1. Field of the Present Disclosure
The present disclosure is directed generally to a muzzle brake assembly for mounting on a muzzle of a firearm to provide a reduction in the felt recoil and muzzle jump of the firearm upon firing, while additionally providing a reduction in sound levels produced by discharge of a round of ammunition as compared to other muzzle brake devices.
2. Related Art
Muzzle brakes for firearms such as rimfire or centerfire rifles typically include ports or baffles in an attempt to reduce recoil and muzzle movement such as muzzle rise upon discharge of the firearm. Often these muzzle brakes significantly increase the resultant sound volume upon discharge of a firearm as compared with the use of no muzzle brake on the firearm. This can lead to hearing problems for shooters exposed to such increased sound volumes. Moreover, many muzzle brakes available are complicated and costly to manufacture, and can provide limited recoil reduction.
The present disclosure addresses the foregoing needs and provides for a muzzle brake assembly that enables several benefits, including an ability to reduce firearm recoil by redirecting the propellant gases in a new manner, substantial reduction or elimination of muzzle movement and/or an increased muzzle braking assembly effect provided upon discharge of a round of ammunition from the firearm, lessening or maintaining the acoustic signature of the firearm as compared to conventional brake designs, and which has a relatively easy and low cost of manufacture by current machining practices, thereby minimizing cost of manufacturing.
Accordingly, in one aspect of the present disclosure, the muzzle brake assembly for a firearm includes a body adapted to be coupled to the muzzle end of a barrel of a firearm and having an outer surface. The body generally will be configured with a bore having a central axis and aligned with the muzzle of the firearm barrel to permit passage of a round of ammunition along the axis. A plurality of ports in fluid communication with the bore are formed along the body. In one embodiment, the plurality of ports are arranged in pairs around a circumference of the body with one port of each pair positioned opposing the other port of the pair to cause intermixing of exiting compressed gas from the paired ports thereby providing at least one of: a reduction in muzzle movement, reduction in sound and reduction in recoil effect.
According to another aspect of the present disclosure, the muzzle brake assembly for a firearm includes a body having a bore and a plurality of adjacent ports arranged in annular rings or recesses around the circumference of the body and each extending through the bore into fluid communication with the bore. Each of the ports further will include an inlet and an outlet for venting or exhausting pressurized gases generated from firing a round of ammunition from the firearm. The outlets of at least a subset of the adjacent ports are arranged in an opposing relationship and are oriented at angles with respect to a control axis of the bore of the body to direct intermixing of compressed gases from the bore, and/or to direct at least a portion of the gases away from the outer surface of the body. This intermixing of pressurized gases helps cause redirection of a pressure wave created by the exiting gases, providing at least one of: a reduction in muzzle movement, reduction in sound and reduction in recoil effect. The body further can be formed with the barrel of the firearm or can include an attaching mechanism for detachably coupling the muzzle brake assembly to the barrel.
In yet another aspect of the present disclosure, a method for forming a muzzle brake assembly for a firearm is provided, including the steps of forming a body having a bore along an axis, the body further having an outer surface, and forming a plurality of adjacent ports arranged around a circumference of the body and in fluid communication with the bore for venting or exhausting portions of the pressurized gases from firing of a round of ammunition from the bore. At least a subset of the adjacent ports can be oriented to cause intermixing of compressed or pressurized gases exhausted from the bore at a location between the at least a subset of adjacent ports at the outer surface, thus providing at least one of: a reduction in muzzle movement, reduction in sound and reduction in recoil effect, when a fired round traverses along the axis.
Additional features, advantages, and aspects of the present disclosure may be set forth or apparent from consideration of the following detailed description, drawings, and claims. Moreover, it is to be understood that both the foregoing summary of the present disclosure and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the present disclosure as claimed.
The accompanying drawings, which are included to provide a further understanding of the present disclosure, are incorporated in and constitute a part of this specification, illustrate various aspects, advantages and benefits of the present disclosure, and together with the detailed description, serve to explain the principles of the present disclosure. In addition, those skilled in the art will understand that, according to common practice, the various features of the drawings discussed below are not necessarily drawn to scale, and that dimensions of various features and elements of the drawings may be expanded or reduced to more clearly illustrate the embodiments of the disclosure.
The aspects of the present disclosure and the various features and advantageous details thereof are explained more fully with reference to the non-limiting aspects and examples that are described and/or illustrated in the accompanying drawings and detailed in the following description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one aspect may be employed with other aspects as the skilled artisan would recognize, even if not explicitly stated herein. Descriptions of well-known components and processing techniques may be omitted so as to not unnecessarily obscure the aspects of the present disclosure. The examples used herein are intended merely to facilitate an understanding of ways in which the present disclosure may be practiced and to further enable those of skill in the art to practice the aspects of the present disclosure. Accordingly, the examples and aspects herein should not be construed as limiting the scope of the present disclosure, which is defined solely by the appended claims and applicable law. Moreover, it is noted that like reference numerals represent similar parts throughout the several views of the drawings. The terms round and round of ammunition, as used herein, include a rimfire round, a centerfire round, shotgun shells including shot, slugs and other payloads, as well as other types of ammunition.
The present disclosure describes a muzzle brake assembly, for mounting on (or locating at) the muzzle of a firearm F, such as a centerfire or a rimfire firearm, for example, and is configured to reduce the felt recoil and reduce muzzle jump upon discharge. The firearm F can comprise a rifle, such as a bolt action rifle, semi-automatic or automatic rifle, such as an AR-15, M-4, ACR or other gas operated rifle, shotguns, and various other types of long guns and handguns. As shown in
The muzzle brake assembly configured according to the principles described by the present disclosure may provide at least the following benefits:
One example embodiment of a muzzle brake assembly configured according to principles of the disclosure, generally denoted by reference numeral 100, is illustrated in
The muzzle brake assembly 100 is illustratively shown in
The muzzle brake bore 135 may be sized to substantially match a particular caliber of a firearm (i.e., diameters are substantially concentric) so that a round of ammunition of a particular caliber will pass through the bore 145 of the firearm barrel 140 and the muzzle brake bore 135. Therefore, the diameter of the muzzle brake bore 135 defined by an inner surface of the bore of a firearm barrel 13 may be configured according to the caliber of the intended firearm with which it may be used.
In one aspect, the shape of the body 101 of the muzzle brake assembly 100 is generally symmetric with respect to the muzzle brake bore 135. Additional possible profile shapes of the muzzle brake bore also can be used and can include circular, triangular, quadrilateral, pentagon, hexagon, heptagon, octagon, nonagon, decagon, dodecagon, and the like. The muzzle brake assembly 100 may also be configured with optional auxiliary features such as a wire cutter 120, coupling mechanisms for connection to further accessories, or a standard muzzle crown geometry.
As shown in
In one aspect, the orientation of the ports 105 relative to the central axis 130 of the muzzle brake bore 135 generally may range from about 30° to about 150°, although other orientations also can be provided as needed. An about 45° to about 90° orientation may be preferred from a manufacturing perspective. However, other orientations also may be used to provide desired operational advantages, as described below.
Referring to
The facets 110a, 110b may be formed at an angle in relation to the central axis 130 of the muzzle brake, which angle may be from about 30° to about 90° with respect to the control axis 130 of the brake. The ports 105 will be formed within the facets 110a, 110b, with the passageways 106a-106d of the ports extending at a desired angle (i.e., in a range of from about 30° to less than 90° in relation to the axis 130) from their outlets 108 defined within the facets, to their inlet openings 107 communicating with the inner volume of the muzzle brake assembly 100 defined at least in part by the inner surface of the muzzle brake bore 135. As indicated in
The angle of the surfaces 113a/113b (
Pressurized or compressed gases generated by firing a round of ammunition are vented or escape, at least in part, from the muzzle brake assembly 100 via the various paired sets of ports 105, such as the ports 105 configured in adjacent facets 110a, 110b. The mutually opposing ports 105 permit and foster an intermixing of the exiting compressed/pressurized gas flows (e.g., as represented by arrows 125a-125d) and tend to direct the gases away from the shooter from the paired ports 105, thereby providing at least any one or more of: a reduction in muzzle movement, reduction in sound and reduction in recoil effect. In addition, the spacing and orientation of the adjacent facets 110a/110b along which the opposed pairs of ports 105 are located enables the facets 110a/110b opposite each port 105 to act as redirecting surfaces to help foster turbulence and create an eddying effect to the gases exiting the ports to further help direct the resultant pressure wave for such gases forwardly and away from the shooter as indicated in
For example, one of the passageways, in this example, the downstream passageways 106b and 106d can be configured with a diameter that is the same or greater than its respective paired passageway 106a and 106c. That is, due to gas dynamics, the ports 105 having their inlets 107 (
This diameter difference relationship of paired ports and is illustrated in
The “brake” effect accomplished by the muzzle brake assembly according to the present invention generally is created by the redirecting of the propellant gases in directions that generally are not generally parallel to the axis 130 of the barrel and muzzle brake bore 135. To this end, the force vectoring produced by the propellant gases is angled away from the bore of the firearm barrel and muzzle brake assembly axis 130 as indicated in
In addition, the intermixing of the gas flows caused by the orientation of the outlets 108 (
As illustrated in the graph of Force versus Time provided in
The following table discusses the differences in measured sound levels (by decibel) of a conventional AR15 style rifle (DPMS A2) fired (both with and without a flash hider) without a muzzle brake, fired with a .308 Miculek muzzle brake, an AAC Blackout muzzle brake, and a muzzle brake formed in accordance with the principles of the present invention (labeled “Cancelation Brake” in the table below. As can be seen in the table below, there was a significantly lower sound signature achieved with the muzzle brake assembly according to the principles of the present invention versus the other muzzle brakes tested.
Moreover, the exiting of the compressed gases at an angle not perpendicular to the axis 130 also substantially reduces muzzle movement (i.e., muzzle jump). Reduction of muzzle movement often may be important to a shooter in a critical situation, such as to reacquire a target quickly, for example. Flash hiders such as referenced in the table above, while providing reduction of a visible flash of burning gases exiting the barrel (and possibly some minor sound reduction) generally are not designed to address the reduction of recoil and/or muzzle jump/movement as are muzzle brakes. With the present invention, in addition to a reduction in acoustic signature or sound levels from firing, the mutually opposing configuration of ports 105 accordingly further substantially reduces both muzzle jump/movement, as well as the peak recoil as felt by a shooter. According to laboratory tests, this peak recoil reduction may be as much as about 25%, as compared with using no muzzle brake assembly. A graphical representation of the results of such peak recoil reduction tests is shown in
Alternate configurations of the ports 105 (
Moreover, in one alternate aspect, the principles herein may be achieved without the use of facets. The relative configuration of mutually opposing ports 105 may be achievable without use of facets and/or the annular rings or circumferential grooves 115a, 115b.
Still further, the diameter of the ports 105 and associated passageways (e.g., passageways 106a-106c), may be sized in accordance with or based on the amount of expected gasses that may be produced by a particular firearm and associated ammunition, so that venting rate of the gasses is appropriate for the intended ammunition and firearm. Moreover, the number of opposing paired ports 105 may be decreased or increased based on caliber size and/or type of ammunition expected, while maintaining effective recoil reduction, sound reduction, and/or acceptable reduction in muzzle movement. This may be accomplished by changing the number of ports or increasing/decreasing the number of concentric ringed sets or circumferential grooves.
The foregoing description generally illustrates and describes various embodiments of the present invention. The examples given above are merely illustrative and are not meant to be an exhaustive list of all possible designs, aspects, applications or modifications of the present disclosure. It will, therefore, be understood by those skilled in the art that while the present disclosure has been described in terms of exemplary aspects, the present disclosure can be practiced with various changes and modifications which can be made to the above-discussed construction of the present invention without departing from the spirit and scope of the invention as disclosed herein, and that it is intended that all matter contained in the above description or shown in the accompanying drawings shall not to be taken in a limiting sense.
Furthermore, the scope of the present disclosure shall be construed to cover various modifications, combinations, additions, alterations, etc., to the above-described embodiments, which shall be considered to be within the scope of the present invention. Accordingly, various features and characteristics of the present invention as discussed herein may be selectively interchanged and applied to other illustrated and non-illustrated embodiments of the invention, and numerous variations, modifications, and additions further can be made thereto without departing from the spirit and scope of the present invention as set forth in the appended claims.
The present patent application is a formalization of previously filed, co-pending U.S. Provisional Patent Application Ser. No. 61/583,942, filed Jan. 6, 2012 by the named inventor of the present Application. This patent application claims the benefit of the filing date of this cited Provisional patent application according to the statutes and rules governing provisional patent applications, particularly 35 U.S.C. §119(a)(i) and 37 C.F.R. §1.78(a)(4) and (a)(5). The specification and drawings of the Provisional patent application referenced above are specifically incorporated herein by reference as if set forth in their entirety.
Number | Date | Country | |
---|---|---|---|
61583942 | Jan 2012 | US |