oct 1976 A
4015744 Brown Apr 1977 A
4024981 Brown May 1977 A
4030631 Brown Jun 1977 A
4031837 Jordan Jun 1977 A
4037550 Zofko Jul 1977 A
4043168 Mazurek Aug 1977 A
4056871 Bator Nov 1977 A
4087193 Mundy May 1978 A
4093102 Kraska Jun 1978 A
4109599 Schultz Aug 1978 A
4116361 Stargell Sep 1978 A
4120419 Saunders Oct 1978 A
4126652 Oohara et al. Nov 1978 A
4127212 Waterbury Nov 1978 A
4148410 Brown Apr 1979 A
4150765 Mazurek Apr 1979 A
4210257 Radtke Jul 1980 A
4213324 Kelley et al. Jul 1980 A
4215795 Elser Aug 1980 A
4217843 Kraska Aug 1980 A
4264017 Karas et al. Apr 1981 A
4271778 La Bret Jun 1981 A
4274351 Boardman Jun 1981 A
4276993 Hassegaun Jul 1981 A
4286728 Fraze et al. Sep 1981 A
4341321 Gombas Jul 1982 A
4365499 Hirota et al. Dec 1982 A
4387827 Ruemer, Jr. Jun 1983 A
4402419 MacPherson Sep 1983 A
4420283 Post Dec 1983 A
4434641 Nguyen Mar 1984 A
4435969 Nichols et al. Mar 1984 A
4448322 Kraska May 1984 A
4467933 Wilkinson et al. Aug 1984 A
4516420 Bulso et al. May 1985 A
D279265 Turner et al. Jun 1985 S
4530631 Kaminski et al. Jul 1985 A
D281581 MacEwen Dec 1985 S
4559801 Smith et al. Dec 1985 A
4563887 Bressan et al. Jan 1986 A
4571978 Taube et al. Feb 1986 A
4577774 Nguyen Mar 1986 A
4578007 Diekhoff Mar 1986 A
4587825 Bulso et al. May 1986 A
4587826 Bulso et al. May 1986 A
4606472 Taube et al. Aug 1986 A
D285661 Brown Sep 1986 S
4641761 Smith et al. Feb 1987 A
4674649 Pavely Jun 1987 A
4681238 Sanchez Jul 1987 A
4685582 Pulciani et al. Aug 1987 A
4685849 Labarge et al. Aug 1987 A
4697972 Le Bret et al. Oct 1987 A
4704887 Bachmann et al. Nov 1987 A
4713958 Bulso, Jr. et al. Dec 1987 A
4715208 Bulso, Jr. et al. Dec 1987 A
4716755 Bulso, Jr. et al. Jan 1988 A
4722215 Taube et al. Feb 1988 A
4735863 Bachmann et al. Apr 1988 A
4781047 Bressan et al. Nov 1988 A
4790705 Wilkinson et al. Dec 1988 A
4796772 Nguyen Jan 1989 A
4804106 Saunders Feb 1989 A
4808052 Bulso, Jr. et al. Feb 1989 A
4809861 Wilkinson Mar 1989 A
D300607 Ball Apr 1989 S
D300608 Taylor et al. Apr 1989 S
4820100 Riviere Apr 1989 A
4823973 Jewitt et al. Apr 1989 A
4832223 Kalenak et al. May 1989 A
4832236 Greaves May 1989 A
4865506 Kaminski Sep 1989 A
D304302 Dalli et al. Oct 1989 S
4885924 Claydon et al. Dec 1989 A
4890759 Scanga et al. Jan 1990 A
4893725 Ball et al. Jan 1990 A
4895012 Cook et al. Jan 1990 A
4919294 Kawamoto Apr 1990 A
RE33217 Nguyen May 1990 E
4928844 LaBarge May 1990 A
4930658 McEldowney Jun 1990 A
4934168 Osmanski et al. Jun 1990 A
4955223 Stodd et al. Sep 1990 A
4967538 Leftault, Jr. et al. Nov 1990 A
4991735 Biondich Feb 1991 A
4994009 McEldowney Feb 1991 A
4995223 Spatafora et al. Feb 1991 A
5016463 Johansson et al. May 1991 A
5026960 Slutz et al. Jun 1991 A
5027580 Hymes et al. Jul 1991 A
5042284 Stodd et al. Aug 1991 A
5046637 Kysh Sep 1991 A
5064087 Koch Nov 1991 A
5066184 Taura et al. Nov 1991 A
5069355 Matuszak Dec 1991 A
5105977 Taniuchi Apr 1992 A
5129541 Voigt et al. Jul 1992 A
5141367 Beeghly et al. Aug 1992 A
5143504 Braakman Sep 1992 A
5145086 Krause Sep 1992 A
5149238 McEldowney et al. Sep 1992 A
5174706 Taniuchi Dec 1992 A
5222385 Halasz et al. Jun 1993 A
D337521 McNulty Jul 1993 S
5245848 Lee, Jr. et al. Sep 1993 A
5289938 Sanchez Mar 1994 A
D347172 Heynan et al. May 1994 S
5309749 Stodd May 1994 A
5320469 Katou et al. Jun 1994 A
5325696 Jentzsch et al. Jul 1994 A
5349837 Halasz et al. Sep 1994 A
5355709 Bauder et al. Oct 1994 A
5356256 Turner et al. Oct 1994 A
D352898 Vacher Nov 1994 S
5381683 Cowling Jan 1995 A
D356498 Strawser Mar 1995 S
5465599 Lee, Jr. Nov 1995 A
5494184 Noguchi et al. Feb 1996 A
5497184 Noguchi et al. Mar 1996 A
5502995 Stodd Apr 1996 A
5524468 Jentzsch et al. Jun 1996 A
5527143 Turner et al. Jun 1996 A
5540352 Halasz et al. Jul 1996 A
5555992 Sedgeley Sep 1996 A
5563107 Dubensky et al. Oct 1996 A
5582319 Heyes et al. Dec 1996 A
5590807 Forrest et al. Jan 1997 A
5598734 Forrest et al. Feb 1997 A
5612264 Nilsson et al. Mar 1997 A
5634366 Stodd Jun 1997 A
5636761 Diamond et al. Jun 1997 A
5653355 Tominaga et al. Aug 1997 A
5676512 Diamond et al. Oct 1997 A
5685189 Nguyen et al. Nov 1997 A
5697242 Halasz et al. Dec 1997 A
5706686 Babbitt et al. Jan 1998 A
5749488 Bagwell et al. May 1998 A
5823730 La Rovere Oct 1998 A
5829623 Otsuka et al. Nov 1998 A
5857374 Stodd Jan 1999 A
D406236 Brifcani et al. Mar 1999 S
5911551 Moran Jun 1999 A
5934127 Ihly Aug 1999 A
5950858 Sergeant Sep 1999 A
5957647 Hinton Sep 1999 A
5969605 McIntyre et al. Oct 1999 A
5971259 Bacon Oct 1999 A
6024239 Turner et al. Feb 2000 A
6033789 Saveker et al. Mar 2000 A
6055836 Waterworth et al. May 2000 A
6058753 Jowitt et al. May 2000 A
6065634 Brifcani et al. May 2000 A
6089072 Fields Jul 2000 A
6102243 Fields et al. Aug 2000 A
6126034 Borden et al. Oct 2000 A
6131761 Cheng et al. Oct 2000 A
6234337 Huber et al. May 2001 B1
6290447 Siemonsen et al. Sep 2001 B1
6296139 Hanafusa et al. Oct 2001 B1
D452155 Stodd Dec 2001 S
6386013 Werth May 2002 B1
6408498 Fields et al. Jun 2002 B1
6419110 Stodd Jul 2002 B1
6425493 Gardiner Jul 2002 B1
6425721 Zysset Jul 2002 B1
6428261 Zysset Aug 2002 B1
6460723 Nguyen et al. Oct 2002 B2
6499622 Neiner Dec 2002 B1
6516968 Stodd Feb 2003 B2
6526799 Ferraro et al. Mar 2003 B2
6561004 Neiner et al. May 2003 B1
6616393 Jentzsch Sep 2003 B1
D480304 Stodd Oct 2003 S
6634837 Anderson Oct 2003 B1
6658911 McClung Dec 2003 B2
6702142 Neiner Mar 2004 B2
6702538 Heinicke et al. Mar 2004 B1
6736283 Santamaria et al. May 2004 B1
6748789 Turner et al. Jun 2004 B2
6761280 Zonker et al. Jul 2004 B2
6772900 Turner et al. Aug 2004 B2
6817819 Olson et al. Nov 2004 B2
6837089 Jentzsch et al. Jan 2005 B2
6848875 Brifcani et al. Feb 2005 B2
6877941 Brifcani et al. Apr 2005 B2
6915553 Turner et al. Jul 2005 B2
6935826 Brifcani et al. Aug 2005 B2
6959577 Jentzsch Nov 2005 B2
6968724 Hubball Nov 2005 B2
7004345 Turner et al. Feb 2006 B2
7100789 Nguyen et al. Sep 2006 B2
7125214 Carrein et al. Oct 2006 B2
7174762 Turner et al. Feb 2007 B2
7263868 Jentzsch et al. Sep 2007 B2
7341163 Stodd Mar 2008 B2
7350392 Turner et al. Apr 2008 B2
7370774 Watson et al. May 2008 B2
7380684 Reed et al. Jun 2008 B2
7500376 Bathurst et al. Mar 2009 B2
7506779 Jentzsch et al. Mar 2009 B2
7591392 Watson et al. Sep 2009 B2
7673768 Reed et al. Mar 2010 B2
7743635 Jentzsch et al. Jun 2010 B2
7819275 Stodd Oct 2010 B2
7938290 Bulso May 2011 B2
8205477 Jentzsch et al. Jun 2012 B2
8235244 Bulso Aug 2012 B2
8313004 Stodd et al. Nov 2012 B2
8505765 Bulso Aug 2013 B2
8931660 Stodd et al. Jan 2015 B2
9371152 Stodd et al. Jun 2016 B2
9540137 Forrest et al. Jan 2017 B2
20010037668 Fields Nov 2001 A1
20020139805 Chasteen et al. Oct 2002 A1
20020158071 Chasteen et al. Oct 2002 A1
20030121924 Stodd Jul 2003 A1
20030173367 Nguyen Sep 2003 A1
20030177803 Golding et al. Sep 2003 A1
20030198538 Brifcani et al. Oct 2003 A1
20040026433 Brifcani et al. Feb 2004 A1
20040026434 Brifcani et al. Feb 2004 A1
20040052593 Anderson Mar 2004 A1
20040140312 Neiner Jul 2004 A1
20040238546 Watson et al. Dec 2004 A1
20050247717 Brifcani et al. Nov 2005 A1
20050252922 Reed et al. Nov 2005 A1
20060010957 Hubball Jan 2006 A1
20060071005 Bulso Apr 2006 A1
20160264288 Stodd et al. Sep 2016 A1
20160297564 Stodd et al. Oct 2016 A1
20170341807 Stodd et al. Nov 2017 A1
Foreign Referenced Citations (82)
Number Date Country
327383 Jan 1958 CH
104822472 Aug 2015 CN
734942 May 1943 DE
9211788 Jan 1993 DE
0049020 Apr 1982 EP
0139282 May 1985 EP
0153115 Aug 1985 EP
0340955 Nov 1989 EP
0348070 Dec 1989 EP
0482581 Apr 1992 EP
0828663 Dec 1999 EP
1361164 Nov 2003 EP
3003889 Apr 2017 EP
917771 Jan 1947 FR
767029 Jan 1957 GB
2067159 Jul 1981 GB
2196891 May 1988 GB
2218024 Nov 1989 GB
2315478 Feb 1998 GB
S49-096887 Sep 1974 JP
S50-144580 Nov 1975 JP
S54-074184 Jun 1979 JP
S55-122945 Sep 1980 JP
S56-32227 Apr 1981 JP
S56-53835 May 1981 JP
S56-53836 May 1981 JP
S56-107323 Aug 1981 JP
S57-44435 Mar 1982 JP
S57-94436 Jun 1982 JP
S57-117323 Jul 1982 JP
S58-035028 Mar 1983 JP
S58-35029 Mar 1983 JP
S59-144535 Aug 1984 JP
S61-023533 Feb 1986 JP
S61-115834 Jun 1986 JP
S63-125152 May 1988 JP
H01-167050 Jun 1989 JP
H01-170538 Jul 1989 JP
H01-289526 Nov 1989 JP
H02-11033 Jan 1990 JP
H02-092426 Apr 1990 JP
H02-131931 May 1990 JP
H02-192837 Jul 1990 JP
H03-032835 Feb 1991 JP
H03-275223 Dec 1991 JP
H03-275443 Dec 1991 JP
H04-033733 Feb 1992 JP
H04-055028 Feb 1992 JP
H05-32255 Feb 1993 JP
H05-112357 May 1993 JP
H05-185170 Jul 1993 JP
H06-127547 May 1994 JP
H06-179445 Jun 1994 JP
H07-171645 Jul 1995 JP
H08-168837 Jul 1996 JP
H08-192840 Jul 1996 JP
2000-109068 Apr 2000 JP
2001-314931 Nov 2001 JP
2001-328663 Nov 2001 JP
2001-334332 Dec 2001 JP
2002-239662 Aug 2002 JP
2016003488 Sep 2016 MX
2016015817 Feb 2017 MX
WO 8302577 Aug 1983 WO
WO 8910216 Nov 1989 WO
WO 9301903 Feb 1993 WO
WO 9317864 Sep 1993 WO
WO 9637414 Nov 1996 WO
WO 9834743 Aug 1998 WO
WO 0012243 Mar 2000 WO
WO 0064609 Nov 2000 WO
WO 0141948 Jun 2001 WO
WO 0243895 Jun 2002 WO
WO 02068281 Sep 2002 WO
WO 03059764 Jul 2003 WO
WO 2005032953 Apr 2005 WO
WO 2007005564 Jan 2007 WO
WO 2011053776 May 2011 WO
WO 2013188556 Dec 2013 WO
WO 2014143820 Sep 2014 WO
WO 2014194058 Dec 2014 WO
WO 2015040032 Mar 2015 WO
Non-Patent Literature Citations (15)
Entry
“Brewing Industry Recommended Can Specifications Manual”, United States Brewers Assoc., Inc, May 1983, pp. 1-7.
“Beverage Can, End, & Double Seam Dimensional Specifications”, Society of Soft Drink Technologiests, Aug. 1993, pp. 1-6.
“Guideline Booklet of the Society of Soft Drink Technologists”, Can and End Committee of the Society of Soft Drink Technologists, Jun. 5, 1986, pp. 1-21.
Official Action for U.S. Appl. No. 12/904,532, dated Jan. 24, 2012, 8 pages.
Notice of Allowance for U.S. Appl. No. 12/904,532, dated Jul. 19, 2012, 7 pages.
Official Action for U.S. Appl. No. 12/904,532, dated Sep. 26, 2013, 7 pages.
Official Action for U.S. Appl. No. 12/904,532, dated Apr. 4, 2014, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/682,260, dated Sep. 8, 2014, 7 pages.
Official Action for U.S. Appl. No. 14/593,914, dated Sep. 18, 2015, 13 pages.
Notice of Allowance for U.S. Appl. No. 14/593,914, dated Feb. 23, 2016, 8 pages.
Official Action for U.S. Appl. No. 15/187,520, dated Jan. 9, 2018 6 pages Restriction Requirement.
Notice of Allowance for U.S. Appl. No. 15/187,520, dated Nov. 14, 2018 7 pages.
Official Action for U.S. Appl. No. 15/187,520, dated May 16, 2018 10 pages.
Official Action for U.S. Appl. No. 15/677,576, dated Apr. 10, 2019, 5 pages Restriction Requirement.
Official Action for U.S. Appl. No. 15/677,576, dated Jul. 22, 2019, 10 pages.
Related Publications (1)
Number Date Country
20180127145 A1 May 2018 US
Continuations (5)
Number Date Country
Parent 15187520 Jun 2016 US
Child 15861086 US
Parent 14593914 Jan 2015 US
Child 15187520 US
Parent 13682260 Nov 2012 US
Child 14593914 US
Parent 12904532 Oct 2010 US
Child 13682260 US
Parent 10936834 Sep 2004 US
Child 12904532 US
Continuation in Parts (4)
Number Date Country
Parent 10675370 Sep 2003 US
Child 10936834 US
Parent 10361245 Feb 2003 US
Child 10675370 US
Parent 10078152 Feb 2002 US
Child 10361245 US
Parent 09898802 Jul 2001 US
Child 10078152 US