Examples described herein relate to hearing devices and more particularly a canal hearing device including a lateral section having a frequency shaping sound port system.
Placement of a hearing device inside the ear canal is generally desirable for various electroacoustic advantages such as reduction of the acoustic occlusion effect, improved energy efficiency, reduced distortion, reduced receiver vibrations, and improved high frequency response. Placement inside the ear canal may also be desirable for cosmetic reasons, with many of the hearing impaired preferring to wear inconspicuous hearing devices. A canal hearing device can be inserted entirely or partially inside the ear canal.
The ear canal is a hostile environment for hearing devices inserted within. Earwax and debris often plugs sound ports, and even migrates inside the hearing device causing damage to sensitive components inside, particularly the electronics and transducers, e.g., the microphone and receiver, inside. The transducers of conventional hearing devices typically degrade in audio characteristics over time from debris such as earwax and moisture. In order to combat the hostile environment of the ear canal, conventional hearing devices typically include a barrier for the protection of transducers from ear canal debris. Permanent and disposable barriers and filters are often used in conventional hearing devices. These types of barriers eventually become overwhelmed by the debris in the ear canal, which causes plugging of the sound ports or damage to components of the hearing device from debris ingress. Damage by debris is common in canal hearing devices, particularly in CIC types, because of the depth of insertion into the ear canal and the severity of the environment therein.
A canal hearing device may include a lateral section and a main section. The lateral section may be integrated with the main section or modular. The lateral section may include a housing configured to accommodate a battery cell at least partially within. The housing may include an elongate sound channel configured to receive an incoming sound from a sound channel inlet and provide a frequency-shaped sound output at a sound channel outlet. The elongate sound channel may be formed at least partially by an inner surface of the housing. The elongate sound channel may be formed at least partially formed by an outer surface of the battery cell.
The incoming sound inlet may be positioned lateral to the battery cell. The sound channel outlet may be positioned medial to the battery cell. In some examples, the lateral section may include a handle on a lateral end of the housing. In some examples, the sound channel inlet may be incorporated within the handle. The elongate sound channel may be configured to produce at least a 3 dB boost at a frequency within the range of 3-6 kHz.
An air tab may be at least partially inserted within the elongate sound channel, wherein the air tab is attached to the battery cell blocking an air inlet of the battery cell. In some examples, a debris barrier may be coupled to the elongate sound channel. The debris barrier may include alternating microstructures. In some examples, the elongate sound channel may include any of hydrophobic, oleophobic, and oleophilic properties.
The main section may include a microphone, a speaker, and a sound port. The speaker may transmit sound to the eardrum. The sound port may acoustically couple the frequency-shaped sound output to the microphone. The lateral section may be at least partially disengageable from the main section.
The above and still further objectives, features, aspects and attendant advantages of the present invention will become apparent from the following detailed description of certain preferred and alternate embodiments and method of manufacture and use thereof, including the best mode presently contemplated of practicing the invention, when taken in conjunction with the accompanying drawings, in which:
Certain details are set forth below to provide a sufficient understanding of embodiments of the invention. Some embodiments, however, may not include all details described. In some instances, well known structures may not be shown in order to avoid unnecessarily obscuring the described embodiments of the invention. A canal hearing device according to examples disclosed herein refers to any hearing device with sound delivery inside the ear canal, whether partially or fully inserted therein. This may include Completely-In-the-Canal (CIC), In-The-Canal (ITC), invisible extended wear deep canal, as well as Receiver-In-the-Canal (RIC) devices.
The present disclosure describes examples of canal hearing devices including a frequency shaping sound port system. The sound port system may be provided in a lateral section 40 of a canal hearing device, for example the canal hearing device 100 illustrated in
The canal hearing device 100 may be disengageable or an integrated assembly. In some examples, the lateral section may be integrated with the main section 20. In some examples, the lateral section 40 may be modular. The lateral section 40 may also be referred to as lateral module 40. The lateral module 40 may be coupled to a modular main section 20, which may also be referred to as main module 20, to form a modular canal hearing device 100. Partial disengagement may provide the canal hearing device 100 in an OFF condition. In some examples, the lateral module 40 may be removably coupled to the main module 20. Decoupling or at least partially disengaging the lateral module 40 from the main module 20 may partially or fully electrically decouple the lateral module 40 from the main module 20. By electrically decoupling the lateral module 40 from the main module 20, battery usage may be reduced. Engagement between the main module 20 and lateral module 40 may provide the canal hearing device 100 in an ON condition. Engagement between the main module 20 and the lateral module 40 may include electrically, mechanically, and acoustically coupling the lateral module 20 to the main module 40. In some examples, the lateral module 20 may be disengaged from the main module 40, e.g., for replacement of a battery cell 41.
The housing 43 of the lateral section 40 of the canal hearing device 100 may include a sound channel 50, which may be an elongate sound channel. The sound channel 50 may be configured to receive an incoming sound and producing a frequency-shaped sound output. Walls of the sound channel 50 may be formed by inner surfaces of the lateral section 40. The walls may include side walls 52, which may vary in height along a longitudinal axis of the lateral section 40. The side walls 52 may increase in height (H) medially and may accordingly also be referred to herein as sloped walls 52. A sound channel having sloped walls may be generally wedge-shaped or horn-shaped. The width (W) of the elongate sound channel 50 may remain constant along the length (L) of the elongate sound channel 50. In some examples, the width (W) may vary as may be desired to produce predetermined sound characteristics. The sound channel 50 may include an inlet (e.g., sound channel inlet 51). Incoming sound from outside the ear may enter the sound channel 50 through the sound channel inlet 51, which may also be referred to as incoming sound inlet. The incoming sound channel inlet 51 may be positioned lateral to the battery cell 41 or lateral to a cavity within the housing configured to at least partially accommodate the battery cell therein. The sound channel 50 may include an outlet (e.g., sound channel outlet 53), which may acoustically couple the sound channel 50 to the main module 40 when the lateral module 20 is coupled thereto.
The housing 43 may be formed from plastic. A handle 60 may be provided on a lateral end of the housing 43. The handle 60 may include a shaft 62 and a knob 61. In some examples, the incoming sound channel inlet 51 may be incorporated within the handle 60. In some examples, the incoming sound inlet may be incorporated within a base 63 of the handle 60 or proximate thereto. The handle 60 may include a conduit for air and/or sound waves to pass from the incoming sound channel inlet 51 into the elongate sound channel 50. In some examples, the incoming sound channel inlet 51 may be incorporated within a lateral end of the canal hearing device 100. A flange cap 42 may be provided on a medial end of the housing 43. The flange cap 42 may extend outwardly beyond the sound channel 50 and may thereby facilitate acoustically coupling of the sound channel 50 with the microphone 71 provided in the main section 20. The flange cap 42 may couple to a lip 21 of the main section 20 for acoustic coupling of the main section 20 and lateral section 40.
In some examples, the lateral section 40 may be generally cylindrical in shape and configured to enclose a portion of the battery cell 41. Other form factors may be used, however it will be appreciated that by substantially conforming to the shape of the battery cell 41 and other components within, the overall size of the canal hearing device 100 may be reduced. In some examples, the lateral section 40 may include a cavity for receiving the battery cell 41 therein. The sound channel 50 may be formed in a surface (e.g., an inner surface) of the cavity with the sound channel inlet 51 positioned laterally to the cavity.
In some examples, the lateral section 40 may be implemented for generally perpendicular insertion and removal, into and from the main section 20 forming a canal hearing device assembly 100 when joined thereto. Perpendicular joining of the lateral section 40 and circumferential encapsulation by the main section 20 may reduce or eliminate the risk of inadvertent separation of the lateral section 40 during axial movements of the canal hearing device 100 inside the ear, for example during insertion or removal of the canal hearing device 100 into and from the ear canal. The lateral section 40 may be removed from the main section 20 by applying a generally perpendicular force away from the main section 20. Partial removal of the lateral section 40 may also be provided for maintaining an OFF position (also referred to as an OFF power position) while keeping the sections together. In some examples, a disengagement, removal and/or insertion tool may be provided for users, particularly those with limited dexterity. Tools for disengagement, removal and/or insertion of the canal hearing device or for installation or removal of the lateral section 40 of the canal hearing device 100 may be implemented according to the examples in U.S. Pat. Nos. 8,798,301, 9,060,233 and 9,078,075, which are incorporated herein in their entirety for any purpose.
The elongate sound channel 50 may provide air access to the battery cell 41 housed within the lateral section 40. Metal-air batteries known in the art, such as zinc-air batteries for example, generally require a flow of air/oxygen to the interior of the battery cell 41 to effect the chemical reaction within. In some examples, the sound channel 50 is partially formed by a surface of the battery cell 41. An air inlet of the battery cell 41 (which may also be referred to as an air hole or an air aperture) may be provided on the surface of the battery cell 41, which forms, in part, the sound channel 50. As such, the sound port system described herein may simultaneously serve the purpose of allowing sound waves to be transmitted to the microphone 71 and air/oxygen to reach the battery cell 41. In some examples, the battery cell 41 may be a rechargeable type, and may not require an air aperture. In some examples, the air inlet of the battery cell 41 may comprise a plurality of micro apertures.
The sound path 80 may be shaped or may include features for performing frequency shaping of the sounds to produce a filtered sound output. In some examples, the elongate sound channel 50 may be tapered (e.g., via use of sloped wall 52) so as to increase in height (H) medially along the length (L) of the elongate sound channel 50. In some examples, the elongate sound channel 50 may include one or more curved walls. In some examples, an inlet of the sound channel 50 may be positioned lateral to the battery cell 41 and an outlet 53 of the sound channel 50 may be positioned medial to the battery cell 41. This may provide increased separation between sound input and output ports as compared to conventional canal hearing aid devices. The sloped wall 52, the amount of separation between the sound input and output ports, microstructures formed within the elongate sound channel 50, and/or other features of the elongate sound channel 50 may cause frequency shaping of the sound traveling through the sound channel 50. The frequency shaping may include an increased gain at certain frequencies and/or improved feedback control by increasing the separation between input and output ports. In some examples, the elongate sound channel 50 may be shaped or may include features for selectively amplifying certain frequencies. The elongate sound channel 50 may be at least 4 mm in length. The elongate sound channel 50 may have an average cross sectional area in the range of around 1-2 mm2.
Although embodiments of the invention are described herein, variations and modifications of these embodiments may be made, without departing from the true spirit and scope of the invention. Thus, the above-described embodiments of the invention should not be viewed as exhaustive or as limiting the invention to the precise configurations or techniques disclosed. Rather, it is intended that the invention shall be limited only by the appended claims and the rules and principles of applicable law.
This application claims the benefit under 35 U.S.C. 119 of the earlier filing date of U.S. Provisional Application No. 62/050,663, entitled “CANAL HEARING DEVICE WITH ELONGATE FREQUENCY SHAPING SOUND CHANNEL,” filed Sep. 15, 2014. The aforementioned provisional application is hereby incorporated by reference in its entirety, for any purpose. This application is related to U.S. Pat. No. 8,467,556, titled, “CANAL HEARING DEVICE WITH DISPOSABLE BATTERY MODULE,” U.S. Pat. No. 8,855,345, titled, “BATTERY MODULE FOR PERPENDICULAR DOCKING INTO A CANAL HEARING DEVICE,” U.S. Pat. No. 8,798,301, titled, “TOOL FOR REMOVAL OF CANAL HEARING DEVICE FROM EAR CANAL,” U.S. Pat. No. 9,078,075, titled, “TOOL FOR INSERTION OF CANAL HEARING DEVICE INTO THE EAR CANAL,” and U.S. Pat. No. 9,060,233, titled, “RECHARGEABLE CANAL HEARING DEVICE AND SYSTEMS;” all of which are incorporated herein by reference in their entirety for any purpose.
Number | Name | Date | Kind |
---|---|---|---|
4759070 | Voroba | Jul 1988 | A |
4962537 | Basel | Oct 1990 | A |
5197332 | Shennib | Mar 1993 | A |
5327500 | Campbell | Jul 1994 | A |
5553152 | Newton | Sep 1996 | A |
5645074 | Shennib et al. | Jul 1997 | A |
5659621 | Newton | Aug 1997 | A |
5701348 | Shennib et al. | Dec 1997 | A |
5785661 | Shennib et al. | Jul 1998 | A |
6137889 | Shennib et al. | Oct 2000 | A |
6212283 | Fletcher et al. | Apr 2001 | B1 |
6319207 | Naidoo | Nov 2001 | B1 |
6359993 | Brimhall | Mar 2002 | B2 |
6367578 | Shoemaker | Apr 2002 | B1 |
6379314 | Horn | Apr 2002 | B1 |
6382346 | Brimhall et al. | May 2002 | B2 |
6428485 | Rho | Aug 2002 | B1 |
6447461 | Eldon | Sep 2002 | B1 |
6473513 | Shennib et al. | Oct 2002 | B1 |
6522988 | Hou | Feb 2003 | B1 |
6546108 | Shennib et al. | Apr 2003 | B1 |
6674862 | Magilen | Jan 2004 | B1 |
6724902 | Shennib et al. | Apr 2004 | B1 |
6840908 | Edwards et al. | Jan 2005 | B2 |
6937735 | DeRoo et al. | Aug 2005 | B2 |
6940988 | Shennib et al. | Sep 2005 | B1 |
6978155 | Berg | Dec 2005 | B2 |
7010137 | Leedom et al. | Mar 2006 | B1 |
7016511 | Shennib | Mar 2006 | B1 |
7037274 | Thoraton et al. | May 2006 | B2 |
7113611 | Leedom et al. | Sep 2006 | B2 |
7215789 | Shennib et al. | May 2007 | B2 |
7260232 | Shennib | Aug 2007 | B2 |
7298857 | Shennib et al. | Nov 2007 | B2 |
7310426 | Shennib et al. | Dec 2007 | B2 |
7321663 | Olsen | Jan 2008 | B2 |
7403629 | Aceti et al. | Jul 2008 | B1 |
7424123 | Shennib et al. | Sep 2008 | B2 |
7424124 | Shennib et al. | Sep 2008 | B2 |
7580537 | Urso et al. | Aug 2009 | B2 |
7664282 | Urso et al. | Feb 2010 | B2 |
7854704 | Givens et al. | Dec 2010 | B2 |
7945065 | Menzl et al. | May 2011 | B2 |
8073170 | Kondo et al. | Dec 2011 | B2 |
8077890 | Schumaier | Dec 2011 | B2 |
8155361 | Schindler | Apr 2012 | B2 |
8184842 | Howard et al. | May 2012 | B2 |
8243972 | Latzel | Aug 2012 | B2 |
8284968 | Schumaier | Oct 2012 | B2 |
8287462 | Givens et al. | Oct 2012 | B2 |
8340335 | Shennib | Dec 2012 | B1 |
8379871 | Michael et al. | Feb 2013 | B2 |
8396237 | Schumaier | Mar 2013 | B2 |
8447042 | Gurin | May 2013 | B2 |
8467556 | Shennib | Jun 2013 | B2 |
8503703 | Eaton et al. | Aug 2013 | B2 |
8571247 | Oezer | Oct 2013 | B1 |
8718306 | Gommel et al. | May 2014 | B2 |
8798301 | Shennib | Aug 2014 | B2 |
8855345 | Shennib | Oct 2014 | B2 |
9031247 | Shennib | May 2015 | B2 |
9060233 | Shennib et al. | Jun 2015 | B2 |
9078075 | Shennib et al. | Jul 2015 | B2 |
9107016 | Shennib | Aug 2015 | B2 |
9439008 | Shennib | Sep 2016 | B2 |
20010008560 | Stonikas et al. | Jul 2001 | A1 |
20010009019 | Armitage | Jul 2001 | A1 |
20010040973 | Fritz | Nov 2001 | A1 |
20020027996 | Leedom et al. | Mar 2002 | A1 |
20020085728 | Shennib et al. | Jul 2002 | A1 |
20030007647 | Nielsen et al. | Jan 2003 | A1 |
20030078515 | Menzel et al. | Apr 2003 | A1 |
20040028250 | Shim | Feb 2004 | A1 |
20040073136 | Thornton et al. | Apr 2004 | A1 |
20040165742 | Shennib et al. | Aug 2004 | A1 |
20050094822 | Swartz | May 2005 | A1 |
20050190938 | Shennib et al. | Sep 2005 | A1 |
20050226447 | Miller, III | Oct 2005 | A1 |
20050245991 | Faltys et al. | Nov 2005 | A1 |
20050249370 | Shennib et al. | Nov 2005 | A1 |
20050259840 | Gable et al. | Nov 2005 | A1 |
20050283263 | Eaton et al. | Dec 2005 | A1 |
20060094981 | Camp | May 2006 | A1 |
20060210104 | Shennib et al. | Sep 2006 | A1 |
20060291683 | Urso et al. | Dec 2006 | A1 |
20070071252 | Burger | Mar 2007 | A1 |
20070071265 | Leedom et al. | Mar 2007 | A1 |
20070076909 | Roeck et al. | Apr 2007 | A1 |
20070189545 | Geiger et al. | Aug 2007 | A1 |
20070237346 | Fichtl et al. | Oct 2007 | A1 |
20080137891 | Vohringer | Jun 2008 | A1 |
20080240452 | Burrows et al. | Oct 2008 | A1 |
20080273726 | Yoo et al. | Nov 2008 | A1 |
20100040250 | Gebert | Feb 2010 | A1 |
20100119094 | Sjursen et al. | May 2010 | A1 |
20100145411 | Spitzer | Jun 2010 | A1 |
20100226520 | Feeley et al. | Sep 2010 | A1 |
20100239112 | Howard et al. | Sep 2010 | A1 |
20100268115 | Wasden et al. | Oct 2010 | A1 |
20100284556 | Young | Nov 2010 | A1 |
20110058697 | Shennib et al. | Mar 2011 | A1 |
20110176686 | Zaccaria | Jul 2011 | A1 |
20110188689 | Beck et al. | Aug 2011 | A1 |
20110190658 | Sohn et al. | Aug 2011 | A1 |
20110200216 | Lee et al. | Aug 2011 | A1 |
20110206225 | Møller et al. | Aug 2011 | A1 |
20120051569 | Blamey et al. | Mar 2012 | A1 |
20120095528 | Miller, III et al. | Apr 2012 | A1 |
20120130271 | Margolis et al. | May 2012 | A1 |
20120177212 | Hou et al. | Jul 2012 | A1 |
20120177235 | Solum | Jul 2012 | A1 |
20120183164 | Foo et al. | Jul 2012 | A1 |
20120183165 | Foo et al. | Jul 2012 | A1 |
20120189140 | Hughes | Jul 2012 | A1 |
20120213393 | Foo et al. | Aug 2012 | A1 |
20120215532 | Foo et al. | Aug 2012 | A1 |
20120263330 | Larsen | Oct 2012 | A1 |
20120285470 | Sather et al. | Nov 2012 | A9 |
20120302859 | Keefe | Nov 2012 | A1 |
20130010406 | Stanley | Jan 2013 | A1 |
20130177188 | Apfel et al. | Jul 2013 | A1 |
20130182877 | Angst et al. | Jul 2013 | A1 |
20130223666 | Michel et al. | Aug 2013 | A1 |
20130243209 | Zurbruegg et al. | Sep 2013 | A1 |
20130243227 | Kinsbergen et al. | Sep 2013 | A1 |
20130243229 | Shennib et al. | Sep 2013 | A1 |
20130294631 | Shennib et al. | Nov 2013 | A1 |
20140003639 | Shennib et al. | Jan 2014 | A1 |
20140150234 | Shennib et al. | Jun 2014 | A1 |
20140153761 | Shennib et al. | Jun 2014 | A1 |
20140153762 | Shennib et al. | Jun 2014 | A1 |
20140254843 | Shennib | Sep 2014 | A1 |
20140254844 | Shennib | Sep 2014 | A1 |
20150023512 | Shennib | Jan 2015 | A1 |
20150023534 | Shennib | Jan 2015 | A1 |
20150023535 | Shennib | Jan 2015 | A1 |
20150025413 | Shennib | Jan 2015 | A1 |
20150215714 | Shennib | Jul 2015 | A1 |
20150256942 | Kinsbergen et al. | Sep 2015 | A1 |
20160337770 | Shennib | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
2008109594 | May 2008 | JP |
1020050114861 | Dec 2005 | KR |
100955033 | Apr 2010 | KR |
1020100042370 | Apr 2010 | KR |
9907182 | Feb 1999 | WO |
2010091480 | Aug 2010 | WO |
2011128462 | Oct 2011 | WO |
2015009559 | Jan 2015 | WO |
2015009561 | Jan 2015 | WO |
2015009564 | Jan 2015 | WO |
2015009569 | Jan 2015 | WO |
Entry |
---|
International Search and Written Opinion received for PCT US/2015/050023 dated Dec. 22, 2015. |
“Basic Guide to In Ear Canalphones”, Internet Archive, Head-Fi.org, Jul. 1, 2012. Retrieved from http://web.archive.org/web/20120701013243/http:www.head-fi.org/a/basic-guide-to-in-ear-canalphones> on Apr. 14, 2015. |
“dB HL—Sensitivity to Sound—Clinical Audiograms”, Internet Archive, AuditoryNeuroscience.com, Apr. 20, 2013. Retrieved from <https://web.archive.org/web/20130420060438/http://www.auditoryneuroschience.com/acoustics/clinical—audiograms>on Apr. 14, 2015. |
“Lyric User Guide”, http://www.phonak.com/content/dam/phonak/b2b/C—M—tools/Hearing—Instruments/Lyric/documents/02-gb./Userguide—Lyric—V8—GB—FINAL—WEB.pdf, Jul. 2010. |
“Methods for Calculation of the Speech Intelligibility Index”, American National Standards Institute, Jun. 6, 1997. |
“Specification for Audiometers”, American National Standards Institute, Nov. 2, 2010. |
“The Audiogram”, Internet Archive, ASHA.org, Jun. 21, 2012. Retrieved from <https:/web.archive.org/web/20120621202942/http://www.asha.org/public/hearing/Audiogram> on Apr. 14, 2015. |
“User Manual—2011”, AMP Personal Audio Amplifiers. |
Abrams, “A Patient-adjusted Fine-tuning Approach for Optimizing the Hearing Aid Response”, The Hearing Review, Mar. 24, 2011, 1-8. |
Amlani, et al., “Methods and Applications of the Audibility Index in Hearing Aid Selection and Fitting”, Trends in Amplication 6.3 (2002) 81. Retrieved from <https://www.ncbi.nim.nih.gov/pmc/articles/PMC4168961/> on Apr. 14, 2015. |
ASHA, “Type, Degree, and Configuration of Hearing Loss”, American Speech-Language-Hearing Association; Audiology Information Series, May 2011, 1-2. |
Convery, et al., “A Self-Fitting Hearing Aid: Need and Concept”, http://tia.sagepubl.com, Dec. 4, 2011, 1-10. |
Franks, , “Hearing Measurements”, National Institute for Occupational Safety and Health, Jun. 2006, 183-232. |
Kiessling, , “Hearing aid fitting procedures—state-of-the-art and current issues”, Scandinavian Audiology vol. 30, Suppl 52, 2001, 57-59. |
Nhanes, , “Audiometry Procedures Manual”, National Health and Nutrition Examination Survey, Jan. 2003, 1-105. |
Traynor, , “Prescriptive Procedures”, www.rehab.research.va.gov/mono/ear/traynor.htm, Jan. 1999, 1-16. |
World Health Organization, , “Deafness and Hearing Loss”, www.who.int/mediacentre/factsheets/fs300/en/index.html, Feb. 2013, 1-5. |
Number | Date | Country | |
---|---|---|---|
20160080872 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
62050663 | Sep 2014 | US |