Cancer diagnostics using biomarkers

Information

  • Patent Grant
  • 11035005
  • Patent Number
    11,035,005
  • Date Filed
    Friday, August 16, 2013
    11 years ago
  • Date Issued
    Tuesday, June 15, 2021
    3 years ago
Abstract
Disclosed herein, in certain instances, are methods, systems and kits for the diagnosis, prognosis and determination of cancer progression of a cancer in a subject. Further disclosed herein, in certain instances, are methods, systems and kits for determining the treatment modality of a cancer in a subject. The methods, systems and kits comprise expression-based analysis of biomarkers. Further disclosed herein, in certain instances, are probe sets for use in assessing a cancer status in a subject.
Description
BACKGROUND OF THE INVENTION

Cancer is the uncontrolled growth of abnormal cells anywhere in a body. The abnormal cells are termed cancer cells, malignant cells, or tumor cells. Many cancers and the abnormal cells that compose the cancer tissue are further identified by the name of the tissue that the abnormal cells originated from (for example, breast cancer, lung cancer, colon cancer, prostate cancer, pancreatic cancer, thyroid cancer). Cancer is not confined to humans; animals and other living organisms can get cancer. Cancer cells can proliferate uncontrollably and form a mass of cancer cells. Cancer cells can break away from this original mass of cells, travel through the blood and lymph systems, and lodge in other organs where they can again repeat the uncontrolled growth cycle. This process of cancer cells leaving an area and growing in another body area is often termed metastatic spread or metastatic disease. For example, if breast cancer cells spread to a bone (or anywhere else), it can mean that the individual has metastatic breast cancer.


Standard clinical parameters such as tumor size, grade, lymph node involvement and tumor-node-metastasis (TNM) staging (American Joint Committee on Cancer www.cancerstaging.org) may correlate with outcome and serve to stratify patients with respect to (neo)adjuvant chemotherapy, immunotherapy, antibody therapy and/or radiotherapy regimens. Incorporation of molecular markers in clinical practice may define tumor subtypes that are more likely to respond to targeted therapy. However, stage-matched tumors grouped by histological or molecular subtypes may respond differently to the same treatment regimen. Additional key genetic and epigenetic alterations may exist with important etiological contributions. A more detailed understanding of the molecular mechanisms and regulatory pathways at work in cancer cells and the tumor microenvironment (TME) could dramatically improve the design of novel anti-tumor drugs and inform the selection of optimal therapeutic strategies. The development and implementation of diagnostic, prognostic and therapeutic biomarkers to characterize the biology of each tumor may assist clinicians in making important decisions with regard to individual patient care and treatment. Thus, disclosed herein are methods, compositions and systems for the analysis of coding and non-coding targets for the diagnosis, prognosis, and monitoring of a cancer.


This background information is provided for the purpose of making known information believed by the applicant to be of possible relevance to the present invention. No admission is necessarily intended, nor should be construed, that any of the preceding information constitutes prior art against the present invention.


SUMMARY OF THE INVENTION

Disclosed herein in some embodiments is a method of diagnosing, prognosing, determining progression the cancer, or predicting benefit from therapy in a subject, comprising (a) assaying an expression level in a sample from the subject for a plurality of targets, wherein the plurality of targets comprises one or more targets selected from Tables 2, 4, 11 or 55; and (b) diagnosing, prognosing, determining progression the cancer, or predicting benefit from therapy in a subject based on the expression levels of the plurality of targets. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the cancer is a prostate cancer. In some embodiments, the cancer is a pancreatic cancer. In some embodiments, the cancer is a thyroid cancer. In some embodiments, the plurality of targets comprises a coding target. In some embodiments, the coding target is an exonic sequence. In some embodiments, the plurality of targets comprises a non-coding target. In some embodiments, the non-coding target comprises an intronic sequence or partially overlaps an intronic sequence. In some embodiments, the non-coding target comprises a sequence within the UTR or partially overlaps with a UTR sequence. In some embodiments, the non-coding target comprises an antisense sequence or partially overlaps with an antisense sequence. In some embodiments, the non-coding target comprises an intergenic sequence or partially overlaps with an intergenic sequence. In some embodiments, the target comprises a nucleic acid sequence. In some embodiments, the nucleic acid sequence is a DNA sequence. In some embodiments, the nucleic acid sequence is an RNA sequence. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 30 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 35 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 40 targets selected from Tables 2, 11 or 55. In some embodiments, the diagnosing, prognosing, determining progression the cancer, or predicting benefit from therapy includes determining the malignancy of the cancer. In some embodiments, the diagnosing, prognosing, determining progression the cancer, or predicting benefit from therapy includes determining the stage of the cancer. In some embodiments, the diagnosing, prognosing, determining progression the cancer, or predicting benefit from therapy includes assessing the risk of cancer recurrence. In some embodiments, determining the treatment for the cancer includes determining the efficacy of treatment. In some embodiments, the method further comprises sequencing the plurality of targets. In some embodiments, the method further comprises hybridizing the plurality of targets to a solid support. In some embodiments, the solid support is a bead or array. In some embodiments, assaying the expression level of a plurality of targets may comprise the use of a probe set. In some embodiments, assaying the expression level may comprise the use of a classifier. The classifier may comprise a probe selection region (PSR). In some embodiments, the classifier may comprise the use of an algorithm. The algorithm may comprise a machine learning algorithm. In some embodiments, assaying the expression level may also comprise sequencing the plurality of targets.


Disclosed herein in some embodiments is a method of determining a treatment for a cancer in a subject, comprising (a) assaying an expression level in a sample from the subject for a plurality of targets, wherein the plurality of targets comprises one or more targets selected from Tables 2, 4, 11 or 55; and (b) determining the treatment for the cancer based on the expression level of the plurality of targets. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the cancer is a prostate cancer. In some embodiments, the cancer is a pancreatic cancer. In some embodiments, the cancer is a thyroid cancer. In some embodiments, the plurality of targets comprises a coding target. In some embodiments, the coding target is an exonic sequence. In some embodiments, the plurality of targets comprises a non-coding target. In some embodiments, the non-coding target comprises an intronic sequence or partially overlaps an intronic sequence. In some embodiments, the non-coding target comprises a sequence within the UTR or partially overlaps with a UTR sequence. In some embodiments, the target comprises a nucleic acid sequence. In some embodiments, the nucleic acid sequence is a DNA sequence. In some embodiments, the nucleic acid sequence is an RNA sequence. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 30 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 35 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 40 targets selected from Tables 2, 11 or 55. In some embodiments, the diagnosing, prognosing, determining progression the cancer, or predicting benefit from therapy includes determining the malignancy of the cancer. In some embodiments, the diagnosing, prognosing, determining progression the cancer, or predicting benefit from therapy includes determining the stage of the cancer. In some embodiments, the diagnosing, prognosing, determining progression the cancer, or predicting benefit from therapy includes assessing the risk of cancer recurrence. In some embodiments, determining the treatment for the cancer includes determining the efficacy of treatment. In some embodiments, the method further comprises sequencing the plurality of targets. In some embodiments, the method further comprises hybridizing the plurality of targets to a solid support. In some embodiments, the solid support is a bead or array. In some embodiments, assaying the expression level of a plurality of targets may comprise the use of a probe set. In some embodiments, assaying the expression level may comprise the use of a classifier. The classifier may comprise a probe selection region (PSR). In some embodiments, the classifier may comprise the use of an algorithm. The algorithm may comprise a machine learning algorithm. In some embodiments, assaying the expression level may also comprise amplifying the plurality of targets. In some embodiments, assaying the expression level may also comprise quantifying the plurality of targets.


Further disclosed herein in some embodiments is a probe set for assessing a cancer status of a subject comprising a plurality of probes, wherein the probes in the set are capable of detecting an expression level of one or more targets selected from Tables 2, 4, 11 or 55, wherein the expression level determines the cancer status of the subject with at least 40% specificity. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 30 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 35 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 40 targets selected from Tables 2, 11 or 55. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the cancer is a prostate cancer. In some embodiments, the cancer is a pancreatic cancer. In some embodiments, the cancer is a thyroid cancer. In some embodiments, the probe set further comprises a probe capable of detecting an expression level of at least one coding target. In some embodiments, the coding target is an exonic sequence. In some embodiments, the probe set further comprises a probe capable of detecting an expression level of at least one non-coding target. In some embodiments, the non-coding target is an intronic sequence or partially overlaps with an intronic sequence. In some embodiments, the non-coding target is a UTR sequence or partially overlaps with a UTR sequence. In some embodiments, assessing the cancer status includes assessing cancer recurrence risk. In some embodiments, assessing the cancer status includes determining a treatment modality. In some embodiments, assessing the cancer status includes determining the efficacy of treatment. In some embodiments, the target is a nucleic acid sequence. In some embodiments, the nucleic acid sequence is a DNA sequence. In some embodiments, the nucleic acid sequence is an RNA sequence. In some embodiments, the probes are between about 15 nucleotides and about 500 nucleotides in length. In some embodiments, the probes are between about 15 nucleotides and about 450 nucleotides in length. In some embodiments, the probes are between about 15 nucleotides and about 400 nucleotides in length. In some embodiments, the probes are between about 15 nucleotides and about 350 nucleotides in length. In some embodiments, the probes are between about 15 nucleotides and about 300 nucleotides in length. In some embodiments, the probes are between about 15 nucleotides and about 250 nucleotides in length. In some embodiments, the probes are between about 15 nucleotides and about 200 nucleotides in length. In some embodiments, the probes are at least 15 nucleotides in length. In some embodiments, the probes are at least 25 nucleotides in length. In some embodiments, the expression level determines the cancer status of the subject with at least 50% specificity. In some embodiments, the expression level determines the cancer status of the subject with at least 60% specificity. In some embodiments, the expression level determines the cancer status of the subject with at least 65% specificity. In some embodiments, the expression level determines the cancer status of the subject with at least 70% specificity. In some embodiments, the expression level determines the cancer status of the subject with at least 75% specificity. In some embodiments, the expression level determines the cancer status of the subject with at least 80% specificity. In some embodiments, the expression level determines the cancer status of the subject with at least 85% specificity. In some embodiments, the non-coding target is a non-coding RNA transcript and the non-coding RNA transcript is non-polyadenylated.


Further disclosed herein in some embodiments is a system for analyzing a cancer, comprising: (a) a probe set comprising a plurality of target sequences, wherein (i) the plurality of target sequences hybridizes to one or more targets selected from Tables 2 or 4; or (ii) the plurality of target sequences comprises one or more target sequences selected from Table 11; and (b) a computer model or algorithm for analyzing an expression level and/or expression profile of the target hybridized to the probe in a sample from a subject suffering from a cancer. In some embodiments, the system further comprises an electronic memory for capturing and storing an expression profile. In some embodiments, the system further comprises a computer-processing device, optionally connected to a computer network. In some embodiments, the system further comprises a software module executed by the computer-processing device to analyze an expression profile. In some embodiments, the system further comprises a software module executed by the computer-processing device to compare the expression profile to a standard or control. In some embodiments, the system further comprises a software module executed by the computer-processing device to determine the expression level of the target. In some embodiments, the system further comprises a machine to isolate the target or the probe from the sample. In some embodiments, the system further comprises a machine to sequence the target or the probe. In some embodiments, the system further comprises a machine to amplify the target or the probe. In some embodiments, the system further comprises a label that specifically binds to the target, the probe, or a combination thereof. In some embodiments, the system further comprises a software module executed by the computer-processing device to transmit an analysis of the expression profile to the individual or a medical professional treating the individual. In some embodiments, the system further comprises a software module executed by the computer-processing device to transmit a diagnosis or prognosis to the individual or a medical professional treating the individual. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 30 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 35 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 40 targets selected from Tables 2, 11 or 55. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the system further comprises a sequence for sequencing the plurality of targets. In some embodiments, the system further comprises an instrument for amplifying the plurality of targets. In some embodiments, the system further comprises a label for labeling the plurality of targets.


Further disclosed herein in some embodiments is a method of analyzing a cancer in an individual in need thereof, comprising: (a) obtaining an expression profile from a sample obtained from the individual, wherein the expression profile comprises one or more targets selected from Tables 2, 4, 11 or 55; and (b) comparing the expression profile from the sample to an expression profile of a control or standard. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 30 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 35 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 40 targets selected from Tables 2, 11 or 55. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the cancer is a prostate cancer. In some embodiments, the cancer is a pancreatic cancer. In some embodiments, the cancer is a breast cancer. In some embodiments, the cancer is a thyroid cancer. In some embodiments, the cancer is a lung cancer. In some embodiments, the method further comprises a software module executed by a computer-processing device to compare the expression profiles. In some embodiments, the method further comprises providing diagnostic or prognostic information to the individual about the cardiovascular disorder based on the comparison. In some embodiments, the method further comprises diagnosing the individual with a cancer if the expression profile of the sample (a) deviates from the control or standard from a healthy individual or population of healthy individuals, or (b) matches the control or standard from an individual or population of individuals who have or have had the cancer. In some embodiments, the method further comprises predicting the susceptibility of the individual for developing a cancer based on (a) the deviation of the expression profile of the sample from a control or standard derived from a healthy individual or population of healthy individuals, or (b) the similarity of the expression profiles of the sample and a control or standard derived from an individual or population of individuals who have or have had the cancer. In some embodiments, the method further comprises prescribing a treatment regimen based on (a) the deviation of the expression profile of the sample from a control or standard derived from a healthy individual or population of healthy individuals, or (b) the similarity of the expression profiles of the sample and a control or standard derived from an individual or population of individuals who have or have had the cancer. In some embodiments, the method further comprises altering a treatment regimen prescribed or administered to the individual based on (a) the deviation of the expression profile of the sample from a control or standard derived from a healthy individual or population of healthy individuals, or (b) the similarity of the expression profiles of the sample and a control or standard derived from an individual or population of individuals who have or have had the cancer. In some embodiments, the method further comprises predicting the individual's response to a treatment regimen based on (a) the deviation of the expression profile of the sample from a control or standard derived from a healthy individual or population of healthy individuals, or (b) the similarity of the expression profiles of the sample and a control or standard derived from an individual or population of individuals who have or have had the cancer. In some embodiments, the deviation is the expression level of one or more targets from the sample is greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the method further comprises using a machine to isolate the target or the probe from the sample. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to the target, the probe, or a combination thereof. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to a target selected from Tables 2, 4, 11 or 55, or a combination thereof. In some embodiments, the method further comprises amplifying the target, the probe, or any combination thereof. In some embodiments, the method further comprises sequencing the target, the probe, or any combination thereof. In some embodiments, the method further comprises quantifying the expression level of the plurality of targets. In some embodiments, the method further comprises labeling the plurality of targets. In some embodiments, assaying the expression level of a plurality of targets may comprise the use of a probe set. In some embodiments, obtaining the expression level may comprise the use of a classifier. The classifier may comprise a probe selection region (PSR). In some embodiments, the classifier may comprise the use of an algorithm. The algorithm may comprise a machine learning algorithm. In some embodiments, obtaining the expression level may also comprise sequencing the plurality of targets.


Disclosed herein in some embodiments is a method of diagnosing cancer in an individual in need thereof, comprising (a) obtaining an expression profile from a sample obtained from the individual, wherein the expression profile comprises one or more targets selected from Tables 2, 4, 11 or 55; (b) comparing the expression profile from the sample to an expression profile of a control or standard; and (c) diagnosing a cancer in the individual if the expression profile of the sample (i) deviates from the control or standard from a healthy individual or population of healthy individuals, or (ii) matches the control or standard from an individual or population of individuals who have or have had the cancer. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 30 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 35 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 40 targets selected from Tables 2, 11 or 55. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the cancer is a prostate cancer. In some embodiments, the cancer is a pancreatic cancer. In some embodiments, the cancer is a breast cancer. In some embodiments, the cancer is a thyroid cancer. In some embodiments, the cancer is a lung cancer. In some embodiments, the method further comprises a software module executed by a computer-processing device to compare the expression profiles. In some embodiments, the deviation is the expression level of one or more targets from the sample is greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the method further comprises using a machine to isolate the target or the probe from the sample. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to the target, the probe, or a combination thereof. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to a target selected from Tables 2, 4, 11 or 55, or a combination thereof. In some embodiments, the method further comprises amplifying the target, the probe, or any combination thereof. In some embodiments, the method further comprises sequencing the target, the probe, or any combination thereof. In some embodiments, the method further comprises quantifying the expression level of the plurality of targets. In some embodiments, the method further comprises labeling the plurality of targets. In some embodiments, obtaining the expression level may comprise the use of a classifier. The classifier may comprise a probe selection region (PSR). In some embodiments, the classifier may comprise the use of an algorithm. The algorithm may comprise a machine learning algorithm. In some embodiments, obtaining the expression level may also comprise sequencing the plurality of targets.


Further disclosed herein in some embodiments is a method of predicting whether an individual is susceptible to developing a cancer, comprising (a) obtaining an expression profile from a sample obtained from the individual, wherein the expression profile comprises one or more targets selected from Tables 2, 4, 11 or 55; (b) comparing the expression profile from the sample to an expression profile of a control or standard; and (c) predicting the susceptibility of the individual for developing a cancer based on (i) the deviation of the expression profile of the sample from a control or standard derived from a healthy individual or population of healthy individuals, or (ii) the similarity of the expression profiles of the sample and a control or standard derived from an individual or population of individuals who have or have had the cancer. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 30 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 35 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 40 targets selected from Tables 2, 11 or 55. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the cancer is a prostate cancer. In some embodiments, the cancer is a pancreatic cancer. In some embodiments, the cancer is a breast cancer. In some embodiments, the cancer is a thyroid cancer. In some embodiments, the cancer is a lung cancer. In some embodiments, the method further comprises a software module executed by a computer-processing device to compare the expression profiles. In some embodiments, the deviation is the expression level of one or more targets from the sample is greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the method further comprises using a machine to isolate the target or the probe from the sample. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to the target, the probe, or a combination thereof. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to a target selected from Tables 2, 4, 11 or 55, or a combination thereof. In some embodiments, the method further comprises amplifying the target, the probe, or any combination thereof. In some embodiments, the method further comprises sequencing the target, the probe, or any combination thereof. In some embodiments, obtaining the expression level may comprise the use of a classifier. The classifier may comprise a probe selection region (PSR). In some embodiments, the classifier may comprise the use of an algorithm. The algorithm may comprise a machine learning algorithm. In some embodiments, obtaining the expression level may also comprise sequencing the plurality of targets. In some embodiments, obtaining the expression level may also comprise amplifying the plurality of targets. In some embodiments, obtaining the expression level may also comprise quantifying the plurality of targets.


Further disclosed herein in some embodiments is a method of predicting an individual's response to a treatment regimen for a cancer, comprising (a) obtaining an expression profile from a sample obtained from the individual, wherein the expression profile comprises one or more targets selected from Tables 2, 4, 11 or 55; (b) comparing the expression profile from the sample to an expression profile of a control or standard; and (c) predicting the individual's response to a treatment regimen based on (a) the deviation of the expression profile of the sample from a control or standard derived from a healthy individual or population of healthy individuals, or (b) the similarity of the expression profiles of the sample and a control or standard derived from an individual or population of individuals who have or have had the cancer. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 30 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 35 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 40 targets selected from Tables 2, 11 or 55. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the cancer is a prostate cancer. In some embodiments, the cancer is a pancreatic cancer. In some embodiments, the cancer is a breast cancer. In some embodiments, the cancer is a thyroid cancer. In some embodiments, the cancer is a lung cancer. In some embodiments, the method further comprises a software module executed by a computer-processing device to compare the expression profiles. In some embodiments, the deviation is the expression level of one or more targets from the sample is greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the method further comprises using a machine to isolate the target or the probe from the sample. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to the target, the probe, or a combination thereof. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to a target selected from Tables 2, 4, 11 or 55, or a combination thereof. In some embodiments, the method further comprises amplifying the target, the probe, or any combination thereof. In some embodiments, the method further comprises sequencing the target, the probe, or any combination thereof. In some embodiments, the method further comprises quantifying the target, the probe, or any combination thereof. In some embodiments, the method further comprises labeling the target, the probe, or any combination thereof. In some embodiments, obtaining the expression level may comprise the use of a classifier. The classifier may comprise a probe selection region (PSR). In some embodiments, the classifier may comprise the use of an algorithm. The algorithm may comprise a machine learning algorithm. In some embodiments, obtaining the expression level may also comprise sequencing the plurality of targets. In some embodiments, obtaining the expression level may also comprise amplifying the plurality of targets. In some embodiments, obtaining the expression level may also comprise quantifying the plurality of targets.


Disclosed herein in some embodiments is a method of prescribing a treatment regimen for a cancer to an individual in need thereof, comprising (a) obtaining an expression profile from a sample obtained from the individual, wherein the expression profile comprises one or more targets selected from Tables 2, 4, 11 or 55; (b) comparing the expression profile from the sample to an expression profile of a control or standard; and (c) prescribing a treatment regimen based on (i) the deviation of the expression profile of the sample from a control or standard derived from a healthy individual or population of healthy individuals, or (ii) the similarity of the expression profiles of the sample and a control or standard derived from an individual or population of individuals who have or have had the cancer. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 30 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 35 targets selected from Tables 2, 11 or 55. In some embodiments, the plurality of targets comprises at least 40 targets selected from Tables 2, 11 or 55. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the cancer is a prostate cancer. In some embodiments, the cancer is a pancreatic cancer. In some embodiments, the cancer is a breast cancer. In some embodiments, the cancer is a thyroid cancer. In some embodiments, the cancer is a lung cancer. In some embodiments, the method further comprises a software module executed by a computer-processing device to compare the expression profiles. In some embodiments, the deviation is the expression level of one or more targets from the sample is greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the method further comprises using a machine to isolate the target or the probe from the sample. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to the target, the probe, or a combination thereof. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to a target selected from Tables 2, 4, 11 or 55, or a combination thereof. In some embodiments, the method further comprises amplifying the target, the probe, or any combination thereof. In some embodiments, the method further comprises sequencing the target, the probe, or any combination thereof. In some embodiments, the method further comprises converting the expression levels of the target sequences into a likelihood score that indicates the probability that a biological sample is from a patient who will exhibit no evidence of disease, who will exhibit systemic cancer, or who will exhibit biochemical recurrence. In some embodiments, the method further comprises quantifying the expression level of the plurality of targets. In some embodiments, the method further comprises labeling the plurality of targets. In some embodiments, the target sequences are differentially expressed the cancer. In some embodiments, the differential expression is dependent on aggressiveness. In some embodiments, the expression profile is determined by a method selected from the group consisting of RT-PCR, Northern blotting, ligase chain reaction, array hybridization, and a combination thereof. In some embodiments, obtaining the expression level may comprise the use of a classifier. The classifier may comprise a probe selection region (PSR). In some embodiments, the classifier may comprise the use of an algorithm. The algorithm may comprise a machine learning algorithm. In some embodiments, obtaining the expression level may also comprise sequencing the plurality of targets. In some embodiments, obtaining the expression level may also comprise amplifying the plurality of targets. In some embodiments, obtaining the expression level may also comprise quantifying the plurality of targets.


Further disclosed herein is a classifier for analyzing a cancer, wherein the classifier has an AUC value of at least about 0.60. The AUC of the classifier may be at least about 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70 or more. The AUC of the classifier may be at least about 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.80 or more. The AUC of the classifier may be at least about 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.90 or more. The AUC of the classifier may be at least about 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99 or more. The 95% CI of a classifier or biomarker may be between about 1.10 to 1.70. In some instances, the difference in the range of the 95% CI for a biomarker or classifier is between about 0.25 to about 0.50, between about 0.27 to about 0.47, or between about 0.30 to about 0.45.


Further disclosed herein is a method for analyzing a cancer, comprising use of one or more classifiers, wherein the significance of the one or more classifiers is based on one or more metrics selected from the group comprising AUC, AUC P-value (Auc.pvalue), Wilcoxon Test P-value, Median Fold Difference (MFD), Kaplan Meier (KM) curves, survival AUC (survAUC), Kaplan Meier P-value (KM P-value), Univariable Analysis Odds Ratio P-value (uvaORPval), multivariable analysis Odds Ratio P-value (mvaORPval), Univariable Analysis Hazard Ratio P-value (uvaHRPval) and Multivariable Analysis Hazard Ratio P-value (mvaHRPval). The significance of the one or more classifiers may be based on two or more metrics selected from the group comprising AUC, AUC P-value (Auc.pvalue), Wilcoxon Test P-value, Median Fold Difference (MFD), Kaplan Meier (KM) curves, survival AUC (survAUC), Univariable Analysis Odds Ratio P-value (uvaORPval), multivariable analysis Odds Ratio P-value (mvaORPval), Kaplan Meier P-value (KM P-value), Univariable Analysis Hazard Ratio P-value (uvaHRPval) and Multivariable Analysis Hazard Ratio P-value (mvaHRPval). The significance of the one or more classifiers may be based on three or more metrics selected from the group comprising AUC, AUC P-value (Auc.pvalue), Wilcoxon Test P-value, Median Fold Difference (MFD), Kaplan Meier (KM) curves, survival AUC (survAUC), Kaplan Meier P-value (KM P-value), Univariable Analysis Odds Ratio P-value (uvaORPval), multivariable analysis Odds Ratio P-value (mvaORPval), Univariable Analysis Hazard Ratio P-value (uvaHRPval) and Multivariable Analysis Hazard Ratio P-value (mvaHRPval).


The one or more metrics may comprise AUC. The one or more metrics may comprise AUC and AUC P-value. The one or more metrics may comprise AUC P-value and Wilcoxon Test P-value. The one or more metrics may comprise Wilcoxon Test P-value. The one or more metrics may comprise AUC and Univariable Analysis Odds Ratio P-value (uvaORPval). The one or more metrics may comprise multivariable analysis Odds Ratio P-value (mvaORPval) and Multivariable Analysis Hazard Ratio P-value (mvaHRPval). The one or more metrics may comprise AUC and Multivariable Analysis Hazard Ratio P-value (mvaHRPval). The one or more metrics may comprise Wilcoxon Test P-value and Multivariable Analysis Hazard Ratio P-value (mvaHRPval).


The clinical significance of the classifier may be based on the AUC value. The AUC of the classifier may be at least about about 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70 or more. The AUC of the classifier may be at least about 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.80 or more. The AUC of the classifier may be at least about 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.90 or more. The AUC of the classifier may be at least about 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99 or more. The 95% CI of a classifier or biomarker may be between about 1.10 to 1.70. In some instances, the difference in the range of the 95% CI for a biomarker or classifier is between about 0.25 to about 0.50, between about 0.27 to about 0.47, or between about 0.30 to about 0.45.


The clinical significance of the classifier may be based on Univariable Analysis Odds Ratio P-value (uvaORPval). The Univariable Analysis Odds Ratio P-value (uvaORPval) of the classifier may be between about 0-0.4. The Univariable Analysis Odds Ratio P-value (uvaORPval) of the classifier may be between about 0-0.3. The Univariable Analysis Odds Ratio P-value (uvaORPval) of the classifier may be between about 0-0.2. The Univariable Analysis Odds Ratio P-value (uvaORPval) of the classifier may be less than or equal to 0.25, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11. The Univariable Analysis Odds Ratio P-value (uvaORPval) of the classifier may be less than or equal to 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01. The Univariable Analysis Odds Ratio P-value (uvaORPval) of the classifier may be less than or equal to 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001.


The clinical significance of the classifier may be based on multivariable analysis Odds Ratio P-value (mvaORPval). The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier may be between about 0-1. The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier may be between about 0-0.9. The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier may be between about 0-0.8. The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier may be less than or equal to 0.90, 0.88, 0.86, 0.84, 0.82, 0.80. The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier may be less than or equal to 0.78, 0.76, 0.74, 0.72, 0.70, 0.68, 0.66, 0.64, 0.62, 0.60, 0.58, 0.56, 0.54, 0.52, 0.50. The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier may be less than or equal to 0.48, 0.46, 0.44, 0.42, 0.40, 0.38, 0.36, 0.34, 0.32, 0.30, 0.28, 0.26, 0.25, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11. The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier may be less than or equal to 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01. The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier may be less than or equal to 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001.


The clinical significance of the classifier may be based on the Kaplan Meier P-value (KM P-value). The Kaplan Meier P-value (KM P-value) of the classifier may be between about 0-0.8. The Kaplan Meier P-value (KM P-value) of the classifier may be between about 0-0.7. The Kaplan Meier P-value (KM P-value) of the classifier may be less than or equal to 0.80, 0.78, 0.76, 0.74, 0.72, 0.70, 0.68, 0.66, 0.64, 0.62, 0.60, 0.58, 0.56, 0.54, 0.52, 0.50. The Kaplan Meier P-value (KM P-value) of the classifier may be less than or equal to 0.48, 0.46, 0.44, 0.42, 0.40, 0.38, 0.36, 0.34, 0.32, 0.30, 0.28, 0.26, 0.25, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11. The Kaplan Meier P-value (KM P-value) of the classifier may be less than or equal to 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01. The Kaplan Meier P-value (KM P-value) of the classifier may be less than or equal to 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001.


The clinical significance of the classifier may be based on the survival AUC value (survAUC). The survival AUC value (survAUC) of the classifier may be between about 0-1. The survival AUC value (survAUC) of the classifier may be between about 0-0.9. The survival AUC value (survAUC) of the classifier may be less than or equal to 1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.88, 0.86, 0.84, 0.82, 0.80. The survival AUC value (survAUC) of the classifier may be less than or equal to 0.80, 0.78, 0.76, 0.74, 0.72, 0.70, 0.68, 0.66, 0.64, 0.62, 0.60, 0.58, 0.56, 0.54, 0.52, 0.50. The survival AUC value (survAUC) of the classifier may be less than or equal to 0.48, 0.46, 0.44, 0.42, 0.40, 0.38, 0.36, 0.34, 0.32, 0.30, 0.28, 0.26, 0.25, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11. The survival AUC value (survAUC) of the classifier may be less than or equal to 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01. The survival AUC value (survAUC) of the classifier may be less than or equal to 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001.


The clinical significance of the classifier may be based on the Univariable Analysis Hazard Ratio P-value (uvaHRPval). The Univariable Analysis Hazard Ratio P-value (uvaHRPval) of the classifier may be between about 0-0.4. The Univariable Analysis Hazard Ratio P-value (uvaHRPval) of the classifier may be between about 0-0.3. The Univariable Analysis Hazard Ratio P-value (uvaHRPval) of the classifier may be less than or equal to 0.40, 0.38, 0.36, 0.34, 0.32. The Univariable Analysis Hazard Ratio P-value (uvaHRPval) of the classifier may be less than or equal to 0.30, 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0.21, 0.20. The Univariable Analysis Hazard Ratio P-value (uvaHRPval) of the classifier may be less than or equal to 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11. The Univariable Analysis Hazard Ratio P-value (uvaHRPval) of the classifier may be less than or equal to 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01. The Univariable Analysis Hazard Ratio P-value (uvaHRPval) of the classifier may be less than or equal to 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001.


The clinical significance of the classifier may be based on the Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval of the classifier may be between about 0-1. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval of the classifier may be between about 0-0.9. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval of the classifier may be less than or equal to 1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.88, 0.86, 0.84, 0.82, 0.80. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval of the classifier may be less than or equal to 0.80, 0.78, 0.76, 0.74, 0.72, 0.70, 0.68, 0.66, 0.64, 0.62, 0.60, 0.58, 0.56, 0.54, 0.52, 0.50. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval of the classifier may be less than or equal to 0.48, 0.46, 0.44, 0.42, 0.40, 0.38, 0.36, 0.34, 0.32, 0.30, 0.28, 0.26, 0.25, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval of the classifier may be less than or equal to 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval of the classifier may be less than or equal to 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001.


The clinical significance of the classifier may be based on the Multivariable Analysis Hazard Ratio P-value (mvaHRPval). The Multivariable Analysis Hazard Ratio P-value (mvaHRPval) of the classifier may be between about 0 to about 0.60. significance of the classifier may be based on the Multivariable Analysis Hazard Ratio P-value (mvaHRPval). The Multivariable Analysis Hazard Ratio P-value (mvaHRPval) of the classifier may be between about 0 to about 0.50. significance of the classifier may be based on the Multivariable Analysis Hazard Ratio P-value (mvaHRPval). The Multivariable Analysis Hazard Ratio P-value (mvaHRPval) of the classifier may be less than or equal to 0.50, 0.47, 0.45, 0.43, 0.40, 0.38, 0.35, 0.33, 0.30, 0.28, 0.25, 0.22, 0.20, 0.18, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11, 0.10. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval) of the classifier may be less than or equal to 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval) of the classifier may be less than or equal to 0.01, 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001.


The method may further comprise determining an expression profile based on the one or more classifiers. The method may further comprise providing a sample from a subject. The subject may be a healthy subject. The subject may be suffering from a cancer or suspected of suffering from a cancer. The method may further comprise diagnosing a cancer in a subject based on the expression profile or classifier. The method may further comprise treating a cancer in a subject in need thereof based on the expression profile or classifier. The method may further comprise determining a treatment regimen for a cancer in a subject in need thereof based on the expression profile or classifier. The method may further comprise prognosing a cancer in a subject based on the expression profile or classifier.


Further disclosed herein is a kit for analyzing a cancer, comprising (a) a probe set comprising a plurality of target sequences, wherein the plurality of target sequences comprises at least one target sequence listed in Table 11; and (b) a computer model or algorithm for analyzing an expression level and/or expression profile of the target sequences in a sample. In some embodiments, the kit further comprises a computer model or algorithm for correlating the expression level or expression profile with disease state or outcome. In some embodiments, the kit further comprises a computer model or algorithm for designating a treatment modality for the individual. In some embodiments, the kit further comprises a computer model or algorithm for normalizing expression level or expression profile of the target sequences. In some embodiments, the kit further comprises a computer model or algorithm comprising a robust multichip average (RMA), probe logarithmic intensity error estimation (PLIER), non-linear fit (NLFIT) quantile-based, nonlinear normalization, or a combination thereof. In some embodiments, the plurality of target sequences comprises at least 5 target sequences selected from Table 11. In some embodiments, the plurality of target sequences comprises at least 10 target sequences selected from Table 11. In some embodiments, the plurality of target sequences comprises at least 15 target sequences selected from Table 11. In some embodiments, the plurality of target sequences comprises at least 20 target sequences selected from Table 11. In some embodiments, the plurality of target sequences comprises at least 30 target sequences selected from Table 11. In some embodiments, the plurality of target sequences comprises at least 35 target sequences selected from Table 11. In some embodiments, the plurality of targets comprises at least 40 target sequences selected from Table 11. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the cancer is a prostate cancer. In some embodiments, the cancer is a pancreatic cancer. In some embodiments, the cancer is a breast cancer. In some embodiments, the cancer is a thyroid cancer. In some embodiments, the cancer is a lung cancer.


Further disclosed herein is a kit for analyzing a cancer, comprising (a) a probe set comprising a plurality of target sequences, wherein the plurality of target sequences hybridizes to one or more targets selected from Tables 2, 4, 11 or 55; and (b) a computer model or algorithm for analyzing an expression level and/or expression profile of the target sequences in a sample. In some embodiments, the kit further comprises a computer model or algorithm for correlating the expression level or expression profile with disease state or outcome. In some embodiments, the kit further comprises a computer model or algorithm for designating a treatment modality for the individual. In some embodiments, the kit further comprises a computer model or algorithm for normalizing expression level or expression profile of the target sequences. In some embodiments, the kit further comprises a computer model or algorithm comprising a robust multichip average (RMA), probe logarithmic intensity error estimation (PLIER), non-linear fit (NLFIT) quantile-based, nonlinear normalization, or a combination thereof. In some embodiments, the targets comprise at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the targets comprise at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the targets comprise at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the targets comprise at least 20 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the targets comprise at least 30 targets selected from Tables 2, 11 or 55. In some embodiments, the targets comprise at least 35 targets selected from Tables 2, 11 or 55. In some embodiments, the targets comprise comprises at least 40 targets selected from Tables 2, 11 or 55. In some embodiments, the targets are selected from Table 2. In some embodiments, the targets are selected from Table 4. In some embodiments, the targets are selected from Table 11. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the cancer is a prostate cancer. In some embodiments, the cancer is a pancreatic cancer. In some embodiments, the cancer is a breast cancer. In some embodiments, the cancer is a thyroid cancer. In some embodiments, the cancer is a lung cancer.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference in their entireties to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1. Overview of the studies. CONSORT diagram illustrating the design for the training and independent validation studies.



FIG. 2. KM curves for BCR, METS, PCSM and Overall Survival events for NED, PSA and METs patients in the Discovery cohort. For each plot, probability of the event (BCR, METS, PCSM or OS) is shown in the Y-Axis. METS are also named SYS (for systemic event) or CR (for Clinical Recurrence).



FIG. 3. 43-Biomarker Set Methods



FIG. 4. PSR Annotation of the 43-Biomarker Set



FIG. 5. Biomarker variable mean squared error for selection of 22-biomarker signature



FIGS. 6A-B. Biomarker signature variable importance plot



FIG. 7. Development of Genomic Classifier (GC).



FIG. 8. Survival ROC to compare the accuracy of predicting metastatic disease (METS) at 5 years in different models. Survival ROC evaluates the ability of a marker measured at baseline (in this case RP) to discriminate between patients who develop CP from those who do not over a follow-up interval of 5 years. C discrimination index with 95% confidence intervals are shown for each prognostic classifier.



FIGS. 9A-B. Standard ROC and Discrimination plot for GC, CC and GCC.



FIG. 10. Calibration plots for probability of METS



FIG. 11. Discrimination plots for CC, GC, and GCC models (for METS)



FIG. 12. Survival decision curve analysis for the prognostic models at 5 years following radical prostatectomy. Performance of models is compared to extremes of classifying all patients as CP (thus potentially treating all patients, light gray line), against classifying no patients as CP (this treating none, horizontal dark gray line). A decision-to-treat threshold is a cutoff used to classify a patient as having CP or not. In decision curve analysis, this threshold varies from 0 to 1, and the sensitivity and specificity are calculated at each threshold, to determine the net-benefit. A model with a high net-benefit that does not overlap the “Treat All” line is optimal. The x-axis is the threshold probabilities while the y-axis is the net-benefit.



FIG. 13. Comparison of CC, GC and GCC cumulative Incidence (for METS)



FIG. 14. Cumulative incidence removing patients with adjuvant hormones: GPSM and GCC



FIG. 15. Cumulative incidence removing patients with adjuvant hormones: GPSM and GC.



FIG. 16. 5-year metastasis-free survival ROC in sampled validation study



FIG. 17. Cumulative Incidence: D'Amico and GC



FIGS. 18A-B. Cumulative incidence of GPSM and GC groups. A) Patients are segregated into low (<5), intermediate (5-9) and high risk (≥10) GPSM groups as suggested in Thompson et al. B) GC scores were segregated into low (<0.5) and high (>=0.5) for tentative risk groups. Irrespective of the method used, red lines indicated higher risk, orange intermediate risk and green lower risk. Number of patients (weighting controls by a factor of 5) at risk is shown below the x-axis, and the total number of events in each risk group is shown in boxes beside the lines.



FIGS. 19A-B. Discrimination plots showing segregation of Gleason 7 patients by CC (or CM, for Clinical Model) and GCC (n=382)



FIGS. 20A-B. CM and GCC Risk Groups of Gleason 7, 4+3 and 3+4 patients with CR endpoint (n=150)



FIGS. 21A-B. GCC stratification of Gleason 7, 4+3 and 3+4 patients with PCSM endpoint (n=150)



FIGS. 22A-B. Gleason 4+3 (n=50) and 3+4 (n=100) sub-stratification by GCC with METS (or CR, for Clinical Recurrence) endpoint



FIGS. 23A-B. Gleason 4+3 (n=50) and 3+4 (n=100) sub-stratification by GCC with PCSM endpoint



FIGS. 24A-B. Stratification of uniformly treated N+ patient by GCC and CC (or CM, for Clinical Model) (n=97 and n=96) with METS (or CR, for Clinical Recurrence) endpoint



FIGS. 25A-B. Stratification of uniformly treated N+ patient by GCC and CC (or CM, for Clinical Model) (n=97 and n=96) with PCSM endpoint



FIG. 26. Multidimensional scaling plot of (A) the training and (B) the testing sets. Controls are indicated as ‘+’ and cases are indicated as circles. In both the training and validation sets the controls tend to cluster on the left of the plot and the cases on the right of the plot. In this manner, most of the biological differences are expressed in the first dimension of the scaling. Random forest proximity [http://www.stat.berkeley.edu/˜breiman/] was used to measure the 22 marker distance between samples.



FIG. 27. Performance of external signatures in training and testing sets. For each signature, the institution associated to it, year of publication, lead author, the AUC obtained in the training and testing sets, as well as the 95% Confidence Interval for this metric is shown.



FIG. 28. Performance of single genes in training and testing sets. For each gene, the AUC obtained in the training and testing sets, as well as the 95% Confidence Interval for this metric is shown.



FIG. 29. ROC curve and AUC with 95% confidence interval for classifiers and individual clinicopathologic variables in training and testing sets. CC: clinical-only classifier. GC: genomic classifier. GCC: combined genomic-clinical classifier.



FIGS. 30A-B. ROC curve of multivariable models and individual clinicopathologic variables. A) ROC curves in Training B) ROC curves in testing.



FIG. 31. Metastasis-Free 5-year Survival ROC of GC an individual clinicopathologic variables in the independent validation set.



FIG. 32. Metastasis-Free 5-year Decision Curve of GC an individual clinicopathologic variables in the independent validation set.



FIG. 33. Distribution of GC scores among pathologic GS categories in testing. GC scores are plotted with a jitter so as to more easily differentiate the patients among each Pathologic GS (x-axis) groups. Cases (black) and controls patients (gray) are shown for each category. The dashed black line indicates the GC cutoff of 0.5. Trends show the patients with high GC scores tend to have high Gleason Scores as well.



FIG. 34. Distribution of GC scores among pathologic GS categories in the independent validation set. METS=triangle, METS-free=circle



FIGS. 35A-C. Prostate Cancer Specific Mortality Kaplan-Meier Plots on Training and Testing Sets. FIG. 35A—Gleason Score=7; FIG. 35B—Gleason Score=8; FIG. 35C—Gleason Score>=9.



FIG. 36. Kaplan Meier estimates for all PSA Controls with metastasis endpoint. PSA controls were separated into two groups based on high (>0.5) or low risk according to GC. Log-rank p-values are shown in the upper right corner.



FIG. 37. Survival decision curve analysis of GC and CAPRA-S.



FIG. 38. Distribution of GC scores among CAPRA-S score categories.



FIGS. 39A-B. The cumulative incidence plot for the CAPRA-S high risk group (A) and stratified by GC score (B).



FIGS. 40A-C. Prediction Curve for GC, CAPRA-S and an integrated genomic-clinical model. (A) CAPRA-S; (B) GC; (C) Integrated Genomic-Clinical model.



FIGS. 41A-B. Breakdown of treatment recommendations pre and post-GC for Low and High GC Risk groups in the Adjuvant setting. (A) pre-GC; (B) post-GC.



FIG. 42. Proportion of recommendations for treatment for the indicated values of clinical variables (eg: Presence/Absence) Pre-GC and the resulting proportion recommended for treatment post-GC in High and Low GC Risk groups in the Adjuvant setting.



FIGS. 43A-B. Breakdown of treatment recommendations pre and post-GC for Low and High GC Risk groups in the Salvage setting. (A) pre-GC; (B) post-GC.



FIGS. 44A-B. Proportion of recommendations for treatment for the indicated values of clinical variables (eg: Presence/Absence) Pre-GC and the resulting proportion recommended for treatment post-GC in High and Low GC Risk groups in the Salvage setting.



FIG. 45. Urologists confidence in treatment recommendations made post GC test results.



FIG. 46. GC Score distribution among METS (right—light grey circles) and No-METS patients (left—dark grey circles).



FIG. 47. 3-year Survival ROC comparing GC and clinicopathologic features. Values within legend indicate AUC and its corresponding 95% Confidence Interval.



FIG. 48. 3-year Survival ROC of clinical-only and genomic-based models. Values within legend indicate AUC and its corresponding 95% Confidence.



FIG. 49. 3-year Survival ROC of clinical-only and genomic-based models after excluding patients with Adjuvant therapy. Values within legend indicate AUC and its corresponding 95% Confidence Interval.



FIG. 50. Distribution of GC scores among pathological Gleason Score categories for patients with and without metastasis after Biochemical Recurrence. METS (triangle); No-METS (circle).



FIG. 51. Cumulative Incidence of metastasis after BCR with a GC cut-off of 0.4



FIG. 52. Cumulative Incidence of metastasis after BCR with a GC cut-off of 0.5



FIG. 53. Cumulative Incidence of metastasis after BCR after excluding patients with Adjuvant Treatment



FIG. 54. Reclassification of BCR patients by GC



FIG. 55. 3-year Decision Curve Analysis





Table 1. Clinical characteristics of Discovery and Validation data set


Table 2. 43-Biomarker Set. Chromosomal coordinates correspond to the hg19 version of the human genome.


Table 3. Gene Ontology Terms Enriched in the 43-Biomarker Signature


Table 4. 22-Biomarker Set. Chromosomal coordinates correspond to the hg19 version of the human genome.


Table 5. Comparison of Discrimination ability of classifiers in different datasets


Table 6. Reclassification of GPSM categories by GC.


Table 7. Univariable Analysis for panel of prognostic classifiers and clinicopathologic variables (for METS)


Table 8. Multivariable Cox regression analysis.


Table 9. Multivariable Analysis for panel of prognostic classifiers and clinicopathologic variables Adjusted for Hormone Therapy (for METS)


Table 10. Multivariable Analysis of GC compared to GPSM and CC (for METS)


Table 11. List of Target Sequences


Table 12. Univariable and Multivariable Logistic Regression Analysis in Testing Set


Table 13. Multivariable Cox proportional hazards modeling comparing genomic classifier (GC) to clinicopathologic variables using different Gleason Score parameterization in the independent validation set.


Table 14. Multivariable Cox proportional hazard models of GC with Stephenson Nomogram


Table 15. Multivariable Cox proportional hazards modeling of decile risk groups of the genomic classifier (GC) after adjusting for treatment.


Table 16. Survival analysis of GC score risk groups (<0.4, 0.4-0.6, >0.6).


Table 17. Reclassification by GC of Gleason Risk categories among cases and controls in the testing set.


Table 18. Number of metastasis and PCSM events for different GC score risk groups among pathologic GS categories in the independent validation set.


Table 19. Number of patients at risk of developing PCSM at various time points after BCR


Table 20. Number of patients at risk of metastasis at various time points after BCR


Table 21. Clinical characteristics of the cohort in Example 9.


Table 22. Survival ROC AUCs and associated 95% confidence intervals for GC, CAPRA-S and other individual clinical variables.


Table 23. Reclassification of GC low risk (GC Score<0.4) and GC high risk (GC Score≥0.4) for CAPRA-S low, intermediate and high risk scores.


Table 24. Univariable and Multivariable Analysis for GC, CAPRA-S and individual clinical variables.


Table 25. Characteristics of urologists participating in study.


Table 26. Characteristics of patient cases.


Table 27. Probability of Changing Treatment Recommendation from Pre to Post GC test


Table 28. Change in treatment intensity by initial Perceived and GC risks.


Table 29. Detailed Overview of Probability of Changing Treatment Recommendation from Pre to Post GC test.


Table 30. Proportions of patients with treatment recommended.


Table 31. Urologist reported confidence in and influence on treatment recommendations.


Table 32. Breakdown of treatment recommendations pre and post-GC for Low and High GC Risk groups in the Adjuvant setting


Table 33. Clinical and pathologic characteristics of patient cohort.


Table 34. Number of patients at risk of developing metastasis at various time points after BCR.


Table 35. Number of patients at risk of developing metastasis at various time points after BCR.


Table 36. Number of patients at risk of developing metastasis at various time points after BCR.


Table 37. Survival Analysis for GC and clinicopathologic factors. Multivariable analysis is adjusted for adjuvant treatment, GC reported for 10% unit increase.


Table 38. Survival Analysis for GC, Stephenson and CAPRA-S. Multivariable analyses are adjusted for adjuvant treatment, GC and Stephenson reported for 10% unit increase.


Table 39: biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value (auc.pvalue) and other metrics for the BCR event endpoint.


Table 40: biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value (auc.pvalue) and other metrics for the ECE endpoint.


Table 41: biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value (auc.pvalue) and other metrics for the LCR event endpoint.


Table 42: biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value (auc.pvalue) and other metrics for the LNI endpoint.


Table 43: biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value (auc.pvalue) and other metrics for the MET event endpoint.


Table 44: biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value (auc.pvalue) and other metrics for the OS event endpoint.


Table 45: biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value (auc.pvalue) and other metrics for the pathological Gleason endpoint.


Table 46: biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value (auc.pvalue) and other metrics for the PCSM event endpoint.


Table 47: biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value (auc.pvalue) and other metrics for the psaDT endpoint.


Table 48: biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value (auc.pvalue) and other metrics for the SVI endpoint.


Table 49: pairwise biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value (auc.pvalue<=0.05) and other metrics for the BCR event endpoint.


Table 50: pairwise biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value (auc.pvalue<=0.001) and other metrics for the MET event endpoint.


Table 51: pairwise biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value (auc.pvalue<=0.05) and other metrics for the PCSM event endpoint.


Table 52: pairwise biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value (auc.pvalue<=0.05) and other metrics for the psaDT endpoint.


Table 53: biomarkers from the 2,040 biomarker library with significance for Wilcoxon P-value (auc.pvalue<=0.05) and other metrics for the BCR event endpoint.


Table 54: biomarkers from the 2,040 biomarker library with significance for Wilcoxon P-value (auc.pvalue<=0.05) and other metrics for the MET event endpoint.


Table 55: 2,040 biomarker library. For each feature, genomic category, associated Affymetrix probeset ID, Associated Gene, Kolmogorov Smirnov Test P-value demonstrating statistical significance at 0.05 level is shown, together with Mean Decrease in Gini and Mean Decrease in Accuracy.


DETAILED DESCRIPTION OF THE INVENTION

The present invention discloses systems and methods for diagnosing, predicting, and/or monitoring the status or outcome of a cancer in a subject using expression-based analysis of a plurality of targets. Generally, the method comprises (a) optionally providing a sample from a subject suffering from a cancer; (b) assaying the expression level for a plurality of targets in the sample; and (c) diagnosing, predicting and/or monitoring the status or outcome of the cancer based on the expression level of the plurality of targets.


Assaying the expression level for a plurality of targets in the sample may comprise applying the sample to a microarray. In some instances, assaying the expression level may comprise the use of an algorithm. The algorithm may be used to produce a classifier. Alternatively, the classifier may comprise a probe selection region. In some instances, assaying the expression level for a plurality of targets comprises detecting and/or quantifying the plurality of targets. In some embodiments, assaying the expression level for a plurality of targets comprises sequencing the plurality of targets. In some embodiments, assaying the expression level for a plurality of targets comprises amplifying the plurality of targets. In some embodiments, assaying the expression level for a plurality of targets comprises quantifying the plurality of targets. In some embodiments, assaying the expression level for a plurality of targets comprises conducting a multiplexed reaction on the plurality of targets.


In some instances, the plurality of targets comprises one or more targets selected from Tables 2, 4, 11 or 55. In some instances, the plurality of targets comprises at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, or at least about 10 targets selected from Table 2, 4, and 11. In other instances, the plurality of targets comprises at least about 12, at least about 15, at least about 17, at least about 20, at least about 22, at least about 25, at least about 27, at least about 30, at least about 32, at least about 35, at least about 37, or at least about 40 targets selected from Tables 2, 4, 11 or 55. In some instances, the targets are selected from Table 2. In some instances, the targets are selected from Table 4. In some instances, the targets are selected from Table 11. In some instances, the plurality of targets comprises a coding target, non-coding target, or any combination thereof. In some instances, the coding target comprises an exonic sequence. In other instances, the non-coding target comprises a non-exonic sequence. In some instances, the non-exonic sequence comprises an untranslated region (e.g., UTR), intronic region, intergenic region, or any combination thereof. Alternatively, the plurality of targets comprises an anti-sense sequence. In other instances, the plurality of targets comprises a non-coding RNA transcript.


Further disclosed herein, is a probe set for diagnosing, predicting, and/or monitoring a cancer in a subject. In some instances, the probe set comprises a plurality of probes capable of detecting an expression level of one or more targets selected from Tables 2, 4, 11 or 55, wherein the expression level determines the cancer status of the subject with at least about 45% specificity. In some instances, detecting an expression level comprise detecting gene expression, protein expression, or any combination thereof. In some instances, the plurality of targets comprises one or more targets selected from Tables 2, 4, 11 or 55. In some instances, the plurality of targets comprises at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, or at least about 10 targets selected from Table 2, 4, and 11. In other instances, the plurality of targets comprises at least about 12, at least about 15, at least about 17, at least about 20, at least about 22, at least about 25, at least about 27, at least about 30, at least about 32, at least about 35, at least about 37, or at least about 40 targets selected from Tables 2, 4, 11 or 55. In some instances, the targets are selected from Table 2. In some instances, the targets are selected from Table 4. In some instances, the targets are selected from Table 11. In some instances, the plurality of targets comprises a coding target, non-coding target, or any combination thereof. In some instances, the coding target comprises an exonic sequence. In other instances, the non-coding target comprises a non-exonic sequence. In some instances, the non-exonic sequence comprises an untranslated region (e.g., UTR), intronic region, intergenic region, or any combination thereof. Alternatively, the plurality of targets comprises an anti-sense sequence. In other instances, the plurality of targets comprises a non-coding RNA transcript.


Further disclosed herein are methods for characterizing a patient population. Generally, the method comprises: (a) providing a sample from a subject; (b) assaying the expression level for a plurality of targets in the sample; and (c) characterizing the subject based on the expression level of the plurality of targets. In some instances, the plurality of targets comprises one or more targets selected from Tables 2, 4, 11 or 55. In some instances, the plurality of targets comprises at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, or at least about 10 targets selected from Tables 2, 4, 11 or 55. In other instances, the plurality of targets comprises at least about 12, at least about 15, at least about 17, at least about 20, at least about 22, at least about 25, at least about 27, at least about 30, at least about 32, at least about 35, at least about 37, or at least about 40 targets selected from Tables 2, 4, 11 or 55. In some instances, the targets are selected from Table 2. In some instances, the targets are selected from Table 4. In some instances, the targets are selected from Table 11. In some instances, the plurality of targets comprises a coding target, non-coding target, or any combination thereof. In some instances, the coding target comprises an exonic sequence. In other instances, the non-coding target comprises a non-exonic sequence. In some instances, the non-exonic sequence comprises an untranslated region (e.g., UTR), intronic region, intergenic region, or any combination thereof. Alternatively, the plurality of targets comprises an anti-sense sequence. In other instances, the plurality of targets comprises a non-coding RNA transcript.


In some instances, characterizing the subject comprises determining whether the subject would respond to an anti-cancer therapy. Alternatively, characterizing the subject comprises identifying the subject as a non-responder to an anti-cancer therapy. Optionally, characterizing the subject comprises identifying the subject as a responder to an anti-cancer therapy.


Before the present invention is described in further detail, it is to be understood that this invention is not limited to the particular methodology, compositions, articles or machines described, as such methods, compositions, articles or machines can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention.


Definitions

Unless defined otherwise or the context clearly dictates otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In describing the present invention, the following terms may be employed, and are intended to be defined as indicated below.


The term “polynucleotide” as used herein refers to a polymer of greater than one nucleotide in length of ribonucleic acid (RNA), deoxyribonucleic acid (DNA), hybrid RNA/DNA, modified RNA or DNA, or RNA or DNA mimetics, including peptide nucleic acids (PNAs). The polynucleotides may be single- or double-stranded. The term includes polynucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as polynucleotides having non-naturally-occurring portions which function similarly. Such modified or substituted polynucleotides are well known in the art and for the purposes of the present invention, are referred to as “analogues.”


“Complementary” or “substantially complementary” refers to the ability to hybridize or base pair between nucleotides or nucleic acids, such as, for instance, between a sensor peptide nucleic acid or polynucleotide and a target polynucleotide. Complementary nucleotides are, generally, A and T (or A and U), or C and G. Two single-stranded polynucleotides or PNAs are said to be substantially complementary when the bases of one strand, optimally aligned and compared and with appropriate insertions or deletions, pair with at least about 80% of the bases of the other strand, usually at least about 90% to 95%, and more preferably from about 98 to 100%.


Alternatively, substantial complementarity exists when a polynucleotide may hybridize under selective hybridization conditions to its complement. Typically, selective hybridization may occur when there is at least about 65% complementarity over a stretch of at least 14 to 25 bases, for example at least about 75%, or at least about 90% complementarity.


“Preferential binding” or “preferential hybridization” refers to the increased propensity of one polynucleotide to bind to its complement in a sample as compared to a noncomplementary polymer in the sample.


Hybridization conditions may typically include salt concentrations of less than about 1M, more usually less than about 500 mM, for example less than about 200 mM. In the case of hybridization between a peptide nucleic acid and a polynucleotide, the hybridization can be done in solutions containing little or no salt. Hybridization temperatures can be as low as 5° C., but are typically greater than 22° C., and more typically greater than about 30° C., for example in excess of about 37° C. Longer fragments may require higher hybridization temperatures for specific hybridization as is known in the art. Other factors may affect the stringency of hybridization, including base composition and length of the complementary strands, presence of organic solvents and extent of base mismatching, and the combination of parameters used is more important than the absolute measure of any one alone. Other hybridization conditions which may be controlled include buffer type and concentration, solution pH, presence and concentration of blocking reagents to decrease background binding such as repeat sequences or blocking protein solutions, detergent type(s) and concentrations, molecules such as polymers which increase the relative concentration of the polynucleotides, metal ion(s) and their concentration(s), chelator(s) and their concentrations, and other conditions known in the art.


“Multiplexing” herein refers to an assay or other analytical method in which multiple analytes are assayed. In some instances, the multiple analytes are from the same sample. In some instances, the multiple analytes are assayed simultaneously. Alternatively, the multiple analytes are assayed sequentially. In some instances, assaying the multiple analytes occurs in the same reaction volume. Alternatively, assaying the multiple analytes occurs in separate or multiple reaction volumes.


A “target sequence” as used herein (also occasionally referred to as a “PSR” or “probe selection region”) refers to a region of the genome against which one or more probes can be designed. A “target sequence” may be a coding target or a non-coding target. A “target sequence” may comprise exonic and/or non-exonic sequences. Alternatively, a “target sequence” may comprise an ultraconserved region. An ultraconserved region is generally a sequence that is at least 200 base pairs and is conserved across multiple species. An ultraconserved region may be exonic or non-exonic. Exonic sequences may comprise regions on a protein-coding gene, such as an exon, UTR, or a portion thereof. Non-exonic sequences may comprise regions on a protein-coding, non protein-coding gene, or a portion thereof. For example, non-exonic sequences may comprise intronic regions, promoter regions, intergenic regions, a non-coding transcript, an exon anti-sense region, an intronic anti-sense region, UTR anti-sense region, non-coding transcript anti-sense region, or a portion thereof.


As used herein, a probe is any polynucleotide capable of selectively hybridizing to a target sequence or its complement, or to an RNA version of either. A probe may comprise ribonucleotides, deoxyribonucleotides, peptide nucleic acids, and combinations thereof. A probe may optionally comprise one or more labels. In some embodiments, a probe may be used to amplify one or both strands of a target sequence or an RNA form thereof, acting as a sole primer in an amplification reaction or as a member of a set of primers.


As used herein, a non-coding target may comprise a nucleotide sequence. The nucleotide sequence is a DNA or RNA sequence. A non-coding target may include a UTR sequence, an intronic sequence, or a non-coding RNA transcript. A non-coding target also includes sequences which partially overlap with a UTR sequence or an intronic sequence. A non-coding target also includes non-exonic transcripts.


As used herein, a coding target includes nucleotide sequences that encode for a protein and peptide sequences. The nucleotide sequence is a DNA or RNA sequence. The coding target includes protein-coding sequence. Protein-coding sequences include exon-coding sequences (e.g., exonic sequences).


As used herein, diagnosis of cancer may include the identification of cancer in a subject, determining the malignancy of the cancer, or determining the stage of the cancer.


As used herein, prognosis of cancer may include predicting the clinical outcome of the patient, assessing the risk of cancer recurrence, determining treatment modality, or determining treatment efficacy.


“Having” is an open-ended phrase like “comprising” and “including,” and includes circumstances where additional elements are included and circumstances where they are not


“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event or circumstance occurs and instances in which it does not.


As used herein ‘NED’ describes a clinically distinct disease state in which patients show no evidence of disease (NED’) at least 5 years after surgery, ‘PSA’ describes a clinically distinct disease state in which patients show biochemical relapse only (two successive increases in prostate-specific antigen levels but no other symptoms of disease with at least 5 years follow up after surgery; TSA′) and ‘SYS’ describes a clinically distinct disease state in which patients develop biochemical relapse and present with systemic cancer disease or metastases (‘SYS’) within five years after the initial treatment with radical prostatectomy.


The terms “METS”, “SYS”, “systemic event”, “Systemic progression”, “CR” or “Clinical Recurrence” may be used interchangeably and generally refer to patients that experience BCR (biochemical reccurrence) and that develop metastases (confirmed by bone or CT scan). The patients may experience BCR within 5 years of RP (radial prostectomy). The patients may develop metastases within 5 years of BCR. In some cases, patients regarded as METS may experience BCR after 5 years of RP.


As used herein, the term “about” refers to approximately a +/−10% variation from a given value. It is to be understood that such a variation is always included in any given value provided herein, whether or not it is specifically referred to.


Use of the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, reference to “a polynucleotide” includes a plurality of polynucleotides, reference to “a target” includes a plurality of such targets, reference to “a normalization method” includes a plurality of such methods, and the like. Additionally, use of specific plural references, such as “two,” “three,” etc., read on larger numbers of the same subject, unless the context clearly dictates otherwise.


Terms such as “connected,” “attached,” “linked” and “conjugated” are used interchangeably herein and encompass direct as well as indirect connection, attachment, linkage or conjugation unless the context clearly dictates otherwise.


Where a range of values is recited, it is to be understood that each intervening integer value, and each fraction thereof, between the recited upper and lower limits of that range is also specifically disclosed, along with each subrange between such values. The upper and lower limits of any range can independently be included in or excluded from the range, and each range where either, neither or both limits are included is also encompassed within the invention. Where a value being discussed has inherent limits, for example where a component can be present at a concentration of from 0 to 100%, or where the pH of an aqueous solution can range from 1 to 14, those inherent limits are specifically disclosed. Where a value is explicitly recited, it is to be understood that values, which are about the same quantity or amount as the recited value, are also within the scope of the invention, as are ranges based thereon. Where a combination is disclosed, each sub-combination of the elements of that combination is also specifically disclosed and is within the scope of the invention. Conversely, where different elements or groups of elements are disclosed, combinations thereof are also disclosed. Where any element of an invention is disclosed as having a plurality of alternatives, examples of that invention in which each alternative is excluded singly or in any combination with the other alternatives are also hereby disclosed; more than one element of an invention can have such exclusions, and all combinations of elements having such exclusions are hereby disclosed.


Coding and Non-Coding Targets


The methods disclosed herein often comprise assaying the expression level of a plurality of targets. The plurality of targets may comprise coding targets and/or non-coding targets of a protein-coding gene or a non protein-coding gene. A protein-coding gene structure may comprise an exon and an intron. The exon may further comprise a coding sequence (CDS) and an untranslated region (UTR). The protein-coding gene may be transcribed to produce a pre-mRNA and the pre-mRNA may be processed to produce a mature mRNA. The mature mRNA may be translated to produce a protein.


A non protein-coding gene structure may comprise an exon and intron. Usually, the exon region of a non protein-coding gene primarily contains a UTR. The non protein-coding gene may be transcribed to produce a pre-mRNA and the pre-mRNA may be processed to produce a non-coding RNA (ncRNA).


A coding target may comprise a coding sequence of an exon. A non-coding target may comprise a UTR sequence of an exon, intron sequence, intergenic sequence, promoter sequence, non-coding transcript, CDS antisense, intronic antisense, UTR antisense, or non-coding transcript antisense. A non-coding transcript may comprise a non-coding RNA (ncRNA).


In some instances, the plurality of targets may be differentially expressed. In some instances, a plurality of probe selection regions (PSRs) is differentially expressed.


In some instances, the plurality of targets comprises one or more targets selected from Tables 2, 4, 11 or 55. In some instances, the plurality of targets comprises at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, or at least about 10 targets selected from Tables 2, 4, 11 or 55. In other instances, the plurality of targets comprises at least about 12, at least about 15, at least about 17, at least about 20, at least about 22, at least about 25, at least about 27, at least about 30, at least about 32, at least about 35, at least about 37, or at least about 40 targets selected from Tables 2, 4, 11 or 55. In some instances, the targets are selected from Table 2. In some instances, the targets are selected from Table 4. In some instances, the targets are selected from Table 11. In some instances, the plurality of targets comprises a coding target, non-coding target, or any combination thereof. In some instances, the coding target comprises an exonic sequence. In other instances, the non-coding target comprises a non-exonic sequence. Alternatively, a non-coding target comprises a UTR sequence, an intronic sequence, or a non-coding RNA transcript. In some instances, a non-coding target comprises sequences which partially overlap with a UTR sequence or an intronic sequence. A non-coding target also includes non-exonic transcripts. Exonic sequences may comprise regions on a protein-coding gene, such as an exon, UTR, or a portion thereof. Non-exonic sequences may comprise regions on a protein-coding, non protein-coding gene, or a portion thereof. For example, non-exonic sequences may comprise intronic regions, promoter regions, intergenic regions, a non-coding transcript, an exon anti-sense region, an intronic anti-sense region, UTR anti-sense region, non-coding transcript anti-sense region, or a portion thereof. In other instances, the plurality of targets comprises a non-coding RNA transcript.


In some instances, the plurality of targets is at least about 70% identical to a sequence selected from SEQ ID NOs 1-43. Alternatively, the plurality of targets is at least about 80% identical to a sequence selected from SEQ ID NOs 1-43. In some instances, the plurality of targets is at least about 85% identical to a sequence selected from SEQ ID NOs 1-43. In some instances, the plurality of targets is at least about 90% identical to a sequence selected from SEQ ID NOs 1-43. Alternatively, the plurality of targets is at least about 95% identical to a sequence selected from SEQ ID NOs 1-43.


Probes/Primers


The present invention provides for a probe set for diagnosing, monitoring and/or predicting a status or outcome of a cancer in a subject comprising a plurality of probes, wherein (i) the probes in the set are capable of detecting an expression level of at least one non-coding target; and (ii) the expression level determines the cancer status of the subject with at least about 40% specificity.


The probe set may comprise one or more polynucleotide probes. Individual polynucleotide probes comprise a nucleotide sequence derived from the nucleotide sequence of the target sequences or complementary sequences thereof. The nucleotide sequence of the polynucleotide probe is designed such that it corresponds to, or is complementary to the target sequences. The polynucleotide probe can specifically hybridize under either stringent or lowered stringency hybridization conditions to a region of the target sequences, to the complement thereof, or to a nucleic acid sequence (such as a cDNA) derived therefrom.


The selection of the polynucleotide probe sequences and determination of their uniqueness may be carried out in silico using techniques known in the art, for example, based on a BLASTN search of the polynucleotide sequence in question against gene sequence databases, such as the Human Genome Sequence, UniGene, dbEST or the non-redundant database at NCBI. In one embodiment of the invention, the polynucleotide probe is complementary to a region of a target mRNA derived from a target sequence in the probe set. Computer programs can also be employed to select probe sequences that may not cross hybridize or may not hybridize non-specifically.


In some instances, microarray hybridization of RNA, extracted from prostate cancer tissue samples and amplified, may yield a dataset that is then summarized and normalized by the fRMA technique. The 5,362,207 raw expression probes are summarized and normalized into 1,411,399 probe selection regions (“PSRs”). After removal (or filtration) of cross-hybridizing PSRs, highly variable PSRs (variance above the 90th percentile), and PSRs containing more than 4 probes, approximately 1.1 million PSRs remain. Following fRMA and filtration, the data can be decomposed into its principal components and an analysis of variance model is used to determine the extent to which a batch effect remains present in the first 10 principal components.


These remaining 1.1 million PSRs can then be subjected to filtration by a T-test between CR (clinical recurrence) and non-CR samples. Using a p-value cut-off of 0.01, 18,902 features remained in analysis for further selection. Feature selection was performed by regularized logistic regression using the elastic-net penalty. The regularized regression was bootstrapped over 1000 times using all training data; with each iteration of bootstrapping features that have non-zero co-efficient following 3-fold cross validation were tabulated. In some instances, features that were selected in at least 25% of the total runs were used for model building.


One skilled in the art understands that the nucleotide sequence of the polynucleotide probe need not be identical to its target sequence in order to specifically hybridize thereto. The polynucleotide probes of the present invention, therefore, comprise a nucleotide sequence that is at least about 65% identical to a region of the coding target or non-coding target selected from Tables 2, 4, 11 or 55. In another embodiment, the nucleotide sequence of the polynucleotide probe is at least about 70% identical a region of the coding target or non-coding target from Tables 2, 4, 11 and 55. In another embodiment, the nucleotide sequence of the polynucleotide probe is at least about 75% identical a region of the coding target or non-coding target from Tables 2, 4, 11 and 55. In another embodiment, the nucleotide sequence of the polynucleotide probe is at least about 80% identical a region of the coding target or non-coding target from Tables 2, 4, 11 and 55. In another embodiment, the nucleotide sequence of the polynucleotide probe is at least about 85% identical a region of the coding target or non-coding target from Tables 2, 4, 11 and 55. In another embodiment, the nucleotide sequence of the polynucleotide probe is at least about 90% identical a region of the coding target or non-coding target from Tables 2, 4, 11 and 55. In a further embodiment, the nucleotide sequence of the polynucleotide probe is at least about 95% identical to a region of the coding target or non-coding target from Tables 2, 4, 11 and 55. In some instances, the targets are selected from Table 2. In some instances, the targets are selected from Table 4. In some instances, the targets are selected from Table 11.


Methods of determining sequence identity are known in the art and can be determined, for example, by using the BLASTN program of the University of Wisconsin Computer Group (GCG) software or provided on the NCBI website. The nucleotide sequence of the polynucleotide probes of the present invention may exhibit variability by differing (e.g. by nucleotide substitution, including transition or transversion) at one, two, three, four or more nucleotides from the sequence of the coding target or non-coding target.


Other criteria known in the art may be employed in the design of the polynucleotide probes of the present invention. For example, the probes can be designed to have <50% G content and/or between about 25% and about 70% G+C content. Strategies to optimize probe hybridization to the target nucleic acid sequence can also be included in the process of probe selection.


Hybridization under particular pH, salt, and temperature conditions can be optimized by taking into account melting temperatures and by using empirical rules that correlate with desired hybridization behaviors. Computer models may be used for predicting the intensity and concentration-dependence of probe hybridization.


The polynucleotide probes of the present invention may range in length from about 15 nucleotides to the full length of the coding target or non-coding target. In one embodiment of the invention, the polynucleotide probes are at least about 15 nucleotides in length. In another embodiment, the polynucleotide probes are at least about 20 nucleotides in length. In a further embodiment, the polynucleotide probes are at least about 25 nucleotides in length. In another embodiment, the polynucleotide probes are between about 15 nucleotides and about 500 nucleotides in length. In other embodiments, the polynucleotide probes are between about 15 nucleotides and about 450 nucleotides, about 15 nucleotides and about 400 nucleotides, about 15 nucleotides and about 350 nucleotides, about 15 nucleotides and about 300 nucleotides, about 15 nucleotides and about 250 nucleotides, about 15 nucleotides and about 200 nucleotides in length. In some embodiments, the probes are at least 15 nucleotides in length. In some embodiments, the probes are at least 15 nucleotides in length. In some embodiments, the probes are at least 20 nucleotides, at least 25 nucleotides, at least 50 nucleotides, at least 75 nucleotides, at least 100 nucleotides, at least 125 nucleotides, at least 150 nucleotides, at least 200 nucleotides, at least 225 nucleotides, at least 250 nucleotides, at least 275 nucleotides, at least 300 nucleotides, at least 325 nucleotides, at least 350 nucleotides, at least 375 nucleotides in length.


The polynucleotide probes of a probe set can comprise RNA, DNA, RNA or DNA mimetics, or combinations thereof, and can be single-stranded or double-stranded. Thus the polynucleotide probes can be composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as polynucleotide probes having non-naturally-occurring portions which function similarly. Such modified or substituted polynucleotide probes may provide desirable properties such as, for example, enhanced affinity for a target gene and increased stability. The probe set may comprise a coding target and/or a non-coding target. Preferably, the probe set comprises a combination of a coding target and non-coding target.


In some embodiments, the probe set comprise a plurality of target sequences that hybridize to at least about 5 coding targets and/or non-coding targets selected from Tables 2, 4, 11 or 55. Alternatively, the probe set comprise a plurality of target sequences that hybridize to at least about 10 coding targets and/or non-coding targets selected from Tables 2, 4, 11 or 55. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to at least about 15 coding targets and/or non-coding targets selected from Tables 2, 4, 11 or 55. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to at least about 20 coding targets and/or non-coding targets selected from Tables 2, 4, 11 or 55. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to at least about 30 coding targets and/or non-coding targets selected from Tables 2, 4, 11 or 55. In some instances, the targets are selected from Table 2. In some instances, the targets are selected from Table 4. In some instances, the targets are selected from Table 11.


In some embodiments, the probe set comprises a plurality of target sequences that hybridize to a plurality of targets, wherein the at least about 20% of the plurality of targets are targets selected from Tables 2, 4, 11 or 55. In some embodiments, the probe set comprises a plurality of target sequences that hybridize to a plurality of targets, wherein the at least about 25% of the plurality of targets are targets selected from Tables 2, 4, 11 or 55. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to a plurality of targets, wherein the at least about 30% of the plurality of targets are targets selected from Tables 2, 4, 11 or 55. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to a plurality of targets, wherein the at least about 35% of the plurality of targets are targets selected from Tables 2, 4, 11 or 55. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to a plurality of targets, wherein the at least about 40% of the plurality of targets are targets selected from Tables 2, 4, 11 or 55. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to a plurality of targets, wherein the at least about 45% of the plurality of targets are targets selected from Tables 2, 4, 11 or 55. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to a plurality of targets, wherein the at least about 50% of the plurality of targets are targets selected from Tables 2, 4, 11 or 55. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to a plurality of targets, wherein the at least about 60% of the plurality of targets are targets selected from Tables 2, 4, 11 or 55. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to a plurality of targets, wherein the at least about 70% of the plurality of targets are targets selected from Tables 2, 4, 11 or 55. In some instances, the targets are selected from Table 2. In some instances, the targets are selected from Table 4. In some instances, the targets are selected from Table 11.


The system of the present invention further provides for primers and primer pairs capable of amplifying target sequences defined by the probe set, or fragments or subsequences or complements thereof. The nucleotide sequences of the probe set may be provided in computer-readable media for in silico applications and as a basis for the design of appropriate primers for amplification of one or more target sequences of the probe set.


Primers based on the nucleotide sequences of target sequences can be designed for use in amplification of the target sequences. For use in amplification reactions such as PCR, a pair of primers can be used. The exact composition of the primer sequences is not critical to the invention, but for most applications the primers may hybridize to specific sequences of the probe set under stringent conditions, particularly under conditions of high stringency, as known in the art. The pairs of primers are usually chosen so as to generate an amplification product of at least about 50 nucleotides, more usually at least about 100 nucleotides. Algorithms for the selection of primer sequences are generally known, and are available in commercial software packages. These primers may be used in standard quantitative or qualitative PCR-based assays to assess transcript expression levels of RNAs defined by the probe set. Alternatively, these primers may be used in combination with probes, such as molecular beacons in amplifications using real-time PCR.


In one embodiment, the primers or primer pairs, when used in an amplification reaction, specifically amplify at least a portion of a nucleic acid sequence of a target selected from any of Tables 2, 4, 11 and 55 (or subgroups thereof as set forth herein), an RNA form thereof, or a complement to either thereof. In some instances, the targets are selected from Table 2. In some instances, the targets are selected from Table 4. In some instances, the targets are selected from Table 11.


As is known in the art, a nucleoside is a base-sugar combination and a nucleotide is a nucleoside that further includes a phosphate group covalently linked to the sugar portion of the nucleoside. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound, with the normal linkage or backbone of RNA and DNA being a 3′ to 5′ phosphodiester linkage. Specific examples of polynucleotide probes or primers useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include both those that retain a phosphorus atom in the backbone and those that lack a phosphorus atom in the backbone. For the purposes of the present invention, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleotides.


Exemplary polynucleotide probes or primers having modified oligonucleotide backbones include, for example, those with one or more modified internucleotide linkages that are phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkyl-phosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′. Various salts, mixed salts and free acid forms are also included.


Exemplary modified oligonucleotide backbones that do not include a phosphorus atom are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. Such backbones include morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulphone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulphamate backbones; methyleneimino and methylenehydrazino backbones; sulphonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.


The present invention also contemplates oligonucleotide mimetics in which both the sugar and the internucleoside linkage of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. An example of such an oligonucleotide mimetic, which has been shown to have excellent hybridization properties, is a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza-nitrogen atoms of the amide portion of the backbone.


The present invention also contemplates polynucleotide probes or primers comprising “locked nucleic acids” (LNAs), which may be novel conformationally restricted oligonucleotide analogues containing a methylene bridge that connects the 2′-O of ribose with the 4′-C. LNA and LNA analogues may display very high duplex thermal stabilities with complementary DNA and RNA, stability towards 3′-exonuclease degradation, and good solubility properties. Synthesis of the LNA analogues of adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil, their oligomerization, and nucleic acid recognition properties have been described. Studies of mismatched sequences show that LNA obey the Watson-Crick base pairing rules with generally improved selectivity compared to the corresponding unmodified reference strands.


LNAs may form duplexes with complementary DNA or RNA or with complementary LNA, with high thermal affinities. The universality of LNA-mediated hybridization has been emphasized by the formation of exceedingly stable LNA:LNA duplexes. LNA:LNA hybridization was shown to be the most thermally stable nucleic acid type duplex system, and the RNA-mimicking character of LNA was established at the duplex level. Introduction of three LNA monomers (T or A) resulted in significantly increased melting points toward DNA complements.


Synthesis of 2′-amino-LNA and 2′-methylamino-LNA has been described and thermal stability of their duplexes with complementary RNA and DNA strands reported. Preparation of phosphorothioate-LNA and 2′-thio-LNA have also been described.


Modified polynucleotide probes or primers may also contain one or more substituted sugar moieties. For example, oligonucleotides may comprise sugars with one of the following substituents at the 2′ position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Examples of such groups are: O[(CH2)nO]mCH3, O(CH2)nOCH3, O(CH2)nNH2, O(CH2)nCH3ONH2, and O(CH2)n ON[(CH2)nCH3)]2, where n and m are from 1 to about 10. Alternatively, the oligonucleotides may comprise one of the following substituents at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. Specific examples include 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE), 2′-dimethylaminooxyethoxy (O(CH2)2 ON(CH3)2 group, also known as 2′-DMA0E), 2′-methoxy (2′-O—CH3), 2′-aminopropoxy (2′-OCH2CH2CH2NH2) and 2′-fluoro (2′-F).


Similar modifications may also be made at other positions on the polynucleotide probes or primers, particularly the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked oligonucleotides and the 5′ position of 5′ terminal nucleotide. Polynucleotide probes or primers may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar.


Polynucleotide probes or primers may also include modifications or substitutions to the nucleobase. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U).


Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808; The Concise Encyclopedia Of Polymer Science And Engineering, (1990) pp 858-859, Kroschwitz, J. I., ed. John Wiley & Sons; Englisch et al., Angewandte Chemie, Int. Ed., 30:613 (1991); and Sanghvi, Y. S., (1993) Antisense Research and Applications, pp 289-302, Crooke, S. T. and Lebleu, B., ed., CRC Press. Certain of these nucleobases are particularly useful for increasing the binding affinity of the polynucleotide probes of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C.


One skilled in the art recognizes that it is not necessary for all positions in a given polynucleotide probe or primer to be uniformly modified. The present invention, therefore, contemplates the incorporation of more than one of the aforementioned modifications into a single polynucleotide probe or even at a single nucleoside within the probe or primer.


One skilled in the art also appreciates that the nucleotide sequence of the entire length of the polynucleotide probe or primer does not need to be derived from the target sequence. Thus, for example, the polynucleotide probe may comprise nucleotide sequences at the 5′ and/or 3′ termini that are not derived from the target sequences. Nucleotide sequences which are not derived from the nucleotide sequence of the target sequence may provide additional functionality to the polynucleotide probe. For example, they may provide a restriction enzyme recognition sequence or a “tag” that facilitates detection, isolation, purification or immobilization onto a solid support. Alternatively, the additional nucleotides may provide a self-complementary sequence that allows the primer/probe to adopt a hairpin configuration. Such configurations are necessary for certain probes, for example, molecular beacon and Scorpion probes, which can be used in solution hybridization techniques.


The polynucleotide probes or primers can incorporate moieties useful in detection, isolation, purification, or immobilization, if desired. Such moieties are well-known in the art (see, for example, Ausubel et al., (1997 & updates) Current Protocols in Molecular Biology, Wiley & Sons, New York) and are chosen such that the ability of the probe to hybridize with its target sequence is not affected.


Examples of suitable moieties are detectable labels, such as radioisotopes, fluorophores, chemiluminophores, enzymes, colloidal particles, and fluorescent microparticles, as well as antigens, antibodies, haptens, avidin/streptavidin, biotin, haptens, enzyme cofactors/substrates, enzymes, and the like.


A label can optionally be attached to or incorporated into a probe or primer polynucleotide to allow detection and/or quantitation of a target polynucleotide representing the target sequence of interest. The target polynucleotide may be the expressed target sequence RNA itself, a cDNA copy thereof, or an amplification product derived therefrom, and may be the positive or negative strand, so long as it can be specifically detected in the assay being used. Similarly, an antibody may be labeled.


In certain multiplex formats, labels used for detecting different targets may be distinguishable. The label can be attached directly (e.g., via covalent linkage) or indirectly, e.g., via a bridging molecule or series of molecules (e.g., a molecule or complex that can bind to an assay component, or via members of a binding pair that can be incorporated into assay components, e.g. biotin-avidin or streptavidin). Many labels are commercially available in activated forms which can readily be used for such conjugation (for example through amine acylation), or labels may be attached through known or determinable conjugation schemes, many of which are known in the art.


Labels useful in the invention described herein include any substance which can be detected when bound to or incorporated into the biomolecule of interest. Any effective detection method can be used, including optical, spectroscopic, electrical, piezoelectrical, magnetic, Raman scattering, surface plasmon resonance, colorimetric, calorimetric, etc. A label is typically selected from a chromophore, a lumiphore, a fluorophore, one member of a quenching system, a chromogen, a hapten, an antigen, a magnetic particle, a material exhibiting nonlinear optics, a semiconductor nanocrystal, a metal nanoparticle, an enzyme, an antibody or binding portion or equivalent thereof, an aptamer, and one member of a binding pair, and combinations thereof. Quenching schemes may be used, wherein a quencher and a fluorophore as members of a quenching pair may be used on a probe, such that a change in optical parameters occurs upon binding to the target introduce or quench the signal from the fluorophore. One example of such a system is a molecular beacon. Suitable quencher/fluorophore systems are known in the art. The label may be bound through a variety of intermediate linkages. For example, a polynucleotide may comprise a biotin-binding species, and an optically detectable label may be conjugated to biotin and then bound to the labeled polynucleotide. Similarly, a polynucleotide sensor may comprise an immunological species such as an antibody or fragment, and a secondary antibody containing an optically detectable label may be added.


Chromophores useful in the methods described herein include any substance which can absorb energy and emit light. For multiplexed assays, a plurality of different signaling chromophores can be used with detectably different emission spectra. The chromophore can be a lumophore or a fluorophore. Typical fluorophores include fluorescent dyes, semiconductor nanocrystals, lanthanide chelates, polynucleotide-specific dyes and green fluorescent protein.


Coding schemes may optionally be used, comprising encoded particles and/or encoded tags associated with different polynucleotides of the invention. A variety of different coding schemes are known in the art, including fluorophores, including SCNCs, deposited metals, and RF tags.


Polynucleotides from the described target sequences may be employed as probes for detecting target sequences expression, for ligation amplification schemes, or may be used as primers for amplification schemes of all or a portion of a target sequences. When amplified, either strand produced by amplification may be provided in purified and/or isolated form.


In one embodiment, polynucleotides of the invention include (a) a nucleic acid depicted in Tables 2, 4, 11 and 55; (b) an RNA form of any one of the nucleic acids depicted in Tables 2, 4, 11 and 55; (c) a peptide nucleic acid form of any of the nucleic acids depicted in Tables 2, 4, 11 and 55; (d) a nucleic acid comprising at least 20 consecutive bases of any of (a-c); (e) a nucleic acid comprising at least 25 bases having at least 90% sequenced identity to any of (a-c); and (f) a complement to any of (a-e).


Complements may take any polymeric form capable of base pairing to the species recited in (a)-(e), including nucleic acid such as RNA or DNA, or may be a neutral polymer such as a peptide nucleic acid. Polynucleotides of the invention can be selected from the subsets of the recited nucleic acids described herein, as well as their complements.


In some embodiments, polynucleotides of the invention comprise at least 20 consecutive bases of the nucleic acid sequence of a target selected from any of Tables 2, 4, 11 and 55 or a complement thereto. The polynucleotides may comprise at least 21, 22, 23, 24, 25, 27, 30, 32, 35 or more consecutive bases of the nucleic acids sequence of a target selected from any of Tables 2, 4, 11 and 55, as applicable. In some instances, the targets are selected from Table 2. In some instances, the targets are selected from Table 4. In some instances, the targets are selected from Table 11.


The polynucleotides may be provided in a variety of formats, including as solids, in solution, or in an array. The polynucleotides may optionally comprise one or more labels, which may be chemically and/or enzymatically incorporated into the polynucleotide.


In one embodiment, solutions comprising polynucleotide and a solvent are also provided. In some embodiments, the solvent may be water or may be predominantly aqueous. In some embodiments, the solution may comprise at least two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, seventeen, twenty or more different polynucleotides, including primers and primer pairs, of the invention. Additional substances may be included in the solution, alone or in combination, including one or more labels, additional solvents, buffers, biomolecules, polynucleotides, and one or more enzymes useful for performing methods described herein, including polymerases and ligases. The solution may further comprise a primer or primer pair capable of amplifying a polynucleotide of the invention present in the solution.


In some embodiments, one or more polynucleotides provided herein can be provided on a substrate. The substrate can comprise a wide range of material, either biological, nonbiological, organic, inorganic, or a combination of any of these. For example, the substrate may be a polymerized Langmuir Blodgett film, functionalized glass, Si, Ge, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, cross-linked polystyrene, polyacrylic, polylactic acid, polyglycolic acid, poly(lactide coglycolide), polyanhydrides, poly(methyl methacrylate), poly(ethylene-co-vinyl acetate), polysiloxanes, polymeric silica, latexes, dextran polymers, epoxies, polycarbonates, or combinations thereof. Conducting polymers and photoconductive materials can be used.


Substrates can be planar crystalline substrates such as silica based substrates (e.g. glass, quartz, or the like), or crystalline substrates used in, e.g., the semiconductor and microprocessor industries, such as silicon, gallium arsenide, indium doped GaN and the like, and include semiconductor nanocrystals.


The substrate can take the form of an array, a photodiode, an optoelectronic sensor such as an optoelectronic semiconductor chip or optoelectronic thin-film semiconductor, or a biochip. The location(s) of probe(s) on the substrate can be addressable; this can be done in highly dense formats, and the location(s) can be microaddressable or nanoaddressable.


Silica aerogels can also be used as substrates, and can be prepared by methods known in the art. Aerogel substrates may be used as free standing substrates or as a surface coating for another substrate material.


The substrate can take any form and typically is a plate, slide, bead, pellet, disk, particle, microparticle, nanoparticle, strand, precipitate, optionally porous gel, sheets, tube, sphere, container, capillary, pad, slice, film, chip, multiwell plate or dish, optical fiber, etc. The substrate can be any form that is rigid or semi-rigid. The substrate may contain raised or depressed regions on which an assay component is located. The surface of the substrate can be etched using known techniques to provide for desired surface features, for example trenches, v-grooves, mesa structures, or the like.


Surfaces on the substrate can be composed of the same material as the substrate or can be made from a different material, and can be coupled to the substrate by chemical or physical means. Such coupled surfaces may be composed of any of a wide variety of materials, for example, polymers, plastics, resins, polysaccharides, silica or silica-based materials, carbon, metals, inorganic glasses, membranes, or any of the above-listed substrate materials. The surface can be optically transparent and can have surface Si—OH functionalities, such as those found on silica surfaces.


The substrate and/or its optional surface can be chosen to provide appropriate characteristics for the synthetic and/or detection methods used. The substrate and/or surface can be transparent to allow the exposure of the substrate by light applied from multiple directions. The substrate and/or surface may be provided with reflective “mirror” structures to increase the recovery of light.


The substrate and/or its surface is generally resistant to, or is treated to resist, the conditions to which it is to be exposed in use, and can be optionally treated to remove any resistant material after exposure to such conditions.


The substrate or a region thereof may be encoded so that the identity of the sensor located in the substrate or region being queried may be determined. Any suitable coding scheme can be used, for example optical codes, RFID tags, magnetic codes, physical codes, fluorescent codes, and combinations of codes.


Preparation of Probes and Primers


The polynucleotide probes or primers of the present invention can be prepared by conventional techniques well-known to those skilled in the art. For example, the polynucleotide probes can be prepared using solid-phase synthesis using commercially available equipment. As is well-known in the art, modified oligonucleotides can also be readily prepared by similar methods. The polynucleotide probes can also be synthesized directly on a solid support according to methods standard in the art. This method of synthesizing polynucleotides is particularly useful when the polynucleotide probes are part of a nucleic acid array.


Polynucleotide probes or primers can be fabricated on or attached to the substrate by any suitable method, for example the methods described in U.S. Pat. No. 5,143,854, PCT Publ. No. WO 92/10092, U.S. patent application Ser. No. 07/624,120, filed Dec. 6, 1990 (now abandoned), Fodor et al., Science, 251: 767-777 (1991), and PCT Publ. No. WO 90/15070). Techniques for the synthesis of these arrays using mechanical synthesis strategies are described in, e.g., PCT Publication No. WO 93/09668 and U.S. Pat. No. 5,384,261. Still further techniques include bead based techniques such as those described in PCT Appl. No. PCT/US93/04145 and pin based methods such as those described in U.S. Pat. No. 5,288,514. Additional flow channel or spotting methods applicable to attachment of sensor polynucleotides to a substrate are described in U.S. patent application Ser. No. 07/980,523, filed Nov. 20, 1992, and U.S. Pat. No. 5,384,261.


Alternatively, the polynucleotide probes of the present invention can be prepared by enzymatic digestion of the naturally occurring target gene, or mRNA or cDNA derived therefrom, by methods known in the art.


Diagnostic Samples


Diagnostic samples for use with the systems and in the methods of the present invention comprise nucleic acids suitable for providing RNAs expression information. In principle, the biological sample from which the expressed RNA is obtained and analyzed for target sequence expression can be any material suspected of comprising cancer tissue or cells. The diagnostic sample can be a biological sample used directly in a method of the invention. Alternatively, the diagnostic sample can be a sample prepared from a biological sample.


In one embodiment, the sample or portion of the sample comprising or suspected of comprising cancer tissue or cells can be any source of biological material, including cells, tissue or fluid, including bodily fluids. Non-limiting examples of the source of the sample include an aspirate, a needle biopsy, a cytology pellet, a bulk tissue preparation or a section thereof obtained for example by surgery or autopsy, lymph fluid, blood, plasma, serum, tumors, and organs. In some embodiments, the sample is from urine. Alternatively, the sample is from blood, plasma or serum. In some embodiments, the sample is from saliva.


The samples may be archival samples, having a known and documented medical outcome, or may be samples from current patients whose ultimate medical outcome is not yet known.


In some embodiments, the sample may be dissected prior to molecular analysis. The sample may be prepared via macrodissection of a bulk tumor specimen or portion thereof, or may be treated via microdissection, for example via Laser Capture Microdissection (LCM).


The sample may initially be provided in a variety of states, as fresh tissue, fresh frozen tissue, fine needle aspirates, and may be fixed or unfixed. Frequently, medical laboratories routinely prepare medical samples in a fixed state, which facilitates tissue storage. A variety of fixatives can be used to fix tissue to stabilize the morphology of cells, and may be used alone or in combination with other agents. Exemplary fixatives include crosslinking agents, alcohols, acetone, Bouin's solution, Zenker solution, Helv solution, osmic acid solution and Carnoy solution.


Crosslinking fixatives can comprise any agent suitable for forming two or more covalent bonds, for example an aldehyde. Sources of aldehydes typically used for fixation include formaldehyde, paraformaldehyde, glutaraldehyde or formalin. Preferably, the crosslinking agent comprises formaldehyde, which may be included in its native form or in the form of paraformaldehyde or formalin. One of skill in the art would appreciate that for samples in which crosslinking fixatives have been used special preparatory steps may be necessary including for example heating steps and proteinase-k digestion; see methods.


One or more alcohols may be used to fix tissue, alone or in combination with other fixatives. Exemplary alcohols used for fixation include methanol, ethanol and isopropanol.


Formalin fixation is frequently used in medical laboratories. Formalin comprises both an alcohol, typically methanol, and formaldehyde, both of which can act to fix a biological sample.


Whether fixed or unfixed, the biological sample may optionally be embedded in an embedding medium. Exemplary embedding media used in histology including paraffin, Tissue-Tek® V.I.P.™, Paramat, Paramat Extra, Paraplast, Paraplast X-tra, Paraplast Plus, Peel Away Paraffin Embedding Wax, Polyester Wax, Carbowax Polyethylene Glycol, Polyfin™, Tissue Freezing Medium TFMFM, Cryo-Get™, and OCT Compound (Electron Microscopy Sciences, Hatfield, Pa.). Prior to molecular analysis, the embedding material may be removed via any suitable techniques, as known in the art. For example, where the sample is embedded in wax, the embedding material may be removed by extraction with organic solvent(s), for example xylenes. Kits are commercially available for removing embedding media from tissues. Samples or sections thereof may be subjected to further processing steps as needed, for example serial hydration or dehydration steps.


In some embodiments, the sample is a fixed, wax-embedded biological sample. Frequently, samples from medical laboratories are provided as fixed, wax-embedded samples, most commonly as formalin-fixed, paraffin embedded (FFPE) tissues.


Whatever the source of the biological sample, the target polynucleotide that is ultimately assayed can be prepared synthetically (in the case of control sequences), but typically is purified from the biological source and subjected to one or more preparative steps. The RNA may be purified to remove or diminish one or more undesired components from the biological sample or to concentrate it. Conversely, where the RNA is too concentrated for the particular assay, it may be diluted.


RNA Extraction


RNA can be extracted and purified from biological samples using any suitable technique. A number of techniques are known in the art, and several are commercially available (e.g., FormaPure nucleic acid extraction kit, Agencourt Biosciences, Beverly Mass., High Pure FFPE RNA Micro Kit, Roche Applied Science, Indianapolis, Ind.). RNA can be extracted from frozen tissue sections using TRIzol (Invitrogen, Carlsbad, Calif.) and purified using RNeasy Protect kit (Qiagen, Valencia, Calif.). RNA can be further purified using DNAse I treatment (Ambion, Austin, Tex.) to eliminate any contaminating DNA. RNA concentrations can be made using a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Rockland, Del.). RNA can be further purified to eliminate contaminants that interfere with cDNA synthesis by cold sodium acetate precipitation. RNA integrity can be evaluated by running electropherograms, and RNA integrity number (RIN, a correlative measure that indicates intactness of mRNA) can be determined using the RNA 6000 PicoAssay for the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, Calif.).


Kits


Kits for performing the desired method(s) are also provided, and comprise a container or housing for holding the components of the kit, one or more vessels containing one or more nucleic acid(s), and optionally one or more vessels containing one or more reagents. The reagents include those described in the composition of matter section above, and those reagents useful for performing the methods described, including amplification reagents, and may include one or more probes, primers or primer pairs, enzymes (including polymerases and ligases), intercalating dyes, labeled probes, and labels that can be incorporated into amplification products.


In some embodiments, the kit comprises primers or primer pairs specific for those subsets and combinations of target sequences described herein. At least two, three, four or five primers or pairs of primers suitable for selectively amplifying the same number of target sequence-specific polynucleotides can be provided in kit form. In some embodiments, the kit comprises from five to fifty primers or pairs of primers suitable for amplifying the same number of target sequence-representative polynucleotides of interest.


In some embodiments, the primers or primer pairs of the kit, when used in an amplification reaction, specifically amplify a non-coding target, coding target, or non-exonic target described herein, at least a portion of a nucleic acid sequence depicted in one of SEQ ID NOs: 1-43, a nucleic acid sequence corresponding to a target selected from Tables 2, 4, 11 or 55, an RNA form thereof, or a complement to either thereof. The kit may include a plurality of such primers or primer pairs which can specifically amplify a corresponding plurality of different amplify a non-coding target, coding target, or non-exonic transcript described herein, nucleic acids depicted in one of SEQ ID NOs: 1-43, a nucleic acid sequence corresponding to a target selected from Tables 2, 4, 11 or 55, RNA forms thereof, or complements thereto. At least two, three, four or five primers or pairs of primers suitable for selectively amplifying the same number of target sequence-specific polynucleotides can be provided in kit form. In some embodiments, the kit comprises from five to fifty primers or pairs of primers suitable for amplifying the same number of target sequence-representative polynucleotides of interest. In some instances, the targets are selected from Table 2. In some instances, the targets are selected from Table 4. In some instances, the targets are selected from Table 11.


The reagents may independently be in liquid or solid form. The reagents may be provided in mixtures. Control samples and/or nucleic acids may optionally be provided in the kit. Control samples may include tissue and/or nucleic acids obtained from or representative of tumor samples from patients showing no evidence of disease, as well as tissue and/or nucleic acids obtained from or representative of tumor samples from patients that develop systemic cancer.


The nucleic acids may be provided in an array format, and thus an array or microarray may be included in the kit. The kit optionally may be certified by a government agency for use in prognosing the disease outcome of cancer patients and/or for designating a treatment modality.


Instructions for using the kit to perform one or more methods of the invention can be provided with the container, and can be provided in any fixed medium. The instructions may be located inside or outside the container or housing, and/or may be printed on the interior or exterior of any surface thereof. A kit may be in multiplex form for concurrently detecting and/or quantitating one or more different target polynucleotides representing the expressed target sequences.


Devices


Devices useful for performing methods of the invention are also provided. The devices can comprise means for characterizing the expression level of a target sequence of the invention, for example components for performing one or more methods of nucleic acid extraction, amplification, and/or detection. Such components may include one or more of an amplification chamber (for example a thermal cycler), a plate reader, a spectrophotometer, capillary electrophoresis apparatus, a chip reader, and or robotic sample handling components. These components ultimately can obtain data that reflects the expression level of the target sequences used in the assay being employed.


The devices may include an excitation and/or a detection means. Any instrument that provides a wavelength that can excite a species of interest and is shorter than the emission wavelength(s) to be detected can be used for excitation. Commercially available devices can provide suitable excitation wavelengths as well as suitable detection component.


Exemplary excitation sources include a broadband UV light source such as a deuterium lamp with an appropriate filter, the output of a white light source such as a xenon lamp or a deuterium lamp after passing through a monochromator to extract out the desired wavelength(s), a continuous wave (cw) gas laser, a solid state diode laser, or any of the pulsed lasers. Emitted light can be detected through any suitable device or technique; many suitable approaches are known in the art. For example, a fluorimeter or spectrophotometer may be used to detect whether the test sample emits light of a wavelength characteristic of a label used in an assay.


The devices typically comprise a means for identifying a given sample, and of linking the results obtained to that sample. Such means can include manual labels, barcodes, and other indicators which can be linked to a sample vessel, and/or may optionally be included in the sample itself, for example where an encoded particle is added to the sample. The results may be linked to the sample, for example in a computer memory that contains a sample designation and a record of expression levels obtained from the sample. Linkage of the results to the sample can also include a linkage to a particular sample receptacle in the device, which is also linked to the sample identity.


In some instances, the devices also comprise a means for correlating the expression levels of the target sequences being studied with a prognosis of disease outcome. In some instances, such means comprises one or more of a variety of correlative techniques, including lookup tables, algorithms, multivariate models, and linear or nonlinear combinations of expression models or algorithms. The expression levels may be converted to one or more likelihood scores, reflecting likelihood that the patient providing the sample may exhibit a particular disease outcome. The models and/or algorithms can be provided in machine readable format and can optionally further designate a treatment modality for a patient or class of patients.


The device also comprises output means for outputting the disease status, prognosis and/or a treatment modality. Such output means can take any form which transmits the results to a patient and/or a healthcare provider, and may include a monitor, a printed format, or both. The device may use a computer system for performing one or more of the steps provided.


In some embodiments, the method, systems, and kits disclosed herein further comprise the transmission of data/information. For example, data/information derived from the detection and/or quantification of the target may be transmitted to another device and/or instrument. In some instances, the information obtained from an algorithm is transmitted to another device and/or instrument. Transmission of the data/information may comprise the transfer of data/information from a first source to a second source. The first and second sources may be in the same approximate location (e.g., within the same room, building, block, campus). Alternatively, first and second sources may be in multiple locations (e.g., multiple cities, states, countries, continents, etc).


In some instances, transmission of the data/information comprises digital transmission or analog transmission. Digital transmission may comprise the physical transfer of data (a digital bit stream) over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibers, wireless communication channels, and storage media. In some embodiments, the data is represented as an electromagnetic signal, such as an electrical voltage, radiowave, microwave, or infrared signal.


Analog transmission may comprise the transfer of a continuously varying analog signal. The messages can either be represented by a sequence of pulses by means of a line code (baseband transmission), or by a limited set of continuously varying wave forms (passband transmission), using a digital modulation method. The passband modulation and corresponding demodulation (also known as detection) can be carried out by modem equipment. According to the most common definition of digital signal, both baseband and passband signals representing bit-streams are considered as digital transmission, while an alternative definition only considers the baseband signal as digital, and passband transmission of digital data as a form of digital-to-analog conversion.


Amplification and Hybridization


Following sample collection and nucleic acid extraction, the nucleic acid portion of the sample comprising RNA that is or can be used to prepare the target polynucleotide(s) of interest can be subjected to one or more preparative reactions. These preparative reactions can include in vitro transcription (IVT), labeling, fragmentation, amplification and other reactions. mRNA can first be treated with reverse transcriptase and a primer to create cDNA prior to detection, quantitation and/or amplification; this can be done in vitro with purified mRNA or in situ, e.g., in cells or tissues affixed to a slide.


By “amplification” is meant any process of producing at least one copy of a nucleic acid, in this case an expressed RNA, and in many cases produces multiple copies. An amplification product can be RNA or DNA, and may include a complementary strand to the expressed target sequence. DNA amplification products can be produced initially through reverse translation and then optionally from further amplification reactions. The amplification product may include all or a portion of a target sequence, and may optionally be labeled. A variety of amplification methods are suitable for use, including polymerase-based methods and ligation-based methods. Exemplary amplification techniques include the polymerase chain reaction method (PCR), the lipase chain reaction (LCR), ribozyme-based methods, self sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), the use of Q Beta replicase, reverse transcription, nick translation, and the like.


Asymmetric amplification reactions may be used to preferentially amplify one strand representing the target sequence that is used for detection as the target polynucleotide. In some cases, the presence and/or amount of the amplification product itself may be used to determine the expression level of a given target sequence. In other instances, the amplification product may be used to hybridize to an array or other substrate comprising sensor polynucleotides which are used to detect and/or quantitate target sequence expression.


The first cycle of amplification in polymerase-based methods typically forms a primer extension product complementary to the template strand. If the template is single-stranded RNA, a polymerase with reverse transcriptase activity is used in the first amplification to reverse transcribe the RNA to DNA, and additional amplification cycles can be performed to copy the primer extension products. The primers for a PCR must, of course, be designed to hybridize to regions in their corresponding template that can produce an amplifiable segment; thus, each primer must hybridize so that its 3′ nucleotide is paired to a nucleotide in its complementary template strand that is located 3′ from the 3′ nucleotide of the primer used to replicate that complementary template strand in the PCR.


The target polynucleotide can be amplified by contacting one or more strands of the target polynucleotide with a primer and a polymerase having suitable activity to extend the primer and copy the target polynucleotide to produce a full-length complementary polynucleotide or a smaller portion thereof. Any enzyme having a polymerase activity that can copy the target polynucleotide can be used, including DNA polymerases, RNA polymerases, reverse transcriptases, enzymes having more than one type of polymerase or enzyme activity. The enzyme can be thermolabile or thermostable. Mixtures of enzymes can also be used. Exemplary enzymes include: DNA polymerases such as DNA Polymerase I (“Pol I”), the Klenow fragment of Pol I, T4, T7, Sequenase® T7, Sequenase® Version 2.0 T7, Tub, Taq, Tth, Pfic, Pfu, Tsp, Tfl, Tli and Pyrococcus sp GB-D DNA polymerases; RNA polymerases such as E. coil, SP6, T3 and T7 RNA polymerases; and reverse transcriptases such as AMV, M-MuLV, MMLV, RNAse H MMLV (SuperScript®), SuperScript® II, ThermoScript®, HIV-1, and RAV2 reverse transcriptases. All of these enzymes are commercially available. Exemplary polymerases with multiple specificities include RAV2 and Tli (exo-) polymerases. Exemplary thermostable polymerases include Tub, Taq, Tth, Pfic, Pfu, Tsp, Tfl, Tli and Pyrococcus sp. GB-D DNA polymerases.


Suitable reaction conditions are chosen to permit amplification of the target polynucleotide, including pH, buffer, ionic strength, presence and concentration of one or more salts, presence and concentration of reactants and cofactors such as nucleotides and magnesium and/or other metal ions (e.g., manganese), optional cosolvents, temperature, thermal cycling profile for amplification schemes comprising a polymerase chain reaction, and may depend in part on the polymerase being used as well as the nature of the sample. Cosolvents include formamide (typically at from about 2 to about 10%), glycerol (typically at from about 5 to about 10%), and DMSO (typically at from about 0.9 to about 10%). Techniques may be used in the amplification scheme in order to minimize the production of false positives or artifacts produced during amplification. These include “touchdown” PCR, hot-start techniques, use of nested primers, or designing PCR primers so that they form stem-loop structures in the event of primer-dimer formation and thus are not amplified. Techniques to accelerate PCR can be used, for example centrifugal PCR, which allows for greater convection within the sample, and comprising infrared heating steps for rapid heating and cooling of the sample. One or more cycles of amplification can be performed. An excess of one primer can be used to produce an excess of one primer extension product during PCR; preferably, the primer extension product produced in excess is the amplification product to be detected. A plurality of different primers may be used to amplify different target polynucleotides or different regions of a particular target polynucleotide within the sample.


An amplification reaction can be performed under conditions which allow an optionally labeled sensor polynucleotide to hybridize to the amplification product during at least part of an amplification cycle. When the assay is performed in this manner, real-time detection of this hybridization event can take place by monitoring for light emission or fluorescence during amplification, as known in the art.


Where the amplification product is to be used for hybridization to an array or microarray, a number of suitable commercially available amplification products are available. These include amplification kits available from NuGEN, Inc. (San Carlos, Calif.), including the WT-Ovation™ System, WT-Ovation™ System v2, WT-Ovation™ Pico System, WT-Ovation™ FFPE Exon Module, WT-Ovation™ FFPE Exon Module RiboAmp and RiboAmp Plus RNA Amplification Kits (MDS Analytical Technologies (formerly Arcturus) (Mountain View, Calif.), Genisphere, Inc. (Hatfield, Pa.), including the RampUp Plus™ and SenseAmp™ RNA Amplification kits, alone or in combination. Amplified nucleic acids may be subjected to one or more purification reactions after amplification and labeling, for example using magnetic beads (e.g., RNAClean magnetic beads, Agencourt Biosciences).


Multiple RNA biomarkers can be analyzed using real-time quantitative multiplex RT-PCR platforms and other multiplexing technologies such as GenomeLab GeXP Genetic Analysis System (Beckman Coulter, Foster City, Calif.), SmartCycler® 9600 or GeneXpert® Systems (Cepheid, Sunnyvale, Calif.), ABI 7900 HT Fast Real Time PCR system (Applied Biosystems, Foster City, Calif.), LightCycler® 480 System (Roche Molecular Systems, Pleasanton, Calif.), xMAP 100 System (Luminex, Austin, Tex.) Solexa Genome Analysis System (Illumina, Hayward, Calif.), OpenArray Real Time qPCR (BioTrove, Woburn, Mass.) and BeadXpress System (Illumina, Hayward, Calif.).


Detection and/or Quantification of Target Sequences


Any method of detecting and/or quantitating the expression of the encoded target sequences can in principle be used in the invention. The expressed target sequences can be directly detected and/or quantitated, or may be copied and/or amplified to allow detection of amplified copies of the expressed target sequences or its complement.


Methods for detecting and/or quantifying a target can include Northern blotting, sequencing, array or microarray hybridization, by enzymatic cleavage of specific structures (e.g., an Invader® assay, Third Wave Technologies, e.g. as described in U.S. Pat. Nos. 5,846,717, 6,090,543; 6,001,567; 5,985,557; and 5,994,069) and amplification methods, e.g. RT-PCR, including in a TaqMan® assay (PE Biosystems, Foster City, Calif., e.g. as described in U.S. Pat. Nos. 5,962,233 and 5,538,848), and may be quantitative or semi-quantitative, and may vary depending on the origin, amount and condition of the available biological sample. Combinations of these methods may also be used. For example, nucleic acids may be amplified, labeled and subjected to microarray analysis.


In some instances, target sequences may be detected by sequencing. Sequencing methods may comprise whole genome sequencing or exome sequencing. Sequencing methods such as Maxim-Gilbert, chain-termination, or high-throughput systems may also be used. Additional, suitable sequencing techniques include classic dideoxy sequencing reactions (Sanger method) using labeled terminators or primers and gel separation in slab or capillary, sequencing by synthesis using reversibly terminated labeled nucleotides, pyrosequencing, 454 sequencing, allele specific hybridization to a library of labeled oligonucleotide probes, sequencing by synthesis using allele specific hybridization to a library of labeled clones that is followed by ligation, real time monitoring of the incorporation of labeled nucleotides during a polymerization step, and SOLiD sequencing.


Additional methods for detecting and/or quantifying a target include single-molecule sequencing (e.g., Helicos, PacBio), sequencing by synthesis (e.g., Illumina, Ion Torrent), sequencing by ligation (e.g., ABI SOLID), sequencing by hybridization (e.g., Complete Genomics), in situ hybridization, bead-array technologies (e.g., Luminex xMAP, Illumina BeadChips), branched DNA technology (e.g., Panomics, Genisphere). Sequencing methods may use fluorescent (e.g., Illumina) or electronic (e.g., Ion Torrent, Oxford Nanopore) methods of detecting nucleotides.


Reverse Transcription for ORT-PCR Analysis


Reverse transcription can be performed by any method known in the art. For example, reverse transcription may be performed using the Omniscript kit (Qiagen, Valencia, Calif.), Superscript III kit (Invitrogen, Carlsbad, Calif.), for RT-PCR. Target-specific priming can be performed in order to increase the sensitivity of detection of target sequences and generate target-specific cDNA.


TaqMan® Gene Expression Analysis


TaqMan®RT-PCR can be performed using Applied Biosystems Prism (ABI) 7900 HT instruments in a 5 1.11 volume with target sequence-specific cDNA equivalent to 1 ng total RNA.


Primers and probes concentrations for TaqMan analysis are added to amplify fluorescent amplicons using PCR cycling conditions such as 95° C. for 10 minutes for one cycle, 95° C. for 20 seconds, and 60° C. for 45 seconds for 40 cycles. A reference sample can be assayed to ensure reagent and process stability. Negative controls (e.g., no template) should be assayed to monitor any exogenous nucleic acid contamination.


Classification Arrays


The present invention contemplates that a probe set or probes derived therefrom may be provided in an array format. In the context of the present invention, an “array” is a spatially or logically organized collection of polynucleotide probes. An array comprising probes specific for a coding target, non-coding target, or a combination thereof may be used. Alternatively, an array comprising probes specific for two or more of transcripts of a target selected from any of Tables 2, 4, 11 and 55 or a product derived thereof can be used. Desirably, an array may be specific for 5, 10, 15, 20, 25, 30, 50, 75, 100, 150, 200 or more of transcripts of a target selected from any of Tables 2, 4, 11 and 55. In some instances, the target is selected from Table 2. In other instances, the target is selected from Table 4. In some embodiments, the target is selected from Table 11. Expression of these sequences may be detected alone or in combination with other transcripts. In some embodiments, an array is used which comprises a wide range of sensor probes for prostate-specific expression products, along with appropriate control sequences. In some instances, the array may comprise the Human Exon 1.0 ST Array (HuEx 1.0 ST, Affymetrix, Inc., Santa Clara, Calif.).


Typically the polynucleotide probes are attached to a solid substrate and are ordered so that the location (on the substrate) and the identity of each are known. The polynucleotide probes can be attached to one of a variety of solid substrates capable of withstanding the reagents and conditions necessary for use of the array. Examples include, but are not limited to, polymers, such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene and polystyrene; ceramic; silicon; silicon dioxide; modified silicon; (fused) silica, quartz or glass; functionalized glass; paper, such as filter paper; diazotized cellulose; nitrocellulose filter; nylon membrane; and polyacrylamide gel pad. Substrates that are transparent to light are useful for arrays that may be used in an assay that involves optical detection.


Examples of array formats include membrane or filter arrays (for example, nitrocellulose, nylon arrays), plate arrays (for example, multiwell, such as a 24-, 96-, 256-, 384-, 864- or 1536-well, microtitre plate arrays), pin arrays, and bead arrays (for example, in a liquid “slurry”). Arrays on substrates such as glass or ceramic slides are often referred to as chip arrays or “chips.” Such arrays are well known in the art. In one embodiment of the present invention, the Cancer Prognosticarray is a chip.


Data Analysis


In some embodiments, one or more pattern recognition methods can be used in analyzing the expression level of target sequences. The pattern recognition method can comprise a linear combination of expression levels, or a nonlinear combination of expression levels. In some embodiments, expression measurements for RNA transcripts or combinations of RNA transcript levels are formulated into linear or non-linear models or algorithms (e.g., an ‘expression signature’) and converted into a likelihood score. This likelihood score indicates the probability that a biological sample is from a patient who may exhibit no evidence of disease, who may exhibit systemic cancer, or who may exhibit biochemical recurrence. The likelihood score can be used to distinguish these disease states. The models and/or algorithms can be provided in machine readable format, and may be used to correlate expression levels or an expression profile with a disease state, and/or to designate a treatment modality for a patient or class of patients.


Assaying the expression level for a plurality of targets may comprise the use of an algorithm or classifier. Array data can be managed, classified, and analyzed using techniques known in the art. Assaying the expression level for a plurality of targets may comprise probe set modeling and data pre-processing. Probe set modeling and data pre-processing can be derived using the Robust Multi-Array (RMA) algorithm or variants GC-RMA, fRMA, Probe Logarithmic Intensity Error (PLIER) algorithm or variant iterPLIER. Variance or intensity filters can be applied to pre-process data using the RMA algorithm, for example by removing target sequences with a standard deviation of <10 or a mean intensity of <100 intensity units of a normalized data range, respectively.


Alternatively, assaying the expression level for a plurality of targets may comprise the use of a machine learning algorithm. The machine learning algorithm may comprise a supervised learning algorithm. Examples of supervised learning algorithms may include Average One-Dependence Estimators (AODE), Artificial neural network (e.g., Backpropagation), Bayesian statistics (e.g., Naive Bayes classifier, Bayesian network, Bayesian knowledge base), Case-based reasoning, Decision trees, Inductive logic programming, Gaussian process regression, Group method of data handling (GMDH), Learning Automata, Learning Vector Quantization, Minimum message length (decision trees, decision graphs, etc.), Lazy learning, Instance-based learning Nearest Neighbor Algorithm, Analogical modeling, Probably approximately correct learning (PAC) learning, Ripple down rules, a knowledge acquisition methodology, Symbolic machine learning algorithms, Subsymbolic machine learning algorithms, Support vector machines, Random Forests, Ensembles of classifiers, Bootstrap aggregating (bagging), and Boosting. Supervised learning may comprise ordinal classification such as regression analysis and Information fuzzy networks (IFN). Alternatively, supervised learning methods may comprise statistical classification, such as AODE, Linear classifiers (e.g., Fisher's linear discriminant, Logistic regression, Naive Bayes classifier, Perceptron, and Support vector machine), quadratic classifiers, k-nearest neighbor, Boosting, Decision trees (e.g., C4.5, Random forests), Bayesian networks, and Hidden Markov models.


The machine learning algorithms may also comprise an unsupervised learning algorithm. Examples of unsupervised learning algorithms may include artificial neural network, Data clustering, Expectation-maximization algorithm, Self-organizing map, Radial basis function network, Vector Quantization, Generative topographic map, Information bottleneck method, and IBSEAD. Unsupervised learning may also comprise association rule learning algorithms such as Apriori algorithm, Eclat algorithm and FP-growth algorithm. Hierarchical clustering, such as Single-linkage clustering and Conceptual clustering, may also be used. Alternatively, unsupervised learning may comprise partitional clustering such as K-means algorithm and Fuzzy clustering.


In some instances, the machine learning algorithms comprise a reinforcement learning algorithm. Examples of reinforcement learning algorithms include, but are not limited to, temporal difference learning, Q-learning and Learning Automata. Alternatively, the machine learning algorithm may comprise Data Pre-processing.


Preferably, the machine learning algorithms may include, but are not limited to, Average One-Dependence Estimators (AODE), Fisher's linear discriminant, Logistic regression, Perceptron, Multilayer Perceptron, Artificial Neural Networks, Support vector machines, Quadratic classifiers, Boosting, Decision trees, C4.5, Bayesian networks, Hidden Markov models, High-Dimensional Discriminant Analysis, and Gaussian Mixture Models. The machine learning algorithm may comprise support vector machines, Naïve Bayes classifier, k-nearest neighbor, high-dimensional discriminant analysis, or Gaussian mixture models. In some instances, the machine learning algorithm comprises Random Forests.


Additional Techniques and Tests


Factors known in the art for diagnosing and/or suggesting, selecting, designating, recommending or otherwise determining a course of treatment for a patient or class of patients suspected of having cancer can be employed in combination with measurements of the target sequence expression. The methods disclosed herein may include additional techniques such as cytology, histology, ultrasound analysis, MRI results, CT scan results, and measurements of PSA levels.


Certified tests for classifying disease status and/or designating treatment modalities may also be used in diagnosing, predicting, and/or monitoring the status or outcome of a cancer in a subject. A certified test may comprise a means for characterizing the expression levels of one or more of the target sequences of interest, and a certification from a government regulatory agency endorsing use of the test for classifying the disease status of a biological sample.


In some embodiments, the certified test may comprise reagents for amplification reactions used to detect and/or quantitate expression of the target sequences to be characterized in the test. An array of probe nucleic acids can be used, with or without prior target amplification, for use in measuring target sequence expression.


The test is submitted to an agency having authority to certify the test for use in distinguishing disease status and/or outcome. Results of detection of expression levels of the target sequences used in the test and correlation with disease status and/or outcome are submitted to the agency. A certification authorizing the diagnostic and/or prognostic use of the test is obtained.


Also provided are portfolios of expression levels comprising a plurality of normalized expression levels of the target selected from any of Tables 2, 4, 11 and 55. In some instances, the target is selected from Table 2. In other instances, the target is selected from Table 4. In some embodiments, the target is selected from Table 11. Such portfolios may be provided by performing the methods described herein to obtain expression levels from an individual patient or from a group of patients. The expression levels can be normalized by any method known in the art; exemplary normalization methods that can be used in various embodiments include Robust Multichip Average (RMA), probe logarithmic intensity error estimation (PLIER), non-linear fit (NLFIT) quantile-based and nonlinear normalization, and combinations thereof. Background correction can also be performed on the expression data; exemplary techniques useful for background correction include mode of intensities, normalized using median polish probe modeling and sketch-normalization.


In some embodiments, portfolios are established such that the combination of genes in the portfolio exhibit improved sensitivity and specificity relative to known methods. In considering a group of genes for inclusion in a portfolio, a small standard deviation in expression measurements correlates with greater specificity. Other measurements of variation such as correlation coefficients can also be used in this capacity. The invention also encompasses the above methods where the expression level determines the status or outcome of a cancer in the subject with at least about 45% specificity. In some embodiments, the expression level determines the status or outcome of a cancer in the subject with at least about 50% specificity. In some embodiments, the expression level determines the status or outcome of a cancer in the subject with at least about 55% specificity. In some embodiments, the expression level determines the status or outcome of a cancer in the subject with at least about 60% specificity. In some embodiments, the expression level determines the status or outcome of a cancer in the subject with at least about 65% specificity. In some embodiments, the expression level determines the status or outcome of a cancer in the subject with at least about 70% specificity. In some embodiments, the expression level determines the status or outcome of a cancer in the subject with at least about 75% specificity. In some embodiments, the expression level determines the status or outcome of a cancer in the subject with at least about 80% specificity. In some embodiments, t the expression level determines the status or outcome of a cancer in the subject with at least about 85% specificity. In some embodiments, the expression level determines the status or outcome of a cancer in the subject with at least about 90% specificity. In some embodiments, the expression level determines the status or outcome of a cancer in the subject with at least about 95% specificity.


The invention also encompasses the any of the methods disclosed herein where the accuracy of diagnosing, monitoring, and/or predicting a status or outcome of a cancer is at least about 45%. In some embodiments, the accuracy of diagnosing, monitoring, and/or predicting a status or outcome of a cancer is at least about 50%. In some embodiments, the accuracy of diagnosing, monitoring, and/or predicting a status or outcome of a cancer is at least about 55%. In some embodiments, the accuracy of diagnosing, monitoring, and/or predicting a status or outcome of a cancer is at least about 60%. In some embodiments, the accuracy of diagnosing, monitoring, and/or predicting a status or outcome of a cancer is at least about 65%. In some embodiments, the accuracy of diagnosing, monitoring, and/or predicting a status or outcome of a cancer is at least about 70%. In some embodiments, the accuracy of diagnosing, monitoring, and/or predicting a status or outcome of a cancer is at least about 75%. In some embodiments, the accuracy of diagnosing, monitoring, and/or predicting a status or outcome of a cancer is at least about 80%. In some embodiments, the accuracy of diagnosing, monitoring, and/or predicting a status or outcome of a cancer is at least about 85%. In some embodiments, the accuracy of diagnosing, monitoring, and/or predicting a status or outcome of a cancer is at least about 90%. In some embodiments, the accuracy of diagnosing, monitoring, and/or predicting a status or outcome of a cancer is at least about 95%.


The accuracy of a classifier or biomarker may be determined by the 95% confidence interval (CI). Generally, a classifier or biomarker is considered to have good accuracy if the 95% CI does not overlap 1. In some instances, the 95% CI of a classifier or biomarker is at least about 1.08, 1.10, 1.12, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.20, 1.21, 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28, 1.29, 1.30, 1.31, 1.32, 1.33, 1.34, or 1.35 or more. The 95% CI of a classifier or biomarker may be at least about 1.14, 1.15, 1.16, 1.20, 1.21, 1.26, or 1.28. The 95% CI of a classifier or biomarker may be less than about 1.75, 1.74, 1.73, 1.72, 1.71, 1.70, 1.69, 1.68, 1.67, 1.66, 1.65, 1.64, 1.63, 1.62, 1.61, 1.60, 1.59, 1.58, 1.57, 1.56, 1.55, 1.54, 1.53, 1.52, 1.51, 1.50 or less. The 95% CI of a classifier or biomarker may be less than about 1.61, 1.60, 1.59, 1.58, 1.56, 1.55, or 1.53. The 95% CI of a classifier or biomarker may be between about 1.10 to 1.70, between about 1.12 to about 1.68, between about 1.14 to about 1.62, between about 1.15 to about 1.61, between about 1.15 to about 1.59, between about 1.16 to about 1.160, between about 1.19 to about 1.55, between about 1.20 to about 1.54, between about 1.21 to about 1.53, between about 1.26 to about 1.63, between about 1.27 to about 1.61, or between about 1.28 to about 1.60.


In some instances, the accuracy of a biomarker or classifier is dependent on the difference in range of the 95% CI (e.g., difference in the high value and low value of the 95% CI interval). Generally, biomarkers or classifiers with large differences in the range of the 95% CI interval have greater variability and are considered less accurate than biomarkers or classifiers with small differences in the range of the 95% CI intervals. In some instances, a biomarker or classifier is considered more accurate if the difference in the range of the 95% CI is less than about 0.60, 0.55, 0.50, 0.49, 0.48, 0.47, 0.46, 0.45, 0.44, 0.43, 0.42, 0.41, 0.40, 0.39, 0.38, 0.37, 0.36, 0.35, 0.34, 0.33, 0.32, 0.31, 0.30, 0.29, 0.28, 0.27, 0.26, 0.25 or less. The difference in the range of the 95% CI of a biomarker or classifier may be less than about 0.48, 0.45, 0.44, 0.42, 0.40, 0.37, 0.35, 0.33, or 0.32. In some instances, the difference in the range of the 95% CI for a biomarker or classifier is between about 0.25 to about 0.50, between about 0.27 to about 0.47, or between about 0.30 to about 0.45.


The invention also encompasses the any of the methods disclosed herein where the sensitivity is at least about 45%. In some embodiments, the sensitivity is at least about 50%. In some embodiments, the sensitivity is at least about 55%. In some embodiments, the sensitivity is at least about 60%. In some embodiments, the sensitivity is at least about 65%. In some embodiments, the sensitivity is at least about 70%. In some embodiments, the sensitivity is at least about 75%. In some embodiments, the sensitivity is at least about 80%. In some embodiments, the sensitivity is at least about 85%. In some embodiments, the sensitivity is at least about 90%. In some embodiments, the sensitivity is at least about 95%.


In some instances, the classifiers or biomarkers disclosed herein are clinically significant. In some instances, the clinical significance of the classifiers or biomarkers is determined by the AUC value. In order to be clinically significant, the AUC value is at least about 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, or 0.95. The clinical significance of the classifiers or biomarkers can be determined by the percent accuracy. For example, a classifier or biomarker is determined to be clinically significant if the accuracy of the classifier or biomarker is at least about 50%, 55%, 60%, 65%, 70%, 72%, 75%, 77%, 80%, 82%, 84%, 86%, 88%, 90%, 92%, 94%, 96%, or 98%.


In other instances, the clinical significance of the classifiers or biomarkers is determined by the median fold difference (MDF) value. In order to be clinically significant, the MDF value is at least about 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.9, or 2.0. In some instances, the MDF value is greater than or equal to 1.1. In other instances, the MDF value is greater than or equal to 1.2. Alternatively, or additionally, the clinical significance of the classifiers or biomarkers is determined by the t-test P-value. In some instances, in order to be clinically significant, the t-test P-value is less than about 0.070, 0.065, 0.060, 0.055, 0.050, 0.045, 0.040, 0.035, 0.030, 0.025, 0.020, 0.015, 0.010, 0.005, 0.004, or 0.003. The t-test P-value can be less than about 0.050. Alternatively, the t-test P-value is less than about 0.010.


In some instances, the clinical significance of the classifiers or biomarkers is determined by the clinical outcome. For example, different clinical outcomes can have different minimum or maximum thresholds for AUC values, MDF values, t-test P-values, and accuracy values that would determine whether the classifier or biomarker is clinically significant. In another example, a classifier or biomarker is considered clinically significant if the P-value of the t-test was less than about 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.005, 0.004, 0.003, 0.002, or 0.001. In some instances, the P-value may be based on any of the following comparisons: BCR vs non-BCR, CP vs non-CP, PCSM vs non-PCSM. For example, a classifier or biomarker is determined to be clinically significant if the P-values of the differences between the KM curves for BCR vs non-BCR, CP vs non-CP, PCSM vs non-PCSM is lower than about 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.005, 0.004, 0.003, 0.002, or 0.001.


In some instances, the performance of the classifier or biomarker is based on the odds ratio. A classifier or biomarker may be considered to have good performance if the odds ratio is at least about 1.30, 1.31, 1.32, 1.33, 1.34, 1.35, 1.36, 1.37, 1.38, 1.39, 1.40, 1.41, 1.42, 1.43, 1.44, 1.45, 1.46, 1.47, 1.48, 1.49, 1.50, 1.52, 1.55, 1.57, 1.60, 1.62, 1.65, 1.67, 1.70 or more. In some instances, the odds ratio of a classifier or biomarker is at least about 1.33.


The clinical significance of the classifiers and/or biomarkers may be based on Univariable Analysis Odds Ratio P-value (uvaORPval). The Univariable Analysis Odds Ratio P-value (uvaORPval) of the classifier and/or biomarker may be between about 0-0.4. The Univariable Analysis Odds Ratio P-value (uvaORPval) of the classifier and/or biomarker may be between about 0-0.3. The Univariable Analysis Odds Ratio P-value (uvaORPval) of the classifier and/or biomarker may be between about 0-0.2. The Univariable Analysis Odds Ratio P-value (uvaORPval) of the classifier and/or biomarker may be less than or equal to 0.25, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11. The Univariable Analysis Odds Ratio P-value (uvaORPval) of the classifier and/or biomarker may be less than or equal to 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01. The Univariable Analysis Odds Ratio P-value (uvaORPval) of the classifier and/or biomarker may be less than or equal to 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001.


The clinical significance of the classifiers and/or biomarkers may be based on multivariable analysis Odds Ratio P-value (mvaORPval). The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier and/or biomarker may be between about 0-1. The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier and/or biomarker may be between about 0-0.9. The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier and/or biomarker may be between about 0-0.8. The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier and/or biomarker may be less than or equal to 0.90, 0.88, 0.86, 0.84, 0.82, 0.80. The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier and/or biomarker may be less than or equal to 0.78, 0.76, 0.74, 0.72, 0.70, 0.68, 0.66, 0.64, 0.62, 0.60, 0.58, 0.56, 0.54, 0.52, 0.50. The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier and/or biomarker may be less than or equal to 0.48, 0.46, 0.44, 0.42, 0.40, 0.38, 0.36, 0.34, 0.32, 0.30, 0.28, 0.26, 0.25, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11. The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier and/or biomarker may be less than or equal to 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01. The multivariable analysis Odds Ratio P-value (mvaORPval) of the classifier and/or biomarker may be less than or equal to 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001.


The clinical significance of the classifiers and/or biomarkers may be based on the Kaplan Meier P-value (KM P-value). The Kaplan Meier P-value (KM P-value) of the classifier and/or biomarker may be between about 0-0.8. The Kaplan Meier P-value (KM P-value) of the classifier and/or biomarker may be between about 0-0.7. The Kaplan Meier P-value (KM P-value) of the classifier and/or biomarker may be less than or equal to 0.80, 0.78, 0.76, 0.74, 0.72, 0.70, 0.68, 0.66, 0.64, 0.62, 0.60, 0.58, 0.56, 0.54, 0.52, 0.50. The Kaplan Meier P-value (KM P-value) of the classifier and/or biomarker may be less than or equal to 0.48, 0.46, 0.44, 0.42, 0.40, 0.38, 0.36, 0.34, 0.32, 0.30, 0.28, 0.26, 0.25, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11. The Kaplan Meier P-value (KM P-value) of the classifier and/or biomarker may be less than or equal to 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01. The Kaplan Meier P-value (KM P-value) of the classifier and/or biomarker may be less than or equal to 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001.


The clinical significance of the classifiers and/or biomarkers may be based on the survival AUC value (survAUC). The survival AUC value (survAUC) of the classifier and/or biomarker may be between about 0-1. The survival AUC value (survAUC) of the classifier and/or biomarker may be between about 0-0.9. The survival AUC value (survAUC) of the classifier and/or biomarker may be less than or equal to 1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.88, 0.86, 0.84, 0.82, 0.80. The survival AUC value (survAUC) of the classifier and/or biomarker may be less than or equal to 0.80, 0.78, 0.76, 0.74, 0.72, 0.70, 0.68, 0.66, 0.64, 0.62, 0.60, 0.58, 0.56, 0.54, 0.52, 0.50. The survival AUC value (survAUC) of the classifier and/or biomarker may be less than or equal to 0.48, 0.46, 0.44, 0.42, 0.40, 0.38, 0.36, 0.34, 0.32, 0.30, 0.28, 0.26, 0.25, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11. The survival AUC value (survAUC) of the classifier and/or biomarker may be less than or equal to 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01. The survival AUC value (survAUC) of the classifier and/or biomarker may be less than or equal to 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001.


The clinical significance of the classifiers and/or biomarkers may be based on the Univariable Analysis Hazard Ratio P-value (uvaHRPval). The Univariable Analysis Hazard Ratio P-value (uvaHRPval) of the classifier and/or biomarker may be between about 0-0.4. The Univariable Analysis Hazard Ratio P-value (uvaHRPval) of the classifier and/or biomarker may be between about 0-0.3. The Univariable Analysis Hazard Ratio P-value (uvaHRPval) of the classifier and/or biomarker may be less than or equal to 0.40, 0.38, 0.36, 0.34, 0.32. The Univariable Analysis Hazard Ratio P-value (uvaHRPval) of the classifier and/or biomarker may be less than or equal to 0.30, 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0.21, 0.20. The Univariable Analysis Hazard Ratio P-value (uvaHRPval) of the classifier and/or biomarker may be less than or equal to 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11. The Univariable Analysis Hazard Ratio P-value (uvaHRPval) of the classifier and/or biomarker may be less than or equal to 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01. The Univariable Analysis Hazard Ratio P-value (uvaHRPval) of the classifier and/or biomarker may be less than or equal to 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001.


The clinical significance of the classifiers and/or biomarkers may be based on the Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval of the classifier and/or biomarker may be between about 0-1. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval of the classifier and/or biomarker may be between about 0-0.9. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval of the classifier and/or biomarker may be less than or equal to 1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.88, 0.86, 0.84, 0.82, 0.80. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval of the classifier and/or biomarker may be less than or equal to 0.80, 0.78, 0.76, 0.74, 0.72, 0.70, 0.68, 0.66, 0.64, 0.62, 0.60, 0.58, 0.56, 0.54, 0.52, 0.50. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval of the classifier and/or biomarker may be less than or equal to 0.48, 0.46, 0.44, 0.42, 0.40, 0.38, 0.36, 0.34, 0.32, 0.30, 0.28, 0.26, 0.25, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval of the classifier and/or biomarker may be less than or equal to 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval)mva HRPval of the classifier and/or biomarker may be less than or equal to 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001.


The clinical significance of the classifiers and/or biomarkers may be based on the Multivariable Analysis Hazard Ratio P-value (mvaHRPval). The Multivariable Analysis Hazard Ratio P-value (mvaHRPval) of the classifier and/or biomarker may be between about 0 to about 0.60. significance of the classifier and/or biomarker may be based on the Multivariable Analysis Hazard Ratio P-value (mvaHRPval). The Multivariable Analysis Hazard Ratio P-value (mvaHRPval) of the classifier and/or biomarker may be between about 0 to about 0.50. significance of the classifier and/or biomarker may be based on the Multivariable Analysis Hazard Ratio P-value (mvaHRPval). The Multivariable Analysis Hazard Ratio P-value (mvaHRPval) of the classifier and/or biomarker may be less than or equal to 0.50, 0.47, 0.45, 0.43, 0.40, 0.38, 0.35, 0.33, 0.30, 0.28, 0.25, 0.22, 0.20, 0.18, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11, 0.10. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval) of the classifier and/or biomarker may be less than or equal to 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01. The Multivariable Analysis Hazard Ratio P-value (mvaHRPval) of the classifier and/or biomarker may be less than or equal to 0.01, 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001.


The classifiers and/or biomarkers disclosed herein may outperform current classifiers or clinical variables in providing clinically relevant analysis of a sample from a subject. In some instances, the classifiers or biomarkers may more accurately predict a clinical outcome or status as compared to current classifiers or clinical variables. For example, a classifier or biomarker may more accurately predict metastatic disease. Alternatively, a classifier or biomarker may more accurately predict no evidence of disease. In some instances, the classifier or biomarker may more accurately predict death from a disease. The performance of a classifier or biomarker disclosed herein may be based on the AUC value, odds ratio, 95% CI, difference in range of the 95% CI, p-value or any combination thereof.


The performance of the classifiers and/or biomarkers disclosed herein may be determined by AUC values and an improvement in performance may be determined by the difference in the AUC value of the classifier or biomarker disclosed herein and the AUC value of current classifiers or clinical variables. In some instances, a classifier and/or biomarker disclosed herein outperforms current classifiers or clinical variables when the AUC value of the classifier and/or or biomarker disclosed herein is greater than the AUC value of the current classifiers or clinical variables by at least about 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.022, 0.25, 0.27, 0.30, 0.32, 0.35, 0.37, 0.40, 0.42, 0.45, 0.47, 0.50 or more. In some instances, the AUC value of the classifier and/or or biomarker disclosed herein is greater than the AUC value of the current classifiers or clinical variables by at least about 0.10. In some instances, the AUC value of the classifier and/or or biomarker disclosed herein is greater than the AUC value of the current classifiers or clinical variables by at least about 0.13. In some instances, the AUC value of the classifier and/or or biomarker disclosed herein is greater than the AUC value of the current classifiers or clinical variables by at least about 0.18.


The performance of the classifiers and/or biomarkers disclosed herein may be determined by the odds ratios and an improvement in performance may be determined by comparing the odds ratio of the classifier or biomarker disclosed herein and the odds ratio of current classifiers or clinical variables. Comparison of the performance of two or more classifiers, biomarkers, and/or clinical variables can be generally be based on the comparison of the absolute value of (1-odds ratio) of a first classifier, biomarker or clinical variable to the absolute value of (1-odds ratio) of a second classifier, biomarker or clinical variable. Generally, the classifier, biomarker or clinical variable with the greater absolute value of (1-odds ratio) can be considered to have better performance as compared to the classifier, biomarker or clinical variable with a smaller absolute value of (1-odds ratio).


In some instances, the performance of a classifier, biomarker or clinical variable is based on the comparison of the odds ratio and the 95% confidence interval (CI). For example, a first classifier, biomarker or clinical variable may have a greater absolute value of (1-odds ratio) than a second classifier, biomarker or clinical variable, however, the 95% CI of the first classifier, biomarker or clinical variable may overlap 1 (e.g., poor accuracy), whereas the 95% CI of the second classifier, biomarker or clinical variable does not overlap 1. In this instance, the second classifier, biomarker or clinical variable is considered to outperform the first classifier, biomarker or clinical variable because the accuracy of the first classifier, biomarker or clinical variable is less than the accuracy of the second classifier, biomarker or clinical variable. In another example, a first classifier, biomarker or clinical variable may outperform a second classifier, biomarker or clinical variable based on a comparison of the odds ratio; however, the difference in the 95% CI of the first classifier, biomarker or clinical variable is at least about 2 times greater than the 95% CI of the second classifier, biomarker or clinical variable. In this instance, the second classifier, biomarker or clinical variable is considered to outperform the first classifier.


In some instances, a classifier or biomarker disclosed herein more accurate than a current classifier or clinical variable. The classifier or biomarker disclosed herein is more accurate than a current classifier or clinical variable if the range of 95% CI of the classifier or biomarker disclosed herein does not span or overlap 1 and the range of the 95% CI of the current classifier or clinical variable spans or overlaps 1.


In some instances, a classifier or biomarker disclosed herein more accurate than a current classifier or clinical variable. The classifier or biomarker disclosed herein is more accurate than a current classifier or clinical variable when difference in range of the 95% CI of the classifier or biomarker disclosed herein is about 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, 0.15, 0.14, 0.13, 0.12, 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02 times less than the difference in range of the 95% CI of the current classifier or clinical variable. The classifier or biomarker disclosed herein is more accurate than a current classifier or clinical variable when difference in range of the 95% CI of the classifier or biomarker disclosed herein between about 0.20 to about 0.04 times less than the difference in range of the 95% CI of the current classifier or clinical variable.


In some instances, the methods disclosed herein may comprise the use of a genomic classifier (GC) model. A general method for developing a GC model may comprise (a) providing a sample from a subject suffering from a cancer; (b) assaying the expression level for a plurality of targets; (c) generating a model by using a machine learning algorithm. In some instances, the machine learning algorithm comprises Random Forests. In another example, a GC model may developed by using a machine learning algorithm to analyze and rank genomic features. Analyzing the genomic features may comprise classifying one or more genomic features. The method may further comprise validating the classifier and/or refining the classifier by using a machine learning algorithm.


The methods disclosed herein may comprise generating one or more clinical classifiers (CC). The clinical classifier can be developed using one or more clinicopathologic variables. The clinicopathologic variables may be selected from the group comprising Lymph node invasion status (LNI); Surgical Margin Status (SMS); Seminal Vesicle Invasion (SVI); Extra Capsular Extension (ECE); Pathological Gleason Score; and the pre-operative PSA. The method may comprise using one or more of the clinicopathologic variables as binary variables. Alternatively, or additionally, the one or more clinicopathologic variables may be converted to a logarithmic value (e.g., log 10). The method may further comprise assembling the variables in a logistic regression. In some instances, the CC is combined with the GC to produce a genomic clinical classifier (GCC).


In some instances, the methods disclosed herein may comprise the use of a genomic-clinical classifier (GCC) model. A general method for developing a GCC model may comprise (a) providing a sample from a subject suffering from a cancer; (b) assaying the expression level for a plurality of targets; (c) generating a model by using a machine learning algorithm. In some instances, the machine learning algorithm comprises Random Forests.


Cancer


The systems, compositions and methods disclosed herein may be used to diagnosis, monitor and/or predict the status or outcome of a cancer. Generally, a cancer is characterized by the uncontrolled growth of abnormal cells anywhere in a body. The abnormal cells may be termed cancer cells, malignant cells, or tumor cells. Many cancers and the abnormal cells that compose the cancer tissue are further identified by the name of the tissue that the abnormal cells originated from (for example, breast cancer, lung cancer, colon cancer, prostate cancer, pancreatic cancer, thyroid cancer). Cancer is not confined to humans; animals and other living organisms can get cancer.


In some instances, the cancer may be malignant. Alternatively, the cancer may be benign. The cancer may be a recurrent and/or refractory cancer. Most cancers can be classified as a carcinoma, sarcoma, leukemia, lymphoma, myeloma, or a central nervous system cancer.


The cancer may be a sarcoma. Sarcomas are cancers of the bone, cartilage, fat, muscle, blood vessels, or other connective or supportive tissue. Sarcomas include, but are not limited to, bone cancer, fibrosarcoma, chondrosarcoma, Ewing's sarcoma, malignant hemangioendothelioma, malignant schwannoma, bilateral vestibular schwannoma, osteosarcoma, soft tissue sarcomas (e.g. alveolar soft part. sarcoma, angiosarcoma, cystosarcoma phylloides, dermatofibrosarcoma, desmoid tumor, epithelioid sarcoma, extraskeletal osteosarcoma, fibrosarcoma, hemangiopericytoma, hemangiosarcoma, Kaposi's sarcoma, leiomyosarcoma, liposarcoma, lymphangiosarcoma, lymphosarcoma, malignant fibrous histiocytoma, neurofibrosarcoma, rhabdomyosarcoma, and synovial sarcoma).


Alternatively, the cancer may be a carcinoma. Carcinomas are cancers that begin in the epithelial cells, which are cells that cover the surface of the body, produce hormones, and make up glands. By way of non-limiting example, carcinomas include breast cancer, pancreatic cancer, lung cancer, colon cancer, colorectal cancer, rectal cancer, kidney cancer, bladder cancer, stomach cancer, prostate cancer, liver cancer, ovarian cancer, brain cancer, vaginal cancer, vulvar cancer, uterine cancer, oral cancer, penic cancer, testicular cancer, esophageal cancer, skin cancer, cancer of the fallopian tubes, head and neck cancer, gastrointestinal stromal cancer, adenocarcinoma, cutaneous or intraocular melanoma, cancer of the anal region, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, cancer of the urethra, cancer of the renal pelvis, cancer of the ureter, cancer of the endometrium, cancer of the cervix, cancer of the pituitary gland, neoplasms of the central nervous system (CNS), primary CNS lymphoma, brain stem glioma, and spinal axis tumors. In some instances, the cancer is a skin cancer, such as a basal cell carcinoma, squamous, melanoma, nonmelanoma, or actinic (solar) keratosis. Preferably, the cancer is a prostate cancer. Alternatively, the cancer may be a thyroid cancer, bladder cancer, or pancreatic cancer.


In some instances, the cancer is a lung cancer. Lung cancer can start in the airways that branch off the trachea to supply the lungs (bronchi) or the small air sacs of the lung (the alveoli). Lung cancers include non-small cell lung carcinoma (NSCLC), small cell lung carcinoma, and mesotheliomia. Examples of NSCLC include squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. The mesothelioma may be a cancerous tumor of the lining of the lung and chest cavitity (pleura) or lining of the abdomen (peritoneum). The mesothelioma may be due to asbestos exposure. The cancer may be a brain cancer, such as a glioblastoma.


Alternatively, the cancer may be a central nervous system (CNS) tumor. CNS tumors may be classified as gliomas or nongliomas. The glioma may be malignant glioma, high grade glioma, diffuse intrinsic pontine glioma. Examples of gliomas include astrocytomas, oligodendrogliomas (or mixtures of oligodendroglioma and astocytoma elements), and ependymomas. Astrocytomas include, but are not limited to, low-grade astrocytomas, anaplastic astrocytomas, glioblastoma multiforme, pilocytic astrocytoma, pleomorphic xanthoastrocytoma, and subependymal giant cell astrocytoma. Oligodendrogliomas include low-grade oligodendrogliomas (or oligoastrocytomas) and anaplastic oligodendriogliomas. Nongliomas include meningiomas, pituitary adenomas, primary CNS lymphomas, and medulloblastomas. In some instances, the cancer is a meningioma.


The cancer may be a leukemia. The leukemia may be an acute lymphocytic leukemia, acute myelocytic leukemia, chronic lymphocytic leukemia, or chronic myelocytic leukemia. Additional types of leukemias include hairy cell leukemia, chronic myelomonocytic leukemia, and juvenile myelomonocytic-leukemia.


In some instances, the cancer is a lymphoma. Lymphomas are cancers of the lymphocytes and may develop from either B or T lymphocytes. The two major types of lymphoma are Hodgkin's lymphoma, previously known as Hodgkin's disease, and non-Hodgkin's lymphoma. Hodgkin's lymphoma is marked by the presence of the Reed-Sternberg cell. Non-Hodgkin's lymphomas are all lymphomas which are not Hodgkin's lymphoma. Non-Hodgkin lymphomas may be indolent lymphomas and aggressive lymphomas. Non-Hodgkin's lymphomas include, but are not limited to, diffuse large B cell lymphoma, follicular lymphoma, mucosa-associated lymphatic tissue lymphoma (MALT), small cell lymphocytic lymphoma, mantle cell lymphoma, Burkitt's lymphoma, mediastinal large B cell lymphoma, Waldenström macroglobulinemia, nodal marginal zone B cell lymphoma (NMZL), splenic marginal zone lymphoma (SMZL), extranodal marginal zone B cell lymphoma, intravascular large B cell lymphoma, primary effusion lymphoma, and lymphomatoid granulomatosis.


Cancer Staging


Diagnosing, predicting, or monitoring a status or outcome of a cancer may comprise determining the stage of the cancer. Generally, the stage of a cancer is a description (usually numbers I to IV with IV having more progression) of the extent the cancer has spread. The stage often takes into account the size of a tumor, how deeply it has penetrated, whether it has invaded adjacent organs, how many lymph nodes it has metastasized to (if any), and whether it has spread to distant organs. Staging of cancer can be used as a predictor of survival, and cancer treatment may be determined by staging. Determining the stage of the cancer may occur before, during, or after treatment. The stage of the cancer may also be determined at the time of diagnosis.


Cancer staging can be divided into a clinical stage and a pathologic stage. Cancer staging may comprise the TNM classification. Generally, the TNM Classification of Malignant Tumours (TNM) is a cancer staging system that describes the extent of cancer in a patient's body. T may describe the size of the tumor and whether it has invaded nearby tissue, N may describe regional lymph nodes that are involved, and M may describe distant metastasis (spread of cancer from one body part to another). In the TNM (Tumor, Node, Metastasis) system, clinical stage and pathologic stage are denoted by a small “c” or “p” before the stage (e.g., cT3N1M0 or pT2N0).


Often, clinical stage and pathologic stage may differ. Clinical stage may be based on all of the available information obtained before a surgery to remove the tumor. Thus, it may include information about the tumor obtained by physical examination, radiologic examination, and endoscopy. Pathologic stage can add additional information gained by examination of the tumor microscopically by a pathologist. Pathologic staging can allow direct examination of the tumor and its spread, contrasted with clinical staging which may be limited by the fact that the information is obtained by making indirect observations at a tumor which is still in the body. The TNM staging system can be used for most forms of cancer.


Alternatively, staging may comprise Ann Arbor staging. Generally, Ann Arbor staging is the staging system for lymphomas, both in Hodgkin's lymphoma (previously called Hodgkin's disease) and Non-Hodgkin lymphoma (abbreviated NHL). The stage may depend on both the place where the malignant tissue is located (as located with biopsy, CT scanning and increasingly positron emission tomography) and on systemic symptoms due to the lymphoma (“B symptoms”: night sweats, weight loss of >10% or fevers). The principal stage may be determined by location of the tumor. Stage I may indicate that the cancer is located in a single region, usually one lymph node and the surrounding area. Stage I often may not have outward symptoms. Stage II can indicate that the cancer is located in two separate regions, an affected lymph node or organ and a second affected area, and that both affected areas are confined to one side of the diaphragm—that is, both are above the diaphragm, or both are below the diaphragm. Stage III often indicates that the cancer has spread to both sides of the diaphragm, including one organ or area near the lymph nodes or the spleen. Stage IV may indicate diffuse or disseminated involvement of one or more extralymphatic organs, including any involvement of the liver, bone marrow, or nodular involvement of the lungs.


Modifiers may also be appended to some stages. For example, the letters A, B, E, X, or S can be appended to some stages. Generally, A or B may indicate the absence of constitutional (B-type) symptoms is denoted by adding an “A” to the stage; the presence is denoted by adding a “B” to the stage. E can be used if the disease is “extranodal” (not in the lymph nodes) or has spread from lymph nodes to adjacent tissue. X is often used if the largest deposit is >10 cm large (“bulky disease”), or whether the mediastinum is wider than ⅓ of the chest on a chest X-ray. S may be used if the disease has spread to the spleen.


The nature of the staging may be expressed with CS or PS. CS may denote that the clinical stage as obtained by doctor's examinations and tests. PS may denote that the pathological stage as obtained by exploratory laparotomy (surgery performed through an abdominal incision) with splenectomy (surgical removal of the spleen).


Therapeutic Regimens


Diagnosing, predicting, or monitoring a status or outcome of a cancer may comprise treating a cancer or preventing a cancer progression. In addition, diagnosing, predicting, or monitoring a status or outcome of a cancer may comprise identifying or predicting responders to an anti-cancer therapy. In some instances, diagnosing, predicting, or monitoring may comprise determining a therapeutic regimen. Determining a therapeutic regimen may comprise administering an anti-cancer therapy. Alternatively, determining a therapeutic regimen may comprise modifying, recommending, continuing or discontinuing an anti-cancer regimen. In some instances, if the sample expression patterns are consistent with the expression pattern for a known disease or disease outcome, the expression patterns can be used to designate one or more treatment modalities (e.g., therapeutic regimens, anti-cancer regimen). An anti-cancer regimen may comprise one or more anti-cancer therapies. Examples of anti-cancer therapies include surgery, chemotherapy, radiation therapy, immunotherapy/biological therapy, photodynamic therapy.


Surgical oncology uses surgical methods to diagnose, stage, and treat cancer, and to relieve certain cancer-related symptoms. Surgery may be used to remove the tumor (e.g., excisions, resections, debulking surgery), reconstruct a part of the body (e.g., restorative surgery), and/or to relieve symptoms such as pain (e.g., palliative surgery). Surgery may also include cryosurgery. Cryosurgery (also called cryotherapy) may use extreme cold produced by liquid nitrogen (or argon gas) to destroy abnormal tissue. Cryosurgery can be used to treat external tumors, such as those on the skin. For external tumors, liquid nitrogen can be applied directly to the cancer cells with a cotton swab or spraying device. Cryosurgery may also be used to treat tumors inside the body (internal tumors and tumors in the bone). For internal tumors, liquid nitrogen or argon gas may be circulated through a hollow instrument called a cryoprobe, which is placed in contact with the tumor. An ultrasound or MRI may be used to guide the cryoprobe and monitor the freezing of the cells, thus limiting damage to nearby healthy tissue. A ball of ice crystals may form around the probe, freezing nearby cells. Sometimes more than one probe is used to deliver the liquid nitrogen to various parts of the tumor. The probes may be put into the tumor during surgery or through the skin (percutaneously). After cryosurgery, the frozen tissue thaws and may be naturally absorbed by the body (for internal tumors), or may dissolve and form a scab (for external tumors).


Chemotherapeutic agents may also be used for the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents, anti-metabolites, plant alkaloids and terpenoids, vinca alkaloids, podophyllotoxin, taxanes, topoisomerase inhibitors, and cytotoxic antibiotics. Cisplatin, carboplatin, and oxaliplatin are examples of alkylating agents. Other alkylating agents include mechlorethamine, cyclophosphamide, chlorambucil, ifosfamide. Alkylating agents may impair cell function by forming covalent bonds with the amino, carboxyl, sulfhydryl, and phosphate groups in biologically important molecules. Alternatively, alkylating agents may chemically modify a cell's DNA.


Anti-metabolites are another example of chemotherapeutic agents. Anti-metabolites may masquerade as purines or pyrimidines and may prevent purines and pyrimidines from becoming incorporated in to DNA during the “S” phase (of the cell cycle), thereby stopping normal development and division. Antimetabolites may also affect RNA synthesis. Examples of metabolites include azathioprine and mercaptopurine.


Alkaloids may be derived from plants and block cell division may also be used for the treatment of cancer. Alkyloids may prevent microtubule function. Examples of alkaloids are vinca alkaloids and taxanes. Vinca alkaloids may bind to specific sites on tubulin and inhibit the assembly of tubulin into microtubules (M phase of the cell cycle). The vinca alkaloids may be derived from the Madagascar periwinkle, Catharanthus roseus (formerly known as Vinca rosea). Examples of vinca alkaloids include, but are not limited to, vincristine, vinblastine, vinorelbine, or vindesine. Taxanes are diterpenes produced by the plants of the genus Taxus (yews). Taxanes may be derived from natural sources or synthesized artificially. Taxanes include paclitaxel (Taxol) and docetaxel (Taxotere). Taxanes may disrupt microtubule function. Microtubules are essential to cell division, and taxanes may stabilize GDP-bound tubulin in the microtubule, thereby inhibiting the process of cell division. Thus, in essence, taxanes may be mitotic inhibitors. Taxanes may also be radiosensitizing and often contain numerous chiral centers.


Alternative chemotherapeutic agents include podophyllotoxin. Podophyllotoxin is a plant-derived compound that may help with digestion and may be used to produce cytostatic drugs such as etoposide and teniposide. They may prevent the cell from entering the G1 phase (the start of DNA replication) and the replication of DNA (the S phase).


Topoisomerases are essential enzymes that maintain the topology of DNA. Inhibition of type I or type II topoisomerases may interfere with both transcription and replication of DNA by upsetting proper DNA supercoiling. Some chemotherapeutic agents may inhibit topoisomerases. For example, some type I topoisomerase inhibitors include camptothecins: irinotecan and topotecan. Examples of type II inhibitors include amsacrine, etoposide, etoposide phosphate, and teniposide.


Another example of chemotherapeutic agents is cytotoxic antibiotics. Cytotoxic antibiotics are a group of antibiotics that are used for the treatment of cancer because they may interfere with DNA replication and/or protein synthesis. Cytotoxic antibiotics include, but are not limited to, actinomycin, anthracyclines, doxorubicin, daunorubicin, valrubicin, idarubicin, epirubicin, bleomycin, plicamycin, and mitomycin.


In some instances, the anti-cancer treatment may comprise radiation therapy. Radiation can come from a machine outside the body (external-beam radiation therapy) or from radioactive material placed in the body near cancer cells (internal radiation therapy, more commonly called brachytherapy). Systemic radiation therapy uses a radioactive substance, given by mouth or into a vein that travels in the blood to tissues throughout the body.


External-beam radiation therapy may be delivered in the form of photon beams (either x-rays or gamma rays). A photon is the basic unit of light and other forms of electromagnetic radiation. An example of external-beam radiation therapy is called 3-dimensional conformal radiation therapy (3D-CRT). 3D-CRT may use computer software and advanced treatment machines to deliver radiation to very precisely shaped target areas. Many other methods of external-beam radiation therapy are currently being tested and used in cancer treatment. These methods include, but are not limited to, intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), Stereotactic radiosurgery (SRS), Stereotactic body radiation therapy (SBRT), and proton therapy.


Intensity-modulated radiation therapy (IMRT) is an example of external-beam radiation and may use hundreds of tiny radiation beam-shaping devices, called collimators, to deliver a single dose of radiation. The collimators can be stationary or can move during treatment, allowing the intensity of the radiation beams to change during treatment sessions. This kind of dose modulation allows different areas of a tumor or nearby tissues to receive different doses of radiation. IMRT is planned in reverse (called inverse treatment planning). In inverse treatment planning, the radiation doses to different areas of the tumor and surrounding tissue are planned in advance, and then a high-powered computer program calculates the required number of beams and angles of the radiation treatment. In contrast, during traditional (forward) treatment planning, the number and angles of the radiation beams are chosen in advance and computers calculate how much dose may be delivered from each of the planned beams. The goal of IMRT is to increase the radiation dose to the areas that need it and reduce radiation exposure to specific sensitive areas of surrounding normal tissue.


Another example of external-beam radiation is image-guided radiation therapy (IGRT). In IGRT, repeated imaging scans (CT, MRI, or PET) may be performed during treatment. These imaging scans may be processed by computers to identify changes in a tumor's size and location due to treatment and to allow the position of the patient or the planned radiation dose to be adjusted during treatment as needed. Repeated imaging can increase the accuracy of radiation treatment and may allow reductions in the planned volume of tissue to be treated, thereby decreasing the total radiation dose to normal tissue.


Tomotherapy is a type of image-guided IMRT. A tomotherapy machine is a hybrid between a CT imaging scanner and an external-beam radiation therapy machine. The part of the tomotherapy machine that delivers radiation for both imaging and treatment can rotate completely around the patient in the same manner as a normal CT scanner. Tomotherapy machines can capture CT images of the patient's tumor immediately before treatment sessions, to allow for very precise tumor targeting and sparing of normal tissue.


Stereotactic radiosurgery (SRS) can deliver one or more high doses of radiation to a small tumor. SRS uses extremely accurate image-guided tumor targeting and patient positioning. Therefore, a high dose of radiation can be given without excess damage to normal tissue. SRS can be used to treat small tumors with well-defined edges. It is most commonly used in the treatment of brain or spinal tumors and brain metastases from other cancer types. For the treatment of some brain metastases, patients may receive radiation therapy to the entire brain (called whole-brain radiation therapy) in addition to SRS. SRS requires the use of a head frame or other device to immobilize the patient during treatment to ensure that the high dose of radiation is delivered accurately.


Stereotactic body radiation therapy (SBRT) delivers radiation therapy in fewer sessions, using smaller radiation fields and higher doses than 3D-CRT in most cases. SBRT may treat tumors that lie outside the brain and spinal cord. Because these tumors are more likely to move with the normal motion of the body, and therefore cannot be targeted as accurately as tumors within the brain or spine, SBRT is usually given in more than one dose. SBRT can be used to treat small, isolated tumors, including cancers in the lung and liver. SBRT systems may be known by their brand names, such as the CyberKnife®.


In proton therapy, external-beam radiation therapy may be delivered by proton. Protons are a type of charged particle. Proton beams differ from photon beams mainly in the way they deposit energy in living tissue. Whereas photons deposit energy in small packets all along their path through tissue, protons deposit much of their energy at the end of their path (called the Bragg peak) and deposit less energy along the way. Use of protons may reduce the exposure of normal tissue to radiation, possibly allowing the delivery of higher doses of radiation to a tumor.


Other charged particle beams such as electron beams may be used to irradiate superficial tumors, such as skin cancer or tumors near the surface of the body, but they cannot travel very far through tissue.


Internal radiation therapy (brachytherapy) is radiation delivered from radiation sources (radioactive materials) placed inside or on the body. Several brachytherapy techniques are used in cancer treatment. Interstitial brachytherapy may use a radiation source placed within tumor tissue, such as within a prostate tumor. Intracavitary brachytherapy may use a source placed within a surgical cavity or a body cavity, such as the chest cavity, near a tumor. Episcleral brachytherapy, which may be used to treat melanoma inside the eye, may use a source that is attached to the eye. In brachytherapy, radioactive isotopes can be sealed in tiny pellets or “seeds.” These seeds may be placed in patients using delivery devices, such as needles, catheters, or some other type of carrier. As the isotopes decay naturally, they give off radiation that may damage nearby cancer cells. Brachytherapy may be able to deliver higher doses of radiation to some cancers than external-beam radiation therapy while causing less damage to normal tissue.


Brachytherapy can be given as a low-dose-rate or a high-dose-rate treatment. In low-dose-rate treatment, cancer cells receive continuous low-dose radiation from the source over a period of several days. In high-dose-rate treatment, a robotic machine attached to delivery tubes placed inside the body may guide one or more radioactive sources into or near a tumor, and then removes the sources at the end of each treatment session. High-dose-rate treatment can be given in one or more treatment sessions. An example of a high-dose-rate treatment is the MammoSite® system. Bracytherapy may be used to treat patients with breast cancer who have undergone breast-conserving surgery.


The placement of brachytherapy sources can be temporary or permanent. For permanent brachytherapy, the sources may be surgically sealed within the body and left there, even after all of the radiation has been given off. In some instances, the remaining material (in which the radioactive isotopes were sealed) does not cause any discomfort or harm to the patient. Permanent brachytherapy is a type of low-dose-rate brachytherapy. For temporary brachytherapy, tubes (catheters) or other carriers are used to deliver the radiation sources, and both the carriers and the radiation sources are removed after treatment. Temporary brachytherapy can be either low-dose-rate or high-dose-rate treatment. Brachytherapy may be used alone or in addition to external-beam radiation therapy to provide a “boost” of radiation to a tumor while sparing surrounding normal tissue.


In systemic radiation therapy, a patient may swallow or receive an injection of a radioactive substance, such as radioactive iodine or a radioactive substance bound to a monoclonal antibody. Radioactive iodine (131I) is a type of systemic radiation therapy commonly used to help treat cancer, such as thyroid cancer. Thyroid cells naturally take up radioactive iodine. For systemic radiation therapy for some other types of cancer, a monoclonal antibody may help target the radioactive substance to the right place. The antibody joined to the radioactive substance travels through the blood, locating and killing tumor cells. For example, the drug ibritumomab tiuxetan (Zevalin®) may be used for the treatment of certain types of B-cell non-Hodgkin lymphoma (NHL). The antibody part of this drug recognizes and binds to a protein found on the surface of B lymphocytes. The combination drug regimen of tositumomab and iodine I 131 tositumomab (Bexxar®) may be used for the treatment of certain types of cancer, such as NHL. In this regimen, nonradioactive tositumomab antibodies may be given to patients first, followed by treatment with tositumomab antibodies that have 131I attached. Tositumomab may recognize and bind to the same protein on B lymphocytes as ibritumomab. The nonradioactive form of the antibody may help protect normal B lymphocytes from being damaged by radiation from 131I.


Some systemic radiation therapy drugs relieve pain from cancer that has spread to the bone (bone metastases). This is a type of palliative radiation therapy. The radioactive drugs samarium-153-lexidronam (Quadramet®) and strontium-89 chloride (Metastron®) are examples of radiopharmaceuticals may be used to treat pain from bone metastases.


Biological therapy (sometimes called immunotherapy, biotherapy, or biological response modifier (BRM) therapy) uses the body's immune system, either directly or indirectly, to fight cancer or to lessen the side effects that may be caused by some cancer treatments. Biological therapies include interferons, interleukins, colony-stimulating factors, monoclonal antibodies, vaccines, gene therapy, and nonspecific immunomodulating agents.


Interferons (IFNs) are types of cytokines that occur naturally in the body. Interferon alpha, interferon beta, and interferon gamma are examples of interferons that may be used in cancer treatment.


Like interferons, interleukins (ILs) are cytokines that occur naturally in the body and can be made in the laboratory. Many interleukins have been identified for the treatment of cancer. For example, interleukin-2 (IL-2 or aldesleukin), interleukin 7, and interleukin 12 have may be used as an anti-cancer treatment. IL-2 may stimulate the growth and activity of many immune cells, such as lymphocytes, that can destroy cancer cells. Interleukins may be used to treat a number of cancers, including leukemia, lymphoma, and brain, colorectal, ovarian, breast, kidney and prostate cancers.


Colony-stimulating factors (CSFs) (sometimes called hematopoietic growth factors) may also be used for the treatment of cancer. Some examples of CSFs include, but are not limited to, G-CSF (filgrastim) and GM-CSF (sargramostim). CSFs may promote the division of bone marrow stem cells and their development into white blood cells, platelets, and red blood cells. Bone marrow is critical to the body's immune system because it is the source of all blood cells. Because anticancer drugs can damage the body's ability to make white blood cells, red blood cells, and platelets, stimulation of the immune system by CSFs may benefit patients undergoing other anti-cancer treatment, thus CSFs may be combined with other anti-cancer therapies, such as chemotherapy. CSFs may be used to treat a large variety of cancers, including lymphoma, leukemia, multiple myeloma, melanoma, and cancers of the brain, lung, esophagus, breast, uterus, ovary, prostate, kidney, colon, and rectum.


Another type of biological therapy includes monoclonal antibodies (MOABs or MoABs). These antibodies may be produced by a single type of cell and may be specific for a particular antigen. To create MOABs, a human cancer cells may be injected into mice. In response, the mouse immune system can make antibodies against these cancer cells. The mouse plasma cells that produce antibodies may be isolated and fused with laboratory-grown cells to create “hybrid” cells called hybridomas. Hybridomas can indefinitely produce large quantities of these pure antibodies, or MOABs. MOABs may be used in cancer treatment in a number of ways. For instance, MOABs that react with specific types of cancer may enhance a patient's immune response to the cancer. MOABs can be programmed to act against cell growth factors, thus interfering with the growth of cancer cells.


MOABs may be linked to other anti-cancer therapies such as chemotherapeutics, radioisotopes (radioactive substances), other biological therapies, or other toxins. When the antibodies latch onto cancer cells, they deliver these anti-cancer therapies directly to the tumor, helping to destroy it. MOABs carrying radioisotopes may also prove useful in diagnosing certain cancers, such as colorectal, ovarian, and prostate.


Rituxan® (rituximab) and Herceptin® (trastuzumab) are examples of MOABs that may be used as a biological therapy. Rituxan may be used for the treatment of non-Hodgkin lymphoma. Herceptin can be used to treat metastatic breast cancer in patients with tumors that produce excess amounts of a protein called HER2. Alternatively, MOABs may be used to treat lymphoma, leukemia, melanoma, and cancers of the brain, breast, lung, kidney, colon, rectum, ovary, prostate, and other areas.


Cancer vaccines are another form of biological therapy. Cancer vaccines may be designed to encourage the patient's immune system to recognize cancer cells. Cancer vaccines may be designed to treat existing cancers (therapeutic vaccines) or to prevent the development of cancer (prophylactic vaccines). Therapeutic vaccines may be injected in a person after cancer is diagnosed. These vaccines may stop the growth of existing tumors, prevent cancer from recurring, or eliminate cancer cells not killed by prior treatments. Cancer vaccines given when the tumor is small may be able to eradicate the cancer. On the other hand, prophylactic vaccines are given to healthy individuals before cancer develops. These vaccines are designed to stimulate the immune system to attack viruses that can cause cancer. By targeting these cancer-causing viruses, development of certain cancers may be prevented. For example, cervarix and gardasil are vaccines to treat human papilloma virus and may prevent cervical cancer. Therapeutic vaccines may be used to treat melanoma, lymphoma, leukemia, and cancers of the brain, breast, lung, kidney, ovary, prostate, pancreas, colon, and rectum. Cancer vaccines can be used in combination with other anti-cancer therapies.


Gene therapy is another example of a biological therapy. Gene therapy may involve introducing genetic material into a person's cells to fight disease. Gene therapy methods may improve a patient's immune response to cancer. For example, a gene may be inserted into an immune cell to enhance its ability to recognize and attack cancer cells. In another approach, cancer cells may be injected with genes that cause the cancer cells to produce cytokines and stimulate the immune system.


In some instances, biological therapy includes nonspecific immunomodulating agents. Nonspecific immunomodulating agents are substances that stimulate or indirectly augment the immune system. Often, these agents target key immune system cells and may cause secondary responses such as increased production of cytokines and immunoglobulins. Two nonspecific immunomodulating agents used in cancer treatment are bacillus Calmette-Guerin (BCG) and levamisole. BCG may be used in the treatment of superficial bladder cancer following surgery. BCG may work by stimulating an inflammatory, and possibly an immune, response. A solution of BCG may be instilled in the bladder. Levamisole is sometimes used along with fluorouracil (5-FU) chemotherapy in the treatment of stage III (Dukes' C) colon cancer following surgery. Levamisole may act to restore depressed immune function.


Photodynamic therapy (PDT) is an anti-cancer treatment that may use a drug, called a photosensitizer or photosensitizing agent, and a particular type of light. When photosensitizers are exposed to a specific wavelength of light, they may produce a form of oxygen that kills nearby cells. A photosensitizer may be activated by light of a specific wavelength. This wavelength determines how far the light can travel into the body. Thus, photosensitizers and wavelengths of light may be used to treat different areas of the body with PDT.


In the first step of PDT for cancer treatment, a photosensitizing agent may be injected into the bloodstream. The agent may be absorbed by cells all over the body but may stay in cancer cells longer than it does in normal cells. Approximately 24 to 72 hours after injection, when most of the agent has left normal cells but remains in cancer cells, the tumor can be exposed to light. The photosensitizer in the tumor can absorb the light and produces an active form of oxygen that destroys nearby cancer cells. In addition to directly killing cancer cells, PDT may shrink or destroy tumors in two other ways. The photosensitizer can damage blood vessels in the tumor, thereby preventing the cancer from receiving necessary nutrients. PDT may also activate the immune system to attack the tumor cells.


The light used for PDT can come from a laser or other sources. Laser light can be directed through fiber optic cables (thin fibers that transmit light) to deliver light to areas inside the body. For example, a fiber optic cable can be inserted through an endoscope (a thin, lighted tube used to look at tissues inside the body) into the lungs or esophagus to treat cancer in these organs. Other light sources include light-emitting diodes (LEDs), which may be used for surface tumors, such as skin cancer. PDT is usually performed as an outpatient procedure. PDT may also be repeated and may be used with other therapies, such as surgery, radiation, or chemotherapy.


Extracorporeal photopheresis (ECP) is a type of PDT in which a machine may be used to collect the patient's blood cells. The patient's blood cells may be treated outside the body with a photosensitizing agent, exposed to light, and then returned to the patient. ECP may be used to help lessen the severity of skin symptoms of cutaneous T-cell lymphoma that has not responded to other therapies. ECP may be used to treat other blood cancers, and may also help reduce rejection after transplants.


Additionally, photosensitizing agent, such as porfimer sodium or Photofrin®, may be used in PDT to treat or relieve the symptoms of esophageal cancer and non-small cell lung cancer. Porfimer sodium may relieve symptoms of esophageal cancer when the cancer obstructs the esophagus or when the cancer cannot be satisfactorily treated with laser therapy alone. Porfimer sodium may be used to treat non-small cell lung cancer in patients for whom the usual treatments are not appropriate, and to relieve symptoms in patients with non-small cell lung cancer that obstructs the airways. Porfimer sodium may also be used for the treatment of precancerous lesions in patients with Barrett esophagus, a condition that can lead to esophageal cancer.


Laser therapy may use high-intensity light to treat cancer and other illnesses. Lasers can be used to shrink or destroy tumors or precancerous growths. Lasers are most commonly used to treat superficial cancers (cancers on the surface of the body or the lining of internal organs) such as basal cell skin cancer and the very early stages of some cancers, such as cervical, penile, vaginal, vulvar, and non-small cell lung cancer.


Lasers may also be used to relieve certain symptoms of cancer, such as bleeding or obstruction. For example, lasers can be used to shrink or destroy a tumor that is blocking a patient's trachea (windpipe) or esophagus. Lasers also can be used to remove colon polyps or tumors that are blocking the colon or stomach.


Laser therapy is often given through a flexible endoscope (a thin, lighted tube used to look at tissues inside the body). The endoscope is fitted with optical fibers (thin fibers that transmit light). It is inserted through an opening in the body, such as the mouth, nose, anus, or vagina. Laser light is then precisely aimed to cut or destroy a tumor.


Laser-induced interstitial thermotherapy (LITT), or interstitial laser photocoagulation, also uses lasers to treat some cancers. LITT is similar to a cancer treatment called hyperthermia, which uses heat to shrink tumors by damaging or killing cancer cells. During LITT, an optical fiber is inserted into a tumor. Laser light at the tip of the fiber raises the temperature of the tumor cells and damages or destroys them. LITT is sometimes used to shrink tumors in the liver.


Laser therapy can be used alone, but most often it is combined with other treatments, such as surgery, chemotherapy, or radiation therapy. In addition, lasers can seal nerve endings to reduce pain after surgery and seal lymph vessels to reduce swelling and limit the spread of tumor cells.


Lasers used to treat cancer may include carbon dioxide (CO2) lasers, argon lasers, and neodymium:yttrium-aluminum-garnet (Nd:YAG) lasers. Each of these can shrink or destroy tumors and can be used with endoscopes. CO2 and argon lasers can cut the skin's surface without going into deeper layers. Thus, they can be used to remove superficial cancers, such as skin cancer. In contrast, the Nd:YAG laser is more commonly applied through an endoscope to treat internal organs, such as the uterus, esophagus, and colon. Nd:YAG laser light can also travel through optical fibers into specific areas of the body during LITT. Argon lasers are often used to activate the drugs used in PDT.


For patients with high test scores consistent with systemic disease outcome after prostatectomy, additional treatment modalities such as adjuvant chemotherapy (e.g., docetaxel, mitoxantrone and prednisone), systemic radiation therapy (e.g., samarium or strontium) and/or anti-androgen therapy (e.g., surgical castration, finasteride, dutasteride) can be designated. Such patients would likely be treated immediately with anti-androgen therapy alone or in combination with radiation therapy in order to eliminate presumed micro-metastatic disease, which cannot be detected clinically but can be revealed by the target sequence expression signature.


Such patients can also be more closely monitored for signs of disease progression. For patients with intermediate test scores consistent with biochemical recurrence only (BCR-only or elevated PSA that does not rapidly become manifested as systemic disease only localized adjuvant therapy (e.g., radiation therapy of the prostate bed) or short course of anti-androgen therapy would likely be administered. For patients with low scores or scores consistent with no evidence of disease (NED) adjuvant therapy would not likely be recommended by their physicians in order to avoid treatment-related side effects such as metabolic syndrome (e.g., hypertension, diabetes and/or weight gain), osteoporosis, proctitis, incontinence or impotence. Patients with samples consistent with NED could be designated for watchful waiting, or for no treatment. Patients with test scores that do not correlate with systemic disease but who have successive PSA increases could be designated for watchful waiting, increased monitoring, or lower dose or shorter duration anti-androgen therapy.


Target sequences can be grouped so that information obtained about the set of target sequences in the group can be used to make or assist in making a clinically relevant judgment such as a diagnosis, prognosis, or treatment choice.


A patient report is also provided comprising a representation of measured expression levels of a plurality of target sequences in a biological sample from the patient, wherein the representation comprises expression levels of target sequences corresponding to any one, two, three, four, five, six, eight, ten, twenty, thirty, fifty or more of the target sequences corresponding to a target selected from any of Tables 2, 4, 11 and 55, or of the subsets described herein, or of a combination thereof. In some instances, the target is selected from Table 2. In other instances, the target is selected from Table 4. In some embodiments, the target is selected from Table 11. In some embodiments, the representation of the measured expression level(s) may take the form of a linear or nonlinear combination of expression levels of the target sequences of interest. The patient report may be provided in a machine (e.g., a computer) readable format and/or in a hard (paper) copy. The report can also include standard measurements of expression levels of said plurality of target sequences from one or more sets of patients with known disease status and/or outcome. The report can be used to inform the patient and/or treating physician of the expression levels of the expressed target sequences, the likely medical diagnosis and/or implications, and optionally may recommend a treatment modality for the patient.


Also provided are representations of the gene expression profiles useful for treating, diagnosing, prognosticating, and otherwise assessing disease. In some embodiments, these profile representations are reduced to a medium that can be automatically read by a machine such as computer readable media (magnetic, optical, and the like). The articles can also include instructions for assessing the gene expression profiles in such media. For example, the articles may comprise a readable storage form having computer instructions for comparing gene expression profiles of the portfolios of genes described above. The articles may also have gene expression profiles digitally recorded therein so that they may be compared with gene expression data from patient samples. Alternatively, the profiles can be recorded in different representational format. A graphical recordation is one such format. Clustering algorithms can assist in the visualization of such data.


EXEMPLARY EMBODIMENTS

Disclosed herein, in some embodiments, is a method for diagnosing, predicting, and/or monitoring a status or outcome of a cancer a subject, comprising: (a) assaying an expression level of a plurality of targets in a sample from the subject, wherein at least one target of the plurality of targets is selected from the group consisting of targets identified in Tables 2, 4, 11 and 55; and (b) for diagnosing, predicting, and/or monitoring a status or outcome of a cancer based on the expression levels of the plurality of targets. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the cancer is a prostate cancer. In some embodiments, the cancer is a pancreatic cancer. In some embodiments, the cancer is a thyroid cancer. In some embodiments, the cancer is a bladder cancer. In some embodiments, the cancer is a lung cancer. In some embodiments, the method further comprises assaying an expression level of a coding target. In some instances, the coding target is selected from the group consisting of targets identified in Tables 2, 4, 11 and 55. In some embodiments, the coding target is an exon-coding transcript. In some embodiments, the exon-coding transcript is an exonic sequence. In some embodiments, the method further comprises assaying an expression level of a non-coding target. In some instances, the non-coding target is selected from the group consisting of targets identified in Tables 2, 4, 11 and 55. In some instances, the non-coding target is a non-coding transcript. In other instances, the non-coding target is an intronic sequence. In other instances, the non-coding target is an intergenic sequence. In some instances, the non-coding target is a UTR sequence. In other instances, the non-coding target is a non-coding RNA transcript. In some embodiments, the target comprises a nucleic acid sequence. In some embodiments, the nucleic acid sequence is a DNA sequence. In some embodiments, the nucleic acid sequence is an RNA sequence. In other instances, the target comprises a polypeptide sequence. In some instances, the plurality of targets comprises 2 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 5 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 10 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 15 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 20 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 25 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 30 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 35 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 40 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the target is selected from Table 2. In other instances, the target is selected from Table 4. In some embodiments, the target is selected from Table 11. In some embodiments, assaying the expression level comprises detecting and/or quantifying a nucleotide sequence of the plurality of targets. Alternatively, assaying the expression level comprises detecting and/or quantifying a polypeptide sequence of the plurality of targets. In some embodiments, assaying the expression level comprises detecting and/or quantifying the DNA levels of the plurality of targets. In some embodiments, assaying the expression level comprises detecting and/or quantifying the RNA or mRNA levels of the plurality of targets. In some embodiments, assaying the expression level comprises detecting and/or quantifying the protein level of the plurality of targets. In some embodiments, the diagnosing, predicting, and/or monitoring the status or outcome of a cancer comprises determining the malignancy of the cancer. In some embodiments, the diagnosing, predicting, and/or monitoring the status or outcome of a cancer includes determining the stage of the cancer. In some embodiments, the diagnosing, predicting, and/or monitoring the status or outcome of a cancer includes assessing the risk of cancer recurrence. In some embodiments, diagnosing, predicting, and/or monitoring the status or outcome of a cancer may comprise determining the efficacy of treatment. In some embodiments, diagnosing, predicting, and/or monitoring the status or outcome of a cancer may comprise determining a therapeutic regimen. Determining a therapeutic regimen may comprise administering an anti-cancer therapeutic. Alternatively, determining the treatment for the cancer may comprise modifying a therapeutic regimen. Modifying a therapeutic regimen may comprise increasing, decreasing, or terminating a therapeutic regimen.


Further disclosed, in some embodiments, is method for determining a treatment for a cancer in a subject, comprising: a) assaying an expression level of a plurality of targets in a sample from the subject, wherein at least one target of the plurality of targets is selected from the group consisting of targets identified in Tables 2, 4, 11 and 55; and b) determining the treatment for a cancer based on the expression levels of the plurality of targets. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the cancer is a prostate cancer. In some embodiments, the cancer is a pancreatic cancer. In some embodiments, the cancer is a bladder cancer. In some embodiments, the cancer is a thyroid cancer. In some embodiments, the cancer is a lung cancer. In some embodiments, the coding target is selected from a sequence listed in Tables 2, 4, 11 and 55. In some embodiments, the method further comprises assaying an expression level of a coding target. In some instances, the coding target is selected from the group consisting of targets identified in Tables 2, 4, 11 and 55. In some embodiments, the coding target is an exon-coding transcript. In some embodiments, the exon-coding transcript is an exonic sequence. In some embodiments, the method further comprises assaying an expression level of a non-coding target. In some instances, the non-coding target is selected from the group consisting of targets identified in Tables 2, 4, 11 and 55. In some instances, the non-coding target is a non-coding transcript. In other instances, the non-coding target is an intronic sequence. In other instances, the non-coding target is an intergenic sequence. In some instances, the non-coding target is a UTR sequence. In other instances, the non-coding target is a non-coding RNA transcript. In some embodiments, the target comprises a nucleic acid sequence. In some embodiments, the nucleic acid sequence is a DNA sequence. In some embodiments, the nucleic acid sequence is an RNA sequence. In other instances, the target comprises a polypeptide sequence. In some instances, the plurality of targets comprises 2 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 5 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 10 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 15 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 20 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 25 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 30 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 35 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 40 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the target is selected from Table 2. In other instances, the target is selected from Table 4. In some embodiments, the target is selected from Table 11. In some embodiments, assaying the expression level comprises detecting and/or quantifying a nucleotide sequence of the plurality of targets. In some embodiments, determining the treatment for the cancer includes determining the efficacy of treatment. Determining the treatment for the cancer may comprise administering an anti-cancer therapeutic. Alternatively, determining the treatment for the cancer may comprise modifying a therapeutic regimen. Modifying a therapeutic regimen may comprise increasing, decreasing, or terminating a therapeutic regimen.


The methods use the probe sets, probes and primers described herein to provide expression signatures or profiles from a test sample derived from a subject having or suspected of having cancer. In some embodiments, such methods involve contacting a test sample with a probe set comprising a plurality of probes under conditions that permit hybridization of the probe(s) to any target nucleic acid(s) present in the test sample and then detecting any probe:target duplexes formed as an indication of the presence of the target nucleic acid in the sample. Expression patterns thus determined are then compared to one or more reference profiles or signatures. Optionally, the expression pattern can be normalized. The methods use the probe sets, probes and primers described herein to provide expression signatures or profiles from a test sample derived from a subject to classify the cancer as recurrent or non-recurrent.


In some embodiments, such methods involve the specific amplification of target sequences nucleic acid(s) present in the test sample using methods known in the art to generate an expression profile or signature which is then compared to a reference profile or signature.


In some embodiments, the invention further provides for prognosing patient outcome, predicting likelihood of recurrence after prostatectomy and/or for designating treatment modalities.


In one embodiment, the methods generate expression profiles or signatures detailing the expression of the target sequences having altered relative expression with different cancer outcomes.


In some embodiments, the methods detect combinations of expression levels of sequences exhibiting positive and negative correlation with a disease status. In one embodiment, the methods detect a minimal expression signature.


The gene expression profiles of each of the target sequences comprising the portfolio can fixed in a medium such as a computer readable medium. This can take a number of forms. For example, a table can be established into which the range of signals (e.g., intensity measurements) indicative of disease or outcome is input. Actual patient data can then be compared to the values in the table to determine the patient samples diagnosis or prognosis. In a more sophisticated embodiment, patterns of the expression signals (e.g., fluorescent intensity) are recorded digitally or graphically.


The expression profiles of the samples can be compared to a control portfolio. The expression profiles can be used to diagnose, predict, or monitor a status or outcome of a cancer. For example, diagnosing, predicting, or monitoring a status or outcome of a cancer may comprise diagnosing or detecting a cancer, cancer metastasis, or stage of a cancer. In other instances, diagnosing, predicting, or monitoring a status or outcome of a cancer may comprise predicting the risk of cancer recurrence. Alternatively, diagnosing, predicting, or monitoring a status or outcome of a cancer may comprise predicting mortality or morbidity.


Further disclosed herein are methods for characterizing a patient population. Generally, the method comprises: (a) providing a sample from a subject; (b) assaying the expression level for a plurality of targets in the sample; and (c) characterizing the subject based on the expression level of the plurality of targets. In some embodiments, the method further comprises assaying an expression level of a coding target. In some instances, the coding target is selected from the group consisting of targets identified in Tables 2, 4, 11 and 55. In some embodiments, the coding target is an exon-coding transcript. In some embodiments, the exon-coding transcript is an exonic sequence. In some embodiments, the method further comprises assaying an expression level of a non-coding target. In some instances, the non-coding target is selected from the group consisting of targets identified in Tables 2, 4, 11 and 55. In some instances, the non-coding target is a non-coding transcript. In other instances, the non-coding target is an intronic sequence. In other instances, the non-coding target is an intergenic sequence. In some instances, the non-coding target is a UTR sequence. In other instances, the non-coding target is a non-coding RNA transcript. In some embodiments, the target comprises a nucleic acid sequence. In some embodiments, the nucleic acid sequence is a DNA sequence. In some embodiments, the nucleic acid sequence is an RNA sequence. In other instances, the target comprises a polypeptide sequence. In some instances, the plurality of targets comprises 2 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 5 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 10 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 15 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 20 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 25 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 30 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 35 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 40 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the target is selected from Table 2. In other instances, the target is selected from Table 4. In some embodiments, the target is selected from Table 11. In some embodiments, assaying the expression level comprises detecting and/or quantifying a nucleotide sequence of the plurality of targets. In some instances, the method may further comprise diagnosing a cancer in the subject. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the cancer is a prostate cancer. In some embodiments, the cancer is a pancreatic cancer. In some embodiments, the cancer is a bladder cancer. In some embodiments, the cancer is a thyroid cancer. In some embodiments, the cancer is a lung cancer. In some instances, characterizing the subject comprises determining whether the subject would respond to an anti-cancer therapy. Alternatively, characterizing the subject comprises identifying the subject as a non-responder to an anti-cancer therapy. Optionally, characterizing the subject comprises identifying the subject as a responder to an anti-cancer therapy.


Further disclosed herein are methods for selecting a subject suffering from a cancer for enrollment into a clinical trial. Generally, the method comprises: (a) providing a sample from a subject; (b) assaying the expression level for a plurality of targets in the sample; and (c) characterizing the subject based on the expression level of the plurality of targets. In some embodiments, the method further comprises assaying an expression level of a coding target. In some instances, the coding target is selected from the group consisting of targets identified in Tables 2, 4, 11 and 55. In some embodiments, the coding target is an exon-coding transcript. In some embodiments, the exon-coding transcript is an exonic sequence. In some embodiments, the method further comprises assaying an expression level of a non-coding target. In some instances, the non-coding target is selected from the group consisting of targets identified in Tables 2, 4, 11 and 55. In some instances, the non-coding target is a non-coding transcript. In other instances, the non-coding target is an intronic sequence. In other instances, the non-coding target is an intergenic sequence. In some instances, the non-coding target is a UTR sequence. In other instances, the non-coding target is a non-coding RNA transcript. In some embodiments, the target comprises a nucleic acid sequence. In some embodiments, the nucleic acid sequence is a DNA sequence. In some embodiments, the nucleic acid sequence is an RNA sequence. In other instances, the target comprises a polypeptide sequence. In some instances, the plurality of targets comprises 2 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 5 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 10 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 15 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 20 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 25 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 30 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 35 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the plurality of targets comprises 40 or more targets selected from the group of targets identified in Tables 2, 4, 11 and 55. In some instances, the target is selected from Table 2. In other instances, the target is selected from Table 4. In some embodiments, the target is selected from Table 11. In some embodiments, assaying the expression level comprises detecting and/or quantifying a nucleotide sequence of the plurality of targets. In some instances, the method may further comprise diagnosing a cancer in the subject. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the cancer is a prostate cancer. In some embodiments, the cancer is a pancreatic cancer. In some embodiments, the cancer is a bladder cancer. In some embodiments, the cancer is a thyroid cancer. In some embodiments, the cancer is a lung cancer. In some instances, characterizing the subject comprises determining whether the subject would respond to an anti-cancer therapy. Alternatively, characterizing the subject comprises identifying the subject as a non-responder to an anti-cancer therapy. Optionally, characterizing the subject comprises identifying the subject as a responder to an anti-cancer therapy.


Further disclosed herein is a method of analyzing a cancer in an individual in need thereof, comprising (a) obtaining an expression profile from a sample obtained from the individual, wherein the expression profile comprises one or more targets selected from Tables 2, 4, 11 or 55; and (b) comparing the expression profile from the sample to an expression profile of a control or standard. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, wherein the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the method further comprises a software module executed by a computer-processing device to compare the expression profiles. In some embodiments, the method further comprises providing diagnostic or prognostic information to the individual about the cardiovascular disorder based on the comparison. In some embodiments, the method further comprises diagnosing the individual with a cancer if the expression profile of the sample (a) deviates from the control or standard from a healthy individual or population of healthy individuals, or (b) matches the control or standard from an individual or population of individuals who have or have had the cancer. In some embodiments, the method further comprises predicting the susceptibility of the individual for developing a cancer based on (a) the deviation of the expression profile of the sample from a control or standard derived from a healthy individual or population of healthy individuals, or (b) the similarity of the expression profiles of the sample and a control or standard derived from an individual or population of individuals who have or have had the cancer. In some embodiments, the method further comprises prescribing a treatment regimen based on (a) the deviation of the expression profile of the sample from a control or standard derived from a healthy individual or population of healthy individuals, or (b) the similarity of the expression profiles of the sample and a control or standard derived from an individual or population of individuals who have or have had the cancer. In some embodiments, the method further comprises altering a treatment regimen prescribed or administered to the individual based on (a) the deviation of the expression profile of the sample from a control or standard derived from a healthy individual or population of healthy individuals, or (b) the similarity of the expression profiles of the sample and a control or standard derived from an individual or population of individuals who have or have had the cancer. In some embodiments, the method further comprises predicting the individual's response to a treatment regimen based on (a) the deviation of the expression profile of the sample from a control or standard derived from a healthy individual or population of healthy individuals, or (b) the similarity of the expression profiles of the sample and a control or standard derived from an individual or population of individuals who have or have had the cancer. In some embodiments, the deviation is the expression level of one or more targets from the sample is greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the method further comprises using a machine to isolate the target or the probe from the sample. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to the target, the probe, or a combination thereof. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to a target selected from Tables 2, 4, 11 or 55 or a combination thereof. In some instances, the target is selected from Table 2. In other instances, the target is selected from Table 4. In some embodiments, the target is selected from Table 11. In some embodiments, the method further comprises amplifying the target, the probe, or any combination thereof. In some embodiments, the method further comprises sequencing the target, the probe, or any combination thereof. In some embodiments, the method further comprises converting the expression levels of the target sequences into a likelihood score that indicates the probability that a biological sample is from a patient who will exhibit no evidence of disease, who will exhibit systemic cancer, or who will exhibit biochemical recurrence. In some embodiments, the target sequences are differentially expressed the cancer. In some embodiments, the differential expression is dependent on aggressiveness. In some embodiments, the expression profile is determined by a method selected from the group consisting of RT-PCR, Northern blotting, ligase chain reaction, array hybridization, and a combination thereof.


Also disclosed herein is a method of diagnosing cancer in an individual in need thereof, comprising (a) obtaining an expression profile from a sample obtained from the individual, wherein the expression profile comprises one or more targets selected from Tables 2, 4, 11 or 55; (b) comparing the expression profile from the sample to an expression profile of a control or standard; and (c) diagnosing a cancer in the individual if the expression profile of the sample (i) deviates from the control or standard from a healthy individual or population of healthy individuals, or (ii) matches the control or standard from an individual or population of individuals who have or have had the cancer. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, wherein the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the method further comprises a software module executed by a computer-processing device to compare the expression profiles. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the method further comprises using a machine to isolate the target or the probe from the sample. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to the target, the probe, or a combination thereof. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to a target selected from Tables 2, 4, 11 or 55, or a combination thereof. In some embodiments, the method further comprises amplifying the target, the probe, or any combination thereof. In some embodiments, the method further comprises sequencing the target, the probe, or any combination thereof. In some embodiments, the method further comprises converting the expression levels of the target sequences into a likelihood score that indicates the probability that a biological sample is from a patient who will exhibit no evidence of disease, who will exhibit systemic cancer, or who will exhibit biochemical recurrence. In some embodiments, the target sequences are differentially expressed the cancer. In some embodiments, the differential expression is dependent on aggressiveness. In some embodiments, the expression profile is determined by a method selected from the group consisting of RT-PCR, Northern blotting, ligase chain reaction, array hybridization, and a combination thereof.


In some embodiments is a method of predicting whether an individual is susceptible to developing a cancer, comprising (a) obtaining an expression profile from a sample obtained from the individual, wherein the expression profile comprises one or more targets selected from Tables 2, 4, 11 or 55; (b) comparing the expression profile from the sample to an expression profile of a control or standard; and (c) predicting the susceptibility of the individual for developing a cancer based on (i) the deviation of the expression profile of the sample from a control or standard derived from a healthy individual or population of healthy individuals, or (ii) the similarity of the expression profiles of the sample and a control or standard derived from an individual or population of individuals who have or have had the cancer. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, wherein the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some instances, the target is selected from Table 2. In other instances, the target is selected from Table 4. In some embodiments, the target is selected from Table 11. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the method further comprises a software module executed by a computer-processing device to compare the expression profiles. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the method further comprises using a machine to isolate the target or the probe from the sample. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to the target, the probe, or a combination thereof. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to a target selected from Tables 2, 4, 11 or 55, or a combination thereof. In some embodiments, the method further comprises amplifying the target, the probe, or any combination thereof. In some embodiments, the method further comprises sequencing the target, the probe, or any combination thereof. In some embodiments, the method further comprises converting the expression levels of the target sequences into a likelihood score that indicates the probability that a biological sample is from a patient who will exhibit no evidence of disease, who will exhibit systemic cancer, or who will exhibit biochemical recurrence. In some embodiments, the target sequences are differentially expressed the cancer. In some embodiments, the differential expression is dependent on aggressiveness. In some embodiments, the expression profile is determined by a method selected from the group consisting of RT-PCR, Northern blotting, ligase chain reaction, array hybridization, and a combination thereof.


In some embodiments is a method of predicting an individual's response to a treatment regimen for a cancer, comprising: (a) obtaining an expression profile from a sample obtained from the individual, wherein the expression profile comprises one or more targets selected from Tables 2, 4, 11 or 55; (b) comparing the expression profile from the sample to an expression profile of a control or standard; and (c) predicting the individual's response to a treatment regimen based on (i) the deviation of the expression profile of the sample from a control or standard derived from a healthy individual or population of healthy individuals, or (ii) the similarity of the expression profiles of the sample and a control or standard derived from an individual or population of individuals who have or have had the cancer. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, wherein the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some instances, the target is selected from Table 2. In other instances, the target is selected from Table 4. In some embodiments, the target is selected from Table 11. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the method further comprises a software module executed by a computer-processing device to compare the expression profiles. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the method further comprises using a machine to isolate the target or the probe from the sample. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to the target, the probe, or a combination thereof. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to a target selected from Tables 2, 4, 11 or 55, or a combination thereof. In some embodiments, the method further comprises amplifying the target, the probe, or any combination thereof. In some embodiments, the method further comprises sequencing the target, the probe, or any combination thereof. In some embodiments, the method further comprises converting the expression levels of the target sequences into a likelihood score that indicates the probability that a biological sample is from a patient who will exhibit no evidence of disease, who will exhibit systemic cancer, or who will exhibit biochemical recurrence. In some embodiments, the target sequences are differentially expressed the cancer. In some embodiments, the differential expression is dependent on aggressiveness. In some embodiments, the expression profile is determined by a method selected from the group consisting of RT-PCR, Northern blotting, ligase chain reaction, array hybridization, and a combination thereof.


A method of prescribing a treatment regimen for a cancer to an individual in need thereof, comprising (a) obtaining an expression profile from a sample obtained from the individual, wherein the expression profile comprises one or more targets selected from Tables 2, 4, 11 or 55; (b) comparing the expression profile from the sample to an expression profile of a control or standard; and (c) prescribing a treatment regimen based on (i) the deviation of the expression profile of the sample from a control or standard derived from a healthy individual or population of healthy individuals, or (ii) the similarity of the expression profiles of the sample and a control or standard derived from an individual or population of individuals who have or have had the cancer. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some instances, the target is selected from Table 2. In other instances, the target is selected from Table 4. In some embodiments, the target is selected from Table 11. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas. In some embodiments, the method further comprises a software module executed by a computer-processing device to compare the expression profiles. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% greater than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the deviation is the expression level of one or more targets from the sample is at least about 30% less than the expression level of one or more targets from a control or standard derived from a healthy individual or population of healthy individuals. In some embodiments, the method further comprises using a machine to isolate the target or the probe from the sample. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to the target, the probe, or a combination thereof. In some embodiments, the method further comprises contacting the sample with a label that specifically binds to a target selected from Tables 2, 4, 11 or 55, or a combination thereof. In some embodiments, the method further comprises amplifying the target, the probe, or any combination thereof. In some embodiments, the method further comprises sequencing the target, the probe, or any combination thereof. In some embodiments, the method further comprises converting the expression levels of the target sequences into a likelihood score that indicates the probability that a biological sample is from a patient who will exhibit no evidence of disease, who will exhibit systemic cancer, or who will exhibit biochemical recurrence. In some embodiments, the target sequences are differentially expressed the cancer. In some embodiments, the differential expression is dependent on aggressiveness. In some embodiments, the expression profile is determined by a method selected from the group consisting of RT-PCR, Northern blotting, ligase chain reaction, array hybridization, and a combination thereof.


Further disclosed herein is a kit for analyzing a cancer, comprising (a) a probe set comprising a plurality of target sequences, wherein the plurality of target sequences comprises at least one target sequence listed in Table 11; and (b) a computer model or algorithm for analyzing an expression level and/or expression profile of the target sequences in a sample. In some embodiments, the kit further comprises a computer model or algorithm for correlating the expression level or expression profile with disease state or outcome. In some embodiments, the kit further comprises a computer model or algorithm for designating a treatment modality for the individual. In some embodiments, the kit further comprises a computer model or algorithm for normalizing expression level or expression profile of the target sequences. In some embodiments, the kit further comprises a computer model or algorithm comprising a robust multichip average (RMA), probe logarithmic intensity error estimation (PLIER), non-linear fit (NLFIT) quantile-based, nonlinear normalization, or a combination thereof. In some embodiments, the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some instances, the target is selected from Table 2. In other instances, the target is selected from Table 4. In some embodiments, the target is selected from Table 11. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas.


Further disclosed herein is a system for analyzing a cancer, comprising (a) a probe set comprising a plurality of target sequences, wherein (i) the plurality of target sequences hybridizes to one or more targets selected from Tables 2 or 4; or (ii) the plurality of target sequences comprises one or more target sequences selected from Table 11; and (b) a computer model or algorithm for analyzing an expression level and/or expression profile of the target hybridized to the probe in a sample from a subject suffering from a cancer. In some embodiments, the system further comprises electronic memory for capturing and storing an expression profile. In some embodiments, the system further comprises a computer-processing device, optionally connected to a computer network. In some embodiments, the system further comprises a software module executed by the computer-processing device to analyze an expression profile. In some embodiments, the system further comprises a software module executed by the computer-processing device to compare the expression profile to a standard or control. In some embodiments, the system further comprises a software module executed by the computer-processing device to determine the expression level of the target. In some embodiments, the system further comprises a machine to isolate the target or the probe from the sample. In some embodiments, the system further comprises a machine to sequence the target or the probe. In some embodiments, the system further comprises a machine to amplify the target or the probe. In some embodiments, the system further comprises a label that specifically binds to the target, the probe, or a combination thereof. In some embodiments, the system further comprises a software module executed by the computer-processing device to transmit an analysis of the expression profile to the individual or a medical professional treating the individual. In some embodiments, the system further comprises a software module executed by the computer-processing device to transmit a diagnosis or prognosis to the individual or a medical professional treating the individual. In some embodiments, the plurality of targets comprises at least 5 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 10 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 15 targets selected from Tables 2, 4, 11 or 55. In some embodiments, the plurality of targets comprises at least 20 targets selected from Tables 2, 4, 11 or 55. In some instances, the target is selected from Table 2. In other instances, the target is selected from Table 4. In some embodiments, the target is selected from Table 11. In some embodiments, the cancer is selected from the group consisting of a carcinoma, sarcoma, leukemia, lymphoma, myeloma, and a CNS tumor. In some embodiments, the cancer is selected from the group consisting of skin cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, liver cancer, thyroid cancer, ovarian cancer, uterine cancer, breast cancer, cervical cancer, kidney cancer, epithelial carcinoma, squamous carcinoma, basal cell carcinoma, melanoma, papilloma, and adenomas.


Examples
Example 1. Validation Studies in Subjects with Prostate Cancer

Study Design


This study used a previously described case-control study for biomarker discovery and a case-cohort for independent validation. A STROBE flow diagram providing an overview of the case-control study is available in (FIG. 1).


The discovery study was a nested case-control described in detail in Nakagawa et al 2008. Archived formalin-fixed paraffin embedded (FFPE) blocks of tumors were selected from 621 patients that had undergone a radical prostatectomy (RP) at the Mayo Clinic Comprehensive Cancer Centre between the years 1987-2001 providing a median of 18.16 years of follow-up. The patients were randomly split into a training and test sets; the training set was used for biomarker discovery and classifier development and the testing set was used to measure performance and with model selection.


Patients were retrospectively classified into one of three outcomes: NED: No evidence of disease for those patients with no biochemical or other clinical signs of disease progression (at least 10 years follow-up); PSA: prostate-specific antigen biochemical recurrence for those patients with two successive increases in PSA measurements above an established cut-point of >0.2 ng/(with the subsequent measure 0.05 ng/mL above the first measurement) within 5 years of RP and no detectable metases up to 10 years after RP; METS: for those patients experience BCR within 5 years of RP and that developed metastases (confirmed by bone or CT scan) within 5 years of BCR. Patient selection for nested case-control design is outlined in Nakagawa.


On average, METS patients were diagnosed within 3.22 years following BCR and 5.79 years following RP, implying that this METS group experienced rapid onset of metastatic disease. Some PSA patients do experience metastatic disease (n=18, or 9.9% of all PSA patients in the discovery study), however, these patients have the event 10 years beyond RP and thus are outside the MET definition. Due to the condition that both PSA and MET groups had to experience BCR event within 5 years of RP, there is no statistically significant difference for the time to BCR between PSA (median: 1.70 years [IQR:0.65-3.44]) and MET (median: 2.26 years [IQR:0.78-3.94]) groups. Patients in this study did not receive a consistent treatment regimen, and may be highly treated with adjuvant interventions compared to other cohorts. Where possible we account for adjuvant interventions in analysis to mitigate its impact as a confounding factor (See Statistical Analysis).


We conducted a study that investigated the differences between NED, PSA and METS outcome groups and found there to be no statistically significant differences between the NED and PSA groups, with the largest difference in genomic and clinicopathologic variables to be found when comparing METS against NED or PSA groups. We have evidence to believe that NED and PSA groups may represent a less aggressive type of prostate cancer, and that these patients will likely not experience metastatic progression in their life-time, conversely METS patients represent rapid disease onset and more aggressive prostate cancer. To maximize discovery of biomarkers that identified oncogenic drivers of aggressive disease, we combined the NED and PSA groups into a unified Non-METS group to compare against the METS.


The discovery study included 621 patients who underwent RP at the Mayo Clinic between 1987-2001. Patients who received neo-adjuvant interventions were excluded. After chip quality control (www.affymetrix.com), 545 unique patients (209 with mets after RP and 336 with BCR only or NED) were available for the biomarker discovery study (median follow-up, 18.2 years). The study patients were further subdivided by random draw into training (n=359) and testing (n=186) subsets, balancing for the distribution of clinicopathologic variables (Table 1) as previously described.









TABLE 1







Clinical characteristics of Discovery and Validation data set












Discovery
Independent











Clinical

Training
Testing
Validation














variable
Values
No mets
mets
No mets
mets
No mets
mets

















# patients

218
141
118
68
150
69


Pathological Tumour Stage
T2
105
40
56
18
71
14



T3/4
101
67
18
37
62
40



TxN+
12
34
14
13
17
15


Pre-Op PSA
<10 ng/ml
124
66
58
34
86
33



≥10≤20
53
31
22
11
39
20



>20 ng/ml
38
43
33
17
25
16



NA
3
1
5
6
0
0


Pathological Gleason score
≤6
41
4
16
2
15
0



7
125
49
70
27
82
29



≥8
52
88
32
39
53
40


Path features
SM+
98
81
54
33
84
39



ECE+
96
86
50
41
54
44



SVI+
47
63
34
32
45
36


Biochemical recurrence (BCR)
Censored
99
0
58
0
109
0



Event
119
141
60
68
41
69


Prostate-specific mortality
Censored
216
47
117
33
150
41


(PCSM)
Event
2
94
1
35
0
28


Adjuvant Radiation
No
203
120
112
56
135
60



Yes
15
21
6
12
15
9


Adjuvant ADT
No
187
95
89
50
108
37



Yes
31
46
29
18
42
32









The initial Clinical characteristics of these samples related to biochemical recurrence (BCR), METS (or clinical recurrence (CR)), prostate cancer specific mortality (PCSM) and overall survival are shown in FIG. 2.


Subjects for independent validation were identified from a population of 1,010 men prospectively enrolled in the Mayo Clinic tumor registry who underwent RP for prostatic adenocarcinoma from 2000-2006 and were at high risk for disease recurrence. High-risk for recurrence was defined by pre-operative PSA >20 ng/mL, or pathological Gleason score≥8, or seminal vesicle invasion (SVI) or GPSM (Gleason, PSA, seminal vesicle and margin status) score≥10. Data was collected using a case-cohort design over the follow-up period (median, 8.06 years), 71 patients developed metastatic disease (mets) as evidenced by positive bone and/or CT scans. Data was collected using a case-cohort design, which involved selection of all 73 cases combined with a random sample of 202 patients (˜20%) from the entire cohort. After exclusion for tissue unavailability and samples that failed microarray quality control, the independent validation cohort consisted of 219 (69 cases) unique patients.


RNA Extraction and Microarray Hybridization


Following pathological review of FFPE primary prostatic adenocarcinoma specimens from patients in the discovery and validation cohorts, tumor was macrodissected from surrounding stroma from 3-4 10 μm tissue sections. Total RNA was extracted, amplified using the Ovation FFPE kit (NuGEN, San Carlos, Calif.), and hybridized to Human Exon 1.0 ST GeneChips (Affymetrix, Santa Clara, Calif.) that profiles coding and non-coding regions of the transcriptome using approximately 1.4 million probe selection regions, hereinafter referred to as features.


For the discovery study, total RNA was prepared as described herein. For the independent validation study, total RNA was extracted and purified using a modified protocol for the commercially available RNeasy FFPE nucleic acid extraction kit (Qiagen Inc., Valencia, Calif.). RNA concentrations were determined using a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Rockland, Del.). Purified total RNA was subjected to whole-transcriptome amplification using the WT-Ovation FFPE system according to the manufacturer's recommendation with minor modifications (NuGen, San Carlos, Calif.). For the discovery study the WT-Ovation FFPE V2 kit was used together with the Exon Module while for the validation only the Ovation® FFPE WTA System was used. Amplified products were fragmented and labeled using the Encore™ Biotin Module (NuGen, San Carlos, Calif.) and hybridized to Affymetrix Human Exon (HuEx) 1.0 ST GeneChips following manufacturer's recommendations (Affymetrix, Santa Clara, Calif.). Only 604 out of a total 621 patients had specimens available for hybridization.


Microarray Processing


Microarray Quality Control


The Affymetrix Power Tools packages provide an index characterizing the quality of each chip, independently, named “pos_vs_neg_AUC”. This index compares signal values for positive and negative control probesets defined by the manufacturer. Values for the AUC are in [0, 1], arrays that fall under 0.6 were removed from analysis.


Only 545 unique samples, out of the total 604 with available specimens (inter- and intra-batch duplicates were run), were of sufficient quality for further analysis; 359 and 187 samples were available from the training and testing sets respectively. We re-evaluated the variable balance between the training and testing sets and found there to be no statistically significant difference for any of the variables.


Microarray Normalization, Probeset Filtering, and Batch Effect Correction


Probeset summarization and normalization was performed by fRMA, which is available through Bioconductor. The fRMA algorithm relates to RMA with the exception that it specifically attempts to consider batch effect during probeset summarization and is capable of storing the model parameters in so called ‘frozen vectors’. We generated a custom set of frozen vectors by randomly selecting 15 arrays from each of the 19 batches in the discovery study. The frozen vectors can be applied to novel data without having to renormalize the entire dataset. We furthermore filtered out unreliable PSRs by removing cross-hybridizing probes as well as high PSRs variability of expression values in a prostate cancer cell line and those with fewer than 4 probes. Following fRMA and filtration the data was decomposed into its principal components and an analysis of variance model was used to determine the extent to which a batch effect remains present in the first 10 principal components. We chose to remove the first two principal components, as they were highly correlated with the batch processing date.


Non-Coding RNA Analysis


Sequence information from each probe in a PSR can be aligned and annotated against the human reference genome by xmapcore (Yates, et al., X:Map: Annotation and visualization of genome structure for Affymetrix exon array analysis, Nucleic Acids Res. (2008), Epub.) Using annotation data from the human genome version hg19/GRCh37 (Ensembl annotation release 62), we categorize the PSRs into coding, non-coding (UTR) and non-coding (intronic) as defined by xmapcore.


The PSRs that cannot be categorized in the groups above are further categorized as follows:


Non-coding (Non-unique): one or more probes don't align perfectly to the genome, or one or more probes align perfectly to multiple regions of the genome.


Non-coding (ncTranscript): PSR correspond to the exon of a non-coding transcript.


Non-coding (CDS_Antisense): PSR corresponds to a segment in the opposite strand of the coding sequence of a protein-coding transcript.


Non-coding (UTR_Antisense): PSR corresponds to a segment in the opposite strand of the UTR sequence (5′ or 3′) of a transcript.


Non-coding (Intronic_Antisense): PSR correspond to a segment in the opposite strand of the intronic sequence of a protein-coding transcript.


Non-coding (ncTranscript_Antisense): PSR correspond to the exon of a non-coding transcript in the opposite strand.


Non-coding (Intergenic): if the probes were not categorized under any of the groups above and it is annotated as ‘intergenic’ by xmapcore.


We additionally used xmapcore to annotate the gene symbol, gene synonym, Ensembl gene ID and biological description for any PSRs that overlapped with a transcript when necessary; this excludes alignments to non-coding (non-unique) and non-coding (intergenic) sequences.


Example 2: A 43-Biomarker Set for Prostate Cancer

Overview of the entire microarray analysis pipeline is provided in FIG. 3.


Feature Selection


The remaining features following the analysis in Example 1 were subjected to filtration by a t-test between the METS and non-METS samples in the training set (n=359). Using a p-value cut-off of 0.01, 18,902 features remain in analysis for further selection. Feature selection was performed by regularized logistic regression using the elastic-net penalty through the glmnet v1.7 package available in R with an alpha-value of 0.5 with three-fold cross validation. The regularized regression, with cross validation, was bootstrapped over 1000 times using all training data (n=359); with each iteration of bootstrapping we tabulated features that had a non-zero co-efficient. Features that were selected in at least 25% of the total runs were used for model building.


Non-Coding RNA Analysis


We annotated the 43-biomarker set with labels described in Example 1 to identify the extent of non-coding features. We show the various labels within the 43-biomarker set in FIG. 4. Table 2 shows that most of the PSRs are found within the boundaries of a gene, with only one probe set (3802328) being intergenic. Assessment of the ontology term enrichment for the genes in Table 3 using DAVID tools shows that the set of genes is enriched, as expected in the case of cancer, for the biological processes of sister chromatid segregation, cell division and chromosome segregation (after Bonferroni correction, significance level of 0.08, Table 3).









TABLE 2







43-Biomarker Set. Chromosomal coordinates correspond to the hg19 version of the


human genome. (Markers in the 43-biomarker set are annotated as RF43. Markers in the 22-


biomarker set are annotated as RF22.)















SEQ ID
Biomarker






ENSEMBL


NO:
Panel
Chromosome
Start
End
Category
Strand
Symbol
ID


















1.
RF22,
1
164790778
164790861
CODING
1
PBX1
ENSG00000185630



RF43


2.
RF22,
12
102043061
102043198
CODING
1
MYBPC1
ENSG00000196091



RF43


3.
RF22,
17
37054699
37054747
CODING
1
LASP1
ENSG00000002834



RF43


4.
RF22,
1
20809088
20810189
NON_CODING
1
CAMK2N1
ENSG00000162545



RF43



(CDS_ANTISENSE)


5.
RF22,
9
125827478
125827705
NON_CODING
−1
RABGAP1
ENSG00000011454



RF43



(CDS_ANTISENSE)


6.
RF22,
20
44445347
44445562
NON_CODING
−1
UBE2C
ENSG00000175063



RF43



(CDS_ANTISENSE)


7.
RF22,
5
14001862
14002003
NON_CODING
1
PCAT-



RF43



(ncTRANSCRIPT)

32


8.
RF22,
9
14089154
14089187
NON_CODING
−1
NFIB
ENSG00000147862



RF43



(INTRONIC)


9.
RF22,
12
102021374
102021490
NON_CODING
1
MYBPC1
ENSG00000196091



RF43



(INTRONIC)


10.
RF22,
13
24157611
24158003
NON_CODING
1
TNFRSF19
ENSG00000127863



RF43



(INTRONIC)


11.
RF22,
4
30975279
30975441
NON_CODING
1
PCDH7
ENSG00000169851



RF43



(INTRONIC)


12.
RF22,
2
242138538
242138661
NON_CODING
1
ANO7
ENSG00000146205



RF43



(ncTRANSCRIPT)


13.
RF22,
11
58811043
58811070
NON_CODING
1
GLYATL1P4
ENSG00000254399



RF43



(ncTRANSCRIPT)


14.
RF22,
6
32330751
32331082
NON_CODING
−1
C6orf10
ENSG000000206310



RF43



(INTRONIC)


15.
RF22,
1
156495410
156496002
NON_CODING
−1
IQGAP3
ENSG00000183856



RF43



(UTR)


16.
RF22,
2
242163962
242164581
NON_CODING
1
ANO7
ENSG00000146205



RF43



(UTR)


17.
RF22,
6
169616207
169616770
NON_CODING
−1
THBS2
ENSG00000186340



RF43



(UTR)


18.
RF22,
8
144939574
144939986
NON_CODING
−1
EPPK1
ENSG00000227184



RF43



(UTR)


19.
RF22,
15
41672463
41672932
NON_CODING
1
NUSAP1
ENSG00000137804



RF43



(UTR)


20.
RF22,
15
66841241
66841800
NON_CODING
1
ZWILCH
ENSG00000174442



RF43



(UTR)


21.
RF22,
19
3180095
3180328
NON_CODING
1
S1PR4
ENSG00000125910



RF43



(UTR)


22.
RF22,
20
44445472
44445507
NON_CODING
1
UBE2C
ENSG00000175063



RF43



(UTR)


23.
RF43
3
101212717
101212786
CODING
−1
SENP7
ENSG00000138468


24.
RF43
7
36450679
36450750
CODING
1
ANLN
ENSG00000011426


25.
RF43
10
88730250
88730288
CODING
1
C10orf116
ENSG00000148671


26.
RF43
11
68382513
68382688
CODING
1
PPP6R3
ENSG00000110075


27.
RF43
13
33327527
33327656
CODING
1
PDS5B
ENSG00000083642


28.
RF43
17
38552572
38552698
CODING
−1
TOP2A
ENSG00000131747


29.
RF43
3
190366433
190366480
CODING
1
IL1RAP
ENSG00000196083


30.
RF43
4
104057451
104057507
CODING
−1
CENPE
ENSG00000138778


31.
RF43
12
4854600
4854755
CODING
1
GALNT8
ENSG00000130035


32.
RF43
17
38555314
38555364
CODING
−1
TOP2A
ENSG00000131747


33.
RF43
11
2772266
2772592
NON_CODING
−1
KCNQ1
ENSG00000053918







(CDS_ANTISENSE)


34.
RF43
18
24237326
24237436
NON_CODING
−1







(INTERGENIC)


35.
RF43
6
72119721
72119751
NON_CODING
−1
C6orf155
ENSG00000233237







(INTRONIC)


36.
RF43
11
24997429
24997706
NON_CODING
1
LUZP2
ENSG00000187398







(INTRONIC)


37.
RF43
12
102030525
102030872
NON_CODING
1
MYBPC1
ENSG00000196091







(INTRONIC)


38.
RF43
16
50104059
50104087
NON_CODING
1
HEATR3
ENSG00000155393







(INTRONIC)


39.
RF43
3
132829328
132829491
NON_CODING
−1
TMEM108
ENSG00000144868







(INTRONIC_ANTISENSE)


40.
RF43
6
31914455
31914576
NON_CODING
1
CFB
ENSG00000243649







(ncTRANSCRIPT)

XXbac-
ENSG00000244255









BPG116M5.17


41.
RF43
7
5967689
5967716
NON_CODING
1







(NON_UNIQUE)


42.
RF43
1
53379570
53379755
NON_CODING
−1
ECHDC2
ENSG00000121310







(UTR)


43.
RF43
11
13376793
13376832
NON_CODING
1
ARNTL
ENSG00000133794







(UTR)
















TABLE 3







Gene Ontology Terms Enriched in the 43-Biomarker Signature












Biological


Adjusted


GO Term
Process
Genes Involved
P-value
P-value














GO:
Sister
CENPE, NUSAP1,
6.99E−05
0.0736


0000819
Chromatid
PDS5B, TOP2A



Segregation


GO:
Cell Division
ANLN, CENPE,
7.04E−05
0.074


0051301

NUSAP1, PDS5B,




UBE2C, ZWILCH


GO:
Chromosome
CENPE, NUSAP1,
7.27E−05
0.0765


0007059
Segregation
PDS5B, TOP2A









The set of probe sets reported here is rich in novel information for prostate cancer prognosis, as most of the probe sets fall in non-coding regions suggesting that non-coding RNAs may constitute a set of highly informative markers for prostate cancer.


Example 3: A 22-Biomarker Signature for Prostate Cancer and Comparison to Clinical and Integrated Models

To further ensure robustness of the features in the signature, we applied a final filtration method that would establish the minimal number of features required to minimize the mean squared error (MSE) of the model. To do this we used the rfcv function from the randomForest package, using 10-fold cross validation and a step value of 0.9. This method will order the features in accordance to their variable importance and iteratively remove 10% of lowest ranking features and measure the MSE at each step. We selected the number of features that were at the knee of the curve, shown in FIG. 5. At all features to the left of this knee have a highly variable MSE, which becomes more stable to the right of the knee of the curve. The knee of the curve occurs at approximately 22 features. FIG. 6 calculated the variable importance by ranking the features according to their mean decrease in accuracy (MDA) and mean decrease in gini (MDG). Some features have low MDA and MDG, which may warrant their removal from the marker set, however FIG. 5 shows that the inclusion of even some of the less differentiating features still contributed to a lower MSE. An overview of the feature selection and microarray methods is shown in FIG. 7.


Classifier Development


We developed three classifiers using the aforementioned 22 features, clinicopathologic variables, and a combination of both. We referred to the classifiers as the genomic classifier (GC), clinical classifier (CC) and integrated genomic clinical classifier (GCC); they are described in detail below. The primary endpoint for classifier development was the METS event. Although it is typical to report probabilities of progression at 2, 5, 7 or 10 years after METS, the design of the discovery study prevents us from reporting probabilities that are meaningful outside of study. For this reason, the scores for all of the aforementioned models prognosticate whether a given individual will experience metastatic disease progression, as this endpoint is not subject to modeling disease prevalence or time to an event but rather the presence or absence of features that indicate disease aggression.


Genomic Classifier (GC)


A total of 22 features were used for model building. As a further method of standardization, the expression values for the 22 features were percentile ranked for each patient. We used a random forest from the randomForest package available in R for model building and used the tune function, from the e1071 package, to identify the optimal model parameters; the optimal parameters were established to be: nodesize=80, ntree=700, mtry=15. The tuning parameters were selected to optimize classification accuracy in the training set. The model built from the training data is frozen and stored for future application to novel data. The model for classification built from the 22-biomarker feature set is henceforth referred to as the genomic classifier (GC) when applied to novel data. Notable, the final feature set (Table 4) is such that most of the 22 features in GC were ncRNA and only three were from protein-encoding mRNA (Table 4).


The GC outputs a score between [0,1], where 1 indicates higher metastatic potential. The score is derived as an output of the random forest, and rather than representing a probability it represents the total percentage of the trees in the forest that classified a new case as METS. Alternatively, it may also be said that each decision tree within the random forest decides whether the expression levels of the 22 features in a given tumor sample is more representative of MET disease or not. We used a 0.5 cutoff to classify patients as having METS or not because it is objective and used the simple Majority rule logic.


Clinical Classifier (CC)


A clinical classifier (CC) for predicting the METS end point was developed using the following clinicopathologic variables: Lymph node invasion status (LNI); Surgical Margin Status (SMS); Seminal Vesicle Invasion (SVI); Extra Capsular Extension (ECE); Pathological Gleason Score; and the pre-operative PSA. The first four clinical variables (LNI, SMS, SVI and ECE) are used as binary variables, indicating present or not; the pre-operative PSA values are taken to log 10. The clinical variables were assembled in a logistic regression and the trained model was used to predict METS in the testing set and validation study. CC produces a probability between 0 and 1, where 0 indicates low metastatic potential and 1 indicates a high metastatic potential.









TABLE 4







22-Biomarker Set. Chromosomal coordinates correspond to the hg19 version of the human genome.

















Differential







Expression


Gene
Cyt. Band
# Markers
Annotation of Markers
Biology
mets vs Non-mets





CAMK2N1
1p36.12
1
CODING AS
Cell Cycle
Upregulated






Progression/






Control Of






Signaling Pathway


IQGAP3
1q23.1
1
3′ UTR
Cell Proliferation/
Upregulated






Control Of






Signaling Pathway


PBX1
1q23.3
1
CODING
Proto-Oncogene/
Downregulated






Transcription Factor/






Immune Response


ANO7
2q37.3
2
3′
Cell Adhesion
Downregulated





UTR/ncTRANSCRIPT**


PCDH7
4p15.1
1
INTRONIC
Cell Adhesion
Downregulated


PCAT-32
5p15.2
1
ncTRANSCRIPT
ncRNA
Downregulated






DIFFERENTIALLY






EXPRESSED IN






PROSTATE






CANCER


TSBP
6p21.32
1
INTRONIC
Testis-Specific
Downregulated






Basic Protein/






Immune Response


THBS2
6q27
1
3′ UTR
Cell-Cell, Cell-
Upregulated






Matrix Interaction/






Modulator Of






Angiogenesis


EPPK1
8q24.3
1
3′ UTR
Cytoskeleton
Upregulated






Maintenance In






Epithelial Cells


NFIB
9p23
1
INTRONIC
Cell Proliferation/
Downregulated






Transcription Factor


RABGAP1
9q33.2
1
CODING AS
Cell Cycle
Upregulated






Progression/






Microtubule






Nucleation


GLYATL1P4
11q12.1
1
ncTRANSCRIPT
Pseudogene
Downregulated


MYBPC1
12q23.2
2
CODING/INTRONIC
Epithelial Cell
Downregulatec






Protein


TNFRSF19
13q12.12
1
INTRONIC
Type I Cell Surface
Downregulated






Receptor/Control






Of Signaling






Pathway


NUSAP1
15q15.1
1
3′ UTR
Cell Cycle
Upregulated






Progression/






Microtubule






Stabilization


ZWILCH
15q22.31
1
3′ UTR
Cell Cycle
Upregulated






Progression/






Chromosome






Segregation


LASP1
17q12
1
CODING
Cell Proliferation/
Upregulated






Cytoskeletal-






Associated Protein


S1PR4
19p13.3
1
3′ UTR
Cell Differentiation
Upregulated


UBE2C
20q13.12
2
3′UTR/CODING AS
Cell Cycle
Upregulated






Progression









The motivation for developing the CC was to compare the GC and GCC (described below) against a prognostic model that was developed for a similar endpoint. As the majority of post-operative nomograms prognosticate BCR in an “all-comers” population, we felt it was necessary to compare GC and GCC against a nomogram based on a high-risk population with the METS endpoint. The CC served as an intermediate benchmark between the GC and GCC and made it possible to quantify the difference additional genomic information provided in risk prediction.


Genomic Clinical Classifier (GCC)


The GC scores were assembled along with clinicopathologic variables used for CC using a logistic linear regression model fitted to the training data. The combined GC and CC model is referred to as Genomic Clinical Classifier (GCC).


Comparison to Nakagawa 17-Gene Signature


This discovery cohort was previously profiled using the Illumina DASL expression microarray (Cancer Panel v1) containing 502 oncogenes, tumor suppressors genes and genes in their associate pathways. Nakagawa (2008) describes the development of a 17 gene signature to predict METS (referred to as systemic progression in that text). We translated the 17 gene signature from the DASL platform to the HuEx platform and re-modeled those genes in the training set using logistic regression. We compare the performance of the 17-gene signature against GC, CC and GCC.


We found that in both training and testing, GC, CC and GCC outperformed the 17-gene signature (and also the GPSM nomogram); the AUC results are summarized in Table 5.









TABLE 5







Comparison of Discrimination ability of classifiers in different datasets










Model
Training
Testing
Validation*





GC
0.90
0.76
0.79


GCC
0.90
0.75
0.82


CC
0.76
0.70
0.70


GPSM
0.71
0.62
0.59


DASL17
0.73
0.60
0.64





*Survival ROC analysis was used for case-cohort validation study






Statistical Analysis


The CC, GC and GCC prediction models were evaluated in the independent validation cohort and compared to the GPSM scores for predicting the primary endpoint of mets. Researchers at GenomeDx were blinded to the outcomes and the initial analysis was conducted by Mayo Clinic statisticians (RC and EJB). C discrimination index (c-index), an extension of the area under the ROC curve for the case of censored survival data was used to initially compare the performance of each model to predict mets. The 95% confidence intervals for the c-index were approximated through bootstrapping.


Following de-blinding, several additional analyses were performed. Calibration plots, survival ROC, and decision curves were used to assess overall discrimination. Decision curve analysis was used to compare the net benefit (e.g., the gain in sensitivity weighted by a loss in specificity) over a range of ‘decision-to-treat’ threshold probabilities using the clinical-only vs. genomic models. Survival ROC and decision curves were evaluated for prediction of mets within 5 years after RP. Graphical diagnostic, ROC-based, and Censored data methods were used to determine a tentative cut-off for GC on the discovery set.


Cox proportional hazards regression analysis was used to test for associations between models and the mets endpoint. Proportional hazards assumptions of the Cox model were confirmed by evaluating the scaled Schoenfeld residuals. Due to the case-cohort design of the validation study, survival analysis utilized the Lin-Ying method, weighting the controls to reflect mets incidence in the cohort at large. Cumulative incidence curves were constructed using competing risks analysis to accommodate censoring due to death, and other events, which bias Kaplan-Meier estimates of incidence. CC, GC and GCC models were subdivided into tertiles as an objective demarcation of low, intermediate and high risk groups. The GPSM score risk groups were defined previously.


Analyses were performed using R v 2.14.1 (www.R-project.org). All tests were two-sided and a Type I error probability of 5%. The study was approved by the Mayo Clinic Institutional Review Board.


Biomarker Evaluation


Independent Validation of Prognostic Classifiers


In a blinded-independent validation study, 5-year survival ROC curves for metastasis-free end point showed a c-index of 0.70 and 0.59 for CC and GPSM, respectively (FIG. 8). GC outperformed these clinicopathologic prediction models with a c-index of 0.79, which increased to 0.82 in the integrated GCC model. In addition, the 95% confidence intervals (CIs) of the genomic models overlapped extensively, indicating comparable predictive performances (FIG. 8).


Moreover, discrimination box-plots and calibration curves show the improved performance for classifiers that used the genomic variables over clinicopathologic models (CC and GPSM) (FIGS. 9-11).


A decision curve comparing the models is shown in FIG. 12. At ‘decision-to-treat’ threshold probabilities (e.g., probability of metastatic disease at 5 years after RP), ranging from 5-25%, the net benefit of the genomic-based models exceeded that of both clinical-only models. Collectively, these data imply that the genomic panel significantly improves predictive ability.


Cumulative incidence plots compared the incidence of mets events in the risk groups for each model (FIG. 3). Difference in cumulative incidence between risk groups defined by GC tentative cut-off was highly significant for GC (p<0.001), with the group below the 0.5 potential cut-off having an incidence of <2.5% at 5-years post RP, and the group equal or above the cut-off had 5-year post RP cumulative incidence of ˜18%. However, after using a prior cut-off for GPSM, the risk groups were not significantly different (p=0.35). We also compared cumulative incidence plots of mets events between tertiles for each model (FIG. 13, 14, 15). In order to assess the performance of the models in a different categorization of risk groups, we used the D'Amico definition of low, intermediate and high risk patients (FIGS. 16, 17). Based on this, ˜60% of our high-risk cohort falls under the definitions of low and intermediate risk patients as defined by D'Amico as low or intermediate.


Difference in cumulative incidence between tertiles was highly significant for GCC (p<0.001), with the 1st tertile group having an incidence of <1% at 5-years post RP and only three cases of mets (which all occurred >5 years post RP). The 2nd tertile had 5-year post RP cumulative incidence of 5% (less than the 7.5% rate in the full cohort) and the 3rd tertile GCC group had 44 mets events, with 5-year incidence of ˜15%. In addition, the majority of patients in the 3rd GCC tertile experienced mets within 3 years of RP. The cumulative incidence differences between tertiles were also significant for both GC and CC models (FIG. 13). The GPSM, and GC groups defined by their pre-determined cut-offs, and GPSM and GCC groups defined by tertiles were also compared when patients who received adjuvant androgen deprivation therapy were excluded from the analysis, and GC and GCC groups were significantly different (FIGS. 14-15).


Table 6 shows the comparison of GPSM and GC categorization of subjects to risk groups. The study consists of mainly high-risk patients; as such there are no GPSM low risk patients. Here we show that GC can adequately identify those patients that are truly high-risk from those that are not, we confirm this using a McNemar's test. Considering this is a high-risk cohort of adverse pathology, most patients were GPSM high-risk (n=196) with a smaller number of GPSM intermediate-risk (n=23). GPSM and GC gave consistent results in 88 (40%) of subjects, but GC reclassified 124 out of 196 (63%) GPSM high-risk (GPSM>10) patients into lower risk groups. With additional genomic information, the GC systematically downgraded GPSM high-risk subjects to lower risk categories (p<0.0001 McNemar's test). Given, the low cumulative incidences of metastatic disease (FIG. 18), even patients with ‘high-risk’ adverse pathology or GPSM scores who have low GC scores, have a very low probability of mets.


Univariable analysis is detailed in Table 7 and shows that in this high-risk cohort, the majority of the clinicopathologic variables, with the exception of margin status and pre-operative PSA, were significant prognostic factors. GC has a high precision in estimating increasing risk of 56% of developing mets for every 0.1 unit increment in GC score (HR=1.56, CI: 1.35-1.80, p<0.001). However, with multivariable Cox regression modeling of the individual clinical and genomic components of the GCC model, while GC remained a significant variable with an HR of 1.48 (CI: 1.27-1.73, p<0.001) for every 0.1 unit increment in GC score, no clinical variables remained significant for predicting mets (Tables 8-9). In Table 8, GC is adjusted for clinicopathologic components of GCC (seminal vesicle invasion, pathological Gleason sum, pre-operative PSA, extra-capsular extension, lymph node involvement and positive margin as well as administration of adjuvant hormones. The Lin-Ying method was used to account for the case-cohort design when determining the hazard ratios. The GC hazard ratio is for a 0.1 unit change in the GC risk score.


GC was also adjusted for CC and GPSM in separate multivariable regression analyses and yet remained the only significant risk factor (Table 10).









TABLE 6







Reclassification of GPSM categories by GC.












#patients






(% mets by 5 years)
GC <0.5
GC >=0.5
GPSM Totals







GPSM Intermediate
16(4%)
7(4%)
23(8%)



GPSM High
124(29%)
72(63%)
196(92%)



GC Totals
140(33%)
79(67%)

















TABLE 7







Univariable Analysis for panel of prognostic classifiers and


clinicopathologic variables (for mets)














Hazard ratio (95% CI)
p-value

















GC
1.56 (1.35-1.80)
<0.001




GCC
1.40 (1.24-1.58)
<0.001




CC
1.31 (1.15-1.49)
<0.001




Pathologic Gleason Sum
2.45 (1.38-4.36)
=0.002




GPSM
1.32 (1.12-1.56)
<0.001




Extra Capsular Extension
2.68 (1.49-4.83)
=0.001




Seminal Vesicle Invasion
2.18 (1.22-3.87)
=0.007




Lymph Node Invasion
2.18 (1.04-4.56)
0.04




Pre-operative PSA
1.21 (0.94-1.57)
0.15




Positive Margins
0.96 (0.54-1.69)
0.88

















TABLE 8







Multivariable Cox regression analysis.










Hazard ratio (95% CI)
p-value














GC
1.48 (1.27-1.75)
<0.001



Gleason Sum
1.83 (0.83-4.09)
0.14



Seminal Vesicle Invasion
1.47 (0.70-3.08)
0.30



Extra Capsular Extension
1.37 (0.63-3.01)
0.43



Pre-operative PSA
1.13 (0.79-1.63)
0.51



Positive Margins
1.10 (0.53-2.25)
0.80



Lymph Node Invasion
0.94 (0.28-3.15)
0.92





*adjusted for adjuvant hormone therapy













TABLE 9







Multivariable Analysis for panel of prognostic classifiers and


clinicopathologic variables Adjusted for Hormone Therapy (for mets)












Hazard ratio (95% CI)
p-value














GC
1.49 (1.27-1.75)
<0.001



Seminal Vesicle Invasion
1.75 (0.80-3.85)
0.16



Gleason Sum
1.43 (0.70-2.90)
0.33



Extra Capsular Extension
1.32 (0.61-2.86)
0.49



Pre-operative PSA
1.15 (0.81-1.62)
0.44



Positive Margins
1.09 (0.53-2.25)
0.81



Lymph Node Invasion
0.85 (0.30-2.45)
0.77



Hormone Therapy*
0.92 (0.44-1.93)
0.84





*adjusted for salvage or adjuvant hormone therapy













TABLE 10







Multivariable Analysis of GC compared


to GPSM and CC (for mets)










Hazard ratio




(95% CI)
p-value










MVA with GC and GPSM











GC
1.51 (1.31-1.75)
<0.001



GPSM
1.16 (0.96-1.39)
0.17







MVA with GC and CC











GC
1.51 (1.29-1.75)
<0.001



GPSM
1.12 (0.96-1.30)
0.16









DISCUSSION

This study describes the development and independent validation of a novel prognostic biomarker signature, a genomic classifier (GC) identified by analyzing 764 high-risk radical prostatectomy patients (545 in discovery set and 219 in an independent validation set) with long-term follow-up. The GC was designed to predict rapid metastatic disease progression, an endpoint based on radiographic imaging that is clinically much more relevant for aggressive prostate cancer than most previous biomarker reports using the BCR endpoint. All tumor specimens were profiled using high-density microarray analysis of RNA from archived patient FFPE specimens. The transcriptome-wide approach allowed interrogation of a much richer genomic dataset, including many thousands of ncRNAs, compared to previous efforts which were primarily protein-coding ‘gene-centric’. The GC model was validated in an independent blinded study of a contemporary cohort (2000-2006) of prostatectomy patients with adverse pathology, reflecting the population where clinical variables and nomogram models fail to decipher the small percentage of men who will develop lethal prostate cancer.


In the high-risk validation cohort of 1,010 men treated at the Mayo Clinic, only 7.5% developed metastatic disease. Even after accounting for use of adjuvant therapy, risk stratification based on pathology alone failed to accurately predict metastatic disease and supporting the notion that even high risk prostate cancer is a molecularly heterogeneous disease. The improved calibration of genomic models over clinical-only models may be due to incorporation of true molecular drivers of aggressive disease in the GC models, so that even in a clinicopathologic homogeneous ‘high-risk’ patient population, GC can better segregate ‘true high-risk’ patients from the majority who will not progress. Decision curve analysis also showed that the prognostic classifiers using genomic information had a broader range of clinical benefit, based on “decision-to-treat” thresholds, compared to clinical-only models. Again, the limited range of benefit shown by the CC and GPSM models may be a further reflection of their limited discriminative ability in high risk men. Lastly, even after adjusting for adjuvant therapy multivariable analysis showed GC remained the only significant predictor, suggesting that the genomic signature captures most of the prognostic information as it relates to metastatic disease development in the high-risk cohort.


To our knowledge, this is the first study to extensively validate a biomarker signature based primarily on ncRNA. This may be an important reason why the GC model (only 3 features selected from protein-encoding mRNA; see Table 4) showed significantly improved performance over previous gene-based models. Supporting this notion, we recently reported our reanalysis of the MSKCC Prostate Oncogenome Project expression data and demonstrated that ncRNA expression was more prognostic than protein-coding genes and in multivariable analysis provided predictive information independent of the Kattan nomogram. The importance of ncRNA in aggressive prostate cancer is further highlighted by several recent studies that have demonstrated their involvement in tumor cell invasion and metastasis.


The vast majority of patients with aggressive disease have adverse pathology. However, the fact remains that most patients with adverse pathology will not die from prostate cancer. The question remains for most urologists and their patients, of when, and how, to intervene for patients with adverse pathology. Up to 20% of RP patients with adverse pathology in contemporary practice will inevitably require additional intervention with radiation, hormones or chemotherapy as durable cancer control will not be achieved using radical surgery alone. Three large, randomized clinical trials (SWOG 8794, EORTC 22911 and ARO 96-02) have shown improved biochemical recurrence-free and/or metastasis-free survival for men with adverse pathology when treated with immediate adjuvant radiation therapy versus initial observation. Initial reports from the RTOG 96-01 trial, which randomized early salvage radiation patients to anti-androgen therapy or observation, indicated that intensification with multimodal therapy post RP reduces the incidence of metastatic disease. Despite this evidence, urologists have not widely adopted adjuvant intervention after RP and favor instead treatment upon PSA relapse or biochemical recurrence (BCR).


This practice, however, may lead to under-treatment of some patients in the adjuvant setting, where radiation has a proven benefit and over-treatment of many patients in the salvage setting, since BCR is a poor surrogate for metastatic disease.


As management strategies evolve, a ‘reverse stage-shift’ has occurred in the last decade, whereby more low-risk patients opt for active surveillance and more high-risk patients undergo RP. As a result, urologists are seeing a higher proportion of patients with adverse pathology after RP. In a contemporary cohort of men with adverse pathology we show that adding genomic variables to established clinical risk factors significantly improves prediction models for metastatic disease. Furthermore, we found that most of the prognostic information for predicting metastatic disease is captured by the genomic variables, which are measured in the primary tumor. This data supports the notion that genomic alterations in lethal prostate cancer manifest early on, many years before metastatic disease can be radiographically imaged. Improved identification of patients most at risk for developing disease may better serve those most in need for adjuvant therapy. It is in these patients that we are further testing the performance of this classifier, its usefulness in guiding risk stratification and decision-making after RP in additional validation studies. More accurate prediction of lethal prostate cancer within this high risk population of surgical prostate cancer patients may lead ultimately to improved outcomes.


Gleason 7 Sub Cohort Analysis


Patients with pathological Gleason stage 7 represent a difficult to classify intermediate category in prostate-cancer clinical decision making. It has been suggested that patients with a primary Gleason 4 and secondary Gleason 3 (4+3) have a worse outcome than 3+4 patients. We demonstrated that GCC was better able to segregate Gleason 7 patients with improved outcome compared to the current 4+3 vs. 3+4 method. First, we compared the capacity of the CC (also referred to as the Clinical Model, or CM) and GCC to segregate Gleason 7 patients (FIG. 19), the discrimination plots in this analysis showed that CC does not segregate these patients at all. Departing from CC model, we compared the survival outcome for the Gleason 7 patients based on the aforementioned clinical practice and GCC. FIG. 20 clearly shows the superiority of the GCC in segregating these patients with a mets endpoint (also referred to as Clinical Recurrence, or CR). Importantly, the GCC is also able to segregate patients when the endpoint was changed to PCSM; the conventional 4+3 vs. 3+4 methods has a limited capacity to separate patients as shown in FIG. 21. We further separate samples into their respective 4+3 and 3+4 categories and assessed the performance of the GCC within these groups and found that for both mets and PCSM end points the GCC was capable of significantly segregating patients into high (GCC>=0.5) and low risk (GCC<0.5) groups (FIGS. 22-23).


Application to Adjuvant Hormones Lymph Node Positive Patients


We assessed the capacity of GCC to segregate a set of Lymph Node positive (N+) patients uniformly treated with adjuvant hormone therapy. We compared its performance against CC and used both the mets and PCSM endpoint (FIGS. 24-25). Since GCC and CC contain LNI status as a variable in model training and prediction, the LNI status might augment the results when the analysis is focused solely on N+ patients. Overall however either model is intended to be applied to broad range of patients with varying pathological characteristics and so it is practical to consider CC and GCC with LNI status even when focusing on the N+ group. Furthermore, N+ patients are uniformly treated in clinical settings with Adjuvant Hormones (ADTHx+) as standard of care; the ability of the GCC to further segregate the N+ patients into good and poor outcomes even after ADT might indicate an important clinical utility that could warrant the treatment of high risk (GCC>0.5) patients with additional therapies. Currently, there are no existing clinical instruments that further differentiate N+ patients.


Example 4: Method of Diagnosing a Leukemia in a Subject

A subject arrives at a doctor's office and complains of symptoms including bone and joint pain, easy bruising, and fatigue. The doctor examines the subject and also notices that the subject's lymph nodes are also swollen. Bone marrow and blood samples are obtained from the subject. Microarray analysis of the samples obtained from the subject reveal aberrant expression of one or more transcripts selected from Tables 2, 4, 11 or 55 and the subject is diagnosed with acute lymphoblastic leukemia.


Example 5: Method of Determining a Treatment for Breast Cancer in a Subject

A subject is diagnosed with breast cancer. A tissue sample is obtained from the subject. Nucleic acids are isolated from the tissue sample and a probe set comprising at least ten probes capable of detecting the expression of at least one non-coding RNA transcript and at least one protein-coding transcript. Analysis of the expression level of one or more transcripts selected from Tables 2, 4, 11 or 55 reveals the subject has a tamoxifen-resistant breast cancer and gefitinib is recommended as an alternative therapy.


Example 6: Method of Determining the Prognosis a Pancreatic Cancer in a Subject

A subject is diagnosed with pancreatic cancer. A tissue sample is obtained from the subject. The tissue sample is assayed for the expression level of biomarkers comprising one or more transcripts selected from Tables 2, 4, 11 or 55. Based on the expression level of the one or more transcripts selected from Tables 2, 4, 11 or 55, it is determined that the pancreatic cancer has a high risk of recurrence.


Example 7: A 22-Marker Genomic Classifier (GC) Outperformed Previously Reported Genomic Signatures and Individual Gene Biomarkers

As described in Example 3, a final set of 22 markers was selected for building a random forest classifier. The high-density array used in this study permits measurement of the expression patterns of RNAs associated with multiple biological processes in prostate cancer progression. Also, this transcriptome-wide approach allowed interrogation of a much richer genomic dataset, including thousands of ncRNA. Furthermore, the genomic markers measure the biological potential of the tumor to metastasize. The biological processes represented in the 22 markers include cell cycle progression, cell adhesion, tumor cell motility, migration and immune system modulation Multidimensional scaling analysis depicts clustering of cases and controls based on the expression of these 22 markers (FIG. 26). Controls correspond to pooled NED and PSA patients since, at a fold-change threshold of 1.5 (after correcting for false-discovery), only 2 (out of ˜1.4 million) features were found to be differentially expressed between these two groups groups, compared to 1187 and 887 in metastasis outcomes compared to NED and PSA groups. A random forest machine-learning algorithm was used to generate GC scores on the training and testing set after assembling the 22 markers with forest parameters to optimize for highest accuracy in the training set. The performance of GC was compared to that of previously published gene signatures: Agell et al 2012, Bibikova et al 2007, Bismar et al 2006, Cuzick et al 2011, Glinsky et al 2005, LaPointe et al 2004, Larkin et al 2012, Nakagawa et al 2008, Olmos et al 2012, Penney et al 2011, Ramaswamy et al 2003, Ross et al 2012, Talantov et al 2010, Varambally et al 2005 and Yu et al 2007 and individual genomic markers associated with prostate cancer progression including CHGA, DAB2IP, GOLPH2, PAP, ETV1 and ERG, KI-67, PSA, PSCA, PSMA, AMACR, GSTP1, PCA3, B7-H3, TOP2A and CAV1. Each genomic marker and gene in the signatures were mapped to its associated Affymetrix core transcript Cluster (www.affymetrix.com/analysis/index.aff) where available, otherwise the extended transcript cluster was used. Based on the fRMA summarized expression values for the individual genes, the signatures were modeled in the training set using a random forest and tuned with the tune.randomForest function from the e1071 R package. Tuning involved performing a 20 by 20 grid search to find the optimal “mtry” and “nodesize” model parameters evaluated via 5-fold cross validation in order to maximize accuracy.


The performance of the classifiers and the individual genes was subsequently assessed in both training and testing sets (FIG. 27 and FIG. 28). As expected, we observed high AUCs in training for nearly all the external signatures, similar to what was observed with GC. When applied to testing, the AUC for each model decreased. Among the 17 external signatures that were modeled, 12 were statistically significant predictors of metastasis (e.g., their 95% confidence intervals did not drop below a threshold random chance AUC of 0.5) (FIG. 27). The AUC of GC was 0.08 points higher than the top performing external signature, the 16-gene signature reported by Bibikova et al, which had an AUC of 0.68 (95% CI: 0.60-0.76). In contrast to the expression signature models, the performance of the 16 single genes tested were expected to be similar in the training and testing sets. These genomic markers showed an overall agreement in performance, with differences in significance possibly explained by the smaller sample size of the testing set compared to the training set (FIG. 28). Of the 16 genomic markers, only B7-H3 (CD276), GSTP1 and PCA3 were statistically significant in both the training and testing sets (FIG. 28). Again, none of the individual genomic markers outperformed GC or the top performing clinical predictor, GS (AUCs≤0.64).


Example 8: A 22-Marker Genomic Classifier (GC) Outperformed Individual Clinicopathologic Variables and was Prognostic within Different Gleason Scores Groups

Clinical variables were calculated, categorized or transformed as follows. Pathological Gleason Score (GS, or pathGS) was dichotomized into groups with the threshold of ≥8; although convention is to segregate GS into three groups (<6, 7, ≥8) the relative lack of patients with GS≤6 prompted the dichotomization of GS. The pre-operative PSA (pPSA), measured immediately prior to RP, was loge-transformed. The following variables were binary: Extra-capsular Extension (ECE); Seminal Vesicle Invasion (SVI); Surgical Margins (SM+, or SMS) and Lymph Node Involvement (N+, or LNI). Hormone and radiation therapy were included as separate binary covariates if administered in an adjuvant (<90 days post RP) or salvage (following PSA rise) setting. Treatments administered subsequent to clinical metastasis were not included.


In the training set (see Example 1), ROC area-under the curve (AUC) values for GC, CC and GCC were 0.90, 0.76 and 0.91 respectively, outperforming all individual clinical variables: GSm N+, ECE, SVI, SM+, N+, pPSA and Tumor Volume (FIG. 29). In the testing set, GC and GCC had the highest AUC of 0.75, and 0.74, respectively for predicting cases. The clinical-only CC had an AUC of 0.69, which was only marginally better than pathological Gleason score alone (0.65). The shape of the ROC curves for GC and GCC showed that these models had the highest specificity and sensitivity compared to clinical models above a threshold of ˜50% specificity (FIG. 30).


A blinded study independently validated GC for prediction of clinical metastasis (metastasis) following radical prostatectomy. The results showed that the GC model had improved performance over any individual clinicopathologic variable or multivariable prediction model. In this independent validation set, the AUC of 5-year survival ROC curves demonstrated that GC had higher discriminatory ability than individual clinicopathologic variables (FIG. 31). The GC model had an AUC of 0.79 for predicting clinical metastasis at 5 years post RP with median follow up of 6.7 years. Furthermore, 5-year survival decision curve analysis on the independent validation set showed that GC had a higher net benefit over a wider range of ‘decision-to-treat’ probabilities than clinicopathologic factors (FIG. 32).


In order to test for the effect size of individual variables as well as dependencies among these variables, we performed univariable and multivariable analyses using logistic regression on the testing set (Table 12). In univariable analysis, we found GC, CC, GCC, GS, SVI and ECE to be statistically significant predictors of cases (p<0.05). The odds ratio for GC was 1.42 for every 10% increase in GC score. When dichotomized into low and high GC risk groups, as described above, the odds ratio was 6.79 (95% CI: 3.46-13.29), more than twice the odds ratio of Gleason score (OR: 3.02 (95% CI: 1.61-5.68)) for predicting cases. In multivariable analysis, after adjustment for post RP treatment, GC remained the only significant prognostic variable (p<0.001) with an OR of 1.36 for every 10% increase in GC score. The independent significance of GC suggested that a more direct measure of tumor biology (e.g., 22-marker expression signature) added significant prognostic information for prediction of early metastasis after rising PSA, which was not captured by the clinical variables available from pathological analysis.


In univariable analysis (UVA) on the independent validation set, GC had the highest significant hazard ratio (HR) among classifiers (Table 7). In multivariable analysis (MVA) on the independent validation set, only GC retained a significant HR when adjusted for clinical variables and postoperative adjuvant therapy (Table 8; P<0.001). Gleason score was alternatively parameterized (e.g., 3+4, 4+3, 8, 9-10) but this did not change the significance of GC (Table 13). Three additional MVA models were performed to model GC with CC, GPSM and the Stephenson nomogram. Only the Stephenson nomogram retained a significant HR (p<0.04) with GC as the dominant variable in the model (Table 10, Table 14).











TABLE 12








Univariable
Multivariable












Odds Ratio

Odds Ratio




(95% CI)
P
(95% CI)
P





GC
1.42 (1.28-1.60)
p < 0.001
1.36 (1.16-1.60)
p < 0.001


GCC
1.36 (1.21-1.53)
p < 0.001
n.a
n.a


CC
1.35 (1.15-1.59)
p < 0.001
n.a
n.a


pPSA
0.99 (0.77-1.26)
0.92
0.75 (0.52-1.07)
0.11


Pathologic
3.02 (1.61-5.68)
p < 0.001
1.91 (0.85-4.33)
0.12


GS ≥ 8






SVI
2.44 (1.30-4.58)
0.01
1.93 (0.79-4.73)
0.15


Tumor
1.02 (0.97-1.06)
0.44
0.97 (0.92-1.04)
0.42


Volume






N+
1.69 (0.74-3.88)
0.21
1.42 (0.41-4.96)
0.58


SM+
1.05 (0.57-1.93)
0.87
0.93 (0.40-2.17)
0.87


ECE
2.01 (1.18-3.73)
0.03
1.00 (0.45-2.20)
0.99





* MVA adjusted for adjuvant and salvage treatment interventions















TABLE 13






Hazard Ratio




(95% CI)
P

















GC 1
1.47 (1.26-1.73)
<0.001


Pathological Gleason Score*




6 + 7(3 + 4)
ref



7(4 + 3)
3.30 (1.21-9.04)
0.02


8
 3.99 (1.48-10.77)
0.01


9-10
2.21 (0.78-6.25)
0.14


Pre-operative Prostate-specific Antigen 2
1.23 (0.81-1.85)
0.34


Seminal Vesicle Invasion
2.05 (0.85-4.98)
0.11


Positive Surgical Margin
1.21 (0.55-2.67)
0.64


Extra-capsular Extension
1.29 (0.55-3.01)
0.56


Lymph Node Involvement
0.75 (0.21-2.70)
0.66


Adjuvant Radiation
0.87 (0.23-3.32)
0.83


Adjuvant Hormone
0.88 (0.35-2.24)
0.79





*Reference Gleason score combined 6 and 3 + 4 as model did not converge with using Gleason 6 only as reference



1 Hazard ratio reported for 10% increase of GC score.




2 Hazard ratio reported for 1.0 unit increments of log-transformed level.



Abbreviations - CI: confidence interval; GC: genomic classifier.















TABLE 14






Hazard Ratio




(95% CI)
P




















Model
GC 1
1.49 (1.27-1.73)
<0.001




Stephenson 1
1.15 (1.01-1.31)
0.04






1 Hazard ratio reported for 10% increase of GC score.



Abbreviations - CI: confidence interval; GC: genomic classifier






To investigate the magnitude of the hazards ratio for incremental increases in GC score we evaluated the effect size of each 10% increase in GC score for predicting clinical metastasis after adjusting for postoperative treatment (Table 15). We observed a general trend of increasing HR, and decreasing probability of metastasis-free survival with increasing deciles. However, this was not statistically significant because of the small number of patients, in the higher GC deciles. GC score deciles were then incrementally collapsed to create three GC risk groups (GC scores<0.4, 0.4-0.6, ≥0.6) and these showed significant differences in HR (and survival) in comparison to the reference group as well as to the prior level (Table 16).















TABLE 15









ref = first

ref = prior

Clinical Metastasis-free



GC decile

GC decile

Probability















GC
% of
HR (95%

HR (95%

3-
5-
8-


Deciles
Patients
CI)
P
CI)
P
year
year
year


















0.00000-
10
NA
NA


100% 
98%
98%


0.1


0.10001-
17%
 0.60 (0.04-10.20)
0.72
0.60 (0.04-10.20)
0.72
100% 
100% 
99%


0.2


0.20001-
19%
 5.56 (0.66-47.14)
0.12
9.28 (1.13-76.08)
0.04
100% 
97%
92%


0.3


0.30001-
13%
 5.86 (0.64-53.68)
0.12
1.05 (0.33-3.32)
0.93
96%
95%
92%


0.4


0.40001-
12%
 6.06 (0.68-53.89)
0.11
1.04 (0.29-3.74)
0.96
96%
95%
90%


0.5


0.50001-
9%
 11.12 (1.25-99.33)
0.03
1.83 (0.52-6.49)
0.35
96%
92%
80%


0.6


0.60001-
12%
 17.35 (2.06-146.25)
0.009
1.56 (0.52-4.71)
0.43
89%
86%
77%


0.7


0.70001-
4%
 16.68 (1.62-171.63)
0.02
0.96 (0.24-3.84)
0.96
87%
78%
NA*


0.8


0.80001-
2%
 95.51 (8.82-1034.17)
<0.001
5.73 (0.97-33.63)
0.05
65%
NA*
NA*


0.9


0.90001-
1%
106.63 (11.20-1014.70)
<0.001
1.12 (0.21-5.83)
0.9
80%
NA*
NA*


1.0





*Model adjusted for adjuvant treatment


**No patients left due to censoring or experiencing clinical metastasis events



















TABLE 16











reference =






reference

prior GC




GC < 0.4

group




Hazard

Hazard

Clinical Metastasis-free


GC risk
% of
Ratio

Ratio (95%

Probability















categories
Patients
(95% CI)
P
CI)
P
3-year
5-year
8-year


















<0.4
60%
NA
NA


99%
98%
95%


0.4-0.6
21%
2.39 (1.10-5.17)
0.03
2.39 (1.10-5.17)
0.03
96%
94%
87%


>0.6
19%
7.30 (3.51-15.14)
<0.001
3.06 (1.40-6.72)
0.005
86%
78%
73%





Model adjusted for adjuvant treatments






The distribution of cases and controls in the testing set by both GC and Gleason score risk groups was illustrated in FIG. 33 and summarized in Table 17. Among GS≤6 tumors (n=18) none had high GC scores, while among GS 7 tumors (n=97), nearly a third (29%) had high GC scores and half of these were cases that developed early metastasis after rising PSA. While most patients with high Gleason scores (≥8) had high GC scores, among the 29 (40%) with low GC scores there were only 7 cases with 3 deaths from prostate cancer. Overall, 116 out of 186 (62%) testing set patients had low GC scores of which only 21 were cases resulting in 7 deaths from prostate cancer. Among the 70 (38%) patients with high GC scores, there were 42 cases and 25 of these men died of prostate cancer. In the independent validation set, GC distribution in Gleason score groups showed high concordance (FIG. 34, Table 18); still GC identified significant number of clinically high risk patients who did not experience adverse outcomes in this set. Among patients with low Gleason score (GS 5 to 6), none had high GC scores (≥0.6) or had clinical metastasis on study follow up. As expected, 40% of patients with GS≥8 had high GC scores (≥0.6), of whom 62% experienced metastasis and 41% died of their disease. However, more than a third of patients with GS≥8 (36%) had low GC scores (<0.4), and the majority of these men did not have metastasis (77%) or die of prostate cancer (85%) at follow up. Among patients with GS 7 tumors, 41% had high GC scores (≥0.4) and 44% of these men had clinical metastasis but for GS 7 with low GC scores (<0.4), 86% of them did not metastasize and only 3% died of their disease. This reclassification demonstrated that while GC scores trend higher with higher Gleason score, GC may be used to further identify a considerable number of men with ‘high risk’ Gleason≥8 tumors that may never develop clinical metastasis and conversely from among ‘intermediate risk’ Gleason 7 tumors a subset enriched for clinical metastasis events.











TABLE 17








GC ≤ 0.5
GC > 0.5













Gleason

n METs


n METs



Category
n
(%*)
n PCSM (%)
n
(%)
n PCSM (%)
















GS ≤ 6
18
2 (11)
0
0
0
0


GS 7
69
12 (17) 
4 (5.7)
28
14 (50)
4 (14)


GS 8
12
4 (33)
1 (8.3)
11
 6 (54)
5 (45)


GS ≥ 9
17
3 (17)
2 (12)
31
22 (70)
16 (51) 




















TABLE 18








GC Score < 0.4
0.4 ≤ GC Score ≤ 0.6
GC Score > 0.6


















Path GS
Total N


Total N


Total N





Categories
(%)
Mets
PCSM
(%)
Mets
PCSM
(%)
Mets
PCSM
TOTAL




















5-6
13 (87)
0
0
 2 (13)
0
0
0 (0)
0
0
15


7
66 (59)
9
2
24 (22)
10
1
21 (19)
10
3
111


8
16 (42)
6
2
 9 (24)
3
1
13 (34)
7
6
38


9-10
17 (31)
4
3
14 (25)
4
1
24 (44)
16
9
55


TOTAL N
112 (51) 
19
7
49 (22)
17
3
58 (27)
33
18
219









The clinical significance of GC was further evidenced by the statistically significant differences of low and high-risk GC groups for the Prostate Cancer Specific Mortality Endpoint (PCSM) found within different Gleason Score Risk Groups (FIGS. 35A-C and Table 19). Also, GC was able to significantly (p<0.05) separate those PSA patients that would go on to experience later clinical metastasis (FIG. 36). As the KM method not only takes into consideration the number of patients at risk but also censored data (e.g., patients for which there was a loss of follow up at some point in time) to compute the proportions, the number of patients at risk for each time point in FIG. 35-36 are shown in Tables 19-20, respectively. These results suggested that GC can accurately predict metastasis long before it can be detected radiographically, may better guide post-surgical treatment decisions, and may help prevent over-treatment, toxicity, and morbidity.











TABLE 19








Time to PCSM after BCR (years)















0
5
10
15
20


















on
GC ≤ 0.5
217
118
85
24
1
# Patients


Score = 7
GC > 0.5
54
39
14
2

at risk


Gleason
GC ≤ 0.5
38
22
16
4




Score = 8
GC > 0.5
30
26
14
4
1



Gleason
GC ≤ 0.5
55
37
20
1




Score = 9
GC > 0.5
88
40
16
4
1


















TABLE 20








Time to PCSM after




BCR (years)















0
5
10
15
20

















GC ≤ 0.5
158
158
118
38
4
# Patients


GC > 0.5
26
26
16
5

at risk









Example 9: Combined Value of Genomic Biomarkers and CAPRA-S in Predicting Prostate Cancer Death in a High-Risk Surgical Cohort

Most men with lethal prostate cancer present initially with localized disease, and develop biochemical recurrence (BCR) following local treatment. Biomarkers potentially improve prediction of progression risk after radical prostatectomy (RP). We compared two validated post-RP classifiers: a genomic classifier (GC) and CAPRA-S(based on standard clinicopathologic parameters), to predict cancer-specific mortality (CSM) in a contemporary cohort of RP patients.


Materials and Methods


Patient Population


Subjects were identified from a population of 1,010 men prospectively enrolled in the Mayo Clinic tumor registry who underwent RP for prostatic adenocarcinoma from 2000-2006 (see Example 1). This population was clinically high-risk for metastasis, as defined by pre-operative prostate-specific antigen (PSA) levels>20 ng/mL, pathological Gleason score≥8, Seminal Vesicle Invasion (SVI), or GPSM (Gleason score; pre-operative PSA; SVI; surgical margin status, SMS) score≥10. Data was collected using a case-cohort design; of the 1,010 men, 73 (7.2%) patients developed metastatic disease as evidenced by bone and/or CT scans. These 73 men were defined as cases. A 20% random sample of the entire cohort was selected for analysis (202 patients), which included 19 cases. The remaining 54 cases not selected by random sampling were also included for analysis, resulting in a total of 256 patients. After exclusion for tissue unavailability and quality control, the independent validation cohort consisted of 219 patients (69 cases and 150 controls; median follow-up, 6.69 years).


Tissue Processing


Following histopathological review, total RNA was extracted and amplified from macrodissected FFPE primary prostatic adenocarcinoma specimens, and hybridized to Human Exon 1.0 ST GeneChips (Affymetrix, Santa Clara, Calif.) that profile coding and non-coding regions of the transcriptome using approximately 1.4 million probe selection regions, hereafter referred to as features.


Classifier Development


We compared and integrated two validated post-RP classifiers: GC and CAPRA-S. The GC was developed using a nested-case control study and contains the 22 biomarker set as disclosed in Example 3. The primary endpoint of GC was metastatic disease progression, defined as a positive bone or CT scan. Patients with GC scores≥0.4 were considered at high risk of progression to metastases. GC was independently validated in follow-up blinded study, of the patient population presented here. CAPRA-S is a nomogram that is based on standard clinical parameters, developed using the CAPSURE registry and biochemical recurrence (BCR) as the primary endpoint (Cooperberg, M. R., et al, The CAPRA-S score: A straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer, 117(22), 5039-46). CAPRA-S scores≥6 were considered at higher risk of BCR. Out of the 219 patients, 212 had sufficient data with which to calculate the CAPRA-S score. Of these, 28 had CSM events.


GC and CAPRA-S were integrated using a cox-proportional hazard model with prostate cancer specific mortality (CSM) as the primary endpoint. Although GC and CAPRA-S classifiers were developed for different endpoints (metastases and BCR, respectively), high scores in these models could translate to greater risk of CSM. Neither GC nor CAPRA-S were trained or further refined on this patient population and the raw classifier scores were used for an integrated genomic and clinical classifier. This integrated genomic-clinical classifier, characterized by the equation 0.20*CAPRA-S+5.68*GC, was validated using the optimism estimate of the c-index (calculated by bootstrapped validation), and its performance was further evaluated in an independent low risk patient population.


Statistical Analysis


The area under the receiver operating characteristic (ROC) curve was used to initially compare classifier performance to predict metastasis. Calibration plots, ROC curves and decision curves were used to assess overall discrimination. Survival decision curve analysis was used to compare the net benefit (e.g., gain in sensitivity weighted by loss in specificity) over a range of “decision-to-treat” threshold probabilities using the GC and CAPRA-S classifiers. The decision curve was evaluated for prediction of CSM within 5 years post-RP.


Cox proportional hazards analysis was used to test for associations between classifiers and adverse pathologic features (APFs) for the CSM endpoint. The proportional hazard analysis used a Barlow weighting scheme to account for the case-cohort design of the study, the Lin-Ying method was used to refine estimates of the variance. Cumulative incidence curves were constructed using Fine-Gray competing risks analysis to accommodate censoring due to death. Analyses were performed using R v2.14.1.


Results


Table 21 shows the clinical characteristics of the cohort used for this study. The high number of metastasis and CSM events demonstrated the high risk of this cohort. CAPRA-S and GC were the most prognostic indicators of CSM by survival ROC analysis (Table 22). GC had a survival AUC of 0.78 (0.65-0.89 95% CI) whereas CAPRA-S had a survival AUC of 0.76 (0.65-0.88 95% CI). Survival decision curve analysis (FIG. 37) showed that GC had a higher Net Benefit over a range of “decision-to-treat” threshold probabilities.










TABLE 21






Total n (%)


















Pre-operative Prostate-specific Antigen




<10 ng/mL
119 (54) 



10-20 ng/mL
59 (27)



>20 ng/mL
41 (19)



Pathological Gleason Score




≤6
15 (7) 



7
111 (51) 



≥8
93 (42)



Pathological Stage




pT2N0M0
85 (39)



pT3/4N0M0
102 (47) 



pTanyN + M0
32 (15)



Adverse Pathologic Features




Positive surgical margins
123 (56) 



Extra-capsular extension
95 (43)



Seminal vesicle invasion
81 (37)



Post-Operative Treatment




Adjuvant radiation
24 (11)



Adjuvant androgen deprivation therapy
74 (34)



Salvage radiation
68 (31)



Salvage androgen deprivation therapy
86 (39)



Clinical Outcomes




Biochemical recurrence
110 (50) 



Clinical metastasis
69 (31)



Prostate cancer-specific mortality
28 (13)
















TABLE 22





Survival AUC (95% CI)


















GC
0.78 (0.65-0.89)



CAPRA-S
0.76 (0.65-0.88)



Pathologic Gleason Score
0.73 (0.63-0.84)



Pre-operative PSA
0.48 (0.33-0.56)



Positive Margins
0.51 (0.35-0.65)



Lymph Nodes
0.62 (0.46-0.72)



Seminal Vesicle Invasion
0.60 (0.42-0.70)



Extra Capsular Extension
0.48 (0.33-0.56)









When GC and CAPRA-S scores were compared, while trends suggest that both GC and CAPRA-S had high agreement with respect to patients that are truly at risk of lethal prostate cancer (FIG. 38), there was also substantial reclassification of CAPRA-S risk categories by GC. Namely GC was more specific as it reclassified 108 patients to lower risk without significantly impacting sensitivity (Table 23).












TABLE 23








GC Score <0.4
GC Score ≥0.4














Total

Total




CAPRA-S
Patients
Total CSM
Patients
Total CSM



risk
n
n (csm total %)
n
n (csm total %)
Total















≤2
1
n.a
n.a
n.a
1


3 to 5
68
6 (8.8)
40

2 (5.0)

108


≥6
39
1 (2.5)
64
19 (30)
103


Total
108
7
104
21
212









The cumulative incidence plot (accounting for other causes of death as a competing risk) for the CAPRA-S high risk group was shown (CAPRA-S≥6; FIG. 39A). When this group was stratified by GC (FIG. 39B), patients with both high CAPRA-S scores and GC scores were at considerably higher risk than those with low GC scores.


Univariable (UVA) and Multivariable analysis (MVA) was used to further assess the statistical significance of the classifiers and clinical variables individually (UVA) and in presence of other variables (MVA). As shown in Table 24, GC, CAPRA-S and pathological Gleason Score were highly statistically significant in UVA (p-value<0.001), whereas Lymph Node Involvement and Extra capsular Extension were significant (p-value=0.01). In MVA, while CAPRA-S was not included in multivariable analysis as the clinicopathologic factors in this analysis comprise CAPRA-S, only GC and pathological Gleason Score remained statistically significant (Table 24).











TABLE 24








Univariable Analysis
Multivariable Analysis












Hazard Ratio (95% CI)
p-value
Hazard Ratio (95% CI)
p-value





GC*
1.83 (1.42-2.36)
p < 0.001
1.61 (1.24-2.10)
p < 0.001


CAPRA-S**
1.42 (1.19-1.70)
p < 0.001
n.a
n.a


Path Gleason Score
 7.84 (2.80-21.97)
p < 0.001
 4.80 (1.38-16.71)
0.01


Pre-operative PSA
1.11 (0.79-1.56)
0.54
1.01 (0.60-1.70)
0.96


Positive Margins
0.66 (0.29-1.52)
0.33
0.50 (0.18-1.38)
0.18


Lymph Nodes
3.53 (1.36-9.16)
0.01
1.45 (0.43-4.91)
0.55


Seminal Vesicle Invasion
2.11 (0.92-4.86)
0.08
1.79 (0.60-5.29)
0.29


Extra Capsular Extension
3.52 (1.40-8.81)
0.01
2.11 (0.69-6.42)
0.19





*GC hazard ratio is adjusted for a step size of 0.1


**CAPRA-S is not included in multivariable analysis as the clinicopathologic factors in this analysis comprise CAPRA-S






A second MVA between GC and CAPRA-S suggested both GC (HR:1.62, p<0.001) and CAPRA-S(HR:1.22, p=0.01) offered independent and statistically significant prognostic information. An integrated model improved risk stratification over either model alone (FIG. 40).


In summary, among men treated with RP at high risk of recurrence based on clinicopathologic variables, both GC and CAPRA-S were significant predictors of CSM. GC was able to effectively ‘down-risk’ men stratified to high risk based on CAPRA-S alone. GC provided independent prognostic information, and a model integrating GC and CAPRA-S may further improve prediction of lethal prostate cancer.


Example 10: Clinical Utility of a Genomic-Based Prognostic Test for Metastasis in High-Risk Post-Prostatectomy Patients

Prostate cancer presents a significant population health burden in the United States. As the most frequently diagnosed cancer among men, almost 240,000 new cases are projected for 2013 (ACS, 2013). About half of these men will be treated with radical prostatectomy (RP) (Marciscano et al., 2012) and while many will achieve a durable cure, up to 50% will present with one or more adverse pathology features such as, seminal vesicle invasion (SVI), extracapsular extension (ECE) or positive surgical margins (Swanson et al., 2007, NCCN, 2013). Although these patients are considered by guidelines to be at an increased risk for disease progression, only a minority will develop metastatic disease and ultimately die of prostate cancer (Pound et al.). Further, while close monitoring with postoperative PSA testing can identify men at risk, the time to biochemical recurrence (BCR) after RP is not predictive for metastatic disease (Boorjian et al., 2011). And, while PSA doubling time (PSAdt) is a good surrogate, its accurate determination may not be possible in all patients as it requires precious time that the patient might not have (Freedland et al., 2007).


Treatment recommendations from National Comprehensive Cancer Network (NCCN) guidelines include radiation and/or hormone therapy or active surveillance (observation). These guidelines are based in part on results from three independent phase III randomized clinical trials that have demonstrated improvements in biochemical-free, metastasis-free and cancer-specific survival in high-risk post-RP men treated with radiation therapy (RT) (Bolla et al., 2005; Thompson et al., 2009; Wiegel et al., 2009). Despite this, deciding on appropriate use of radiation therapy post RP remains a challenging task. Knowledge that most clinically high-risk post-RP patients will never develop metastasis may be resulting in concern over inappropriate or over-utilization of secondary therapy in this population. Recognizing these factors, guidelines state that “predicting prognosis is essential for patient decision-making, treatment selection, and adjuvant therapy” (NCCN, 2013). Therefore, a need persists to more accurately characterize a patient's risk of metastasis following RP to guide treatment decisions.


Current assessment of risk used when considering postoperative secondary therapy is conducted based on individual clinicopathologic variables and/or through use of nomograms (Lughezzani et al, 2010). However, the ability to identify patients at substantially higher risk of metastasis and lethal prostate cancer on the basis of clinicopathologic features alone is limited. Therefore, the need is evident for novel risk prediction tools such as genomic information that reflect the true biological potential for tumor recurrence and spread. One such tool is a postoperative genomic classifier (GC) test as described in Example 3 that uses a whole-transcriptome microarray assay with formalin-fixed paraffin embedded prostate cancer specimens. Developed in collaboration with the Mayo Clinic, it was designed to predict early clinical metastasis following RP (Erho 2013). In a blinded clinical validation study of a contemporary high-risk population of post RP men with adverse pathology, the GC test was found to more accurately predict metastasis post-RP than clinical risk models (Davicioni, E. et al 2013).


In assessing a novel molecular test, experts have recommended that evidence be collected not only on the clinical validity of the test, but also on how use of the test influenced clinical practice management, a well-established measure of the test's clinical utility (Hornberger et al. Mole Gen, 2012, CDC, 2007). The primary objective of the study herein, was to determine how urologists' knowledge of results of the GC test influenced adjuvant and salvage treatment recommendations following RP.


Materials and Methods


This clinical utility study used a prospective, pre-post design, consisting of two independent sub-studies to assess patient cases at different points in patient management; both are collectively referred to herein as the DECIDE study (DECision-Impact DEcipher). In one study, urologist treatment recommendations were assessed in the adjuvant setting, following RP without any evidence of PSA rise or BCR. In the other, treatment recommendations were assessed for a different cohort of cases in the salvage setting, following RP with evidence of PSA rise or BCR. Urologists were invited to review a set of twelve cases and provide treatment recommendations for cases at each of the adjuvant and salvage time points. Urologists were presented de-identified clinical results from real patients involved in a previously conducted clinical validation study (Davicioni et al. 2013) and asked to provide treatment recommendations based solely on the clinical information provided (pre-GC). Then, results of the GC test were assessed for the same de-identified cases and urologists were asked again to provide treatment recommendations (post-GC). Twenty urologists participated in the adjuvant setting study and 15 in the salvage setting study.


The study was conducted in accordance with the Declaration of Helsinki and the Belmont report and was reviewed and approved by an independent IRB (Quorum Review Inc., Seattle, Wash.).


The primary objective of this study was to assess the effect of the GC test on urologists' adjuvant and salvage treatment recommendations for clinically and pathologically high-risk post-RP cases. Secondary objectives were to investigate specific changes in recommendation, proclivity of the GC result to result in more or less intensification of treatment, the relative importance of the GC to clinical variables and impact of the GC on urologist confidence with treatment recommendations. Protocol-defined eligibility criteria for participation in the study required US board certified urologists practicing for at least 3 years and performing a high volume of RPs annually (Table 25). All urologists participating in the study were fellowship trained, urologic oncologists. Potential participants were identified through conference delegate lists and through established networks of key opinion leaders and were assessed for eligibility using an available database. Email invites were sent to 50 urologists meeting the inclusion criteria. Enrollment packages were sent to eligible urologists interested in participating in the study and included a cover letter, an educational primer on the GC test, a confidentiality agreement and a web link to the study's informed consent form (ICF) and electronic case report questionnaires (eCRQ).












TABLE 25







Adjuvant
Salvage



Total
Evaluation
Evaluation



n = 21
n = 20
n = 15



No. (%)
No. (%)
No. (%)







Practice setting





Tertiary Care
13 (62%) 
12 (60%) 
9 (60%)


Community (hospital or private)
8 (38%)
8 (40%)
6 (40%)


No. of years in practice





Mean
8.1
8.3
7.8


Range
3-25
3-25
3-25


No. Radical Prostatectomy per year





Mean
184   
179   
200   


Range
30-300
30-300
30-300


Geographic region





West/South Central
4 (20%)
4 (20%)
3 (20%)


South East
4 (20%)
4 (20%)
3 (20%)


Mid Atlantic
4 (20%)
3 (15%)
2 (13%)


North East
5 (25%)
5 (25%)
5 (33%)


North Central
4 (20%)
4 (20%)
2 (13%)









Twenty-four high-risk post-RP patient cases (12 adjuvant and 12 salvage) were selected for urologist review from the previously conducted clinical validation study. The number of patient cases was selected to provide enough cases to sufficiently evaluate urologist decision making across a range of high-risk patient types and was limited to twelve cases in each treatment setting so as to minimize study participant fatigue in reviewing patient cases. All cases were high-risk post-RP as defined by the presence of one or more adverse pathological features including (1) pathological Gleason score 8+ or Gleason score 7 with primary pattern 4; (2) pathological stage T3a (extracapsular extension) or T3b (seminal vesicle invasion); (3) positive surgical margins; or (4) Gleason grade upgrade from biopsy to surgery. Cases that did not experience a PSA nadir after RP were excluded from the study.


Cases were selected on the basis of their clinical risk factors and the GC predicted probability of developing metastatic disease at 5 and 3 years post-RP for the adjuvant and salvage treatment settings, respectively. In the adjuvant setting, six cases with concordant clinical risk features and GC risk and six cases with discordant predicted risk were selected. In the salvage setting, these numbers were 5 and 7, respectively. Clinical risk was determined based on the following clinicopathological variables: age at surgery, pre-operative PSA levels, pathologic stage, biopsy and pathologic Gleason score, presence or absence of SVI, presence or absence of ECE, surgical margin status and lymph node involvement (Table 26). Additionally, PSA doubling time (PSAdt) and time to BCR were provided for cases evaluated in the salvage setting. High (low) GC risk was defined as a 5- or 3-year predicted probability of metastasis greater (less) than 6% for the adjuvant setting and greater (less) than 18% for the salvage setting. The predicted probability was obtained from a prediction curve that uses Cox regression modeling to convert the oligonucleotide microarray 22-marker GC score into a patient probability of clinical metastasis at 5 years post RP. A function was created that translated GC scores into 5-year clinical metastasis event probabilities, and the resulting line of best fit was used for future predictions for novel patients. The curve allowed for the translation of a GC score (x-axis) into a patient's probability of clinical metastasis (y-axis) by visual inspection or by simple calculation. The threshold cut-off for the GC test of ≥6% was used to identify a patient at elevated risk for clinical metastasis above the average risk for other similar high-risk (e.g., patients with one or more adverse pathology features) or conversely at lower risk than the average risk of such patients for patients with Decipher test results<6%.











TABLE 26






Adjuvant
Salvage



No. (N = 12) (%)
No. (N = 12) (%)



















Age (Years at RP or at BCR)






Median (Min, Max)
60
(48, 70)
66
(57, 74)


Pre-operative Prostate-specific






Antigen






<10 ng/mL
10
(83.3)
9
(75)


10-20 ng/mL
1
(8.3)
2
(16.7)










>20 ng/mL
1
(8.3)
0










NA
0
1
(8.3)











D'Amico risk groups






Low
2
(16.7)
1
(8.3)


Intermediate
4
(33.3)
7
(58.3)


High
6
(50)
4
(33.3)


Pathological Stage






pT2N0M0
6
(50)
8
(66.7)


pT3N0M0
6
(50)
4
(33.3)


Extra-capsular Extension






Present
5
(41.7)
3
(25)


Seminal Vesicle Invasion






Present
4
(33.3)
2
(16.7)


Surgical Margin Status






Positive
8
(66.7)
6
(50)


Pathological Gleason Score














6
3
(25)
0











7 (3 + 4)
4
(33.3)
2
(16.7)


7 (4 + 3)
1
(8.3)
4
(33.3)


8
1
(8.3)
5
(41.7)


9
2
(16.7)
1
(8.3)










10
1
(8.3)
0











Time to BCR (months)














Median (Min, Max)
NA
16
(1, 112)


≤36 months
NA
9
(75)


>36 months
NA
3
(25)


PSAdT





<6 months
NA
5
(41.7)


≥6 months
NA
6
(50)


<9 months
NA
9
(75)


≥9 months
NA
2
(16.7)


NA
NA
1
(8.3)









All cases were de-identified and presented in a randomized fashion to eliminate bias toward the urologist's pre- and post-GC treatment recommendations. Cases were randomized both from urologist to urologist and from pre to post-GC. Clinical variables and GC test results information were provided to urologists through a secure online platform, and all treatment recommendations were collected using the eCRQ. Treatment recommendations included referral to a radiation oncologist for radiation and/or initiation of hormones, close observation, or any other recommendation not listed on the eCRQ.


Confidence intervals for probability of recommendation change from pre- to post-GC were constructed using a normal approximation, a significance level of 5%, and all recommendations were considered as independent. Chi-squared tests were used for univariate assessment of treatment predictors and multivariable analyses were performed using logistic regression. All statistical analyses were performed using SAS 9.2 (Cary, N.C.). All tests were 2-sided with a Type I error probability of 5%.


Results


Participating physicians were all practicing, ‘high-volume’ urologists performing an average of 184 RPs per year (Table 25). Twenty-one urologists from 18 different institutions across the US participated: 20 in the adjuvant, and 15 in the salvage settings. Fourteen of these urologists completed assessment of cases in both sub-studies. Of the 21 urologists, 38% (n=8) practiced in a community-based hospital or private practice setting and 62% (n=13) practiced in tertiary care centers, the majority (85%) of which are National Cancer Institute (NCI) designated comprehensive cancer centers. Urologists had been practicing and performing surgery for 3 to 25 years (mean 8.1 years) and all had extensive experience managing and treating patients with prostate cancer both before and after RP.


Twelve patient cases were retrospectively selected for urologist review in each of the adjuvant and salvage settings (Table 26). Half of the adjuvant patient cases were pre-operatively deemed low to intermediate risk according to D'Amico risk groups but were all subsequently up-graded/staged postoperatively. Furthermore, 75% of these cases presented with a pathologic Gleason score≥7, and 36% were ≥65 years of age at the time of surgery. For cases reviewed in the salvage setting, half had a time to BCR≤24 months, and 75% presented with a rapid PSAdt (<9 months). The majority (58%) of these cases were ≥65 years of age at the time of BCR.


In the adjuvant treatment setting, 43% (95% CI: 37-49%) of recommendations changed following review of the GC test results (Table 27). Specifically, among case evaluations with a pre-GC recommendation involving treatment, 27% (95% CI: 19-35%) of recommendations were changed to observation post-GC. Notably, for case evaluations with a pre-GC recommendation of radiation alone (n=100), 31% (95% CI: 22-41%) changed to observation post-GC (Table 27). Among the case evaluations where observation was initially chosen (n=114), treatment was recommended for 37% of case evaluations post-GC, primarily in favor of radiation therapy (37/42). This can be visualized in FIG. 41, which shows how in comparison to pre-GC, post-GC urologist recommendations for observation or treatment (radiation and/or hormones) aligned to a high degree with the risk assigned by the GC test.












TABLE 27








Adjuvant

Salvage










Treatment

Treatment



Recommendation

Recommendation

















N Pre-
Change N
95%
N Pre-
Change N
95%


Pre-GC
Post-GC
GC
(%)
CI
GC
(%)
CI

















Overall
Any
240
103 (43%) 
37-49%
180
95 (53%)
45-60%



Change








Observation
Any
114
42 (37%)
28-46%
31
19 (61%)
42-78%



Treatment









Radiation
114
37 (32%)
24-42%
31
12 (39%)
22-58%



Hormone
114
4 (4%)
1-9%
31
0 (0%)




therapy









Radiation +
114
  1 (0.9%)
0-5%
31
 7 (23%)
10-41%



Hormone









therapy









Other*
114
1 (1%)
0-5%
31
2 (7%)
0.8-21%


Any
Observation
125
34 (27%)
19-35%
143
23 (16%)
11-23%


Treatment









Radiation
Observation
100
31 (31%)
22-41%
82
11 (13%)
 7-23%


Hormone
Observation
1
 1 (100%)
 3-100%
6
 1 (17%)
0.4-64% 


therapy









Radiation +
Observation
24
2 (8%)
 1-27%
55
11 (20%)
10-33%


Hormone









therapy









Other*
Observation
1
 1 (100%)
 3-100%
6
0 (0%)





*In the advjuant setting, ‘other’ treatment recommendations included: “recheck path” and “medical oncologist and radiation oncoogist consult”


*In the salvage setting ‘other’ treatment recommendations included: “DRE, imaging” ×3, “DRE, imaging, possible referral to radiation oncologist” ×2, and “referral to medical oncologist”






In the salvage setting, treatment recommendations changed 53% (95% CI: 45-60%) of the time (Table 27). Among case evaluations with a pre-GC recommendation involving treatment (n=143), 16% (95% CI: 11-23%) changed to observation post-GC. Expectedly, there were fewer pre-GC recommendations of observation (n=31) for case evaluations with BCR, 61% were recommended to change from observation to any treatment post-GC with radiation alone (n=12) or in combination with hormonal therapy (n=7) (Table 27). Similar to the analysis of the adjuvant setting above, we observed a trend that showed alignment of observation versus treatment recommendations with the GC score, even though treatment recommendation rates were higher overall in the salvage setting (FIG. 43). When accounting for intra-observer correlation, urologists' probability of changing recommendation was approximately normally distributed, with estimated probabilities of recommendation change of 43% (95% CI 36-50%) in the adjuvant setting and 53% (95% CI 39-67%) in the salvage setting. This indicated that no urologist is always changing or failing to change their recommendation from pre- to post-GC in either setting.


To further examine the impact of the relationships between clinicopathologic variables and the GC test results in urologist treatment recommendations, we evaluated the proportion of urologists recommending treatment pre- and post-GC over the complete set of case evaluations as well as within individual clinicopathologic variables for high and low GC risk patients (Table 29A-B). GC risk was established based on whether the predicted probability of developing metastasis was above (high GC risk) or below (low GC risk) the average risk for the original study population (see methods). Overall, in the adjuvant setting, treatment was recommended 52% of the time pre-GC. Upon reviewing the GC test results, those with a low GC risk were recommended treatment only 21% of the time compared to those with a high GC risk who were recommended treatment 90% of the time (p<0.0001). Similarly, in the salvage setting, the overall proportion of treatment recommendation was 79% pre-GC, but post-GC fell to 75% in the low GC risk group and rose to 85% in the high-risk GC group (p=0.031).









TABLE 29A







Table 29A. Adjuvant Setting












Post-GC Recommendation





N (row %) [95% CI]





















Radiation










±








Any
Radiation
Hormone
Hormone






Observe
Treatment
therapy
therapy
therapy
Other
Totals


















Pre-GC Recommendation
Observe
71 (62%)
 42 (37%)
 37 (32%)
1 (0.9%)
 4 (4%)
1 (1%)
114




[52-71%]
[28-46%]
[24-42%]
 [0-5%]
[1-9%]
[0-5%]




Any
34 (27%)
 91 (73%)
NA
NA
0
0
125



Treatment
[19-35%]
[64-806%]








Radiation
31 (31%)
NA
51 (51%)
18 (18%)
0
0
100



therapy
[22-41%]

[41-61%]
[11-27%]






Radiation +
 2 (8%)
NA
 6 (25%)
16 (67%)
0
0
24



Hormone
 [1-27%]

[10-47%]
[45-84%]






Therapy










Hormone
1 (100%)
NA
0
0
0
0
1



Therapy
[3-100%]









Other*
1 (100%)
0
0
0
0
0
1




[3-100%]









Totals
106
133
94
35
4
1
240





Italicized and underlined region breaks out ″Any Treatment″ into the three available treatment options and are not included in row and column totals


*In the advjuant setting, ′other′ treatment recommendations included: ″recheck path″ and ″medical oncologist and radiation oncoogist consult″













TABLE 29b







Table 29B. Salvage Setting












Post-GC Recommendation





N (row %) [95% Cl]





















Radiation








Any
Radiation
± Hormone
Hormone






Observe
Treatment
therapy
therapy
therapy
Other
Totals


















Pre-GC
Observe
10 (32%)
19(61%)
12 (39%)
7 (23%)
0
2 (7%)
31


Recommendation

[17-51%]
[42-78%]
[22-58%]
[10-41%]

[0.8-21%]




Any
23 (16%)
118 (86%)
78 (55%)
37 (26%)
3 (2%)
2 (2%)
143



Treatment
[11-23%]
[79-91%]
[46-63%]
[19-34%]
[0.4-6%]
[0.3-9%]




Radiation
11 (13)
69 (84%)
53 (65%)
16 (20%)
0
2 (2%)
82




[7-23%]
[74-91%]
[53-75%]
[12-30%]

[0.3-9%]




Radiation +
11 (20%)
44 (80%)
23 (42%)
20 (36%)
1 (2%)
0
55



Hormone Therapy
[10-33%]
[67-90%]
[29-56%]
[24-50%]
[0-10%]





Hormone
1 (17%)
5 (83%)
2 (33%)
1 (17%)
2 (33%)
0
6



Therapy
[0.4-64%]
[36-100%]
[4-78%]
[0.4-64%]
[4.3-78%]





Other*
 0
6 (100%)
1 (17%)
5 (83%)
0
0
6





[54-100%]
[0.4-64%]
[36-100%]






Totals
33
143
91
49
3
4
180





Italicized and underlined region breaks out ″Any Treatment″ into the three available treatment options are not included in row and column totals


*In the salvage setting ′other′ treatment recommendations included: ″DRE, imaging″ ×3, ″DRE, imaging, possible referral to radiation oncologist″ ×2, and ″referral to medical oncologist″






When evaluating individual clinical variables in the adjuvant setting (Table 30), patients with ECE represented the subgroup with the highest proportion of treatment recommendations pre-GC (77%); this fell to 28% for low GC risk case evaluations and rose to 97% for high GC risk case evaluations post-GC (p<0.0001) (FIG. 42). Similarly, in cases with positive surgical margins, 54% were recommended treatment pre-GC. Treatment recommendation dropped to 18% for cases with low GC risk and rose to 93% in high GC risk cases (p<0.0001). For cases with pathological Gleason score≥7 disease, 50% were recommended treatment pre-GC, among those with low GC risk only 25% were recommended treatment versus 88% of those cases with high GC risk (p<0.01). The largest magnitude in change was observed in cases with SVI. Pre-GC, 70% of SVI cases were recommended treatment, but this dropped to 42% of cases post-GC. Among those cases with low GC risk, only 23% were recommended treatment in the presence of SVI. Cases with high GC risk apparently were perceived by urologists to reinforce the high-risk SVI pathology and 95% were recommended for treatment (p<0.0001). These results reinforced the impact of the GC test and indicated that the proportion of treatment recommendation was more strongly associated with the GC risk (or probability of developing metastasis) than any of the clinical variables (Table 30). Evaluation of individual clinical variables in the salvage setting (Table 30), showed that differences in adverse pathology within ECE, SVI and margin status did not appear to influence treatment recommendations post-GC (FIG. 44). The main driver for treatment recommendations was PSAdt. As expected, cases with a rapid PSAdt of <6 months were recommended for treatment by 93% of urologists pre-GC. However, the proportion dropped to 73% within low GC risk patients post-GC. For cases with longer PSAdt (and hence a presumed better prognosis), only 14 recommendations for treatment were made pre-GC, but this increased to 25 post-GC and all of these cases had high GC risk. As observed for the adjuvant setting, within the salvage setting study, GC risk had a stronger impact on the recommendation to treat than most clinical variables (other than margin status).












TABLE 30








Treatment

P-values



Recommended
P-Value
for Post-GC



Post-GC
for Effect
Treatment


















Treatment
Low
High
of Clinical
Effect
Effect of


Time


Recommended
GC
GC
Variable
of GC
clinical


point
Variable

Pre-GC
Risk
Risk
Pre-GC
risk
Variable


















Adjuvant
Overall

 125 (52.1%)
25
108 

<0.0001
NA






(20.8%)
  (90%)






ECE
Absent
  48 (34.3%)
14
50
<0.0001
<0.0001
0.16






(17.5%)
(83.3%)







Present
77 (77%)
11
58









(27.5%)
(96.7%)






SVI
Absent
  69 (43.1%)
11
89
<0.0001
<0.0001
0.36






(18.3%)
  (89%)







Present
56 (70%)
14
19









(23.3%)
  (95%)






Positive
Absent
  39 (48.8%)
14
15
0.49
<0.0001
0.24



Margins


(23.3%)
(75%)







Present
86 (53.8%)
11
93









(18.3%)
  (93%)






Gleason
Downgrade
  40 (66.7%)
9
20
<0.0001





Upgrading


(22.5%)
 (100%)







No
  45 (37.5%)
13
49

<0.0001
0.97




Change

(21.7%)
(81.7%)







Upgrade
  40 (66.7%)
 3
39









  (15%)
(97.5%)






Pathological
<7
36 (45%)
10
20
0.046





Gleason


(16.7%)
(100%)







 7
50 (50%)
15
35

0.011
0.5






  (25%)
(87.5%)







>7
39 (65%)

53










(88.3%)





Salvage
Overall

 143 (79.4%)
79
64

0.031
NA






(75.2%)
(85.3%)






ECE
Absent
  98 (72.6%)
42
64
0.0003
0.009
0.1






  (70%)
(85.3%)







Present
 45 (100%)
37










(82.2%)







SVI
Absent
 113 (75.3%)
56
64
0.0051
0.03
0.62






(74.7%)
(85.3%)







Present
 30 (100%)
23










(76.7%)







Positive
Absent
  53 (58.9%)
 7
64
<0.0001
0.0005
0.007



Margins


(46.7%)
(85.3%)







Present
 90 (100%)
72










  (80%)







Gleason
No
 101 (74.8%)
48
64
0.008
0.23
0.14



Upgrading
Change

  (80%)
(85.3%)







Upgrade
  42 (93.3%)
31










(68.9%)







Pathological
 7
  75 (83.3%)
48
26
0.29
0.03
0.37



Gleason


  (80%)
(86.7%)







>7
  68 (75.6%)
31
38









(68.9%)
(84.4%)






BCR Time
<36
 123 (91.1%)
79
27
<0.0001
0.8
0.11




months

(79.2%)
(90.0%)







≥36
  20 (44.4%)

37







months


(82.2%)






PSAdt
<6
  70 (93.3%)
44
14
0.007
0.058
0.72




months

(73.3%)
(93.3%)







≥6
  67 (74.4%)
35
38







months

(77.8%)
(84.4%)







<9
 123 (91.1%)
79
27
<0.0001
0.11
0.93




months

(75.2%)
  (90%)







≥9
  14 (46.7%)

25







months


(83.3%)





Low (High) GC Risk at Advjuvant timepoint = 5 year predicted probability <6% (>6%)


Low (High) GC Risk at Salvage timepoint = 3 year predicted probability <18% (>18%)






To measure recommended changes in treatment intensity, we established a baseline clinical perception of risk (hereafter referred to as perceived risk). Cases were considered low perceived risk if less than half of urologists recommended treatment and high perceived risk if more than half recommended treatment in the absence of the GC test results. In the adjuvant and salvage settings we observed that if perceived risk was high but GC risk was low, then, respectively, 50% and 46% of recommendations reduced treatment intensity post-GC (e.g., radiation to observation or radiation/hormone combination to radiation only) (Table 28). Very few recommendations were made that increased treatment intensity, (only 5% and 3.8%, respectively for adjuvant and salvage treatment recommendations). Conversely, for cases with an initial low perceived risk but high GC risk, we observed a 55% and 58% increase in treatment intensity in both the adjuvant and salvage settings, respectively. Influence of GC risk on change in intensity for all clinical risk categories and treatment settings were highly statistically significant (<0.0001). Furthermore, a multivariable model adjusting for the pre-GC clinical risk showed that GC risk influenced change in treatment recommendation intensity (p<0.0001). To understand the extent to which the GC test result impacts confidence in making a treatment recommendation, urologists were asked to report on the degree to which they felt confident in the treatment recommendation made for case evaluations both pre- and post-GC, as well as the extent to which they felt the GC test result influenced those treatment recommendations. Results showed that for case evaluations where a treatment recommendation was made, urologist confidence in treatment recommendations increased by 25% and 23% in the adjuvant and salvage settings, respectively. Additionally, urologists reported that the GC test result influenced their treatment recommendation in 83.5% (adjuvant) and 87.4% (salvage) of case evaluations (Table 31). As shown in FIG. 45, urologists report increased confidence in treatment recommendations made post GC test results. Table 32 shows five de-identified patients from the cohort used in this study, their clinical characteristics, the predicted probability at five years based on GC test and the actual clinical outcome observed. As seen there, Low predicted probabilities by GC test correspond with no evidence of disease, whereas high predicted probability corresponds with metastatic disease.














TABLE 28






Perceived
GC

No



Timepoint
Risk
Risk
Decrease
Change
Increase







Adjuvant
high
low
20 (50%)
18 (45%)
2 (5%)




high
3 (5%)
35 (58.3%)
22 (36.7%)



low
low
15 (18.8%)
60 (75%)
5 (6.3%)




high
3 (5%)
24 (40%)
33 (55%)


Salvage
high
low
48 (45.7%)
53 (50.5%)
4 (3.8%)




high
1 (3.3%)
17 (56.7%)
12 (40%)



low
high
4 (8.9%)
15 (33.3%)
26 (57.8%)





Low (High) Perceived Risk = <half (>half) of clinicians initially recommend treatment


Low (High) GC Risk at Advjuvant timepoint = 5 year predicted probability <6% (>6%)


Low (High) GC Risk at Salvage timepoint = 3 year predicted probability <18% (>18%)















TABLE 31








All
Recommendation Changed












Pre-GC
Post-GC
Pre-GC
Post-GC



Test
Test
Test
Test





Adjuvant






Confidence in






treatment






recommendation






Agree
72.9%
81.7%
70.9%
88.3%


Disagree
 3.8%
 5.8%
 4.9%
 2.9%


Neutral
23.3.% 
12.5%
24.3%
 8.7%


GC test influenced






treatment






recommendation






Agree
NA
62.5%
NA
83.5%


Disagree
NA
 8.3%
NA
 2.9%


Neutral
NA
29.2%
NA
13.6%


Salvage






Confidence in






treatment






recommendation






Agree
72.8%
82.2%
68.4%
84.2%


Disagree
 4.4%
 2.8%
 5.3%
 2.1%


Neutral
22.8%
15.0%
26.3%
13.7%


GC test influenced






treatment






recommendation






Agree
NA
68.3%
NA
87.4%


Disagree
NA
11.1%
NA
 4.2%


Neutral
NA
20.6%
NA
 8.4%





Agreement with confidence in treatment recommendation was assessed on a 5 point Likert scale where 3 was considered neutral






















TABLE 32













Predicted











prob of











mets at 5
Actual



Age
pPSA
ECE
SVI
SM
Gleason
Nomogram*
years
outcome**
























A
58
194
+
+
+
3 + 4
High
Low
NED










(5%)



B
60
22
+

+
4 + 3
High
Low
NED










(4%)



C
46
11


+
3 + 4
Int
Low
NED










(2%)



D
54
10
+

+
3 + 4
Int
High
MET










(44%)



E
61
5



4 + 4
Low
High
MET










(55%)





Note:


All of these patients were conservatively managed and did not receive any treatment post-RP


*UCSF CAPRA-S


**NED = No evidence of disease; MET = metastatic disease






DISCUSSION

This clinical utility study was designed to prospectively assess the effect of a genomic classifier (GC) test that predicts metastasis following RP on urologists' adjuvant and salvage treatment recommendations. The performance of the GC test was previously reported in a blinded, independent validation study of a population of 1,010 men at high risk of recurrence (based on adverse pathology) post RP. That study revealed that 60% of clinically high-risk patients would be reclassified as low risk with a cumulative incidence of metastasis of only 2.4% at 5 years post RP. Conversely, patients with the highest GC scores (19% of the population) had nearly 10 times higher cumulative incidence of metastasis by 5 years. Findings from this current study demonstrated that knowledge of the GC test result frequently impacted urologists' treatment recommendations in both the adjuvant (43%) and salvage settings (53%). Furthermore, we were able to show that for patients with low GC risk, while pre-GC urologists recommended treatment 43% of the time, post-GC they were recommended to observation 79% of the time. Taken together, the clinical validation and utility results implied that among the population of prostate cancer patients at high-risk of recurrence following RP, the majority of patients tested post GC will be recommended to close observation.


Guidelines on evidence development for molecular tests drafted in the past 3-5 years have urged going beyond obtaining evidence on assay analytical and clinical validity, encouraging additional research on how a test influences clinical practice management. To date in this nascent field, the number of published studies is fairly limited, but growing. In a clinical study of a molecular assay for stage II colon cancer, Srivastava et al. found that physicians changed chemotherapy decisions in 45% of patients, which fully validated predictions from a simulation of changes in NCCN guideline-directed treatment. One of the most studied areas of practice management change in molecular medicine has been risk prediction in breast cancer. In a comprehensive and systematic review of clinical validity and changes in clinical practice patterns, Hornberger et al. found 15 studies reporting on 5 different tests. They found chemotherapy recommendation changed between <1%-13% as reported in 4 studies of an online clinical decision support tool, compared with a median change across all studies of less than 35% in recommendations for a multi-gene assay. In comparison with these examples of accepted oncology tests, the finding in our study of a 43-53% change in recommendation upon receipt of the test results is supportive evidence that the GC test provides additional useful clinical information to guide therapy selection.


This study revealed relevant findings relating to current practice patterns for high-risk patients post-RP and confirmed urologist proclivity for not only increased salvage treatment at the point of BCR but also increased intensification of treatment when compared to the adjuvant setting. Overall, urologists' recommended treatment over 1.5 times as often in the salvage versus the adjuvant setting; treatment recommendations were made for 79% of case evaluations pre-GC in the salvage setting, 39% of which involved a recommendation for multi-modal (e.g., radiation and hormone) therapy. This compares to a recommendation for multi-modal therapy in only 19% of case evaluations pre-GC in the adjuvant setting. In addition, the findings imply a potential to over-treat in the salvage setting as evidence suggested that even in patients presenting with BCR, less than one-third will go on to develop metastasis. This is not without consequences for the patient as both postoperative radiation and hormone therapy incur with considerable morbidities including urinary incontinence and impotence, which can affect long-term patient quality of life.


Results from this study also confirmed that urologist decision-making in the adjuvant setting was mainly focused on whether or not to recommend postoperative radiation therapy. Prior to presentation of the GC test results, urologists recommended treatment in 52% of case evaluations with 99% of those recommendations including radiation therapy and only 20% of recommendations including hormone therapy. Accurate direction of radiation therapy to patients who are at highest biological risk for developing metastasis is critical as the morbidities and costs associated with treating patients with radiation modalities such as IMRT run high. Furthermore, we observed that the GC risk significantly influenced the treatment recommendations irrespective of the presence or absence of specific clinicopathogic features. Additionally, these findings suggested that in the salvage setting, the sensitivity of PSA rise may motivate urologists to recommend treatment despite its poor specificity. This hinted towards a role for the GC test to improve urologist decision-making in this setting. Similar results were found relating to the intensification of treatment, where changes in intensity were driven primarily by GC risk rather than the perceived risk. This suggested that given the information from the GC test, presumably measuring the true biological potential of a patient's tumor, urologists are more willing to commit to the intensification of therapy than if this recommendation were solely based on rising PSA and clinicopathologic variables (e.g., pre-GC).


Treatment recommendations changed in 43% of adjuvant setting case evaluations and 53% of salvage setting case evaluations. These findings demonstrated that knowledge of the genomic biomarker information in this GC test frequently influences these urologists' judgments about appropriate treatment in both the adjuvant and salvage settings.


Conclusion:


The DECIDE study assessed the effect of the GC test on urologist treatment recommendations for high-risk case evaluations in the adjuvant and salvage treatment settings. Findings demonstrated that knowledge of the GC test result frequently impacted urologists' treatment recommendations in both the adjuvant and salvage settings. Furthermore, the GC test appeared to better direct urologist treatment recommendations irrespective of the presence or absence of conventional pathology and clinical variables that are currently used to assess risk in these patients.


In conclusion, this study suggested that when implemented into routine clinical practice, the GC test had the potential to change treatment recommendations after radical prostatectomy and better identify patients that may benefit from intensive multimodal therapy, while sparing those who can be closely observed without initiating aggressive secondary therapy.


Example 11: Validation of a Genomic Classifier that Predicts Metastatic Disease Progression in Men with Biochemical Recurrence Post Radical Prostatectomy

Roughly 50,000 men per year will present with biochemical recurrence (BCR) following local treatment for prostate cancer. These men, with rising PSAs as the lone indicator of recurrence, present a management dilemma due to their varied outcomes. While the post-radical prostatectomy (RP) recurrence group of patients is highly enriched for those who will develop lethal disease, many of these patients will experience BCR without developing subsequent metastases. Thus, there is a clear need to improve patient risk stratification in this context. Here, we evaluated a genomic classifier (GC, see Example 3) in men with BCR for its ability to predict clinical metastasis (e.g. positive bone or CT scans).


Methods


Patient Cohort


The aim of this study was to determine whether molecular features of primary prostate tumor specimens could aid in the prediction of outcomes at the time of BCR. Accordingly, we selected 110 Caucasian patients from a high risk cohort of over 1,000 men who experienced BCR following radical prostatectomy and for whom tissue was available (see Example 1). Only men with adenocarcinoma at the time of radical prostatectomy were included. Following prostatectomy, men were typically followed by a PSA measurement every 3 months for the first year, every 6 months for the second year and then annually thereafter. Biochemical recurrence was defined as a PSA>0.2 ng/ml with a subsequent confirmatory value. At the time of biochemical recurrence, men were restaged with a CT or MRI as well as a bone scan which were then performed on a yearly basis. Time to biochemical recurrence was defined as the time from radical prostatectomy to first detectable PSA>0.2 ng/ml. Metastasis was defined as a positive bone scan or visceral or extra-pelvic nodal metastasis seen on CT scan. Men who experienced BCR less than 6 months or had missing clinicopathologic variables were excluded from the analyses (n=85). Men who experienced metastasis following biochemical recurrence were designated as “Mets” and men without metastasis after biochemical recurrence were designated as “No-Mets”. Adjuvant setting was defined as any treatment within 90 days after surgery. Salvage therapy was defined as any treatment after 90 days. Patient tumor and treatment characteristics are detailed in Table 33.













TABLE 33








Total
Mets
Mets-Free










Patients
n












Characteristics
n (row %)
n (row %)
n (row %)
P-value*














Study Cohort
85
51(60)
34(40)



Age



0.822


46-60
35
21(60)
14(40)



61-74
50
30(60)
20(40)



Pathological Stage



0.026


pT2N0M0
22
 8(36)
14(64)



pT3/4N0M0
46
30(65)
16(35)



pTanyN + M0
17
13(76)
 4(24)



Pathological Gleason



0.034


Score (path GS)






≤6
4
 0 (0.0)
   4(100.0)



7
44
23(52)
21(48)



≥8
27
18(67)
 9(33)



Pre-operative Prostate-



0.362


specific Antigen






(pre-op PSA)






<10 ng/mL
38
22(58)
16(42)



10-20 ng/mL
28
15(54)
13(46)



>20 ng/mL
19
14(74)
 5(26)



Seminal Vesicle
38
29(76)
 9(24)
0.011


Invasion (SVI)






Positive Surgical
50
29(58)
21(42)
0.822


Margin (SM+)






Extra-capsular
50
36(72)
14(28)
0.013


Extension (ECE)






Prostate Cancer-
22
 22(100)
0(0)



specific Mortality






Adjuvant Radiation
11
 8(72)
 3(27)
0.552


Therapy






Adjuvant Androgen
37
29(78)
 8(22)
0.005


Deprivation Therapy






Salvage Radiation
41
25(61)
16(39)
0.965


Therapy






Salvage Androgen
57
44(77)
13(23)
<0.001


Deprivation Therapy






Time to BCR



0.19


≤2 years
51
34(67)
17(33)



>2 years
34
17(50)
17(50)



PSAdT (NA = 12)



0.006


≤9 months
48
33(68)
15(31)



>9 months
25
 8(32)
17(68)





*Pearson's chi-squared or Fisher Exact Test






Specimen Selection and Processing


Following histopathological review, formalin-fixed paraffin embedded (FFPE) prostatic adenocarcinoma tissues from the primary tumor at the time of prostatectomy were macrodissected. Total RNA was then extracted and purified using RNeasy FFPE nucleic acid extraction kit (Qiagen Inc., Valencia, Calif.), and subjected to whole-transcriptome amplification using the WT-Ovation FFPE system (NuGen, San Carlos, Calif.). Amplified products were fragmented, labeled, and hybridized to Human Exon 1.0 ST GeneChips (Affymetrix, Santa Clara, Calif.) that profile coding and non-coding regions of the transcriptome using approximately 1.4 million probe selection regions, each representing a genomic biomarker or feature. Following microarray quality control using the Affymetrix Power Tools packages, probeset summarization and normalization was performed by frozen robust multi-array analysis, which is available through Bioconductor. Human Exon GeneChip files corresponding to these cases are available from the National Center for Biotechnology Information's Gene Expression Omnibus database.


Calculation of GC Scores, PSADT and Nomogram Scores


Previously we described a validated 22-marker genomic classifier (GC) (see Example 3). Here we employed the same GC, with GC scores outputted as a value between 0 and 1. Depending on the analysis, GC score were treated as a categorical or continuous variable. Graphical diagnostic, receiver operating characteristic (ROC)-based methods on the training dataset was used to estimate an optimal cut-off for GC score. PSADT a measure of how fast the PSA levels doubles was calculated by natural log of 2 divided by slope of linear regression line of log 2 of PSA measures over time. CAPRA-S scores were calculated as described in Cooperberg et al. (Cooperberg Cancer 2011), and Stephenson 5 year probability of survival were calculated using nomogram described in Stephenson et al.


Statistical Analyses


All statistical analyses were performed in R v2.14.1. All tests were two-sided with a type I error probability of 5%. GC was compared to standard clinicopathologic variables, PSADT, time to BCR, clinical-only classifiers (CC, CAPRA-S scores and Stephenson's nomogram) and the integrated clinical and genomic classifier (GCC) for predicting metastatic disease. The concordance summary index (extension of c-index), an extension of area under the ROC curve (AUC) for censored data was used to compare classifier performance to predict metastasis. For the survival ROC function, the nearest-neighbour estimator was used with λ=0.002 to approximate survival function density. Calibration plots were used to assess the agreement between observed and predicted outcomes. Decision curve analysis was used to assess the net increase/decrease in the proportion of necessary/unnecessary treated patients. Survival ROC and decision curves were evaluated for prediction of metastasis within 3 years post-BCR.


Cox Proportional Hazard Regression model for case-cohort design was used to evaluate the prognostic value and significance of GC and clinicopathologic risk factors in predicting the development of metastasis after BCR. Proportional hazards assumptions of the Cox model were confirmed by evaluating the scaled Schoenfeld residuals. GC was used as a continuous variable (step size=0.1); pathological Gleason score was dichotomized into <8 and ≥8 considering the small number of patients who had the score of 6 and below; pre-operative PSA values were log transformed due to their skewed distribution; SVI, SM, extra-capsular extension (ECE) were used as binary variables. In the Cox model, the estimated risks were adjusted for the administration of adjuvant hormone therapy. Cumulative incidence curves were constructed using Fine-Gray competing risks analysis to estimate the risk of failure due to prostate cancer only, after removing other type of failures (e.g. other reason for death). Time-dependent analyses were performed by weighting patients without the event as suggested by Barlow.


Results


Characteristics of men in our cohort who experienced BCR following RP are detailed in Table 33. Median time to BCR was 14.60 months (range 1.1-85.33). Men experiencing metastasis following BCR (“mets”) did so with a median time of 37.16 months (range 3.15-111.54). These men had higher pathological grade and stage at prostatectomy, higher pre-operative PSAs, a more rapid time to BCR and more rapid PSAdTs (Table 33). They were also more likely to receive adjuvant and salvage therapies (Table 33).


Discrimination plots of the GC scores for mets (right—light grey circles) and no-mets (left—dark grey circles) patients is shown in FIG. 46. Non-overlap of the notches demonstrates that the difference in GC score distribution between mets and no-mets is statistically significant. Based on the AUC of 3-year survival ROC analysis, GC shows better performance (sens/spec) than clinical measures as it outperforms clinicopathologic factors (FIG. 47) and clinical-only classifiers (FIG. 48). GC was not improved when integrating it with clinicopathologic features (GCC, FIG. 48). As this represented a high risk population, a sizable fraction of men in the study received adjuvant therapy and this could potentially confound the results. When excluding patients with adjuvant therapy, the AUC of 3-year survival ROC remained statistically significant (FIG. 49). GC score distribution among pathological Gleason Score groups showed that, while there is an overall direct correlation between both scores, GC was able to reassess the risk of many patients based on the biology of the primary tumor (FIG. 50—Mets=triangle, No-Mets=circle).


The cumulative incidence of GC high risk patients were statistically higher than GC low risk patients at any point in time following BCR using an optimal ROC-based cut-off of ≥0.4, encompassing 73% of men who would develop metastasis (FIG. 51). As shown in FIG. 51, at 3 years from BCR, the GC low group has a 0.08 incidence rate and the GC high group has a 0.4 incidence rate. At 5 years from BCR, the GC low group has an incidence rate of 0.1 and the GC high group has an incidence rate of 0.54 (FIG. 51). Statistical significance was also achieved when partitioning the set of patients into low and high risk when using a cut off of 0.5 (majority-based criteria) (FIG. 52). As the KM method not only takes into consideration the number of patients at risk but also censored data (e.g., patients for which there was a loss of follow up at some point in time) to compute the proportions, the number of patients at risk for each time point in FIG. 51-52 are shown in Tables 34-35, respectively.











TABLE 34








Time to PCSM after




BCR (years)















0
2
4
6
8



















GC Low
139
106
76
41
10
# Patients



GC High
82
39
19
10
5
at risk


















TABLE 35








Time to PCSM after BCR (years)
















0
2
4
6
8
10


















GC ≤0.5
183
177
139
92
61
15
# Patients


GC >0.5
91
72
51
20
11

at risk









As shown in FIG. 53, at 3 years, the GC low group has a 0.08 incidence rate and the GC high group has a 0.17 incidence rate; and at 5 years, the GC low group has a 0.11 incidence rate and the GC high group has a 0.26 incidence rate. Since treatment was confounded with the patient's diagnosis or disease status, we observed that by excluding treated patients we lost a group of cases, thus having a lower incidence rate for GC>=0.4 patients (FIG. 53). Still, the difference in cumulative incidence between GC high risk and GC low risk patients remained statistically significant. As the KM method not only takes into consideration the number of patients at risk but also censored data (e.g., patients for which there was a loss of follow up at some point in time) to compute the proportions, the number of patients at risk for each time point in FIG. 53 is shown in Table 36.











TABLE 36








Time to PCSM after




BCR (years)















0
2
4
6
8



















GC Low
104
79
50
25
10
# Patients



GC High
30
27
18
10
5
at risk









Majority of patients with GC<0.4 (64%) did not develop metastatic disease by the end of study follow-up time (FIG. 54).


Hypothetically, if a decision to treat is made when a classifier implies a risk of 25% or higher, using the estimated net benefit, it can be shown that the reduction in unnecessary treatments among 100 patients using the GC model was 31 patients in comparison to maximum 10 patients for clinical-only models (FIG. 55).


Univariable (UVA) and Multivariable analysis (MVA) based on Cox Proportional Hazard was used to further assess the statistical significance of the classifiers and clinical variables individually (UVA) and in presence of other variables (MVA). These analyses show that GC accurately predicts metastasis following BCR. In univariable analysis, GC score predicted metastasis following BCR, as did clinicopathologic variables and clinical-only models (Table 37 and Table 38). GC score and pathological Gleason Score remained the only significant predictors of metastatic disease in a multivariable model after adjusting for clinicopathologic information (Table 37). In multivariable models involving GC and clinical-only classifiers, GC remained significant while the clinical-only classifiers were not significant (Table 38).


In summary, when compared to clinicopathologic variables, GC better predicted metastatic progression among our cohort of men with BCR following RP. These results suggested that use of GC allowed for better selection of men requiring additional treatment at the time of BCR.











TABLE 37








Univariable
Multivariable



Cox Proportional
Cox Proportional



Hazard
Hazard














Hazard


Hazard





Ratio
95% CI
P
Ratio
95% CI
P
















GC
1.62
1.33-1.96
<0.001
1.36
1.09-1.68
0.01


Path
2.55
1.14-5.70
0.02
2.7
1.02-7.16
0.05


GS ≥8








Pre-op
1.15
0.74-1.77
0.53
1.06
0.75-1.51
0.73


PSA








(log2)








SVI
3.05
1.36-6.85
0.01
1.61
0.62-4.21
0.33


SM
0.55
0.25-1.25
0.16
0.63
0.27-1.52
0.31


ECE
3.02
1.31-6.96
0.01
1.47
0.62-3.48
0.38


LNI
5.22
 1.93-14.13
0
0.62
0.18-2.15
0.46


















TABLE 38








Univariable Cox
Multivariable Cox



Proportional
Proportional



Hazard
Hazard














Hazard


Hazard





Ratio
95% CI
P
Ratio
95% CI
P
















GC
1.62
1.33-1.96
<0.001
1.4
1.12-1.75
0


Stephen-
1.51
1.33-1.72
<0.001
1.13
0.92-1.37
0.25


son








GC
1.62
1.33-1.96
<0.001
1.44
1.16-1.78
<0.001


CAPRA-S
1.58
1.35-1.85
<0.001
1.11
0.89-1.39
0.34









Example 12: Prognostic Value of Univariable and Pairwise Combination of Prognostic Features from a 43 Biomarker Panel for Prostate Cancer Progression Across Different Endpoints

The 43 biomarkers discovered in Example 2 (Table 2) were assessed for their performance across a range of different metrics and endpoints.


In tables 39 to 48, those biomarkers that were found as univariable classifiers to be statistically significant in the training and testing sets (see Example 1) based on a Wilcoxon test (p-value<=0.05) for the Area under the ROC curve (AUC) metric, are shown for a number of relevant clinical endpoints: Extra Capsular Extension (ECE), Seminal Vesicle Invasion (SVI), Surgical Margin Status (SMS), Lymph Node Involvement (LNI), Biochemical Recurrence Event (BCR), Local Recurrence Event (LCR), Metastasis Event (Mets Event), Prostate Cancer Specific Mortality Event (PCSM), Overall Survival (OS), pathological Gleason (pathGS) and Prostate Specific Antigen Doubling Time (PSADT). Endpoints associated to a time-to-event present also metrics that allow to consider this component in the performance assessment. Whereas results are shown for the testing set (as defined in Example 1), these biomarkers were significant also in the training set of the discovery study.


Further significance of the selected features was evidenced by multiple metrics and are also listed in tables 39 to 48 (either in their raw values or as their associated P-value for assessment of statistical significance) including:

    • Sensitivity: proportion of the actual number of patients with the event that are correctly identified as such. Higher values indicate better performance.
    • Specificity: proportion of the actual number of patients without the event that are correctly identified as such. Higher values indicate better performance.
    • Area under the ROC curve (AUC). Corresponds to the area under the receiver operating characteristic curve, which plots the performance of a feature or classifier for all thresholds of sensitivity and specificity. Higher values indicate better performance.
    • Accuracy: Proportion of patients correctly predicted. Higher values indicate better performance.
    • Positive Predictive Value: proportion of predicted events that are true events. Higher values indicate better performance.
    • Negative Predictive Value: proportion of predicted non-events that are true non-events. Higher values indicate better performance.
    • Detection Rate: The portion of true positives from the whole population. Higher values indicate better performance.
    • Detection Prevalence: The portion of predicted events from the whole population. Higher values indicate better performance.
    • Median Fold Difference: the ratio of the median expression value for each group. Values away from 1 indicate better performance.
    • Survival AUC: assesses the discriminatory power of the classifier across all thresholds of sensitivity and specificity taking into account the time to event. Higher values indicate better performance.
    • KM P-value: Kaplan Meier curves are obtained by partitioning the expression values into low and high risk groups using the PAM clustering method. A Kaplan Meier curve for one of these groups shows the probability over time of being free of the event, given the number of patients at risk and the censored data. The p-value is computed and measures the significance of the differences between both groups over time. P-values<=0.05 are considered significant. Lower values indicate better performance.
    • Univariable Analysis (UVA) odds ratio: measures the effect size of the feature or classifier when partitioning the scores into low and high risk groups. For this metric, these groups are obtained by partitioning the set of samples into low and high risk values using the PAM clustering method. Values away from 1 indicate better performance.
    • Multivariable Analysis (MVA) odds ratio: measures the independent prognostic ability of the feature or classifier when partitioning the values into low and high risk groups. For this metric, these groups are obtained by partitioning the set of samples into low and high risk using the PAM clustering method. Values away from 1 indicate better performance.
    • UVA hazard ratio: measures the ratio of the hazard rates when partitioning the values into low and high risk groups and incorporates the time to event through Cox proportionate hazard modeling. For this metric, these groups are obtained by partitioning the scores into low and high risk using the PAM clustering method. Values away from 1 indicate better performance.
    • MVA hazard ratio: measures the independent prognostic ability relative to other variables when partitioning the values into low and high risk groups and incorporates the time to event through Cox proportionate hazard modeling. For this metric, these groups are obtained by partitioning the scores into low and high risk using the PAM clustering method. Values away from 1 indicate better performance.


The associated p-value provided for the metrics gives a measure of the statistical significance of the corresponding metric. The threshold of P-value<=0.05 is used as a way of defining those features that are statistically significant for the given metric and endpoint. The AUC lower and AUC upper, as well as the Accuracy lower and Accuracy upper, represent the lower and upper bound of the 95% Confidence Interval for those metrics.









TABLE 39





biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value


(auc.pvalue) and other metrics for the BCR event endpoint.






















SEQ

auc.



Pos.Pred.
Neg.Pred.


ID NO.
auc
pvalue
Accuracy
Sensitivity
Specificity
Value
Value





SEQ ID
0.62
0.01
0.61
0.62
0.59
0.77
0.41


NO. 6









SEQ ID
0.60
0.03
0.59
0.63
0.52
0.74
0.38


NO. 22









SEQ ID
0.59
0.04
0.60
0.63
0.53
0.75
0.39


NO. 19









SEQ ID
0.59
0.04
0.59
0.64
0.48
0.73
0.38


NO. 28









SEQ ID
0.61
0.02
0.42
0.45
0.34
0.60
0.22


NO. 16









SEQ ID
0.60
0.03
0.61
0.66
0.50
0.75
0.40


NO. 5









SEQ ID
0.60
0.02
0.48
0.30
0.86
0.83
0.36


NO. 4

















SEQ

uvaOR

KM

uvaHRP
mvaHRP


ID NO.
mfd
Pval
mvaORPval
P-value
survAUC
val
val





SEQ ID
1.09
0.02
0.06
0.00
0.64
0.00
0.08


NO. 6









SEQ ID
1.15
0.03
0.09
0.03
0.64
0.00
0.01


NO. 22









SEQ ID
1.06
0.13
0.02
0.00
0.65
0.02
0.01


NO. 19









SEQ ID
1.09
0.06
0.02
0.08
0.63
0.01
0.01


NO. 28









SEQ ID
0.97
0.12
0.58
0.01
0.39
0.11
0.86


NO. 16









SEQ ID
1.08
0.05
0.05
0.16
0.54
0.19
0.52


NO. 5









SEQ ID
1.03
0.02
0.06
0.00
0.65
0.00
0.00


NO. 4





Auc. pvalue: Wilcoxon Test P-value.


MFD: Median Fold Difference.


KM: Kaplan Meier curves.


survAUC: survival AUC.


uvaORP val: Univariable Analysis Odds Ratio P-value.


mvaORP val: multivariable analysis Odds Ratio P-value.


uvaHRP val: Univariable Analysis Hazard Ratio P-value.


mvaHRP val: Multivariable Analysis Hazard Ratio P-value.













TABLE 40





biomarkers from the 43 biomarker panel with significance for Wilcoxon


P-value (auc.pvalue) and other metrics for the ECE endpoint.




















SEQ ID NO.
auc
auc.pvalue
Accuracy
Sensitivity
Specificity





SEQ ID
0.62
0.01
0.57
0.63
0.52


NO. 6







SEQ ID
0.65
0.00
0.59
0.67
0.51


NO. 22







SEQ ID
0.59
0.04
0.53
0.68
0.39


NO. 15







SEQ ID
0.60
0.02
0.55
0.63
0.47


NO. 19







SEQ ID
0.59
0.03
0.58
0.68
0.47


NO. 28







SEQ ID
0.59
0.03
0.45
0.46
0.43


NO. 16







SEQ ID
0.62
0.00
0.61
0.74
0.49


NO. 17







SEQ ID
0.59
0.04
0.41
0.32
0.49


NO. 10







SEQ ID
0.60
0.02
0.45
0.31
0.58


NO. 37






Pos. Pred.
Neg. Pred.





SEQ ID NO.
Value
Value
mfd
uvaORPval
mvaORPval





SEQ ID
0.55
0.59
1.08
0.01
0.12


NO. 6







SEQ ID
0.56
0.62
1.20
0.00
0.06


NO. 22







SEQ ID
0.52
0.56
1.04
0.04
0.10


NO. 15







SEQ ID
0.53
0.57
1.07
0.03
0.64


NO. 19







SEQ ID
0.55
0.61
1.10
0.02
0.66


NO. 28







SEQ ID
0.44
0.46
0.97
0.02
0.49


NO. 16







SEQ ID
0.58
0.66
1.06
0.01
0.28


NO. 17







SEQ ID
0.38
0.43
0.90
0.10
0.66


NO. 10







SEQ ID
0.41
0.47
0.94
0.02
0.11


NO. 37





auc.pvalue: Wilcoxon Test P-value.


MFD: Median Fold Difference.


KM: Kaplan Meier curves.


uvaORPval: Univariable Analysis Odds Ratio P-value.


mvaORPval: multivariable analysis Odds Ratio P-value.













TABLE 41





biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value


(auc.pvalue) and other metrics for the LCR event endpoint.






















SEQ

auc.







ID NO.
auc
pvalue
Accuracy
Sensitivity
Specificity
Pos.Pred.Value
Neg.Pred.Value





SEQ ID
0.76
0.00
0.78
0.67
0.80
0.30
0.95


NO. 4









SEQ ID
0.65
0.02
0.42
0.86
0.37
0.15
0.95


NO. 36









SEQ ID
0.64
0.03
0.54
0.71
0.52
0.16
0.93


NO. 26

















SEQ



KM P-





ID NO.
mfd
uvaPval
mvaPval
value
survAUC
uvaHRPval
mvaHRPval





SEQ ID
1.19
0.00
0.02
0.00
0.93
0.00
0.00


NO. 4









SEQ ID
1.03
0.14
0.09
0.04
0.77
0.12
0.05


NO. 36









SEQ ID
1.06
0.04
0.03
0.02
0.78
0.02
0.01


NO. 26





auc.pvalue: Wilcoxon Test P-value.


mfd: Median Fold Difference.


KM: Kaplan Meier curves.


survAUC: survival AUC.


uvaORPval: Univariable Analysis Odds Ratio P-value.


mvaORPval: multivariable analysis Odds Ratio P-value.


uvaHRPval: Univariable Analysis Hazard Ratio P-value.


mvaHRPval: Multivariable Analysis Hazard Ratio P-value.













TABLE 42





biomarkers from the 43 biomarker panel with significance for Wilcoxon


P-value (auc.pvalue) and other metrics for the LNI endpoint.




















SEQ ID NO.
auc
auc.pvalue
Accuracy
Sensitivity
Specificity





SEQ ID
0.66
0.01
0.49
0.81
0.43


NO. 28







SEQ ID
0.72
0.00
0.59
0.81
0.55


NO. 32







SEQ ID
0.65
0.01
0.47
0.81
0.42


NO. 17







SEQ ID
0.63
0.04
0.54
0.19
0.60


NO. 37







SEQ ID
0.62
0.04
0.31
0.56
0.27


NO. 42






Pos. Pred.
Neg. Pred.





SEQ ID NO.
Value
Value
mfd
uvaORPval
mvaORPval





SEQ ID
0.20
0.93
1.15
0.01
0.72


NO. 28







SEQ ID
0.23
0.95
1.18
0.00
0.21


NO. 32







SEQ ID
0.19
0.93
1.05
0.02
0.70


NO. 17







SEQ ID
0.07
0.81
0.92
0.07
0.97


NO. 37







SEQ ID
0.11
0.78
0.96
0.03
0.12


NO. 42





auc.pvalue: Wilcoxon Test P-value.


MFD: Median Fold Difference.


KM: Kaplan Meier curves.


uvaORPval: Univariable Analysis Odds Ratio P-value.


mvaORPval: multivariable analysis Odds Ratio P-value.













TABLE 43





biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value


(auc.pvalue) and other metrics for the MET event endpoint.






















SEQ ID

auc.



Pos. Pred.
Neg. Pred.


NO.
auc
pvalue
Accuracy
Sensitivity
Specificity
Value
Value





SEQ ID
0.67
0.00
0.61
0.72
0.54
0.48
0.77


NO. 6









SEQ ID
0.66
0.00
0.59
0.74
0.51
0.46
0.77


NO. 22









SEQ ID
0.65
0.00
0.60
0.72
0.53
0.47
0.77


NO. 20









SEQ ID
0.70
0.00
0.59
0.82
0.46
0.47
0.82


NO. 15









SEQ ID
0.67
0.00
0.60
0.74
0.52
0.47
0.77


NO. 19









SEQ ID
0.60
0.03
0.44
0.41
0.45
0.30
0.57


NO. 12









SEQ ID
0.66
0.00
0.58
0.75
0.48
0.46
0.77


NO. 28









SEQ ID
0.61
0.01
0.59
0.63
0.57
0.46
0.73


NO. 32









SEQ ID
0.66
0.00
0.37
0.34
0.38
0.24
0.50


NO. 16









SEQ ID
0.61
0.02
0.55
0.74
0.45
0.43
0.75


NO. 17









SEQ ID
0.61
0.01
0.58
0.47
0.64
0.43
0.68


NO. 18









SEQ ID
0.67
0.00
0.73
0.47
0.87
0.68
0.74


NO. 4









SEQ ID
0.59
0.04
0.40
0.46
0.37
0.30
0.54


NO. 2









SEQ ID
0.64
0.00
0.63
0.56
0.67
0.49
0.72


NO. 24









SEQ ID
0.59
0.03
0.56
0.99
0.59
0.54
0.43


NO. 26

















SEQ ID

uva
mva
KM P-
surv
uva
mva


NO.
mfd
ORPval
ORPval
value
AUC
HRPval
HRPval





SEQ ID
1.10
0.00
0.02
0.00
0.75
0.00
0.01


NO. 6









SEQ ID
1.24
0.00
0.04
0.00
0.69
0.00
0.00


NO. 22









SEQ ID
1.07
0.00
0.01
0.00
0.73
0.00
0.00


NO. 20









SEQ ID
1.10
0.00
0.05
0.00
0.74
0.00
0.03


NO. 15









SEQ ID
1.14
0.00
0.01
0.00
0.75
0.00
0.00


NO. 19









SEQ ID
0.96
0.03
0.20
0.03
0.31
0.01
0.01


NO. 12









SEQ ID
1.18
0.00
0.05
0.00
0.67
0.00
0.01


NO. 28









SEQ ID
1.14
0.01
0.15
0.01
0.64
0.00
0.02


NO. 32









SEQ ID
0.95
0.00
0.21
0.00
0.34
0.00
0.06


NO. 16









SEQ ID
1.04
0.01
0.23
0.01
0.67
0.01
0.09


NO. 17









SEQ ID
1.05
0.00
0.06
0.08
0.62
0.00
0.07


NO. 18









SEQ ID
1.09
0.00
0.01
0.00
0.71
0.00
0.00


NO. 4









SEQ ID
0.92
0.04
0.55
0.03
0.39
0.05
0.76


NO. 2









SEQ ID
1.12
0.00
0.00
0.00
0.72
0.00
0.00


NO. 24









SEQ ID
1.02
0.03
0.02
0.04
0.64
0.02
0.02


NO. 26





auc.pvalue: Wilcoxon Test P-value.


mfd: Median Fold Difference.


KM: Kaplan Meier curves.


survAUC: survival AUC.


uvaORPval: Univariable Analysis Odds Ratio P-value.


mvaORPval: multivariable analysis Odds Ratio P-value.


uvaHRPval: Univariable Analysis Hazard Ratio P-value.


mvaHRPval: Multivariable Analysis Hazard Ratio P-value.













TABLE 44





biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value


(auc.pvalue) and other metrics for the OS event endpoint.






















SEQ ID

auc.



Pos.Pred.
Neg.Pred.


NO.
auc
pvalue
Accuracy
Sensitivity
Specificity
Value
Value





SEQ ID
0.60
0.02
0.58
0.65
0.50
0.59
0.56


NO. 22









SEQ ID
0.60
0.02
0.54
0.61
0.47
0.56
0.52


NO. 19









SEQ ID
0.59
0.04
0.46
0.59
0.32
0.49
0.41


NO. 9









SEQ ID
0.62
0.00
0.58
0.68
0.45
0.58
0.56


NO. 17









SEQ ID
0.59
0.04
0.54
0.44
0.65
0.58
0.51


NO. 18









SEQ ID
0.65
0.00
0.63
0.39
0.90
0.81
0.57


NO. 4









SEQ ID
0.61
0.01
0.42
0.49
0.35
0.46
0.38


NO. 2

















SEQ ID

uva
mva
KM P-
surv
uva
mva


NO.
mfd
ORPval
ORPval
value
AUC
HRPval
HRPval





SEQ ID
1.18
0.02
0.12
0.00
0.61
0.00
0.03


NO. 22









SEQ ID
1.06
0.06
0.40
0.00
0.82
0.00
0.03


NO. 19









SEQ ID
0.96
0.03
0.34
0.66
0.46
0.20
0.32


NO. 9









SEQ ID
1.04
0.01
0.45
0.01
0.63
0.00
0.18


NO. 17









SEQ ID
1.03
0.02
0.23
0.06
0.62
0.01
0.44


NO. 18









SEQ ID
1.04
0.00
0.03
0.00
0.64
0.00
0.05


NO. 4









SEQ ID
0.92
0.01
0.81
0.13
0.47
0.20
0.93


NO. 2





auc.pvalue: Wilcoxon Test P-value.


mfd: Median Fold Difference.


KM: Kaplan Meier curves.


survAUC: survival AUC.


uvaORPval: Univariable Analysis Odds Ratio P-value.


mvaORPval: multivariable analysis Odds Ratio P-value.


uvaHRPval: Univariable Analysis Hazard Ratio P-value.


mvaHRPval: Multivariable Analysis Hazard Ratio P-value.













TABLE 45





biomarkers from the 43 biomarker panel with significance for Wilcoxon


P-value (auc.pvalue) and other metrics for the pathological Gleason


endpoint.





















SEQ ID







NO.
auc
auc.pvalue
Accuracy
Sensitivity






SEQ ID
0.74
0.00
0.52
0.41



NO. 6







SEQ ID
0.67
0.02
0.62
0.63



NO. 22







SEQ ID
0.81
0.00
0.71
0.66



NO. 20







SEQ ID
0.79
0.00
0.70
0.65



NO. 15







SEQ ID
0.80
0.00
0.70
0.63



NO. 19







SEQ ID
0.69
0.01
0.34
0.34



NO. 12







SEQ ID
0.83
0.00
0.70
0.66



NO. 28







SEQ ID
0.77
0.00
0.39
0.46



NO. 16







SEQ ID
0.65
0.05
0.58
0.66



NO. 9







SEQ ID
0.74
0.00
0.73
0.73



NO. 17







SEQ ID
0.72
0.00
0.60
0.54



NO. 18







SEQ ID
0.69
0.01
0.44
0.30



NO. 4







SEQ ID
0.68
0.02
0.53
0.45



NO. 24







SEQ ID
0.69
0.01
0.55
0.68



NO. 40







SEQ ID
0.69
0.01
0.66
0.66



NO. 26















SEQ ID

Pos.Pred.
Neg.Pred.




NO.
Specificity
Value
Value
mfd
uvaORPval





SEQ ID
0.94
0.97
0.29
1.21
0.00


NO. 6







SEQ ID
0.56
0.85
0.28
1.29
0.03


NO. 22







SEQ ID
0.89
0.96
0.40
1.13
0.00


NO. 20







SEQ ID
0.89
0.96
0.39
1.18
0.00


NO. 15







SEQ ID
0.94
0.98
0.40
1.25
0.00


NO. 19







SEQ ID
0.33
0.67
0.11
0.89
0.01


NO. 12







SEQ ID
0.83
0.94
0.38
1.62
0.00


NO. 28







SEQ ID
0.11
0.67
0.05
0.91
0.00


NO. 16







SEQ ID
0.28
0.78
0.17
0.92
0.05


NO. 9







SEQ ID
0.72
0.91
0.41
1.17
0.00


NO. 17







SEQ ID
0.83
0.93
0.31
1.17
0.02


NO. 18







SEQ ID
1.00
1.00
0.26
1.05
0.01


NO. 4







SEQ ID
0.83
0.91
0.28
1.20
0.04


NO. 24







SEQ ID
0.06
0.74
0.04
0.97
0.02


NO. 40







SEQ ID
0.67
0.89
0.33
1.08
0.03


NO. 26





auc.pvalue: Wilcoxon Test P-value.


mfd: Median Fold Difference.


uvaORPval: Univariable Analysis Odds Ratio P-value.













TABLE 46





biomarkers from the 43 biomarker panel with significance for Wilcoxon


P-value (auc.pvalue) and other metrics for the PCSM event endpoint.






















SEQ ID

auc.



Pos.Pred.
Neg.Pred.


NO.
auc
pvalue
Accuracy
Sensitivity
Specificity
Value
Value





SEQ ID
0.72
0.00
0.56
0.81
0.51
0.28
0.92


NO. 6









SEQ ID
0.71
0.00
0.55
0.83
0.48
0.28
0.92


NO. 22









SEQ ID
0.71
0.00
0.54
0.78
0.49
0.27
0.90


NO. 20









SEQ ID
0.67
0.00
0.49
0.86
0.41
0.26
0.92


NO. 15









SEQ ID
0.73
0.00
0.54
0.81
0.48
0.27
0.91


NO. 19









SEQ ID
0.68
0 00
0.40
0.25
0.44
0.10
0.71


NO. 12









SEQ ID
0.74
0.00
0.57
0.94
0.48
0.30
0.97


NO. 28









SEQ ID
0.61
0.03
0.52
0.69
0.47
0.24
0.87


NO. 43









SEQ ID
0.66
0.00
0.58
0.72
0.55
0.28
0.89


NO. 32









SEQ ID
0.70
0.00
0.39
0.25
0.42
0.09
0.70


NO. 16









SEQ ID
0.61
0.05
0.48
0.75
0.41
0.23
0.87


NO. 17









SEQ ID
0.66
0.00
0.65
0.61
0.65
0.30
0.88


NO. 18









SEQ ID
0.72
0.00
0.78
0.58
0.83
0.45
0.89


NO. 4









SEQ ID
0.70
0.00
0.63
0.61
0.63
0.29
0.87


NO. 24









SEQ ID
0.61
0.03
0.35
0.53
0.31
0.16
0.73


NO. 40









SEQ ID
0.66
0.00
0.59
0.75
0.55
0.29
0.90


NO. 26



















uva
mva








OR
OR
KM P-
surv
uva
mva


SEQ ID NO.
mfd
Pval
Pval
value
AUC
HRPval
HRPval





SEQ ID
1.16
0.00
0.04
0.00
0.79
0.00
0.02


NO. 6









SEQ ID
1.26
0.00
0.05
0.00
0.73
0.00
0.05


NO. 22









SEQ ID
1.12
0.00
0.01
0.00
0.82
0.00
0.00


NO. 20









SEQ ID
1.07
0.00
0.23
0.00
0.63
0.00
0.33


NO. 15









SEQ ID
1.18
0.00
0.03
0.00
0.87
0.00
0.01


NO. 19









SEQ ID
0.92
0.00
0.19
0.00
0.29
0.00
0.01


NO. 12









SEQ ID
1.21
0.00
0.01
0.00
0.76
0.00
0.00


NO. 28









SEQ ID
1.01
0.02
0.01
0.11
0.44
0.03
0.07


NO. 43









SEQ ID
1.14
0.00
0.29
0.00
0.75
0.00
0.21


NO. 32









SEQ ID
0.93
0.00
0.24
0.00
0.40
0.00
0.04


NO. 16









SEQ ID
1.05
0.06
0.80
0.04
0.58
0.03
0.46


NO. 17









SEQ ID
1.11
0.00
0.05
0.00
0.73
0.00
0.18


NO. 18









SEQ ID
1.17
0.00
0.02
0.00
0.77
0.00
0.03


NO. 4









SEQ ID
1.20
0.00
0.01
0.00
0.87
0.00
0.00


NO. 24









SEQ ID
0.98
0.03
0.71
0.11
0.47
0.04
0.89


NO. 40









SEQ ID
1.05
0.01
0.06
0.00
0.71
0.00
0.12


NO. 26





auc.pvalue: Wilcoxon Test P-value.


mfd: Median Fold Difference.


KM: Kaplan Meier curves.


survAUC: survival AUC.


uvaORPval: Univariable Analysis Odds Ratio P-value.


mvaORPval: multivariable analysis Odds Ratio P-value.


uvaHRPval: Univariable Analysis Hazard Ratio P-value.


mvaHRPval: Multivariable Analysis Hazard Ratio P-value.













TABLE 47







biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value


(auc.pvalue) and other metrics for the psaDT endpoint.























Pos.
Neg.

uva
mva


SEQ ID

auc.



Pred.
Pred.

OR
OR


NO.
auc
pvalue
Accuracy
Sensitivity
Specificity
Value
Value
mfd
Pval
Pval





SEQ ID
0.62
0.02
0.43
0.52
0.38
0.32
0.58
0.97
0.01
0.07


NO. 6












SEQ ID
0.62
0.03
0.40
0.43
0.38
0.28
0.54
0.83
0.01
0.30


NO. 28












SEQ ID
0.62
0.02
0.56
0.57
0.56
0.42
0.70
1.04
0.04
0.02


NO. 16





auc.pvalue: Wilcoxon Test P-value.


mfd: Median Fold Difference.


uvaORPval: Univariable Analysis Odds Ratio P-value.


mvaORPval: multivariable analysis Odds Ratio P-value.













TABLE 48







biomarkers from the 43 biomarker panel with significance for Wilcoxon P-value


(auc.pvalue) and other metrics for the SVI endpoint.


























uva



SEQ ID

auc.



Pos.Pred.
Neg.Pred.

ORP
mvaOR


NO.
auc
pvalue
Accuracy
Sensitivity
Specificity
Value
Value
mfd
val
Pval





SEQ ID
0.63
0.00
0.56
0.67
0.51
0.43
0.73
1.08
0.00
0.08


NO. 6












SEQ ID
0.60
0.03
0.53
0.65
0.46
0.40
0.71
1.08
0.02
0.15


NO. 22












SEQ ID
0.64
0.00
0.56
0.70
0.49
0.43
0.75
1.09
0.00
0.04


NO. 19












SEQ ID
0.67
0.00
0.58
0.77
0.47
0.44
0.79
1.06
0.00
0.02


NO. 17












SEQ ID
0.61
0.01
0.63
0.55
0.68
0.49
0.73
1.10
0.04
0.08


NO. 18












SEQ ID
0.69
0.00
0.68
0.41
0.83
0.57
0.72
1.09
0.00
0.02


NO. 4












SEQ ID
0.61
0.01
0.59
0.64
0.57
0.45
0.74
1.04
0.07
0.09


NO. 26





auc.pvalue: Wilcoxon Test P-value.


mfd: Median Fold Difference.


uvaORPval: Univariable Analysis Odds Ratio P-value.


mvaORPval: multivariable analysis Odds Ratio P-value.






In addition to the good performance of these variables as univariable predictors, the combination of them in pairs (pairwise classifiers) through a machine learning algorithm results in enhanced performance. As shown in Tables 49 to 52, pairwise classifiers can result in an improved performance for a given endpoint compared to their univariable counterparts, with all the classifiers listed presenting statistical significance based on, at least, Wilcoxon P-value. In those tables, each classifier name is described by the machine learning algorithm that combines the biomarkers as well as the SEQ ID NO of the corresponding biomarkers (Table 2, Table 11). The machine learning algorithms included in this analysis are Naïve Bayes (NB), recursive Partitioning (Rpart), Support Vector Machines (SVMs), Random Forest (RF) and K Nearest Neighbors (KNN). These machine learning algorithms were executed with default parameters using packages rpart 4.1-0, HDclassif 1.2.2, randomForest 4.6-7, caret 5.15-61, cluster 1.14.3, e1071 1.6-1, class 7.3-5 in R. Tables 49 to 52 contain metrics and endpoints described above for tables 39 to 48.









TABLE 49







pairwise biomarkers from the 43 biomarker panel with significance for


Wilcoxon P-value (auc.pvalue <= 0.05) and other metrics for the BCR event endpoint.




















Pos.
Neg.






auc.


Pred.
Pred.
KM P-
Mva


Classifier
auc
pvalue
Sensitivity
Specificity
Value
Value
value
HRPval


















svm~5 + 6
0.68
0.00
0.42
0.78
0.81
0.38
0.01
0.03


knn~5 + 19
0.67
0.00
0.59
0.69
0.81
0.43
0.00
0.00


rpart~4 + 39
0.66
0.00
0.42
0.81
0.83
0.39
0.00
0.00


nb~13 + 6
0.67
0.00
0.50
0.84
0.88
0.43
0.00
0.03


rpart~40 + 19
0.66
0.00
0.76
0.38
0.73
0.42
0.03
0.12


svm~16 + 5
0.65
0.00
0.58
0.71
0.81
0.43
0.00
0.50


rf~4 + 39
0.65
0.00
0.57
0.67
0.79
0.41
0.00
0.00


rpart~4 + 1
0.64
0.00
0.60
0.62
0.78
0.41
0.00
0.03


rpart~13 + 6
0.64
0.00
0.50
0.79
0.84
0.42
0.00
0.07


svm~16 + 6
0.65
0.00
0.48
0.72
0.79
0.39
0.00
0.05


nb~4 + 16
0.65
0.00
0.30
0.88
0.84
0.36
0.00
0.01


nb~4 + 13
0.65
0.00
0.26
0.91
0.87
0.36
0.00
0.00


svm~4 + 39
0.65
0.00
0.45
0.81
0.84
0.40
0.00
0.00


knn~18 + 28
0.64
0.00
0.68
0.50
0.75
0.41
0.01
0.11


nb~9 + 6
0.65
0.00
0.54
0.66
0.78
0.39
0.00
0.15


nb~4 + 1
0.64
0.00
0.35
0.86
0.85
0.38
0.00
0.00


rpart~18 + 13
0.64
0.00
0.52
0.67
0.78
0.39
0.01
0.89


svm~4 + 16
0.64
0.00
0.40
0.76
0.78
0.36
0.01
0.02


nb~18 + 13
0.64
0.00
0.57
0.64
0.78
0.40
0.01
0.21


rf~13 + 6
0.64
0.00
0.56
0.66
0.78
0.40
0.00
0.25


svm~4 + 24
0.64
0.00
0.29
0.86
0.82
0.35
0.00
0.00


svm~4 + 6
0.64
0.00
0.40
0.79
0.81
0.37
0.00
0.05


rpart~13 + 26
0.64
0.00
0.38
0.83
0.83
0.38
0.00
0.01


nb~1 + 6
0.64
0.00
0.37
0.78
0.78
0.36
0.04
0.03


knn~18 + 10
0.64
0.00
0.69
0.45
0.73
0.39
0.05
0.52


nb~4 + 32
0.64
0.00
0.32
0.86
0.84
0.36
0.00
0.00


rf~19 + 3
0.64
0.00
0.54
0.71
0.80
0.41
0.00
0.00


knn~13 + 22
0.64
0.00
0.73
0.43
0.74
0.42
0.01
0.10


nb~13 + 19
0.64
0.00
0.63
0.62
0.79
0.43
0.00
0.00


rpart~5 + 28
0.63
0.00
0.57
0.62
0.77
0.40
0.01
0.23


rpart~24 + 22
0.63
0.00
0.41
0.81
0.83
0.38
0.00
0.00


svm~5 + 28
0.64
0.00
0.49
0.72
0.80
0.39
0.01
0.29


svm~15 + 5
0.64
0.00
0.31
0.84
0.82
0.36
0.03
0.22


nb~5 + 6
0.64
0.00
0.36
0.81
0.81
0.36
0.01
0.05


rpart~13 + 20
0.64
0.00
0.54
0.62
0.76
0.38
0.06
0.01


svm~5 + 19
0.64
0.00
0.57
0.64
0.78
0.40
0.01
0.04


knn~5 + 22
0.63
0.00
0.54
0.71
0.80
0.41
0.00
0.03


knn~18 + 13
0.63
0.00
0.71
0.43
0.73
0.40
0.06
0.27


svm~13 + 6
0.64
0.00
0.47
0.79
0.83
0.40
0.00
0.10


rf~4 + 19
0.64
0.00
0.50
0.74
0.81
0.40
0.00
0.00


nb~16 + 5
0.64
0.00
0.61
0.62
0.78
0.42
0.02
0.33


knn~4 + 19
0.63
0.00
0.51
0.76
0.82
0.41
0.00
0.02


nb~16 + 6
0.64
0.00
0.44
0.78
0.81
0.38
0.00
0.07


nb~4 + 6
0.64
0.00
0.36
0.83
0.82
0.37
0.00
0.01


svm~4 + 5
0.64
0.00
0.55
0.67
0.79
0.40
0.01
0.27


rf~13 + 22
0.63
0.00
0.60
0.66
0.79
0.43
0.00
0.08


rpart~4 + 32
0.63
0.00
0.41
0.76
0.79
0.37
0.01
0.00


knn~4 + 39
0.63
0.00
0.70
0.47
0.74
0.42
0.01
0.00


rf~18 + 8
0.63
0.00
0.55
0.67
0.79
0.41
0.01
0.36


knn~4 + 22
0.63
0.00
0.67
0.55
0.77
0.43
0.00
0.02


rpart~11 + 5
0.63
0.00
0.41
0.78
0.80
0.37
0.07
0.09


rpart~9 + 6
0.63
0.00
0.50
0.74
0.81
0.40
0.00
0.27


knn~17 + 5
0.63
0.00
0.53
0.69
0.79
0.40
0.01
0.06


rpart~29 + 22
0.63
0.00
0.54
0.64
0.77
0.39
0.01
0.02


svm~16 + 18
0.63
0.00
0.41
0.72
0.76
0.36
0.06
0.22


knn~8 + 22
0.63
0.00
0.48
0.72
0.79
0.39
0.00
0.07


nb~4 + 28
0.63
0.00
0.34
0.83
0.81
0.36
0.00
0.00


svm~15 + 19
0.63
0.00
0.30
0.86
0.83
0.36
0.01
0.08


nb~13 + 22
0.63
0.00
0.48
0.72
0.79
0.39
0.01
0.01


rf~7 + 19
0.63
0.00
0.63
0.62
0.79
0.43
0.00
0.98


knn~4 + 9
0.63
0.00
0.44
0.76
0.80
0.38
0.00
0.01


rf~4 + 38
0.63
0.00
0.44
0.76
0.80
0.38
0.00
0.33


svm~9 + 6
0.63
0.00
0.44
0.72
0.78
0.37
0.01
0.40


rf~16 + 18
0.63
0.00
0.51
0.72
0.80
0.40
0.01
0.12


rf~42 + 19
0.63
0.00
0.57
0.66
0.78
0.41
0.00
0.00


rpart~18 + 32
0.63
0.00
0.49
0.67
0.77
0.38
0.02
0.07


knn~29 + 18
0.63
0.00
0.45
0.76
0.81
0.39
0.01
0.57


rf~12 + 38
0.63
0.01
0.45
0.74
0.79
0.38
0.02
0.36


rf~4 + 8
0.63
0.01
0.65
0.55
0.76
0.42
0.00
0.02


knn~11 + 5
0.62
0.01
0.72
0.45
0.74
0.42
0.05
0.42


rf~4 + 1
0.63
0.01
0.52
0.67
0.78
0.39
0.01
0.07


rf~16 + 39
0.63
0.01
0.49
0.69
0.78
0.38
0.01
0.74


nb~33 + 6
0.63
0.01
0.41
0.79
0.82
0.38
0.01
0.21


nb~32 + 6
0.63
0.01
0.31
0.90
0.87
0.37
0.00
0.04


svm~13 + 28
0.63
0.01
0.47
0.72
0.79
0.38
0.01
0.00


svm~1 + 6
0.63
0.01
0.41
0.72
0.76
0.36
0.03
0.07


svm~9 + 19
0.63
0.01
0.54
0.64
0.77
0.39
0.01
0.05


knn~5 + 6
0.62
0.01
0.51
0.76
0.82
0.41
0.00
0.20


nb~28 + 6
0.63
0.01
0.46
0.76
0.81
0.39
0.00
0.01


rpart~4 + 31
0.62
0.01
0.49
0.74
0.81
0.40
0.00
0.00


knn~16 + 39
0.62
0.01
0.71
0.38
0.72
0.37
0.23
0.62


svm~5 + 32
0.63
0.01
0.42
0.78
0.81
0.38
0.05
0.29


rpart~4 + 18
0.62
0.01
0.44
0.71
0.77
0.36
0.01
0.33


rpart~16 + 20
0.62
0.01
0.60
0.60
0.77
0.41
0.00
0.04


knn~32 + 6
0.62
0.01
0.46
0.72
0.79
0.38
0.01
0.02


svm~4 + 15
0.63
0.01
0.26
0.84
0.79
0.34
0.01
0.01


nb~7 + 6
0.62
0.01
0.45
0.78
0.82
0.39
0.00
0.54


knn~18 + 6
0.62
0.01
0.41
0.79
0.82
0.38
0.01
0.58


knn~39 + 22
0.62
0.01
0.53
0.67
0.78
0.39
0.00
0.06


rf~18 + 13
0.62
0.01
0.55
0.64
0.77
0.39
0.02
0.30


rpart~20 + 6
0.62
0.01
0.49
0.66
0.76
0.37
0.02
0.04


svm~19 + 28
0.62
0.01
0.43
0.76
0.80
0.38
0.01
0.01


svm~19 + 6
0.62
0.01
0.44
0.74
0.79
0.37
0.00
0.01


knn~12 + 22
0.62
0.01
0.45
0.76
0.81
0.39
0.00
0.00


knn~20 + 6
0.62
0.01
0.59
0.55
0.75
0.38
0.03
0.03


nb~1 + 22
0.62
0.01
0.49
0.59
0.72
0.34
0.31
0.01


nb~15 + 13
0.62
0.01
0.45
0.72
0.78
0.37
0.03
0.42


nb~16 + 18
0.62
0.01
0.50
0.67
0.77
0.38
0.02
0.27


nb~4 + 9
0.62
0.01
0.37
0.86
0.85
0.38
0.00
0.04


nb~9 + 22
0.62
0.01
0.41
0.74
0.78
0.36
0.03
0.12


svm~18 + 6
0.62
0.01
0.38
0.78
0.79
0.36
0.01
0.09


knn~4 + 16
0.62
0.01
0.54
0.66
0.78
0.39
0.01
0.01


rf~18 + 9
0.62
0.01
0.48
0.69
0.77
0.37
0.05
0.27


nb~5 + 19
0.62
0.01
0.61
0.53
0.74
0.38
0.09
0.05


svm~4 + 41
0.62
0.01
0.27
0.88
0.83
0.35
0.00
0.03


nb~4 + 36
0.62
0.01
0.22
0.88
0.80
0.34
0.01
0.01


nb~4 + 5
0.62
0.01
0.36
0.84
0.84
0.37
0.00
0.02


svm~24 + 6
0.62
0.01
0.34
0.83
0.81
0.36
0.00
0.09


nb~36 + 6
0.62
0.01
0.40
0.81
0.82
0.38
0.00
0.05


rpart~4 + 28
0.62
0.01
0.39
0.79
0.81
0.37
0.00
0.04


svm~5 + 22
0.62
0.01
0.48
0.71
0.78
0.38
0.03
0.01


rpart~39 + 18
0.61
0.01
0.45
0.71
0.77
0.37
0.02
0.52


rf~4 + 31
0.62
0.01
0.47
0.72
0.79
0.38
0.01
0.02


svm~28 + 6
0.62
0.01
0.41
0.74
0.78
0.36
0.01
0.01


rpart~18 + 22
0.61
0.01
0.37
0.84
0.84
0.38
0.00
0.32


nb~4 + 22
0.62
0.01
0.38
0.84
0.84
0.38
0.00
0.00


nb~4 + 24
0.62
0.01
0.26
0.90
0.85
0.35
0.00
0.00


nb~8 + 6
0.62
0.01
0.41
0.81
0.83
0.38
0.01
0.24


nb~13 + 32
0.62
0.01
0.50
0.67
0.77
0.38
0.06
0.02


rpart~13 + 22
0.62
0.01
0.59
0.59
0.76
0.40
0.01
0.11


rpart~16 + 28
0.62
0.01
0.45
0.71
0.77
0.37
0.05
0.06


rf~29 + 22
0.62
0.01
0.56
0.67
0.79
0.41
0.00
0.06


rpart~4 + 16
0.62
0.01
0.46
0.74
0.80
0.38
0.00
0.00


rf~1 + 22
0.62
0.01
0.54
0.66
0.78
0.39
0.01
0.16


svm~4 + 19
0.62
0.01
0.49
0.76
0.82
0.40
0.00
0.00


nb~18 + 6
0.62
0.01
0.44
0.74
0.79
0.37
0.00
0.04


nb~5 + 22
0.62
0.01
0.52
0.66
0.77
0.38
0.02
0.02


knn~10 + 22
0.62
0.01
0.73
0.45
0.75
0.43
0.01
0.61


rpart~4 + 8
0.62
0.01
0.50
0.69
0.78
0.38
0.01
0.14


nb~16 + 13
0.62
0.01
0.42
0.69
0.75
0.35
0.21
0.64


nb~4 + 33
0.62
0.01
0.29
0.91
0.88
0.37
0.00
0.05


rf~13 + 26
0.62
0.01
0.45
0.67
0.75
0.36
0.03
0.46


svm~18 + 8
0.62
0.01
0.48
0.69
0.78
0.38
0.03
0.44


rf~7 + 18
0.62
0.01
0.55
0.55
0.73
0.36
0.20
0.52


svm~38 + 6
0.62
0.01
0.46
0.76
0.81
0.39
0.00
0.18


nb~25 + 6
0.62
0.01
0.41
0.84
0.85
0.39
0.00
0.03


svm~32 + 6
0.62
0.01
0.36
0.81
0.81
0.36
0.00
0.02


svm~16 + 13
0.62
0.01
0.40
0.69
0.74
0.34
0.36
0.81


svm~4 + 9
0.62
0.01
0.39
0.79
0.81
0.37
0.00
0.15


svm~7 + 6
0.62
0.01
0.52
0.71
0.80
0.40
0.00
0.42


knn~15 + 41
0.61
0.01
0.56
0.64
0.77
0.40
0.02
0.46


rf~18 + 28
0.62
0.01
0.56
0.64
0.77
0.40
0.00
0.06


rpart~18 + 19
0.61
0.01
0.59
0.60
0.77
0.40
0.00
0.03


nb~4 + 7
0.62
0.01
0.36
0.79
0.79
0.36
0.02
0.25


svm~18 + 13
0.62
0.01
0.47
0.69
0.77
0.37
0.01
0.08


rpart~21 + 22
0.61
0.01
0.46
0.66
0.75
0.36
0.08
0.52


nb~37 + 6
0.62
0.01
0.48
0.72
0.79
0.39
0.00
0.21


rf~18 + 38
0.62
0.01
0.45
0.79
0.83
0.39
0.00
0.72


rf~8 + 22
0.62
0.01
0.54
0.64
0.77
0.39
0.01
0.21


nb~4 + 2
0.62
0.01
0.40
0.74
0.77
0.36
0.04
0.53


svm~39 + 32
0.62
0.01
0.32
0.86
0.84
0.36
0.02
0.01


knn~16 + 38
0.61
0.01
0.77
0.45
0.75
0.46
0.00
0.97


nb~2 + 6
0.62
0.01
0.46
0.74
0.80
0.38
0.01
0.99


rf~4 + 12
0.62
0.01
0.52
0.60
0.74
0.36
0.07
0.03


svm~4 + 13
0.62
0.01
0.33
0.90
0.88
0.38
0.00
0.00


nb~5 + 32
0.62
0.01
0.58
0.62
0.77
0.40
0.07
0.08


knn~12 + 16
0.61
0.01
0.43
0.78
0.81
0.38
0.00
0.04


knn~4 + 6
0.61
0.01
0.42
0.76
0.79
0.37
0.01
0.01


rf~9 + 19
0.62
0.01
0.58
0.64
0.78
0.41
0.00
0.00


rf~18 + 6
0.62
0.01
0.49
0.64
0.75
0.36
0.09
0.48


nb~4 + 8
0.62
0.01
0.25
0.90
0.84
0.35
0.00
0.02


svm~12 + 6
0.62
0.01
0.45
0.76
0.81
0.39
0.00
0.02


rpart~1 + 18
0.61
0.01
0.31
0.84
0.82
0.36
0.05
0.62


rpart~18 + 28
0.61
0.01
0.41
0.79
0.82
0.38
0.00
0.25


nb~19 + 6
0.62
0.01
0.38
0.79
0.80
0.37
0.01
0.01


nb~13 + 28
0.62
0.01
0.43
0.74
0.79
0.37
0.02
0.00


rpart~41 + 18
0.61
0.01
0.45
0.74
0.79
0.38
0.00
0.55


rpart~18 + 21
0.61
0.01
0.55
0.60
0.76
0.38
0.03
0.89


rf~4 + 34
0.61
0.01
0.68
0.47
0.74
0.40
0.04
0.03


nb~22 + 6
0.61
0.01
0.46
0.74
0.80
0.38
0.00
0.02


rf~12 + 31
0.61
0.01
0.53
0.57
0.73
0.35
0.03
0.05


knn~4 + 12
0.61
0.01
0.27
0.79
0.74
0.33
0.12
0.06


knn~4 + 5
0.61
0.01
0.72
0.43
0.74
0.41
0.07
0.34


rpart~4 + 42
0.61
0.01
0.55
0.66
0.78
0.40
0.01
0.62


svm~13 + 19
0.61
0.01
0.62
0.55
0.75
0.40
0.02
0.06


nb~16 + 38
0.61
0.01
0.36
0.69
0.72
0.33
0.58
0.41


nb~24 + 6
0.61
0.01
0.27
0.84
0.79
0.34
0.04
0.02


knn~16 + 6
0.61
0.01
0.45
0.71
0.77
0.37
0.04
0.49


nb~15 + 6
0.61
0.01
0.30
0.86
0.83
0.36
0.00
0.07


nb~15 + 5
0.61
0.01
0.55
0.71
0.81
0.42
0.00
0.43


svm~31 + 6
0.61
0.01
0.46
0.69
0.77
0.37
0.05
0.07


nb~5 + 28
0.61
0.01
0.49
0.72
0.80
0.39
0.01
0.05


rpart~39 + 22
0.61
0.01
0.53
0.62
0.76
0.38
0.03
0.01


nb~4 + 19
0.61
0.01
0.36
0.84
0.84
0.37
0.00
0.00


rf~4 + 16
0.61
0.01
0.55
0.60
0.76
0.38
0.05
0.00


nb~7 + 22
0.61
0.01
0.51
0.67
0.77
0.38
0.02
0.57


rpart~1 + 28
0.61
0.01
0.45
0.69
0.76
0.36
0.03
0.22


rpart~15 + 33
0.61
0.01
0.27
0.93
0.89
0.36
0.00
0.03


rf~35 + 5
0.61
0.01
0.58
0.59
0.76
0.39
0.09
0.83


rpart~8 + 6
0.61
0.01
0.45
0.78
0.82
0.39
0.00
0.25


rpart~18 + 26
0.61
0.01
0.26
0.83
0.77
0.34
0.08
0.38


svm~8 + 6
0.61
0.01
0.46
0.76
0.81
0.39
0.00
0.54


knn~9 + 22
0.61
0.01
0.45
0.71
0.77
0.37
0.02
0.15


rf~5 + 19
0.61
0.01
0.55
0.62
0.76
0.38
0.03
0.03


rpart~2 + 19
0.61
0.01
0.71
0.36
0.71
0.36
0.30
0.34


nb~16 + 22
0.61
0.01
0.45
0.69
0.76
0.36
0.05
0.02


nb~35 + 6
0.61
0.01
0.38
0.78
0.79
0.36
0.02
0.17


svm~4 + 7
0.61
0.01
0.44
0.78
0.81
0.38
0.00
0.38


svm~15 + 6
0.61
0.01
0.37
0.81
0.81
0.37
0.00
0.08


knn~9 + 19
0.61
0.01
0.59
0.62
0.77
0.40
0.01
0.06


rf~18 + 22
0.61
0.01
0.50
0.64
0.75
0.37
0.06
0.03


nb~1 + 28
0.61
0.01
0.41
0.74
0.78
0.36
0.03
0.00


nb~18 + 9
0.61
0.01
0.52
0.64
0.76
0.37
0.02
0.81


knn~16 + 28
0.61
0.01
0.77
0.41
0.74
0.44
0.00
0.03


nb~11 + 6
0.61
0.01
0.31
0.90
0.87
0.37
0.00
0.07


svm~21 + 6
0.61
0.01
0.45
0.71
0.77
0.37
0.02
0.58


nb~4 + 18
0.61
0.02
0.37
0.78
0.78
0.36
0.01
0.01


rf~4 + 7
0.61
0.02
0.51
0.64
0.76
0.37
0.05
0.45


svm~13 + 22
0.61
0.02
0.49
0.71
0.79
0.39
0.00
0.16


nb~4 + 38
0.61
0.02
0.38
0.74
0.76
0.35
0.07
0.67


rf~26 + 22
0.61
0.02
0.49
0.69
0.78
0.38
0.00
0.04


svm~41 + 6
0.61
0.02
0.49
0.71
0.79
0.39
0.01
0.07


rf~39 + 32
0.61
0.02
0.59
0.60
0.77
0.40
0.01
0.00


knn~29 + 6
0.61
0.02
0.44
0.72
0.78
0.37
0.02
0.04


rpart~33 + 9
0.59
0.02
0.45
0.74
0.79
0.38
0.00
0.01


svm~19 + 38
0.61
0.02
0.49
0.69
0.78
0.38
0.01
0.09


rf~7 + 6
0.61
0.02
0.58
0.62
0.77
0.40
0.02
0.92


svm~4 + 1
0.61
0.02
0.31
0.84
0.82
0.36
0.02
0.01


svm~26 + 19
0.61
0.02
0.37
0.79
0.80
0.36
0.01
0.03


nb~13 + 20
0.61
0.02
0.52
0.62
0.75
0.37
0.03
0.03


nb~41 + 6
0.61
0.02
0.33
0.83
0.81
0.36
0.01
0.11


rf~1 + 18
0.61
0.02
0.64
0.53
0.75
0.40
0.09
0.72


rpart~15 + 3
0.61
0.02
0.34
0.76
0.75
0.34
0.27
0.10


svm~4 + 28
0.61
0.02
0.38
0.78
0.79
0.36
0.01
0.00


nb~34 + 6
0.61
0.02
0.43
0.76
0.80
0.38
0.01
0.19


nb~32 + 22
0.61
0.02
0.48
0.64
0.74
0.36
0.09
0.01


nb~4 + 41
0.61
0.02
0.31
0.83
0.80
0.35
0.01
0.03


rf~5 + 22
0.61
0.02
0.59
0.59
0.76
0.39
0.07
0.05


nb~10 + 6
0.61
0.02
0.30
0.86
0.83
0.36
0.01
0.23


svm~3 + 28
0.61
0.02
0.26
0.84
0.79
0.34
0.04
0.01


knn~40 + 28
0.61
0.02
0.37
0.86
0.85
0.38
0.00
0.25


nb~1 + 18
0.61
0.02
0.34
0.74
0.75
0.34
0.25
0.17


nb~18 + 22
0.61
0.02
0.55
0.66
0.78
0.40
0.00
0.01


knn~37 + 6
0.61
0.02
0.65
0.43
0.72
0.36
0.22
0.63


svm~9 + 22
0.61
0.02
0.38
0.78
0.79
0.36
0.01
0.29


svm~16 + 38
0.61
0.02
0.36
0.74
0.75
0.34
0.18
0.40


nb~13 + 26
0.61
0.02
0.61
0.52
0.74
0.38
0.12
0.10


knn~13 + 6
0.61
0.02
0.67
0.50
0.75
0.41
0.02
0.31


svm~7 + 22
0.61
0.02
0.52
0.67
0.78
0.39
0.01
0.66


nb~4 + 20
0.61
0.02
0.41
0.76
0.79
0.37
0.00
0.01


svm~34 + 6
0.61
0.02
0.51
0.64
0.76
0.37
0.02
0.16


nb~1 + 16
0.61
0.02
0.37
0.72
0.75
0.34
0.44
0.51


rf~4 + 9
0.61
0.02
0.48
0.66
0.75
0.36
0.02
0.03


rpart~12 + 5
0.60
0.02
0.49
0.71
0.79
0.39
0.02
0.50


rpart~18 + 8
0.60
0.02
0.48
0.74
0.81
0.39
0.00
0.86


svm~2 + 6
0.61
0.02
0.52
0.64
0.76
0.38
0.02
0.98


rpart~9 + 19
0.60
0.02
0.59
0.59
0.76
0.39
0.01
0.02


svm~4 + 8
0.61
0.02
0.31
0.81
0.78
0.35
0.03
0.04


rpart~31 + 22
0.60
0.02
0.45
0.72
0.78
0.38
0.01
0.03


nb~4 + 15
0.61
0.02
0.32
0.83
0.80
0.36
0.00
0.01


svm~10 + 6
0.61
0.02
0.36
0.81
0.81
0.36
0.00
0.18


nb~18 + 32
0.61
0.02
0.41
0.72
0.77
0.36
0.02
0.02


svm~4 + 38
0.61
0.02
0.35
0.78
0.78
0.35
0.02
0.16


nb~4 + 25
0.61
0.02
0.38
0.83
0.83
0.38
0.00
0.00


knn~30 + 6
0.60
0.02
0.50
0.62
0.74
0.36
0.12
0.14


nb~15 + 16
0.61
0.02
0.33
0.71
0.71
0.32
0.56
0.59


svm~2 + 28
0.61
0.02
0.52
0.59
0.74
0.36
0.07
0.21


rpart~4 + 5
0.60
0.02
0.48
0.66
0.76
0.37
0.13
0.91


nb~16 + 28
0.61
0.02
0.52
0.66
0.77
0.38
0.02
0.02


svm~26 + 6
0.61
0.02
0.38
0.76
0.77
0.35
0.02
0.09


svm~16 + 34
0.61
0.02
0.37
0.74
0.76
0.35
0.16
0.43


rf~15 + 28
0.61
0.02
0.52
0.59
0.74
0.36
0.17
0.52


nb~18 + 5
0.61
0.02
0.63
0.48
0.73
0.37
0.48
0.39


rf~26 + 19
0.61
0.02
0.56
0.69
0.80
0.42
0.00
0.01


rpart~28 + 22
0.60
0.02
0.48
0.67
0.77
0.37
0.01
0.00


knn~12 + 6
0.60
0.02
0.46
0.76
0.81
0.39
0.00
0.02


knn~28 + 21
0.60
0.02
0.70
0.41
0.73
0.39
0.11
0.11


knn~36 + 6
0.60
0.02
0.48
0.67
0.76
0.37
0.04
0.01


rf~19 + 22
0.60
0.02
0.35
0.72
0.74
0.34
0.19
0.00


knn~13 + 21
0.60
0.02
0.73
0.45
0.75
0.43
0.05
0.21


rpart~1 + 29
0.60
0.02
0.30
0.83
0.80
0.35
0.23
0.68


rpart~26 + 22
0.60
0.02
0.38
0.79
0.80
0.37
0.00
0.01


nb~1 + 15
0.60
0.02
0.37
0.71
0.73
0.34
0.54
0.37


rpart~5 + 32
0.60
0.02
0.42
0.71
0.76
0.36
0.24
0.16


rf~9 + 28
0.60
0.02
0.48
0.69
0.77
0.37
0.01
0.02


svm~18 + 19
0.60
0.02
0.50
0.72
0.80
0.40
0.00
0.01


nb~14 + 6
0.60
0.02
0.40
0.81
0.82
0.38
0.00
0.03


knn~17 + 37
0.60
0.02
0.71
0.50
0.76
0.44
0.00
0.22


nb~9 + 19
0.60
0.02
0.56
0.60
0.76
0.38
0.00
0.07


rpart~20 + 28
0.60
0.02
0.63
0.50
0.73
0.38
0.03
0.00


svm~15 + 13
0.60
0.02
0.40
0.76
0.78
0.36
0.01
0.15


nb~17 + 6
0.60
0.02
0.48
0.67
0.76
0.37
0.02
0.01


rf~38 + 28
0.60
0.02
0.52
0.62
0.75
0.37
0.07
0.05


nb~16 + 32
0.60
0.02
0.39
0.71
0.75
0.34
0.19
0.12


rf~4 + 22
0.60
0.02
0.59
0.60
0.77
0.40
0.00
0.00


svm~16 + 22
0.60
0.02
0.47
0.60
0.72
0.34
0.23
0.09


nb~28 + 22
0.60
0.02
0.46
0.67
0.76
0.36
0.02
0.00


svm~41 + 38
0.60
0.02
0.34
0.76
0.75
0.34
0.33
0.78


knn~19 + 22
0.60
0.02
0.70
0.38
0.71
0.37
0.31
0.01


rpart~4 + 9
0.60
0.02
0.43
0.69
0.75
0.35
0.05
0.23


nb~28 + 32
0.60
0.02
0.45
0.64
0.73
0.35
0.10
0.00


svm~16 + 31
0.60
0.02
0.32
0.71
0.71
0.32
0.84
0.82


knn~15 + 24
0.60
0.02
0.57
0.59
0.75
0.38
0.05
0.13


rpart~4 + 34
0.60
0.02
0.53
0.64
0.76
0.38
0.01
0.10


svm~7 + 19
0.60
0.02
0.59
0.59
0.76
0.40
0.01
0.47


nb~1 + 19
0.60
0.02
0.70
0.45
0.74
0.41
0.05
0.00


rpart~26 + 19
0.60
0.02
0.62
0.53
0.75
0.39
0.04
0.01


rf~4 + 13
0.60
0.02
0.38
0.81
0.81
0.37
0.00
0.02


rpart~16 + 18
0.58
0.02
0.30
0.90
0.86
0.37
0.00
0.37


nb~18 + 28
0.60
0.02
0.42
0.64
0.72
0.33
0.21
0.01


svm~4 + 29
0.60
0.03
0.28
0.84
0.80
0.35
0.00
0.03


svm~1 + 18
0.60
0.03
0.35
0.81
0.80
0.36
0.02
0.90


rf~25 + 28
0.60
0.03
0.45
0.59
0.70
0.32
0.85
0.01


nb~24 + 22
0.60
0.03
0.51
0.62
0.75
0.36
0.05
0.00


svm~1 + 19
0.60
0.03
0.49
0.64
0.75
0.36
0.04
0.05


rf~8 + 19
0.60
0.03
0.35
0.72
0.74
0.34
0.25
0.04


nb~2 + 22
0.60
0.03
0.46
0.64
0.74
0.35
0.16
0.73


nb~12 + 6
0.60
0.03
0.51
0.67
0.77
0.38
0.01
0.02


svm~39 + 6
0.60
0.03
0.40
0.81
0.82
0.38
0.00
0.11


rpart~4 + 13
0.60
0.03
0.44
0.72
0.78
0.37
0.01
0.00


rpart~5 + 20
0.60
0.03
0.57
0.55
0.74
0.37
0.05
0.16


svm~4 + 22
0.60
0.03
0.42
0.83
0.84
0.39
0.00
0.00


svm~25 + 6
0.60
0.03
0.54
0.62
0.76
0.38
0.02
0.11


rpart~22 + 6
0.60
0.03
0.41
0.74
0.78
0.36
0.04
0.02


knn~4 + 1
0.60
0.03
0.70
0.41
0.73
0.39
0.19
0.04


rpart~7 + 20
0.60
0.03
0.65
0.50
0.74
0.39
0.03
0.88


nb~18 + 2
0.60
0.03
0.41
0.69
0.74
0.34
0.19
0.23


knn~17 + 22
0.60
0.03
0.45
0.66
0.74
0.35
0.03
0.01


knn~19 + 28
0.60
0.03
0.52
0.59
0.74
0.36
0.07
0.03


rpart~20 + 22
0.60
0.03
0.42
0.72
0.77
0.36
0.02
0.01


svm~39 + 22
0.60
0.03
0.52
0.62
0.75
0.37
0.04
0.02


knn~22 + 6
0.60
0.03
0.66
0.50
0.75
0.40
0.03
0.06


rpart~14 + 22
0.60
0.03
0.38
0.83
0.83
0.38
0.00
0.02


rpart~24 + 5
0.60
0.03
0.38
0.76
0.78
0.36
0.08
0.02


rf~16 + 38
0.60
0.03
0.52
0.66
0.77
0.38
0.01
0.69


svm~8 + 28
0.60
0.03
0.45
0.66
0.74
0.35
0.07
0.01


svm~4 + 32
0.60
0.03
0.38
0.76
0.78
0.36
0.01
0.00


nb~20 + 6
0.60
0.03
0.44
0.67
0.75
0.35
0.05
0.03


rpart~1 + 20
0.60
0.03
0.66
0.50
0.75
0.40
0.03
0.01


knn~24 + 13
0.60
0.03
0.58
0.53
0.73
0.36
0.07
0.03


rpart~41 + 28
0.60
0.03
0.38
0.78
0.79
0.36
0.00
0.00


svm~8 + 22
0.60
0.03
0.41
0.76
0.79
0.37
0.01
0.14


rf~16 + 28
0.60
0.03
0.47
0.67
0.76
0.36
0.08
0.12


nb~4 + 37
0.60
0.03
0.34
0.83
0.81
0.36
0.00
0.05


svm~28 + 21
0.60
0.03
0.40
0.76
0.78
0.36
0.00
0.06


nb~1 + 32
0.60
0.03
0.40
0.66
0.72
0.33
0.58
0.01


rpart~32 + 22
0.60
0.03
0.39
0.78
0.79
0.37
0.00
0.02


knn~42 + 19
0.60
0.03
0.61
0.59
0.76
0.40
0.01
0.02


knn~15 + 13
0.60
0.03
0.61
0.50
0.73
0.37
0.16
0.20


svm~13 + 26
0.60
0.03
0.27
0.90
0.85
0.36
0.00
0.05


rf~16 + 3
0.60
0.03
0.32
0.81
0.79
0.35
0.07
0.00


svm~16 + 28
0.60
0.03
0.43
0.84
0.86
0.40
0.00
0.01


nb~36 + 22
0.60
0.03
0.53
0.57
0.73
0.35
0.08
0.02


svm~24 + 5
0.60
0.03
0.30
0.84
0.81
0.36
0.04
0.02


nb~15 + 22
0.60
0.03
0.36
0.81
0.81
0.36
0.00
0.03


svm~4 + 18
0.60
0.03
0.32
0.78
0.76
0.34
0.05
0.03


svm~19 + 22
0.60
0.03
0.40
0.74
0.77
0.36
0.03
0.01


nb~15 + 28
0.60
0.03
0.34
0.81
0.80
0.36
0.00
0.01


nb~37 + 22
0.60
0.03
0.48
0.60
0.73
0.35
0.10
0.10


svm~33 + 6
0.60
0.03
0.41
0.69
0.75
0.35
0.20
0.27


svm~16 + 41
0.60
0.03
0.30
0.72
0.71
0.32
0.77
0.87


nb~21 + 6
0.60
0.03
0.42
0.76
0.79
0.37
0.01
0.34


nb~24 + 5
0.60
0.03
0.59
0.60
0.77
0.40
0.06
0.06


knn~1 + 18
0.60
0.03
0.70
0.43
0.73
0.40
0.09
0.61


nb~4 + 29
0.60
0.03
0.36
0.74
0.75
0.34
0.06
0.13


svm~16 + 10
0.60
0.03
0.53
0.62
0.76
0.38
0.08
0.67


nb~23 + 6
0.60
0.03
0.39
0.78
0.79
0.37
0.03
0.82


svm~16 + 19
0.60
0.03
0.47
0.62
0.73
0.35
0.26
0.18


rpart~4 + 41
0.60
0.03
0.33
0.84
0.82
0.36
0.00
0.20


rf~12 + 22
0.60
0.03
0.45
0.71
0.77
0.37
0.00
0.00


rf~20 + 6
0.60
0.03
0.51
0.62
0.75
0.36
0.11
0.25


nb~4 + 17
0.60
0.03
0.33
0.83
0.81
0.36
0.00
0.00


svm~4 + 27
0.60
0.03
0.38
0.74
0.77
0.35
0.00
0.01


knn~26 + 22
0.59
0.03
0.64
0.52
0.75
0.39
0.03
0.02


nb~16 + 2
0.60
0.03
0.49
0.69
0.78
0.38
0.03
0.14


svm~1 + 22
0.60
0.03
0.38
0.79
0.80
0.37
0.01
0.05


rf~9 + 6
0.60
0.03
0.45
0.66
0.74
0.35
0.07
0.20


rpart~24 + 19
0.59
0.03
0.52
0.62
0.75
0.37
0.04
0.00


nb~16 + 20
0.60
0.03
0.57
0.53
0.73
0.36
0.05
0.06


rpart~1 + 21
0.60
0.03
0.36
0.76
0.77
0.35
0.20
0.27


nb~38 + 6
0.60
0.03
0.39
0.76
0.78
0.36
0.04
0.99


nb~16 + 41
0.60
0.03
0.32
0.72
0.72
0.33
0.56
0.74


nb~4 + 14
0.60
0.03
0.26
0.88
0.83
0.35
0.00
0.01


rpart~42 + 22
0.59
0.03
0.49
0.60
0.73
0.35
0.07
0.09


nb~2 + 28
0.60
0.03
0.44
0.67
0.75
0.35
0.05
0.51


nb~4 + 11
0.60
0.03
0.23
0.93
0.88
0.35
0.00
0.01


nb~4 + 35
0.60
0.03
0.30
0.88
0.84
0.36
0.00
0.05


rpart~19 + 3
0.59
0.04
0.47
0.72
0.79
0.38
0.00
0.01


nb~5 + 2
0.60
0.04
0.38
0.86
0.86
0.38
0.00
0.31


svm~12 + 5
0.60
0.04
0.52
0.62
0.75
0.37
0.07
0.28


nb~35 + 5
0.60
0.04
0.64
0.53
0.75
0.40
0.09
0.77


rpart~20 + 34
0.59
0.04
0.59
0.53
0.74
0.37
0.10
0.03


knn~1 + 28
0.59
0.04
0.73
0.40
0.73
0.40
0.08
0.23


rf~41 + 20
0.60
0.04
0.52
0.66
0.77
0.38
0.02
0.03


nb~19 + 22
0.60
0.04
0.59
0.59
0.76
0.39
0.01
0.00


rpart~18 + 9
0.58
0.04
0.38
0.81
0.82
0.37
0.00
0.86


rpart~15 + 3
0.59
0.04
0.20
0.88
0.78
0.33
0.13
0.18


nb~8 + 22
0.60
0.04
0.55
0.60
0.75
0.38
0.06
0.10


nb~19 + 32
0.60
0.04
0.41
0.72
0.76
0.36
0.04
0.00


svm~17 + 6
0.60
0.04
0.39
0.72
0.76
0.35
0.05
0.04


rpart~16 + 22
0.59
0.04
0.49
0.67
0.77
0.38
0.02
0.18


svm~31 + 19
0.60
0.04
0.52
0.66
0.77
0.38
0.01
0.00


rpart~5 + 19
0.59
0.04
0.66
0.53
0.76
0.42
0.00
0.01


knn~41 + 19
0.59
0.04
0.73
0.40
0.73
0.40
0.02
0.00


nb~41 + 28
0.60
0.04
0.48
0.60
0.73
0.35
0.13
0.01


svm~15 + 22
0.60
0.04
0.34
0.84
0.83
0.37
0.00
0.05


rf~35 + 6
0.60
0.04
0.52
0.57
0.73
0.35
0.28
0.89


rpart~1 + 6
0.59
0.04
0.47
0.66
0.75
0.36
0.07
0.79


rf~17 + 9
0.60
0.04
0.49
0.67
0.77
0.38
0.04
0.17


nb~15 + 9
0.60
0.04
0.46
0.67
0.76
0.36
0.03
0.90


nb~26 + 6
0.60
0.04
0.45
0.72
0.78
0.37
0.01
0.05


rpart~15 + 20
0.59
0.04
0.52
0.66
0.77
0.38
0.00
0.13


rpart~1 + 19
0.59
0.04
0.54
0.64
0.77
0.39
0.03
0.00


knn~35 + 6
0.59
0.04
0.58
0.57
0.75
0.38
0.10
0.36


knn~35 + 5
0.59
0.04
0.45
0.72
0.78
0.37
0.09
0.81


rf~9 + 22
0.60
0.04
0.42
0.71
0.76
0.36
0.05
0.08


rpart~39 + 28
0.59
0.04
0.50
0.69
0.78
0.38
0.00
0.00


knn~24 + 8
0.59
0.04
0.52
0.62
0.75
0.37
0.06
0.13


rf~38 + 22
0.59
0.04
0.48
0.69
0.78
0.38
0.00
0.14


nb~16 + 11
0.59
0.04
0.42
0.64
0.72
0.33
0.44
0.80


svm~29 + 28
0.59
0.04
0.32
0.76
0.75
0.34
0.12
0.02


knn~39 + 32
0.59
0.04
0.67
0.48
0.74
0.40
0.10
0.00


knn~24 + 22
0.59
0.04
0.37
0.78
0.78
0.36
0.02
0.06


knn~4 + 36
0.59
0.04
0.69
0.40
0.72
0.37
0.09
0.07


knn~16 + 22
0.59
0.04
0.51
0.69
0.78
0.39
0.00
0.18


knn~16 + 3
0.59
0.04
0.62
0.57
0.76
0.40
0.04
0.02


rpart~18 + 38
0.59
0.04
0.55
0.60
0.75
0.38
0.05
0.22


nb~36 + 19
0.59
0.04
0.63
0.62
0.78
0.43
0.00
0.01


svm~16 + 32
0.59
0.04
0.30
0.79
0.76
0.34
0.10
0.13


knn~24 + 6
0.59
0.04
0.63
0.48
0.73
0.37
0.17
0.07


rpart~4 + 7
0.59
0.04
0.48
0.67
0.77
0.37
0.05
0.92


nb~25 + 22
0.59
0.04
0.48
0.72
0.79
0.39
0.00
0.01


knn~40 + 13
0.59
0.04
0.62
0.55
0.75
0.40
0.03
0.23


svm~39 + 19
0.59
0.04
0.54
0.64
0.77
0.39
0.00
0.00


nb~3 + 6
0.59
0.04
0.27
0.86
0.81
0.35
0.02
0.05


rpart~4 + 14
0.59
0.04
0.37
0.76
0.77
0.35
0.02
0.19


nb~18 + 8
0.59
0.04
0.41
0.72
0.77
0.36
0.06
0.86


svm~33 + 28
0.59
0.04
0.52
0.57
0.73
0.35
0.27
0.02


rf~20 + 22
0.59
0.04
0.43
0.69
0.75
0.35
0.07
0.04


nb~41 + 22
0.59
0.04
0.49
0.64
0.75
0.36
0.04
0.06


knn~37 + 20
0.59
0.04
0.36
0.81
0.81
0.36
0.00
0.15


knn~15 + 39
0.59
0.04
0.55
0.60
0.75
0.38
0.07
0.85


svm~2 + 22
0.59
0.04
0.57
0.52
0.72
0.35
0.16
0.41


nb~29 + 6
0.59
0.04
0.38
0.78
0.79
0.36
0.01
0.27


rf~31 + 19
0.59
0.04
0.56
0.52
0.72
0.35
0.20
0.02


nb~9 + 28
0.59
0.04
0.41
0.74
0.78
0.36
0.01
0.05


rf~29 + 19
0.59
0.04
0.54
0.59
0.74
0.37
0.02
0.00


svm~41 + 22
0.59
0.04
0.45
0.67
0.75
0.35
0.07
0.12


knn~15 + 3
0.59
0.04
0.46
0.64
0.74
0.35
0.25
0.11


nb~18 + 36
0.59
0.04
0.48
0.59
0.72
0.34
0.23
0.43


knn~4 + 42
0.59
0.04
0.76
0.29
0.70
0.35
0.27
0.04


svm~29 + 19
0.59
0.04
0.45
0.74
0.79
0.38
0.01
0.02


knn~39 + 19
0.59
0.04
0.54
0.66
0.78
0.39
0.01
0.00


nb~15 + 18
0.59
0.04
0.39
0.74
0.77
0.36
0.01
0.28


nb~7 + 28
0.59
0.04
0.45
0.71
0.77
0.37
0.01
0.41


rpart~1 + 22
0.59
0.04
0.30
0.86
0.83
0.36
0.01
0.09


rpart~25 + 22
0.59
0.04
0.56
0.50
0.71
0.34
0.34
0.13


rf~24 + 6
0.59
0.04
0.56
0.55
0.73
0.36
0.15
0.10


svm~4 + 34
0.59
0.04
0.36
0.74
0.75
0.34
0.05
0.01


rf~38 + 6
0.59
0.04
0.52
0.66
0.77
0.38
0.02
0.08


knn~5 + 32
0.59
0.05
0.70
0.45
0.74
0.40
0.04
0.08


svm~28 + 22
0.59
0.05
0.39
0.78
0.79
0.37
0.01
0.00


rpart~16 + 6
0.59
0.05
0.40
0.71
0.75
0.35
0.06
0.44


knn~4 + 20
0.59
0.05
0.56
0.57
0.74
0.37
0.01
0.03


nb~4 + 12
0.59
0.05
0.34
0.79
0.78
0.35
0.02
0.00


svm~4 + 42
0.59
0.05
0.49
0.72
0.80
0.39
0.00
0.01


rf~12 + 18
0.59
0.05
0.42
0.72
0.77
0.36
0.04
0.26


rpart~10 + 22
0.59
0.05
0.44
0.72
0.78
0.37
0.01
0.03


svm~35 + 19
0.59
0.05
0.42
0.74
0.78
0.37
0.03
0.05


knn~18 + 32
0.59
0.05
0.72
0.45
0.74
0.42
0.02
0.07


rpart~17 + 22
0.59
0.05
0.44
0.69
0.76
0.36
0.04
0.27


rpart~15 + 9
0.58
0.05
0.31
0.79
0.77
0.34
0.05
0.74


knn~4 + 34
0.59
0.05
0.67
0.40
0.71
0.35
0.22
0.01


knn~14 + 32
0.59
0.05
0.63
0.52
0.74
0.39
0.01
0.01


rpart~35 + 31
0.58
0.05
0.32
0.83
0.80
0.36
0.05
0.72


rf~1 + 28
0.59
0.05
0.52
0.62
0.75
0.37
0.09
0.39


svm~36 + 19
0.59
0.05
0.45
0.67
0.75
0.36
0.03
0.02


rpart~9 + 20
0.59
0.05
0.62
0.50
0.73
0.37
0.06
0.18


rf~26 + 28
0.59
0.05
0.54
0.57
0.73
0.36
0.02
0.01


knn~16 + 10
0.59
0.05
0.70
0.43
0.73
0.40
0.07
0.49


knn~42 + 18
0.59
0.05
0.52
0.59
0.73
0.35
0.24
0.68


rpart~9 + 22
0.58
0.05
0.39
0.79
0.81
0.37
0.00
0.17


rpart~4 + 6
0.59
0.05
0.43
0.67
0.74
0.35
0.14
0.13


rf~41 + 18
0.59
0.05
0.41
0.74
0.78
0.36
0.04
0.53


rf~18 + 37
0.59
0.05
0.38
0.78
0.79
0.36
0.03
0.91


svm~4 + 31
0.59
0.05
0.41
0.66
0.73
0.34
0.19
0.00


rpart~39 + 6
0.59
0.05
0.45
0.76
0.80
0.38
0.00
0.10


knn~18 + 8
0.59
0.05
0.46
0.69
0.77
0.37
0.02
0.84


svm~39 + 28
0.59
0.05
0.45
0.71
0.77
0.37
0.01
0.00


nb~11 + 22
0.59
0.05
0.59
0.55
0.75
0.38
0.03
0.03


rf~3 + 28
0.59
0.05
0.44
0.71
0.77
0.36
0.02
0.00


nb~39 + 6
0.59
0.05
0.39
0.71
0.75
0.34
0.10
0.10


nb~5 + 20
0.59
0.05
0.60
0.55
0.75
0.39
0.07
0.23





auc.pvalue: Wilcoxon Test P-value.


mfd: Median Fold Difference.


KM: Kaplan Meier curves.


MvaHRPval: Multivariable Analysis Hazard Ratio P-value.













TABLE 50







pairwise biomarkers from the 43 biomarker panel with significance for


Wilcoxon P-value (auc.pvalue <= 0.001*) and other metrics for the MET


event endpoint.




















Pos.
Neg.
KM





auc.


Pred.
Pred.
P-
Mva


Classifier
auc
pvalue
Sensitivity
Specificity
Value
Value
value
HRPval


















nb~4 + 16
0.747
0.000
0.471
0.890
0.711
0.745
0.000
0.000


svm~4 + 16
0.741
0.000
0.544
0.763
0.569
0.744
0.000
0.001


nb~4 + 35
0.726
0.000
0.471
0.890
0.711
0.745
0.000
0.002


nb~16 + 6
0.725
0.000
0.574
0.746
0.565
0.752
0.000
0.001


nb~4 + 15
0.725
0.000
0.471
0.839
0.627
0.733
0.000
0.000


rpart~4 + 16
0.719
0.000
0.588
0.712
0.541
0.750
0.000
0.002


nb~15 + 16
0.724
0.000
0.471
0.771
0.542
0.717
0.000
0.005


nb~4 + 8
0.721
0.000
0.397
0.907
0.711
0.723
0.000
0.000


svm~4 + 8
0.718
0.000
0.441
0.822
0.588
0.719
0.000
0.000


nb~4 + 13
0.718
0.000
0.397
0.907
0.711
0.723
0.000
0.000


svm~35 + 19
0.717
0.000
0.544
0.729
0.536
0.735
0.000
0.001


nb~35 + 6
0.716
0.000
0.515
0.780
0.574
0.736
0.000
0.006


knn~4 + 16
0.711
0.000
0.735
0.669
0.562
0.814
0.000
0.000


nb~16 + 22
0.714
0.000
0.588
0.695
0.526
0.745
0.000
0.000


nb~15 + 24
0.714
0.000
0.500
0.763
0.548
0.726
0.000
0.001


svm~16 + 18
0.714
0.000
0.574
0.754
0.574
0.754
0.000
0.001


nb~16 + 19
0.713
0.000
0.662
0.678
0.542
0.777
0.000
0.000


nb~4 + 24
0.713
0.000
0.412
0.907
0.718
0.728
0.000
0.000


nb~16 + 18
0.712
0.000
0.647
0.669
0.530
0.767
0.000
0.001


svm~15 + 13
0.711
0.000
0.529
0.754
0.554
0.736
0.000
0.021


svm~16 + 19
0.711
0.000
0.618
0.661
0.512
0.750
0.000
0.001


nb~16 + 20
0.710
0.000
0.706
0.559
0.480
0.767
0.000
0.000


nb~15 + 28
0.710
0.000
0.471
0.805
0.582
0.725
0.000
0.002


svm~16 + 22
0.710
0.000
0.574
0.627
0.470
0.718
0.003
0.003


nb~35 + 19
0.710
0.000
0.765
0.602
0.525
0.816
0.000
0.001


nb~15 + 8
0.709
0.000
0.441
0.822
0.588
0.719
0.000
0.046


svm~19 + 28
0.708
0.000
0.559
0.737
0.551
0.744
0.000
0.001


svm~4 + 29
0.707
0.000
0.426
0.864
0.644
0.723
0.000
0.000


svm~13 + 22
0.706
0.000
0.618
0.678
0.525
0.755
0.000
0.003


rpart~15 + 33
0.697
0.000
0.338
0.873
0.605
0.696
0.000
0.121


nb~15 + 13
0.705
0.000
0.574
0.712
0.534
0.743
0.000
0.034


svm~31 + 19
0.705
0.000
0.662
0.653
0.523
0.770
0.000
0.000


svm~15 + 8
0.704
0.000
0.397
0.831
0.574
0.705
0.000
0.065


nb~35 + 22
0.704
0.000
0.750
0.525
0.477
0.785
0.000
0.007


svm~16 + 6
0.703
0.000
0.603
0.695
0.532
0.752
0.000
0.001


nb~4 + 1
0.703
0.000
0.500
0.839
0.642
0.744
0.000
0.000


svm~4 + 41
0.703
0.000
0.353
0.847
0.571
0.694
0.001
0.001


rpart~4 + 1
0.697
0.000
0.691
0.559
0.475
0.759
0.001
0.004


svm~4 + 31
0.702
0.000
0.574
0.712
0.534
0.743
0.000
0.000


nb~13 + 6
0.702
0.000
0.603
0.729
0.562
0.761
0.000
0.001


nb~4 + 12
0.702
0.000
0.500
0.822
0.618
0.740
0.000
0.000


nb~15 + 35
0.702
0.000
0.574
0.746
0.565
0.752
0.000
0.183


nb~4 + 2
0.701
0.000
0.559
0.763
0.576
0.750
0.000
0.056


svm~15 + 16
0.701
0.000
0.426
0.805
0.558
0.709
0.000
0.039


rpart~4 + 31
0.698
0.000
0.632
0.703
0.551
0.769
0.000
0.005


nb~4 + 28
0.700
0.000
0.471
0.822
0.604
0.729
0.000
0.000


nb~4 + 9
0.699
0.000
0.529
0.839
0.655
0.756
0.000
0.002


nb~35 + 20
0.699
0.000
0.824
0.449
0.463
0.815
0.000
0.001


nb~4 + 33
0.698
0.000
0.441
0.898
0.714
0.736
0.000
0.005


rpart~4 + 42
0.694
0.000
0.676
0.627
0.511
0.771
0.000
0.028


nb~4 + 19
0.697
0.000
0.500
0.822
0.618
0.740
0.000
0.000


nb~4 + 20
0.697
0.000
0.559
0.754
0.567
0.748
0.000
0.000


svm~4 + 19
0.696
0.000
0.691
0.746
0.610
0.807
0.000
0.000


svm~4 + 28
0.696
0.000
0.485
0.763
0.541
0.720
0.000
0.001


svm~8 + 22
0.695
0.000
0.529
0.737
0.537
0.731
0.000
0.004


rpart~4 + 13
0.692
0.000
0.544
0.703
0.514
0.728
0.000
0.000


nb~15 + 19
0.695
0.000
0.441
0.805
0.566
0.714
0.000
0.002


nb~15 + 6
0.695
0.000
0.397
0.839
0.587
0.707
0.000
0.006


nb~13 + 22
0.695
0.000
0.603
0.695
0.532
0.752
0.000
0.002


svm~29 + 19
0.695
0.000
0.603
0.729
0.562
0.761
0.000
0.000


rpart~4 + 18
0.690
0.000
0.559
0.703
0.521
0.735
0.000
0.005


svm~4 + 1
0.694
0.000
0.471
0.856
0.653
0.737
0.000
0.001


nb~16 + 28
0.694
0.000
0.632
0.627
0.494
0.747
0.000
0.001


svm~8 + 19
0.693
0.000
0.603
0.644
0.494
0.738
0.000
0.000


nb~8 + 22
0.692
0.000
0.706
0.619
0.516
0.785
0.000
0.003


nb~4 + 40
0.692
0.000
0.441
0.915
0.750
0.740
0.000
0.007


svm~13 + 28
0.692
0.000
0.588
0.695
0.526
0.745
0.000
0.000


rpart~15 + 13
0.688
0.000
0.456
0.780
0.544
0.713
0.000
0.151


nb~16 + 17
0.691
0.000
0.485
0.780
0.559
0.724
0.000
0.001


svm~19 + 38
0.691
0.000
0.632
0.678
0.531
0.762
0.000
0.003


rpart~15 + 20
0.674
0.000
0.691
0.661
0.540
0.788
0.000
0.000


svm~15 + 2
0.690
0.000
0.559
0.754
0.567
0.748
0.000
0.472


svm~15 + 28
0.690
0.000
0.441
0.805
0.566
0.714
0.000
0.002


nb~4 + 37
0.690
0.000
0.456
0.814
0.585
0.722
0.000
0.004


svm~40 + 6
0.690
0.000
0.691
0.576
0.485
0.764
0.000
0.050


nb~8 + 19
0.690
0.000
0.618
0.686
0.532
0.757
0.000
0.000


svm~8 + 6
0.690
0.000
0.588
0.720
0.548
0.752
0.000
0.005


nb~4 + 6
0.689
0.000
0.500
0.814
0.607
0.738
0.000
0.002


nb~15 + 22
0.689
0.000
0.471
0.788
0.561
0.721
0.000
0.004


svm~4 + 40
0.689
0.000
0.632
0.610
0.483
0.742
0.001
0.139


rpart~4 + 8
0.685
0.000
0.647
0.678
0.537
0.769
0.000
0.000


svm~15 + 19
0.689
0.000
0.412
0.847
0.609
0.714
0.000
0.010


svm~40 + 19
0.689
0.000
0.618
0.585
0.462
0.726
0.005
0.017


nb~15 + 9
0.688
0.000
0.574
0.669
0.500
0.731
0.001
0.069


nb~9 + 22
0.688
0.000
0.529
0.737
0.537
0.731
0.000
0.007


nb~4 + 32
0.688
0.000
0.500
0.873
0.694
0.752
0.000
0.000


nb~9 + 19
0.688
0.000
0.691
0.593
0.495
0.769
0.000
0.000


nb~40 + 6
0.687
0.000
0.515
0.780
0.574
0.736
0.000
0.033


rf~9 + 19
0.687
0.000
0.721
0.610
0.516
0.791
0.000
0.000


knn~4 + 12
0.684
0.000
0.382
0.831
0.565
0.700
0.000
0.002


nb~16 + 26
0.687
0.000
0.500
0.771
0.557
0.728
0.000
0.000


nb~4 + 31
0.687
0.000
0.485
0.839
0.635
0.739
0.000
0.001


nb~4 + 22
0.687
0.000
0.515
0.814
0.614
0.744
0.000
0.001


knn~4 + 19
0.683
0.000
0.647
0.703
0.557
0.776
0.000
0.000


nb~15 + 18
0.687
0.000
0.515
0.746
0.538
0.727
0.000
0.032


rpart~18 + 32
0.684
0.000
0.632
0.669
0.524
0.760
0.000
0.004


nb~4 + 42
0.686
0.000
0.397
0.856
0.614
0.711
0.000
0.005


nb~40 + 22
0.686
0.000
0.662
0.602
0.489
0.755
0.001
0.025


knn~4 + 42
0.681
0.000
0.838
0.314
0.413
0.771
0.021
0.001


nb~4 + 17
0.686
0.000
0.471
0.831
0.615
0.731
0.000
0.001


nb~13 + 19
0.685
0.000
0.779
0.576
0.515
0.819
0.000
0.000


nb~16 + 24
0.685
0.000
0.515
0.712
0.507
0.718
0.001
0.000


svm~24 + 2
0.685
0.000
0.456
0.771
0.534
0.711
0.000
0.008


rpart~16 + 20
0.678
0.000
0.721
0.568
0.490
0.779
0.000
0.001


rpart~35 + 6
0.681
0.000
0.529
0.737
0.537
0.731
0.000
0.007


rpart~13 + 6
0.680
0.000
0.647
0.729
0.579
0.782
0.000
0.001


nb~8 + 6
0.685
0.000
0.515
0.763
0.556
0.732
0.000
0.005


rf~4 + 12
0.684
0.000
0.647
0.610
0.489
0.750
0.000
0.002


svm~8 + 28
0.684
0.000
0.588
0.678
0.513
0.741
0.000
0.008


rpart~20 + 28
0.671
0.000
0.750
0.508
0.468
0.779
0.000
0.000


svm~4 + 13
0.684
0.000
0.456
0.856
0.646
0.732
0.000
0.000


svm~29 + 22
0.684
0.000
0.618
0.610
0.477
0.735
0.001
0.004


svm~4 + 27
0.684
0.000
0.515
0.754
0.547
0.730
0.000
0.006


nb~4 + 41
0.683
0.000
0.441
0.831
0.600
0.721
0.000
0.003


rpart~13 + 22
0.680
0.000
0.706
0.559
0.480
0.767
0.000
0.009


nb~28 + 6
0.683
0.000
0.588
0.720
0.548
0.752
0.000
0.002


rpart~2 + 19
0.674
0.000
0.809
0.381
0.430
0.776
0.005
0.060


svm~4 + 15
0.682
0.000
0.397
0.873
0.643
0.715
0.000
0.000


svm~4 + 38
0.682
0.000
0.515
0.805
0.603
0.742
0.000
0.001


rpart~4 + 32
0.679
0.000
0.500
0.729
0.515
0.717
0.001
0.001


svm~13 + 19
0.681
0.000
0.735
0.534
0.476
0.778
0.000
0.000


nb~8 + 28
0.681
0.000
0.647
0.686
0.543
0.771
0.000
0.002


knn~40 + 28
0.677
0.000
0.485
0.814
0.600
0.733
0.000
0.005


nb~15 + 20
0.680
0.000
0.662
0.610
0.495
0.758
0.000
0.003


rpart~35 + 19
0.677
0.000
0.618
0.686
0.532
0.757
0.000
0.008


nb~4 + 27
0.680
0.000
0.574
0.695
0.520
0.739
0.000
0.001


nb~15 + 17
0.680
0.000
0.471
0.729
0.500
0.705
0.001
0.011


nb~24 + 28
0.680
0.000
0.485
0.754
0.532
0.718
0.000
0.000


nb~9 + 6
0.680
0.000
0.632
0.610
0.483
0.742
0.001
0.011


svm~4 + 12
0.680
0.000
0.485
0.814
0.600
0.733
0.000
0.003


nb~37 + 22
0.679
0.000
0.603
0.627
0.482
0.733
0.001
0.010


svm~26 + 19
0.679
0.000
0.529
0.805
0.610
0.748
0.000
0.001


svm~4 + 9
0.679
0.000
0.529
0.780
0.581
0.742
0.000
0.006


nb~15 + 32
0.679
0.000
0.309
0.873
0.583
0.687
0.000
0.008


rf~4 + 31
0.679
0.000
0.559
0.678
0.500
0.727
0.001
0.003


svm~9 + 19
0.679
0.000
0.676
0.627
0.511
0.771
0.000
0.000


svm~15 + 35
0.679
0.000
0.426
0.847
0.617
0.719
0.000
0.229


nb~28 + 22
0.679
0.000
0.559
0.661
0.487
0.722
0.001
0.001


nb~35 + 28
0.678
0.000
0.603
0.712
0.547
0.757
0.000
0.025


svm~35 + 6
0.678
0.000
0.485
0.771
0.550
0.722
0.000
0.007


knn~4 + 43
0.674
0.000
0.515
0.720
0.515
0.720
0.001
0.018


nb~2 + 22
0.678
0.000
0.559
0.644
0.475
0.717
0.005
0.129


rpart~15 + 2
0.671
0.000
0.647
0.627
0.500
0.755
0.000
0.587


svm~9 + 22
0.678
0.000
0.500
0.763
0.548
0.726
0.000
0.014


svm~16 + 28
0.677
0.000
0.544
0.771
0.578
0.746
0.000
0.002


svm~19 + 22
0.677
0.000
0.500
0.729
0.515
0.717
0.000
0.001


nb~24 + 6
0.677
0.000
0.353
0.839
0.558
0.692
0.000
0.001


rpart~15 + 26
0.670
0.000
0.338
0.864
0.590
0.694
0.000
0.061


svm~16 + 38
0.677
0.000
0.471
0.754
0.525
0.712
0.001
0.054


rpart~4 + 28
0.673
0.000
0.515
0.771
0.565
0.734
0.000
0.002


svm~15 + 31
0.677
0.000
0.353
0.814
0.522
0.686
0.003
0.170


nb~40 + 19
0.677
0.000
0.706
0.534
0.466
0.759
0.001
0.008


nb~15 + 2
0.676
0.000
0.529
0.763
0.563
0.738
0.000
0.474


nb~40 + 20
0.676
0.000
0.691
0.559
0.475
0.759
0.001
0.007


svm~41 + 6
0.676
0.000
0.588
0.661
0.500
0.736
0.000
0.005


nb~4 + 23
0.676
0.000
0.500
0.805
0.596
0.736
0.000
0.052


svm~4 + 6
0.676
0.000
0.544
0.780
0.587
0.748
0.000
0.016


nb~4 + 29
0.676
0.000
0.485
0.763
0.541
0.720
0.000
0.010


knn~4 + 39
0.672
0.000
0.794
0.432
0.446
0.785
0.001
0.000


rf~13 + 26
0.675
0.000
0.588
0.686
0.519
0.743
0.000
0.001


rpart~9 + 19
0.662
0.000
0.706
0.568
0.485
0.770
0.000
0.001


nb~4 + 38
0.675
0.000
0.544
0.780
0.587
0.748
0.000
0.013


rf~4 + 19
0.675
0.000
0.574
0.661
0.494
0.729
0.000
0.000


nb~4 + 34
0.675
0.000
0.441
0.839
0.612
0.723
0.000
0.002


rf~4 + 1
0.675
0.000
0.632
0.644
0.506
0.752
0.000
0.023


nb~13 + 28
0.675
0.000
0.544
0.720
0.529
0.733
0.000
0.001


rpart~4 + 11
0.644
0.000
0.441
0.797
0.556
0.712
0.000
0.008


svm~37 + 19
0.675
0.000
0.647
0.585
0.473
0.742
0.001
0.000


nb~20 + 28
0.675
0.000
0.618
0.602
0.472
0.732
0.001
0.000


nb~42 + 6
0.674
0.000
0.500
0.788
0.576
0.732
0.000
0.018


rpart~33 + 19
0.647
0.000
0.574
0.720
0.542
0.746
0.000
0.001


rf~4 + 16
0.674
0.000
0.691
0.602
0.500
0.772
0.000
0.002


rpart~4 + 39
0.663
0.000
0.529
0.754
0.554
0.736
0.000
0.000


nb~4 + 36
0.674
0.000
0.368
0.915
0.714
0.715
0.000
0.001


nb~8 + 20
0.674
0.000
0.691
0.500
0.443
0.738
0.009
0.000


nb~24 + 22
0.674
0.000
0.618
0.619
0.483
0.737
0.001
0.000


svm~4 + 32
0.673
0.000
0.500
0.754
0.540
0.724
0.000
0.003


svm~13 + 6
0.673
0.000
0.559
0.712
0.528
0.737
0.000
0.001


rpart~4 + 29
0.669
0.000
0.559
0.678
0.500
0.727
0.001
0.000


svm~39 + 19
0.673
0.000
0.632
0.602
0.478
0.740
0.000
0.000


nb~15 + 40
0.672
0.000
0.382
0.856
0.605
0.706
0.000
0.258


nb~15 + 26
0.672
0.000
0.471
0.771
0.542
0.717
0.000
0.012


nb~17 + 28
0.672
0.000
0.529
0.686
0.493
0.717
0.001
0.001


nb~9 + 20
0.672
0.000
0.544
0.610
0.446
0.699
0.021
0.001


nb~13 + 20
0.672
0.000
0.603
0.593
0.461
0.722
0.004
0.000


nb~2 + 6
0.672
0.000
0.588
0.712
0.541
0.750
0.000
0.175


rpart~16 + 18
0.634
0.000
0.412
0.864
0.636
0.718
0.000
0.001


svm~4 + 35
0.672
0.000
0.471
0.797
0.571
0.723
0.000
0.007


svm~15 + 10
0.672
0.000
0.441
0.856
0.638
0.727
0.000
0.099


knn~15 + 8
0.668
0.000
0.735
0.542
0.481
0.780
0.000
0.113


knn~4 + 20
0.669
0.000
0.691
0.576
0.485
0.764
0.000
0.003


nb~15 + 37
0.671
0.000
0.426
0.771
0.518
0.700
0.001
0.150


svm~18 + 8
0.671
0.000
0.588
0.661
0.500
0.736
0.001
0.014


nb~2 + 19
0.671
0.000
0.544
0.695
0.507
0.726
0.001
0.033


nb~19 + 28
0.671
0.000
0.647
0.653
0.518
0.762
0.000
0.000


rpart~19 + 20
0.666
0.000
0.735
0.500
0.459
0.766
0.001
0.003


svm~4 + 42
0.671
0.000
0.588
0.669
0.506
0.738
0.000
0.012


svm~16 + 26
0.670
0.000
0.412
0.788
0.528
0.699
0.001
0.000


knn~15 + 16
0.666
0.000
0.750
0.466
0.447
0.764
0.003
0.002


svm~16 + 10
0.670
0.000
0.676
0.627
0.511
0.771
0.000
0.033


svm~17 + 19
0.670
0.000
0.485
0.754
0.532
0.718
0.000
0.001


nb~41 + 6
0.670
0.000
0.441
0.814
0.577
0.716
0.000
0.016


nb~40 + 28
0.670
0.000
0.662
0.661
0.529
0.772
0.000
0.028


svm~15 + 40
0.670
0.000
0.485
0.661
0.452
0.690
0.040
0.565


rf~4 + 8
0.670
0.000
0.721
0.492
0.450
0.753
0.003
0.001


knn~10 + 19
0.665
0.000
0.382
0.881
0.650
0.712
0.000
0.000


nb~37 + 19
0.669
0.000
0.544
0.678
0.493
0.721
0.000
0.000


knn~4 + 31
0.665
0.000
0.544
0.712
0.521
0.730
0.000
0.002


nb~33 + 6
0.669
0.000
0.544
0.763
0.569
0.744
0.000
0.029


nb~20 + 22
0.669
0.000
0.603
0.619
0.477
0.730
0.001
0.001


rf~8 + 26
0.669
0.000
0.574
0.695
0.520
0.739
0.000
0.002


svm~33 + 19
0.669
0.000
0.574
0.627
0.470
0.718
0.003
0.000


nb~19 + 6
0.669
0.000
0.515
0.780
0.574
0.736
0.000
0.001


nb~4 + 18
0.669
0.000
0.485
0.771
0.550
0.722
0.000
0.004


svm~4 + 18
0.668
0.000
0.441
0.797
0.556
0.712
0.000
0.016


knn~15 + 13
0.665
0.000
0.735
0.517
0.467
0.772
0.001
0.235


svm~4 + 39
0.668
0.000
0.544
0.729
0.536
0.735
0.000
0.000


svm~42 + 15
0.668
0.000
0.471
0.720
0.492
0.702
0.006
0.638


svm~10 + 6
0.668
0.000
0.485
0.797
0.579
0.729
0.000
0.004


rf~4 + 24
0.668
0.000
0.574
0.678
0.506
0.734
0.000
0.000


svm~19 + 6
0.668
0.000
0.559
0.720
0.535
0.739
0.000
0.001


nb~1 + 6
0.667
0.000
0.485
0.771
0.550
0.722
0.000
0.007


nb~15 + 33
0.667
0.000
0.471
0.737
0.508
0.707
0.003
0.452


svm~12 + 6
0.667
0.000
0.544
0.703
0.514
0.728
0.000
0.002


nb~15 + 31
0.667
0.000
0.412
0.788
0.528
0.699
0.002
0.155


rpart~15 + 31
0.662
0.000
0.324
0.890
0.629
0.695
0.000
0.155


knn~4 + 22
0.664
0.000
0.735
0.475
0.446
0.757
0.002
0.005


svm~40 + 24
0.667
0.000
0.632
0.653
0.512
0.755
0.000
0.006


nb~12 + 6
0.667
0.000
0.618
0.644
0.500
0.745
0.000
0.002


nb~18 + 28
0.667
0.000
0.515
0.661
0.467
0.703
0.012
0.005


knn~15 + 31
0.663
0.000
0.706
0.585
0.495
0.775
0.000
0.060


svm~4 + 24
0.667
0.000
0.426
0.864
0.644
0.723
0.000
0.000


nb~42 + 22
0.667
0.000
0.647
0.525
0.440
0.721
0.021
0.032


rpart~4 + 34
0.666
0.000
0.618
0.602
0.472
0.732
0.002
0.063


svm~4 + 37
0.667
0.000
0.574
0.686
0.513
0.736
0.000
0.003


svm~4 + 2
0.667
0.000
0.662
0.678
0.542
0.777
0.000
0.077


nb~22 + 6
0.667
0.000
0.559
0.695
0.514
0.732
0.000
0.004


nb~42 + 15
0.666
0.000
0.485
0.712
0.493
0.706
0.005
0.521


svm~40 + 22
0.666
0.000
0.721
0.475
0.441
0.747
0.013
0.086


knn~29 + 18
0.662
0.000
0.529
0.695
0.500
0.719
0.002
0.029


nb~12 + 22
0.666
0.000
0.559
0.669
0.494
0.725
0.000
0.001


svm~10 + 22
0.666
0.000
0.544
0.678
0.493
0.721
0.002
0.015


svm~35 + 22
0.666
0.000
0.456
0.771
0.534
0.711
0.000
0.024


svm~8 + 26
0.666
0.000
0.441
0.780
0.536
0.708
0.001
0.006


nb~4 + 25
0.666
0.000
0.515
0.805
0.603
0.742
0.000
0.002


nb~17 + 6
0.666
0.000
0.588
0.661
0.500
0.736
0.000
0.002


svm~26 + 22
0.666
0.000
0.500
0.720
0.507
0.714
0.001
0.005


nb~38 + 28
0.666
0.000
0.559
0.703
0.521
0.735
0.000
0.023


nb~18 + 13
0.666
0.000
0.618
0.559
0.447
0.717
0.024
0.011


nb~37 + 6
0.666
0.000
0.588
0.678
0.513
0.741
0.000
0.016


rf~4 + 13
0.666
0.000
0.471
0.771
0.542
0.717
0.000
0.002


nb~4 + 7
0.666
0.000
0.456
0.771
0.534
0.711
0.001
0.028


nb~4 + 10
0.666
0.000
0.353
0.924
0.727
0.712
0.000
0.003


svm~24 + 6
0.666
0.000
0.426
0.788
0.537
0.705
0.000
0.018


rf~4 + 39
0.665
0.000
0.662
0.602
0.489
0.755
0.000
0.002


nb~19 + 22
0.665
0.000
0.706
0.568
0.485
0.770
0.000
0.000


svm~26 + 28
0.665
0.000
0.426
0.797
0.547
0.707
0.000
0.004


nb~33 + 19
0.665
0.000
0.721
0.568
0.490
0.779
0.000
0.016


rf~4 + 42
0.665
0.000
0.588
0.644
0.488
0.731
0.002
0.015


svm~24 + 19
0.665
0.000
0.456
0.814
0.585
0.722
0.000
0.002


nb~4 + 26
0.665
0.000
0.426
0.856
0.630
0.721
0.000
0.001


nb~15 + 10
0.665
0.000
0.706
0.483
0.440
0.740
0.018
0.404


knn~15 + 19
0.661
0.000
0.794
0.398
0.432
0.770
0.006
0.003


nb~19 + 20
0.665
0.000
0.706
0.517
0.457
0.753
0.001
0.000


rf~15 + 2
0.665
0.000
0.647
0.619
0.494
0.753
0.000
0.846


svm~40 + 28
0.665
0.000
0.676
0.602
0.495
0.763
0.000
0.039


nb~1 + 22
0.664
0.000
0.603
0.610
0.471
0.727
0.003
0.008


svm~15 + 24
0.664
0.000
0.338
0.890
0.639
0.700
0.000
0.135


rpart~4 + 20
0.640
0.000
0.765
0.508
0.473
0.789
0.000
0.001


svm~18 + 2
0.664
0.000
0.632
0.610
0.483
0.742
0.002
0.252


svm~37 + 22
0.664
0.000
0.632
0.636
0.500
0.750
0.000
0.042


nb~34 + 6
0.664
0.000
0.500
0.703
0.493
0.709
0.002
0.012


rpart~1 + 20
0.659
0.000
0.779
0.483
0.465
0.792
0.000
0.000


nb~4 + 39
0.664
0.000
0.515
0.814
0.614
0.744
0.000
0.004


nb~31 + 6
0.664
0.000
0.515
0.729
0.522
0.723
0.000
0.007


svm~2 + 28
0.664
0.000
0.647
0.602
0.484
0.747
0.001
0.039


knn~24 + 22
0.659
0.000
0.485
0.771
0.550
0.722
0.000
0.014


nb~18 + 6
0.664
0.000
0.544
0.712
0.521
0.730
0.000
0.009


rf~26 + 22
0.663
0.000
0.618
0.669
0.519
0.752
0.000
0.015


svm~31 + 6
0.663
0.000
0.544
0.661
0.481
0.716
0.004
0.044


nb~20 + 6
0.663
0.000
0.544
0.678
0.493
0.721
0.001
0.001


nb~4 + 43
0.663
0.000
0.397
0.873
0.643
0.715
0.000
0.006


svm~1 + 22
0.663
0.000
0.500
0.771
0.557
0.728
0.000
0.006


nb~40 + 17
0.663
0.000
0.632
0.610
0.483
0.742
0.001
0.140


nb~37 + 28
0.663
0.000
0.603
0.653
0.500
0.740
0.000
0.019


nb~17 + 8
0.663
0.000
0.559
0.686
0.507
0.730
0.001
0.017


svm~12 + 19
0.663
0.000
0.588
0.678
0.513
0.741
0.000
0.004


nb~27 + 6
0.663
0.000
0.588
0.636
0.482
0.728
0.001
0.012


nb~32 + 22
0.663
0.000
0.559
0.627
0.463
0.712
0.006
0.002


rf~42 + 19
0.663
0.000
0.662
0.593
0.484
0.753
0.000
0.000


nb~2 + 28
0.663
0.000
0.529
0.669
0.480
0.712
0.005
0.101


rpart~4 + 24
0.655
0.000
0.412
0.805
0.549
0.704
0.000
0.001


svm~18 + 19
0.663
0.000
0.603
0.669
0.513
0.745
0.000
0.002


knn~9 + 19
0.659
0.000
0.691
0.576
0.485
0.764
0.000
0.005


svm~38 + 22
0.663
0.000
0.632
0.712
0.558
0.771
0.000
0.035


rf~4 + 38
0.662
0.000
0.515
0.703
0.500
0.716
0.001
0.024


nb~17 + 22
0.662
0.000
0.662
0.568
0.469
0.744
0.001
0.002


nb~10 + 6
0.662
0.000
0.412
0.847
0.609
0.714
0.000
0.012


rpart~4 + 6
0.658
0.000
0.574
0.703
0.527
0.741
0.000
0.012


knn~35 + 19
0.658
0.000
0.824
0.424
0.452
0.806
0.001
0.011


rpart~20 + 6
0.660
0.000
0.574
0.627
0.470
0.718
0.003
0.000


nb~2 + 20
0.662
0.000
0.603
0.678
0.519
0.748
0.000
0.078


knn~16 + 10
0.655
0.000
0.824
0.432
0.455
0.810
0.001
0.031


svm~10 + 28
0.662
0.000
0.559
0.686
0.507
0.730
0.000
0.022


svm~2 + 22
0.662
0.000
0.691
0.542
0.465
0.753
0.001
0.179


svm~10 + 19
0.662
0.000
0.559
0.712
0.528
0.737
0.000
0.000


knn~4 + 38
0.658
0.000
0.750
0.475
0.451
0.767
0.002
0.002


svm~19 + 32
0.661
0.000
0.485
0.771
0.550
0.722
0.000
0.001


nb~15 + 12
0.661
0.000
0.485
0.720
0.500
0.708
0.002
0.013


nb~17 + 13
0.661
0.000
0.618
0.619
0.483
0.737
0.001
0.014


nb~18 + 22
0.661
0.000
0.662
0.610
0.495
0.758
0.000
0.005


rf~4 + 41
0.660
0.000
0.588
0.636
0.482
0.728
0.002
0.007


rpart~4 + 35
0.652
0.000
0.544
0.737
0.544
0.737
0.000
0.016


rpart~24 + 19
0.654
0.000
0.603
0.593
0.461
0.722
0.003
0.002


knn~16 + 19
0.658
0.000
0.647
0.610
0.489
0.750
0.000
0.000


nb~33 + 22
0.660
0.000
0.706
0.492
0.444
0.744
0.007
0.031


svm~24 + 28
0.659
0.000
0.250
0.890
0.567
0.673
0.001
0.012


nb~19 + 32
0.659
0.000
0.515
0.720
0.515
0.720
0.000
0.000


rf~39 + 32
0.659
0.000
0.676
0.559
0.469
0.750
0.001
0.000


svm~42 + 6
0.659
0.000
0.574
0.661
0.494
0.729
0.001
0.012


nb~24 + 19
0.659
0.000
0.574
0.712
0.534
0.743
0.000
0.000


rf~15 + 28
0.659
0.000
0.618
0.585
0.462
0.726
0.004
0.204


rpart~4 + 38
0.658
0.000
0.603
0.661
0.506
0.743
0.000
0.045


knn~4 + 34
0.655
0.000
0.765
0.415
0.430
0.754
0.008
0.009


nb~41 + 22
0.659
0.000
0.603
0.636
0.488
0.735
0.001
0.027


rpart~35 + 20
0.657
0.000
0.603
0.644
0.494
0.738
0.001
0.050


rf~31 + 19
0.659
0.000
0.676
0.542
0.460
0.744
0.002
0.000


rpart~5 + 28
0.651
0.000
0.706
0.602
0.505
0.780
0.000
0.029


rf~35 + 6
0.658
0.000
0.618
0.585
0.462
0.726
0.009
0.007


nb~24 + 20
0.658
0.000
0.662
0.517
0.441
0.726
0.007
0.000


rpart~24 + 10
0.638
0.000
0.382
0.839
0.578
0.702
0.000
0.005


nb~12 + 28
0.658
0.000
0.632
0.669
0.524
0.760
0.000
0.001


svm~4 + 22
0.658
0.000
0.544
0.771
0.578
0.746
0.000
0.002


nb~36 + 6
0.658
0.000
0.485
0.754
0.532
0.718
0.000
0.010


nb~34 + 22
0.658
0.000
0.618
0.576
0.457
0.723
0.009
0.012


knn~16 + 38
0.653
0.000
0.824
0.373
0.431
0.786
0.007
0.206


svm~29 + 6
0.658
0.000
0.529
0.746
0.545
0.733
0.000
0.009


nb~38 + 6
0.658
0.000
0.500
0.746
0.531
0.721
0.000
0.061


svm~1 + 19
0.658
0.000
0.603
0.636
0.488
0.735
0.000
0.003


nb~16 + 32
0.658
0.000
0.515
0.729
0.522
0.723
0.000
0.005


svm~38 + 28
0.658
0.000
0.632
0.695
0.544
0.766
0.000
0.008


rpart~20 + 22
0.654
0.000
0.515
0.703
0.500
0.716
0.001
0.005


svm~15 + 39
0.658
0.000
0.500
0.780
0.567
0.730
0.000
0.153


nb~41 + 28
0.658
0.000
0.559
0.602
0.447
0.703
0.024
0.008


rpart~8 + 19
0.655
0.000
0.618
0.644
0.500
0.745
0.000
0.001


nb~31 + 19
0.657
0.000
0.603
0.695
0.532
0.752
0.000
0.002


rpart~15 + 8
0.656
0.000
0.426
0.763
0.509
0.698
0.003
0.243


rf~15 + 8
0.657
0.000
0.529
0.686
0.493
0.717
0.002
0.788


rf~7 + 19
0.657
0.000
0.735
0.551
0.485
0.783
0.000
0.016


rf~29 + 19
0.657
0.000
0.676
0.602
0.495
0.763
0.000
0.000


nb~35 + 17
0.657
0.000
0.618
0.610
0.477
0.735
0.002
0.135


svm~16 + 17
0.657
0.000
0.515
0.737
0.530
0.725
0.000
0.004


knn~18 + 28
0.653
0.000
0.735
0.441
0.431
0.743
0.010
0.002


nb~16 + 2
0.657
0.000
0.632
0.678
0.531
0.762
0.000
0.422


nb~26 + 28
0.656
0.000
0.544
0.678
0.493
0.721
0.001
0.002


rf~16 + 18
0.656
0.000
0.632
0.678
0.531
0.762
0.000
0.008


svm~4 + 25
0.656
0.000
0.588
0.653
0.494
0.733
0.000
0.031


nb~15 + 41
0.656
0.000
0.574
0.602
0.453
0.710
0.019
0.212


rpart~40 + 24
0.650
0.000
0.471
0.771
0.542
0.717
0.000
0.005


nb~17 + 19
0.656
0.000
0.706
0.610
0.511
0.783
0.000
0.000


svm~27 + 6
0.656
0.000
0.588
0.619
0.471
0.723
0.002
0.034


svm~19 + 34
0.656
0.000
0.588
0.610
0.465
0.720
0.002
0.001


rpart~16 + 28
0.655
0.000
0.515
0.669
0.473
0.705
0.011
0.009


rf~7 + 6
0.656
0.000
0.691
0.585
0.490
0.767
0.000
0.022


knn~29 + 6
0.652
0.000
0.529
0.695
0.500
0.719
0.001
0.022


knn~4 + 1
0.652
0.000
0.750
0.381
0.411
0.726
0.072
0.004


rpart~24 + 5
0.654
0.000
0.485
0.746
0.524
0.715
0.001
0.007


nb~32 + 6
0.656
0.000
0.412
0.847
0.609
0.714
0.000
0.004


nb~10 + 22
0.656
0.000
0.632
0.534
0.439
0.716
0.030
0.024


rpart~23 + 19
0.648
0.000
0.721
0.466
0.438
0.743
0.008
0.021


rpart~4 + 12
0.652
0.000
0.603
0.653
0.500
0.740
0.000
0.004


rf~4 + 14
0.656
0.000
0.544
0.678
0.493
0.721
0.001
0.007


nb~33 + 20
0.656
0.000
0.824
0.398
0.441
0.797
0.003
0.013


knn~4 + 35
0.652
0.000
0.471
0.746
0.516
0.710
0.001
0.050


rf~4 + 20
0.655
0.000
0.618
0.551
0.442
0.714
0.018
0.005


nb~18 + 8
0.655
0.000
0.485
0.695
0.478
0.701
0.018
0.023


svm~5 + 28
0.655
0.000
0.603
0.678
0.519
0.748
0.000
0.024


rf~10 + 19
0.655
0.000
0.574
0.686
0.513
0.736
0.000
0.000


svm~28 + 22
0.655
0.000
0.515
0.763
0.556
0.732
0.000
0.001


rpart~10 + 22
0.652
0.000
0.500
0.678
0.472
0.702
0.020
0.048


rf~4 + 18
0.655
0.000
0.603
0.661
0.506
0.743
0.000
0.006


nb~16 + 37
0.655
0.000
0.647
0.593
0.478
0.745
0.001
0.085


nb~19 + 34
0.655
0.000
0.574
0.686
0.513
0.736
0.000
0.001


rpart~4 + 25
0.652
0.000
0.706
0.534
0.466
0.759
0.001
0.024


knn~26 + 22
0.650
0.000
0.735
0.492
0.455
0.763
0.002
0.002


rf~35 + 19
0.654
0.000
0.618
0.636
0.494
0.743
0.000
0.010


rpart~15 + 3
0.647
0.000
0.279
0.890
0.594
0.682
0.000
0.294


svm~15 + 22
0.654
0.000
0.426
0.805
0.558
0.709
0.000
0.004


nb~28 + 32
0.654
0.000
0.544
0.644
0.468
0.710
0.003
0.004


svm~22 + 6
0.654
0.000
0.426
0.746
0.492
0.693
0.008
0.006


knn~42 + 19
0.649
0.000
0.721
0.551
0.480
0.774
0.000
0.005


nb~24 + 32
0.654
0.000
0.235
0.873
0.516
0.665
0.009
0.000


nb~16 + 35
0.654
0.000
0.515
0.737
0.530
0.725
0.001
0.205


nb~37 + 20
0.654
0.000
0.559
0.602
0.447
0.703
0.013
0.002


rpart~40 + 19
0.648
0.000
0.853
0.364
0.436
0.811
0.002
0.056


rpart~4 + 9
0.651
0.001
0.588
0.720
0.548
0.752
0.000
0.006


rf~15 + 39
0.653
0.001
0.544
0.720
0.529
0.733
0.000
0.221


svm~4 + 33
0.653
0.001
0.544
0.729
0.536
0.735
0.000
0.016


nb~13 + 26
0.653
0.001
0.662
0.483
0.425
0.713
0.051
0.002


svm~27 + 19
0.653
0.001
0.588
0.610
0.465
0.720
0.004
0.005


svm~15 + 37
0.653
0.001
0.412
0.805
0.549
0.704
0.000
0.070


nb~16 + 38
0.653
0.001
0.471
0.729
0.500
0.705
0.005
0.079


rpart~16 + 6
0.645
0.001
0.471
0.695
0.471
0.695
0.009
0.098


rpart~4 + 5
0.647
0.001
0.603
0.653
0.500
0.740
0.001
0.023


svm~2 + 19
0.653
0.001
0.676
0.500
0.438
0.728
0.011
0.019


rpart~24 + 20
0.644
0.001
0.529
0.712
0.514
0.724
0.000
0.001


svm~14 + 22
0.653
0.001
0.515
0.729
0.522
0.723
0.000
0.009


nb~36 + 22
0.653
0.001
0.632
0.576
0.462
0.731
0.003
0.013


rpart~26 + 28
0.649
0.001
0.456
0.746
0.508
0.704
0.001
0.001


rf~15 + 9
0.652
0.001
0.544
0.695
0.507
0.726
0.001
0.451


knn~24 + 19
0.648
0.001
0.824
0.373
0.431
0.786
0.004
0.002


nb~23 + 6
0.652
0.001
0.500
0.754
0.540
0.724
0.000
0.158


svm~34 + 22
0.652
0.001
0.632
0.576
0.462
0.731
0.003
0.007


nb~18 + 37
0.652
0.001
0.500
0.695
0.486
0.707
0.006
0.144


svm~31 + 22
0.652
0.001
0.574
0.619
0.464
0.716
0.009
0.011


rpart~18 + 13
0.651
0.001
0.559
0.602
0.447
0.703
0.037
0.050


knn~16 + 20
0.649
0.001
0.779
0.483
0.465
0.792
0.000
0.032


nb~40 + 24
0.652
0.001
0.529
0.636
0.456
0.701
0.023
0.005


nb~15 + 34
0.652
0.001
0.397
0.797
0.529
0.696
0.001
0.129


svm~16 + 24
0.652
0.001
0.265
0.890
0.581
0.677
0.000
0.005


svm~35 + 28
0.652
0.001
0.412
0.814
0.560
0.706
0.000
0.271


nb~26 + 6
0.652
0.001
0.559
0.703
0.521
0.735
0.000
0.003


nb~20 + 32
0.652
0.001
0.618
0.525
0.429
0.705
0.029
0.001


rpart~4 + 27
0.641
0.001
0.559
0.712
0.528
0.737
0.000
0.001


nb~26 + 22
0.652
0.001
0.676
0.602
0.495
0.763
0.000
0.002


rpart~13 + 26
0.647
0.001
0.500
0.788
0.576
0.732
0.000
0.000


rpart~7 + 20
0.644
0.001
0.735
0.475
0.446
0.757
0.005
0.052


svm~15 + 17
0.652
0.001
0.397
0.754
0.482
0.685
0.005
0.033


nb~16 + 9
0.652
0.001
0.471
0.703
0.478
0.697
0.022
0.058


rpart~39 + 19
0.644
0.001
0.735
0.458
0.439
0.750
0.004
0.010


svm~18 + 28
0.652
0.001
0.485
0.686
0.471
0.698
0.009
0.010


nb~26 + 19
0.652
0.001
0.691
0.542
0.465
0.753
0.001
0.001


knn~16 + 18
0.648
0.001
0.779
0.373
0.417
0.746
0.038
0.004


nb~17 + 32
0.651
0.001
0.515
0.678
0.479
0.708
0.002
0.002


svm~28 + 6
0.651
0.001
0.500
0.720
0.507
0.714
0.001
0.002


rf~16 + 19
0.651
0.001
0.603
0.585
0.456
0.719
0.007
0.001


nb~4 + 5
0.651
0.001
0.456
0.797
0.564
0.718
0.000
0.006


svm~42 + 19
0.651
0.001
0.500
0.712
0.500
0.712
0.001
0.002


svm~35 + 17
0.651
0.001
0.515
0.712
0.507
0.718
0.001
0.217


nb~1 + 28
0.651
0.001
0.529
0.729
0.529
0.729
0.000
0.007


nb~12 + 18
0.651
0.001
0.500
0.686
0.479
0.704
0.005
0.004


nb~9 + 28
0.651
0.001
0.500
0.720
0.507
0.714
0.001
0.021


nb~18 + 19
0.651
0.001
0.647
0.602
0.484
0.747
0.000
0.002


knn~16 + 28
0.648
0.001
0.838
0.364
0.432
0.796
0.003
0.001


knn~16 + 6
0.648
0.001
0.515
0.661
0.467
0.703
0.016
0.038


nb~33 + 28
0.651
0.001
0.603
0.585
0.456
0.719
0.014
0.036


svm~35 + 20
0.651
0.001
0.618
0.585
0.462
0.726
0.005
0.030


svm~24 + 8
0.651
0.001
0.338
0.831
0.535
0.685
0.003
0.002


knn~4 + 8
0.647
0.001
0.794
0.381
0.425
0.763
0.010
0.004


rpart~4 + 21
0.648
0.001
0.426
0.771
0.518
0.700
0.003
0.044


rf~16 + 38
0.651
0.001
0.632
0.627
0.494
0.747
0.000
0.244


knn~2 + 20
0.648
0.001
0.779
0.432
0.442
0.773
0.003
0.013


svm~24 + 13
0.650
0.001
0.353
0.864
0.600
0.699
0.000
0.000


rf~8 + 22
0.650
0.001
0.647
0.610
0.489
0.750
0.000
0.029


knn~35 + 6
0.646
0.001
0.647
0.534
0.444
0.724
0.017
0.012


rpart~8 + 28
0.646
0.001
0.574
0.678
0.506
0.734
0.000
0.079


knn~37 + 6
0.647
0.001
0.721
0.432
0.422
0.729
0.032
0.006


nb~43 + 6
0.650
0.001
0.382
0.797
0.520
0.691
0.002
0.052


rpart~15 + 14
0.646
0.001
0.338
0.814
0.511
0.681
0.004
0.614


nb~1 + 15
0.650
0.001
0.412
0.695
0.438
0.672
0.106
0.161


nb~12 + 19
0.650
0.001
0.632
0.602
0.478
0.740
0.001
0.000


svm~32 + 6
0.650
0.001
0.456
0.780
0.544
0.713
0.000
0.003


rpart~18 + 8
0.644
0.001
0.588
0.686
0.519
0.743
0.000
0.047


knn~38 + 22
0.648
0.001
0.559
0.644
0.475
0.717
0.002
0.007


rpart~4 + 40
0.649
0.001
0.603
0.593
0.461
0.722
0.006
0.159


nb~16 + 13
0.650
0.001
0.485
0.669
0.458
0.693
0.029
0.032


nb~18 + 20
0.650
0.001
0.632
0.525
0.434
0.713
0.019
0.003


svm~4 + 26
0.650
0.001
0.397
0.907
0.711
0.723
0.000
0.002


svm~17 + 8
0.650
0.001
0.471
0.805
0.582
0.725
0.000
0.019


nb~18 + 2
0.650
0.001
0.485
0.686
0.471
0.698
0.030
0.390


rf~4 + 34
0.650
0.001
0.765
0.441
0.441
0.765
0.005
0.022


rpart~9 + 20
0.643
0.001
0.721
0.500
0.454
0.756
0.003
0.055


svm~17 + 13
0.650
0.001
0.441
0.729
0.484
0.694
0.008
0.020


nb~15 + 14
0.650
0.001
0.324
0.831
0.524
0.681
0.003
0.310


rpart~26 + 22
0.642
0.001
0.485
0.763
0.541
0.720
0.000
0.004


knn~4 + 2
0.646
0.001
0.779
0.424
0.438
0.769
0.003
0.083


nb~42 + 19
0.649
0.001
0.574
0.644
0.481
0.724
0.001
0.003


svm~29 + 28
0.649
0.001
0.397
0.763
0.491
0.687
0.010
0.009


nb~42 + 28
0.649
0.001
0.529
0.686
0.493
0.717
0.001
0.025


knn~39 + 19
0.646
0.001
0.647
0.619
0.494
0.753
0.000
0.000


rf~4 + 32
0.649
0.001
0.544
0.653
0.474
0.713
0.004
0.004


svm~16 + 8
0.649
0.001
0.485
0.703
0.485
0.703
0.006
0.309


svm~17 + 28
0.649
0.001
0.485
0.695
0.478
0.701
0.002
0.003


svm~41 + 22
0.649
0.001
0.544
0.669
0.487
0.718
0.003
0.019


rpart~14 + 20
0.634
0.001
0.735
0.551
0.485
0.783
0.000
0.001


svm~16 + 13
0.649
0.001
0.471
0.686
0.464
0.692
0.027
0.069


svm~28 + 32
0.649
0.001
0.441
0.771
0.526
0.705
0.000
0.006


svm~19 + 21
0.648
0.001
0.500
0.763
0.548
0.726
0.000
0.004


knn~42 + 18
0.643
0.001
0.632
0.602
0.478
0.740
0.004
0.016


nb~38 + 22
0.648
0.001
0.529
0.695
0.500
0.719
0.001
0.060


knn~4 + 41
0.645
0.001
0.456
0.746
0.508
0.704
0.002
0.007


rpart~15 + 24
0.638
0.001
0.721
0.517
0.462
0.763
0.001
0.064


rpart~10 + 28
0.640
0.001
0.441
0.746
0.500
0.698
0.011
0.086


rf~15 + 41
0.648
0.001
0.603
0.703
0.539
0.755
0.000
0.701


svm~33 + 22
0.648
0.001
0.544
0.610
0.446
0.699
0.024
0.061


rpart~33 + 28
0.645
0.001
0.603
0.593
0.461
0.722
0.006
0.211


rpart~2 + 22
0.640
0.001
0.706
0.508
0.453
0.750
0.003
0.125


nb~17 + 9
0.648
0.001
0.559
0.703
0.521
0.735
0.000
0.044


svm~16 + 29
0.648
0.001
0.368
0.873
0.625
0.705
0.000
0.005


svm~37 + 28
0.648
0.001
0.603
0.627
0.482
0.733
0.001
0.035


knn~32 + 6
0.645
0.001
0.500
0.653
0.453
0.694
0.024
0.008


nb~16 + 8
0.648
0.001
0.500
0.686
0.479
0.704
0.012
0.042


rpart~4 + 14
0.644
0.001
0.515
0.780
0.574
0.736
0.000
0.001


knn~5 + 19
0.644
0.001
0.647
0.585
0.473
0.742
0.001
0.003


nb~27 + 22
0.647
0.001
0.706
0.534
0.466
0.759
0.001
0.016


svm~4 + 14
0.647
0.001
0.456
0.822
0.596
0.724
0.000
0.002


nb~12 + 20
0.647
0.001
0.662
0.500
0.433
0.720
0.015
0.001


svm~16 + 31
0.647
0.001
0.426
0.754
0.500
0.695
0.007
0.267


nb~24 + 8
0.647
0.001
0.618
0.568
0.452
0.720
0.008
0.000


nb~35 + 26
0.647
0.001
0.603
0.602
0.466
0.724
0.012
0.007


rpart~18 + 22
0.638
0.001
0.426
0.771
0.518
0.700
0.002
0.049


nb~16 + 40
0.647
0.001
0.500
0.720
0.507
0.714
0.003
0.173


svm~18 + 6
0.647
0.001
0.456
0.737
0.500
0.702
0.003
0.046


svm~7 + 6
0.647
0.001
0.618
0.653
0.506
0.748
0.000
0.025


svm~40 + 17
0.647
0.001
0.603
0.644
0.494
0.738
0.000
0.059


rpart~16 + 22
0.644
0.001
0.574
0.636
0.476
0.721
0.003
0.042


rf~8 + 19
0.647
0.001
0.441
0.737
0.492
0.696
0.002
0.004


nb~4 + 11
0.647
0.001
0.382
0.941
0.788
0.725
0.000
0.009


nb~40 + 18
0.647
0.001
0.618
0.534
0.433
0.708
0.051
0.230


nb~17 + 24
0.647
0.001
0.515
0.678
0.479
0.708
0.002
0.000


svm~18 + 37
0.647
0.001
0.441
0.754
0.508
0.701
0.004
0.011


nb~20 + 34
0.647
0.001
0.691
0.542
0.465
0.753
0.001
0.004


svm~4 + 34
0.646
0.001
0.471
0.754
0.525
0.712
0.000
0.014


nb~29 + 6
0.646
0.001
0.500
0.763
0.548
0.726
0.000
0.032


rpart~25 + 19
0.640
0.001
0.647
0.542
0.449
0.727
0.005
0.014


rpart~29 + 20
0.632
0.001
0.706
0.534
0.466
0.759
0.001
0.004


rf~13 + 22
0.646
0.001
0.676
0.568
0.474
0.753
0.001
0.080


nb~18 + 9
0.646
0.001
0.588
0.602
0.460
0.717
0.023
0.068


svm~38 + 6
0.646
0.001
0.574
0.712
0.534
0.743
0.000
0.021


rpart~4 + 26
0.644
0.001
0.485
0.678
0.465
0.696
0.016
0.005


knn~17 + 22
0.643
0.001
0.559
0.661
0.487
0.722
0.001
0.036


knn~37 + 22
0.643
0.001
0.750
0.432
0.432
0.750
0.014
0.001


svm~18 + 13
0.646
0.001
0.559
0.661
0.487
0.722
0.002
0.006


nb~43 + 22
0.646
0.001
0.691
0.559
0.475
0.759
0.001
0.054


rpart~41 + 20
0.635
0.001
0.794
0.398
0.432
0.770
0.008
0.054


knn~4 + 27
0.643
0.001
0.529
0.619
0.444
0.695
0.038
0.061


svm~12 + 18
0.646
0.001
0.485
0.669
0.458
0.693
0.018
0.018


svm~1 + 6
0.645
0.001
0.515
0.720
0.515
0.720
0.000
0.008


svm~12 + 22
0.645
0.001
0.559
0.644
0.475
0.717
0.002
0.006


svm~39 + 22
0.645
0.001
0.588
0.593
0.455
0.714
0.008
0.024


nb~31 + 28
0.645
0.001
0.574
0.661
0.494
0.729
0.001
0.009


svm~34 + 6
0.645
0.001
0.603
0.619
0.477
0.730
0.001
0.005


knn~15 + 9
0.642
0.001
0.382
0.805
0.531
0.693
0.001
0.050


nb~16 + 5
0.645
0.001
0.662
0.534
0.450
0.733
0.011
0.023


rpart~17 + 22
0.640
0.001
0.515
0.669
0.473
0.705
0.007
0.390


svm~4 + 11
0.645
0.001
0.441
0.873
0.667
0.730
0.000
0.004


svm~32 + 22
0.645
0.001
0.456
0.737
0.500
0.702
0.002
0.002


rf~4 + 7
0.645
0.001
0.588
0.610
0.465
0.720
0.009
0.016


svm~35 + 24
0.645
0.001
0.279
0.873
0.559
0.678
0.005
0.031


svm~7 + 19
0.645
0.001
0.691
0.551
0.470
0.756
0.001
0.017


nb~35 + 18
0.645
0.001
0.559
0.602
0.447
0.703
0.036
0.086


nb~17 + 37
0.645
0.001
0.618
0.661
0.512
0.750
0.000
0.111


knn~20 + 6
0.642
0.001
0.676
0.525
0.451
0.738
0.005
0.001


knn~4 + 6
0.641
0.001
0.544
0.737
0.544
0.737
0.000
0.003


rf~24 + 19
0.644
0.001
0.515
0.703
0.500
0.716
0.000
0.000


knn~4 + 32
0.642
0.001
0.618
0.653
0.506
0.748
0.000
0.077


nb~26 + 2
0.644
0.001
0.397
0.771
0.500
0.689
0.018
0.213


rpart~4 + 37
0.626
0.001
0.412
0.763
0.500
0.692
0.005
0.002


nb~29 + 22
0.644
0.001
0.515
0.720
0.515
0.720
0.001
0.035


nb~39 + 6
0.644
0.001
0.485
0.712
0.493
0.706
0.002
0.030


rf~33 + 19
0.644
0.001
0.647
0.483
0.419
0.704
0.051
0.009


nb~35 + 24
0.644
0.001
0.471
0.763
0.533
0.714
0.000
0.010


rpart~1 + 19
0.639
0.001
0.632
0.602
0.478
0.740
0.000
0.003


knn~4 + 14
0.642
0.001
0.529
0.712
0.514
0.724
0.000
0.005


rf~12 + 31
0.644
0.001
0.588
0.551
0.430
0.699
0.045
0.144


nb~15 + 36
0.644
0.001
0.500
0.754
0.540
0.724
0.000
0.267


nb~36 + 19
0.644
0.001
0.706
0.542
0.471
0.762
0.000
0.003


svm~27 + 22
0.644
0.001
0.588
0.636
0.482
0.728
0.002
0.023


svm~1 + 28
0.644
0.001
0.515
0.780
0.574
0.736
0.000
0.003


knn~4 + 9
0.641
0.001
0.529
0.712
0.514
0.724
0.000
0.007


knn~4 + 36
0.641
0.001
0.721
0.373
0.398
0.698
0.099
0.002


knn~39 + 22
0.641
0.001
0.632
0.627
0.494
0.747
0.000
0.161


rpart~24 + 32
0.641
0.001
0.353
0.831
0.545
0.690
0.001
0.000


rpart~12 + 18
0.642
0.001
0.618
0.551
0.442
0.714
0.022
0.039


svm~16 + 21
0.643
0.001
0.559
0.669
0.494
0.725
0.001
0.442


svm~17 + 6
0.643
0.001
0.471
0.712
0.485
0.700
0.004
0.012


nb~24 + 18
0.643
0.001
0.456
0.678
0.449
0.684
0.042
0.001


nb~15 + 43
0.643
0.001
0.485
0.703
0.485
0.703
0.005
0.444


svm~5 + 6
0.643
0.001
0.471
0.703
0.478
0.697
0.011
0.015


knn~26 + 19
0.640
0.001
0.794
0.364
0.419
0.754
0.018
0.048


nb~16 + 41
0.643
0.001
0.368
0.729
0.439
0.667
0.149
0.188


rf~20 + 22
0.643
0.001
0.485
0.661
0.452
0.690
0.032
0.021


knn~9 + 22
0.640
0.001
0.574
0.695
0.520
0.739
0.000
0.022


nb~4 + 14
0.643
0.001
0.397
0.890
0.675
0.719
0.000
0.004


nb~10 + 28
0.643
0.001
0.397
0.797
0.529
0.696
0.001
0.035


rf~15 + 19
0.643
0.001
0.574
0.636
0.476
0.721
0.005
0.021


nb~15 + 27
0.643
0.001
0.471
0.669
0.451
0.687
0.025
0.181


nb~16 + 31
0.643
0.001
0.471
0.720
0.492
0.702
0.007
0.059


knn~24 + 2
0.639
0.001
0.735
0.475
0.446
0.757
0.005
0.202


knn~13 + 26
0.638
0.001
0.662
0.483
0.425
0.713
0.045
0.002


knn~18 + 13
0.639
0.001
0.779
0.398
0.427
0.758
0.016
0.042


svm~15 + 29
0.642
0.001
0.397
0.822
0.563
0.703
0.000
0.371


svm~17 + 2
0.642
0.001
0.544
0.661
0.481
0.716
0.005
0.196


knn~37 + 19
0.639
0.001
0.853
0.314
0.417
0.787
0.008
0.011


rpart~18 + 28
0.641
0.001
0.485
0.729
0.508
0.711
0.001
0.016


svm~42 + 22
0.642
0.001
0.559
0.636
0.469
0.714
0.004
0.027


svm~33 + 28
0.642
0.001
0.588
0.568
0.440
0.705
0.040
0.015


rpart~24 + 8
0.637
0.001
0.324
0.814
0.500
0.676
0.009
0.003


svm~43 + 19
0.642
0.001
0.515
0.720
0.515
0.720
0.000
0.064


nb~23 + 20
0.642
0.001
0.765
0.466
0.452
0.775
0.002
0.095


nb~35 + 32
0.642
0.001
0.500
0.695
0.486
0.707
0.003
0.050


svm~4 + 21
0.642
0.001
0.441
0.839
0.612
0.723
0.000
0.026


rpart~24 + 2
0.637
0.001
0.382
0.856
0.605
0.706
0.000
0.005


nb~15 + 38
0.642
0.001
0.412
0.746
0.483
0.688
0.018
0.369


nb~7 + 6
0.642
0.001
0.515
0.695
0.493
0.713
0.002
0.077


nb~8 + 26
0.642
0.001
0.750
0.381
0.411
0.726
0.068
0.003


knn~4 + 37
0.639
0.001
0.779
0.390
0.424
0.754
0.011
0.006


svm~15 + 7
0.642
0.001
0.456
0.712
0.477
0.694
0.010
0.662


knn~15 + 24
0.637
0.001
0.632
0.542
0.443
0.719
0.019
0.072


rf~1 + 22
0.641
0.001
0.632
0.610
0.483
0.742
0.001
0.010


rpart~24 + 33
0.635
0.001
0.368
0.788
0.500
0.684
0.005
0.002


rpart~8 + 6
0.639
0.001
0.529
0.703
0.507
0.722
0.001
0.016


rpart~2 + 28
0.639
0.001
0.574
0.686
0.513
0.736
0.000
0.336


svm~41 + 19
0.641
0.001
0.441
0.746
0.500
0.698
0.004
0.034


rpart~1 + 2
0.640
0.001
0.529
0.712
0.514
0.724
0.002
0.188


rpart~31 + 22
0.634
0.001
0.544
0.686
0.500
0.723
0.001
0.002


svm~4 + 17
0.641
0.001
0.426
0.780
0.527
0.702
0.001
0.003


rpart~16 + 10
0.628
0.001
0.515
0.763
0.556
0.732
0.000
0.033


rpart~32 + 6
0.637
0.001
0.485
0.678
0.465
0.696
0.020
0.021


rpart~16 + 33
0.640
0.001
0.603
0.636
0.488
0.735
0.001
0.732


knn~4 + 11
0.637
0.001
0.441
0.771
0.526
0.705
0.001
0.014


svm~14 + 19
0.641
0.001
0.471
0.712
0.485
0.700
0.002
0.006


svm~35 + 18
0.641
0.001
0.382
0.754
0.473
0.679
0.053
0.027


rpart~15 + 12
0.637
0.001
0.324
0.746
0.423
0.657
0.179
0.348


rpart~4 + 33
0.639
0.001
0.618
0.568
0.452
0.720
0.009
0.007


nb~28 + 34
0.641
0.001
0.574
0.653
0.488
0.726
0.001
0.009


knn~28 + 21
0.636
0.001
0.779
0.398
0.427
0.758
0.015
0.017


nb~17 + 2
0.640
0.001
0.529
0.686
0.493
0.717
0.004
0.465


rpart~20 + 38
0.632
0.001
0.706
0.508
0.453
0.750
0.003
0.194


rf~18 + 8
0.640
0.001
0.632
0.602
0.478
0.740
0.002
0.011


svm~15 + 20
0.640
0.001
0.559
0.644
0.475
0.717
0.002
0.058


nb~18 + 32
0.640
0.001
0.500
0.703
0.493
0.709
0.002
0.005


rpart~14 + 22
0.633
0.001
0.441
0.754
0.508
0.701
0.001
0.013


rf~15 + 20
0.640
0.001
0.647
0.559
0.458
0.733
0.009
0.512


svm~41 + 28
0.640
0.001
0.471
0.669
0.451
0.687
0.043
0.013


rf~19 + 3
0.640
0.001
0.603
0.619
0.477
0.730
0.001
0.001





auc.pvalue: Wilcoxon Test P-value.


mfd: Median Fold Difference.


KM: Kaplan Meier curves.


MvaHRPval: Multivariable Analysis Hazard Ratio P-value.


*Multiple classifiers with p-values between 0.001 and 0.05 not included.













TABLE 51







pairwise biomarkers from the 43 biomarker panel with significance for


Wilcoxon P-value (auc.pvalue <= 0.05) and other metrics for the


PCSM event endpoint.




















Pos.
Neg.
KM





auc.


Pred.
Pred.
P-
Mva


Classifier
auc
pvalue
Sensitivity
Specificity
Value
Value
value
HRPval


















svm~31 + 19
0.80
0.00
0.78
0.61
0.33
0.92
0.00
0.00


nb~16 + 19
0.79
0.00
0.83
0.65
0.36
0.94
0.00
0.00


svm~4 + 16
0.78
0.00
0.64
0.72
0.35
0.89
0.00
0.02


nb~4 + 16
0.78
0.00
0.61
0.85
0.49
0.90
0.00
0.01


svm~16 + 19
0.78
0.00
0.75
0.63
0.33
0.91
0.00
0.00


nb~16 + 22
0.77
0.00
0.78
0.68
0.37
0.93
0.00
0.01


nb~16 + 18
0.77
0.00
0.78
0.63
0.34
0.92
0.00
0.01


svm~40 + 19
0.77
0.00
0.83
0.59
0.33
0.94
0.00
0.01


nb~4 + 28
0.77
0.00
0.58
0.79
0.40
0.89
0.00
0.01


svm~35 + 19
0.77
0.00
0.69
0.71
0.36
0.91
0.00
0.01


nb~16 + 28
0.77
0.00
0.81
0.61
0.33
0.93
0.00
0.00


nb~16 + 20
0.77
0.00
0.81
0.53
0.29
0.92
0.00
0.00


nb~16 + 6
0.77
0.00
0.72
0.71
0.38
0.91
0.00
0.00


rpart~4 + 16
0.76
0.00
0.72
0.68
0.35
0.91
0.00
0.04


svm~39 + 19
0.77
0.00
0.81
0.59
0.32
0.93
0.00
0.00


svm~16 + 28
0.77
0.00
0.67
0.73
0.38
0.90
0.00
0.04


svm~16 + 18
0.77
0.00
0.75
0.73
0.40
0.92
0.00
0.01


nb~40 + 28
0.76
0.00
0.83
0.63
0.35
0.94
0.00
0.01


nb~28 + 6
0.76
0.00
0.75
0.69
0.37
0.92
0.00
0.00


nb~40 + 19
0.76
0.00
0.86
0.52
0.30
0.94
0.00
0.01


nb~12 + 28
0.76
0.00
0.81
0.65
0.35
0.93
0.00
0.00


svm~43 + 19
0.76
0.00
0.69
0.71
0.37
0.91
0.00
0.00


nb~43 + 19
0.76
0.00
0.94
0.51
0.32
0.97
0.00
0.00


nb~4 + 24
0.76
0.00
0.53
0.87
0.49
0.88
0.00
0.00


nb~24 + 28
0.76
0.00
0.58
0.73
0.34
0.88
0.00
0.00


nb~15 + 28
0.76
0.00
0.58
0.77
0.38
0.89
0.00
0.01


svm~13 + 22
0.76
0.00
0.81
0.66
0.36
0.93
0.00
0.04


knn~16 + 18
0.75
0.00
0.92
0.37
0.26
0.95
0.00
0.02


svm~4 + 24
0.76
0.00
0.56
0.83
0.44
0.89
0.00
0.00


nb~19 + 28
0.76
0.00
0.81
0.63
0.34
0.93
0.00
0.00


nb~4 + 12
0.75
0.00
0.64
0.79
0.42
0.90
0.00
0.01


nb~28 + 22
0.75
0.00
0.75
0.66
0.35
0.92
0.00
0.01


svm~16 + 22
0.75
0.00
0.75
0.63
0.33
0.91
0.00
0.02


nb~12 + 22
0.75
0.00
0.75
0.67
0.35
0.92
0.00
0.01


nb~4 + 35
0.75
0.00
0.61
0.85
0.49
0.90
0.00
0.03


svm~29 + 19
0.75
0.00
0.69
0.68
0.34
0.90
0.00
0.00


nb~35 + 19
0.75
0.00
0.81
0.53
0.29
0.92
0.00
0.01


nb~4 + 19
0.75
0.00
0.61
0.78
0.40
0.89
0.00
0.01


nb~16 + 24
0.75
0.00
0.67
0.70
0.35
0.90
0.00
0.00


nb~20 + 28
0.75
0.00
0.75
0.59
0.30
0.91
0.00
0.00


nb~18 + 28
0.75
0.00
0.64
0.65
0.31
0.88
0.00
0.01


nb~43 + 6
0.75
0.00
0.47
0.78
0.34
0.86
0.00
0.01


nb~35 + 6
0.75
0.00
0.61
0.74
0.36
0.89
0.00
0.01


nb~35 + 20
0.75
0.00
0.89
0.41
0.26
0.94
0.00
0.00


svm~8 + 22
0.75
0.00
0.67
0.71
0.36
0.90
0.00
0.01


nb~16 + 26
0.75
0.00
0.58
0.73
0.34
0.88
0.00
0.00


nb~12 + 6
0.75
0.00
0.78
0.63
0.33
0.92
0.00
0.01


nb~40 + 24
0.74
0.00
0.64
0.63
0.29
0.88
0.00
0.00


rpart~20 + 22
0.74
0.00
0.61
0.68
0.31
0.88
0.00
0.01


nb~4 + 43
0.74
0.00
0.53
0.85
0.45
0.88
0.00
0.01


nb~12 + 18
0.74
0.00
0.69
0.69
0.35
0.90
0.00
0.02


svm~16 + 6
0.74
0.00
0.75
0.67
0.35
0.92
0.00
0.00


svm~4 + 12
0.74
0.00
0.64
0.79
0.42
0.90
0.00
0.04


rpart~8 + 28
0.74
0.00
0.75
0.67
0.35
0.92
0.00
0.01


nb~40 + 22
0.74
0.00
0.72
0.56
0.28
0.89
0.00
0.07


svm~13 + 28
0.74
0.00
0.64
0.65
0.30
0.88
0.00
0.02


nb~26 + 28
0.74
0.00
0.67
0.66
0.32
0.89
0.00
0.00


nb~40 + 6
0.74
0.00
0.61
0.74
0.36
0.89
0.00
0.03


svm~12 + 6
0.74
0.00
0.67
0.68
0.33
0.89
0.00
0.00


knn~24 + 22
0.73
0.00
0.67
0.76
0.40
0.90
0.00
0.04


rpart~4 + 38
0.74
0.00
0.75
0.64
0.33
0.91
0.00
0.05


svm~19 + 22
0.74
0.00
0.58
0.70
0.32
0.88
0.00
0.01


svm~40 + 28
0.74
0.00
0.83
0.58
0.32
0.94
0.00
0.02


rpart~4 + 24
0.73
0.00
0.56
0.79
0.39
0.88
0.00
0.01


svm~19 + 28
0.74
0.00
0.69
0.71
0.36
0.91
0.00
0.00


svm~4 + 31
0.74
0.00
0.69
0.68
0.34
0.90
0.00
0.04


nb~4 + 20
0.74
0.00
0.69
0.72
0.37
0.91
0.00
0.01


nb~4 + 15
0.74
0.00
0.56
0.79
0.39
0.88
0.00
0.03


svm~33 + 19
0.74
0.00
0.64
0.60
0.28
0.87
0.00
0.00


nb~24 + 22
0.74
0.00
0.72
0.59
0.30
0.90
0.00
0.00


nb~12 + 19
0.74
0.00
0.75
0.58
0.30
0.91
0.00
0.00


nb~4 + 23
0.74
0.00
0.61
0.77
0.39
0.89
0.00
0.06


nb~4 + 31
0.74
0.00
0.56
0.79
0.38
0.88
0.00
0.03


svm~13 + 19
0.74
0.00
0.83
0.50
0.29
0.93
0.00
0.03


nb~4 + 6
0.74
0.00
0.58
0.77
0.38
0.88
0.00
0.04


nb~43 + 28
0.74
0.00
0.69
0.68
0.34
0.90
0.00
0.00


nb~28 + 32
0.74
0.00
0.67
0.63
0.30
0.89
0.00
0.02


nb~19 + 6
0.74
0.00
0.61
0.74
0.36
0.89
0.00
0.00


knn~4 + 16
0.73
0.00
0.78
0.59
0.31
0.92
0.00
0.02


nb~13 + 22
0.74
0.00
0.75
0.67
0.35
0.92
0.00
0.07


rf~31 + 19
0.74
0.00
0.81
0.53
0.29
0.92
0.00
0.00


nb~43 + 22
0.74
0.00
0.83
0.54
0.30
0.93
0.00
0.02


nb~4 + 8
0.73
0.00
0.53
0.87
0.50
0.89
0.00
0.03


nb~4 + 32
0.73
0.00
0.61
0.82
0.45
0.90
0.00
0.05


nb~4 + 40
0.73
0.00
0.58
0.87
0.53
0.90
0.00
0.04


svm~4 + 13
0.73
0.00
0.61
0.83
0.46
0.90
0.00
0.01


rpart~4 + 39
0.72
0.00
0.67
0.73
0.37
0.90
0.00
0.00


svm~29 + 22
0.73
0.00
0.69
0.58
0.28
0.89
0.00
0.04


nb~40 + 20
0.73
0.00
0.78
0.53
0.28
0.91
0.00
0.01


nb~35 + 22
0.73
0.00
0.81
0.48
0.27
0.91
0.00
0.03


rf~13 + 26
0.73
0.00
0.72
0.66
0.34
0.91
0.00
0.02


svm~8 + 19
0.73
0.00
0.72
0.62
0.31
0.90
0.00
0.00


nb~24 + 20
0.73
0.00
0.78
0.51
0.27
0.90
0.00
0.00


nb~15 + 6
0.73
0.00
0.42
0.79
0.33
0.85
0.00
0.03


svm~35 + 22
0.73
0.00
0.58
0.75
0.36
0.88
0.00
0.09


nb~8 + 19
0.73
0.00
0.72
0.65
0.33
0.91
0.00
0.01


nb~4 + 22
0.73
0.00
0.61
0.77
0.39
0.89
0.00
0.05


svm~4 + 40
0.73
0.00
0.72
0.58
0.29
0.90
0.00
0.18


svm~4 + 8
0.73
0.00
0.64
0.81
0.45
0.90
0.00
0.00


nb~13 + 19
0.73
0.00
0.83
0.51
0.29
0.93
0.00
0.02


svm~4 + 29
0.73
0.00
0.56
0.83
0.44
0.89
0.00
0.01


svm~4 + 38
0.73
0.00
0.64
0.77
0.40
0.90
0.00
0.01


nb~19 + 32
0.73
0.00
0.67
0.71
0.35
0.90
0.00
0.01


nb~13 + 28
0.73
0.00
0.61
0.68
0.31
0.88
0.00
0.01


nb~26 + 19
0.73
0.00
0.83
0.53
0.30
0.93
0.00
0.01


nb~35 + 28
0.73
0.00
0.64
0.65
0.31
0.88
0.00
0.01


nb~24 + 6
0.73
0.00
0.44
0.82
0.37
0.86
0.00
0.00


svm~19 + 6
0.73
0.00
0.67
0.69
0.34
0.90
0.00
0.01


nb~19 + 22
0.73
0.00
0.81
0.53
0.29
0.92
0.00
0.01


nb~24 + 19
0.73
0.00
0.67
0.67
0.33
0.89
0.00
0.00


nb~4 + 13
0.73
0.00
0.56
0.88
0.53
0.89
0.00
0.03


svm~4 + 15
0.73
0.00
0.44
0.83
0.38
0.86
0.00
0.04


nb~8 + 28
0.73
0.00
0.72
0.63
0.32
0.90
0.00
0.01


svm~37 + 19
0.73
0.00
0.72
0.55
0.28
0.89
0.00
0.01


nb~12 + 24
0.73
0.00
0.64
0.77
0.40
0.90
0.00
0.00


nb~13 + 6
0.73
0.00
0.69
0.68
0.34
0.90
0.00
0.02


nb~20 + 6
0.73
0.00
0.67
0.66
0.32
0.89
0.00
0.00


svm~4 + 14
0.73
0.00
0.58
0.79
0.40
0.89
0.00
0.02


knn~40 + 6
0.72
0.00
0.94
0.29
0.24
0.96
0.00
0.02


nb~4 + 26
0.73
0.00
0.56
0.83
0.43
0.89
0.00
0.02


nb~32 + 6
0.73
0.00
0.50
0.81
0.39
0.87
0.00
0.03


svm~38 + 28
0.73
0.00
0.69
0.64
0.32
0.90
0.00
0.01


rpart~13 + 6
0.72
0.00
0.72
0.67
0.34
0.91
0.00
0.05


svm~4 + 35
0.73
0.00
0.61
0.77
0.39
0.89
0.00
0.05


nb~4 + 18
0.73
0.00
0.58
0.74
0.35
0.88
0.00
0.05


nb~12 + 26
0.73
0.00
0.58
0.77
0.38
0.89
0.00
0.01


rf~24 + 22
0.73
0.00
0.69
0.67
0.34
0.90
0.00
0.02


svm~19 + 38
0.73
0.00
0.72
0.63
0.32
0.90
0.00
0.02


nb~19 + 20
0.73
0.00
0.78
0.49
0.27
0.90
0.00
0.01


nb~31 + 28
0.73
0.00
0.78
0.66
0.35
0.93
0.00
0.00


svm~40 + 24
0.73
0.00
0.78
0.63
0.33
0.92
0.00
0.02


svm~12 + 28
0.73
0.00
0.64
0.68
0.32
0.89
0.00
0.08


knn~18 + 32
0.72
0.00
0.89
0.39
0.26
0.94
0.00
0.03


nb~4 + 33
0.72
0.00
0.56
0.85
0.48
0.89
0.00
0.07


nb~31 + 19
0.72
0.00
0.75
0.67
0.35
0.92
0.00
0.01


nb~8 + 22
0.72
0.00
0.78
0.57
0.30
0.91
0.00
0.06


svm~14 + 19
0.72
0.00
0.58
0.70
0.32
0.88
0.00
0.01


nb~32 + 22
0.72
0.00
0.67
0.61
0.29
0.88
0.00
0.05


nb~4 + 36
0.72
0.00
0.50
0.89
0.51
0.88
0.00
0.03


svm~40 + 6
0.72
0.00
0.81
0.55
0.30
0.92
0.00
0.08


svm~39 + 22
0.72
0.00
0.75
0.59
0.31
0.91
0.00
0.03


rpart~16 + 6
0.71
0.00
0.61
0.69
0.32
0.88
0.00
0.04


knn~13 + 19
0.72
0.00
0.50
0.75
0.32
0.86
0.00
0.07


rpart~4 + 31
0.72
0.00
0.75
0.66
0.35
0.92
0.00
0.04


svm~13 + 6
0.72
0.00
0.69
0.69
0.35
0.90
0.00
0.04


svm~4 + 42
0.72
0.00
0.69
0.64
0.32
0.90
0.00
0.09


nb~12 + 20
0.72
0.00
0.75
0.49
0.26
0.89
0.00
0.00


nb~22 + 6
0.72
0.00
0.64
0.66
0.31
0.88
0.00
0.02


rpart~4 + 43
0.72
0.00
0.56
0.71
0.32
0.87
0.00
0.01


rf~13 + 22
0.72
0.00
0.78
0.54
0.29
0.91
0.00
0.45


nb~26 + 6
0.72
0.00
0.69
0.68
0.34
0.90
0.00
0.01


svm~35 + 6
0.72
0.00
0.58
0.74
0.35
0.88
0.00
0.05


nb~20 + 22
0.72
0.00
0.69
0.59
0.29
0.89
0.00
0.01


rf~4 + 12
0.72
0.00
0.69
0.57
0.28
0.89
0.00
0.02


nb~14 + 28
0.72
0.00
0.61
0.75
0.37
0.89
0.00
0.01


rpart~24 + 38
0.71
0.00
0.61
0.77
0.39
0.89
0.00
0.00


svm~4 + 28
0.72
0.00
0.61
0.74
0.36
0.89
0.00
0.04


svm~24 + 13
0.72
0.00
0.42
0.83
0.38
0.86
0.00
0.02


svm~19 + 21
0.72
0.00
0.64
0.74
0.37
0.90
0.00
0.01


nb~18 + 6
0.72
0.00
0.64
0.68
0.32
0.89
0.00
0.02


svm~13 + 26
0.72
0.00
0.53
0.86
0.48
0.88
0.00
0.18


nb~17 + 28
0.72
0.00
0.64
0.67
0.32
0.88
0.00
0.00


rpart~39 + 28
0.71
0.00
0.78
0.64
0.34
0.92
0.00
0.01


nb~37 + 28
0.72
0.00
0.69
0.62
0.30
0.89
0.00
0.02


nb~24 + 43
0.72
0.00
0.61
0.67
0.31
0.88
0.00
0.00


rf~16 + 19
0.72
0.00
0.72
0.57
0.29
0.90
0.00
0.01


svm~15 + 28
0.72
0.00
0.56
0.78
0.38
0.88
0.00
0.02


svm~31 + 22
0.72
0.00
0.69
0.61
0.30
0.89
0.00
0.05


rpart~31 + 19
0.71
0.00
0.86
0.54
0.31
0.94
0.00
0.01


nb~16 + 17
0.72
0.00
0.61
0.75
0.37
0.89
0.00
0.02


rpart~26 + 22
0.71
0.00
0.61
0.74
0.36
0.89
0.00
0.03


svm~16 + 24
0.72
0.00
0.39
0.89
0.45
0.86
0.00
0.02


svm~40 + 26
0.72
0.00
0.75
0.59
0.30
0.91
0.00
0.05


nb~43 + 20
0.72
0.00
0.78
0.50
0.27
0.90
0.00
0.00


svm~12 + 19
0.72
0.00
0.72
0.65
0.33
0.91
0.00
0.03


rpart~24 + 32
0.71
0.00
0.50
0.83
0.41
0.87
0.00
0.02


svm~31 + 28
0.72
0.00
0.81
0.63
0.34
0.93
0.00
0.01


nb~20 + 32
0.72
0.00
0.75
0.53
0.28
0.90
0.00
0.02


rpart~16 + 20
0.71
0.00
0.78
0.52
0.28
0.91
0.00
0.04


rpart~4 + 13
0.71
0.00
0.64
0.67
0.32
0.89
0.00
0.04


nb~24 + 26
0.72
0.00
0.72
0.67
0.34
0.91
0.00
0.00


rpart~24 + 22
0.71
0.00
0.64
0.73
0.37
0.89
0.00
0.02


rpart~8 + 19
0.71
0.00
0.75
0.62
0.32
0.91
0.00
0.00


nb~15 + 22
0.72
0.00
0.50
0.74
0.32
0.86
0.00
0.06


svm~28 + 32
0.72
0.00
0.53
0.75
0.33
0.87
0.00
0.09


svm~4 + 41
0.72
0.00
0.42
0.82
0.36
0.85
0.00
0.01


svm~4 + 19
0.72
0.00
0.81
0.68
0.38
0.94
0.00
0.02


knn~12 + 22
0.71
0.00
0.67
0.68
0.33
0.89
0.00
0.05


nb~16 + 32
0.72
0.00
0.64
0.71
0.34
0.89
0.00
0.06


nb~26 + 22
0.72
0.00
0.78
0.57
0.30
0.91
0.00
0.03


svm~12 + 18
0.72
0.00
0.67
0.68
0.33
0.89
0.00
0.05


nb~8 + 6
0.72
0.00
0.58
0.72
0.33
0.88
0.00
0.03


svm~18 + 19
0.72
0.00
0.72
0.64
0.33
0.91
0.00
0.01


rf~33 + 19
0.72
0.00
0.75
0.48
0.26
0.89
0.01
0.00


svm~26 + 19
0.72
0.00
0.64
0.76
0.39
0.90
0.00
0.01


nb~15 + 16
0.72
0.00
0.53
0.73
0.32
0.87
0.00
0.05


nb~42 + 6
0.71
0.00
0.61
0.75
0.37
0.89
0.00
0.04


nb~18 + 22
0.71
0.00
0.81
0.59
0.32
0.93
0.00
0.05


nb~14 + 19
0.71
0.00
0.81
0.45
0.26
0.91
0.00
0.01


rpart~33 + 28
0.71
0.00
0.72
0.58
0.29
0.90
0.00
0.15


svm~4 + 1
0.71
0.00
0.56
0.81
0.41
0.88
0.00
0.03


svm~24 + 19
0.71
0.00
0.58
0.79
0.40
0.89
0.00
0.01


nb~33 + 6
0.71
0.00
0.64
0.72
0.35
0.89
0.00
0.07


nb~42 + 28
0.71
0.00
0.61
0.66
0.30
0.88
0.00
0.02


knn~15 + 16
0.71
0.00
0.81
0.43
0.25
0.90
0.00
0.07


svm~16 + 26
0.71
0.00
0.56
0.78
0.38
0.88
0.00
0.03


rpart~24 + 28
0.71
0.00
0.44
0.77
0.31
0.85
0.00
0.02


nb~31 + 6
0.71
0.00
0.64
0.71
0.34
0.89
0.00
0.01


svm~12 + 22
0.71
0.00
0.67
0.63
0.30
0.89
0.00
0.08


nb~15 + 19
0.71
0.00
0.53
0.77
0.36
0.87
0.00
0.03


nb~18 + 19
0.71
0.00
0.72
0.57
0.29
0.89
0.00
0.02


nb~23 + 20
0.71
0.00
0.89
0.45
0.28
0.94
0.00
0.01


knn~4 + 32
0.71
0.00
0.78
0.63
0.34
0.92
0.00
0.37


knn~40 + 19
0.71
0.00
0.83
0.48
0.28
0.92
0.00
0.02


svm~15 + 19
0.71
0.00
0.47
0.81
0.37
0.86
0.00
0.07


nb~4 + 41
0.71
0.00
0.53
0.79
0.38
0.88
0.00
0.05


rpart~18 + 22
0.70
0.00
0.53
0.75
0.34
0.87
0.00
0.12


rf~13 + 19
0.71
0.00
0.89
0.35
0.25
0.93
0.01
0.05


nb~15 + 24
0.71
0.00
0.58
0.73
0.34
0.88
0.00
0.01


rpart~20 + 28
0.70
0.00
0.81
0.47
0.27
0.91
0.00
0.01


knn~31 + 19
0.71
0.00
0.78
0.53
0.28
0.91
0.00
0.01


svm~7 + 19
0.71
0.00
0.78
0.52
0.28
0.91
0.00
0.05


rf~40 + 28
0.71
0.00
0.86
0.49
0.29
0.94
0.00
0.10


knn~40 + 28
0.71
0.00
0.58
0.77
0.38
0.89
0.00
0.01


rpart~4 + 32
0.71
0.00
0.61
0.71
0.33
0.88
0.00
0.19


nb~4 + 42
0.71
0.00
0.53
0.83
0.43
0.88
0.00
0.07


svm~8 + 28
0.71
0.00
0.69
0.65
0.32
0.90
0.00
0.02


rf~12 + 19
0.71
0.00
0.64
0.66
0.31
0.88
0.00
0.01


nb~42 + 22
0.71
0.00
0.72
0.51
0.26
0.88
0.01
0.16


nb~4 + 11
0.71
0.00
0.47
0.89
0.52
0.88
0.00
0.09


nb~40 + 18
0.71
0.00
0.75
0.53
0.28
0.90
0.00
0.16


nb~15 + 32
0.71
0.00
0.33
0.84
0.33
0.84
0.00
0.15


svm~4 + 32
0.71
0.00
0.61
0.73
0.35
0.89
0.00
0.13


svm~29 + 28
0.71
0.00
0.47
0.75
0.31
0.85
0.00
0.02


knn~16 + 19
0.71
0.00
0.81
0.59
0.32
0.93
0.00
0.00


nb~4 + 29
0.71
0.00
0.58
0.73
0.34
0.88
0.00
0.10


svm~4 + 39
0.71
0.00
0.64
0.69
0.33
0.89
0.00
0.00


knn~18 + 13
0.71
0.00
0.89
0.39
0.26
0.94
0.00
0.43


svm~19 + 32
0.71
0.00
0.61
0.75
0.37
0.89
0.00
0.01


svm~28 + 22
0.71
0.00
0.64
0.73
0.37
0.89
0.00
0.01


svm~8 + 6
0.71
0.00
0.67
0.67
0.33
0.89
0.00
0.02


nb~4 + 14
0.71
0.00
0.50
0.85
0.45
0.88
0.00
0.03


rf~24 + 13
0.71
0.00
0.64
0.57
0.26
0.87
0.01
0.01


rf~9 + 19
0.71
0.00
0.83
0.57
0.32
0.93
0.00
0.00


nb~41 + 28
0.71
0.00
0.67
0.59
0.28
0.88
0.00
0.02


nb~42 + 19
0.71
0.00
0.69
0.63
0.31
0.90
0.00
0.04


nb~4 + 1
0.71
0.00
0.58
0.79
0.40
0.89
0.00
0.05


svm~1 + 19
0.71
0.00
0.69
0.61
0.30
0.89
0.00
0.00


knn~35 + 19
0.70
0.00
0.89
0.39
0.26
0.94
0.00
0.00


svm~4 + 11
0.71
0.00
0.53
0.83
0.42
0.88
0.00
0.04


nb~18 + 32
0.71
0.00
0.61
0.69
0.32
0.88
0.00
0.12


nb~24 + 32
0.71
0.00
0.42
0.89
0.48
0.86
0.00
0.01


nb~33 + 28
0.71
0.00
0.72
0.57
0.29
0.90
0.00
0.02


rpart~4 + 18
0.70
0.00
0.67
0.67
0.33
0.89
0.00
0.03


svm~4 + 18
0.71
0.00
0.53
0.77
0.35
0.87
0.00
0.16


svm~2 + 28
0.71
0.00
0.75
0.57
0.30
0.91
0.00
0.03


svm~16 + 29
0.71
0.00
0.44
0.84
0.40
0.86
0.00
0.01


nb~4 + 39
0.71
0.00
0.58
0.76
0.37
0.88
0.00
0.04


svm~24 + 31
0.71
0.00
0.44
0.84
0.40
0.86
0.00
0.00


svm~39 + 28
0.71
0.00
0.69
0.67
0.34
0.90
0.00
0.01


nb~14 + 22
0.71
0.00
0.75
0.56
0.29
0.90
0.00
0.05


knn~4 + 42
0.70
0.00
0.89
0.29
0.23
0.92
0.02
0.02


knn~16 + 17
0.70
0.00
0.64
0.69
0.33
0.89
0.00
0.03


svm~32 + 22
0.71
0.00
0.58
0.73
0.34
0.88
0.00
0.04


rpart~14 + 28
0.68
0.00
0.53
0.80
0.39
0.88
0.00
0.07


rpart~15 + 33
0.70
0.00
0.42
0.85
0.39
0.86
0.00
0.78


rpart~14 + 24
0.70
0.00
0.47
0.79
0.35
0.86
0.00
0.02


svm~42 + 19
0.71
0.00
0.58
0.69
0.31
0.87
0.00
0.11


nb~18 + 20
0.71
0.00
0.72
0.51
0.26
0.89
0.00
0.02


rpart~4 + 42
0.70
0.00
0.75
0.58
0.30
0.91
0.00
0.12


svm~12 + 24
0.71
0.00
0.39
0.87
0.41
0.86
0.00
0.04


rpart~32 + 22
0.70
0.00
0.61
0.73
0.35
0.89
0.00
0.17


nb~4 + 25
0.71
0.00
0.64
0.77
0.40
0.90
0.00
0.14


nb~24 + 18
0.71
0.00
0.56
0.67
0.29
0.86
0.00
0.01


svm~43 + 6
0.71
0.00
0.47
0.77
0.33
0.86
0.00
0.03


rpart~4 + 11
0.67
0.00
0.53
0.77
0.35
0.87
0.00
0.04


nb~4 + 37
0.71
0.00
0.58
0.79
0.40
0.89
0.00
0.06


svm~19 + 3
0.71
0.00
0.56
0.77
0.37
0.88
0.00
0.13


rpart~33 + 19
0.67
0.00
0.67
0.68
0.33
0.89
0.00
0.01


nb~37 + 22
0.71
0.00
0.67
0.59
0.28
0.88
0.00
0.11


nb~8 + 20
0.71
0.00
0.75
0.47
0.25
0.89
0.01
0.01


rpart~12 + 24
0.70
0.00
0.47
0.83
0.40
0.87
0.00
0.00


rpart~9 + 19
0.69
0.00
0.78
0.53
0.28
0.91
0.00
0.01


nb~4 + 38
0.70
0.00
0.67
0.74
0.38
0.90
0.00
0.02


svm~17 + 19
0.70
0.00
0.56
0.72
0.32
0.87
0.00
0.01


nb~4 + 9
0.70
0.00
0.61
0.78
0.40
0.89
0.00
0.06


nb~23 + 6
0.70
0.00
0.58
0.72
0.33
0.88
0.00
0.03


rpart~25 + 19
0.69
0.00
0.78
0.53
0.29
0.91
0.00
0.02


knn~4 + 12
0.70
0.00
0.53
0.82
0.41
0.88
0.00
0.07


nb~17 + 6
0.70
0.00
0.67
0.63
0.30
0.89
0.00
0.01


svm~31 + 6
0.70
0.00
0.67
0.65
0.31
0.89
0.00
0.03


svm~21 + 22
0.70
0.00
0.58
0.69
0.31
0.87
0.00
0.07


rpart~14 + 22
0.69
0.00
0.53
0.73
0.32
0.87
0.00
0.05


nb~37 + 19
0.70
0.00
0.61
0.65
0.29
0.87
0.00
0.01


nb~26 + 20
0.70
0.00
0.75
0.52
0.27
0.90
0.00
0.01


rpart~40 + 26
0.69
0.00
0.64
0.63
0.29
0.88
0.01
0.03


svm~26 + 22
0.70
0.00
0.61
0.70
0.33
0.88
0.00
0.04


svm~24 + 26
0.70
0.00
0.31
0.92
0.48
0.85
0.00
0.00


svm~28 + 6
0.70
0.00
0.64
0.71
0.34
0.89
0.00
0.00


nb~40 + 26
0.70
0.00
0.78
0.47
0.26
0.90
0.01
0.08


rpart~42 + 22
0.69
0.00
0.67
0.59
0.28
0.88
0.00
0.36


nb~36 + 6
0.70
0.00
0.58
0.73
0.34
0.88
0.00
0.02


nb~36 + 22
0.70
0.00
0.72
0.55
0.28
0.89
0.00
0.08


nb~16 + 40
0.70
0.00
0.58
0.69
0.31
0.87
0.00
0.09


svm~18 + 6
0.70
0.00
0.56
0.72
0.32
0.87
0.00
0.08


nb~41 + 6
0.70
0.00
0.53
0.78
0.37
0.87
0.00
0.05


svm~16 + 31
0.70
0.00
0.53
0.74
0.33
0.87
0.00
0.15


nb~12 + 17
0.70
0.00
0.53
0.77
0.36
0.87
0.00
0.02


nb~36 + 28
0.70
0.00
0.72
0.59
0.30
0.90
0.00
0.01


rpart~16 + 19
0.69
0.00
0.83
0.56
0.31
0.93
0.00
0.00


knn~40 + 24
0.70
0.00
0.86
0.41
0.26
0.93
0.00
0.01


svm~37 + 22
0.70
0.00
0.69
0.59
0.29
0.89
0.00
0.51


rpart~24 + 5
0.70
0.00
0.58
0.72
0.33
0.88
0.00
0.01


rf~4 + 39
0.70
0.00
0.75
0.57
0.29
0.90
0.00
0.00


nb~4 + 34
0.70
0.00
0.53
0.80
0.39
0.88
0.00
0.05


nb~17 + 19
0.70
0.00
0.78
0.56
0.30
0.91
0.00
0.01


rf~16 + 18
0.70
0.00
0.67
0.62
0.30
0.89
0.00
0.19


svm~14 + 22
0.70
0.00
0.53
0.68
0.28
0.86
0.01
0.06


svm~18 + 28
0.70
0.00
0.64
0.69
0.33
0.89
0.00
0.01


rpart~7 + 20
0.69
0.00
0.81
0.45
0.26
0.91
0.00
0.03


svm~42 + 6
0.70
0.00
0.67
0.63
0.30
0.89
0.00
0.03


nb~4 + 27
0.70
0.00
0.67
0.66
0.32
0.89
0.00
0.07


nb~11 + 6
0.70
0.00
0.50
0.81
0.39
0.87
0.00
0.06


rf~35 + 19
0.70
0.00
0.72
0.61
0.31
0.90
0.00
0.01


svm~26 + 28
0.70
0.00
0.53
0.77
0.36
0.87
0.00
0.02


nb~1 + 28
0.70
0.00
0.61
0.69
0.32
0.88
0.00
0.01


nb~11 + 28
0.70
0.00
0.56
0.71
0.31
0.87
0.00
0.05


rf~4 + 32
0.70
0.00
0.64
0.63
0.29
0.88
0.00
0.23


rpart~4 + 26
0.70
0.00
0.58
0.67
0.30
0.87
0.00
0.02


nb~13 + 20
0.70
0.00
0.69
0.57
0.28
0.89
0.00
0.02


nb~37 + 6
0.70
0.00
0.69
0.65
0.32
0.90
0.00
0.08


svm~25 + 28
0.70
0.00
0.72
0.59
0.30
0.90
0.00
0.09


svm~40 + 18
0.70
0.00
0.72
0.55
0.28
0.89
0.00
0.10


nb~14 + 20
0.70
0.00
0.78
0.51
0.28
0.91
0.00
0.01


knn~32 + 22
0.70
0.00
0.64
0.69
0.33
0.89
0.00
0.06


rpart~19 + 20
0.69
0.00
0.81
0.47
0.27
0.91
0.00
0.02


rf~4 + 31
0.70
0.00
0.61
0.64
0.29
0.87
0.00
0.05


rpart~4 + 28
0.70
0.00
0.58
0.73
0.34
0.88
0.00
0.03


svm~24 + 22
0.70
0.00
0.42
0.83
0.38
0.86
0.00
0.05


knn~4 + 19
0.70
0.00
0.72
0.65
0.33
0.91
0.00
0.07


nb~4 + 17
0.70
0.00
0.58
0.79
0.40
0.89
0.00
0.05


svm~12 + 16
0.70
0.00
0.39
0.87
0.42
0.86
0.00
0.08


rpart~4 + 1
0.69
0.00
0.69
0.51
0.25
0.87
0.01
0.09


svm~24 + 6
0.70
0.00
0.56
0.77
0.37
0.88
0.00
0.03


knn~39 + 22
0.70
0.00
0.78
0.61
0.32
0.92
0.00
0.38


rpart~4 + 23
0.69
0.00
0.67
0.67
0.33
0.89
0.00
0.03


svm~29 + 6
0.70
0.00
0.64
0.71
0.35
0.89
0.00
0.01


knn~4 + 31
0.69
0.00
0.61
0.67
0.31
0.88
0.00
0.01


knn~35 + 28
0.69
0.00
0.89
0.43
0.27
0.94
0.00
0.12


nb~4 + 2
0.70
0.00
0.64
0.71
0.35
0.89
0.00
0.15


nb~17 + 22
0.70
0.00
0.69
0.53
0.26
0.88
0.01
0.04


nb~26 + 32
0.70
0.00
0.67
0.59
0.28
0.88
0.00
0.05


knn~29 + 6
0.69
0.00
0.61
0.67
0.31
0.88
0.00
0.03


svm~38 + 22
0.70
0.00
0.67
0.65
0.31
0.89
0.00
0.11


svm~34 + 22
0.70
0.00
0.64
0.53
0.25
0.86
0.03
0.01


nb~33 + 19
0.70
0.00
0.81
0.53
0.29
0.92
0.00
0.05


rpart~31 + 22
0.69
0.00
0.64
0.66
0.31
0.88
0.00
0.01


svm~12 + 32
0.70
0.00
0.44
0.83
0.38
0.86
0.00
0.10


rpart~28 + 34
0.69
0.00
0.56
0.66
0.28
0.86
0.00
0.06


knn~4 + 34
0.69
0.00
0.81
0.39
0.24
0.89
0.02
0.15


svm~21 + 6
0.70
0.00
0.61
0.65
0.30
0.88
0.00
0.02


nb~15 + 20
0.70
0.00
0.75
0.57
0.30
0.91
0.00
0.02


svm~4 + 43
0.70
0.00
0.50
0.83
0.42
0.87
0.00
0.01


knn~12 + 19
0.69
0.00
0.67
0.59
0.28
0.88
0.00
0.01


rpart~24 + 31
0.69
0.00
0.47
0.83
0.40
0.87
0.00
0.00


svm~4 + 6
0.70
0.00
0.64
0.73
0.37
0.89
0.00
0.14


nb~14 + 6
0.70
0.00
0.64
0.74
0.37
0.90
0.00
0.02


rpart~40 + 18
0.69
0.00
0.81
0.45
0.26
0.91
0.01
0.07


rf~4 + 38
0.70
0.00
0.58
0.67
0.30
0.87
0.00
0.07


rpart~23 + 19
0.69
0.00
0.81
0.45
0.26
0.91
0.00
0.01


rpart~18 + 32
0.69
0.00
0.69
0.62
0.30
0.89
0.00
0.11


svm~1 + 22
0.70
0.00
0.58
0.73
0.34
0.88
0.00
0.02


svm~4 + 22
0.70
0.00
0.64
0.73
0.36
0.89
0.00
0.16


rpart~4 + 6
0.69
0.00
0.61
0.65
0.30
0.88
0.00
0.11


svm~4 + 25
0.70
0.00
0.67
0.62
0.30
0.89
0.00
0.33


svm~42 + 22
0.70
0.00
0.64
0.61
0.28
0.88
0.00
0.07


nb~16 + 43
0.70
0.00
0.58
0.67
0.30
0.87
0.01
0.01


knn~4 + 20
0.69
0.00
0.72
0.53
0.27
0.89
0.00
0.02


svm~19 + 34
0.70
0.00
0.75
0.61
0.31
0.91
0.00
0.00


svm~4 + 21
0.70
0.00
0.58
0.81
0.43
0.89
0.00
0.11


rf~12 + 22
0.70
0.00
0.64
0.66
0.31
0.88
0.00
0.04


rpart~4 + 17
0.69
0.00
0.58
0.67
0.30
0.87
0.00
0.02


knn~17 + 22
0.69
0.00
0.67
0.64
0.31
0.89
0.00
0.11


rf~24 + 19
0.70
0.00
0.58
0.67
0.30
0.87
0.00
0.00


nb~9 + 6
0.70
0.00
0.69
0.57
0.28
0.89
0.00
0.07


svm~9 + 19
0.70
0.00
0.78
0.59
0.31
0.92
0.00
0.01


rpart~4 + 29
0.69
0.00
0.64
0.65
0.30
0.88
0.00
0.01


svm~27 + 19
0.69
0.00
0.67
0.59
0.28
0.88
0.00
0.03


svm~13 + 32
0.69
0.00
0.47
0.79
0.35
0.86
0.00
0.31


svm~36 + 28
0.69
0.00
0.61
0.64
0.29
0.87
0.00
0.02


svm~11 + 28
0.69
0.00
0.61
0.69
0.32
0.88
0.00
0.46


nb~28 + 34
0.69
0.00
0.61
0.61
0.28
0.87
0.00
0.01


nb~18 + 43
0.69
0.00
0.61
0.67
0.31
0.88
0.00
0.09


rf~4 + 16
0.69
0.00
0.75
0.55
0.29
0.90
0.00
0.21


svm~15 + 22
0.69
0.00
0.50
0.77
0.35
0.87
0.00
0.05


nb~28 + 21
0.69
0.00
0.53
0.71
0.30
0.86
0.00
0.00


rf~38 + 28
0.69
0.00
0.69
0.58
0.28
0.89
0.00
0.47


svm~4 + 33
0.69
0.00
0.64
0.69
0.33
0.89
0.00
0.04


nb~4 + 3
0.69
0.00
0.50
0.81
0.39
0.87
0.00
0.10


rpart~28 + 22
0.68
0.00
0.67
0.62
0.30
0.89
0.00
0.12


svm~1 + 28
0.69
0.00
0.61
0.74
0.36
0.89
0.00
0.00


knn~13 + 26
0.69
0.00
0.75
0.47
0.25
0.89
0.01
0.08


nb~40 + 32
0.69
0.00
0.64
0.65
0.31
0.88
0.00
0.31


rf~26 + 22
0.69
0.00
0.67
0.62
0.30
0.89
0.00
0.12


svm~15 + 40
0.69
0.00
0.58
0.65
0.29
0.87
0.01
0.85


knn~4 + 43
0.69
0.00
0.58
0.69
0.31
0.87
0.00
0.08


rf~40 + 24
0.69
0.00
0.67
0.62
0.30
0.89
0.00
0.03


nb~12 + 16
0.69
0.00
0.58
0.73
0.34
0.88
0.00
0.05


rf~4 + 13
0.69
0.00
0.56
0.74
0.34
0.87
0.00
0.09


knn~24 + 13
0.69
0.00
0.81
0.52
0.29
0.92
0.00
0.06


knn~4 + 37
0.69
0.00
0.86
0.37
0.25
0.92
0.01
0.02


rf~4 + 14
0.69
0.00
0.64
0.65
0.31
0.88
0.00
0.01


rpart~16 + 18
0.65
0.00
0.47
0.82
0.39
0.87
0.00
0.03


nb~34 + 6
0.69
0.00
0.56
0.67
0.29
0.86
0.00
0.03


svm~12 + 13
0.69
0.00
0.31
0.83
0.31
0.83
0.03
0.07


nb~16 + 13
0.69
0.00
0.58
0.66
0.29
0.87
0.01
0.20


svm~39 + 6
0.69
0.00
0.61
0.73
0.35
0.89
0.00
0.07


knn~24 + 43
0.69
0.00
0.67
0.57
0.27
0.88
0.02
0.00


nb~42 + 20
0.69
0.00
0.72
0.52
0.27
0.89
0.00
0.04


svm~28 + 21
0.69
0.00
0.64
0.72
0.35
0.89
0.00
0.02


svm~14 + 28
0.69
0.00
0.53
0.76
0.35
0.87
0.00
0.05


rpart~17 + 22
0.68
0.00
0.58
0.65
0.28
0.87
0.00
0.41


nb~9 + 19
0.69
0.00
0.78
0.55
0.29
0.91
0.00
0.02


rpart~25 + 22
0.69
0.00
0.72
0.50
0.26
0.88
0.01
0.22


nb~9 + 22
0.69
0.00
0.58
0.69
0.31
0.87
0.00
0.12


svm~43 + 22
0.69
0.00
0.53
0.73
0.32
0.87
0.00
0.04


svm~18 + 32
0.69
0.00
0.58
0.68
0.30
0.87
0.00
0.23


rpart~39 + 19
0.68
0.00
0.83
0.44
0.26
0.92
0.00
0.01


nb~39 + 6
0.69
0.00
0.56
0.69
0.30
0.87
0.00
0.04


rpart~24 + 20
0.68
0.00
0.67
0.69
0.34
0.90
0.00
0.01


nb~38 + 28
0.69
0.00
0.61
0.66
0.30
0.88
0.00
0.02


nb~16 + 31
0.69
0.00
0.56
0.70
0.31
0.87
0.00
0.11


rpart~20 + 38
0.68
0.00
0.78
0.48
0.26
0.90
0.00
0.07


rpart~4 + 40
0.69
0.00
0.67
0.57
0.27
0.88
0.01
0.25


rpart~24 + 19
0.68
0.00
0.69
0.57
0.28
0.89
0.00
0.01


nb~11 + 22
0.69
0.00
0.83
0.52
0.29
0.93
0.00
0.13


knn~37 + 6
0.69
0.00
0.81
0.42
0.25
0.90
0.01
0.01


knn~13 + 22
0.69
0.00
0.89
0.37
0.25
0.93
0.00
0.33


nb~4 + 7
0.69
0.00
0.56
0.75
0.34
0.88
0.00
0.08


nb~25 + 6
0.69
0.00
0.56
0.73
0.33
0.87
0.00
0.16


knn~28 + 21
0.68
0.00
0.92
0.39
0.27
0.95
0.00
0.05


nb~15 + 12
0.69
0.00
0.56
0.69
0.30
0.87
0.00
0.06


nb~33 + 22
0.69
0.00
0.78
0.47
0.26
0.90
0.01
0.17


svm~3 + 28
0.69
0.00
0.39
0.81
0.33
0.85
0.00
0.17


nb~12 + 32
0.69
0.00
0.64
0.69
0.33
0.89
0.00
0.05


nb~27 + 28
0.69
0.00
0.78
0.54
0.29
0.91
0.00
0.03


nb~39 + 28
0.69
0.00
0.44
0.71
0.27
0.84
0.03
0.01


nb~3 + 6
0.69
0.00
0.42
0.81
0.35
0.85
0.00
0.05


knn~12 + 6
0.69
0.00
0.64
0.67
0.32
0.88
0.00
0.02


nb~15 + 26
0.69
0.00
0.53
0.73
0.32
0.87
0.00
0.11


nb~16 + 14
0.69
0.00
0.61
0.71
0.33
0.88
0.00
0.05


rf~19 + 3
0.69
0.00
0.69
0.59
0.29
0.89
0.00
0.00


svm~33 + 28
0.69
0.00
0.69
0.56
0.27
0.88
0.00
0.04


nb~23 + 19
0.69
0.00
0.67
0.64
0.31
0.89
0.00
0.04


svm~30 + 19
0.69
0.00
0.64
0.63
0.29
0.88
0.00
0.00


rpart~13 + 26
0.68
0.00
0.61
0.75
0.37
0.89
0.00
0.07


svm~23 + 6
0.69
0.00
0.58
0.70
0.32
0.88
0.00
0.01


svm~12 + 26
0.69
0.00
0.47
0.83
0.40
0.87
0.00
0.10


svm~24 + 38
0.69
0.00
0.42
0.83
0.37
0.86
0.00
0.00


rpart~4 + 25
0.69
0.00
0.78
0.50
0.27
0.90
0.00
0.03


svm~33 + 22
0.69
0.00
0.67
0.61
0.29
0.88
0.00
0.08


rpart~43 + 19
0.69
0.00
0.72
0.59
0.30
0.90
0.00
0.01


nb~17 + 24
0.69
0.00
0.67
0.67
0.33
0.89
0.00
0.00


nb~36 + 19
0.69
0.00
0.81
0.51
0.28
0.92
0.00
0.02


rpart~37 + 28
0.68
0.00
0.69
0.61
0.30
0.89
0.00
0.16


knn~37 + 22
0.68
0.00
0.86
0.42
0.26
0.93
0.00
0.01


knn~33 + 19
0.68
0.00
0.44
0.78
0.33
0.85
0.00
0.07


nb~9 + 28
0.69
0.00
0.53
0.68
0.28
0.86
0.01
0.03


svm~34 + 6
0.69
0.00
0.72
0.60
0.30
0.90
0.00
0.00


rf~4 + 43
0.69
0.00
0.69
0.62
0.30
0.89
0.00
0.08


nb~25 + 28
0.69
0.00
0.58
0.67
0.30
0.87
0.00
0.04


knn~24 + 19
0.68
0.00
0.89
0.35
0.25
0.93
0.00
0.02


svm~2 + 19
0.69
0.00
0.72
0.47
0.25
0.88
0.02
0.06


nb~21 + 6
0.69
0.00
0.61
0.69
0.32
0.88
0.00
0.02


rpart~1 + 19
0.68
0.00
0.75
0.58
0.30
0.91
0.00
0.01


nb~1 + 6
0.69
0.00
0.56
0.73
0.33
0.87
0.00
0.03


svm~16 + 21
0.69
0.00
0.58
0.63
0.27
0.86
0.01
0.05


svm~33 + 6
0.69
0.00
0.58
0.67
0.30
0.87
0.00
0.09


rpart~16 + 22
0.68
0.00
0.64
0.61
0.28
0.88
0.00
0.28


svm~4 + 26
0.69
0.00
0.50
0.87
0.47
0.88
0.00
0.04


rpart~8 + 26
0.68
0.00
0.42
0.83
0.38
0.86
0.00
0.00


knn~29 + 32
0.68
0.00
0.83
0.38
0.24
0.90
0.01
0.02


rpart~26 + 28
0.68
0.00
0.56
0.73
0.33
0.87
0.00
0.01


nb~15 + 18
0.69
0.00
0.58
0.71
0.32
0.88
0.00
0.15


rf~39 + 24
0.69
0.00
0.72
0.54
0.27
0.89
0.00
0.01


nb~33 + 20
0.69
0.00
0.89
0.37
0.25
0.93
0.00
0.02


svm~29 + 18
0.69
0.00
0.36
0.81
0.31
0.84
0.02
0.10


knn~39 + 24
0.68
0.00
0.75
0.59
0.30
0.91
0.00
0.00


nb~11 + 20
0.69
0.00
0.78
0.45
0.25
0.89
0.01
0.03


svm~40 + 22
0.69
0.00
0.78
0.45
0.25
0.89
0.02
0.27


svm~16 + 32
0.69
0.00
0.50
0.78
0.35
0.87
0.00
0.26


nb~25 + 19
0.69
0.00
0.67
0.65
0.32
0.89
0.00
0.12


rf~4 + 24
0.69
0.00
0.64
0.64
0.30
0.88
0.00
0.02


nb~27 + 6
0.69
0.00
0.64
0.60
0.28
0.87
0.00
0.05


svm~12 + 40
0.69
0.00
0.61
0.60
0.27
0.87
0.05
0.12


knn~17 + 19
0.68
0.00
0.44
0.79
0.34
0.86
0.00
0.04


nb~13 + 26
0.69
0.00
0.78
0.48
0.26
0.90
0.01
0.24


rpart~41 + 20
0.67
0.00
0.83
0.37
0.24
0.90
0.01
0.04


knn~35 + 22
0.68
0.00
0.75
0.50
0.26
0.89
0.01
0.22


rpart~24 + 33
0.68
0.00
0.44
0.77
0.32
0.85
0.00
0.01


nb~16 + 8
0.69
0.00
0.58
0.67
0.30
0.87
0.01
0.13


nb~17 + 43
0.69
0.00
0.56
0.69
0.30
0.87
0.00
0.05


nb~12 + 40
0.69
0.00
0.53
0.71
0.30
0.86
0.01
0.07


rf~4 + 19
0.68
0.00
0.64
0.63
0.29
0.88
0.00
0.05


nb~18 + 13
0.68
0.00
0.69
0.54
0.27
0.88
0.01
0.48


nb~23 + 22
0.68
0.00
0.67
0.65
0.31
0.89
0.00
0.07


rpart~1 + 22
0.67
0.00
0.42
0.79
0.33
0.85
0.00
0.09


svm~17 + 6
0.68
0.00
0.56
0.69
0.30
0.87
0.00
0.04


nb~7 + 6
0.68
0.00
0.56
0.66
0.28
0.86
0.01
0.05


nb~4 + 30
0.68
0.00
0.56
0.78
0.38
0.88
0.00
0.02


rpart~12 + 32
0.68
0.00
0.69
0.69
0.35
0.90
0.00
0.53


rpart~35 + 6
0.68
0.00
0.56
0.69
0.30
0.87
0.00
0.26


svm~24 + 28
0.68
0.00
0.36
0.89
0.43
0.85
0.00
0.02


knn~43 + 22
0.68
0.00
0.81
0.45
0.26
0.91
0.00
0.01


nb~34 + 22
0.68
0.00
0.67
0.55
0.26
0.87
0.01
0.07


nb~29 + 6
0.68
0.00
0.61
0.73
0.35
0.89
0.00
0.07


nb~21 + 22
0.68
0.00
0.69
0.61
0.30
0.89
0.00
0.03


nb~29 + 28
0.68
0.00
0.61
0.67
0.31
0.88
0.00
0.05


rpart~14 + 20
0.67
0.00
0.78
0.50
0.27
0.90
0.00
0.01


rpart~29 + 20
0.67
0.00
0.78
0.50
0.27
0.90
0.00
0.01


nb~10 + 6
0.68
0.00
0.50
0.81
0.39
0.87
0.00
0.05


nb~41 + 22
0.68
0.00
0.64
0.59
0.27
0.87
0.01
0.14


nb~23 + 28
0.68
0.00
0.47
0.75
0.31
0.85
0.01
0.02


svm~43 + 28
0.68
0.00
0.58
0.72
0.33
0.88
0.00
0.01


knn~4 + 13
0.68
0.00
0.67
0.69
0.34
0.90
0.00
0.59


nb~17 + 32
0.68
0.00
0.67
0.67
0.33
0.89
0.00
0.10


svm~37 + 6
0.68
0.00
0.69
0.62
0.30
0.89
0.00
0.14


svm~7 + 28
0.68
0.00
0.58
0.60
0.26
0.86
0.03
0.26


svm~32 + 6
0.68
0.00
0.58
0.76
0.37
0.88
0.00
0.01


nb~31 + 22
0.68
0.00
0.72
0.55
0.28
0.89
0.00
0.06


svm~38 + 6
0.68
0.00
0.64
0.67
0.32
0.88
0.00
0.03


nb~11 + 19
0.68
0.00
0.69
0.62
0.30
0.89
0.00
0.07


nb~19 + 21
0.68
0.00
0.72
0.61
0.31
0.90
0.00
0.01


rpart~4 + 8
0.68
0.00
0.69
0.62
0.30
0.89
0.00
0.02


nb~15 + 43
0.68
0.00
0.56
0.68
0.29
0.86
0.01
0.08


svm~22 + 6
0.68
0.00
0.53
0.73
0.32
0.87
0.00
0.03


nb~24 + 31
0.68
0.00
0.53
0.76
0.35
0.87
0.00
0.00


svm~28 + 34
0.68
0.00
0.58
0.65
0.29
0.87
0.00
0.16


rpart~4 + 37
0.66
0.00
0.53
0.75
0.34
0.87
0.00
0.01


rf~4 + 40
0.68
0.00
0.69
0.49
0.25
0.87
0.04
0.07


svm~25 + 6
0.68
0.00
0.67
0.55
0.26
0.87
0.01
0.22


svm~42 + 16
0.68
0.00
0.47
0.73
0.29
0.85
0.02
0.12


nb~2 + 28
0.68
0.00
0.56
0.63
0.27
0.86
0.02
0.04


svm~35 + 28
0.68
0.00
0.50
0.79
0.36
0.87
0.00
0.39


nb~3 + 28
0.68
0.00
0.47
0.71
0.28
0.85
0.01
0.04


svm~12 + 39
0.68
0.00
0.36
0.81
0.31
0.84
0.02
0.12


rf~4 + 42
0.68
0.00
0.64
0.61
0.28
0.88
0.01
0.20


nb~29 + 22
0.68
0.00
0.58
0.69
0.31
0.87
0.00
0.18


nb~10 + 28
0.68
0.00
0.47
0.77
0.33
0.86
0.00
0.06


svm~11 + 22
0.68
0.00
0.61
0.69
0.32
0.88
0.00
0.40


rpart~24 + 34
0.67
0.00
0.36
0.89
0.43
0.85
0.00
0.00


rf~32 + 22
0.68
0.00
0.61
0.65
0.29
0.87
0.00
0.25


rf~24 + 28
0.68
0.00
0.61
0.61
0.27
0.87
0.01
0.02


nb~1 + 22
0.68
0.00
0.64
0.57
0.26
0.87
0.01
0.08


nb~36 + 20
0.68
0.00
0.78
0.55
0.29
0.91
0.00
0.01


knn~15 + 22
0.68
0.00
0.81
0.46
0.26
0.91
0.00
0.32


svm~10 + 6
0.68
0.00
0.56
0.75
0.35
0.88
0.00
0.06


nb~10 + 22
0.68
0.00
0.69
0.51
0.26
0.88
0.02
0.23


nb~19 + 34
0.68
0.00
0.69
0.66
0.33
0.90
0.00
0.01


svm~17 + 28
0.68
0.00
0.56
0.67
0.29
0.86
0.00
0.02


svm~37 + 28
0.68
0.00
0.67
0.59
0.28
0.88
0.00
0.08


nb~4 + 21
0.68
0.00
0.58
0.81
0.43
0.89
0.00
0.03


nb~37 + 20
0.68
0.00
0.64
0.59
0.27
0.87
0.00
0.01


svm~42 + 28
0.68
0.00
0.81
0.59
0.32
0.93
0.00
0.26


knn~4 + 40
0.67
0.00
0.75
0.51
0.27
0.90
0.01
0.23


knn~12 + 40
0.67
0.00
0.75
0.57
0.30
0.91
0.00
0.22


nb~18 + 26
0.68
0.00
0.69
0.63
0.31
0.90
0.00
0.12


rpart~15 + 24
0.67
0.00
0.78
0.48
0.26
0.90
0.00
0.08


nb~15 + 40
0.68
0.00
0.42
0.81
0.35
0.85
0.00
0.30


svm~10 + 19
0.68
0.00
0.64
0.67
0.32
0.89
0.00
0.01


svm~12 + 29
0.68
0.00
0.44
0.79
0.34
0.86
0.00
0.01


rpart~4 + 33
0.68
0.00
0.67
0.54
0.26
0.87
0.02
0.00


rpart~24 + 25
0.67
0.00
0.50
0.75
0.33
0.86
0.00
0.00


knn~15 + 19
0.67
0.00
0.89
0.38
0.26
0.93
0.00
0.06


knn~8 + 6
0.67
0.00
0.75
0.49
0.26
0.89
0.01
0.01


nb~39 + 22
0.68
0.00
0.72
0.47
0.25
0.88
0.02
0.08


nb~31 + 20
0.68
0.00
0.72
0.49
0.25
0.88
0.01
0.01


rpart~13 + 22
0.68
0.00
0.78
0.52
0.28
0.91
0.00
0.36


knn~4 + 38
0.67
0.00
0.75
0.43
0.24
0.88
0.03
0.04


rf~15 + 28
0.68
0.00
0.69
0.56
0.27
0.88
0.00
0.17


svm~9 + 22
0.68
0.00
0.56
0.72
0.32
0.87
0.00
0.16


knn~37 + 19
0.67
0.00
0.94
0.30
0.24
0.96
0.00
0.01


svm~15 + 16
0.68
0.00
0.50
0.77
0.35
0.87
0.00
0.23


nb~16 + 21
0.68
0.00
0.61
0.62
0.28
0.87
0.01
0.01


rf~19 + 6
0.68
0.00
0.67
0.66
0.32
0.89
0.00
0.01


nb~41 + 19
0.68
0.00
0.69
0.59
0.29
0.89
0.00
0.05


svm~7 + 22
0.68
0.00
0.67
0.59
0.28
0.88
0.00
0.28


nb~31 + 32
0.68
0.00
0.39
0.75
0.27
0.84
0.05
0.28


rf~7 + 22
0.68
0.00
0.75
0.49
0.26
0.89
0.01
0.14


rpart~1 + 24
0.67
0.00
0.58
0.77
0.38
0.88
0.00
0.00


rf~16 + 24
0.68
0.00
0.64
0.59
0.27
0.87
0.01
0.02


svm~16 + 13
0.68
0.00
0.53
0.67
0.28
0.85
0.03
0.33


rf~18 + 22
0.68
0.00
0.69
0.60
0.29
0.89
0.00
0.22


rf~31 + 22
0.68
0.00
0.75
0.56
0.29
0.90
0.00
0.10


knn~19 + 21
0.67
0.00
0.78
0.57
0.30
0.91
0.00
0.00





auc.pvalue: Wilcoxon Test P-value.


MFD: Median Fold Difference.


KM: Kaplan Meier curves.


MvaHRPval: Multivariable Analysis Hazard Ratio P-value.













TABLE 52







pairwise biomarkers from the 43 biomarker panel with significance for


Wilcoxon P-value (auc.pvalue <= 0.05) and other metrics for the


psaDT endpoint.
















auc.


Pos.Pred.
Neg.Pred.



Classifier
auc
pvalue
Sensitivity
Specificity
Value
Value
mvaPval

















svm~4 + 12
0.71
0.00
0.15
0.56
0.16
0.54
0.00


rpart~24 + 32
0.70
0.00
0.07
0.65
0.09
0.55
0.00


rpart~15 + 14
0.69
0.00
0.09
0.63
0.12
0.55
0.03


svm~12 + 24
0.70
0.00
0.04
0.71
0.08
0.57
0.01


knn~12 + 26
0.31
0.00
0.02
0.73
0.04
0.57
0.00


svm~15 + 24
0.69
0.00
0.00
0.83
0.00
0.60
0.01


nb~12 + 19
0.69
0.00
0.28
0.50
0.24
0.55
0.00


rf~4 + 12
0.69
0.00
0.24
0.41
0.19
0.49
0.01


knn~12 + 18
0.68
0.00
0.33
0.45
0.25
0.54
0.00


svm~12 + 26
0.69
0.00
0.11
0.70
0.17
0.58
0.01


nb~15 + 24
0.69
0.00
0.15
0.59
0.17
0.55
0.00


nb~16 + 19
0.69
0.00
0.20
0.52
0.19
0.54
0.01


nb~12 + 24
0.68
0.00
0.04
0.68
0.07
0.56
0.00


rpart~12 + 24
0.68
0.00
0.09
0.65
0.12
0.56
0.00


rf~12 + 22
0.68
0.00
0.22
0.44
0.18
0.50
0.00


nb~12 + 6
0.68
0.00
0.37
0.44
0.27
0.55
0.00


nb~12 + 26
0.68
0.00
0.15
0.60
0.18
0.56
0.00


rf~12 + 26
0.68
0.00
0.20
0.65
0.24
0.59
0.00


nb~12 + 18
0.68
0.00
0.15
0.57
0.17
0.55
0.00


svm~16 + 24
0.68
0.00
0.07
0.71
0.11
0.57
0.01


nb~37 + 19
0.68
0.00
0.33
0.49
0.26
0.56
0.08


knn~12 + 22
0.68
0.00
0.28
0.45
0.22
0.53
0.01


svm~15 + 12
0.68
0.00
0.04
0.70
0.07
0.56
0.01


svm~16 + 19
0.68
0.00
0.35
0.48
0.27
0.57
0.02


rpart~12 + 6
0.67
0.00
0.37
0.43
0.27
0.55
0.03


rpart~1 + 24
0.67
0.00
0.17
0.57
0.19
0.55
0.01


rpart~4 + 16
0.67
0.00
0.35
0.48
0.27
0.57
0.03


knn~4 + 12
0.67
0.00
0.07
0.62
0.09
0.54
0.01


nb~15 + 12
0.67
0.00
0.20
0.59
0.21
0.56
0.00


svm~16 + 21
0.67
0.00
0.20
0.56
0.20
0.55
0.01


rf~42 + 19
0.67
0.00
0.41
0.34
0.26
0.51
0.16


rpart~15 + 24
0.66
0.00
0.46
0.34
0.28
0.53
0.04


rpart~1 + 6
0.67
0.00
0.35
0.46
0.27
0.56
0.14


svm~24 + 10
0.67
0.00
0.09
0.71
0.14
0.58
0.01


knn~24 + 13
0.66
0.00
0.37
0.30
0.23
0.46
0.11


rf~12 + 31
0.67
0.00
0.33
0.54
0.28
0.59
0.03


svm~24 + 8
0.66
0.00
0.13
0.72
0.21
0.60
0.30


svm~12 + 28
0.66
0.00
0.30
0.56
0.28
0.59
0.08


svm~12 + 18
0.66
0.00
0.17
0.54
0.17
0.54
0.01


svm~12 + 37
0.66
0.00
0.33
0.49
0.26
0.56
0.14


svm~15 + 38
0.66
0.00
0.15
0.61
0.18
0.56
0.01


rpart~4 + 32
0.66
0.00
0.24
0.50
0.21
0.54
0.05


rf~4 + 24
0.66
0.00
0.28
0.45
0.22
0.53
0.03


rf~12 + 18
0.66
0.00
0.30
0.51
0.26
0.57
0.01


nb~4 + 12
0.66
0.00
0.15
0.57
0.17
0.55
0.01


nb~16 + 24
0.66
0.00
0.13
0.65
0.17
0.57
0.00


nb~15 + 28
0.66
0.00
0.26
0.55
0.24
0.57
0.08


nb~24 + 28
0.66
0.00
0.26
0.56
0.25
0.58
0.08


nb~12 + 22
0.66
0.00
0.30
0.51
0.26
0.57
0.01


svm~1 + 12
0.66
0.00
0.26
0.55
0.24
0.57
0.01


svm~15 + 10
0.66
0.00
0.17
0.63
0.21
0.58
0.01


nb~24 + 37
0.66
0.00
0.28
0.49
0.24
0.55
0.09


nb~12 + 28
0.66
0.00
0.39
0.48
0.30
0.58
0.02


knn~15 + 35
0.65
0.00
0.15
0.68
0.21
0.59
0.12


nb~10 + 19
0.65
0.00
0.41
0.40
0.28
0.55
0.04


svm~8 + 19
0.65
0.00
0.33
0.43
0.24
0.53
0.03


svm~26 + 19
0.65
0.00
0.22
0.55
0.21
0.56
0.03


knn~1 + 24
0.65
0.00
0.39
0.35
0.25
0.51
0.01


rpart~15 + 12
0.65
0.00
0.15
0.60
0.18
0.56
0.02


svm~13 + 26
0.65
0.00
0.13
0.67
0.18
0.58
0.05


knn~15 + 17
0.65
0.00
0.22
0.59
0.23
0.57
0.02


nb~15 + 14
0.65
0.00
0.09
0.71
0.14
0.58
0.04


nb~12 + 20
0.65
0.00
0.48
0.37
0.30
0.56
0.01


knn~4 + 32
0.65
0.00
0.35
0.44
0.26
0.55
0.40


rf~12 + 20
0.65
0.00
0.46
0.41
0.30
0.58
0.16


rf~12 + 19
0.65
0.00
0.33
0.50
0.27
0.57
0.01


knn~17 + 24
0.64
0.00
0.30
0.48
0.25
0.55
0.01


nb~16 + 6
0.65
0.00
0.30
0.50
0.25
0.56
0.02


nb~15 + 16
0.65
0.00
0.17
0.65
0.22
0.58
0.01


svm~13 + 19
0.65
0.00
0.48
0.30
0.28
0.51
0.31


svm~1 + 19
0.65
0.00
0.26
0.49
0.22
0.54
0.01


svm~24 + 13
0.65
0.01
0.07
0.65
0.09
0.55
0.01


knn~16 + 28
0.65
0.01
0.39
0.40
0.27
0.54
0.06


nb~13 + 19
0.65
0.01
0.52
0.32
0.30
0.54
0.11


nb~24 + 6
0.65
0.01
0.13
0.67
0.18
0.58
0.03


rf~4 + 43
0.65
0.01
0.35
0.44
0.26
0.55
0.26


knn~18 + 13
0.64
0.01
0.57
0.21
0.29
0.46
0.38


knn~24 + 43
0.64
0.01
0.35
0.45
0.26
0.55
0.04


rpart~4 + 15
0.64
0.01
0.15
0.59
0.17
0.55
0.04


rf~9 + 19
0.65
0.01
0.41
0.37
0.27
0.53
0.03


nb~16 + 26
0.65
0.01
0.20
0.60
0.21
0.57
0.01


knn~4 + 16
0.64
0.01
0.43
0.40
0.29
0.56
0.06


knn~1 + 28
0.64
0.01
0.57
0.17
0.28
0.41
0.15


knn~40 + 24
0.64
0.01
0.50
0.30
0.29
0.52
0.01


rpart~28 + 34
0.64
0.01
0.33
0.55
0.29
0.59
0.38


nb~16 + 18
0.65
0.01
0.28
0.50
0.24
0.55
0.01


nb~15 + 10
0.65
0.01
0.52
0.35
0.31
0.57
0.01


svm~42 + 16
0.65
0.01
0.17
0.61
0.20
0.57
0.01


rf~4 + 32
0.65
0.01
0.26
0.50
0.23
0.55
0.05


nb~35 + 19
0.65
0.01
0.24
0.54
0.22
0.56
0.15


nb~28 + 6
0.65
0.01
0.35
0.50
0.28
0.58
0.23


nb~4 + 24
0.65
0.01
0.13
0.67
0.18
0.58
0.04


nb~16 + 21
0.65
0.01
0.26
0.52
0.24
0.56
0.03


rpart~43 + 22
0.64
0.01
0.28
0.49
0.24
0.55
0.09


svm~37 + 22
0.64
0.01
0.37
0.48
0.28
0.57
0.67


svm~15 + 13
0.64
0.01
0.26
0.52
0.24
0.56
0.10


rpart~24 + 8
0.64
0.01
0.20
0.73
0.29
0.62
0.21


svm~42 + 24
0.64
0.01
0.04
0.73
0.08
0.58
0.09


rpart~12 + 5
0.64
0.01
0.33
0.41
0.24
0.52
0.00


knn~4 + 17
0.64
0.01
0.24
0.49
0.21
0.53
0.04


svm~4 + 16
0.64
0.01
0.22
0.51
0.20
0.54
0.05


rf~39 + 19
0.64
0.01
0.50
0.33
0.29
0.54
0.03


nb~12 + 17
0.64
0.01
0.11
0.59
0.13
0.54
0.01


svm~12 + 13
0.64
0.01
0.07
0.73
0.12
0.58
0.01


nb~36 + 19
0.64
0.01
0.67
0.22
0.33
0.55
0.05


rf~7 + 19
0.64
0.01
0.52
0.29
0.29
0.52
0.18


nb~19 + 6
0.64
0.01
0.24
0.61
0.26
0.59
0.07


knn~4 + 34
0.64
0.01
0.35
0.44
0.26
0.55
0.70


nb~11 + 6
0.64
0.01
0.20
0.62
0.23
0.58
0.15


rpart~4 + 10
0.64
0.01
0.24
0.57
0.24
0.57
0.01


knn~15 + 37
0.64
0.01
0.48
0.29
0.28
0.50
0.11


nb~15 + 13
0.64
0.01
0.33
0.50
0.27
0.57
0.04


svm~12 + 22
0.64
0.01
0.39
0.48
0.30
0.58
0.06


rf~15 + 17
0.64
0.01
0.30
0.52
0.26
0.57
0.06


nb~37 + 6
0.64
0.01
0.24
0.59
0.24
0.58
0.14


rf~15 + 26
0.64
0.01
0.33
0.55
0.29
0.59
0.01


knn~15 + 24
0.64
0.01
0.43
0.35
0.27
0.53
0.04


nb~4 + 19
0.64
0.01
0.26
0.59
0.26
0.59
0.15


rpart~12 + 26
0.39
0.01
0.09
0.68
0.13
0.57
0.01


rpart~24 + 31
0.63
0.01
0.11
0.71
0.17
0.59
0.01


svm~15 + 16
0.64
0.01
0.15
0.65
0.19
0.58
0.01


nb~21 + 6
0.64
0.01
0.26
0.52
0.24
0.56
0.12


rf~4 + 15
0.64
0.01
0.22
0.57
0.22
0.57
0.08


nb~16 + 20
0.64
0.01
0.46
0.38
0.29
0.55
0.03


rf~4 + 16
0.64
0.01
0.41
0.41
0.28
0.56
0.23


knn~13 + 19
0.63
0.01
0.24
0.63
0.27
0.60
0.14


knn~4 + 24
0.63
0.01
0.20
0.60
0.21
0.57
0.21


knn~38 + 22
0.63
0.01
0.33
0.44
0.25
0.54
0.25


knn~32 + 22
0.63
0.01
0.26
0.48
0.22
0.53
0.11


nb~11 + 28
0.64
0.01
0.24
0.63
0.27
0.60
0.71


nb~12 + 16
0.64
0.01
0.17
0.57
0.19
0.55
0.01


rpart~24 + 34
0.63
0.01
0.07
0.79
0.15
0.60
0.05


nb~13 + 6
0.64
0.01
0.43
0.44
0.30
0.58
0.12


rf~19 + 21
0.63
0.01
0.33
0.37
0.22
0.49
0.01


knn~15 + 8
0.63
0.01
0.48
0.32
0.28
0.52
0.19


nb~15 + 37
0.63
0.01
0.20
0.61
0.22
0.57
0.06


nb~12 + 37
0.63
0.01
0.37
0.46
0.28
0.57
0.08


knn~16 + 19
0.63
0.01
0.41
0.40
0.28
0.55
0.01


rf~39 + 22
0.63
0.01
0.35
0.50
0.28
0.58
0.08


rf~15 + 35
0.63
0.01
0.26
0.55
0.24
0.57
0.12


rf~4 + 42
0.63
0.01
0.37
0.49
0.29
0.58
0.23


nb~4 + 28
0.63
0.01
0.22
0.60
0.23
0.58
0.39


rpart~15 + 9
0.62
0.01
0.15
0.60
0.18
0.56
0.08


knn~12 + 19
0.63
0.01
0.37
0.46
0.28
0.57
0.01


rf~4 + 39
0.63
0.01
0.33
0.49
0.26
0.56
0.04


rpart~17 + 13
0.39
0.01
0.13
0.68
0.19
0.58
0.05


rpart~15 + 16
0.40
0.01
0.07
0.74
0.13
0.59
0.06


rpart~12 + 17
0.62
0.01
0.24
0.50
0.21
0.54
0.02


nb~16 + 17
0.63
0.01
0.17
0.65
0.22
0.58
0.01


svm~37 + 6
0.63
0.01
0.37
0.45
0.27
0.56
0.37


knn~12 + 31
0.63
0.01
0.63
0.30
0.34
0.60
0.03


rpart~4 + 13
0.63
0.01
0.35
0.51
0.29
0.58
0.10


rf~42 + 26
0.63
0.01
0.57
0.30
0.31
0.56
0.32


rf~32 + 22
0.63
0.01
0.30
0.46
0.24
0.54
0.06


rf~16 + 10
0.63
0.01
0.22
0.60
0.23
0.58
0.02


nb~37 + 28
0.63
0.01
0.28
0.55
0.26
0.58
0.69


nb~12 + 32
0.63
0.01
0.17
0.55
0.18
0.54
0.01


rf~37 + 19
0.63
0.01
0.41
0.37
0.27
0.53
0.20


rpart~16 + 41
0.63
0.01
0.24
0.55
0.23
0.56
0.01


svm~35 + 19
0.63
0.01
0.30
0.54
0.27
0.58
0.28


nb~4 + 17
0.63
0.01
0.22
0.62
0.24
0.59
0.11


knn~12 + 6
0.63
0.01
0.28
0.44
0.22
0.52
0.03


svm~10 + 19
0.63
0.01
0.28
0.51
0.25
0.56
0.00


rf~24 + 28
0.63
0.01
0.35
0.50
0.28
0.58
0.04


rf~24 + 13
0.63
0.01
0.37
0.48
0.28
0.57
0.14


rpart~4 + 24
0.62
0.02
0.20
0.62
0.23
0.58
0.08


knn~24 + 28
0.63
0.02
0.17
0.65
0.22
0.58
0.04


rpart~15 + 8
0.63
0.02
0.20
0.59
0.21
0.56
0.42


nb~25 + 6
0.63
0.02
0.33
0.52
0.28
0.58
0.09


svm~12 + 10
0.63
0.02
0.20
0.61
0.22
0.57
0.01


rpart~15 + 13
0.63
0.02
0.26
0.62
0.28
0.60
0.10


svm~19 + 28
0.63
0.02
0.37
0.54
0.31
0.60
0.26


svm~24 + 37
0.63
0.02
0.22
0.63
0.25
0.59
0.71


rpart~16 + 6
0.62
0.02
0.26
0.52
0.24
0.56
0.06


rpart~16 + 22
0.63
0.02
0.37
0.44
0.27
0.55
0.02


svm~40 + 19
0.63
0.02
0.37
0.44
0.27
0.55
0.16


svm~4 + 24
0.63
0.02
0.15
0.63
0.19
0.57
0.02


rpart~11 + 22
0.38
0.02
0.22
0.57
0.22
0.57
0.49


rf~12 + 6
0.63
0.02
0.33
0.39
0.23
0.51
0.01


nb~4 + 16
0.63
0.02
0.17
0.63
0.21
0.58
0.06


nb~16 + 28
0.63
0.02
0.39
0.48
0.30
0.58
0.11


svm~11 + 28
0.63
0.02
0.24
0.59
0.24
0.58
0.85


knn~9 + 6
0.63
0.02
0.48
0.30
0.28
0.51
0.26


svm~13 + 6
0.63
0.02
0.39
0.50
0.31
0.59
0.63


svm~28 + 32
0.63
0.02
0.33
0.66
0.35
0.64
0.40


svm~40 + 24
0.63
0.02
0.35
0.46
0.27
0.56
0.08


rpart~14 + 24
0.62
0.02
0.07
0.74
0.13
0.59
0.05


rpart~16 + 26
0.63
0.02
0.22
0.62
0.24
0.59
0.05


knn~16 + 29
0.38
0.02
0.26
0.56
0.25
0.58
0.02


nb~15 + 6
0.63
0.02
0.15
0.66
0.20
0.58
0.03


rf~29 + 19
0.63
0.02
0.37
0.41
0.26
0.54
0.00


rf~4 + 21
0.63
0.02
0.33
0.54
0.28
0.59
0.51


nb~4 + 15
0.63
0.02
0.11
0.61
0.14
0.55
0.07


rf~24 + 19
0.63
0.02
0.26
0.56
0.25
0.58
0.02


nb~9 + 19
0.63
0.02
0.35
0.48
0.27
0.57
0.70


svm~21 + 6
0.63
0.02
0.33
0.49
0.26
0.56
0.16


rf~15 + 10
0.63
0.02
0.30
0.52
0.26
0.57
0.01


knn~17 + 37
0.62
0.02
0.65
0.26
0.33
0.57
0.28


rpart~17 + 18
0.39
0.02
0.22
0.56
0.22
0.56
0.14


nb~1 + 19
0.63
0.02
0.57
0.30
0.31
0.56
0.04


svm~1 + 16
0.63
0.02
0.09
0.74
0.16
0.59
0.03


rpart~42 + 15
0.62
0.02
0.22
0.56
0.22
0.56
0.33


rpart~4 + 12
0.62
0.02
0.35
0.44
0.26
0.55
0.00


rf~15 + 19
0.63
0.02
0.30
0.56
0.28
0.59
0.00


rf~15 + 24
0.63
0.02
0.30
0.50
0.25
0.56
0.06


nb~26 + 6
0.63
0.02
0.26
0.59
0.26
0.59
0.08


svm~16 + 18
0.62
0.02
0.22
0.55
0.21
0.56
0.03


nb~16 + 22
0.62
0.02
0.35
0.52
0.29
0.59
0.06


nb~17 + 6
0.62
0.02
0.28
0.63
0.30
0.61
0.10


nb~24 + 13
0.62
0.02
0.17
0.66
0.22
0.59
0.05


knn~12 + 10
0.62
0.02
0.50
0.29
0.28
0.51
0.02


knn~9 + 19
0.62
0.02
0.48
0.35
0.29
0.55
0.79


svm~16 + 26
0.62
0.02
0.20
0.60
0.21
0.57
0.02


rf~4 + 8
0.62
0.02
0.59
0.29
0.32
0.56
0.14


rf~10 + 22
0.62
0.02
0.37
0.43
0.27
0.55
0.03


nb~37 + 22
0.62
0.02
0.37
0.48
0.28
0.57
0.45


svm~13 + 28
0.62
0.02
0.35
0.46
0.27
0.56
0.42


rf~1 + 19
0.62
0.02
0.41
0.46
0.30
0.58
0.18


nb~15 + 35
0.62
0.02
0.30
0.56
0.28
0.59
0.07


svm~4 + 25
0.62
0.02
0.37
0.45
0.27
0.56
0.28


nb~12 + 13
0.62
0.02
0.26
0.59
0.26
0.59
0.04


nb~24 + 10
0.62
0.02
0.39
0.43
0.28
0.56
0.02


rf~10 + 19
0.62
0.02
0.37
0.44
0.27
0.55
0.02


rpart~16 + 10
0.61
0.02
0.24
0.55
0.23
0.56
0.00


svm~12 + 5
0.62
0.02
0.39
0.41
0.27
0.55
0.06


svm~9 + 19
0.62
0.02
0.35
0.40
0.25
0.52
0.24


svm~32 + 22
0.62
0.02
0.26
0.57
0.26
0.58
0.03


knn~15 + 28
0.62
0.02
0.17
0.65
0.22
0.58
0.19


nb~16 + 32
0.62
0.02
0.26
0.55
0.24
0.57
0.03


rpart~42 + 24
0.62
0.02
0.17
0.68
0.24
0.60
0.07


nb~14 + 6
0.62
0.02
0.24
0.61
0.26
0.59
0.16


nb~12 + 38
0.62
0.02
0.20
0.59
0.21
0.56
0.00


rf~13 + 19
0.62
0.02
0.57
0.33
0.32
0.57
0.13


nb~16 + 37
0 62
0.02
0.33
0.44
0.25
0.54
0.21


svm~4 + 42
0.62
0.02
0.39
0.44
0.28
0.56
0.22


rpart~37 + 22
0.61
0.03
0.33
0.48
0.26
0.56
0.72


knn~18 + 10
0.38
0.03
0.54
0.23
0.28
0.48
0.13


rf~4 + 10
0.62
0.03
0.17
0.66
0.22
0.59
0.34


svm~4 + 28
0.62
0.03
0.30
0.59
0.29
0.60
0.58


nb~18 + 6
0.62
0.03
0.33
0.56
0.29
0.60
0.13


nb~12 + 41
0.62
0.03
0.15
0.63
0.19
0.57
0.06


nb~12 + 10
0.62
0.03
0.35
0.56
0.31
0.61
0.02


svm~11 + 22
0.62
0.03
0.33
0.54
0.28
0.59
0.71


svm~8 + 28
0.62
0.03
0.30
0.46
0.24
0.54
0.10


nb~10 + 6
0.62
0.03
0.17
0.63
0.21
0.58
0.05


rf~31 + 19
0.62
0.03
0.41
0.39
0.28
0.54
0.05


rf~12 + 2
0.62
0.03
0.33
0.49
0.26
0.56
0.04


svm~16 + 38
0.62
0.03
0.22
0.56
0.22
0.56
0.01


nb~39 + 6
0.62
0.03
0.24
0.59
0.24
0.58
0.06


rf~16 + 19
0.62
0.03
0.41
0.44
0.29
0.57
0.01


svm~12 + 6
0.62
0.03
0.30
0.49
0.25
0.56
0.01


svm~16 + 34
0.62
0.03
0.28
0.60
0.28
0.60
0.05


rf~15 + 8
0.62
0.03
0.28
0.51
0.25
0.56
0.15


nb~10 + 28
0.62
0.03
0.22
0.65
0.26
0.60
0.31


nb~10 + 20
0.62
0.03
0.37
0.45
0.27
0.56
0.10


rpart~4 + 18
0.61
0.03
0.35
0.51
0.29
0.58
0.89


knn~35 + 19
0.39
0.03
0.57
0.24
0.30
0.50
0.14


rpart~18 + 32
0.62
0.03
0.39
0.45
0.29
0.57
0.09


svm~7 + 28
0.62
0.03
0.39
0.52
0.32
0.61
0.76


knn~1 + 22
0.39
0.03
0.37
0.51
0.30
0.59
0.02


rpart~4 + 41
0.61
0.03
0.22
0.61
0.24
0.58
0.08


svm~43 + 22
0.62
0.03
0.22
0.62
0.24
0.59
0.25


rpart~1 + 28
0.62
0.03
0.33
0.48
0.26
0.56
0.60


rpart~12 + 31
0.62
0.03
0.28
0.59
0.28
0.59
0.05


rpart~10 + 22
0.61
0.03
0.33
0.50
0.27
0.57
0.01


nb~40 + 24
0.62
0.03
0.28
0.54
0.25
0.57
0.07


svm~4 + 10
0.62
0.03
0.15
0.61
0.18
0.56
0.05


svm~13 + 32
0.62
0.03
0.24
0.71
0.31
0.62
0.52


rpart~4 + 1
0.39
0.03
0.52
0.35
0.31
0.57
0.35


rf~16 + 24
0.62
0.03
0.30
0.55
0.27
0.58
0.16


rf~4 + 19
0.62
0.03
0.37
0.45
0.27
0.56
0.05


rpart~24 + 10
0.40
0.03
0.20
0.67
0.25
0.60
0.00


svm~19 + 6
0.62
0.03
0.37
0.52
0.30
0.60
0.14


nb~15 + 36
0.62
0.03
0.26
0.55
0.24
0.57
0.01


knn~43 + 22
0.61
0.03
0.43
0.24
0.24
0.43
0.13


knn~4 + 7
0.61
0.03
0.22
0.67
0.27
0.60
0.22


nb~20 + 6
0.62
0.03
0.28
0.55
0.26
0.58
0.19


rpart~24 + 38
0.61
0.03
0.24
0.62
0.26
0.59
0.15


svm~24 + 25
0.61
0.03
0.20
0.66
0.24
0.59
0.07


knn~11 + 28
0.61
0.03
0.59
0.23
0.30
0.50
0.78


rf~24 + 43
0.61
0.03
0.17
0.67
0.23
0.59
0.05


rf~9 + 22
0.61
0.03
0.28
0.51
0.25
0.56
0.10


knn~26 + 2
0.61
0.03
0.59
0.21
0.29
0.47
0.22


knn~24 + 20
0.39
0.03
0.17
0.78
0.31
0.63
0.07


rf~24 + 10
0.61
0.03
0.30
0.55
0.27
0.58
0.02


svm~29 + 22
0.61
0.03
0.46
0.46
0.32
0.60
0.24


nb~43 + 6
0.61
0.03
0.20
0.62
0.23
0.58
0.11


rpart~1 + 15
0.61
0.03
0.22
0.63
0.25
0.59
0.05


rpart~38 + 22
0.61
0.03
0.39
0.40
0.27
0.54
0.87


rpart~18 + 13
0.61
0.03
0.43
0.44
0.30
0.58
0.95


nb~16 + 38
0.61
0.03
0.28
0.61
0.29
0.60
0.01


nb~18 + 13
0.61
0.03
0.37
0.48
0.28
0.57
0.26


nb~24 + 31
0.61
0.03
0.26
0.56
0.25
0.58
0.01


svm~26 + 37
0.61
0.03
0.15
0.68
0.21
0.59
0.95


knn~4 + 42
0.39
0.03
0.70
0.21
0.33
0.55
0.08


svm~16 + 8
0.61
0.03
0.26
0.55
0.24
0.57
0.02


rf~18 + 13
0.61
0.03
0.48
0.43
0.32
0.59
0.95


nb~13 + 28
0.61
0.04
0.33
0.54
0.28
0.59
0.61


rf~19 + 28
0.61
0.04
0.41
0.39
0.28
0.54
0.03


svm~36 + 19
0.61
0.04
0.30
0.50
0.25
0.56
0.02


svm~12 + 9
0.61
0.04
0.26
0.60
0.27
0.59
0.14


svm~12 + 27
0.61
0.04
0.30
0.52
0.26
0.57
0.01


rpart~16 + 3
0.41
0.04
0.11
0.82
0.25
0.62
0.67


rf~10 + 28
0.61
0.04
0.50
0.44
0.33
0.61
0.41


nb~35 + 6
0.61
0.04
0.24
0.56
0.23
0.57
0.12


knn~4 + 10
0.39
0.04
0.22
0.60
0.23
0.58
0.14


svm~4 + 11
0.61
0.04
0.13
0.63
0.17
0.57
0.20


nb~16 + 11
0.61
0.04
0.35
0.57
0.31
0.61
0.17


knn~37 + 22
0.61
0.04
0.54
0.27
0.29
0.51
0.26


rpart~16 + 25
0.60
0.04
0.41
0.45
0.30
0.58
0.26


nb~15 + 31
0.61
0.04
0.26
0.60
0.27
0.59
0.02


knn~12 + 28
0.61
0.04
0.15
0.63
0.19
0.57
0.19


knn~4 + 43
0.39
0.04
0.33
0.52
0.28
0.58
0.41


svm~16 + 22
0.61
0.04
0.37
0.50
0.29
0.59
0.15


svm~16 + 28
0.61
0.04
0.33
0.51
0.27
0.58
0.19


nb~4 + 10
0.61
0.04
0.11
0.71
0.17
0.59
0.13


knn~16 + 18
0.61
0.04
0.28
0.45
0.22
0.53
0.14


knn~8 + 19
0.61
0.04
0.37
0.44
0.27
0.55
0.23


nb~18 + 37
0.61
0.04
0.35
0.49
0.28
0.57
0.41


svm~24 + 2
0.61
0.04
0.22
0.60
0.23
0.58
0.74


knn~18 + 20
0.61
0.04
0.17
0.70
0.24
0.60
0.24


knn~26 + 20
0.61
0.04
0.48
0.43
0.32
0.59
0.10


nb~16 + 13
0.61
0.04
0.26
0.54
0.24
0.56
0.14


nb~14 + 28
0.61
0.04
0.28
0.61
0.29
0.60
0.66


svm~42 + 15
0.61
0.04
0.26
0.61
0.27
0.60
0.13


svm~4 + 21
0.61
0.04
0.22
0.63
0.25
0.59
0.64


rpart~24 + 33
0.60
0.04
0.17
0.67
0.23
0.59
0.23


rpart~13 + 22
0.61
0.04
0.48
0.34
0.29
0.54
0.50


rf~1 + 28
0.61
0.04
0.37
0.39
0.25
0.52
0.21


knn~24 + 10
0.61
0.04
0.37
0.41
0.26
0.54
0.01


rf~40 + 24
0.61
0.04
0.33
0.54
0.28
0.59
0.03


knn~4 + 20
0.61
0.04
0.46
0.38
0.29
0.55
0.20


rpart~20 + 28
0.60
0.04
0.54
0.33
0.31
0.56
0.30


rf~15 + 16
0.61
0.04
0.17
0.61
0.20
0.57
0.01


svm~31 + 28
0.61
0.04
0.43
0.49
0.32
0.61
0.26


nb~10 + 22
0.61
0.04
0.33
0.56
0.29
0.60
0.19


knn~4 + 8
0.61
0.04
0.13
0.71
0.20
0.59
0.11


svm~4 + 19
0.61
0.04
0.35
0.43
0.25
0.54
0.19


knn~29 + 19
0.61
0.04
0.17
0.65
0.22
0.58
0.03


nb~38 + 28
0.61
0.04
0.30
0.49
0.25
0.56
0.04


svm~16 + 31
0.61
0.04
0.20
0.61
0.22
0.57
0.03


nb~16 + 29
0.61
0.04
0.26
0.63
0.29
0.60
0.09


knn~26 + 19
0.61
0.05
0.41
0.43
0.29
0.56
0.03


nb~22 + 6
0.61
0.05
0.35
0.52
0.29
0.59
0.19


svm~2 + 28
0.61
0.05
0.35
0.43
0.25
0.54
0.65


svm~37 + 28
0.61
0.05
0.37
0.46
0.28
0.57
0.99


rf~19 + 34
0.61
0.05
0.33
0.44
0.25
0.54
0.02


svm~4 + 14
0.61
0.05
0.15
0.60
0.18
0.56
0.27


svm~28 + 21
0.61
0.05
0.33
0.56
0.29
0.60
0.67


rpart~29 + 6
0.60
0.05
0.33
0.54
0.28
0.59
0.09


svm~16 + 13
0.61
0.05
0.24
0.57
0.24
0.57
0.09


rpart~15 + 6
0.60
0.05
0.33
0.52
0.28
0.58
0.31


rpart~31 + 6
0.60
0.05
0.39
0.50
0.31
0.59
0.40


nb~4 + 6
0.61
0.05
0.24
0.57
0.24
0.57
0.33


svm~15 + 22
0.61
0.05
0.22
0.60
0.23
0.58
0.16


svm~15 + 37
0.61
0.05
0.17
0.66
0.22
0.59
0.21


svm~16 + 32
0.61
0.05
0.13
0.67
0.18
0.58
0.02


knn~4 + 15
0.40
0.05
0.24
0.56
0.23
0.57
0.06


knn~12 + 2
0.60
0.05
0.39
0.49
0.30
0.59
0.24


nb~15 + 34
0.61
0.05
0.20
0.68
0.26
0.60
0.07


svm~8 + 32
0.61
0.05
0.22
0.66
0.26
0.60
0.03


nb~1 + 6
0.61
0.05
0.26
0.60
0.27
0.59
0.09


nb~12 + 5
0.61
0.05
0.59
0.28
0.31
0.55
0.04


svm~35 + 6
0.61
0.05
0.24
0.59
0.24
0.58
0.48


nb~16 + 31
0.61
0.05
0.24
0.59
0.24
0.58
0.05


svm~4 + 37
0.61
0.05
0.30
0.50
0.25
0.56
0.51


nb~12 + 35
0.61
0.05
0.20
0.61
0.22
0.57
0.08


rpart~10 + 32
0.60
0.05
0.24
0.68
0.30
0.62
0.02


svm~15 + 35
0.60
0.05
0.20
0.67
0.25
0.60
0.62


svm~14 + 6
0.60
0.05
0.37
0.59
0.33
0.62
0.25


rf~24 + 22
0.60
0.05
0.30
0.48
0.25
0.55
0.14





auc.pvalue: Wilcoxon Test P-value.


MFD: Median Fold Difference.


KM: Kaplan Meier curves.


mvaHRPval: Multivariable Analysis Hazard Ratio P-value.






Example 13: A 2,040 Biomarker Library for Prostate Cancer Progression

In order to define, from the entire set of 1.4 million features, a comprehensive library of biomarkers that presents prognostic ability, the Discovery Set (Training and Testing) presented in Example 1 was processed as follows. First, all features with a probe count lower than 4 or with cross-hybridizing probes as defined by affymetrix (www.affymetrix.com) were removed. Second, a background filter was applied in order to ensure signal in the expression capture for each feature. To achieve this, features that had a median expression value in the group of mets patients and in the group of non-mets patients (separately) lower than 1.2 times the background signal (captured by the control antigenomic probes defined by affymetrix (www.affymetrix.com)) were removed. Third, the statistical significance of the differential expression observed between the mets and non-mets groups was assessed using the Kolmogorov-Smimov test for each feature. Those features with a p-value greater than 0.05 were removed. Last, a Random forest variable importance was calculated by building a random forest with 450,000 trees. Features with Mean Decrease Gini (or MDG)<=0 were discarded and features with MDG>6.5e-3 and Mean Decrease in Accuracy (or MDA)>0 were selected, reducing the feature set to 2,040 features. MDA is defined as the average difference in accuracy of the true variable vs the variable randomized for trees in the forest. MDG is defined as the mean of the change in gini between a parent node and a child node when splitting on a variable across the whole forest.


These represent the most important features (based on MDG and MDA) that are statistically significant (based on Kolmogorov-Smirnov Test) for the differential expression between mets and non-mets patients (Table 55) and provides a biomarker library for prostate cancer progression.


In tables 53 and 54, those biomarkers from the 2,040 in the library that were found statistically significant in the training and testing sets based on a Wilcoxon test (p-value<=0.05) for the Area under the ROC curve (AUC) metric, are shown for Biochemical Recurrence Event (BCR) and Metastasis Event (Mets Event). Whereas results are shown for the testing set (as defined in Example 1), these biomarkers were significant also in the training set of the discovery study.


Further significance of the selected features was evidenced by multiple metrics and are also listed in tables 53 and 54. Metrics are defined in Example 12.


These results demonstrate, based on the multiple metrics shown, that the library of biomarkers built has the ability to capture the biology underlying the progression of prostate cancer, as defined by diverse clinical variables.









TABLE 53







biomarkers from the 2,040 biomarker library with


significance for Wilcoxon P-value (auc.pvalue <= 0.05)


and other metrics for the BCR event endpoint.















SEQ




Pos.
Neg.




ID

auc.
Sensi-
Speci-
Pred.
Pred.
KM P-
Mva


NO.
auc
pvalue
tivity
ficity
Value
Value
value
HRPval


















55
0.60
0.03
0.62
0.52
0.74
0.38
0.10
0.02


58
0.59
0.04
0.55
0.48
0.70
0.33
0.22
0.00


90
0.59
0.05
0.66
0.31
0.68
0.29
0.80
0.04


97
0.62
0.01
0.51
0.67
0.77
0.38
0.02
0.00


107
0.62
0.01
0.53
0.62
0.76
0.38
0.07
0.35


109
0.60
0.02
0.42
0.43
0.62
0.25
0.11
0.73


117
0.60
0.04
0.66
0.45
0.73
0.38
0.06
0.38


125
0.61
0.02
0.65
0.17
0.63
0.18
0.02
0.47


165
0.59
0.04
0.45
0.64
0.73
0.35
0.06
0.55


170
0.61
0.02
0.42
0.71
0.76
0.36
0.01
0.92


176
0.61
0.02
0.63
0.55
0.76
0.41
0.01
0.00


178
0.61
0.01
0.35
0.79
0.79
0.36
0.03
0.74


179
0.61
0.02
0.45
0.69
0.76
0.36
0.01
0.73


183
0.59
0.05
0.73
0.28
0.69
0.31
0.68
0.29


208
0.61
0.02
0.67
0.47
0.74
0.39
0.03
0.01


228
0.60
0.02
0.48
0.66
0.75
0.36
0.01
0.55


246
0.65
0.00
0.70
0.53
0.77
0.45
0.00
0.00


251
0.59
0.04
0.45
0.43
0.63
0.26
0.05
0.22


311
0.61
0.02
0.39
0.71
0.75
0.34
0.13
0.33


315
0.59
0.05
0.59
0.53
0.74
0.37
0.09
0.40


316
0.61
0.02
0.65
0.50
0.74
0.39
0.03
0.06


317
0.61
0.02
0.33
0.78
0.76
0.34
0.03
0.38


339
0.60
0.03
0.55
0.33
0.64
0.25
0.26
0.87


357
0.63
0.00
0.51
0.71
0.79
0.39
0.00
0.41


437
0.65
0.00
0.42
0.78
0.81
0.38
0.00
0.36


465
0.60
0.03
0.48
0.71
0.78
0.38
0.00
0.98


473
0.60
0.03
0.70
0.48
0.75
0.42
0.01
0.29


522
0.59
0.05
0.63
0.52
0.74
0.38
0.02
0.01


582
0.60
0.03
0.40
0.79
0.81
0.37
0.00
0.07


615
0.59
0.04
0.40
0.47
0.62
0.26
0.02
0.00


643
0.62
0.01
0.54
0.67
0.78
0.40
0.00
0.00


693
0.63
0.00
0.62
0.59
0.77
0.41
0.01
0.01


696
0.59
0.04
0.63
0.45
0.72
0.36
0.17
0.15


791
0.61
0.02
0.73
0.41
0.73
0.41
0.02
0.12


836
0.59
0.04
0.52
0.38
0.65
0.27
0.14
0.49


981
0.63
0.00
0.52
0.31
0.63
0.23
0.02
0.03


1024
0.59
0.04
0.58
0.48
0.71
0.34
0.12
0.00


1062
0.60
0.02
0.63
0.52
0.74
0.39
0.06
0.42


1094
0.60
0.02
0.48
0.34
0.62
0.23
0.03
0.52


1247
0.62
0.01
0.69
0.40
0.72
0.37
0.22
0.01


1249
0.61
0.02
0.48
0.41
0.64
0.26
0.03
0.17


1251
0.59
0.04
0.59
0.57
0.75
0.39
0.01
0.53


1270
0.59
0.04
0.47
0.67
0.76
0.36
0.05
0.16


1285
0.60
0.03
0.54
0.66
0.78
0.39
0.01
0.68


1378
0.61
0.02
0.36
0.53
0.63
0.27
0.06
0.02


1485
0.59
0.05
0.73
0.16
0.66
0.21
0.19
0.75


1509
0.60
0.01
0.43
0.36
0.60
0.22
0.02
0.02


1517
0.59
0.04
0.37
0.55
0.64
0.28
0.22
0.07


1537
0.60
0.02
0.57
0.59
0.75
0.38
0.00
0.45


1540
0.61
0.02
0.36
0.50
0.61
0.26
0.06
0.00


1541
0.62
0.01
0.69
0.50
0.75
0.42
0.01
0.01


1576
0.62
0.01
0.49
0.69
0.78
0.38
0.01
0.29


1581
0.59
0.05
0.52
0.60
0.74
0.36
0.18
0.24


1634
0.64
0.00
0.54
0.66
0.78
0.39
0.03
0.00


1656
0.60
0.03
0.36
0.76
0.77
0.35
0.02
0.54


1706
0.60
0.02
0.41
0.43
0.62
0.25
0.06
0.64


1719
0.60
0.02
0.50
0.64
0.75
0.37
0.00
0.17


1721
0.61
0.02
0.57
0.59
0.75
0.38
0.01
0.05


1783
0.61
0.02
0.63
0.53
0.75
0.39
0.02
0.83


1801
0.61
0.02
0.60
0.53
0.74
0.38
0.24
0.18


1823
0.61
0.02
0.37
0.48
0.61
0.26
0.05
0.21


1902
0.64
0.00
0.53
0.71
0.80
0.41
0.00
0.02


1958
0.60
0.03
0.67
0.50
0.75
0.41
0.00
0.00


1964
0.60
0.03
0.70
0.36
0.71
0.35
0.14
0.01


1965
0.62
0.01
0.47
0.71
0.78
0.38
0.00
0.84


2014
0.61
0.02
0.59
0.53
0.74
0.37
0.09
0.01





Auc.pvalue: Wilcoxon Test P-value.


KM: Kaplan Meier curves.


mvaHRPval: Multivariable Analysis Hazard Ratio P-value.













TABLE 54







biomarkers from the 2,040 biomarker library with


significance for Wilcoxon P-value (auc.pvalue <= 0.05)


and other metrics for the MET event endpoint.















SEQ




Pos.
Neg.




ID

auc.
Sensi-
Speci-
Pred.
Pred.
KM
P-Mva


NO.
auc
pvalue
tivity
ficity
Value
Value
value
HRPval


















50
0.65
0.00
0.32
0.42
0.24
0.52
0.00
0.14


51
0.64
0.00
0.59
0.58
0.45
0.71
0.01
0.02


53
0.69
0.00
0.78
0.47
0.46
0.79
0.00
0.00


55
0.60
0.02
0.65
0.47
0.41
0.70
0.11
0.10


58
0.65
0.00
0.63
0.51
0.43
0.71
0.03
0.00


59
0.63
0.00
0.76
0.44
0.44
0.76
0.00
0.39


60
0.63
0.00
0.71
0.50
0.45
0.75
0.01
0.05


63
0.60
0.03
0.59
0.55
0.43
0.70
0.04
0.15


68
0.59
0.04
0.81
0.40
0.44
0.78
0.00
0.46


71
0.60
0.02
0.46
0.42
0.31
0.57
0.06
0.09


76
0.60
0.03
0.81
0.37
0.43
0.77
0.01
0.25


82
0.63
0.00
0.68
0.55
0.46
0.75
0.00
0.03


87
0.59
0.05
0.82
0.31
0.41
0.75
0.03
0.04


90
0.63
0.00
0.74
0.37
0.40
0.71
0.08
0.07


96
0.62
0.01
0.78
0.38
0.42
0.75
0.01
0.02


97
0.67
0.00
0.60
0.64
0.49
0.74
0.00
0.00


100
0.63
0.00
0.32
0.42
0.24
0.52
0.00
0.07


102
0.60
0.02
0.66
0.45
0.41
0.70
0.09
0.00


107
0.61
0.01
0.57
0.57
0.43
0.70
0.09
0.10


108
0.60
0.02
0.50
0.66
0.46
0.70
0.01
0.13


117
0.61
0.01
0.71
0.42
0.41
0.71
0.06
0.02


119
0.61
0.01
0.75
0.41
0.42
0.74
0.02
0.04


120
0.59
0.05
0.76
0.36
0.41
0.73
0.04
0.19


126
0.59
0.04
0.46
0.37
0.30
0.54
0.02
0.28


130
0.63
0.00
0.65
0.56
0.46
0.73
0.00
0.12


131
0.59
0.05
0.60
0.53
0.42
0.70
0.04
0.02


137
0.60
0.02
0.43
0.69
0.45
0.68
0.09
0.13


144
0.59
0.05
0.63
0.54
0.44
0.72
0.02
0.73


151
0.63
0.00
0.56
0.70
0.52
0.73
0.00
0.23


152
0.69
0.00
0.60
0.63
0.48
0.73
0.00
0.00


155
0.61
0.01
0.56
0.49
0.39
0.66
0.68
0.24


163
0.61
0.02
0.63
0.54
0.44
0.72
0.03
0.14


165
0.65
0.00
0.53
0.64
0.46
0.70
0.02
0.04


169
0.59
0.04
0.68
0.52
0.45
0.73
0.01
0.08


170
0.63
0.00
0.51
0.69
0.49
0.71
0.00
0.13


175
0.59
0.04
0.74
0.40
0.41
0.72
0.05
0.02


176
0.60
0.02
0.69
0.49
0.44
0.73
0.01
0.01


179
0.66
0.00
0.57
0.69
0.51
0.74
0.00
0.36


183
0.60
0.02
0.79
0.31
0.40
0.73
0.08
0.07


187
0.62
0.01
0.76
0.40
0.42
0.75
0.02
0.01


188
0.61
0.01
0.43
0.40
0.29
0.55
0.03
0.88


192
0.64
0.00
0.35
0.40
0.25
0.52
0.00
0.12


197
0.60
0.02
0.53
0.61
0.44
0.69
0.02
0.01


204
0.59
0.05
0.79
0.30
0.39
0.71
0.22
0.94


213
0.59
0.04
0.68
0.48
0.43
0.72
0.02
0.01


225
0.64
0.00
0.74
0.47
0.44
0.75
0.01
0.02


228
0.64
0.00
0.59
0.65
0.49
0.73
0.00
0.06


230
0.61
0.01
0.40
0.45
0.29
0.56
0.06
0.39


239
0.61
0.02
0.69
0.47
0.43
0.73
0.01
0.02


241
0.59
0.03
0.50
0.37
0.31
0.56
0.10
0.93


246
0.65
0.00
0.82
0.48
0.48
0.83
0.00
0.01


251
0.59
0.05
0.37
0.45
0.28
0.55
0.02
0.30


255
0.60
0.02
0.62
0.60
0.47
0.73
0.00
0.34


268
0.59
0.05
0.65
0.51
0.43
0.71
0.02
0.10


269
0.59
0.04
0.72
0.42
0.42
0.72
0.03
0.02


271
0.63
0.00
0.41
0.41
0.29
0.55
0.01
0.51


273
0.59
0.04
0.40
0.44
0.29
0.56
0.03
0.20


275
0.59
0.05
0.38
0.51
0.31
0.59
0.11
0.05


277
0.60
0.02
0.47
0.45
0.33
0.60
0.25
0.02


285
0.65
0.00
0.38
0.36
0.25
0.50
0.00
0.47


288
0.62
0.01
0.53
0.57
0.41
0.68
0.13
0.05


291
0.61
0.02
0.59
0.53
0.42
0.69
0.08
0.19


292
0.63
0.00
0.54
0.28
0.30
0.52
0.01
0.02


293
0.59
0.04
0.54
0.38
0.34
0.59
0.35
0.62


299
0.59
0.05
0.62
0.53
0.43
0.71
0.04
0.08


314
0.60
0.03
0.34
0.53
0.29
0.58
0.06
0.01


317
0.66
0.00
0.41
0.77
0.51
0.69
0.00
0.07


333
0.60
0.02
0.75
0.27
0.37
0.65
0.61
0.05


336
0.60
0.02
0.56
0.35
0.33
0.58
0.28
0.42


344
0.60
0.03
0.78
0.37
0.42
0.75
0.02
0.00


350
0.60
0.03
0.59
0.57
0.44
0.71
0.02
0.18


352
0.61
0.01
0.43
0.41
0.29
0.55
0.02
0.00


356
0.60
0.02
0.71
0.42
0.41
0.71
0.09
0.11


357
0.64
0.00
0.54
0.62
0.45
0.70
0.02
0.03


360
0.60
0.02
0.50
0.36
0.31
0.55
0.05
0.92


362
0.65
0.00
0.62
0.59
0.47
0.73
0.00
0.04


367
0.60
0.02
0.59
0.51
0.41
0.68
0.14
0.09


371
0.60
0.02
0.50
0.33
0.30
0.53
0.01
0.04


373
0.60
0.03
0.75
0.31
0.38
0.68
0.39
0.08


383
0.62
0.01
0.50
0.62
0.43
0.68
0.13
0.15


394
0.60
0.03
6.54
0.31
0.31
0.54
0.06
0.43


397
0.61
0.01
0.59
0.57
0.44
0.71
0.04
0.14


400
0.60
0.03
0.69
0.45
0.42
0.72
0.05
0.24


409
0.60
0.02
0.54
0.58
0.43
0.69
0.03
0.10


418
0.62
0.01
0.68
0.47
0.42
0.71
0.02
0.01


419
0.64
0.00
0.69
0.57
0.48
0.76
0.00
0.01


425
0.59
0.04
0.60
0.47
0.40
0.67
0.25
0.08


441
0.61
0.02
0.81
0.34
0.41
0.75
0.03
0.10


445
0.60
0.02
0.59
0.53
0.42
0.69
0.06
0.22


447
0.62
0.01
0.60
0.58
0.45
0.72
0.01
0.08


459
0.59
0.05
0.44
0.46
0.32
0.59
0.27
0.22


466
0.59
0.04
0.28
0.58
0.28
0.58
0.05
0.03


473
0.59
0.04
0.76
0.42
0.43
0.76
0.01
0.48


477
0.61
0.01
0.46
0.75
0.52
0.71
0.00
0.12


478
0.60
0.02
0.66
0.47
0.42
0.71
0.04
0.04


484
0.62
0.01
0.75
0.44
0.44
0.75
0.01
0.10


485
0.61
0.02
0.29
0.53
0.26
0.56
0.02
0.19


493
0.61
0.01
0.59
0.55
0.43
0.70
0.03
0.40


494
0.61
0.01
0.74
0.36
0.40
0.70
0.13
0.23


500
0.59
0.05
0.71
0.39
0.40
0.70
0.17
0.08


509
0.60
0.03
0.32
0.50
0.27
0.56
0.02
0.58


516
0.65
0.00
0.28
0.53
0.25
0.56
0.01
0.03


517
0.59
0.04
0.62
0.52
0.42
0.70
0.04
0.05


522
0.62
0.01
0.69
0.48
0.44
0.73
0.01
0.14


539
0.66
0.00
0.75
0.45
0.44
0.76
0.00
0.00


548
0.61
0.01
0.71
0.42
0.41
0.71
0.08
0.07


552
0.61
0.01
0.68
0.47
0.42
0.71
0.03
0.03


559
0.62
0.01
0.37
0.40
0.26
0.52
0.00
0.00


563
0.59
0.04
0.35
0.46
0.27
0.55
0.01
0.68


568
0.61
0.01
0.75
0.37
0.41
0.72
0.06
0.07


571
0.60
0.02
0.72
0.41
0.41
0.72
0.04
0.07


572
0.65
0.00
0.65
0.56
0.46
0.73
0.00
0.01


579
0.60
0.02
0.72
0.42
0.42
0.72
0.03
0.03


582
0.68
0.00
0.54
0.78
0.59
0.75
0.00
0.00


586
0.61
0.02
0.44
0.38
0.29
0.54
0.02
0.04


589
0.60
0.02
0.49
0.39
0.31
0.57
0.14
0.91


614
0.64
0.00
0.75
0.44
0.44
0.75
0.01
0.11


616
0.61
0.01
0.63
0.54
0.44
0.72
0.01
0.87


618
0.62
0.01
0.60
0.54
0.43
0.70
0.04
0.01


639
0.63
0.00
0.66
0.56
0.46
0.74
0.00
0.03


643
0.60
0.03
0.57
0.58
0.44
0.70
0.02
0.00


645
0.64
0.00
0.53
0.61
0.44
0.69
0.04
0.04


650
0.63
0.00
0.35
0.43
0.26
0.54
0.01
0.37


671
0.62
0.01
0.43
0.37
0.28
0.53
0.01
0.08


688
0.59
0.05
0.72
0.41
0.41
0.72
0.05
0.00


693
0.64
0.00
0.68
0.52
0.45
0.73
0.01
0.00


695
0.60
0.03
0.63
0.50
0.42
0.70
0.03
0.11


696
0.64
0.00
0.71
0.45
0.42
0.73
0.04
0.02


698
0.59
0.04
0.68
0.48
0.43
0.72
0.02
0.02


704
0.59
0.03
0.76
0.36
0.41
0.72
0.05
0.02


707
0.59
0.03
0.50
0.32
0.30
0.53
0.01
0.99


717
0.59
0.04
0.54
0.34
0.32
0.56
0.07
0.33


721
0.63
0.00
0.82
0.34
0.42
0.77
0.02
0.00


724
0.60
0.03
0.38
0.51
0.31
0.59
0.11
0.51


729
0.60
0.02
0.43
0.41
0.29
0.55
0.02
0.11


733
0.59
0.04
0.60
0.56
0.44
0.71
0.01
0.16


737
0.60
0.02
0.26
0.60
0.28
0.59
0.05
0.07


752
0.60
0.03
0.56
0.31
0.32
0.55
0.09
0.09


760
0.60
0.03
0.66
0.52
0.44
0.73
0.02
0.91


761
0.62
0.01
0.68
0.49
0.43
0.73
0.02
0.24


772
0.66
0.00
0.71
0.55
0.48
0.76
0.00
0.00


799
0.60
0.02
0.68
0.47
0.43
0.72
0.05
0.75


802
0.59
0.04
0.72
0.41
0.41
0.72
0.09
0.02


804
0.60
0.02
0.29
0.58
0.29
0.59
0.08
0.01


816
0.59
0.05
0.62
0.56
0.45
0.72
0.03
0.41


821
0.59
0.04
0.71
0.34
0.38
0.67
0.42
0.11


825
0.59
0.03
0.62
0.50
0.42
0.69
0.06
0.29


826
0.61
0.01
0.65
0.58
0.47
0.74
0.00
0.12


830
0.59
0.03
0.29
0.58
0.29
0.59
0.04
0.11


836
0.61
0.01
0.47
0.40
0.31
0.57
0.09
0.13


840
0.62
0.00
0.75
0.37
0.41
0.72
0.05
0.03


845
0.64
0.00
0.59
0.62
0.47
0.72
0.01
0.04


863
0.60
0.03
0.79
0.29
0.39
0.71
0.20
0.21


864
0.64
0.00
0.68
0.55
0.46
0.75
0.00
0.01


884
0.59
0.04
0.65
0.49
0.42
0.71
0.08
0.08


887
0.61
0.01
0.53
0.57
0.41
0.68
0.15
0.00


889
0.61
0.01
0.38
0.49
0.30
0.58
0.11
0.59


892
0.59
0.03
0.56
0.57
0.43
0.69
0.11
0.11


901
0.59
0.04
0.49
0.60
0.41
0.67
0.18
0.06


913
0.62
0.01
0.72
0.41
0.41
0.72
0.04
0.01


920
0.61
0.01
0.84
0.21
0.38
0.69
0.34
0.08


921
0.60
0.02
0.25
0.53
0.23
0.55
0.00
0.82


924
0.61
0.02
0.75
0.42
0.43
0.75
0.01
0.28


950
0.59
0.03
0.69
0.44
0.42
0.71
0.07
0.09


959
0.66
0.00
0.54
0.30
0.31
0.53
0.03
0.21


967
0.59
0.04
0.65
0.47
0.41
0.70
0.13
0.05


971
0.62
0.00
0.24
0.53
0.23
0.55
0.00
0.34


977
0.59
0.04
0.41
0.42
0.29
0.55
0.02
0.10


979
0.59
0.04
0.57
0.31
0.32
0.55
0.10
0.55


981
0.62
0.01
0.46
0.36
0.29
0.53
0.01
0.44


988
0.64
0.00
0.56
0.62
0.46
0.71
0.01
0.01


993
0.61
0.01
0.66
0.54
0.45
0.74
0.00
0.00


997
0.59
0.04
0.51
0.31
0.30
0.53
0.01
0.07


1001
0.63
0.00
0.66
0.58
0.47
0.75
0.00
0.08


1005
0.63
0.00
0.68
0.45
0.41
0.71
0.13
0.62


1008
0.61
0.01
0.62
0.53
0.43
0.71
0.04
0.09


1024
0.59
0.04
0.59
0.46
0.38
0.66
0.29
0.02


1032
0.60
0.02
0.38
0.43
0.28
0.55
0.01
0.14


1036
0.61
0.01
0.65
0.48
0.42
0.70
0.04
0.01


1047
0.59
0.04
0.50
0.35
0.31
0.55
0.03
0.00


1051
0.63
0.00
0.43
0.39
0.29
0.54
0.01
0.12


1055
0.64
0.00
0.68
0.52
0.45
0.73
0.01
0.08


1066
0.59
0.04
0.72
0.42
0.42
0.72
0.04
0.05


1070
0.60
0.03
0.68
0.37
0.38
0.67
0.28
0.14


1078
0.61
0.01
0.49
0.65
0.45
0.69
0.10
0.00


1079
0.64
0.00
0.79
0.42
0.44
0.78
0.00
0.02


1084
0.60
0.02
0.75
0.41
0.42
0.74
0.02
0.27


1094
0.63
0.00
0.40
0.38
0.27
0.52
0.00
0.91


1104
0.60
0.02
0.34
0.50
0.28
0.57
0.04
0.18


1116
0.59
0.04
0.62
0.47
0.40
0.68
0.22
0.50


1122
0.63
0.00
0.69
0.37
0.39
0.68
0.26
0.02


1130
0.61
0.01
0.41
0.46
0.30
0.57
0.09
0.61


1145
0.61
0.01
0.75
0.39
0.41
0.73
0.04
0.06


1161
0.62
0.01
0.57
0.60
0.45
0.71
0.02
0.00


1164
0.65
0.00
0.71
0.53
0.46
0.76
0.00
0.00


1166
0.61
0.01
0.56
0.61
0.45
0.71
0.02
0.01


1169
0.60
0.03
0.82
0.27
0.39
0.73
0.08
0.03


1171
0.60
0.03
0.28
0.52
0.25
0.55
0.01
0.78


1194
0.59
0.04
0.75
0.41
0.42
0.74
0.04
0.64


1200
0.59
0.04
0.62
0.51
0.42
0.70
0.07
0.02


1203
0.62
0.00
0.34
0.47
0.27
0.55
0.01
0.77


1206
0.61
0.01
0.74
0.40
0.41
0.72
0.09
0.09


1215
0.63
0.00
0.65
0.53
0.44
0.72
0.01
0.13


1227
0.60
0.02
0.66
0.47
0.42
0.71
0.03
0.13


1241
0.59
0.04
0.46
0.41
0.31
0.56
0.11
0.78


1249
0.60
0.02
0.40
0.42
0.28
0.55
0.01
0.16


1251
0.64
0.00
0.68
0.53
0.46
0.74
0.01
0.17


1257
0.61
0.02
0.51
0.34
0.31
0.55
0.05
0.91


1259
0.60
0.03
0.65
0.53
0.44
0.72
0.01
0.02


1270
0.60
0.02
0.50
0.62
0.43
0.68
0.05
0.02


1277
0.60
0.02
0.76
0.38
0.42
0.74
0.05
0.24


1290
0.60
0.03
0.68
0.53
0.45
0.74
0.01
0.05


1291
0.60
0.02
0.46
0.42
0.31
0.57
0.09
0.38


1294
0.61
0.02
0.75
0.27
0.37
0.65
0.52
0.06


1299
0.60
0.02
0.53
0.29
0.30
0.52
0.01
0.07


1307
0.59
0.04
0.75
0.35
0.40
0.71
0.09
0.11


1311
0.60
0.02
0.71
0.39
0.40
0.70
0.10
0.02


1319
0.59
0.05
0.87
0.19
0.38
0.72
0.19
0.11


1323
0.62
0.01
0.57
0.57
0.43
0.70
0.09
0.32


1324
0.66
0.00
0.59
0.60
0.46
0.72
0.02
0.15


1332
0.59
0.04
0.44
0.40
0.30
0.55
0.01
0.01


1336
0.59
0.04
0.69
0.43
0.41
0.71
0.08
0.09


1337
0.59
0.05
0.65
0.48
0.42
0.70
0.06
0.29


1339
0.64
0.00
0.82
0.34
0.42
0.77
0.01
0.04


1343
0.60
0.02
0.84
0.31
0.41
0.77
0.02
0.15


1348
0.61
0.01
0.21
0.56
0.21
0.55
0.00
0.87


1355
0.62
0.01
0.59
0.31
0.33
0.56
0.13
0.36


1366
0.61
0.01
0.78
0.41
0.43
0.76
0.01
0.09


1369
0.66
0.00
0.62
0.56
0.45
0.72
0.02
0.26


1378
0.64
0.00
0.25
0.53
0.23
0.55
0.00
0.01


1379
0.61
0.02
0.60
0.52
0.42
0.69
0.06
0.18


1380
0.60
0.02
0.63
0.48
0.41
0.70
0.11
0.13


1383
0.60
0.02
0.38
0.72
0.44
0.67
0.11
0.08


1388
0.61
0.02
0.68
0.42
0.40
0.69
0.17
0.12


1403
0.62
0.01
0.22
0.66
0.27
0.60
0.09
0.23


1405
0.60
0.02
0.78
0.34
0.40
0.73
0.07
0.24


1408
0.60
0.03
0.69
0.41
0.40
0.70
0.10
0.06


1413
0.61
0.02
0.65
0.55
0.45
0.73
0.00
0.11


1417
0.61
0.01
0.38
0.37
0.26
0.51
0.00
0.41


1421
0.60
0.02
0.68
0.47
0.42
0.71
0.02
0.01


1428
0.59
0.04
0.43
0.42
0.30
0.56
0.03
0.01


1439
0.60
0.02
0.47
0.42
0.32
0.58
0.19
0.97


1447
0.59
0.04
0.59
0.31
0.33
0.56
0.07
0.43


1451
0.63
0.00
0.74
0.43
0.43
0.74
0.01
0.19


1458
0.59
0.05
0.50
0.42
0.33
0.60
0.30
0.61


1465
0.61
0.01
0.40
0.47
0.30
0.58
0.06
0.00


1477
0.61
0.01
0.41
0.43
0.29
0.56
0.06
0.12


1480
0.59
0.04
0.62
0.50
0.42
0.69
0.09
0.21


1491
0.63
0.00
0.46
0.37
0.30
0.54
0.03
0.01


1500
0.60
0.03
0.63
0.53
0.44
0.72
0.01
0.21


1502
0.60
0.02
0.68
0.46
0.42
0.71
0.04
0.02


1509
0.65
0.00
0.34
0.42
0.25
0.52
0.00
0.03


1514
0.59
0.04
0.57
0.58
0.44
0.70
0.04
0.30


1517
0.63
0.00
0.28
0.54
0.26
0.57
0.02
0.04


1523
0.59
0.05
0.43
0.45
0.31
0.58
0.04
0.06


1524
0.66
0.00
0.49
0.71
0.49
0.71
0.00
0.03


1528
0.60
0.02
0.57
0.51
0.40
0.67
0.25
0.02


1535
0.61
0.01
0.60
0.64
0.49
0.74
0.00
0.27


1537
0.63
0.00
0.65
0.55
0.45
0.73
0.01
0.10


1540
0.62
0.01
0.31
0.54
0.28
0.58
0.05
0.00


1541
0.62
0.00
0.75
0.44
0.44
0.75
0.00
0.01


1543
0.59
0.04
0.57
0.52
0.41
0.68
0.20
0.15


1547
0.67
0.00
0.60
0.67
0.51
0.75
0.00
0.00


1549
0.63
0.00
0.59
0.58
0.45
0.71
0.02
0.14


1554
0.59
0.05
0.59
0.47
0.39
0.67
0.34
0.22


1558
0.60
0.02
0.66
0.46
0.41
0.70
0.09
0.12


1559
0.64
0.00
0.66
0.57
0.47
0.74
0.00
0.00


1563
0.61
0.02
0.68
0.44
0.41
0.70
0.09
0.06


1566
0.62
0.00
0.38
0.47
0.29
0.57
0.04
0.04


1576
0.59
0.04
0.49
0.59
0.41
0.67
0.18
0.13


1578
0.64
0.00
0.44
0.72
0.48
0.69
0.02
0.10


1580
0.60
0.02
0.66
0.47
0.42
0.71
0.13
0.14


1583
0.61
0.01
0.81
0.34
0.41
0.75
0.03
0.04


1586
0.59
0.04
0.63
0.47
0.41
0.69
0.20
0.02


1588
0.60
0.02
0.62
0.47
0.40
0.68
0.15
0.00


1593
0.64
0.00
0.59
0.69
0.52
0.74
0.00
0.16


1595
0.61
0.01
0.65
0.47
0.42
0.70
0.07
0.01


1600
0.61
0.02
0.66
0.51
0.44
0.72
0.02
0.03


1606
0.61
0.01
0.38
0.42
0.27
0.54
0.01
0.49


1615
0.61
0.01
0.60
0.49
0.41
0.68
0.15
0.03


1623
0.59
0.05
0.41
0.48
0.31
0.59
0.16
0.79


1628
0.61
0.01
0.29
0.51
0.26
0.56
0.01
0.85


1634
0.64
0.00
0.59
0.58
0.45
0.71
0.02
0.00


1642
0.63
0.00
0.75
0.43
0.43
0.75
0.01
0.24


1646
0.60
0.02
0.78
0.42
0.43
0.77
0.00
0.06


1651
0.60
0.03
0.50
0.42
0.33
0.59
0.17
0.84


1656
0.61
0.01
0.47
0.76
0.53
0.71
0.00
0.12


1660
0.59
0.04
0.78
0.39
0.42
0.75
0.01
0.09


1663
0.60
0.02
0.57
0.61
0.46
0.71
0.01
0.11


1671
0.61
0.01
0.68
0.52
0.45
0.73
0.00
0.04


1681
0.61
0.01
0.65
0.57
0.46
0.74
0.00
0.31


1683
0.60
0.03
0.72
0.45
0.43
0.74
0.01
0.07


1691
0.63
0.00
0.87
0.24
0.40
0.76
0.08
0.00


1694
0.59
0.04
0.71
0.45
0.42
0.73
0.03
0.38


1704
0.62
0.01
0.41
0.80
0.54
0.70
0.00
0.69


1705
0.61
0.01
0.43
0.42
0.30
0.56
0.05
0.79


1712
0.62
0.00
0.74
0.51
0.46
0.77
0.00
0.06


1718
0.63
0.00
0.50
0.64
0.44
0.69
0.04
0.00


1719
0.64
0.00
0.57
0.61
0.46
0.71
0.01
0.09


1720
0.62
0.01
0.54
0.23
0.29
0.47
0.00
0.17


1721
0.64
0.00
0.65
0.55
0.45
0.73
0.00
0.02


1722
0.59
0.04
0.57
0.51
0.40
0.67
0.31
0.05


1734
0.60
0.02
0.49
0.63
0.43
0.68
0.08
0.06


1738
0.61
0.01
0.79
0.35
0.41
0.75
0.02
0.05


1742
0.64
0.00
0.63
0.57
0.46
0.73
0.00
0.03


1756
0.60
0.03
0.56
0.63
0.46
0.71
0.01
0.00


1757
0.61
0.02
0.57
0.56
0.43
0.69
0.04
0.02


1764
0.59
0.05
0.85
0.26
0.40
0.76
0.07
0.02


1778
0.60
0.03
0.76
0.32
0.39
0.70
0.19
0.03


1782
0.62
0.01
0.69
0.49
0.44
0.73
0.01
0.01


1783
0.66
0.00
0.74
0.52
0.47
0.77
0.00
0.00


1784
0.59
0.03
0.76
0.36
0.41
0.72
0.04
0.02


1790
0.63
0.00
0.72
0.52
0.46
0.76
0.00
0.03


1798
0.59
0.04
0.56
0.64
0.48
0.72
0.00
0.04


1806
0.61
0.01
0.28
0.50
0.24
0.55
0.00
0.31


1814
0.63
0.00
0.43
0.35
0.27
0.51
0.00
0.20


1816
0.63
0.00
0.62
0.58
0.46
0.73
0.00
0.04


1819
0.61
0.01
0.71
0.48
0.44
0.74
0.00
0.12


1820
0.62
0.01
0.49
0.66
0.45
0.69
0.02
0.07


1821
0.59
0.05
0.57
0.59
0.45
0.71
0.03
0.44


1823
0.64
0.00
0.28
0.51
0.25
0.55
0.00
0.16


1824
0.61
0.01
0.49
0.67
0.46
0.69
0.01
0.08


1833
0.63
0.00
0.76
0.43
0.44
0.76
0.00
0.00


1836
0.60
0.03
0.68
0.43
0.41
0.70
0.09
0.02


1837
0.61
0.01
0.54
0.59
0.44
0.69
0.07
0.06


1838
0.59
0.04
0.50
0.64
0.44
0.69
0.05
0.46


1843
0.64
0.00
0.68
0.50
0.44
0.73
0.01
0.00


1844
0.61
0.02
0.63
0.58
0.46
0.73
0.01
0.60


1845
0.64
0.00
0.60
0.61
0.47
0.73
0.00
0.04


1852
0.62
0.01
0.51
0.63
0.44
0.69
0.05
0.10


1853
0.63
0.00
0.68
0.47
0.42
0.71
0.03
0.01


1858
0.61
0.01
0.65
0.58
0.47
0.74
0.00
0.06


1859
0.60
0.02
0.75
0.44
0.44
0.75
0.00
0.00


1864
0.59
0.05
0.53
0.60
0.43
0.69
0.08
0.34


1866
0.62
0.01
0.54
0.68
0.49
0.72
0.00
0.06


1872
0.63
0.00
0.65
0.51
0.43
0.71
0.02
0.04


1874
0.59
0.03
0.54
0.54
0.41
0.67
0.14
0.03


1877
0.59
0.04
0.51
0.67
0.47
0.71
0.01
0.08


1879
0.59
0.04
0.66
0.44
0.41
0.69
0.09
0.02


1880
0.64
0.00
0.84
0.41
0.45
0.81
0.00
0.00


1882
0.60
0.03
0.62
0.53
0.43
0.71
0.03
0.29


1902
0.62
0.01
0.60
0.63
0.48
0.73
0.00
0.38


1904
0.60
0.02
0.65
0.53
0.44
0.72
0.02
0.23


1907
0.59
0.04
0.71
0.45
0.42
0.73
0.03
0.22


1908
0.61
0.02
0.56
0.61
0.45
0.71
0.02
0.01


1912
0.61
0.01
0.79
0.36
0.42
0.75
0.01
0.06


1915
0.63
0.00
0.63
0.52
0.43
0.71
0.03
0.00


1916
0.62
0.01
0.59
0.61
0.47
0.72
0.00
0.04


1921
0.64
0.00
0.59
0.53
0.42
0.69
0.05
0.09


1922
0.60
0.02
0.65
0.54
0.45
0.73
0.00
0.13


1926
0.61
0.01
0.69
0.46
0.42
0.72
0.04
0.02


1927
0.59
0.05
0.76
0.38
0.42
0.74
0.03
0.01


1930
0.59
0.04
0.29
0.55
0.27
0.58
0.02
0.90


1932
0.59
0.03
0.50
0.61
0.43
0.68
0.06
0.00


1934
0.61
0.01
0.60
0.59
0.46
0.72
0.01
0.22


1936
0.63
0.00
0.66
0.53
0.45
0.73
0.01
0.02


1938
0.60
0.02
0.79
0.36
0.42
0.75
0.02
0.18


1939
0.59
0.05
0.47
0.48
0.34
0.61
0.51
0.04


1941
0.61
0.02
0.69
0.44
0.42
0.71
0.04
0.04


1945
0.61
0.02
0.50
0.58
0.41
0.67
0.35
0.00


1946
0.60
0.02
0.74
0.42
0.42
0.73
0.02
0.05


1948
0.60
0.02
0.65
0.50
0.43
0.71
0.02
0.03


1949
0.60
0.03
0.56
0.60
0.45
0.70
0.02
0.10


1950
0.63
0.00
0.66
0.59
0.48
0.75
0.00
0.02


1953
0.62
0.01
0.72
0.42
0.42
0.72
0.03
0.01


1957
0.59
0.04
0.75
0.44
0.44
0.75
0.01
0.31


1958
0.61
0.01
0.71
0.43
0.42
0.72
0.03
0.03


1959
0.61
0.02
0.72
0.46
0.43
0.74
0.01
0.02


1963
0.70
0.00
0.29
0.42
0.22
0.51
0.00
0.00


1964
0.64
0.00
0.76
0.37
0.41
0.73
0.04
0.01


1965
0.67
0.00
0.54
0.66
0.48
0.72
0.00
0.02


1967
0.62
0.01
0.56
0.59
0.44
0.70
0.03
0.01


1970
0.59
0.05
0.69
0.52
0.45
0.74
0.00
0.12


1971
0.60
0.02
0.59
0.56
0.43
0.70
0.03
0.01


1972
0.66
0.00
0.62
0.62
0.48
0.74
0.00
0.00


1976
0.59
0.05
0.66
0.48
0.42
0.71
0.05
0.09


1977
0.59
0.05
0.54
0.57
0.42
0.68
0.11
0.11


1978
0.60
0.02
0.65
0.47
0.42
0.70
0.04
0.09


1980
0.61
0.01
0.63
0.53
0.43
0.71
0.04
0.31


1981
0.59
0.04
0.60
0.55
0.44
0.71
0.03
0.58


1984
0.63
0.00
0.41
0.85
0.61
0.71
0.00
0.10


1986
0.63
0.00
0.69
0.49
0.44
0.73
0.01
0.06


1988
0.60
0.03
0.72
0.46
0.43
0.74
0.01
0.00


1990
0.62
0.01
0.56
0.62
0.46
0.71
0.01
0.01


1991
0.59
0.05
0.59
0.54
0.43
0.70
0.06
0.64


1992
0.64
0.00
0.74
0.45
0.43
0.75
0.01
0.01


1994
0.59
0.03
0.56
0.55
0.42
0.68
0.12
0.31


1998
0.66
0.00
0.60
0.60
0.47
0.72
0.00
0.00


1999
0.60
0.02
0.66
0.46
0.41
0.70
0.05
0.00


2004
0.60
0.02
0.71
0.43
0.42
0.72
0.05
0.02


2005
0.67
0.00
0.63
0.65
0.51
0.75
0.00
0.01


2007
0.62
0.01
0.54
0.62
0.45
0.70
0.01
0.02


2009
0.60
0.02
0.60
0.53
0.42
0.70
0.04
0.00


2012
0.61
0.02
0.71
0.45
0.42
0.73
0.02
0.01


2013
0.59
0.04
0.53
0.61
0.44
0.69
0.03
0.09


2014
0.59
0.04
0.59
0.47
0.39
0.67
0.36
0.21


2016
0.60
0.02
0.68
0.42
0.40
0.69
0.13
0.28


2018
0.59
0.04
0.63
0.50
0.42
0.70
0.05
0.44


2019
0.65
0.00
0.71
0.52
0.46
0.75
0.00
0.01


2023
0.61
0.02
0.57
0.59
0.45
0.71
0.01
0.00


2024
0.59
0.04
0.65
0.50
0.43
0.71
0.06
0.07


2025
0.59
0.03
0.69
0.48
0.44
0.73
0.01
0.03


2027
0.61
0.01
0.68
0.53
0.45
0.74
0.00
0.00


2030
0.61
0.01
0.66
0.47
0.42
0.71
0.04
0.01


2032
0.59
0.05
0.59
0.57
0.44
0.71
0.02
0.05


2033
0.63
0.00
0.66
0.55
0.46
0.74
0.00
0.68


2034
0.60
0.03
0.41
0.70
0.44
0.67
0.11
0.10


2036
0.62
0.01
0.68
0.47
0.42
0.71
0.04
0.17


2037
0.59
0.03
0.59
0.48
0.40
0.67
0.30
0.38


2039
0.64
0.00
0.69
0.57
0.48
0.76
0.00
0.00


2042
0.59
0.05
0.78
0.35
0.41
0.73
0.04
0.59


2043
0.63
0.00
0.56
0.65
0.48
0.72
0.01
0.01


2044
0.63
0.00
0.63
0.49
0.42
0.70
0.08
0.01


2046
0.61
0.01
0.66
0.53
0.45
0.73
0.01
0.06


2048
0.62
0.01
0.69
0.51
0.45
0.74
0.01
0.96


2050
0.59
0.05
0.57
0.61
0.46
0.71
0.01
0.01


2052
0.64
0.00
0.76
0.46
0.45
0.77
0.00
0.01


2054
0.61
0.01
0.74
0.47
0.45
0.76
0.00
0.05


2056
0.62
0.01
0.71
0.48
0.44
0.74
0.00
0.01


2058
0.63
0.00
0.72
0.46
0.43
0.74
0.01
0.02


2060
0.62
0.01
0.74
0.47
0.44
0.75
0.00
0.00


2061
0.62
0.01
0.72
0.48
0.45
0.75
0.00
0.06


2062
0.59
0.04
0.82
0.31
0.41
0.76
0.04
0.42


2063
0.61
0.01
0.63
0.50
0.42
0.70
0.06
0.09


2064
0.62
0.00
0.63
0.57
0.46
0.73
0.00
0.01


2067
0.62
0.01
0.62
0.55
0.44
0.71
0.02
0.09


2068
0.60
0.02
0.53
0.58
0.42
0.68
0.07
0.11


2069
0.62
0.01
0.85
0.28
0.41
0.77
0.02
0.08


2070
0.66
0.00
0.54
0.64
0.46
0.71
0.02
0.10


2071
0.65
0.00
0.69
0.54
0.47
0.75
0.00
0.01


2072
0.59
0.04
0.74
0.38
0.41
0.71
0.07
0.06


2073
0.63
0.00
0.50
0.61
0.43
0.68
0.12
0.01


2074
0.60
0.02
0.66
0.47
0.42
0.71
0.06
0.29


2076
0.62
0.01
0.75
0.46
0.44
0.76
0.00
0.12


2080
0.60
0.03
0.75
0.42
0.43
0.75
0.01
0.01


2081
0.60
0.02
0.72
0.43
0.42
0.73
0.02
0.01


2082
0.61
0.01
0.72
0.38
0.40
0.70
0.12
0.24





Auc.pvalue: Wilcoxon Test P-value.


KM: Kaplan Meier curves.


mvaHRPval: Multivariable Analysis Hazard Ratio P-value.













TABLE 11







List of Target Sequences








SEQ ID



NO:
SEQUENCE





SEQ ID 
ATACCCTTCGCCATGTTATCAGCCAGACAGGAGGATAC


NO: 1
AGTGATGGACTCGCAGCCAGTCAGATGTACAGTCCGCA


SEQ ID 
GGGCATCATCCCTGGTCCAAAATCAAGATACCGAATTA


NO: 2
GAGTTGAGGGTAAAAAACACATCTTGATCATAGAGGGA



GCAACAAAGGCTGATGCTGCAGAATATTCAGTAATGAC



AACAGGAGGACAATCATCTGCTAAACTTAGTG


SEQ ID 
GCAAAGGTTTCAGCGTAGTGGCAGACACGCCCGAGCTC


NO: 3
CAGAGAATCAA


SEQ ID 
CAGCTGGTGTGCCTTAAGAGAATCCCTATAAATAACAG


NO: 4
AAAAGACACTCCAAGCATTCCTGTACGTGGACTCAGAG



CACAGAGAAAAGAAACTAAAATGCCTTTTGGCATTTCA



AGATATTTGGCACTCTTGTGATTACATTTTTTTACAGT



CCATTAAAGAGAATAAACTGACATAATATTAGAGAAAT



AAACAGGCTGCTCACACAACAGACTGCAAGGGGAAGTT



AGAAAAAGCTCAAGCATTTTTTTCTTTGTTTTTCGTGT



GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTTTTCT



GACATAAAAAATGTGTCCATTTGCATTAACTTGGGCAG



ATAGCTTGCAGCAACAAAGAAACACAAGCTTTACAACT



CATTTTAAAATAAAATCTTTTCTATGTATCATTCCTTA



GAAAAGTTCTCTTCTTGTTTTAAACACATTCCTGATAA



CTTCTAAAGATGACCAAAATAAAACAGAATATCTACAG



AGATCATTTTCTGAATTTTTTGTACATCCAAGGATAAC



AACATAAAAAAAATAAAACTGGACAGCATTTCACATCC



AAGTGCACAGAACCATTTTTGCAAGATTAAATAATGTA



AACATTGGGAACAGCCAAATCAGCGAAGAATGCCAACA



CCTCAAAACACCTGGTGTTGCCGCTTCATTAAGTGGTT



CAAAATCCAGATCTATAATTGCGCAATATTCACCGTAT



ATAAAAAGAAATGGATATTAATTTTGACAAATAGCTGC



AACTGAGACTTCTTTTTATTTCTTTATATGTGTATATA



GTGAATTTTTATTATTTTTAAAATTTTATTTATTTTTT



TATTTTTATTTTTGCAGAGGAGCCCAGAGCCTTCTCCT



CCTCCTCCTCCTCCTCTCGCCTCATCTGTCTCCCGGCC



TGATACCAGATACAGGTTGTTGATTTCATCGTGGGTAG



CAAGCTAGTAATAAATTTCAAAGTGCTTTCTCTTTTCA



TGCTTTTTGCCAATAACTGTTACCGCCGTTCTTATTCT



CTCCCTTAACTCATTGTCTTTGGGGGAGTTAGACACCA



GGAGGTGCCTTGTCGGTCATATTTTTCAGCACGTCATC


SEQ ID
CTCCTGTGTCCTTAAAGTAGTCATGGGCTGGGAATGTT


NO: 5
CGGTTAATATCCCGGGTGATAGCACTGTCCTGGGGAGA



CTCCTGTGGAAACATAAGGAAAGAGAGGGTTTAGTTAG



GTTAATCATGTAAACTCTTATTCAGGTTTAGGCAAGGT



CTTCTCATTTACACACTTTAAATGTTGCAGGGACATAC



ATACACATATGTATGCCCATAGTTACTGCCTCTTCAGG


SEQ ID
TATACAAGGGCTCAACCGAGGCTTAATTTAAAAGACAA


NO: 6
AAACAAAACAAAAATACCACAGCTCAAGATAAAGAGTC



CTATACAGAAATCACAAAAAGGACAGACCATCTAAGGA



AAAATTAAAAAGACGACACAAGGACAGGCTGGGCAGCC



TGGGTCAGGGCTCCTGGCTGGTGACCTGCTTTGAGTAG



GTTTCTTGCAGGTACTTCTTAAAAGC


SEQ ID
GCTGAGGCACCAATCATACCCTATACAGACAGCTAAGC


NO: 7
ACATTGTGTAAGGCAGATGTTGCCCACCACTCAGCCCA



TTAGAGAGCTCATGCACCATCAAACCCAGAATAAAGCA



ATAAGCCCAATGGTGATCCAACCCTTTG


SEQ ID
TCAGGCTTCTGTTGCAAGCCAATGTAGGGAACCA


NO: 8



SEQ ID
GCTTTCATACTTGGAGCTCTACTGATTTTCCATCCAAG


NO: 9
CCAACTTGTAGGGTTTTTTCCTTCCTATCACCAGAGGA



GACAGGGTTTAGGGGAATCCAAGAAGGTTGAAGTCAGC



ACT


SEQ ID
GGGTTATCTTCTAGTCCACATGTCACATAATATGTACC


NO: 10
TTTATTTACCTTTTAAACTGAAGTTTTAAAACCTGGGT



TTTAAAAAGAGAACAACTACCCATCAGCAATTACAGAA



GACAAAGGAACTTGTGTGTCTGAAGACTGAGTGTTATT



TAGCAGCTCTTTGGTCAGCTTGGATTGGTCACATATGT



GGAAACTGGGAAATAATAGGGGCTACTTACACTGGAGA



AGAACACTACAAATGGTGTAAAGAGTGGTTTTGGAATG



TATCCAGACTTCCTTCTAAAATAAAAATTTAAACAGCT



GTGTTTGAGAGATGGGTATGCACAATTCTTGTAAGAAA



GACTGTGTAGATGTTTGAGGTCCCCTTAGTCCCTGATG



CTACCATTGTTCC


SEQ ID
GGGCAAAATATTCCTGGAGTGCTGAGCAATACATGTCA


NO: 11
CAGTCTCCAATTTTTTTTTTATTCTTACGTTAGTTCAG



ATTCCACTGTATCCAATATGTGCTTGAGAGTGAAAATT



GTATTAGTTTCTATTGTAATCTATCTCCATTTCGCCTC



GAGAAAAATTA


SEQ ID
TGTCGAGGCCCGGTTGGCTTTCAGAGGCGTATCCATGG


NO: 12
GAGTAGGTGTCATGTATCAAATAGGAGATTCAAAGTCA



GCTGTTACCACGGCTACAGAAATGCCAGTCTTTTCCTA



AGAGTGCGAA


SEQ ID
CCGGGTATCAGATGGTTATTATCCGACC


NO: 13



SEQ ID
GTTGCAACTATCTATGCTGCCTGTAGCAGACACACTCC


NO: 14
AGCTCTAAGGATACATATAGAATGAAAGTAAAGGGATG



AAAAGAAGATGCTCCATGCAAATGGAAAACAAAAGACG



GTAGGGGTGGCTATACTTACATCAGGCAAAATAGACTT



TTAGTCAAAAATTATAACAAGAGACAAAGGAGCTCACT



ATATAATTATAAAGGGCTAATTCATCAAGAGGATATAA



AAATTATAAGTACATATGCACATAATGTCAGAGCACCT



AAATATATAATATTTACATAACTGAAGGGAGAAACAGC



AATATAATAATCGTAGCGGACTTCAGTA


SEQ ID
CCTTGACCTGGGAAAGCCATTACTCTTGTGTCTGCTAC


NO: 15
TGCCCTCCCACAGTCACCCCAATATTACAAGCACTGCC



CCAGCGGCTTGATTTCCCCTCTGCCTTCCTTCTCTCTG



CACTCCCACAAAGCCAGGGCCAGGCTCCCCATCCCTAC



CTCCCACTGCATCAGCAGTGGGTGTTCCTGCCCTTCCT



GAGTCTAGGCAGCTCTGCTGCTGTGATCTGCACACCCT



CCAACCTGGGCAGGGACTGGGGGGATGCAGTGTGTGTT



AGTGCCCATGTGGCATTGTGGCACTGTTGCCCCCCATG



GCGGCATGGGCAAGATGACCTTCCATTAGCTTCAAGTC



TTGTTCTCTTGTCTGTGGTCTGTTTAATATGTGGGTCA



CTAGGGTATTTATTCTTTCTCCCATCCTTACACTCTGG



ATCATTGTGCAGACTTAATCAGGGTTTTAACGCTTTCA



TTTTTTTTTTTTTTTTTTTTTTTTTGAGCTCAAAGAGA



GTTCTCATTTTCCCTATTCAAACTAATACCCATGCCGT



GTTTTTTACCTTGGATTTAAAGTCACCTTAGGTTGGGG



CAACAGATTCTCACTCATGTTTA


SEQ ID
TTCGAATGTTTCAGAGCGCAGGGCCGTTCTCCCTCGTG


NO: 15
TCCTCTGGACCCACCCGCCCCTTCCTGCCCTGTTTGCG



CAGGGACATCACCCACATGCCCCAGCTCTCGGACCCTG



CAGCTCTGTGTCCCAGGCCACAGCAAAGGTCTGTTGAA



CCCCTCCCTCCATTCCCAGTTATCTGGGTCCTCTGGAT



TCTTCTGTTTCTTGAATCAGGCTCTGCTTTCCCCCTAG



CCACTACAGGCAGCCTCTGACAGTGCCGCTTTACTTGC



ATTCTGCAGCAATTACATGTGTCCTTTTGATCCTTGCC



CAACTTCCCTCCCTCTCCCAGCTCCTGGCCCCTGGCCC



AGGGCCCCTCTTGCTGTTTTTACCTCTGTTCCTTGGGG



CCTAGTACCCAGCAAGCACCCAAATGGGGGAGGTTTTG



GGATGAGAGGAGGAAACGTGTATACCTGTAACATCTGG



TGGCTCTTCCCCCAGAAGTTTGTGTTCATACATAATTG



TTTTCCACGCTGGATCATAATGTGACGTGCAGTTCTGC



CCTGTGCTGGGGAGCCACATGAAGCTTCCCCTGGCTAA



CTTGCTACCCCGCAGCAATCCCAGTGTGGCCGTCTGCT



TGCTAAAAAATG


SEQ ID
TCACGATGAAGCATGCTAGAAGCTGTAACAGAATACAT


NO: 17
AGAGAATAATGAGGAGTTTATGATGGAACCTTAAATAT



ATAATGTTGCCAGCGATTTTAGTTCAATATTTGTTACT



GTTATCTATCTGCTGTATATGGAATTCTTTTAATTCAA



ACGCTGAAAAGAATCAGCATTTAGTCTTGCCAGGCACA



CCCAATAATCAGTCATGTGTAATATGCACAAGTTTGTT



TTTGTTTTTGTTTTTTTTGTTGGTTGGTTTGTTTTTTT



GCTTTAAGTTGCATGATCTTTCTGCAGGAAATAGTCAC



TCATCCCACTCCACATAAGGGGTTTAGTAAGAGAAGTC



TGTCTGTCTGATGATGGATAGGGGGCAAATCTTTTTCC



CCTTTCTGTTAATAGTCATCACATTTCTATGCCAAACA



GGAACAATCCATAACTTTAGTCTTAATGTACACATTGC



ATTTTGATAAAATTAATTTTGTTGTTTCCTTTGAGGTT



GATCGTTGTGTTGTTGTTTTGCTGCACTTTTTACTTTT



TTGCGTGTGGAGCTGTATTCCCGAGACCAACG


SEQ ID
GTCCATCGAGGTGTTTCATAAGTTTTTTGGTGTGTTTT


NO: 18
CTGGGTCGTCTATGTGTCATATGGTTTTACTTTTCTCT



CCTTTTTCGTTTTCAGAACATTTTTCTGTCTGTTTTGG



ATTCACTGCTTCCATTTTACAGAATGTCACTCTTTAGA



CTCTCAGTCCATCATGCCATCGGGTACTCTTGTTGCAG



TGTAATTTTTATTACATGCGGTTATTTCCCTAACGATG



TGCTATTCACGTTCATCTTCAAACTCATTTTCCATCAG



CCAGTGTCTACTATTTAGTGCCCTGGCTCTATTTCGGT



CCTCCTCCCCGGGCTTTCCCTGGCTGCTGTGCTGGCCA



AAAGCATGGGCTTTATTCTCTCCATTGGCTGCTGCTCC



ACCTTAGAGGTGTGACCTCACTAGCGTTGACTG


SEQ ID
CCCACTTTAGTCACGAGATCTTTTTCTGCTAACTGTTC


NO: 19
ATAGTCTGTGTAGTGTCCATGGGTTCTTCATGTGCTAT



GATCTCTGAAAAGACGTTATCACCTTAAAGCTCAAATT



CTTTGGGATGGTTTTTACTTAAGTCCATTAACAATTCA



GGTTTCTAACGAGACCCATCCTAAAATTCTGTTTCTAG



ATTTTTAATGTCAAGTTCCCAAGTTCCCCCTGCTGGTT



CTAATATTAACAGAACTGCAGTCTTCTGCTAGCCAATA



GCATTTACCTGATGGCAGCTAGTTATGCAAGCTTCAGG



AGAATTTGAACAATAACAAGAATAGGGTAAGCTGGGAT



AGAAAGGCCACCTCTTCACTCTCTATAGAATATAGTAA



CCTTTATGAAACGGGGCCATATAGTTTGGTTATGACAT



CAATATTTTACCTAGGTGAAATTGTTTAGGCTTATGTA



CCTTCGTTCAAATA


SEQ ID
ATTAGCAGCCATATTCCACAGTTCCTATAATTTTTACT


NO: 20
GGGGGGGATTTGTGATAGGAAAGTCCTTGGGAAACATT



TCCAATCTTTCAAAATATTATTGTGTATCTTAAGAAGT



ATAGGAACTTGTATGTTGAAATGTTGTATGGTAGTTCT



TGTATAGTTAAATAATAATCTTTTTAAGAGTTAATGAT



AAGCATATGTTATGTGCATTATTAATAAAATAGTGGCC



ACTTAGGTAATACCCACTTTTATCTTGTGTGCTGGGTA



CTCTGGTTACTGAGATAAATAAGGCACTGGACATCCTC



ACGTGGAGTTCACAGGCTCATCAGTGAATTCTGTACCA



CATTTCAACCTTGTTTATTTTAGTTTAATGGAATATAC



ATTCTTAGTATTGCCTGATTATTTAAATTTGTTGAGGG



GGATTGCATGTTGCTTTATTGGCCTGTAAAAATAGCTA



GTTTGGTAAGATTTGGTCTCGCACCTTCCATCTTTGCT



ACCACATTAAAGATGAGCTTGTTAAAAAGGAAAGCATA



TTTCTCTGATTGCCCTTATGGAGAAATA


SEQ ID
GGCTTCTGACGCCAAATGGGCTTCCCATGGTCACCCTG


NO: 21
GACAAGGAGGCAACCACCCCACCTCCCCGTAGGAGCAG



AGAGCACCCTGGTGTGGGGGCGAGTGGGTTCCCCACAA



CCCCGCTTCTGTGTGATTCTGGGGAAGTCCCGGCCCCT



CTCTGGGCCTCAGTAGGGCTCCCAGGCTGCAAGGGGTG



GACTGTGGGATGCATGCCCTGGCAACATTGAAGTTCGA



TCATGG


SEQ ID
GTGATTTCTGTATAGGACTCTTTATCTTGAGCTGTG


NO: 22



SEQ ID
AGAGGATGTCCATGTTCAATCACCACTGTCCAAATTCA


NO: 23
GAAGCTCAGAACGCTGGACTCTCCCTTTGCAG


SEQ ID
AGAACTAGCATGTCTTCGTGGCCGATTTGACAAGGGCA


NO: 24
ATATATGGAGTGCAGAAAAAGGCGGAAACTCAAA


SEQ ID
AAGACCACCCAGGAAACCATCGACAAGACTGCTAACCA


NO: 25
G


SEQ ID
GTGTCTTGCTTCATCCCACTGACTGCTGGGAGAGAGCC


NO: 26
TCTGGGACTTTTCTTTGGGGCATCATTTTGTTTTGTCT



TTCGTAGCAGGGAAAGGATATGACAATGGGGAGGACAG



TTCTTTTGGAGGTTGGAGGGGCCAAGCCAAGGACAGGA



GCAAGTGTGCCCTCATTTTGTTTC


SEQ ID
CGTTTACGGCTTCCACTTGAGTATATGGCAATCTGTGC


NO: 27
CCTTTGTGCAAAAGATCCTGTAAAGGAGAGAAGAGCTC



ATGCTAGGCAATGTTTGGTGAAAAATATAAATGTAAGG



CGGGAGTATCTGAAGC


SEQ ID
AACAAGATGAACAAGTCGGACTTCCTGGGAAAGGGGGG


NO: 28
AAGGCCAAGGGGAAAAAAACACAAATGGCTGAAGTTTT



GCCTTCTCCGCGTGGTCAAAGAGTCATTCCACGAATAA



CCATAGAAATGAA


SEQ ID
GTCCCAGGCGGTCTAGCAGTGATGAGCAGGGCCTCTCG


NO: 29
TATTCATCTT


SEQ ID
AAGAGATACTCAGAGATGGATGATCATTATGAGTGCTT


NO: 30
GAATAGATTGTCTCTTGAC


SEQ ID
AGCCAATCTTGGCTCGGATTCAGGAGGACCGCACTGTG


NO: 31
ATTGTGTCTCCTGTGTTTGACAACATTCGTTTTGACAC



CTTCAAACTGGATAAGTATGAACTGGCAGTTGATGGGT



TTAACTGGGAACTCTGGTGCCGCTACGATGCACTGCCA



CAAG


SEQ ID
ATTAATTAAAGTTCTGATTCAGAGGGGATATGATTCGG


NO: 32
ATCCTGTGAAGGC


SEQ ID
AAACGCTGGCGTCCGTTTCTGCTGAGAGCGTGGGGCTT


NO: 33
TCTCTGCAAGTGGGGGGTGGGAGATGAGGGTTTGGATG



AGGGTGTGGGAGGACCCTAAACTGATTCCCATGCTAGT



TGGAGAAAGAAAGGTGTGGATGAGGATAAAGTTTTCAT



GGTGACCAGGGTGACCCTCCGCTCAGAGGGACGAGCGG



AGCCCGGCAAAACCAGTCACTGCCTTGTAGTTCCAAGC



TTTGGGGATGATCAGCTCCCAAGAAATTGCTGTGGGGT



GCGGGGGCTGTGGGTGACCCAAATTGGGCAGAGGGCCT



ACAGGTCTGAGGCTGCCTGCACA


SEQ ID
CATTTCTCTCTGGTGTGGCGAGCCGAGCAGATCGCTGG


NO: 34
GAGAGAAATCGGAAAAGGGGGGAGAGGAAAAGGAAAAG



GGGACTTGGAGAGAGACTTTGTGCTTCAATGTTTC


SEQ ID
TTTGAGTCAGGTTATCTCTGTCGCTCAAGCT


NO: 35



SEQ ID
ACATTTGTCTGCTTGGGCTGTCATAACAAAATACCATC


NO: 36
GACTAGTGTAAAAATAAAAATCTATTATCTCTCAGTTC



TGGATGCTAGAAGTCCCAGAGTAAGGTGTCCATATATT



TAGTTTCTGGCGAAGGCTCTTCCTGGCTTGTAGTCAGT



GCCTTCTCTGTCTGCCCTCACTTGGCCTATCCACCTGT



GAACACAAATAAATATCTCTGTTGTTTTTTTCCTCTCC



TTATGTGAACATGTGTCCTATGGAATTAGGGCCTCACT



CTTGTGACTTCA


SEQ ID
AGTGAGACATTGTGGCCTGGAAGTCTTTCAGACACCCA


NO: 37
CTCAGAGAAGTCAAGTTTAAAGTGGATGTTCTTCAGAG



AATTTTTCATTTCTGAAAATGTGTTTTGCTTATAGAAT



ATAACAGAGTTGACTAGAAAGAGAGAAACAACTGCATA



CTAATCTTTTAAAGCCTTTAACAGTTGCTTTTAAACTT



TCTTTTTAAATGTTTCATGACTCTTCACCTATTTTTTT



TTAAATGGGGACGAAGAGATATGAAAACTGAGACATAA



GACAAATACCTAGAAACCTCTAAGACTGCACATATGAT



TTGGTAGAAGTCTGAAGGTATACACATTGTAAGAGGCA



GACCTA


SEQ ID
CAGGGTGCTAATCATGATATTTGGTTACA


NO: 38



SEQ ID
CTGGCCCTGTGATATAACACAGATCAGCAATGGATTCA


NO: 39
CAATACTCTCTGGCTATGTGACAACAAGATGCAGGTCA



CCCAGCAACTCGACACTTCCTCAGACCACTACAGGTCA



AAGTCAATTCCTGATCCAACTAGAAATGTCACGAACAT



GCCTTTCAGATG


SEQ ID
GATGAGACTAGGCAGGGTGACAAGGTGGGCTGACCGGG


NO: 40
AGTAGGAGCAGTTTTAGGGTGGCAGGCGGAAAGGGGGC



AAGAAAAAGCGGAGTTAACCCTTACTAAGCATTTACCC



TGGGCTTC


SEQ ID
TTCCTTTTTATGTCAACGACGCCCATAG


NO: 41



SEQ ID
ATGAGGACAGGCCTTGAGTCTGTCCTGGTCTCTGGAAT


NO: 42
CACGGTGTCTAGTAGAGGCCAGCACACAGCAAATATAT



AAATGTACAAATGAGTGAATGAAGAGAATCTGATTGGC



CTTAAGGAACTTACGCACTTAAAATAATTGGGCAGAAG



AGAAGCAGTGAAGGAGTGCAGAGGCATCACCTGA


SEQ ID
AGCACAATGGCTGGAGGTCAGATGCCCACTAGGAGATG


NO: 43
CT
















TABLE 55







Affymetrix Probeset ID = Aff P-ID


A = Category: 1 = Non_Coding (Intergenic); 2 = Non_Coding (Utr); 3 = NON_CODING


(Nctranscript); 4 = Non_Coding (Intronic); 5 = Non_Coding (Cds_Antisense); 6 = Non_Coding


(Non_Unique); 7 = Non_Coding (Utr_antisense); 8 = Non_Coding (Intronic_Antisense); 9 = Coding


B = Associated Gene; C = Kolmogorov Smirnov p-value; D = Mean Decrease Gini; E = Mean Decrease


Accuracy














SEQ
Aff








ID NO
P-ID
A
B
Sequence
C
D
E





 313
2315652
1

AATGGCAAAGGACCACGGTGCCCTGCCC
0.013881148
0.009628618
4.57E−06






AGCCGCCTGCTGCAGGGAGAGCAGCTCC









CTCAGACCCGGAGTGCTCTGCTGT





1865
2318066
1

ATCAGAAGATTTCCGGGAATGGCCCTGG
0.000124059
0.007038957
3.54E−06






CCAAAACCAATGTTGACCAAACCA





 851
2318095
2
KCNAB2
TGAGTGAGCAGCCTGCGGCAGCCCTGAC
0.017721275
0.008633649
5.18E−06






TCACTGCGGGTCGTGCCGTCTGTGCAGC









ACTGGGGTACCCACCACCC





 375
2320530
3
NPPA-AS1
GTGAAGACCCGTGGCCAGCTTCTGTTGT
0.017194217
0.009820199
7.40E−06






TGCCATCGGCCATTGCTTTTTGTTCGCTT









GCTTTTGGTTTTGCAAGAAGAGCGGCCT









CTGTCTCTGATCTGCTTCAAATCATCATT









CCATCAGTGACAGAAGTGGCTGTTCCAT









CAGTGGTCGCAGCCAGTTC





1289
2321544
4
KAZN
ATTCCTTCCTCCAGTGTGACCATCACACA
0.015428709
0.007819131
3.23E−06






TTGTCCATATGGCTGGATGTGAG





1326
2324753
9
ZBTB40
GTAAGGGATGTCTCTGCGCCATCCTCAG
0.0060277
0.007357121
4.99E−06


2077
2324895
2
C1QB
GCTGCTTCACATCCACCCCGGCTCCCCCT
0.001253978
0.006841561
3.40E−06






GCCAGCAACGCTCACTCTACCCCCAACA









CCACCCCTTGCCCAACCAATGCACACAG









TAGGGCTTGGTGAATGCTGCTGAGT





 418
2326211
5
STMN1
CCACCTGTAACGTAGAGCAAGCAAACCA
7.48E−05
0.021492165
1.52E−05






CCAAGTAGAATCTTGAGATTCTCTCTCA









ACTGTTCTCTAGAAACACGCTTGTGCTTT









TAATCTGCCTTTTAAAAGGGACACAGAA









CAAAAAATGGTTGTTTGCAAATAAACAT









CTGAAAGAAAGTAACAGCTGACCTGGGC









TGAGGCATCCAAACAAAGCAGTCATTGT









GGAAGGAGACAATGCAAACCACACTGG









GGCAAGAAACGGGGCAGAGAACGTGCG









GTCATTTGTGCGTTGGGTATTTCTACCAG









CCCCAAAGGCCCCATCTGGAACAAGTAT









CAACCAGGAGGGGCTCTATGGCTTGATT









TATTAACCTAACTCAAAAGAAGTCACTG









CCACCAACAGCACTGTGCAGTTTTATTA









ACCATTCAAGTCCAGTAGCATCTGGTAA









GATTGGGACAGAATTGGGATTGAAAAGT









GAACAGATATTCAGCATCTAACAGTTCA









AAAGAAGCCACTACATACTCTTTTCACA









AATATGTTTTCACAGAGCCAATACAGTA









CTAGCCATTAACCCAGTACACCAAGTGT









ACTGAAGTAGAAAAGATGCAACAAGAA









AAATAGCTACATTAGAAAGACCAACACT









TTAGAAAAAGAGTAAAACACTTTCAGTT









TCTCCCCTTTAGCCCCTAAAACAACATCT









TACAGTCTGGATCTGGATCTACCTATAC









AGTCCTACATTAGCTTCTAAAATATTTGT









CAGGAGGGAAAAAATAAAATGACACTG









GCCAGTACAGTCTTTGGATATTTAGGAA









GGGGATGGGGAGAAAGTCAGTTCTCAGA









ACAAATTAGTCAGCTTCAGTCTCGTCAG









CAGGGTCTTT





1954
2326780
2
SFN
TGCGCGCGCGCCAGTGCAAGACCGAGAT
0.000243178
0.00786279
3.51E−06






TGAGGGAAAGCATGTCTGCTG





1304
2327444
4
PHACTR4
ACCGGGAAGGCATCGAATTTGCTGCGAT
0.002984774
0.006653744
2.06E−06






GTCTGTGCAGCTCACATCTGTGATCGGT









GGACCAAAGAACCAGT





1385
2329291
4
ZNF362
ACCTCTGCCAGATTGTGCCTATACAACG
0.012844897
0.007545796
4.23E−06






TGTAATGTGGCGGTTACCCTTTTTTTGGA









GAATCTTCGTTTGTCAGTGTTTCTGAACA









AGCAGAGATTGATGTCTTTTTATAACCTT









AAAGGCTGAAATTCCACAAGCCATAAGC









AGGTCCAGTCCGGTTTCCTGGAGGCCCG









GGGAGGCCTCATTCCCACTTTTGAAGTG









CAGTCCTTGTTTCTTACTCTCAGGCTTGT









CATGCCTAATTAAATGAAATTTGTCTTTA









ACTGTGACATTTCTGGCACAGCCATGGT









TACAAATTTGATTTACCCAATTATATCCT









GTTAGGAAGGAGGACAGATTCTTACAGA









TCCTGTTTACAGAACTAATGATCGTAAA









AGAAAAGGGTCTCAGCAAAGGTACTTTG









AAGAGTTTTTAGCTATTATTCCTAGTAGT









TTTGTAGATAAGGCCAATTACATTTGTTG









TTTTCAATAGAATGATTATTTGAACATTT









CCTTGATGATTTATTATTTCATATCTATG









TTAGGTTTTTATAGTCCCCCTCCCACCCT









CACCCCCAGAATTCTGAAGAGTTAGTTG









GAAGAAGGAAGAAGGCACCATTTTAGG









AATATTTTATTCCAGTTTATTGAATACAG









CCTCCTAAATTGAGGATTAGCGACAGTA









ATAAAGAAAAAAAAAGACCTTTAGAAA









ATTAGAACATTAAGGGTGAAATCAGTTT









CATCCAGTCCTGGGGAAAAATTCCTGTT









CCTCTGATCCTGGGTTAGTTAGCCTGC





 135
2329991
5
CLSPN
CCCATCTGTTGGTTCCTAGGTCCTCCATC
0.001302035
0.022069922
1.50E−05






TAAGAAATCGTTCTTTTGGCTGGGCACA









GTGGCTCACGCCTGTAATCTCAGCACTTT









GGGAGGCTGAGGCAGCTGGATCACTTGA









GGTCAGGAGATCGAGACCAGCCTGGCCA









ACATGGTGACTCCCTGTCTCCACTAAAA









ATACAAAAATTAGCCAGGTGTGGTGGCA









TGCACCTGTAGTCCCAGCTACTTGGGAG









GCTGAGACAGGAGAATCACTTGAACCCG









GGAGGCAGAGGTTGCCGTGAGCCGAGAT









TGCGCCACTGCACTCCAGACTGGGCAAC









AAAGTGAGACTATCTCAAAAAAAAAAA









AAGAAATCTTTCTTTCACCGAGCCCTGGT









CATCATGGTACGTATCTCATGGGTGTAA









AGGAGTCATTA





 143
2329993
3
RP11-
TACTTCATCAATTACGTCCTCTTCATATT
9.91E−07
0.026064562
2.95E−05





435D7.3
CATCAATTTCTTCCCCATCATACTCATCT









TCGCTTCCCACATCACTTC





  56
2329994
3
RP11-
CCAGTGCCAGATCATTACCAGAGTCACT
4.78E−07
0.046754573
5.18E−05





435D7.3
GTGTTCATCCTACAAAATCAGCATCATA









TCCAAATTAAGCAGAATAAAATGCGTCC









TCAATGAAAAAAGGATTTATAAACATCT









GCCCAAATACCTCATTCTAGGAAATTGT









TTCTGATAAGATGCCAAACTTAGAATTC









TCAAGAACTGAGGGGAAAAAAACACTT









GAGGGCAGCAATACATGGAGCTCAGTTA









TGATTACTTTGTTCCCTTCATACTCACCT









CATCACTATCAAACTCATTATCATTTGAA









ACAAGCCGAAAGTCTC





1342
2330255
4
ADPRHL2
CCAGTGCGATCTCCGGCCTTATAGACGT
0.000235082
0.00711415
4.83E−06






CTCGCCCCGAACATCCCGTGCTCGGGGC









GTGGCAGCACCGGGGCCTCAACCGTGCA









GGGTGTGGATAAACCCATCGTAAGTTGA









AAATACCTGAAGTGGAAAGTGCGCTTTC









AGCTTAGACGACCGTTTTATCTGGACGC









AGCCCCATCGGACGTCGAGGAGCCTATG









AATGCGTATCAGCGTTATCAGAAAGCCG









AAAAAAACTTAAGTTGAACCATCCTAAG









TCGGGGACTGTCTGTCCACCCTTGCCGA









CTTGACCTCTTTTTCCCGGTTCTCTAGAG









TCAGTATACCACCAGCCCGTTC





1861
2330579
5
GRIK3
GTTTCTGAAATATGAGCCAGCCTTGACA
0.003259761
0.007150962
7.11E−06






GTCACGATGCCCCATCCACCCGACTGGG









CACCTCCTGTCCTGACACCATCCTG





1747
2330744
2
DNALI1
TTCCACATGATTAATTTCCAACAAGACA
0.001040005
0.007171718
4.91E−06






CTTGGGAGTTATTTACTGTGTTCCTCTGG









CAGCCAATAAAATCA





 403
2332283
2
FOXO6
TCAGTTTCATTTGCGGAGGCCTAGCCGT
0.000604099
0.012992693
6.72E−06






GACCCCGCGCCCACCCCAAACACGGATC









TGATTCCCACTTGACACACTTTCCCACTG









GTCTTAGTCTCACCCACCCGAAGCCAGC









AACCCTCTGCGGAAAACTCACA





1225
2332781
4
C1orf50
GTCTGCATTGAATAGTGGGGATCCCCTC
0.021592904
0.006558798
3.37E−06






AACAAAATTTTCAGGAGGAGGAGGATAT









CCCTGTTATTTTCCAGAATAATCAGTGAT









ACTCTGTGATATTGATAATCTACCTTGTT









GGCCCTTACCAAATTACTGGGTGTGAGT









AACAGCTGACTGTAGCTCCCTTTCTCTAC









CCTAGTGCTCTGGAAGGAGGAAAGGAG









AGCTGGCTTGTATCTTACTTTCTCAAGTT









ATCAGTCCACAAACATGAAGAGTATTAG









TGTTACAGATACAAAGATGATAACTACT









GTCTTATGAGCCTTTATTCTGCTAAGTGT









ATCCATTATCTCTTTTAATCTTCACACAA









CCCACCATCAATGAGGTATATAGTATTC









TTATGTTACACAGCAGGAACATCTCAGA









GATTCTGAAACTGGCCCGTGGTTATACA









GATGGGAAGTGGTAGAGGTCAGATTCAG









ACACAGTCCTGTTTGAGTCTGACCATAA









CCTTAATCCTG





 976
2334624
2
TSPAN1
CCCAGTGCTCTACTGGGGGATGAGAGAA
0.018262733
0.006574417
5.96E−06






AGGCATTTTATAGCCTGGGCATAAGTGA









AATCAGCAGAGCCT





1628
2337238
9
HEATR8
ACTGGATTCTCTCTCAAGCTCCGTCCGCA
0.000113163
0.008182282
4.36E−06






AGCAGGCCATGGA





 104
2337538
3
RP11-
CCTACATGTCTATGTTCAGAAGCTGCCTT
0.000731459
0.018213477
1.45E−05





90C4.1
GATGCCACATGCGGGAGGCTGGAAACGC









TGAAGGATGACCACTGCTCAGCAGCAGT









CTACCAGTGATGGATGAGAGTTGGTGCA









CAAATACCCCAGCTCCCTTGCCTCTCAGT









TTGGATAATC





 832
2337700
5
PPAP2B
ACCCAGCCGCCTTTAGATATTTCTAAAAT
0.00035324
0.006977438
4.81E−06






GGTGCAGCCACTATGAAAAACAGTTTGG









CAGTTCCTCAAAAAGGTAAATGTGGAGT









TACCATAGGACCCAGCAATTTCACTCCT









AGGTAGTAGGTTTCTCTATGAAATCTTCC









AAGATAAAAATAAAAAGAAAAACAAAA









AGAAAACTTCATTTGCTCTCCTCGTTCAC









CAAAATAAAACTCAAATTCCTTAGCTGC









CTGCCATACCCAGTCCCCTTTCATAATCT









AGCTCTAACCTATCTCTCCAGCCTCATCT









CCAATGTCCTCCTTTCTTCCCCCGCACAG









TGCAAACACACAATATTGACATTCCAGC









CTCCAGCTACTCACTCTTCCCAAATAGGT









CCCTGCTTCCAAGTCTCAGCACCTGTGCT









TCACTCTGCTGCAATACCTTCTCCCCCTT









CCTGGCTTGTGAGCTATTATTTATCTTGC









AAGACCCAGCTCCACACCCTCAGGCAAG









CTTCATCACTCTTCACTGTGCTGCTAGAG









TAGGCCCTCCCTTAAGGCTCCAAAGTCA









TCACTTATATAGTGTTTGTCATTAGGCAA









AAGCCTGTTCCACTTTCACCAGCCTGGG









AATTCCTTAAGGCCATGGAAACCCTGGG









GCCTGGCATATAGTAGGTGCTCAAGAAT









CATCTGCAGAAGACAAGGCTTATACCTG









AAAGACAGGTACAAACATAGGCTTAATA









GGCTCTCTAGAAATTATACTGATTGATA









CCACAAACTAATTTGGGGGCCAGATATA









AAGAAACCATCAATGAGAATGGTTTCCT









TCGTGTCAATGTAATAGTGTATTATGTGT









TTTAGGGATACATAAACAGGAACCAAAG









CACACTACTTATTATGACAAGGCGCTTA









TAATGATTTGCATTTCTCTGCAAAACTCT









TTAGGCATATAATTTTGTTAATTTGTGAC









AAACCTCAAAAACACACTTACCACCAAT









ACCTTGATTGCAATATATACTTTCAAATC









ACACAGAAATCAAGTTCCTTTCAAAGGT









TTCCAAAAGAGTCTGAAGTGCGTTGTTTT









GTTTGGTTTGTTTTAAATTTGGGAATTTA









AATGCAGATCATAATTTATAATTTAACC









CAGACTTAAGGGAAGAATAATTTCACAA









GGATGTTCAAGAACCTGACCTAGCCTTC









TTTTGAATGTTGGCACTGACAATGCGTG









ACCTTG





 451
2338845
4
NFIA
GTGATCATCTTTAACTCTGCTTTTCCCAG
0.002123679
0.009137592
7.92E−06






GGCTCTTTGAACTCTTGTTTTATTAGGTA









ATATGCTATGCTGTTATTTTATTGCTGTT









TAAAAAACCTTCTCTTTTGGGAAAGAAA









ACATGTGAATTCTTTGGTTTCTAGATAGA









AATTAGCAATCTTTTGCTCGGAATGTAA









AAGTATGCTGTATTATCACAAACTGACC









CTCCTCCTCCCCAAGAATTCTAGGGAGT









AAAATGCGTGCACA





 414
2343884
4
LPHN2
GTCAATTTAAGCCACCTTTCCTGTGTCAG
6.92E−05
0.01266909
6.27E−06






GGATCAATGTAA





1141
2344229
6

GCTGTTTCTGTTGATCCCAACCCTACATC
0.000731459
0.006584977
4.40E−06






AGAAGGGATATCGTCGTGGCTATGATAA









CTAG





1197
2345198
9
HS2ST1
TGGCCTTCGCGGTGGCGATGCTCTTCTTG
0.005416181
0.007195699
2.34E−06






GAAAACCAGATCCAGAAACTGGAGGAG









TCCCGCTCGA





2026
2345779
7
GBP4
CCCTCAATTCTAGCTGCAAGTTTTGAGCA
0.000276837
0.007850394
6.56E−06






CTAGACAGCAGAAATAAATTCCTAAAAT









GTTGAGTTGAGCAAATAGTTCAATGCTA









TCCCT





 668
2348920
4
CDC14A
ACATGCCTTTCTAGCGGCAGCCTCAGCT
0.023196567
0.007069116
4.57E−06






CCACCTGGAAACTTGTTAGAAATGCAAA









TTCTCAGGCCCTGCCTTTGGCCTACTGAA









TTAGAAACTTGAGGTGGGGCCCAGCAGC









CTGTGTCTGTGGAACTATCCGGGTGATG









CCAATACACACTAAAGTTTTAGAGGCCC









TGGTCTAGAGAGAGAGAGTATGGAGTGA









GAAGAATTTTGGTCTAGAGTTGAACCTT









GAGAAGGTTTGACTTTTAAAGACTGGGA









AGTGAAGGATGACTTTGCAAAGGAGGTT









GGAAGTAGTGTTTAGAGGGTAGAAGGA









AAATCCAGGAACCAAGAGAAGAGAGCA









AAGTAGGGAGTTACTTGTTGCTGACATA









TTAGGCTAAGATGATGCATGCACAATGT









TCTCTGGGTTTA





 761
2348926
4
CDC14A
CTGAGGATCTCTTAGCGTGTTTAGACTA
0.015428709
0.007499352
5.74E−06






GAGGCTGATAACTGGTGCTCAAAGTCAG









CCAATGGGCATGTTTTATTTGGTTTCACA









GGAGTTAAAAACCTAATTTAAAAAGTCA









ACATTTTAAAAAGAGAGTTTTCACATGA









AAATTCAGTTGGAAGATCAGCTGTGTTC









AGTTGGCTTTCCTACAAGGTGTCTCATTA









GCTGGAGTGGAGGAGCACCTGACTCTAT









GTATG





1586
2349294
8
RP5-
CAAAACAACAGCGAGTGCAAGAGGACA
0.0015655
0.006876156
5.64E−06





936J12.1
CAGCAAATTAGAGAATGCATGCCCCTAT









CTAACAGATGCG





1770
2350297
3
PRPF38B
GTGGTTTAATGTCTTCAAGAACTTCCTGT
0.000683093
0.006540911
5.89E−06






AGTTAAATTTATTTCAGTGAGATACTTTT









GGAATTAATGTCCTTTTACTGAGACCTG









ATGGCTTTTATGTATTTTAGGGTAAATTT









CTGAAGTTTTATTTTCTTGTTTTAAAATT









GTTTAAATGTGTTTGGTAACTATTGGAA









AATTTTCTCTTCTTAATTATGTTCTGTGT









ATTGTATTGATCCTGAATTGTATAGTTAA









TAGTGACTTTTCAAGATGGGGCATGCTC









AAGATCGAACAGATA





 734
2351311
4
KCNC4
TGGCAACAGTAATACAAGACGGATCATG
0.000115017
0.008419847
6.31E−06






AGAGGTGCCACAGGAGTCGTAAGAAAA









TAAAGTTCAATAGGAAGTGAGAGG





 583
2351412
6

ACTGGTTGAACAGCGGATGAAGATATGG
0.000118813
0.013583363
8.53E−06






AAT





 593
2351598
3
RP11-
TTGGGAGGCCTCAACCATTCCTGAGGTA
0.010913939
0.012701614
1.35E−05





96K19.2
CTGGTGGTGGCAGTTGCAAGTATCTTTTG









CTGCACTGAAGGAGGCAATGATGACGCT









GGTACAGATTTCACTTCAGCATGGGCTG









GAATCTGTAAATGATGCCCAGAAGGCAA









AACTGGAGACTTCACAGTCACTGGAAGA









CTCTGGGTATTAACTACAATAAAAGATG









AGTCTTTTTGTGTTGAGGGAGGAACAGC









AAATGTTTGCATGGTGAGTCCATCAATTT









TCACACCATGACTCTGAACTTTAGAAAC









TGATGAAGAAAAATTTCCAGTTCCCACA









GAAGTAACTCTACCTTTTTCTGATGTATC









TACTGTTCTTGTAAGAAAATAGTTTGAA









GAACTGGCTGGCTGAAAAATGGGCAATT









GAACTGATGCACTTGTGGAAGAGCTGGA









AATCTGAGTCTGAAAAGTAACTTGAACT









GGTTTTCCTGTATTCCCTTTCAAAGCATC









AGACATGACTGAAGATTGAACTAGTGGT









ATAAGATTTCCAGAAGACTTAGGAATTG









GAAGTAATTGCAGAAGATTTTTTCCATC









CGAGCCAATCGTCTGAACTACTTG





 932
2352425
6

GGAAAAGTCAGCCTCTTACACAAGGTTT
6.62E−06
0.01526752
1.41E−05






TGTATCTATACTTTTACTCTGTCAATTAC









AGTGGTATTTTAAATGCATTGAATATAA









TTCATTGAATGTCTGTATCTTTCTGCCTC









GATTTAAGTGATATTAGGTTAAAAAAAT









ATTTACAGTTTTCATTCTGGTCCACCTTC









CCTCCTTATCCTTATACTGAATCCATTTC









TCTACTTTTCAGGTAAGTGAAAGGGGTC









ACAAAATTTTTAGGTTTGTGTGGAGGGT









AAAAATGCATCCAGCAATTCTAAGCACA









ACAATTTTCTGTAAGGCCTTCTCTGAAAA









AAGAGAAGGAATTACTTATTAAAACTAA









GCACACTTAGCAACTTCTTTCCCAATCCT









ATCTTTATTCGTTTGCCTGGTGCCAAATT









TTTCTGGCC





 474
2352537
9
LRIG2
GTACCCGGGTGATTTGCTCAGATTGTTAT
0.000177948
0.011098091
8.26E−06






GACAATGCCAACATCTACTCCAGGACCC









GAGAATACTGTCCATACACCTATATTGC









TGAGGAGGACGTTCTTGATCAGACACTG









TCCAGCCTCATGGTCCAAATGCCTAAAG









AGACATATTTAGTACATCCTCCCCAGGA









TACTACTGCCCTAGAGAGCCTGATACCG









TCAGCCAACAGAGAGCCATCTGCCTTTC









CCACCAACCATGAGAGGATAAGTGAGA









AGAAACTTCCCTCCACACAGATGAGCGG









TG





 796
2353802
4
TTF2
GCCAGGGAAGTGGAGTTGGAGCCACAG
0.005280805
0.007398234
4.66E−06






ATGGTTTAATGGGAGTCTTTCTCAGCCTC









CACGATAGCAAGAGGACCTCCCTGGAG





1426
2354664
4
PHGDH
GTCCTTTAGCTCTCTGGTGAGTGAATAGC
0.00022254
0.008825131
7.03E−06






CCTGAGTCCCAGTGAACCAGGTGTTGAT









GGCTCTTTTGAGACTTTGGTTCCTGTCTT









CTTAGTTTAAAAGAATTTAAACAAGAGA









CACGGTGCAGCATTGAGGAGTTTATTGC









AAAGGAAAAAGAATATTTTAGAAAGTTAA









GTGCAGAGTAGACAGTACACCTCGGGAG









AGA





 859
2354667
3
PHGDH
GAAACATGGCTTGGATCATTCCGTCTCC
0.001151831
0.007373918
4.66E−06






CACCTCAGCCCCTCCGGAGCTGCCTGGA









CCTCATCATTCCGGAGAGTCTAAGTGGC





  61
2355118
6

GTCCCTAACGTACTGGACAGAGCTAGGA
0.033605237
0.024962916
4.91E−05






AAGCAAACCCATTTGCTTCTTCCTGCAG









GAAACCCCTTGAGG





 717
2356711
5
FMO5
TCCGATGTCATCAGTCCTTTCAAAGCAG
0.00032469
0.011169866
8.71E−06






ACAGGTTCCAAGCCTTCTTCTACGCAGC









ACTTGATGGAAGAGAGCCCGCTCACTCC









TCCCCCAATCACAGCAATTCTTTTCTTAG









TCATGGTCTCCCGAGATCTTCACCTGTTA









GTGTC





1815
2358768
4
PIP5K1A
GCAGACTTCTTGGAGTGGTAGTTCATGG
0.001426456
0.006739963
5.31E−06






TCTTCTTCTAAGAAGGCTGTGGATGCCTT









AAAAGCATTATTTGACGCTGGCTCCCAT









ATCTCACTGCCCTCTCCAAAAAATGTGTT









ACCCTAACATAGAAGTATCTTTTCTCAG









AATTCTTCAGTATATTATGAATCAGTGAC









TACCTTTTCTCTCCCTTGAAATTTTCCTGT









AACTTAATGTTCATTTCCTTTTGTTTCAG









TAAACCAGTCTCAACTCTTTTCCTTTTCT









CTTTCTGTTGTACCTCTCATTTCCCCGAC









CCTTCCTGTCCTGTAGATGGCATTTCATA









ATTCACATTGATAATAATTGCTAGAATTT









ATAGGCATTTATTGTAGATTAAGTAGAG









CATTTATTATAGATTAAGCCTATACGTAA









CTTGTTGAATTCTCATAACAACCTTAGGA









AGTACATGTTGTTACTTCCACATTTTATA









GATAAGGTAGCCAGTCTGCTCTAGAGAA









ATTTTA





1906
2358817
4
PIP5K1A
TACAGGGCCAGCCTTCTAGCCTTTAACA
0.00011347
0.008659372
2.79E−06






ATTCAGGAAATCATAAACCATCACTTGT









TCCTGCCAACTTCCTAATTCCTCTGGTAC









CATGCAGACAAAGAAACACTCTCTTCCA









ATCGCAAATAAAATCTTTTTTCTCTTTTT









TTAGGTGGACTCTTGCTCTTGTCACCCAG









GCTGGAGTGCAGTGGGGTGATCTTGGCT









CATTGCAGCCTCAGCCTCCCGGGTTCAA









GCGAGTTGCCTGCTCAGCCTCCCAAGTA









ACAGATTACAGGCACCTGCCACCACATC









TGACTAATTTTTGTATTTTAGTAGAGACA









GGGTTTCACCATGTTGGCCAGGCTGGTC









TCAAACTCCTGACCTCAGGTGATCCACC









CATCTCGGGCTCCCATAGTGCTGGGATT









ACAGGCGTGAGCCACCATGCCCTGCCAG









TAAAGTCTTTTT





1344
2358866
9
ZNF687
TGCCCGTCTGTCAGCCCTTGAAGGAAGA
0.047189944
0.007896143
2.93E−06






AGATGATGATGAGGGGCCAGTGGACAA









GTCTTCCCCAGGAAGTCCCCAGAGTCCC









TCTAGTGGGGCCGAGGCTGCAGATGAGG









ACAGCAATGACTCCCCTGCCTCCAGCTC









CTCTAGGCCTCTTAAGGTGCGGATCAAG









ACCATTAAAACATCCTGCGGGAATATCA









CAAGGACTGTAACTCAGGTCCCCTCAGA









TCCTGATCCACCTGCCCCCTTGGCTGAGG









GGGCCTTCTTGGCTGAGGCTAGCCTCTTG









AAGCTGTCCCCTGCAACACCTACTTCTG









AGGGTCCAAAGGTGGTGAGCGTACAGTT









GGGTGATGGTACAAGGCTGAAAGGCACT









GTGCTGCCTGTGGCCACCATCCAGAACG









CCAGTACTGCCATGCTGATGGCAGCCAG









TGTGGCTCGCAAGGCTGTGGTGCTGCCT









GGGGGGACTGCCACCAGCCCTAAGATGA









TTGCTAAGAACGTGCTAGGCCTGGTGCC









CCAAGCCCTGCCTAAGGCTGACGGGCGG









GCAGGGCTGGGGACTGGGGGACAGAAG









GTGAATGGTGCCTCGGTGGTGATGGTGC









AACCTTCAAAGACAGCTACTGGGCCAAG









TACAGGGGGCGGCACAGTGATATCACGG









ACCCAGTCCAGCCTGGTGGAGGCCTTCA









ACAAGATCCTCAACAGCAAGAACCTGCT









CCCTGCCTATAGGCCAAACCTGAGCCCA









CCAGCTGAGGCTGGGCTGGCCCTGCCTC









CCACCGGCTACCGCTGCCTGGAGTGTGG









GGATGCCTTCTCATTGGAGAAGAGCCTG









GCACGGCACTATGACCGTCGGAGCATGC









GCATCGAGGTCACCTGCAACCACTGCGC









CCGCCGCCTGGTCTTCTTCAACAAGT





 318
2359022
4
TUFT1
CCCACCTGAGCTTGAGGGTAGCATACTT
0.008412239
0.019281699
2.24E−05






AGGATTTGTCTATTTGCAGAATTGTTTTG









AGAGCCTAAGGCCCCATAACTGGGAGGC









TGTATGTGCTTCATGTCAGCTCCATTAGT









GTCTGTTTTATTTAGTGCTGTTTTCCATT









ATCTCGAACAGAGTCAGTCATATAGTA





1991
2359172
7
S100A10
GCTAAGTGTCCTGATCTGCTCATGAAAT
2.46E−05
0.008579579
1.13E−05






CCTTCTATGGGGGAAGCTGTGGGGCAGA









TTCCTTAAGCGACCCTTTGGGACAACTCT









TATCAGGGAGGAGCGAACTGCTC





1973
2360177
9
HAX1
AGAGACTACAGTAACCCGACACGAAGC
0.000475873
0.007177691
5.19E−06






AG





 619
2361306
4
LMNA
GTGGTGTGTGTACTTGTTATATTTAGCCA
9.15E−05
0.010680811
5.62E−06






CCTCCCTCTGTTCTCCCCCACTGATCCTG









GCTGGAAAGGCTGGGCTTCCGGAAAAGA









GAGGTGGATTTGCACACCTGGATCCCAA









GCTGATAGAAAGTGGGGTGAAGACAAA









GGGGACTCAGACTGGGGTGTCTGTCCTC









TTCTATGCCCACAGTAGGAGGAGCCAGG









ATTGGTTACTCCCTGC





  60
2361561
7
IQGAP3
GCAGGACTGCAGATCTATGGAAATTGCC
6.53E−05
0.052285286
7.62E−05






TGGAAGAGTCAGCTGTAAGGGATGAGA









ATCCTGAGGGTAAAAGAGAAAAGGGAA









AGACTCCTCTTTGATCTTATGAAGCTGAA









ATAACAAGATCTTAAACATGAGTGAGAA









TCTGTTGCCCCAACCTAAGGTGACTTTAA









ATCCAAGGTAAAAAACACGGCATGGGTA









TTAGTTTGAATA





 591
2361774
9
NTRK1
CTGCAGTGTCATGGGCAAGGGCCCCTGG
0.001689593
0.009588501
9.17E−06






CCCACATGCCCAATGCCAG





1397
2361937
1

GGTCTCAAGCTGGACGAAGGGGAGCCCC
0.008429307
0.011369338
9.16E−06






AGGTCACCCTGAGCGCTGGGGCCGCAGT









GGGAACTTGCGGCGATGTCACCCCTGCC









CTGC





1609
2362760
2
SLAMF8
TGGGCACCGTTTTGCAGGAAACACCATA
0.000293755
0.008851971
3.93E−06






TTAATAGACATCCTCACCATCTCCATCCG









CTCTCACGCCTCCTGCAGGATCTGGGAG









TGAGGGTGGAGAGTCTTTCCTCACGCTC









CAGCACAGTGGCCAGGAAAAGAAATAC









TGAATTTGCCCCAGCCAACAGGACGTTC









TTGCACAACTTCAAGAAAAGCAGCTCAG









CTCAGGATGAGTCTTCCTGCCTGAAACT









GAGAGAGTGAAGAACCATAAAACGCTA









TGCAGAAGGAACATTATGGAGAGAAAG









GGTACTGAGGCACTCTAGAATCTGCCAC









ATTCATTTTCAAATGCAAATGCAGAAGA









CTTACCTTAGTTCAAGGGGAGGGGACAA









AGACCCCACAGCCCAACAGCAGGACTGT









AGAGGTCACTCTGACTCCATCAAACTTTT









TATTGTGGCCATCTTAGGAAAATACATT









CTGCCCCTGAATGATTCTGTCTAGAAAA









GCTCTGGAGTATTGATCACTACTGGAAA









AACACTTAAGGAGCTAAACTTACCTTCG









GGGATTATTAGCTGATAAGGTTCACAGT









TTCTCTCACCCAGGTGTAACTGGATTTTT









TCTGGGGCCTCAATCCAGTCTTGATAAC









AGCGAGGAAAGAGGTATTGAAGAAACA









GGGGTGGGTTTGAAGTACTATTTTCCCA









GGGTGGCTTCAATCTCC





 415
2362943
2
ATP1A2
TCAGCAGGCTAAGTTGCGGGGTATATAA
0.000931652
0.010267038
8.99E−06






ATTGGGGTGATGACCCCATAGACCTAAC









TGTGAACAATCAGATTAGACACTATGTG









TTAGAGTCCCCCCGACCAGATCCTTTTCC









ATCCCACTCCACTATGTTGTCTATTTTTT









CTGAGGAATTAAGGGTTACCCCACCCTG









CCCACTCCCATCCCTTCAACCCCACTTCC









TACTGTAATAGATCAGCATCCAAAAGCA









GGAACCCATCTAAACCAGAAGG





1121
2363443
7
RP11-
GCACATGAACAGCTACGCCGGGTTGGGT
0.000105163
0.008348104
5.02E−06





297K8.2
TGGGAAAGAGTCGGAAATAGGGGATGC









TCTGGTCAGGAGTGGGAATGAAATGTTG









ACTGTTCCCCCTGCTGCTCAGATCTACCT









TTGTCCTTTAGTGGTGAGCCATGCTTTGC









CCTACCGTGTTAGCCTGCAAGAAGTGGT









TTTGCCGGACCAGCACTTCCCGCCCTCCA









GGGATCTTCCCAGCCCTCTGTGAAGTGC









TAGATGCTTCTCCACTGGTCTGCGGGCTG









GACCCAGGCCTGCAGTTTGCCATACTTG









CGCCCCTGCTGTTTGGGAAGGATCTGTG









CTGTAAGCCTCGCGGCCATACTACGACT









GTCAGATCTCCATCCCTATGGGCTATAG









GATGGGGCGACGGCACCCTATACCTCAG









GGACTTGCTTTGGA





1478
2363596
2
TOMM40L
TCCTGCATGGGATTAGCTGACCATCCTGT
0.001351803
0.006766808
2.02E−06






TTTCCATCCCAGAGCCTCCCAAGGCTGG









GAAAGTAGGGCTGAAGGGCTAGATGTTT









GGTCTCAGGAAGTGGGGCCCACCCATTC









CCAGAAGGAGCTTCTTTACCTCTTAGCCC









TGAGGTTTCCTCCTTCCCATCTTCTGTGC









TTCCAGAGAACAACTTTGTTCCTATGGTC









ACCCCCACTATCCCCATGACCGCATGAA









GAGGCAGTTATTGCTTTAGTCTTTCATTG









CAACCACTGGGCTCCCTTTGAACCCGGC









CCAATCTTTGGTCCCAGCATTTTCCCACT









CCAGTGTATCCAGGGTGTTCCAGGTGAG









CTGGGGAAGGAAGTGAGCATGGCCTCAG









CTGCAGATCTCCTGGAGCAGCGGCATCA









TGGCAGACAGGCCCTGGATGTGCTGGAT









TTGGTACCCGTAGGCCTCATTAATGCTCC









GGAGCTCAGCCAGCAGGCCTAGCAACTT









CGCATACAGAAACCTTTGGAGGAAGTAG









TGGGGTTGCCAGGAAAACAGGAGGGAA









ATAAGGCAGTTGGGAGTCTTGTCTCTAG









GCCCTGATCCCCTGAACTATTCCTCAGTG









AAGCCAGGTCTGAACATTAGAGAAAATC









ATGCTCTGGTATGACAGACTATCAGAGG









TTCCAAAGGTCCTCCAGGGGGCCTCGGT









CTGACACTGTCTTCTCTCACCATGCTCAG









TTTTTTCTGAACCCAGAGCTCTGAGAGCC









GAGTGTGAAGAAAGCTCCAGACTTGGCC









AGAACTCCAACCATGTGGA





1807
2363918
2
DUSP12
GTGCTGCCTTTGCTTCTTATCATTCATGG
6.39E−06
0.008024841
5.36E−06






CAGATTGTTTGTGCTTTCAACATTTCATT









TGAAATGGGAGAAGATAAAATCACTTGA









TGTAACCTGGAAACTATGCTTTACATGG









CAATCAAAGCCTTTTG





1775
2364168
9
UHMK1
GTGTTTACAATCCACTTTTCTCCAAATGT
9.30E−05
0.006583588
3.54E−06






GCCATCACGCTGTCTGTTGCTTGAACTCC









TGGATGTCAGTGTTTCGGAATTGCT





1636
2365136
4
MGST3
AAGAAGCAACACCATTCAGTTCAGAACA
0.001286836
0.006751106
3.74E−06






CCCATACTGACTTTGAGCTGATGGCCTTT









GTAGGTTTCTAACTGGAAGTGAAATTTTT









TCTATTTTTAAAACTTTCTTTTTATTTCAT









AGTTACTTTTTAAGCTTTTTTTGTTAAAA









ATTAAGACACAAACACACACCTTATCCT









AGGCCTATACAGGGTCAGGATCATCAGT









ATCCGTCTTCTGC





1433
2367711
8
AL645568.1
ATTCCTGGGGCACCCCTGACAAAGGGAG
1.65E−05
0.009625929
4.05E−06






TCAGTGGGCCACCAGATGGAGGAAGACT









CGGTGCAATCCCACTG





1255
2368310
8
KIAA0040
CTGAGAAAGCCTTGAGCGTTCGGAGAAA
0.000252191
0.006744191
4.61E−06






GTCATCTGGAAGTCAACATATGATATG





1258
2369335
4
C1orf49;
GTGCCTGTATCATGTAGACAAAATCCAA
0.004267545
0.007220492
2.75E−06





C1orf220;
AGCAGCTTGTTTCAGACAAAACATTTTG








AL513013.1
CTTTGGAAACTTTTGAAACTTCCATGGCC









GTTGAATATAGCAGAGATGATCTAAAAA









TTTTAGAAGCGGTTGAGGTACCCGTGGT









AGGGGCAAGGCATGGGAGTGGTGATCCT









TAAGGGGCTTGTCTTTAGTTTGAGGGCC









ACACA





1571
2370215
9
KIAA1614
CTCGTACCCAAAACCTGCCTGATGGGCA
0.004407176
0.006575102
1.91E−06






GCTGGACGGCAGCATCAATGAGGAGCA









ACCCGCCAGGGATG





1835
2371053
2
DHX9
AGGCATGCTATGTGTTACGTGTTTTTTCC
0.001027681
0.009724721
7.95E−06






AGTATGTTTATTTGCCACCAAAAAGTAA









ATGCATTTTCACCCATTCTGTGGTTCATT









GTAGTTTAAGGAAACCAAGCATATAGAT









GCATTAGTGATTTTGTTTATATTATGTAA









AATATAACGATCTCTTAAAAATACCACA









GTTTGTATTTTTTCTTTAAGGAGTAAAGA









TTTGCCTTTAAATAACTTGGTATTTTCCT









GGCTTTCGTTTAATACAATAGA





1246
2371206
7
NMNAT2
GACTCGTGTCCCAGGTTTCAGAACCCGA
0.000742232
0.007072308
5.66E−06






AAATCTCACTCCTGATCAAAGGTTGCTG









CTGCTGCTGCTGCTGCTGCTACTGCTATA









TGTGTGTGTGTATGTGCGTGCGCGGGTG









CACACGCATGTGTGCGTGTGTGTGTGTG









TGCGTGTGTGTGGTGCTGAAGAAGTGGA









GGTTGCTTGGCCTTCTCTACTGGGTGTGG









CCCTGATGAACTCACTGAGTGCTGAGGC









TGGCTACAATGTCCTATCAGAGGGGAAG









TAATACCACAGGAGCACATCAAGACTAC









AAACATAAAGAACCATGGACACTGATTT









CATCCAAGTTCTACAGGGAGTGA





1968
2373881
4
PTPRC
TGTGTCGTGGTATAGCAGAAGTGCTTGA
0.003830941
0.008142194
4.66E−06






AGATTTGTTTCTCTGCCTTATCTTTAGTA









ATTGTGTTTATGTTGGCTATCTGGCTATT









GCCCTTGCGTGAC





1910
2374274
1

GTGAGACCCTCCCGACAGGACAAACCAC
1.92E−05
0.007591419
3.48E−06






TCTGCCGTTATATGTGA





 251
2375421
3
RP11-
CGGTCTCTGCCTTGCTCGTGCTTCTACCA
2.80E−05
0.014753778
1.93E−05





480I12.3
CCACCCTTCCCCTCCCAACCCGGTGGATC









CTCTCGTCTCC





1405
2376434
5
KLHDC8A
CAAGGAGATTCCAGCGGCTGCCCATACT
3.24E−05
0.008440933
7.36E−06






GTTTGTGCCAGGCAG





 276
2376513
1

CTCTGCAAGAATTGCTGCAGACCTCGAA
0.000310846
0.011470781
7.56E−06






TACACCTCCTGCTGCTG





1891
2376804
4
IKBKE
CTTCTGTGTAATGTCCGCTCCTACCTGAT
4.25E−05
0.006524562
4.11E−06


1161
2377129
2
PFKFB2
ACTTGCATTGTGCTAGGGATCTGCCCTAT
2.67E−05
0.01046144
7.14E−06






ATCTTTGCCTCTGGTGTTTCGTTGTTGTT









GTTATTGTTTGTTTGTTTCCAAAGAAGTT









GGAGTTAAGGACACAATATATTTGTACC









CCTAGACTGAATGGGTGAGTATTCCATA









TGAGGATCTGGGTAATCCTCTTTGCAAC









CCACATTTGGTCTTCAGAGACACTGGCA









TTTTGAAGAAACATATGATATAGCTGTTT









GGAAATAAATTCATCTATGTTACTTTTTT









TTTCTTTTTTTTTTTTTTTTATGAGCAGGA









GATCTTAATTGACAGAAACTCATTGGTG









GTTGGAGTGGCCAATGGGCACGGGAAA









AAGTATCCAGTAATCAGAAGAATTGTAT









CTGGGTTATGTAATCTTATGCACATTCCA









TTGTCTTTGCCAAGCCCAGAAGCCATGTT









GTGTTCATTGTTAAGAAATTTGATAGATT









TACCCAGCTTTTCTATGTATTTTGACTTA









TTGAAAATATGTAACAACTGAGTCGGGT









TGCAGCACTGGTGGGGTAGAATCGACTT









TCCCTGAAGGTGACACAGATGTCAGAAT









TGTGTCCAGGGATTTAATTTAGACCCAT









ACTGTCCAGGAGACTGTCTCTAGTTGGA









TCTCTGTGCTGACTGACTGACAGACAGA









CTTTAGTGTCTGTGTGCTGACTGACAGAC









TCTAGTAGTGTCTATATGTTGACCAACTG









GTAGACCAGGAGGATCTGTGTGCTGATT









GACTCTAGTAGGATCTGTTTGTCACTGAC









AGACTGTAGTAGTGTCTGTGTGCTGACT









GATAGATAGACTATAGTAAAATTTGGGT









GTTGCCTGACTAACGGTCTA





 261
2378098
9
HSD11B1
GAGGAATGTGCCCTGGAGATCATCAAAG
0.012161553
0.014861289
1.03E−05






GGGGA





 358
2379173
9
FAM71A
TTCGCCACTGGCAGATCTTGCTATCTGCA
6.53E−05
0.012088903
5.38E−06






ATTGTGTCCCGCTCTTGACACACGGGAT









GACCTCTTTGCCTATTGGGAAAAACTAA









TTTACCTCTTGCGGCCACCCATG





 467
2379454
9
RPS6KC1
GACACATTCAGCTAACGTATTTTAGCAG
0.015937432
0.011695155
1.18E−05






GTGGAGTGAGGTTGAAGATTCCTGTGAC









AGCGATGCCATAGAGAGAATGTACTGTG









CCC





 811
2379471
4
RPS6KC1
TTCTGGTCCGTATGACTTTTGCTTTAAGA
6.60E−05
0.011990906
1.17E−05






CTATTGCTCAAGCTATTTTGTAAGTTTGG









GGTTCTCCCACACAAGTACATTGACTAA









GCATTGGTTAAAAGGCTAGGCACCTGAG









TACCACTTACATGTTTTACTTTCCAAGTT









CCAACCTAACTACTTATAAACTTGAAAG









TAGTTATGAATTGTGGGTTACCTATAGTC









AAATAGTAGGGTTTTTTTTTTTTTCAGTC









AATTGGAAATGAAAGGGCAGGTATTGGC









AAGGCTTCGGGACTAATTTA





 572
2379903
9
CENPF
ATTGAGCATGAAGCCCTCTACCTGGAGG
2.09E−05
0.019043146
1.94E−05






CTGACTTAGAGGTAGTTCAAACAGAGAA









GCTATGTTTAGAAAAAGACAATGAAAAT









AAGCAGAAGGTTATTGTCTGCCTTGAAG









AAGAACTCTCAGTGGTCACAAGTGAGAG









AAACCAGCTTCGTGGAGAATTAGATACT









ATGTCAAAAAAAACCACGGCACTGGATC









AGTTGTCTGAAAAAATGAAGGAGAAAA









CACAAGAGCTTGAGTCTCATCAAAGTGA









GTGTCTCCATTGCATTCAGGTGGCAGAG









GCAGAGGTGAAGGAAAAGACGGAACTC









CTTCAGACTTTGTCCTCTGATGTGAGTGA









GCTGTTAAAAGACAAAACTCATCTCCAG









GAAAAGCTGCAGAGTTTGGAAAAGGACT









CACAGGCACTGTCTTTGACAAAATGTGA









GCTGGAAAACCAAATTGCACAACTGAAT









AAAGAGAAAGAATTGCTTGTCAAGGAAT









CTGAAAGCCTGCAGGCCAGACTGAGTGA









ATCAGATTATGAAAAGCTGAATGTCTCC









AAGGCCTTGGAGGCCGCACTGGTGGAGA









AAGGTGAGTTCGCATTGAGGCTGAGCTC









AACACAGGAGGAAGTGCATCAGCTGAG









AAGAGGCATCGAGAAACTGAGAGTTCGC









ATTGAGGCCGATGAAAAGAAGCAGCTGC









ACATCGCAGAGAAACTGAAAGAACGCG









AGCGGGAGAATGATTCACTTAAGGATAA









AGTTGAGAACCTTGAAAGGGAATTGCAG









ATGTCAGAAGAAAACCAGGAGCTAGTG









ATTCTTGATGCC





 845
2379907
9
CENPF
AGAGAAAAATAGGCTAGCTGGAGAGTT
4.92E−05
0.016468854
9.51E−06






GC





 525
2381284
4
MOSC2
ACTGTCTGTGGCCTAAAGTACTTTGTACT
0.000881522
0.01234807
6.65E−06






TTGTCCGTGTAGCTCAGAATATTAAACG









ATTTTTAAAAGGCTGCTTCCTTGGGTCAG









TGTGGTGTGCTTGAGTTCCGGGAATGCA









GCAAAATGAAGTTTAGAAATAATGAAAT









TGACCAATGCTTCCTATCTCTGTAGTTGG









CCATTGTGGGGTCAGTGTTTACTGATCTT









TGCTCACTGTCCTGATGAGATAAACTTG





 539
2382372
9
DEGS1
TCTGGAAGTTATCAATACCGTGGCACAG
3.86E−06
0.020088544
1.45E−05






GTCACTTTTGACATTTTAATTTATTACTT









TTTGGGAATTAAATCCTTAGTCTACATGT









TGGCAGCATCTTTACTTGGCCTGGGTTTG





 316
2382373
4
DEGS1
TGGCCAGGCTAGTATTTTGTCAGTCCAA
6.13E−05
0.019451886
1.79E−05






GCAGTTCATTAAAAAAAAAAAAAACAA









AAAGAGCAAGAATATAAATACTGCATCT









TCCAGCCTACTTTTACAAAGGGTTCACTC









TTGGGTCCTTAAGCTTAGTGGT





1948
2382443
2
CNIH4
CCGTGGTTGAAGTCAGCCTACACTACAG
0.000243178
0.008587751
4.58E−06






TGCACAGTTGAGGAGCCAGAGACTTCTT









AAATCATCCTTAGAACCGTGACCATAGC









AGTATATATTTTCCTCTTGGAACAAAAA









ACTATTTTTGCTGTATTTTTACCATATAA









AGTATTTAAAAAACATGAATTGAGTTTC









TGTAGATTTCTAGTTCTCAACTTTAGCCT









GAACGCCAACACTTGAAGGTGTTTTTCA









TCCTCTGTATGTTGAAGGTGGTTATTTGT









ATGTAGGAACAGGACTGCCATCCCAGCT









TTGCATGCCAAAGAAATAAAGAACACAC









TTTAAAGGGCAAACTGAAGAGATGAGCG









AGCAAAGGTGCCCTTCAGGTCTACTGAA









AAGTTAGAGTACAAAACAACACTGTTGA









TCTGGACAAAAGAAGAAAAATTACCCTT









TTTGCTTGTGTTGTGACAACTTCATTTAA









TATGGTTTAAAGATTTATGAGACTGTCA









GCTAAAAGTCTTTTCACAAGAATGTCAA









CAGAGAATGGCATCTCAAAATATATATA









TTTCTTTGCACAATTTGTGAAACCTTATA









AGCCATTTTCCCCAGGTACAATGTAGTTC









CTGCTGATAGAAAGGAAATATTTTGTCA









AGAGCTTTCATTTAAAAGCTACTACCTCC









ACAATCACCCCCAAACCCAGAAAATCCC









CACTGGCTCTTGCCAGTCTGGTTTTCGTA









TTGCAGTTATTCCAATTGTATTTGATCTC









CCTGATAACGTATTTTCATGGGTTTGGGT









AGAAGATGCTAATCAGATTAGAAGCAGG









AATAGTTATTTGCTGTCTGTGAAATTGAG









CCTTTTGGTGCGCCACGTGGTGCCAGAT









CAACACTTCTATCCCTCTGCACTGACCAC









GTTGTGAACTGGGAGACCAAA





1652
2382480
4
CNIH3
AATCTCAGTTGCCAAACCTGTGTCGGCC
0.002187152
0.006827297
3.25E−06






ACATTAAAGCAACAGTTACTATATCAGT









CATGG





1435
2383093
5
PARP1
CCCGGTGGCATACATTGAATGCCTAGGG
0.017390197
0.00692499
4.35E−06






CAGAAAGGAAGTGGGAATGGCGAAGAT









GTGACGTGCCTCGGTGTTAGATACTGT





 743
2384613
5
C1orf96
AGGCACCATCCATATCACAACGCTGCCT
0.00026838
0.007981474
5.05E−06






AAAAATTGTATTTATATTGCATGCAAAT









ATTTGACAACTCCATCACAAACAATAAA









AGATCGGGGAGAGAAAAGCCATTTAGCC









TGATAAAGTACATCTCAATTTAGCTAGC









AGATCAGTACCCACAGGAATAATCTGGA









AGGCATGTTCCCTACCCCCTCCACCTTCT









GTTATTTGCATTTCTAGCAGTGATCACTG









AAGCATCAGGATTTGTGGGGATTCACAA









GTAACATCATGATGGGAGGAGGCAGCCC









TGCCTCCGATGATGAGCTGAAAATAGCT









GAAGATGGTAAAACCAAGAGCAAAGCA









ACCCGGCTCATAGCCGAAATTTCATCTC









CTCCTCAGCCTCTCACAGAGAAGCCAGG









AAGAGTCTGATTGGCTTGCA





1238
2386188
5
IRF2BP2
AGGTGGGGCCTGTCTATTATATAAAACC
0.000108061
0.008100112
2.38E−06






CTTAATTTCTTTAATTTCCACTAGTTTAT









CATTTTTTTCCAGAACAGTATTATTCACT









TGGTATTTCAAACACATGTTAAGAAGGA









AATTACAGGTTTCCTCCACCCACATTTGG









GCTGTCACTGATATGCCCAAGGGCAGTC









CTGGCAGCACCACGCGGCTGTTACTGTC









ATTGTACCATACTGTATTCAGCACTCACT









AGAAACAGGGTATAGGTGATAGTATCAA









CAGCAATAGCACTACAGGTAAATGATAA









ACAAAACAAAACAGAAACAAAACCAAT









CCCACAATCTCCAAGTTCACCTGGACTG









TAACTTCTCTTGCAACTCTTTCAAAATAA









AGGACAACAGCAACAACAAACAGACCT









CTAGGGTGTTTAAAAAGATGAAGTGGCG









CTGCAGAGCTGGGCTCTGCTCAAAGATG









GCAGTGCCATCTTGTACACACCACCATC









CATTATAACCGCCTTCCATCACTGGAATT









GTATCTTATGTAACCAACTAGCATGCAG









CATTGTAATCTTACAACTGATCACGTGG









ACAGTGAACAGCGGTCAACTTTGTCTTA









AAAAAAAAAAAACAAAAAACCCCAAAA









GACCACACAATCCTGAAAATTTCCCAGC









AGCACTCTCAGTCATCAGTATCTCAGGA









ACTGAACTTTTGAGCAAAATAGAGATTC









AAAATCCACTTTCCTACTCCTCTGAGGAC









AATGTTTCAGGGTAAACTGGTGGTATTT









CCCAGTGGCATGCCCACTTGACAACATG









CCCGTTCGATCATTTCCTTTCCTTCTCCA









CCACTTGGCCTCCGGCCTGAGAAAGGGG









CCAGCAATAAGGAATGACAGACAGTAA









GGCAATCTTACAATGTCAGAAAATGTAT









TTGGCTTTTTTTTTCTTTTTAAAATAAGT









GCATACAAATACAGCTAGAAGCATTTCT









GATTTGCCAAGTGCTCTAAAAAAGCAGC









GCAAGTCACAGCCTACATAGAACGGTAA









CTGTCACCAGGATAATAAAGCACAAAGA









TATGCTAATAACGTTAACAAAAGAAAAA









AATGTCTTTATAAGTACATACCTTTTGTC









GTCAAAAAAAATATAGAAACACAATGTA









TTCAAAAAAAATCAAAATTATACAGCCA









TGTTTATGAAGTCTACATTTCCCTTGTCT









TGGATATATATATATATGGAGATATATA









TACAATTCAAGCAGTTTTAATTAAGGGT









AATCATTGGGTTTTTCTGAAACCGGAAA









AGTCACGAGTCTCTCTCTTTTTTCACTTT









CACATCTCCAGCAAGGATGGTTGCAATT









TCCCCTTGCATAAAGGCCCAGGGGACAT









TGGAGCCCACAAGAGGGCATTTTTCCCC









ACTGGGACAATAGACCTCTCCACTAGCT









CCCTGCTGTTTGATGCTTTGTCTGGAGCA









AGGGAAGCAGAACTTGTGCGAAGGGAC









GGACGGGCACTGCACAAAATGGGTGTCC









TCCAGCCGCTCGTGGCAGAGGGTGCAGC









ACAGCGGGGCACTGGTTGCCAGAGAGG









AGTCCGGGAGGCTGGCAGGGTGCACTGG









CTCCAGTCCTCCTGTGTTGCCTGCTCCCT









GGCCCCCCACCTCTCTGGGGCCCAGCCT









TCTTTGGTTCATA





1678
2386782
4
GPR137B
GTCACCAGGCTCACACAATCATTTAAGA
0.001757031
0.007939934
4.07E−06






AATAAAAACACATACACAAAAATGTAG









GCTGCCCCTACAATCTAATTTATGATAA









AATAAGATGAATTTCAGCCTAAGAATAC









TTCATTTATTTTCTTAGTTGTGAAAAAAT









TAGTTAAGAACCTTAAAAAGAACTTTTT









ACTCTAACCAGATCTTTTAATTTCCTAGA









ACATACTCTAATATACTAGTTTTCCTAAG









CTTGAAACAAATCACAGTACAGAAAAAA









ACAATAAATGGACATGAGCGAGGATTTT









CTCCAGTAAACAGTTTAAATAATAGCCT









TTAACTGAGGGAGTGGTGAAATAACACT









ATCAAAAAGTTCTTTACATTTAGAGTGA









TAAACAAAGTGCAGATTTTTCACATCTT









AAACTCTGAGTGAATACTAAGAATAATT









CTTACTAATTTACTAGTTAAATTAATTGG









ATAGTCACTTTTTAGACAGTTTGCCTTAA









GGCCCCCCTCCCCCACCATACAATACTT









GCAACCCTCAAGAAAAAGTAGAGGAGG









CTCCAATCAAGTCA





1381
2389967
1

GAGGTGATACCAGAGCCTTCGCAACACC
2.60E−06
0.008282347
6.16E−06






AG





 908
2391060
4
C1orf159
ATGGTGCTGCTAATGTGTCTAGAATTGG
9.88E−05
0.011500656
5.14E−06


 825
2391846
2
GNB1
CACTTATTGCTGAAACCAAGAGCACAAT
0.000128482
0.014644576
1.14E−05






TCCCATTGAGAGAAAGATCTCTGTGCTG









TAAACTAAAACAAATTGTGCATTCCTTC









CGGGGCCATCGTCTTTG





 529
2393322
1

AGCGCTCTGGCCGAGCACCAGTGTGCCA
0.010386073
0.008019303
4.22E−06






GCCAGAAAGCACACCTCTATCTGCGGGA









GCAGAGCTCCTTTCCTGC





 606
2395510
9
ENO1
TAAGTTTGGTGCGAACGCCATTCTGGGG
0.000156233
0.019298761
2.09E−05






GTGTCCCTTGCCGTCTGCAAAGCTGGTG









CCGTTGAGAAGGGGGTCCCCCTGTACCG









CCACATCGCTGACTTGGCTGGCAACTCT









GAAGTCATCCTG





 333
2396027
9
LZIC
TGACACTCGGAACGTCAAGAACTGGAGG
1.95E−06
0.020081931
2.37E−05






TTTGTGCAATTTGAGACCGGTCGGCACT









GTGCAGAGATCAGA





 348
2397591
5
KAZN
GAGCTTGGAGATGATGTGCCCCCTGGTT
1.81E−06
0.015572111
1.63E−05






TTCTCACATACTGCCTCTCAGCTGCAGAG









ATGCTGCAGACCCGTCATTCACACCTATT









TCAACAAGCCGAATACACTGGAGTTTAG





 695
2398901
6

CTCCCTGAGGTTCCGTTTTACACATGATC
7.23E−06
0.016623913
1.75E−05






CAACGTTAACTACCTTTTTTTCTGTATGC









TTTCCAAAGTCCTTTTTTTTCCCTTAATGT









TGAATTAAAATACTTGCTCATAGTTGATT









TACCATTCCTACAAAAGAGGCAGAAACT









TTGAGCAATCTAGGTTTTTTTTTTTTTTA









AGTTTTTTCTTTCTTCCTCTCCTGAATAC









ACTCCCCAAAACACCCCTTTCCAGTTAC









AATTAGCATCGTGATCCAAGCAGATGCC









ACATGGAAGAGGAATCGCCATTTACTCA









GAAAAAATGTCCCTTACAGGAACCGGCA









GCAGCTAGGCAGTCACCGGCCCGCCTCC









ATCCAAAATCACGCTCGCGTGCTTCGGA









AGCATC





1507
2399450
9
UBR4
AAAATCATTAGTTTGGACCTTCCTGTGGC
3.56E−05
0.008422828
4.92E−06






TGAAGTTTACAAGAAAGTCTGGTG





1181
2400148
3
RP4-
CAGAGAGGGTCCGTGGCATGTCCAAGGT
0.001221904
0.010206572
5.86E−06





749H3.1
TACTCTG





 152
2400178
2
CAMK2N1
TGTTGGCATTCTTCGCTGATTTGGCTGTT
9.01E−06
0.026063706
2.59E−05






CCCAATGTTTACATTATTTAATCTTGCAA









AAATGGTTCTGTGCACTTGGATGTGAAA









TGCTGTCCAGTTTTATTTTTTTTATGTTGT









TATCCTTGGATGTACAAAAAATTCAGAA









AATGATCTCTGTAGATATTCTGTTTTATT









TTGGTCATCTTTAGAAGTTATCAGGAAT









GTGTTTAAAACAAGAAGAGAACTTTTCT









AAGGAATGATACATAGAAAAGATTTTAT









TTTAAAATGAGTTGTAAAGCTTGTGTTTC









TTTGTTGCTGCAAGCTATCTGCCCAAGTT









AATGCAAATGGACACATTTTTTATGTCA









GAAAAACACACACACACACACACACAC









ACACACACACACACGAAAAACAAAGAA









AAAAATGCTTGAGCTTTTTCTAACTTCCC









CTTGCAGTCTGTTGTGTGAGCAGCCTGTT









TATTTCTCTAATATTATGTCAGTTTATTC









TCTTTAATGGACTGTAAAAAAATGTAAT









CACAAGAGTGCCAAATATCTTGAAATGC









CAAAAGGCATTTTAGTTTCTTTTCTCTGT









GCTCTGAGTCCACGTACAGGAATGCTTG









GAGTGTCTTTTCTGTTATTTATAGGGATT









CTCTTAAGGCACACCAGCTGCCTGTTTTG









CATGGTATTTGCAAAAATGCCTCTTGCGT









GAGGAAATCTTTTACC





 582
2400179
2
CAMK2N1
GAAATTTATTACTAGCTTGCTACCCACG
4.47E−05
0.01559515
9.45E−06






ATGAAATCAACAACCTGTATCTGGTATC









AGGCCGGGAGACA





  97
2400180
2
CAMK2N1
GGAGAGAATAAGAACGGCGGTAACAGT
3.66E−06
0.031824392
3.10E−05






TATTGGCAAAAAGC





  58
2400181
9
CAMK2N1
TTGTTATTGAAGATGATAGGATTGATGA
0.000198282
0.038963268
4.21E−05






CGTGCTGAAAAATATGACCGACAAGGCA









CCTCCTG





 575
2400707
9
RAP1GAP
GACAAGTCCTTCACTTCTCGCCGGAGTG
0.003098917
0.010613844
6.50E−06






TGT





1813
2401703
4
MYOM3;
CTGCTGGGGTGAAGTTCAAAATCCCTGG
7.38E−05
0.006696158
3.40E−06





RP11-
CCACTGGTTCGTGCTAGAGATGCTGGAC








293P20.3
TGCGGATTAATGGGAACCC





1753
2402420
2
C1orf135
GTGGGAAGGTGGCATGGGATGAAGTTGT
0.00010346
0.009232187
3.30E−06






CATTACTGAGCATCTTCTCTGTGTAAATA









AAGGGCAGTACCA





 643
2402463
2
STMN1
GACTGTATAGGTAGATCCAGATCCAGAC
2.42E−06
0.018080299
1.07E−05






TGTAAGATGTTGTTTTAGGGGCTAAAGG









GGAGAAACTGAAAGTGTTTTACTCTTTTT









CTAAAGTGTTGGTCTTTCTAATGTAGCTA









TTTTTCTTGTTGCATCTTTTCTACTTCAGT









ACACTTGGTGTACTGGGTTAATGGCTAG









TACTGTATT





 484
2402464
9
STMN1
GCACATTGAAGAAGTGCGGAAGAACAA
0.000363271
0.023971946
2.62E−05






AGAATCCAAAGACCCTGCTGACGAGACT









GAAGCTGA





1879
2402466
9
STMN1
ATGGCTGCCAAACTGGAACGTTTGCGAG
4.53E−05
0.010009361
5.91E−06






AGAAG





1581
2406442
9
CLSPN
TGACTCTGGTAATGATCTGGCACTGGAA
0.000150908
0.010372461
7.04E−06






GACCATGAAGATGATGATGAAGAAGAA









CTCCTGAAGCGATCTGAGAAGTTGAA





1799
2406443
9
CLSPN
ATTTGGAGACTTTCGGCTTGTTTCAAATG
0.000126082
0.008736274
4.61E−06






ATA





1562
2406607
3
TRAPPC3
GGGCCACCTGTCCATGCTGAAGAATTGC
0.002919457
0.007068394
3.93E−06






TGCTGAGAGGCACTGCTTACCACTCTTTC









TATCTCCCTTAGAGAGGCCTTTAATCTCC









CAAAAGACTGGCTAGGCAGCTCTTTGGG









TCAAAAAAACATTCCAGGTCGTTAGGGA









ATAGCATAGATTATTTAATCCCTGTGGAT









TAAAGCCCCACTGAAATCAAAGCCTGAG









CTTTTCCACTGTGAAGGTG





 450
2409634
4
ERI3
TCAGAGCTGAATCTGTGGGCAGAGCTGG
0.00060261
0.008504212
4.47E−06






CTTGTCTCTAGGAGAGACATGGCACTAG









CTGAG





 139
2410530
2
POMGNT1
TGAGACTTAATTACTAACTCCAAGGGGA
0.004360173
0.017748354
1.83E−05






GGGTTCCCCTGCTCCAACACCCCGTTCCT









GAGTTAAAAGTCTATTTATTTACTTCCTT









GTTGGAGAAGGGCAGGAGAGTACCTGG









GAATCATTACGATCCCTAGCAGCTCATC









CTGCCCTTTGAATACCCTCACTTTCCA





1411
2413541
4
HSPB11
TGGAAGCGCCACTACCAGCCCACGAAAC
0.011398396
0.006601892
4.14E−06






TCTTTGAGGCCAGAAATAGCGTCTTGAC









CCCC





1011
2414409
4
PPAP2B
AGGCTAGGTCAGGTTCTTGAACATCCTT
0.003064934
0.007911982
5.54E−06






GTGAAATTATTCTTCCCTTAAGTCTGGGT









TAAATTATAAATTATGATCTGCATTTAAA









TTCCCAAATTTAAAACAAACCAAACAAA









ACAACGCACTTCAGACTCTTTTGGAAAC









CTTTGAAAGGAACTTGATTTCTGTGTGAT









TTGAAAGTATATATTGCAATCAAGGTAT









TGGTGGTAAGTGTGTTTTTGAGGTTTGTC









ACAAATTAACAAAATTATATGCCTAAAG









AGTTTTGCAGAGAAATGCAAATCATTAT









AAGCGCCTTGTCATAATAAGTAGTGTGC









TTTGGTTCCTGTTTATGTATCCCTAAAAC









ACATAATACACTATTACATTGACACGAA









GGAAACCATTCTCATTGATGGTTTCTTTA









TATCTGGCCCCCAAATTAGTTTGTGGTAT









CAATCAGTATAATTTCTAGAGAGCCTAT









TAAGCCTATGTTTGTACCTGTCTTTCAGG









TATAAGCCTTGTCTTCTGCAGATGATTCT









TGAGCACCTACTATATGCCAGGCCCCAG









GGTTTCCATGGCCTTAAGGAATTCCCAG









GCTGGTGAAAGTGGAACAGGCTTTTGCC









TAATGACAAACACTATATAAGTGATGAC









TTTGGAGCCTTAAGGGAGGGCCTACTCT









AGCAGCACAGTGAAGA





 754
2414437
5
PRKAA2
CTGCATTCCAGCGTTAAACAACACCCCA
4.32E−05
0.011624453
7.82E−06






GGAAGAAAGACTCACAACCTCTGGCCCC









TGGAGCATCCCCCAAACAGTCACCCCCA









ACAACCGAGAGTCCTGGAACGTGA





1378
2415125
1

CCACACTTTGATTAGCAAGGATTTAGAG
1.22E−05
0.00685264
1.64E−06






CCAAGGGGCTTCCATAGCACAGACAATA









TTGGATCCACCACCAAAAGGTTACAAAT









CA





 222
2415666
5
NFIA
GAAACCAGACTTCTCCGACTTCTTCAGT
0.013961818
0.010182727
9.23E−06






GTGGTTGGAGATGGCATTCCTGGCAA





 234
2420021
1

GATATAAGCCAAGCTAAGAAGAACAAG
0.022075503
0.011356751
8.96E−06






GACTCTGTGAAAGGAAAGTCACCTGTTT









CTCTGGCCCAAGTGTTCGCCTGTCAATCT









GCTGTTCCAGATCCAGACTATAA





1362
2423947
3
RP11-
GAACAGAATTTACACTCAGCCCTGGTAA
0.000333103
0.006732521
4.49E−06





86H7.6
CCAGTCTATCCGTCAGTACCAG





 544
2423977
1

TCTGCTTATATTACAGAGGGGAGCTGGG
0.002202047
0.009340892
1.02E−05






GTGAAGGCTGGGGGGAGCCAGCAGGAC









GAGTTCTGAAGCCTCTTATT





 203
2425002
5
PALMD
TGGGCCTTTTCGTTGTTCTTCAGTGTGGG
0.001460097
0.011648419
1.24E−05






CCACGTTCACTTTCAGACAGTAACTCTGT









AGGGATAACTCTGTCAGTGGTACGTTCA









GTCCTTCATCTCACGCTTCTTCATCTCAC









TCTTCTCGAGAATGCTGGAGTCATTGGT









ATCCTCAGTTCCA





 708
2425301
5
CDC14A
GGGCATCTCTGAACTTCCAATCTGAAGT
0.028404922
0.006591512
4.33E−06






AGCCAGCCAGTCACCAGCACATCACCAA









CTTGCCATTATCACTGACCTCTTATTTGT









TTGTTTCTCCCAGCAAAATCTAAGCTCTG









TCAGGACAGGGATTTTCTCTCTCTTGTCC









ATTACCATATCCTTAGAGCTCAGAAGGG









GTGTCTGGCCCAGGTGCTCAATGACTGT









TTGTTCAATGAAAGAATGAACAAATGAA









TCACACAAAAGGAGAGAGGAAAATACT









ATTTCCCATTAAAATGAAGAAAGAGTTT









TTATTAGAAGGGAAGGCCACAGCAGCCC









TCTACTACCCTCTTTTGACTAAACTTCCA









GGAAATTCATTACTAAGTTTTGGGCTTCA









GTAAGTCAGAGTCAATTT





1886
2425955
7
AMY2B;
TGTGGCAGTGGCCATCTACTGCTCAAAG
0.000731459
0.007223839
4.52E−06





ACTG1P4
TCCAGGGCAACATAGCACAGTTTCTCCT









TGACGTAGTGTCTGATCTCCCGCTCGGC









AG





1256
2428116
2
KCND3
TGTTATGACCCATGACCCTCGGAGCCCA
0.003923309
0.00762346
5.07E−06






AACAGCACCATGAAGAGCATCATTAAAA









CTAAGAGAAAGTGGCTATCAGAAAATGA









AACAGCTTTAAAGGGGTTCCTTTTAGT









CTTGTTTTCTATTCAGAATGTTCTGTGTT









TTTTCTCAAGTGTGGGAATGACATTTATC









TTAGCAGGTTACTCAACTACACTGGATG









ATGTCACTCTAACCAGTGTACGGCACTG









ACCCAAGTCCTGGGGGGCTCCTTGGACC









AATGGACTATTTTACAAACCTGGGAGGT









GGGAGGGATGGTATATTTTTGATAATCA









GACATTCCAATGTAATGTTTTCCTTAGAG









GTCACACCCTTCCCCCCATTAATGTCATC









GTGAGATACATCAAGTGTGTTCTTTTCTA









TTTTCGTATAATAAATGGGCTTTGCTTAT









CAACATCACAATGGCAAAGAAGAAATAT









ACTGTACAAAACTGCAGGAAGATAAAAC









ATGAAAACTTTCTATGAAAAAAAAAAAA









CACCCTTGAGTTTCCTGTCGTCTTC





 866
2428148
4
KCND3
CCAGAAACTTCTTACCCGTATTGAGCTG
0.000333956
0.00838534
4.70E−06






CCAGAAGCTGCAAGTGCTGTTGCAAGAT









G





1653
2428490
6

AATGCTTTGTCTGCCTTATTTGTCAATGA
1.05E−05
0.006690888
3.07E−06






GCTCCACCCTGAACTCAATAATCTGGTT









AAAAGCAAAAGCTAAATTGGAAAGTTCC









TAACTAAATTAGTAAACTCAACACTTCA









GGATCTTTGTTA





1030
2428505
2
SLC16A1
TCCATGGGGCTGAAGGGTAAATTGAGCA
8.27E−06
0.012777404
7.84E−06






GTTCATGACCCAGGATATCTGAAAATAT









TCTACTGGCCTGTAATCTACCAGTGGTGC









TCAATGCAAATAGTAGACATTTGTGTGG









AAATCATACCAGTTGTTCATTGATGGGA









TTTTTGTTTGACTCCTTACCAATAGCCTG









AATTTGAGGAGGGAATGATTGGTAGCAA









AGGATGGGGGAAAGAAGTAGGTTCTGTT









TTGTTTTGTTTTAATCTTAGCTTTTAATA









GTGTCATAAAGATTATAATATGTGCCTT









AAGTTTTAGTCTTTAGAACTCTAGAGAG









CCTTAACTTCTTAAACCATTTTTGCTGAA









TTCATCTATTTCGAGTGTTGTGTTAAAAG









GAAAAATAACAACTAACTTGTTTGAGGC









AAATCTAAAATTTAAAATTAATCTTGCTT









CATTGTTACATGTAATATATTTCAGACAT









TTTCACTGGAAGATTTATGAACAGAAAT









ATTGGTTGAAAGTTAGAGATTTTACAAA









ATGCTGACAAAAATATTTTCCTAGCATC









AGTAGATTTCTGGCATATGTTTCTGCTAG









CTATA





1824
2428507
9
SLC16A1
GTATCTATCTCTTCATTGGCATGGGCATC
0.000131632
0.007514531
2.97E−06






AATTATCGACTTTTGGCAAAAGAACAGA









AAGCAAACGAGCAGAA





 536
2431143
9
NOTCH2
AGCGGTGTACCATTGACATTGACGAGTG
3.08E−05
0.012700774
8.14E−06






TATCTCCAAGCCCTGCATGAACCATGGT









CTCTGCCATAACACCCAGGGCAGCTACA









TGTGTGAATGTCCACCAGGCTTCAGTG





1737
2432473
6

TCCGCGCGGAGGGATCTACTACGAGTCA
5.28E−06
0.007929227
4.32E−06






CTGGCCCCGTCCGCATCCTTCTCCAGCGG









CCCCGGGGGCCGCCGCGCCTTAACTCGA









TCAGG





1109
2432882
6

GCCATAGGCCCTGATGACCCAAAACCCC
0.002356255
0.006664499
3.11E−06






AGGCTTATGAGAGGCTCCAGACCTCCAT









ACTTTCACAATGACAGTTGTATCAATGG









TGTTTTTTTCCACTAAGCTTATGTGGCCA









TGACATGACCAGGACTTCCTGGGTAAGA









ACGGAGATGGGAAACCCATG





 699
2433254
2
FMO5
GCGACACTAACAGGTGAAGATCTCGGGA
0.00580501
0.009377878
2.79E−06






GACC





1560
2433880
4
RP11-
TCCCAATGGAACACCCATGACGACTCAT
0.000454879
0.006744412
3.44E−06





744H18.2
GAGG





 964
2434001
6

CCCGGCTGCTCTTTTTTATAGACGAAGA
3.58E−06
0.013245904
1.02E−05






AATTGAGGTACAGAAAATCCAGTAACGT









TTTAAAAGTCACGTCATGAATGAACCAA









GATTTCAACCCAGAAATTGAGGCTTCAC









TACAAGTGAAGACTGGGGTTTTCTTGTTT









TCAATTATTGGGAGTTTTGGATTTCCAGG









AATGTGCAATTGTAAAAACCCAGCTTCA









GGAGGTGATGAAATAGGTGCAGTGGCTC









TGGCGTAAGCTCTGAAGCCCCAGGCTCA









GGCTCTATTGAAAAATTACTTTTGCTGAA









ATATTCCTGTTTTTAGGAACTTCCATGGA









ACTTGAGCCTTCACGCAGCATATTTTGGC









ATCTGATTCAAAGCTAATAGAGGTCCGG









AGGATTCCCAGGATTAAAGTCTTTAAAC









AGAAACTGTGAATCTTGCCTAAGCAAAA









GGTGCCATCCCTGGATGGGCTTGCACCA









CCAACCTTTCAGT





1858
2434095
1

TCGTTGGGACACTGAAGGGAGATCCAGA
0.001705241
0.006866301
4.85E−06






GTTCCGACTGAAATTTGAGAAGCTCTTT









GCTATTCAAGTGGATATGTGCAGTTGAC









AGTTTGAGAGATGCATCTAGGGTTCAGT









AAAGACAACACAAGCCTGTCTTTAGGGT









CTACCTGTGAACTGTGAACACAGCAATG









AGAATGATGGACATCACCTTTAAGTATT









TTTCTAGACTTTATTACTCATGTGTTTGT









CATGAGGTGTAACTTAGTAGTTCATAGT









CCTATAATGTATGTTATTGACTAGGTAGC









ATTTATTTTTCTAATTGTTTCTGTTATAGT









GCTGCCACATGTGTTTCCCAGAAACGCA









TTTTACCCACAGTTCTTAGGGTTGGCCTG









ATTAGTTTAATTGCTGTCTGAACCTGCTT









CTTACTG





1432
2434340
5
CA14;
TGTCCCTCAGAGATTGGCCTTATCCCCCC
0.008706715
0.006743011
5.10E−06





snoU13.115;
AGCATGACTTTTCCTAAGGTCCAGATCCT








CA14
TTCCCCAGGACCACCCATCCCTGTTACTT









TGTCTGAGTCCCAGCTCTTTGTTCCCTGG









TACCTCTGCAAATGTGGCTTCACTGTTGA









TCTGGTGTTCTGACCCCCCTGGGGATCCT









TTCTGACCCCAGTGCAGGTGGAGCTGGG









CAGCTACATATTTTCGGGGAAGTCCACC









CAGATACAGGGTAGAGGGCAGAGAGAG









TTGCACTGTGAGGAAAAGAGCAAACTCG









GATTGGTGGAGGCATGTGGATACATTCC









CACTCCTGGGTTGCCACCACTTCTTGGGA









GACTTGGCCCTCTTCCAGTTTTCTCCCCC









AGTAGCACCCAGTTCCTCCCATAGGCCA









GTGCTTTTCTAGCATATCTTCCTTTTTCTT









GGTGAAGACCAAGTCAGTGCAATGATAC









CTACCTACTGAGCTTGGTTATAAACATTT









CGATTCCCGCTTTGGCTACAGGATCCTG









ATCCCCATTCTCATATCTCCAAATTCATG









GACAAAGGTTTTTGAGAATTCGTAGGTT









AGGAAAATGCTGCTTTCCTCTGACTCCTG









AGGTTATTTGTTTGTTTATTTATGTCAGA









TGGGTAATGTGCCAACATCTTGACAAGA









TTTGAGGGCGGCACATC





1647
2435365
4
THEM4
GTTGGTCTCGCTTCCTATCTCACTAAGAG
6.81E−05
0.006800674
2.64E−06






AAAATAAAAGCAGTCAGAAGAGAACTC









CCAGTCTCCCATTGCCTCACATATCCTCC









CCCCTGCATCTGTGCCTGATGTTCTGCTT









CTTCCTGCTGTGAGTGAACCATCCACACT









CTTAGGGAGACCAAGCCTTCCATTTGTG









CGCTGCATTCCATTTTCTTTGGCCTACTG









AAGGACATCCATCTCTGCTAGATGTTTC









GTATCAGCATATAAACATGCCACAACTG









CATTTCTCTCTTCCCAGTCTCTCTCTCTCT









CTCTCTTTTGTTTTGGGTTTTTTTGTTTTG









TTGTTTTTTTGTTTTTTTTGTTTTTGGTTTT









GAGAATGAGTCTCACTGAGTCACTCAGG









CTGGAATGCAGTGGCGTGACCTCGGCTC









ACTGCAACCTCCTCCTCCCGGGTTCAAGT









GATTCTCCCACCTCAACCTCTCAAGTAGC









TGGGATTACAGGTGCATGCCACCACACC









CAGCTTATTTTTATATTTTTAATAGAGAC









AGGGTTTCACAATGTTGGCCGGGCTGGT









CTCGAACTCCTAAATTCAAGTGATCTGC









CCCACCTTGGCCTCCCAAAGTGCGGGGA









TTACAGGCATGAGCCACTGTGCCCAGCC









TATCTTGAACCCACTCCCTCAAAACAGC









TCTTGCCAAAGGTACCAGTGACCTTCAT









GTTGCTGAGTCCGCTAACCTCTCAGCTTT









TGGCACAGCTGTTGACTCCTTTC





2045
2435391
2
S100A10
GCAGAAATGAGCAGTTCGCTCCTCCCTG
2.12E−05
0.007179441
6.15E−06






ATAAGAGTTGTCCCAAAGGGTCGCTTAA









GGAATCTGCCCCACAGCTTCCCCCATAG









AAGGATTTCATGAGCAGATCAGGACACT









TAGCAAATGTA





 138
2435392
9
S100A10
TCTTTTCCCTAATTGCGGGCCTCACCATT
1.64E−06
0.029375761
3.58E−05






GCATGCA





 420
2436400
5
CREB3L4
CCAGCCACGCGTCCAGCAGGTCAGGGAT
0.010140998
0.009145342
7.79E−06






T





2046
2436718
2
UBE2Q1
TGCTGTATTTGGATCTCACGCTGCCTCTG
1.24E−05
0.008826572
5.71E−06






TGGTTCCCTCCCTCATTTTTCCTGGACGT









GATAGCTCTGCCTATTGCAGGACAATGA









TGGCTATTCTAAACGCTAAGGAAAAAAA









ACAAACACAGAACTGTTTCAAGTACTCA









AGACTGACTTACAGACCAACCAACCACC









TTGCTGGAACCCTTGCTAGCAGGCATTCT









TATAAAAGAAACTTTCGAGCCTCCTTAT









ATTGCTGGAAACTCAGCTGTGCTCCAGA









CTAGAGCCTCCTTACCTATGCTATGGA





1559
2436760
9
ADAR
TCCAAAAGGCAATCCGGGAAGACTAAG
0.000333103
0.007188607
4.31E−06






GAGACAAGCGTCAACTGGTGTCTGGCTG









ATGGCTATGACCTGGAGATCCTGGACGG









TACCAGAGGCACTGTG





2081
2436777
9
ADAR
TTTTCTGGGAAGAGCCCCGTCACCACAC
0.00055537
0.006511312
3.94E−06






TGCTTGAGTGTATGCACAAATTGGGGAA









CTCCTGCGA





1816
2438283
2
IQGAP3
GACTCTTCCAGGCAATTTCCATAGATCTG
0.019281916
0.007219209
5.36E−06






CAGTCCTGCCTCTGCCACAGTCTCTCTGT









TGTCCCCACATCTACCCAACTTCCTGTAC









TGTTGCCCTTCTGATGTTAA





1403
2438403
4
RP11-
GATGCGCGCCGTACATCCGGCACTGGGT
0.009861702
0.007020494
4.83E−06





284F21.7
CTCTGCCTCCTCCCAGCTCCTTCGTGTGG









AAAAGTGCTTGTAGCAGGCGCCCT





 702
2439112
9
FCRL1
ATCATCTTACCTCAGGAGTCATTGAGGG
0.00180613
0.010454141
6.09E−06






GCTGCTCAGCACCCTTGGTCCAGCCACC









GTGGCCTTATTATTTTGCTACGGCCTCAA









AAGA





 697
2439713
1

ATCCATGGATCTGCTGCCAGGTTCAGTG
0.018818925
0.009054474
6.05E−06






ACTGGAATGCACTTGCCCCAGCGGGTTC









AAGTTCTTTGTAGAAACAGACCCCTCAA









AGATGACAGCAGCTGGCTTCCTCCAGAA









GTGTCCTTCAACACTGTCTTTCAGTACTA









AGTGACCAGTAGAAGTTACTCCATAAAG









ACCATAGCCAGGAATGAATTATGGGGCT









TCCTGCATATCAAATGGTTACCTAGGGA









AGGCATATGGTAAACTAGTTAAGCACAG









AGGTTCTGGAATCAGACTGCCTAGGTCC









AAATCCTGGCTTTACAACTTACTAGCTAT









GTGACCTTAGGTGATATAACCTCTTTACG









CCTCAGTTTTCTTACCTACAAAGCAGGA









GAAATAATAGTAATTAGCTCAAAGGGTT









GCTATAAGAATCAAAGAAAATCATGCAA









GCAAAGCACTTACTACAGTGCCTGGCAC









ATAGTAAGCTCTTATAACAGTTTTCTGGT









ATTATTCTTATTAAGCCATTTTGTATTAT









ATCCATAAATGTAGATTCATAAAATACA









TAAAAATACAACTTGGTAGAATTTGTCT









TGGTTGGCAGCAGTTGAAGCTTCTC





 713
2440486
9
F11R
ATTCAAACAGACCTCGTCATTCCTGGTGT
0.002951948
0.009184105
4.04E−06






G





1854
2440934
6

CTGGTAATTGGGCTCTTTGTTCTTCTGGA
0.000329714
0.009574997
9.06E−06






GCTTCCGACTGCATAAGCAGTGAATAGG









TGATTTTGTTCTCAGCATGGAGAAGGCA









GAAACCAGCAGTAGGGATCCACAGAGA









GGGCATAGGAAAGAAGATGTTAAAGAG









GCTGGACATTGGGGCTGATGCTGGTCAT









CC





1880
2441254
7
UHMK1
CATGATGTGATTCCAATGTACCCGAATC
0.000674778
0.007808112
7.85E−06






TGAATAAAGCCACCTAGCATGTACCCCT









GCATAAGTGTCTAGGTAAATAGATGGTT









ACTGAGTGTCTCCC





 479
2441293
1

TGGAAAGAGATCATGGAGGAACGTTCCC
0.04486637
0.007065833
3.64E−06






ATA





  52
2442609
9
CD247
CACCAAGGACACCTACGACGCCCTTCAC
1.32E−08
0.058186499
7.57E−05






ATGCAGGCCCTGCCC





 146
2442711
4
CREG1
GTACTTACACATCTTTCACCTAAGATTGC
0.044564191
0.016459758
1.51E−05






CGCCCTTACAGCCATCCTCAGCCTTCTAA









GGCAAGGGGGGTTTAACCGTTTCATGTG









CCCTGGACACCCTGGGCAGTCTGGTAAA









GCCGCTGAC





1139
2443145
2
DPT
GGAGGCAGAGCTGAAAACAGGGTTGGA
0.001689593
0.008816218
5.73E−06






AGGA





1553
2445386
9
ASTN1
CCCAAGGTGCTGACATTCCCAGAATACA
0.00081399
0.007829511
7.28E−06






TCACCAGCTTGTCAGACTCCGGCACCAA









GCACATGGCGGCTGGAGTCCGCATGGAG









TGCCACAGCAAGGGACGATGCCCCTCGT









CCTGCCCCCTGTGTCATGTGACATCCAGC









CCTGACACCCCTGCTGAGCCGGTTCTGCT









GGAGGTGACCAAAGCAGCCCCCATCTAT









GAACTAGTGACCAACA





 201
2445439
4
ASTN1
TGCAGGGCACACTCTGTCTGGCTGGGCT
0.000986793
0.015663776
1.28E−05






CTCCTCCGTACCATGACACGTCTCTCCGT









TGGAGTCCTATGTACACCACCATGGAGT









CGGCGCCTCATG





1306
2445596
1

AGGCACGCATGCAAGGCCTGCCTGCCGT
2.37E−05
0.008143377
5.57E−06






GCCTCCCTCTGCCAAAGGCATTTTTAGCA









ATTTCCTAAAAATGTGGCTACAATGGAA









AATGAAGCTGTTCAGGGGGAGAAGTGAT









GGCCCCGAAATGCATCCAACAGCC





1045
2445659
4
AL359075.1;
TTCAGTACAATATGATCCTGAGACAACA
2.89E−05
0.008115986
5.64E−06





SEC16B
GTCCCACTGCCTT





2059
2446213
2
TOR1AIP2
CTTATTTCCTGGGTCCATGGGAAGCATG
0.000701725
0.006905728
3.97E−06






AGTCTGTTGGGACTTGGGACAAGAAGAA









AACAAGACATCTTCACAAGGAAAACCAA









GTACTAAAAAAAGTATCCTCCCAACTCT









GAAGAGATAGAACACAAA





1017
2449595
9
ASPM
TGGCTTTTTCACGAGATTTCCTAAGTGGT
0.00028481
0.011214528
1.13E−05






GAAGGTGACCTTTCCCGTCACCTTGGCTT









ATTGGGATTACCTGTTAACCATGTTCAG









ACACCATTTGATGAATTTGATTTTGCCGT









TACAAATCTTGCCGTAGACTTGCAATGT









GGAGTGCGCCTTG





1479
2450707
7
IGFN1
ACACACACGACCTTGATGCCCTAGTCCT
0.008126841
0.006840666
3.17E−06






CACCCAGGTCCTCTGACCTCCTCTCCTCT









TCCCTCCCAGTGGTCACAGCAGGCCCAG









CTGTGCCCACCCTCCCTCCAAACGGCTC









AGCCCAGGAAAATAAGGAGCCGGCCCA









TC





1990
2452640
2
NUCKS1
GCCAGGTTAAGCAACAGCCAAGTTCTCA
6.19E−05
0.006513548
4.46E−06






GTAATTGTTTGCCTTGATTTATCTTTTAG









ACTTCATTTTGCCAGCTCTAAAACTCCCA









GTCTTCCTTGATTTTAGTCCTTAATCTTTT









ATGTTCTGAGCAGGAAGGGTAAAAGACA









GGAACCTGCTTCACTGTATTAACTAGTCC









ATGGGCTGAGACCGGGGCATCTCTTTTC









TT





1907
2452665
9
NUCKS1
AAAGAGCAGCGGAGTTTGAGAAGCCAG
1.22E−05
0.00700385
2.12E−06






CAGCTCGGGGTTCGGCAGCAGCGGTCCC









ATCGGCTGAAGTTCGGGGGGGGTGGGGC









GCCGAGCGCGCGGGGTGGGGGGGGTCCT









GGTCTTTGGCTTCTCGACTCGGTCCTGTT









TCGACAGCGAA





 226
2453257
3
C1orf132
CGGGGAATCCTCAGACGTCTCCATTCAG
0.003864295
0.015604689
1.46E−05






AATCTCCCAAACGATTGTTCTCTTTTTTG









CATTCTTCTCCTTCTGGCTTTTCTGTGTG









GGGTTAGTAACCAGCACAGGGTTGGGGG









CAGAATGGGCAGCTGAAGTGGTCGGGCT









GTGCGGACGTGTGGGAGATAGCTGGGTA









GTGTTGCTGGGTGTGGCAGTTGGCAGAG









CATTTGGGCCTCCCACAGTAATAGAAAC









TCTCTTTGGCTCCAGCATCCAGCAGGAG









GTTCTGGGTTTAACCCCTCGGTAATCCTG









GGAGCCTTCCTGGTGCCTGGGGATTCTCT









CCCCTGTGTAGTCTCAGTGGATGGCCTGT









CTTAACTCTAGATACATTTTGCCTTGAGG









GGGCTTAGTCTAGGTTGGTGGTCTGGAG









TTTGGACTGGGCTGAGCAGTGAGCTTTG









GGACTCTCCCTAATTTTGGGGTTTCTTTG









AATGAGCCACTTTCTTCCTCTAGGCCTTC









ATTACCTTTGCCTTAAAAAACAAAATCC









CTGGTCCAGTAAGCCATTGCAAAGCATC









TCTAGGAAGTTGACAAAGAAATGCTTTT









CTTCTGCCTCACTTGCTGCCGATCACAGT









AATAGCAATGGTGATTAAAAATGAAAAA









TGATGACGGCCTGCAGAATCAGGGAGGT









CAGTGGCATCATTGATACAATTCACAAA









GCAGACTCTCGGTGCCCACACATCACTA









GGAAGTCTCTCTCCTATCGAGTAGATGA









CTACAGCATTCTTGGCCAGTAAAGCCAG









TTGGAATTAGCCAACAGCAGATTGGTCT









GGGCTCTAAAGATAAAAGGAATTATGTT









GGGTAATTTTCGGAGGTACCTATGGGAT









CCTACCTCTGGCCACACAGTGGTCGCCT









CTCTCTGCTCATATGTTTCGGTGGGGGTG









GGGGGTTCCTCTTCCCCATGCTGCTCCCG









TTGCTATCCAGGGAAGATTGGCCAATTC









TGCTTCCTGTTATTTCTTCTTCTCCTCTGT









CCATTTGAGGTGAGTCTCTAGGTTGGCT









GTGAACAGCCTGAGGAACCCAGGGCTGT









TTGGAAGAATCTGATGTCTCTTCCTTCAA









GGACCCTGACAGGTCTCAGCCCTCCAGC









AGTACTGCAGTGAGGGATGGCAGGGGGT









GTTGGAGTGGAGAGATATCGACTTGGGT









GCAGCTGGGGAGACTAAAAGGAGTGAG









CCAAGTCCCTCAAGAAGTGTTGGCTAGA









GTCTGGCCAGCCCTGGCTGTAGGGCTGG









AGCCAGACGTAGCTGCTGGCTGTGCTTG









GGAGTCTCAGCCCTCATATGTGCAGTGT









GTCCCTGGGCATGGCTCTTCGTGATCCCC









ACTCCCACGAATAGCCCTGTCCTTGGTTA









GATTGGGAAAACCAGGGTGGGAAGTAA









AGGGGAGGTTGGTTTTGCTCGTGGTCAT









GCAGTTATCTCTCTGGCCTCTGATGTTTC









CAGAATTGGGATTGGTGCTTCCCTGCTG









ATTTTCCTATTTTTGTCCCTCATCTGGTTC









TTTTCCTCCTTGCTCACCAGCCTGGGTTC









TACACACATGACATGGGGCATTGTGTGT









TCCCAATGAGGATAGCAGAACAGTTGGT









ATCTCCTGAGAGAGGGGCCAGCATATCT









GGCACTTTTTTCTTGACCTTTGAATTTCT









GAGGTCTGGGAGTCAGGAGGCAGCATG









GGGCCTCTCCATCCGGGATCCAGCAGAG









GTTAACAGAGTTGGTGGCTCTGGAGCTG









AGGTGGTGTGGCTTGGCTGGGAGTTGTG









GGGGAGAGGCCCTGCCAGGGGCCCTGAT









TGGTCAGTACCTTCTCTATTCCATTGAAT









CCTGGTCCGGTCAGCTCTGTGAATTGTTT









AATGCATATCTTGGCTCTGTCCCCTGGCT









CGAGTGTCCCTAAGGCTGCAGCCACAGC









TTTAGAGAGGATCTGTACCTTGTGCTGGT









CACTTTTTTTGGGCGTGTTACCTCCCTCT









GAGATATGTAAGAGATACCACCCTTTCC









CACCAGCCGGCTGTCTGTGGGAGGCCCT









CATTTTGCTTTGCTTTTCTGAGACTTGGA









GTGACTGTGAGGAAAGCATGGACTGAGT









TTGCTTTCTTGCTGGTTCCTTCCACAAGA









GCTGCTCATGGGCTGATAAAGCCAGAGA









ACACCTCCAGGGCCCCATGGCCTGTGCG









GAGCCTGGTACCATAGTGTCAAGCCTA





 856
2454934
7
VASH2
AGTCCTCCCTTAGTTTGATTCTTGGCATC
9.17E−05
0.01002888
5.93E−06






CTTCAGAAGAATCAAAGCCTGCCTCAGT









TTAAAAATCAGATGAAATGTGAACAGAA









AGGTTTTTTGGTTCTGAAGACCTGCTGAT









CACTCCTGGTCTCTGCCTGAGTGTGTTAA









TGTCAGAGGTAAATCCAGTACCGCTAAA









TTTGTATAATAGTACGTGACCTCTTGTGC





1742
2455571
5
CENPF
GGCATCAAGAATCACTAGCTCCTGGTTT
0.000909538
0.012399382
9.59E−06






TCTTCTGACATCTGCAATTCCCTTTCAAG









GTTCTCAACTTTATCCTTAAGTGAATCAT









TCTCCCGCTCGCGTTCTTTCAGTTTCTCT









GCGATGTGCAGCTGCTTCTTTTCATCGGC









CTCAATGCGAACTCTCAGTTTCTCGATGC









CTCTTCTCAGCTGATGCACTTCCTCCTGT









GTTGAGCTCAGCCTC





1382
2455740
9
USH2A
TGAGGACATTGCAAGCACCTCCAGAAGG
6.92E−05
0.008670255
3.56E−06






TCTCTCTCCACCTGTGATATCCTATGTTT









CTATGAATCCC





 367
2458002
4
PARP1
CTTCATTCTTGAGTAGGGACTTATTGTAT
8.76E−05
0.022724911
2.24E−05






CATCCATCACAAAATCATACAGTACTTTT









ATCCAGGAATTGTAGTGAGGGAGGTTGT









CATAGTATTCAGCTGCTATTTTCCTCACC









TAGAAGGGAAAAAATACAGCAAGATGA









AAAATGAGTGTTACTAGGTTCTTTCAAA









GATGACTGATGAATGGTTGACACAAACA









CTGAGAAGGGAAACCATGAGACCTGCCT









CC





 494
2458051
9
PARP1;
GAGAGTGATATGAAACGGAAAGGCAAG
0.000839994
0.018192256
2.19E−05





NVL
CTAA





 614
2458059
9
PARP1;
TTTAGCATAATTAGTAGTGAGAAGGAAC
0.001013073
0.018177128
2.33E−05





NVL
TTAAGAATTTAACAGAATTAGAAGATGA









ACATTTGGCAAAAAGGGCAAGACAAGG









TGA





 772
2458061
9
PARP1;
ATATGTGGACATTGGAGTCTTAGCGTCT
0.000120755
0.016719436
1.39E−05





NVL
GATTTACAAAGAGTG





 371
2460770
7
RP5-
GGAAATGCAGGGCATCTCCGCCACTGGG
0.030881616
0.013148273
1.70E−05





865N13.2
AGTGACC





 240
2461554
1

CTTGCTTCAGGCTTGTGAATTCCTAGAC
A 1.71E−05
0.015540624
6.99E−06






CAACCCTACCCAAAGACTTCCTTCACCA









ACATATTTTTCTTTCTAGATAATAGGCAC









AAAAACCATTTAGAAGTTTGAGATGGAA









ATCATGCAATGCACTCTGCTCTTTATATA









TGTTACTGAGGAATCTGGAAGCTTTTCC









GGGTTGAAATGCAATTCCTAGGAAATTA









TTCTTGCTCTTTTCCTGTGGCTGTTTTTAA









CACAGCAGCAATGCAATTTCAGTGGCTC









TGCTCCTTCACAAAGACCTTTGAGAGGG









AACTATGCTGAGAGATGCAAATTCAAGG









TTTTCTGAAAACACCTCAGAATTGTCCA









GTTCTGCCCCCAGATAAAACCACTAGAA









TAAAGGTCAGGAAATCTCCAGATGTTCT









TGGGACTTGCGCAGTCATCTCAGGTA





 647
2461808
3
ARID4B
TATGTAGGGGTTTGGAGCAACCAACTGT
1.85E−05
0.009733544
4.19E−06






CCAGGCACTGCTTTCCTCAGACAACCGT









GTCAAACTGATTTTCAAGCCTGACTAAC









TTGT





1888
2461983
2
GNG4
ACAGGGGGCCGAGCAGAAGCCCCCAGC
2.45E−05
0.006679482
3.66E−06






GTCCAGGGCCGGGGGAGGGTCCGCCTGC









GCCCCCAGGCCCGCGTGGTCGGGCCCTG









CAGGGCGGGAGGCGCGGCGCGGGGCGG









GGCCGGTGACGGGACGCGGAGACCCCG









CGGGCGGCGGGAGGGGCACGAGGCGCG









CGTTTGCACCCGAG





 987
2462132
4
LYST
ACCTTCATTCCAGAGGCATCCTGCCCTGT
0.005853836
0.008761152
3.61E−06






ATCCGGGAAGAAGGAATGCTGCACACA









GATGCCAAGAAGAATCGGAACAGACAG









GCATTGCTGGATCCCCCCTCGGTCTATTA









CCACGAGATCAAACTCTTTTGTCCAATC









ACATGTCTACAGTGCTGTCCATTCTTCA





 646
2462390
5
EDARADD
TACTCAACTGCTCTCTCGGCACAGAGCC
0.009608615
0.008062889
5.07E−06






CCTGGCGAGCGCACCCAGCTGTGCTTAG









CGCTGCTGCTTCCAACACGCCAAAGAGC









TCATCTTGCCATAGTGGGTTTAATGTCC





 391
2462402
6

CACCGGGACTGGCAAGATGACTTTGGAG
0.024995647
0.013921384
1.34E−05






TTGCCAGACAAGTCGGCGATGTGGTGGT









ACAGGGGAACCCCCTTCTCAACAGCACT









AGCTTTGCAGGCAGCGAGGGACACTCCC









AGAATGGCATTTGCACCAAATTTAGATT









TATTTTCTGTTCCATCCATCTCTATCATA









AGTTTGTCAATCTTCTCTTGTTCTGTGAC









GTTCAGTTTCTTGCTAACCAGGACAGGT









GCAATAGTTTTATTGATGGGCTCAACAG









GCTTTGAGACACCCTTCCCCATATAGCG









AGTCTTATCATTGTCCTGGAGCTCTAGGA









CCTCATAGATACCAGTTGAAGCACCACT









GGGCACAGCAGCTCTGAAGAGACCTTCT









GAGGTGAAGAGATCAACCTCAACAGTGG









GATTCCCACGAGAGTCAAAGAGCTCCCT









GGCATGGATCTTGAGAATA





 148
2463199
4
GREM2
TTAGCTTTACCAGTTGAAATCCATCACAC
5.31E−05
0.020014135
1.68E−05






TTCAAAGCCCAAATGCTACGCCTTCAAG









CTCTGA





1688
2463907
6

GTCCCAGTTTCCATGGTCAGCCTTACGTC
3.87E−05
0.009135293
5.78E−06






CCATTACCAGTTGTTTGAGTGGTCTCTCC









CAATGCATCCCCCATAAATTATGCTAATT









CCTGCCTGCTCTTT





 480
2464645
5
KIF26B
GAGAAACATCGAAAGCGCAGCCTGCAG
0.000394997
0.01015051
6.15E−06






CCG





1745
2464725
5
KIF26B
GCTGCACAATTAGAGCCAGCCCACAGGC
0.02996467
0.007436111
2.41E−06






TGTGACTGGCTATGAACTTCTCTGTCATT









TTTGGGCTGCCAAACTTAAACACCCTTTC









GACAAAGCTCTTCAGTCTGCTTTCCCTCT









TCAGTGCACCCTAAGTCCTGCTGACATG









GAAGTCATGAGATCTTCCCTGGAGAGTG









ACCTGGCCCCACAGGGGACTTTGCATAA









ACCA





 961
2465112
4
SMYD3
CGGTTTTCCTGCCACATGATGCTGACGG
0.000740426
0.00859054
3.68E−06






ACCTCAGCCTCTCCCGGCCTTGGTGCAC









ATACAACAGCCTGTAAAAGCTCCACTTT









CTATTCCAGATTGCTGTTATGCGTCTGCT









TCTCATTCAAAGGAAATAAGAGGAGATG









TAAATCGTCGCTGTGCAGTTACGTGTTTA









ATGAAAATGATCTTGCATGCTAGATTCA









CGTCCAGGAGCGAGTCGCCCTTACTGCT









GGTATTGAACTCACTCTCCTTGGAGCGC









CCCAAGGCTGTGGGCTGTGGGGGGGCAT









TAGTGTGTGTGGGCGCAGCTATTATTTGT









ACCAGGA





1228
2468077
1

AGGTGAAGTTCACAAGGCCAGTGCCTGC
0.001320494
0.008632826
6.05E−06






TTCCATGGTGCCTACTGCCAGGCCTGCTA









TTGCCTTTGAGATCTGACTCAGAACACA









ATGCCAAGAGCTTTCTATTAGATACAAA









CACCCGACTTTGGACACTCTGTTACTCAG









GTTTTTTTAATCCCTCACATAGAAAAGCA









CCAGAGTTGTCACCATACAGA





1438
2468096
1

TATTGGCTGCTGAGAGCCCTCCAGAATG
0.00199727
0.006948306
3.18E−06






TAGACGTCTGGTCTGGGGAAACTCAATG









GATTTCTGTTCTTGGTACACGCACCCACT









TATGTGTTCATGTCCCACCCCCCATCCTC









ACAGCCATTACATGAAAGCATCTGAGTG









TTGTACAAGGTTAAAGCTTTTTGTGTTAA









TCTATCCCATATGGAGCAGGTATTA





1499
2468976
2
IAH1
TTTCCTCAGGCTTAAACCTTTGCCACTGA
6.79E−05
0.009755437
5.56E−06


1773
2469870
9
GREB1
ACTTCGGGCTGTCGGAGTTTATTGAATCC
0.005601625
0.007192075
3.14E−06






ACCCTTTCAGGACACAGCCTCCCCTTGCT









CAGATACGATAGCTCCTTTGAGGCCATG









GTCACTGCATTAGGAAAA





 369
2469885
4
GREB1
GTGCCTAGGCACTTTTTATATATCAGTCT
0.004872298
0.010268236
8.27E−06






CTCCCAACCTTTTATGCAATAGAAAATA









TTTATCCTGGACACATAGAAATGGATAA









GGCTCCTGACCCAGGGCTCTGGCTGCCT









CAGGCCCTGGTGGGTCACCTGAAGCCAC









GCCTGCAAGCCACCCAAGGTGTGCTGGA









TGGGAGCTGTCCTATCTAGTGTCCTATTT









A





 660
2470495
2
FAM84A
TCACTGATGGTGACACTACTTGTAATTAC
0.028813689
0.01106141
8.18E−06






TGTATTTTTTGGCAGAACACTCAGATGA









ACAGATTCCTATGCTGTGGACTTTTATCA









TTCTTTTTGATGGCTGATAGTAGAAAGC









ACACAGTAGGTACTCCATAAATGTAAGA









CTATGGCAGCTGTCTAGTACAAGTGCTT









CTCACTGATTCTTGGTTACCAGGAAAAC









CAGAAAGCCCGTCACTTGCCTTGCCTGC









AAAGGCGAGCCTAAAG





1270
2470675
9
DDX1
AGCTTCTGATAATTGGAGGTGTTGCAGC
0.000126422
0.011859396
8.45E−06






CCGGGATCAGCTCTCTGTTTTGGAA





 807
2471816
1

ATGGATCGGATTCTGGTGCAGAGAGGAA
0.003031295
0.011034735
1.03E−05






GGTTGAGAGAAATGGAGGAAGGTGAAA









CCAACAAGAAGTGTCCGGACACGCTAGC









AGGATTTCAGCATACAGAGCTAACAAGA









TGCGGGG





1190
2472863
4
KLHL29
ACCTGAAAGAACCAAGTCGCCACGACTC
0.00028481
0.008335196
6.23E−06






CCAAGTGCCACCTCAGTAAGGGACCTCA









ACGGGACGACCAAGGCCCAGTGGAAGC









CTCGACGGCCCTTGACCATGGAAGCTGC









CCAGAGCATCTCAAATAAGTCAGCAGCC









TTTCCACTGGGCCTATTC





1359
2472904
5
ATAD2B
AATTACAGTGATGCGCCCCACCATATCC
7.63E−05
0.010695906
5.99E−06






CAATTAAATACCTCTTTCATAACCAGCAT









CCATCAACAGAATACAGTGCCCAATAAG









AAAAGCAAAACCAGGATATCTTCTACCT









TAATATA





 822
2473804
4
EPT1
ATGCTCAGGTGGAGTTTCATTTCTCTGAT
0.00515944
0.009520516
5.10E−06






CTATGTGCTTCTCCACTTTTGCTCAGCCA









CACTGAATTTGCCTATTGTGTCCTGAATA









TATTTT





 604
2473817
2
EPT1
AGGAGCCTGTTATAATTCTGCAAGATCT
0.000162598
0.009646651
3.60E−06






GTGAATAGCATTATAAATCTGGGGCAGG









TGCCTGTAATCCCAGCACTTTGGGAAGC









CAAGGCAGGTGGATTGCTTGAGCCCAGG









AGTTCGACACCAACCTGAGCAACATGGC









GAAACCCCGTCTGTAATAAAAATACAAA









AAAATTAGCTGGGCATGGTGGCATGTGC









CTGTAATCCCAGTTACTGGGGAGGCTGA









GGCAGGAGAATCACTTGAACCTGGGAGA









TGGAGATTGCAGTGAGCAGAGATTGTGC









CACTGCACTCCAGCCAGAGTGACAGAGC









AAGACTCCATCTCAAAAAATAATAATAA









AAATAAACAAATCTGTTTAAATTACTGT









TGCCTTTCAGCATTAGACTTTGAGTTTAA









TAACTACAAATTGAGACTGCTCACAATA









TTAACTTTTTTTGTAGGTTATTTTGTTGTT









TAGATAACTTGCCTCCCTAGAGGAGCAT









TCAGGAGATAAAGACCTAGCTACATGTA









ATGATATGATCATTTCAAAAATGTGCCA









AGAAAGCAAAATTCATTATTGAACTCTA









AATTTCTGGGTGTTTTTTTTTTTAAAGTA









GCATTTTCTCTGGGTAAAGGGAAAGGCA









ATGAATGATTGCCAACATGTAAACTCCC









TGCTGCCCGCCTTCCCCCAGTCCCCTCCA









TCTAACATAATACAGTAAATTTGTAGCC









AGTTGTAGAAAAAGAAATTGATATCTTT









CTGAGTAAGGTTTCATGCCCTGTGACTA









AGAATAGGTGGAGGAATCATGGCCAAAT









CAAATATGAATTGTTTAGCTTGGTCCTGT









TGCAGTTGGCTTTCTGTAGTGTTCTGAAA









CAAGAGGACGATTCCATTCCTTCTCAGG









AACCTAGAAACAACACCGCTTGAGCAAC









TGGAATATGTTTGCTGCAAGCAGAATAT









TTTGGGGAGAGGAAGAGTAGTTTAATTC









AAGTAGTTTAATTGAACATATTAGTCATT









GGTCTGTCTGGGACGTGCAGTGTTCATA









GTAGCAATGTATGTACCATTTATTTTATC









TGGTTGTGTGTGATGTGTGTGTATGCCTA









TTTAATATGTACACATATATTCACTACAT









ATGTATGTATGATATATTCATATATACAT









GCAGTCTGCTTGATTATCAGCAAAATGG









TCAGCCTTTATCAGATAGTTTCTTCATGT









GGAGTTCATCTGCATGTGGCCCTTACTCT









GAAGC





 740
2473976
2
C2orf18;
GTGCATAACACACCTGGGTAACTTTTAT
0.000228432
0.008345388
4.46E−06





CENPA
AGAGATGGGGTTTCACCATGTTGGCCAG









GCTGGTCTCAAACTCCTGACCTCAGGTG









ATCTGCCTGCCTCGGCCTCCCAAAGTGCT









GGGATTACAGGCGTGAGACACCACACCC









AGCCATAACTAAGCATTATGTTTTCTAA









AACTTCTAAGATCCTCCCTAAACCCGTCT









GGAGACATGGGTTTTAGCCCAGACTCTG









CCTCAAACTCATTGTAGCTCCCAGCACA









TTACCCAGTTGCTCTGGGCCTTGGTGTTA









TGCTCTGGGAAGTAGATGTTGATGCTGT









GGCCTTAGTGCCTTCTGGCCCCAGCATTC









CATGGGCCTGTGATCTTGACCAACCTGA









GAAAACAGTAACAGCCCATCCACTGGAA









ATA





1033
2473979
2
C2orf18;
CTGGGCGTTGCGTTAAGTTGCTTAACTTT
0.001106343
0.006681413
3.51E−06





CENPA
CATTCTGTCTTACGATAGTCTTCAGAGGT









GGGAACAGATGAAGAAACCATGCCCCA









GAGAAGGTTAAGTGACTTCCTCTTTATG









GAGCCAGTGTTCCAACCTAGGTTTGCCT









GATACCAGACCTGTGGCCCCACCTCCCA









TGCAGGTCTCTGTGGGGTCTTTGGGATG









GATCTCCTAGGGCTGGGCTGGAAGCCTC









ATGTACTGTTGTCTTCTAGGTAACCACCC









TGAAGAGAAGGGGTGGCATCAGGAACC









GCAGGGAACCAAGCAGCCTTTGGTCCAG









TGCTGCTCCTTGGAACAGTTGAGTGTGG









CCTCAAACCATTCTCCTGGGTAGCTCAGT









CATAAAACACCGAATGCCTGCCTCAAAA









TAGCCTCTGAGGGAAGGGAGCTGTTGAC









AAGTGAAGCCCTCAGGTTGTGTGGGATT









CCAGCAGGTTATTACAGCTTGTGGGGGG









AGGGAGGGTCCATTCCACCAGCTTT





1926
2474461
4
TRIM54
GGGCCATTTGTTCTTGACCGACTTCACTC
2.15E−05
0.006718124
3.84E−06






CAAGGATCTGGTGTGGGCCAAGGCTAGG









GAGTGGGCAGAAGGCGATGGCTGGTTGG









AGAGAAGCCAGGCCGTCTAGTGGGGGA









GGATGGTTGGAACATAGCATTGAAGTGG









GCTCGGCTTTCAAGCTGCATACGGTGGC









CCAGTG





1650
2475693
2
LBH;
AGCAGTGGAGCCCTCTGACAATTTGCAA
2.46E−05
0.010241028
5.98E−06





AC104698.1
GGCCCTCTGAGAAAGGAAGCTGCTTAGA









GCCAGGGGGTTAGTGGGTGAGGGGAGC









GAGTGCTGTTTTTGAGATCATTATCTGAA









CTCAGGCAGCCTAGTAGAGGCAGTGGTG









GGATTCCAATGGGTCTTGGTGGGTGGGA









GGTGGGGCATGTGCAAAGCAAGCAAGG









AACATTTGGGGTAAGAAAACAAACATGA









GGCAAAAGAAAAAATACATGTTTTTAAG









AAAACATTGAGCAGAGAACTGCAGCCA









GGATGCGCTCAGCAGACATTCACTCTGG









CTGCTGGGACATCAGAAAACAAAGTCTT









CATCTCTCTCTCCAGTTTCACCCACCCCA









CCCTTTGCTTTCATTTCAGGTGTGTTGGT









CTATATGACAGGGAGGAGAGTAAAGGA









GAGCAGGAGCAATTGGCTGCCTGCAAAG









CCAGCTGGAGGTGAAGTGCAGGAAAGG









AAAGGTCACCCCATTCTACTCCATGGCC









TCTCTGCTCCCAGCTGTGGTAGGCTCACA









TAGCCAGTGTGATCGGTTTTTAAGAGGC









AGTGCTTTTCAGCTTTTCTCCCTGATATA









TCCATTTTGCTTCCCAGCACTTTTTAGGA









GTAGTGAGAGCACTTCCTGCCCTTGTTG









GAAGCCCCAGGGTGGACACTCAGCACGA









AGGTCTCTCCCTTAACTGCTGCCCTTCCA









AGACTTGCTCCCGAGATGGAGTGGGCGT









GGTCTTCCAGGCTGGCCCTTCCTTCTCCT









CACCGCCACCTTCCCTGCCCCAGCCCCA









GCAGCCATGGGTACATGGGTCCCCAGCT









CACCTATGGATTCCCGCCAGTCTGCCCA









GCTGCAGTACTCACGCCCCATGGGGGAT









CTTGGTCTGTTTTTCTTGTGGGAGCCTAG









TGGAGAGCAGACGTGGCTTTTTATGTGT









CTTGTTGGGGAGGTGACTTGCATGGTGG









GGACAAGGCTGTCGTGGCAACCTTGGGA









TCGAGTTTGAGACTAAAGGATGTCATGA









GATCCCTGGCTTCTCCCCATGTTGTTCCC









GGACAAGGGCAGAAGGGAGGCATGGCA









AGGGACCTCTGCTGTCCTTACTCAACAG









TGGTCCTCATCCCTCCCCACCTCCCACTG









CTTCCTGCAAGGGCACCAGTTGTATGAG









AAAGTTGGCCTTTGGACTTAGGATTTCTT









ATTGTAGCTAAGAGCCATCTGAAGCAGC









AGGTTGCAGGACAAATGCTTCAGTCCGC









CGAGAGCAGTACCGTGTGGCCAAGAGGT









GGACTCAGAGCCTTCCTTGAGCTAAACT









CGGCCAACCAAGGCACGCAGCATGTCCC









CTCAGGTCTCCAGTCAGTCCAGGTTG





 291
2475695
2
LBH;
CCCTAGACCACTTTGTATGACCGTTTGCA
9.56E−07
0.016675474
1.27E−05





AC104698.1
GTCTGAGCAGGCCAGGGGCTGACAGCTA









ATGTCAGGACCCTCAGCGGTGGAGCCTG









CTGGGGGGACCCAGCTGCTCTTGGACAA









GTGGCTGAGCTCCTATCTGGCCTCCTCTT









TTTTTTTTTTTCAAGTAATTTGTGTGTATT









TCTAACTGATTGTATTGAAAAAATTCCTA









GTATTTCAGTAAAAATGCCTGTTGTGAG









ATGAACCTCCTGTAACTTCT





1191
2477478
1

TCTCATGGCTGAAATCCGATGAGGCATT
0.000269075
0.00759234
2.13E−06






GGACCTCCTCACGCAGAGTCTTTGGATG









CTTCTGTCTGAGCCTGAGCAGTGGGCCA









GATGGACTATCGGTCTGCCTCA





 857
2480873
5
CALM2;
CAGTCAGTCCAGAGCACATGAGATCAGC
2.34E−05
0.007532819
2.91E−06





C2orf61
T





1481
2483422
1

AGGAGTGTCAGGCTCGACGATCACCTCA
0.000297559
0.008805039
2.45E−06






ATGCAGGGCAGATCCTGGGGATGCACTC









TCCAGCGACACCGCACAGAGCTTCTTCC









CG





 641
2484202
5
BCL11A
CTCAGAAGACAACCTGGATGTGACCGAC
0.015223504
0.008222288
7.55E−06






AACTTCTTTGTGATGGATCTGAACAGCCT









CCCTTGGTTCTAGCAGAAGGACTTACC





 732
2485722
2
CEP68
GCTGAGCTCTTAGCCACTACCCTTGGCTG
0.000146537
0.008285681
2.36E−06






CTTCCTAACTCAGAGGTATTCTGAACAA









AAAAGGTTTTGTGCACAGATGCCTTTAG









GAAACACTGGGCTAAACAAAGGTAAGT









GGCTTTCTTGACTGCAGGACTTCTAGAG









CTTCATTTGCCACAGTGGTTTAAGTGCAA









AGTTAGGGGCATTGGATGTACTGTTGCC









TAGACTTTGTGGCCACCGGACCATCTTGT









GAACCAAATGA





1594
2487212
2
ANTXR1
CTGGGCTCTCTCAGAAACTTCAGGAGAT
0.006898401
0.008932501
1.10E−05






GTTAGAACAAGTCTTTCCAGTTAGAGAA









GAGGAGTGGTGATAAAGCCCACTGACCT









TCACACATTCTAAAAATTGGTTGGCAAT









GCCAGTATACCAACAATCATGATCAGCT









GAAAGAAACAGATATTTTAAATTGCCAG









AAAACAAATGATGAGGCAACTACAGTCA









GATTTATAGCCAGCCATCTATCACCTCTA









GAAGGTTCCAGAGACAGTGAAACTGCAA









GATGCTCTCAACAGGATTATGTCTCATG









GAGACCAGTAAGAAAATCATTTATCTGA









AGGTGAAATGCAGAGTTGGATAAGAAAT









ACATTGCTGGGTTTCTAAAATGCTGCCTT









CCTGCCTCTACTCCACCTCCATCCCTGGA









CTTTGGACCCTTGGCCTAGGAGCCTAAG









GACCTTCACCCCTGTGCACCACCCAAGA









AAGAGGAAAACTTTGCCTACAACTTTGG









AAATGCTGGGGTCCCTGGTGTGGTAAGA









AACTCAACATCAGACGGGTATGCAGAAG









GATGTTCTTCTGGGATTTGCAGGTACATA









AAAAATGTATGGCATCTTTTCCTTGCAA









ATTCTTCCAGTTTCCAAGTGAGAAGGGG









AGCAGGTGTTTACTGATGGAAAAGGTAT









GTTGCTATGTTGATGTGTAAGTGAAATC









AGTTGTGTGCAATAGACAGGGGCGTATT









CATGGGAGCATCAGCCAGTTTCTAAAAC









CCACAGGCCATCAGCAGCTAGAGGTGGC









TGGCTTTGGCCAGACATGGACCCTAAAT









CAACAGACAATGGCATTGTCGAAGAGCA









ACCTGTTAATGAATCATGTTAAAAATCA









AGGTTTGGCTTCAGTTTAAATCACTTGAG









GTATGAAGTTTATCCTGTTTTCCAGAGAT









AAACATAAGTTGATCTTCCCAAAATACC









ATCATTAGGACCTATCACACAATATCAC









TAGTTTTTTTTTGTTTGTTTGTTTTTTGTTT









TTTTTCTTGGTAAAGCCATGCACCACAG









ACTTCTGGGCAGAGCTGAGAGACAATGG









TCCTGACATAATAAGGATCTTTGATTAA









CCCCCATAAGGCATGTGTGTGTATACAA









ATATACTTCTCTTTGGCTTTTCGACATAG









AACCTCAGCTGTTAACCAAGGGGAAATA









CATCAGATCTGCAACACAGAAATGCTCT









GCCTGAAATTTCCACCATGCCTAGGACT









CACCCCATTTATCCAGGTCTTTCTGGATC









TGTTTAATCAATAAGCCCTATAATCACTT









GCTAAACACTGGGCTTCATCACCCAGGG









ATAAAAACAGAGATCATTGTCTTGGACC









TCCTGCATCAGCCTATTCAAAATTATCTC









TCTCTCTAGCTTTCCACAAATCCTAAAAT









TCCTGTCCCAAGCCACCCAAATTCTCAG









ATCTTTTCTGGAACAAGGCAGAATATAA









AATAAATATACATTTAGTGGCTTGGGCT









ATGGTCTCCAAAGATCCTTCAAAAATAC









ATCAAGCCAGCTTCATTCACTCACTTTAC









TTAGAACAGAGATATAAGGGCCTGGGAT









GCATTTATTTTATCAATACCAATTTTTGT









GGCCATGGCAGACATTGCTAATCAATCA









CAGCACTATTTCCTATTAAGCCCACTGAT









TTCTTCACAATCCTTCTCAAATTACAATT









CCAAAGAGCCGCCACTCAACAGTCAGAT









GAACCCAACAGTCAGATGAGAGAAATG









AACCCTACTTGCTATCTCTATCTTAGAAA









GCAAAAACAAACAGGAGTTTCCAGGGA









GAATGGGAAAGCCAGGGGGCATAAAAG









GTACAGTCAGGGGAAAATAGATCTAGGC









AGAGTGCCTTAGTCAGGGACCACGGGCG









CTGAATCTGCAGTGCCAACACCAAACTG









ACACATCTCCAGGTGTACCTCCAACCCT









AGCCTTCTCCCACAGCTGCCTACAACAG









AGTCTCCCAGCCTTCTCAGAGAGCTAAA









ACCAGAAATTTCCAGACTCATGAAAGCA









ACCCCCCAGCCTCTCCCCAACCCTGCCG









CATTGTCTAATTTTTAGAACACTAGGCTT









CTTCTTTCATGTAGTTCCTCATAAGCAGG









GGCCAGAATA





1005
2487217
2
ANTXR1
ATGACGAGACCCTTGTTTGCACAGCATT
0.000374519
0.013610335
2.20E−05






AATAAGAACCTTGATAAGAACCATATTC









TGTTGACAGCCAGCTCACAGTTTCTTGCC









TGAAGCTTGGTGCACCCTCCAGTGAGAC









ACAAGATCTCTCTTTTACCAAAGTTGAG









AACAGAGCTGGTGGATTAATTAATAGTC









TTCGATATCTGGCCATGGGTAACCTCATT









GTAACTATCATC





1684
2487383
4
AC092431.1
GCAACAGTATGTTCAATCCCATGTGCTCT
0.000701725
0.007954263
5.49E−06






TCCAAAAACCCTACCCCCTACCTCAATC









AAGAGATGGCATCTATGTCCTTTCCCCTT









GAACCCAGGTAGGCTTCTCGGACGGGTT









TCTGTGACTGCACCTCTAAAGTAATGCT









ATGTTGG





 432
2488699
4
SMYD5
TTGCCCAAGACGTAAGACCTCTAGTTGT
7.87E−05
0.015768425
1.14E−05






CTGTTGTCTGCTCTCAGCGTCATCATATT









GATCTAGTTTTCCAGCTCA





1395
2489016
4
ACTG2
CCTGGCTGATTTCTTGGTCTCTTGCCCTC
0.022775596
0.007854953
6.38E−06






ATTCACCGAATTAATTCTCTACACTGCTG









CAAAACTGATCTTTCTAAACACAGGTCA









GCTCATGTCACTCACCTCCTCAGAAATCT









TCAGTAGCTCTTCATTAACCAACAGGGG









GTTCCTAACTCCCCGTCTTGGCATTGGAG









GACCTTTCCCTGCCTGATCCCCGCGATCA









TCTTTTCCTGCAATATTTACTCAGGCCAG









TGCTCACCCCTTCTTTAAAATGCTGGTGC









TGGCTCAAGAGAGGCAAACAGCCATCTC









TCTCATTCTTATCTTCCCTGTCAAGACTT









CACATAGGTGGACTGATGCTAGACTATG









ATGATGAGTCTCCAGTGAAAGTTTCTAA









GTAGAACTCTCTCAGGGTTTCTAGAAGC









ATTTTTGTTTAAGAAAATATTGTGGGGG









GAGCGGGATTTTTAAATGGTGGAGCTCA









TGGTAAACAAAATTATGTGTGCAAAATG









TTAATAGAGCCTTTCTAATATTCTTGTGA









TTAACTCTGGTGACAGTTGGCTGAGTGTT









CTTGTTTCTGCAACGCCTGTCTTTG





 982
2489925
1

ATCTGTGTGACCCTGTTCAGACATGCAT
0.004689092
0.006770824
1.87E−06






GCCT





 169
2491288
2
TMSB10
TGGGAGCACCAGGATCTCGGGCTCGGAA
1.18E−07
0.02981693
4.03E−05






C





1034
2492588
6

GTCAGGGGAGGGACTTATATGATTTGGA
1.82E−05
0.009689749
6.82E−06






TCTGTGTCCCCACTCAAATCTCACACCAA









ATTATAATCCCCAATGCTGGAGGTGGGG









CCTGGTGGGAGGTGATTGGATCATGGGG









GCAGTTTCTTATGCTTTAACAACATCCCC









CTTGGTGTTGTCACAGTGACAGTAAGTT









ATCACAAGATCTGGTTGTTTAAAAGTGT









GTAGCATGTCCCTCTGTC





1538
2492639
6

AGGGAAGCCAGGTTGTTCATGGACATTC
0.00115456
0.007687908
5.59E−06






AGTGGAAGAATTAAGGCAATTAAATGTT









AAGTTTTGCAGGGCTGGTCGACAAGAGA









A





1697
2496842
9
MAP4K4
GACCGCACTGGCCAAAGAGCTTCGAGCA
0.000896506
0.006816041
2.44E−06






GTGGAAGATGTACGGCCACCTCACAAAG









TAACGGACTACTCCTCATCCAGTGAGGA









GTCGGGGACGACGGATGAGGAGGACGA









CGATGTGGAGCAGGAAGGGGCTGACGA









GTCCACCTCAGGA





 719
2500274
4
BCL2L11
CCACGGCCTCTGTCTCTTAGGGCGACTG
0.000106893
0.013001365
7.72E−06






GGCGCGGAAGAAAAGCTGGAGAGCCCC









TGCGGGGTGGCAGGAGGAGGGTGCCTG









AGTCCCGCGAGAGGCCCGGGCGAGGAA









GATGCGCAGCCTGCTGATCCGCGTCCCG









CCCGGCGCCAGGGACCCTCAGAGGGAG









GAGAGCTCAAAGACCTCGCCCCGCGCCT









TCGCGAGGACCAACCCAGTCCCCGCGCC









TGCCCCAGAGCGGCTTAGAAACTCAGGG









CACAGTGAGAGCGCAGGGCGCCTCCC





 129
2500383
6

GGAAACCGACCAGACCAGCCCATGACCA
0.000862602
0.031191838
3.41E−05






AAATATCACAGGCAGACCACCCGCAAAT









GCAGAGGCCTCAGAGTCCACAGTGGGCA









GTTGGAACCAGGCCCCAGGGAATCTTTC









AGCTGCATTCCGGCTGTGATCGGCGGGC









AACAGGTAGAGGTGCTGGAGGGGGATG









AGTCGTGATTTTCAGTGTCTGTCATATTC









GATCAAGTGTG





1098
2500950
4
SLC20A1
TCTGCCCTTTTCATCGATGTGAAGGCTGG
0.016212799
0.007999574
6.76E−06






GTTAGCAAGTTGAAGTTTATCGTTTCGA









AGCTGAGGGATGCATAGACTGCAGTGGT









GTTAGGAAGAACGCTGCGTCACCGCAGC









TGAACCGAAGAGCCTCCGAGAGGTTCTG









TGCTAGTCTGGCTGTGCCGAGTGCACGG









TGGGAACCAGGCTTTCAGGACTCTCTGG









CCTCATTTTCCCTCTCTGGGAGGAGTTGA









GACAAGTCTTGCTTTATGTTAGTCAGTCT









GTAGTTTGACTGAGGTGCCTGGATGGAT









AGGTCAGCATACTG





1080
2502419
1

AGGCTGAGAATGTGGATCGTCCTCCGAA
0.009101689
0.00713435
5.92E−06






GACGCTGTCCAGGGAAGACCTGGAGTGA









ATCATGGGCCAAGGGTGGAGGCCAAGTT









ACGGGGACAGAGAGGCGAAGACAAGGG









CAGCAGTGCCCACAACAGGAATTCCTAC









CCTTCAACTTTGTTCATAGTGGTCCCTAC









TTTTA





 942
2503248
1

CTGGAACTTTGAGCCCCAAACCTGGTGA
0.032905271
0.009185376
8.32E−06






CCCCACGAGCACCTCGCACTTCTTCACTT









TTCCTCGGTTTTACATCACAT





1587
2504114
4
CNTNAP5
CTGCGCAGTCCAGCCTTTCTCCTGTTGGG
0.020351547
0.006559961
4.15E−06






TGATGCTGCTAAGCATGCTCCCAGGATA









GAGGAAGCATCTGCCATGCTTGTGGGTA









GACATGGGTTACTAAGTAACA





1404
2504466
1

TGGAGACCACCACTGTCCACGTGCGCAA
0.001732949
0.007924953
6.78E−06






AGCGACGTCCCAGTTTCCTCACGCGTGG









GCTGCAGCTT





1730
2505547
3
PTPN18
TATAGGTTATAAGTATAGCTGCCTGTGCT
0.033429032
0.007152644
5.39E−06






TCCACCACGAGCACCTGGGGTGTCTTGT









GGCATGATTGAGCTAGCTCTGAAGCTGA









CTCCCTCTTC





 736
2508938
5
ZEB2;
GCCATTTTCATAGCGGGAGTGGACAGGT
0.000595218
0.008601963
6.26E−06





ZEB2;
TTTCAAAAAATTCAAAGTAAGTGCTATA








AC009951.1
GTTATTTTCTTTTCTTTTTCTTTTTTTTTTT









TATCACACTCCTAAAACCAAGTAGAAGG









GGAATGCTGGGCTTTGTACTGGATAATG









TGAGTCCCCATGTAAATTGTGAGCGATT









GCAAAGTACGGAAAGGTTTATTACCTAA









GGTGAGCCCTCCCAGAGCTCCCGGAGTA









TAAAAGCATTAAGCGCATGTTCTAACAA









AC





 302
2510012
4
LYPD6B
TGCTCAGATGCATAAGGAATACCAGTAA
0.001713115
0.010465528
8.12E−06






AGAACATATCACCTACTTTTTCTTTGCTT









TTGAGAGACTGCTCTATTTTTTATCTTGC









CTAGTGTTCTGATCCCCTTGGTTGTAACC









ATAAGAAAATCTGATGAGAATTATGTAG









GCCATCTGCCCTAACTTCACAAATGAGA









GAAAAGGAGACTTTACCTGGGGAACCTC









ATCTCTTTTCTGATGAAAAATGATGAGT









AACCCGTGATTGCTTGAAATACAATGTT









GAATGGGTGAATAACAAAGGGCATGTG









AGATTTGTGGGGTTGCTTGCATGCTTCCT









AAAACTCAGCATATATGGCACATCCTTT









AAACAGAAAAAGGTCCTCTGCTGGTTAT









C





1633
2511767
4
UPP2
GGTAGCTGATTTCCGCCTGCAAATAGCT
0.000134132
0.009381362
4.93E−06






CTCCCCCAGGCCACTGCTGCAGCCTTTCA









TGGAGTAGACCCCTTCTA





1883
2512731
9
PSMD14
ATTGATGCCTTCAGATTGATCAATGCTA
2.46E−05
0.008283694
5.51E−06






ATATGATGGTCTTAGGACATGAACCAAG









ACAAACAACTTCGAATCTGGGTCACTTA









AACAAGC





1140
2514422
9
BBS5;
CTGGCTGGATCTCTGTATGCAATTGGTG
0.000293755
0.012231572
7.96E−06





RP11-
GTTTTGCTATGATTCAACTGGAGTCTAAA








724O16.1;
GAATTTGCACCCACTGAAGTCAATGACA








KBTBD10
TA





 241
2514660
9
UBR3
GAAATCCCTGGCCTCCATATAAGAAAAG
0.043299568
0.009434778
9.95E−06






GACATCACTCCATCCTAGCTATAAAGGT









CTTATGAGACTTTTGCACTGTAAAACTTT









ACACATTGTGCTATTCACTCTGC





 303
2515814
2
RAPGEF4
TGTGTCTTCAAGCTTTTCCATGGAGTGGC
5.13E−05
0.012849118
1.19E−05






AAAATGATTCAAATCCAGAAAGGAAGG









GAGTGAAGTTATTAGGAGCTAACTA





 849
2516546
8
ATF2
AAACATCTGTTATCATGGGCTGGGCACA
0.049782645
0.008503428
5.55E−06






GTGGCTCATGCCTGTAATCCCAGCACTTT









GGGAGGCCAAGGTGGGTGGATCACGAG









ATCAGGAGTTTAAGACCAGCCTGGCCAA









GATGGTGAAACCCTTTCTCTACTAAAAA









TACAAAAATTAGCTGAGCGTAGTGGCAG









GTGCCTGTAATCCCAGCTACTCAGAAGG









CTAACGCAGAGAACTGCTTGAACCCGGG









AGGCAGAGGTTGCAGTGAGCCGAGATCG









CGCTACTGCACTCCAGGCTGGGTGACAG









AGTGAGACTCTGTCTCAAAAAAAAAAAA









ACACCAATATCTGTCATCATGTAGGCAC









AGCCAAGGTGAACTGAAGCAGGATACG









AACACTCAGTACATTCATGACTATCTTCA









TACATTCCTGAAATGATCCTAGAGATCA









CCTTGGGAATAGCAAAGTGGTCATA





 170
2518113
8
AC009478.1
AATAAATCTGTGAGGTCTCCCATCAACC
3.25E−07
0.026250826
2.61E−05






TGAAAG





1251
2518123
1

TGCACCTGTTTAGTTTGTGACAATCTGAG
6.28E−06
0.013391344
1.23E−05






CCCAGTACATGGTTCTCTGATTCCTAAGC









CAGGAGTCTCTCTGTAACCAAACTGCTA









TTATGTGAGCATAGAACAGCTCTCAAAG









TAAATGTCCCACTTCTATTTCTGGCAGGT









TATGTTTAGCTACCTTTCCAAAAGAGTCC









CAATCCTAGTATGCCTTTCAACAGTGTC





 317
2518126
1

CTTAGTGGGGTTTGGAACTGCCTGAGAA
2.05E−05
0.020141631
1.48E−05






TATTCCTATAGAAACTGGGTCATCTTGCC









TTCTGTGCCACTAGAACCTCCTGTCTCTC









CAATAGCTGCTTCTCTCTAATTCTTCACC









ATAGTTTTCTTTCTGTGGTCTTTTGAGGT









TCTCTCCT





1537
2518128
1

CATAGCTAGGCAGTGTTGGAGATCAGCA
0.000144203
0.008894878
3.10E−06






GGAACTAGACACAATGAATGGATATGGC









ATCAATACTCATGAACATGCCATTCTTCC









AGCAGTGCTTGGCAACTCAGGTTGAGGA









ACAGAGAAGGTGGATGGCTTAGGTAATG









GAATTGGATGCTTTTTAAATGTCAGTGG









CTGTCAAAACTGTATA





1719
2518146
1

TGGCATGACATAGCTAAAGCACTGAAGG
3.51E−05
0.00934739
5.22E−06






AAAAAGTATTTTATCCTAGAATAGTATA









TCCAGTGAAAATATCCTTTAAAAATGTG









GGAGAAATAAAGACTTCTCCAGACAAAC









TAAAATAAGGGATTTCATCAATACCAGA









TCTGTCCTATAAGAAATGCTGAAAGAAG









TTCTTCAGTCTGAAATAAAAGGATGTTA









ATGAATTAGAAATCATTTGAAGGTGAAA









AACTCACTAATAATAGGAAGTACACAGA









AAGAGAACAAAAAAACACTGCAATTTTG









GTGTGTTAACTACTCATATCTTGAGTAGA









AAGATAAAAAAGATGAACCAATCAGAA









ATAACCACAACTTCTTAAGACATAGACA









GTACAATAAAATTTAAATGCAAACAACA









AAAAGTTTAAAAGCTGGGGGATGAAGTC









AAAGTGTACAGTTTTTATTAGTTTTCTTT









CTGAGTGTTTGTTTATGCAGTTAGTGATA









AGTTATCATC





1852
2518152
1

TAATTCAGTATGCTGTCCAGGGGCCTGG
0.009120022
0.007551326
5.14E−06






AAATCACTCAGCACAGTCTACCACCATT









GGCACATGAACACTTCTCCCAGGGTCTA









AGGACAGGCTGACATAACATGCTAATAC









CACCAGAGCTGGCACTCACCCAGATGTA









CCACATCAGGCCAGGAAGCAGAAACTAC









CAACATCCCAGCAAACCATGTGGAGGCC









CCCAAATCAGACTGCTTGGGCCTAACA





1965
2518159
1

AATGGTTGTTCAAGCCAGGCCTGCCTCA
9.59E−05
0.006815639
4.29E−06






TTGAAAGGGTGAAATCTTCCTTCACTGG









AAGGAAGTGAGAGAATTAGTCAAGCAG









CTATCTGAGGAAAGAACATTCCAAGTAA









AGAATATACAGCCCATACATTGTTGGAT









GTGTGTACATTGAAATTTTTGTGCAGTAA









AATGAATATTTCATTTACCTATATAATTT









TACATAAAATAAAATATATTTTGAATGT









GAGTTTGTTCCAAACAAATCATTTTCTTG









CCTTCAAAACCACTGAGCTTAAAGAACT









CTTTCAAGTGTCATTAGAGATAGATTCC









AACTACAATCAACATTGTGGAATCCAGA









GGAGGCAAAATGAAGGAAGCAGCACTC









ATTACAAAATGCTGCTTTGTAAAGAATT









AATTCTGTCCTGGTATGTTTCACATTAGG









TAATATGAAGGAAATGAATATGTCATGA









ACCCTCCTTGAGGATGTGGGGGAATTAA









AAGTAATTTCGCTTAATATCCAACTCTCA









CTTTTGGCTTTGTAGTCAGAGGGAAACA









ATGCTTTCCCAGGTTCTAAGGTAAACGTT









AAAAGGTTACAAGGAGACTTGGAAGAG









TCAAGGAACGCTTCCACCAACTATTCCT









GCCATTCCAGTTGGGAGGGTT





 357
2518161
1

TGTCCAACAGGTGACACACATGTTAAGT
2.94E−05
0.018291423
1.92E−05






GGCAGAAATGGAGTTTGAACCATGTGTT









ATGGCTCTAGGGCTCAAGCTCTTAACAC









TATCCCAAGTAGGGTGGGAAAGGACAAT









TTGCCTCACTC





1470
2519298
4
FAM171B
GCCCAGCCTTTGGTCCCTTGATCTGGTGT
0.000281159
0.008194504
4.50E−06






CGGGAATCTGCCCTCCGGGTAATGAGCT









TTCTGA





2016
2519657
2
COL3A1
CTCTTGTTCTAATCTTGTCAACCAGTGCA
4.06E−05
0.008943244
6.69E−06






AGTGACCGACAAAATTCCAGTTATTTAT









TTCCAAAATGTTTGGAAACAGTATAATT









TGACAAAGAAAAATGATACTTCTCTTTTT









TTGCTGTTCCACCAAATACAATTCAAAT









GCTTTTTGTTTTATTTTTTTACCAATTCCA









ATTTCAAAATGTCTCAATGGTGCTATAAT









AAA





2051
2519667
5
COL5A2
TGTCGATGTGTCTTGGCTTACTTTACACA
0.000620704
0.007056377
5.54E−06






AAACAAACTGGCCCAATTTCAACGCCGA









ATTCCTGGTCTGTGCCGCCAACATCCAC









AGGAGCAAGATCTATGATGGGCAAGCGT









GCCACATTCTGTGTTC





1620
2521265
2
CCDC150
TCTGCCTCAGAGACTCCCTGATTGGCCCC
0.01434388
0.007186124
3.87E−06






TTTTCTGAGAGGATGTGCTATCTCTGCAG









T





1321
2522030
4
C2orf47
GTACTGCCATATTCCACATGCCCGTTCCC
0.000509079
0.007679796
4.01E−06






TCACGTGGTGTGTAGGTCCTGGGGATGT









TAAACACTTATGGA





  84
2522842
7
ALS2CR4
TGTCCAGCAGCTCACTCTGTTCTTAGGGT
0.003428273
0.021356529
1.53E−05






TCATGTTATGCAACATAAAGTACACAGC









ATCACAGATGAAGTCATATTTTTTTAAA









AAATCTAATCAAACCACCAGACCTAACC









TCCAGTCTATAGGAAATTCAGGAGATTG









AGGAACAAATTAAGTGATGTCATTAGGA









AAAAGTCAGACAATTAAAAAATGTAGGT









GAGGCACTCTAAAGCAACTAGCTTGGAC









TCTTCAAAAAATTGTCATGGGAAATTAG









AATGGTACCGCCAACTCTGGAAAACA





 492
2523250
9
BMPR2
GGCCAAGCATGTTTGATTCCTGATGTTCT
3.28E−05
0.012246342
1.00E−05






GCCTACTCAGATCTATCCTCTCCCCAAGC









AGCAGAACCTTCCCAAGAGACCTACTAG









TTTGCCTTTGAACACCAAAAATTCAACA









AAAGAGCCCCGGCTAAAATTTGGCAGCA









AGCACAAATCAAACTTGAAACAAGTCGA









AACTGGAGTTGCCAAGATGAATACAATC









AATGCAGCAGAACCTCATGTGGTGACAG









TCACCATGAATGGTGTGGCAGGTAGAAA









CCACAGTGTTAACTCCCATGCTGCCACA









ACCCAATATGCCAATGGGACAGTACTAT









CTGGCCAAACAACCAACATAGTGACACA









TAGGGCCCAAGAAATGTTGCAGAATCAG









TTTATTGGTGAGGACACCCGGCTGAATA









TTAATTCCAGTCCTGATGAGCATGAGCC









TTTACTGAGACGAGAGCAACAAGCTGGC









CATGATGAAGGTGTTCTGGATCGTCTTGT









GGACAGGAGGGAACGGCCACTAGAAGG









TGGCCGAACTAATTCCAATAACAACAAC









AGCAATCCATGTTCAGAACAAGATGTTC









TTGCACAGGGTGTTCCA





1635
2524751
4
FASTKD2
GACAGATATTTGCATCGGGATGACATCT
0.000873066
0.00892817
5.63E−06






GTG





 915
2527797
3
CTDSP1
CGCACTCCCTATGTGGGCGCCTTAATAC
0.00051035
0.00707731
4.80E−06






CTGCTAGACCTATTTGTCTGGGAGCTGC









AGGAGCCTTGCAGTTGATTGTGGAGCCC









TGACAGGGGCGTTTCAGAGAAAGTCAGG









AGCTGCCTTCGTGTGTCTGGATGAAGGG









GCCACGGCAAGATCCTCCTGGCTCAGGG









GTTCACACCTGGGCACACATGCAGGATT









CTGCAGGCCAGTGTGCACCGAGCCTCCA









ACTTGT





 198
2528111
9
CYP27A1
AGCTGATTGATGAGAAGCTCGAAGATAT
0.006771364
0.012183336
1.06E−05






GGAGGCCCAACTGCAGGCAGCAGGGCC









AGATGGCATCCAGGTGTCTGGCTAC





1455
2529187
5
EPHA4
ACCACCCTCGCTGGACTCATCATCAAAG
0.001895132
0.006902755
5.45E−06






TAAAAAGTCAGCTCCACCCCCAACAGCT









TTTAGTTGCTACATCATGCATCCACAC





 850
2533263
3
TRPM8
GTTGATATTTCCAAGCTGCTGATGTCCC
0.006310467
0.008441188
3.54E−06


1064
2533688
4
AGAP1
TTGTCTGTGCACCACTGCGGAACTGTGA
0.005613406
0.008401337
5.08E−06






GCTCCCAGAGTGCACAGATATGTGCCAG









ACACCAAGATCAGAATGGGTGCTTCGCA









GTGCTCAATACATTATTTATTGAATGACT









TAATGTAGAATGACTAGTTACACAGTTC









AGGTGCTAGGAGGCAGTATAAAAGTCAG









AGAGCAAATGCTTTAAGAAACTGTAGTA









TACACCAGGAAATGCAATTCTTTAGTTA









GATACCTTCTCCTTTCAGTAAAATTATGT









TCAGTGCTGTAAATAGGCAACTTTCAGT









GATTTGTTTTCAAACAAGTGGCTTTTTA









TCTTTTCCTCTTGACAGTGAGTGTCTCTC









CATGTGTGAAGTATTTTCTCCTCTCATAT









CTGTGAAGTCCTGCTTGTAAGTGTTTCGG









TTATGCAACATTTCATGGGGAATTTGAG









CACTGGAATTCTTGGTCGCTAGTTAGGT









GGGTCTTACCGCA





 682
2534019
2
CXCR7
AGCAAAGTAGCTTCGGGTCTTGATGCTT
0.007173756
0.01141102
7.05E−06






GAGTAGAGTGAAGAGGGGAGCACGTGC









CCCCTGCATCCATTCTCTCTTTCTCTTGA









TGACGCAGCTGTCATTTGGCTGTGCGTG









CTGACAGTTTTGCAACAGGCAGAGCTGT









GTCGCACAGCAGTGCTGTGCGTCAGAGC









CAGCTGAGGACAGGCTTGCCTGGACTTC









TGTAAGATAGGATTTTCTGTGTTTCCTGA









ATTTTTTATATGGTGATTTGTATTTAAAT









TTTAAGACTTTATTTTCTCACTATTGGTG









TACCTTATAAATGTATTTGAAAGTTAAAT









ATATTTTAAATATTGTTTGGGAGGCATA









GTGCTGACATATATTCAGAGTGTTGTAG









TTTTAAGGTTAGCGTGACTTCAGTTTTGA









CTAAGGA





1657
2534732
9
FAM132B
GCGCGGAGCCCGAACCCTGTACGTGTGG
1.12E−05
0.009726611
8.21E−06






CCCCGCCGGGCCGGTCGCTGCGAGCCTC









GCCCCGGTCTCGGCCACCG





 728
2535587
1

CCAGCGGTTCCTCCAGTGACGCTGAACT
6.50E−05
0.008364795
5.93E−06






TGACCAGAT





 862
2535780
4
GPC1
TCCGGCTGCGCGGTTTGCCGTCTTCGTCC
0.04726916
0.007338948
3.68E−06






CTGGCCGCGGCGGCTGGCGACTGGCATC









GGGGCGCCCGGGACCCCCAGGGCGGCG









ACGCTGCCGCCGGTGCCGCCGAGCCTTT









GTTCCGCCGCCGGGGCCGGTTTCACGCC









TGTCGCCCTCGCAAGCAGCC





 354
2536222
9
ANO7
CTGAAGCTAGACAGGCAGCAGGACAGT
2.05E−05
0.014644119
1.34E−05






GCCGCCCGGGACAGAACAGACATGCAC









AGGACCTGGCGGGAGACTTTTCTGGATA









ATCTTCGTGCGGCTGG





  71
2536223
9
ANO7
TGACCCATGACCTTGCCGCATGAGGCCT
0.000206799
0.028782637
2.44E−05






GAGGGCATGGTGTCCAGAGTCCCAGAGC









AGATCAGGCCCCAAAGTCCTGCTGGACC









CCCCAGCCACCGTGAGCTCCTCCGTGTG









GCTAGGGAGCTGCTGTCCAGAGGCGGAG









GTAAACATTGATCCCTCCTGCACACTCA









GCTCTCTCATGGAAGTCGGAGCCCTCAG









GGTCACCTGAAAACTCT





 485
2536224
2
ANO7
TTGCCATTCACCTGTCCCGTCTCCAACAT
0.000570716
0.011820556
1.20E−05






TAAAGCTT





 277
2536236
9
ANO7
CGAACCCCATCACGGGTGAGGACGAGCC
2.42E−05
0.016689851
1.24E−05






CTACTTCCCTGAGAGGAGCCGCGCGCGC









CGCATGCTGGCCGGCTCTGTGGTGATCG









TGGT





 140
2536237
9
ANO7
TGTGCCTCGTGTCTATCATCCTGTACCGT
0.017291959
0.017903985
1.67E−05






GCCATCATGGCCATCGTGGTGTCCAGGT









CGGGCAACACCCTTCTCGCAG





 109
2536238
9
ANO7
CATCGCCAGCCTCACGGGGTCTGTAGTG
0.000173296
0.024766753
2.94E−05






AACCTCGTCTTCATCCTCATCCTCTCCAA









GATCTATGTATCCCTGGCCCACG





1491
2536242
3
ANO7
TCTTCCATTCGAGCTTTGATTTGCAGCAA
0.012572419
0.006741049
3.26E−06






TTCCTCCCACCACCGGCTATTTCCATCGC









CCAGCCAGGG





 321
2536250
4
ANO7
AGAGTATCCTGTTTGGGAAGAATTCCCA
0.000142667
0.018967199
1.42E−05






TTTCAGGCACCCTCGATGAAGAGCCAGG









CCAGGAACATGGGATGAGAGAGCGAAA









TGGTGGAAAAAGGGGAGATAGGCTAATT









CCAGA





1449
2536358
2
SEPT2
AGATGCATGATCCAGCTGTGTGTTTTCA
9.99E−06
0.009644912
8.09E−06






ATCCTTGGGAGGGTGCCATCCACATTTT









AACAGTACCTGTGCCTGA





1198
2537304
1

TCAGTGAGCTGAGCATCTGCATCTCGGG
0.002329878
0.00823596
5.31E−06






GTTCTGTTGTACATGGGGTTAATACTCCA









TCCGAGTGAGCTGGGCATCCGCATCTCT









GGGTTTTGTGTGCGTGGGGTTAACACTC









CATCTGAGTGAGCTGGGTGACTGCCTCC









ATGAGTCCTGTTGTG





 768
2537460
5
SNTG2
TCAGAACCTACAGCCGTGCGTGGGAACC
0.000192114
0.010858597
5.00E−06






CTCAGAGCTCACCGTGCTCCCATGAGCA









GGCAGTAGGAGCACCCCCTTCAGAACCT









AGGAACCCTCAGAGCTCACCATGCTCCC









ATGAGCAGGCAGTAGGAGCACCCCCTTC









AGAACCTACAGCCATGCCCGGGAACCCT









CAGAGCTCACCGTGCTCCCATGAGCAGG









CAGTAGGAGCACCCCCTTCAGAACCTAT









AGCCGTGCCCCGGAACCCTCAGAGCTCA









CCGTGCTCCCAGCTCCTCCACGAGGGCA









GAGTCCTCTGTCTGCATCCAGCTGAACC









CTGA





 803
2537866
8
MYT1L
TCTTGCCCTGGGTAGCAATCAGGTGGTT
0.021197932
0.006898528
6.62E−06






CATGAGTGGTGCCAACCAGTTACATTTC









CTGATATGCAATACAGCTGGCAGCA





 502
2538478
1

GTTTGGGCGTCATCAACAGTACTTCTATT
0.000173296
0.013636136
1.07E−05






TGTAAAATGC





1472
2539249
5
RNF144A
GCAACCCAGCGTAGGGAAGAACTGCTTC
4.58E−05
0.00662945
5.00E−06






TGGACTGCACCTGAGGCAGCACCACCGG









CAACGGAGCCCCGCCACCTGCTGTACCC









GTCCACCTTCTCTGGTTGACCTCCCTGGG









GCCAGACAGCCCACTCAGAGTCCGTGCT









CCCTCCTATGG





 162
2539540
4
KIDINS220
GCTGTCTCTGCTTCCTAATTAATTCACTT
2.33E−06
0.018153181
1.91E−05






TTTTCAATTATTTAGTTATATTACTATGG









ACTCATGGAAATTTATTTTATCTATGAGG









CATAATCCAGTAAGATCATTAGTTATTTT









GTTGATTAAACTATTTTTTTGTGATTTTTT









TGAACAACAAAAAATGTAAACAATTGTA









ACTGTATCCAGAGCAAGGAGACTGGTTG









AGGAATAAAAGCATTTGAAAGATAGAA









AAGATAAATATGACTCAGCAATAAGAAG









AAATGAAGGACTGGCATGTTATGACATG









GTGGACCTTGAAAACATTATGTTAAGTG









AAAGAAGTTGGAAAAAGGAAAATAGGA









AGTTATAAGACCTGATAAGTTACAGTTC









TGGTTCAGGTTTACTACTAACTAGTTATT









TGTTCTGTGACTTTAAAGTCCTGATTTTG









ACCAGGCTGATGCACCCTCTAAACCACA









ATGAGCACATCTGTGCTGGGAAGATGCA









TTTATC





 258
2540638
5
GREB1
CTCCTTCTATCCCAATCGGACAGTGATAT
0.004267545
0.016181776
1.93E−05






GACCCTGGGGATGTTCCATGAATCATTT









GTTCCTCTTTGGCCCCATCTGATTGTGTA









CTTATCTCCTTACACAGTCCTTCTGACCT









TGAAATGATCCAGAAAAGATGTAAAAG









AGTAAATTCTATAGTCAGTTTAAAAGGC









AGCAGGAAAGGATTGGGAAGCATTTTGG









ACAAGGGGTCTAGGAGACAGGCCCAGCT









CTGCACTTTTCCGTGGGACAAAGGCCTTT









GCATTCTCTCCTGTA





 278
2542638
8
AC013400.2
GAGGACTGGCTGACCCTTTCTTATACAT
0.00877735
0.010171152
9.08E−06






GAGGAAGTATGAGTAGGACTGGGGCGG









GGGCTTGAGGCTGTTAGAAGTCAGGGGA









AGTTCCTAACTGAGAAGCTGCACAGAAG









TGATGGAAGTCTCATTTGGTAGACTCAG









ATCTATTGGGAGATTTGGTCCTGTATTAG









TCCCTTC





 182
2543788
8
KLHL29
TCACGGAGGACACAAACTCACCACTGTT
1.26E−06
0.021121055
2.52E−05






CCT





 722
2544499
4
ADCY3
TGGCCAAGCAACATCTCGAGACCTCTCT
0.000333956
0.012620568
6.33E−06






GTCCTGGGACTGTCTCCTCAAATTCAGA









GCCGGTCAGCATTGACTGGGTGACCTGT









ATACCAGGGAGAATGCTTTTACACACGC









GCGGAGCCCCCCTAGGAGACTGCCGATT









TTATGT





 911
2545313
1

AGATATTGTTGCCACCTTCTCCACACTGC
0.001054975
0.009808729
6.93E−06






TGTGGGAGTCCATGGCATCCCGTTTGAC









CCTAGGAAATGTACCTG





 721
2545500
4
CGREF1
GCCAGATGGGGATGTTCCTGATCTCTGC
0.008310486
0.008345871
6.14E−06






TAGACCATCAAGCATCTGACGGTTTTTCT









TTCTAGAGATGGGCTTGGGGTCTCATGC









CTTGGCTTTGGTGGGCTTCTGCTTCCTCA









GGAACTCACACTACCTGTACATACCCTG









GGACTCACCAGAAAGCTTTAGGCTCTGT









TTGATTGGTCCATTCTATCCTTGACTGTT









TTCATATACTCAAGTGGTTGATTTTGCCA









ATGGGCCTAAGCCATGTCAGTCTTAGGG









GAAGTTTTTGTTTTTTCCTTTATAGTGGG









TCTAATTTTCCTAACTGCATTTAGCAAAT









AGCAATTCCTGGGGCCACTGTTGGTCTG









ACCCTGATTTA





1808
2546680
5
LBH
CTGAGCGCATCCTGGCTGCAGTTCTCTGC
0.000150908
0.00755128
3.85E−06






TCAATGTTTTCTTAAAAACATGTATTTTT









TCTTTTGCCTCATGTTTGTTTTCTTACCCC









AAATGTTCCTTGCTTGCTTTGCACATGCC









CCACCTCCCACCCACCAAGACCCATTGG









AATCCCACCACTGCCTCTACTAGGCTGC









CTGAGTTCAGATAATGATCTCAAAAACA









GCACTCGCTCCCCTCACCCACTAACCCCC









TGGCTCTAAGCAGCTTCCTTTCTCAGAGG









GCCTTGCAAATTGTCAGA





 694
2548823
4
ATL2
GAATTCAAGGATGTTCCAGTCCCTGGAA
0.002912998
0.009530356
6.26E−06






CATGGTATAGTATTTGCATATAACCTATG









TGCATCCTCCCGTACACTTGAATCTCTAC









ACTATAATACCTAATACAATGTAAATCA









TTGTTATACTGTATGCTTGGGGAATAATG









ACAAGAAAAAATTGTACATGTTCAGTAC









AGATGCAGTTAAATAATTTTTCTATTCCT









GGTTGGTTGAATTCATGGATGTAGAACC









CATAGATATGGAGGGCTGACTTGACTGT









ATAGTGCATTGGCTTTTCAAACAGTAAA









TCTGCAAAATCTAACTTGGGTCTGTTATG









C





1266
2552574
1

TGATTAACATTAGAGATGGTTCTGGAAG
0.016649629
0.007187407
7.40E−06






GGTGAGTAATATGCCAATAATTAGAATA









AGGCAATGGAGGGATGGAGGAATTGAT









CATTCAGAGAAAGATATTCCCAATGGAG









AGATACACGAAGGCAAAGGTAAGAATA









AG





2053
2555538
3
XPO1
CAGGCACCTCTGACACCAAGTTGTGTGG
0.001173835
0.007493161
3.61E−06






ACAGCTTAAAACCCTACTCCATGGCATT









GGGCTTCTAATGGGACAGCACTCAGTTT









TTATTTACAATGGAAAATGTTATAATTCT









GGTCCTTTTTTAAGTTTGAACAGAAGGG









TTGATCAAAATGTGTTTTGTCTGTTTTAG









GCTTGATGATTCACGCTTCTCTTTAAACT









GCCTTAAAGTAATAAATACTATGGCATT









CTGTTTAATACACGAAAGGTTTCCACTTG









ATATAC





1439
2556553
1

TCGAACTCACCGTCCTGTACTCGAGTGA
0.001280802
0.006668129
4.29E−06






CGCACAGACACCCCCCGCCCACAGCCCA









GACGCCCCCTCCCTCGCTGCCACCCCGA









CCCGTCTCGGAGCTGGACTGGGTGCCGA









CTTCTTCGCAGAAGG





 293
2556767
4
SPRED2
TGGCTCTTGGTCTGGCCACTCACTATTTG
0.000188103
0.013452402
9.14E−06






TGAGATCCTGGCAGGAGTGAAACTTCAG









TTTCCGGAGCCTTCACTCTATCCTTCTCC









TGTCCGCATCTC





 897
2558656
4
TGFA
GGGAGAAGACAAGTAGCTCTGGTTCAGA
0.02996467
0.007536374
5.60E−06






CTGGGCCACAGCCCAGGCTCTGTCACTC









AGAAGGGCCCTCCTCGAGGAGCAGGAG









CAAGCTAGTGGGCTGCCA





1414
2559989
9
DCTN1
TGCCCTTCGTGCAGAGATCACAGATGCT
0.037954575
0.006518274
3.07E−06






GAAGGCCTGGGTTTGAAGCTCGAAGATC









GAGAGACAGTTATTAAGGAGTTGAA





1229
2567271
4
CHST10
ATGTCCCTGGCTGTGTCAAGGACTGCCC
0.001429788
0.007566499
4.27E−06






GATGTCCTACACCTCCTG





1634
2570887
4
AC068491.1
CAGATCTCAGCTGCCGAGTGGAAACCCC
0.001219026
0.008462262
3.38E−06






ATTCTCACACCATAGCTATGGGACTGGG









GGAAAGGGGAGGAAATAACTAAAGAGT









AAGGAATTGGGGGAGGCTTTGAGGTTTG









GATGTGACAGGTAGTTTGCATGTAGTTG









GAATGCAGTAACATTGGTCCACAAGGTT





1058
2571158
6

GTGTCAGAAAATGAATCCCTCCTGCCTT
0.00022254
0.008954674
6.74E−06






ATTCCATTGTCATATCCCTTTGGGATACT









AAAATCTCGGGGAGGGAAAGCCTATGTA









GTTACAAATGGAAACTTCTCTTTCTTCCA









TTCATTTTGGTGGGTGGGACAAAGGAAA









AGAAGGTGAATATATATGTGATTGCGAA









GCAGGAAGTCTGCATTTGTGTGTGAACT









CCCCAAGTGATTCCCACGTGCACCTCAC









TGTCCTTTCCCTACCCTACCTCATATACT









TAATATGTCCTTTTAGTCTCCCAAG





1477
2571255
7
ZC3H6
CGGCCGCCGCCGACAGGTGACGAAGTGG
2.01E−05
0.007653159
2.75E−06






TAAAAACTCA





 114
2572052
1

GATGTGAATTGCCACACCCTTCTGGAAA
0.000364196
0.019834692
2.14E−05






GTTATGTAGCAGTATCTGCTAAAACTTA









ATATTCACATATATTAGACTTAGGAATTT









CATTTTGTTGAATTCTAAAGACATAAAA









ATACTGATGTCGGAGAAATCGTGATTCT









GAAAGATTTTAAAATCAGAAGATTTAGA









AATACATTGTTTGTTCCCAGTGCCACTAT









GGCCAGGTAAATCTCAGGGGCTTTCTTA









GCCCAGAAGG





 776
2573159
5
AC069154.2
GCCACGCTGTGTGCAACCACTGCCACCC
0.000205715
0.0076573
4.39E−06






ATCAAGGGTATATTGAGCAC





 903
2573284
1

GCGCCACCTGTAGCGAGTTATTTAAGGA
9.46E−05
0.009345976
3.05E−06






GAAGAGCTGGGCTTATGGAGGAACCGTG









GAAAGATCACAGGCTATCTTCAGAGAAG









CTGCTGGTGGAATTCCCAAGTCCTTACTG









GGTTTGGGGCTTGATTACCCACTCAGTG









CCCAGCTGGTCATCATCATGTTGGCCAA









CCACCAGAGGGGA





 812
2574817
9
MAP3K2
AGAGAGCTATCCAAAATCACGAATGCCT
0.000425014
0.013698999
8.31E−06






AGGGCTCAGAGCTACCCAGATAATCATC









AGGAATTTTCAG





1592
2576618
6

AGTCCCGCTGGGCCCTAGACCAAGACAC
3.46E−05
0.008938034
4.32E−06






GGGAGAACCTGTGACCCACCGCCCCCTG









GTTAGGGCACAGAGGATCCACACCTTGC









CGTGCCCTGGACTACAGCACGGAGGGAC









CCCGATCTGCCGGGCACTGGGCTCCTGC









ACAGAGGAGCCCCTGCCATGGAGGTCTG









GACTGTCCTTGCCCCACCGCACCCTGGA









CTACTGCACGCCAAGACCCTCGCCTGAA









CGCGCCCTACACTCTGGCATGGGAGAAC









CCTGCCCCGCAGAGCCCTGGACTCCGCC









ACTGGAGGACTCG





1985
2576850
6

TCATCATTTTGTTGCAACCCTCCTGACCC
3.58E−06
0.006932694
7.40E−06






GGCGTCTCAA





 830
2577477
5
MGAT5
AGCTTCTTTGGTTACAGGGATTTTGTGGA
0.002388272
0.007909049
6.65E−06






CTTTTGTGAGCTGGCAGAGCAGGACAGG









GTAACCCACCTGGACATGAGATCAAGCT









CGCTGGTCCCTCTCAATGCTGTCTGATGT









TGCTG





1839
2577916
9
MCM6
GACGTGCGGGATCAAGTTGCTATTCATG
3.19E−05
0.009421871
2.84E−06






AAGCTATGGAACAGCAGACCATATCCAT









CACTAAAGCA





 795
2577927
9
MCM6
ACTGATTCGTCCTGAGAGAAACACATTG
1.29E−05
0.013004413
6.45E−06






GTTGTGAGTTTTGTGGACCTGGAACAAT









TTAACCAGCAACTTTC





 675
2579064
4
LRP1B
GAGATCTTCACACATGTTAAAGAAGCTT
0.016903952
0.007936997
7.43E−06






GAAAACAATGAAGAAAAACCCAGGGGA









GACCGTTAGAGAGAGGGAAAGACAGAG









ATGAGAGTGGTAGGGAAAAACAGTGAG









GGATCAGAGCAGCACCCTGAGAGCGCAC









CTGGACATCAGCCATTACACGTGAGGGG









GAGGAACTTTTCTGAGTTTCCCTAAAAG









GCTTAAAGTAAGGGGTTGTTGGGTGGAC









CACACATGACATATTA





1368
2580293
5
ACVR2A
TTTACTGAAATAAGCCATTCAATCAATG
0.001709174
0.007527767
3.54E−06






GGCAATAATCCTTGGATATAAATGCCCA









GGCTTTGCCACCCACTAGGGTGACTCTA









AGCCAAGTCACTTCATCTATGAATGCC





1127
2581981
1

GCCCAAGTGCCCCTACACCAGAGCACCT
0.001070147
0.011265964
9.12E−06






CTTGCTTTCAGCA





1097
2582242
3
AC021849.1
GTGCCATTGCTCCACCTGAAGTCACTGT
0.010636495
0.006584575
2.40E−06






ACCAGCCCAGAACACTAGTCTGGGTCCC









AAGAAGTCATTT





 677
2582451
2
CYTIP
GGAACATTCCTTTCCACATCGCCTGAGTC
0.0015655
0.011798932
1.18E−05






TGACAGCCCGGATCAAAAACAAGCAGG









CTTTGTGTCAAGACGTGGCACGTGTCAG









AGAATTTGA





1739
2587120
1

CTGCCCTGTGAGGAGCGACCATTCTGCT
0.000260166
0.006806629
3.86E−06






CCATCTGACTCAAGACTCGGGATTATTTC









AGCAGCTTGGATGTCTCAGGGCCTATCA









CCCAAGAGG





 194
2587539
4
SP3
CATGTATCAAGGGGAGCCTGGACTCCTG
0.009861702
0.012931293
1.26E−05






AGGCACTGTCATGATCACATCTCCCTTAC









CAACCTGAATTGGACATT





1176
2589145
3
PDE11A;
AGGAAGCTCTGTGATAAAGTTGCCCTTC
0.019718284
0.011752117
1.04E−05





AC011998.1
TTTCTAATGTGCTTCAGCATCATTCTTGG









AATTTTTATTTGTTTGTTTGTTTCTGATGG









AGATTATAGTTTTGTGACAGCTAGGCCC









TTGTCTGTTGTTTCA





1794
2590293
1

CCTCTATCATGGCAGGGACTTCCCAATA
0.004699102
0.007499753
4.42E−06






AATTCTATACTCATTGTGGCCAGCTGAA









CGCCTGACATTTAGTAGACTCCTCAAAA









ATGATTTTTGAATGAATGATGACTGACC









AACTGAATGAATGACCAATCTTAAAGCA









CCAGTGAATGTTTTTACTGTCTTCACAGA









GCTCAGAATAGATCCTTGGAAGCCATTC









TGGAAAAGGGCAACTTTCCAAGGATGTT









TTCAAAAAGACCAACATATAAGCACGTG









TATTTGGTTGACCCTC





1734
2590313
4
AC009478.1
TGGCCTCTTTTCTCACTACAGCTTGTCTT
3.34E−05
0.008654695
7.53E−06






TCAGTTCCACAATCTAAGGAGGATAATA









GATAGCCAGATTTTATTGGTCCCAACCA









CATCGTCTTCCCCACAAACCAGCAGCTC









ACTCACTTTTCTATTTTTTACGTTGGCCA









GATTAGAAACTTGTGTCATCATCATCATT









TTCCCCTACCGTGTCTCAAAGATCTAGG





1642
2590317
4
AC009478.1
CGCGGGTTTGTAAATAGAGTCCCTGTAT
4.52E−05
0.008749677
5.73E−06






CTGCAGGTTTAACTGGTCAGTCTTTGACA









GGCTTTTAAGCAAGGACATTTCAATGAT









GTGAGGAAAAAAAAAAGTGCCACAAAG









CTTTGAGAATC





 179
2590322
4
AC009478.1
CTAGAATTAAGATATGCTGATGAGTTGC
1.05E−07
0.023171685
2.54E−05






TTCTGCAGTTCAT





1578
2590330
1

AGCTCTCAGGTTCGTGGGAAAGCTAACA
0.007866301
0.00767295
6.39E−06






TACAA





1656
2590333
1

ATGACTGGAGTAAGAAGAGTGAAGATTC
0.000194662
0.008938714
7.05E−06






CCTCGATGCCACACC





 228
2590342
4
AC009478.1
TTAGCATTTCTGTGCAGACAGCTTTTTTG
5.66E−07
0.021717658
1.52E−05






CTGTTCTTGGTCCTCAGCAATGACAATG









GCTCCGAGGAGAT





1524
2590346
1

CTGATATCGGAAGTGGAATCCTGCAGGA
3.04E−05
0.009745903
8.95E−06






AGAGAAAGTGGGGCAAGGCCGAGGGCA









TAAATGTGTGTTTCGAATGAGAAAAAAC









AAATTGCTTATTCGGACCTCTAGCAACT









GCCAATA





 477
2590349
1

ATGGAATATGGAGCAAAAGGGGTCCTGT
1.31E−05
0.015351436
1.07E−05






GCT





1108
2590723
9
FRZB
CGCTGGGATATGAAGCTTCGTCATCTTG
4.39E−05
0.00810083
4.99E−06






GACTCAGTAAAAGTGATTCTAGCAATAG









TGATTCCACTCAGAGTCAGAAGTCTGGC









AGGAACTCGAACCCCCGGCAA





 836
2591456
4
TFPI
GGTGACTGCCTGTATCAAATCTTTACTGC
0.009724683
0.007478175
2.86E−06






CTTTTTCAAATTCTTACCATTTTTATAAA









AAGGAGTCACACTACTCAATCTATACAT









CAGTGTTAAATATGATTTTTACTAATTTT









TTTTTTTTTTTACCAACACTATCTTAAAA









AATCTGACAGCATAGAGCAGTGATTAAA









GGCATTTGCTTCAGGGTCAAATATAGTT









ACACTGCTGTTTTTTGGACAATTTGTTAT









TTTGAACCATTGTTTCTTACCTTTATAAA









ATGAGCATAAGATAATGTTCTTTTAAGG









TGAGTATGAGATACAAATGAGAAAAGC









AATAATAATAAAGATTCAACAATGGAAA









CTGCTATTTACATTATGATTGTTATAATT









AGAAGGACAAACTGTAATTTAACGTTCC









TATAGTAATAAAATGGCATCTACAGAGC









AAATCTAAACAGACTTAATCTTCATATA









ACAATTCATCCCAGATAATTTGAATTGA









CCATAATAACATGTTTGAAAGGAGGCTG









AAATAAAACAGGGTTTGCTCTTTTCAAC









TCTTTAGCCAAGACTTTTTTTAAAAAAAA









CTGGTATATAAATGCTTTGTATTTCCTTT









CAAGTTTGAAGGGAAAATAAATATAATA









CTTAATAGATTTTCAAGTATCTCTTTAGA









CATTCTCTTGTTTAGGCTTGTACTAATCC









ATTCATTCAGGGTTTGACTGTTGGGTGA









ACTTCTTTGCCCTATTCCCAGCTGTGAGA









GGCAATTCTCCAGGTTTCTAAGCTTTAGA









CCTACGCCCTTCTCTGATGAGGTTAATTA









GGGTTTGGGCTGAAACCCAGATTCCTAT









ATATGTGGATAGAGTGATGTAGAAGTAC









TTTATGATAATAAATATAAATGAAATTT









AGATTTTAATTTAGAAATAGAAAACATT









TAGGCAACTCACTGAATCAAAAATAAAT









ATAGACAAATTTAATTAATATATTTATTT









ATTATATTTTCCTGGGTTGGGCTTTGGCC









TCTATTTCATATATTTTGTTTATTTTTCAG









GATGTTCTGGGATAATGTAGTCCAGGTT









CTAGTTCTGCC





2062
2591636
5
COL3A1
GGCACTTATGCATGTTTCCCCAGTTTCCA
0.00028925
0.007114892
8.20E−06






TATTACAGAATACCTTGATAGCATCCAA









TTTGCATCCTTGGTTAGGGTCAACCCAGT





 345
2591688
9
COL5A2
AAAAGATGGTGAAGTTGGTCCTTCTGGT
0.000442481
0.007495535
6.23E−06






C





1066
2592274
4
STAT1
GCTGAGGTTTAGCTGTCAGTTCTTTTTGC
0.000449203
0.00766067
5.93E−06






CCTTTGGGAATTCGGCATGGTTTCATTTT









ACTGCACTAGCCAAGAGACTTTACTTTT









AAGAAGTATTAAAATTCTAAAATTCTAT









TAATCTCTCATTAATAGTATTTAATATAA









AGATTCTTAAAATTACTGACGTTATGAA









TTGGTTTGATGC





1338
2592645
4
TMEFF2
AGAAGAATAATGGAACCACTTTGGAAAT
0.014482591
0.009295027
5.86E−06






AGG





 118
2592648
9
TMEFF2
GGAGACATCCACCTGTGATATTTGCCAG
0.013588933
0.024063565
2.28E−05






TTTGGTGCAGAATGTGACGAAGATGCCG









AG





 535
2595779
1

AGGAAGCCTGGCCGAAATGTGCTTTTGG
6.19E−05
0.010523583
4.82E−06






ATAAAATGTCCCGATTAACCAAGAGCAC









ACAAAATGTGCAGAC





1974
2597276
2
C2orf67
GGAGGAAATAAAGCCCTGTTCTGGATCC
0.035105592
0.006946012
7.83E−06






CCCATCCCCTCCAGAATAAGAGCATGTT









CTGCATGTATTAATCTTTTATGCTGTTTA









TGAAACAGGCAAGATAAGTCTGTTTTTC









CTTCTGGAACCATAAGGGTAACCAGATT









TTCATCTACAGACAAGTGGTAGTCATTT









GTGTTTATCATGCAACTTACTTACAAACA









CCAAGATATTAATTGCTGCAACTTGATG









TCAAATCACATTACTGGGTAATTTTTAAG









ACTATGTACCCACACCATACATACATAC









ATATATATATACACATACATACAAACCT









GTGTGCCAAGTGACAGCTATTTTTTTATA









TACATGGTAATTCATTAAAATTGCCTTAG









TAATATATTAGAATATACAAATATGTGT









GTATAAAATAAACATACACACACACACA









CACCCCTATGTAGTTTTTAAAACACTGGC









AATGACCCACTCCCCTTGGAAATGCATG









TATGAACTACCCTATGAAATGTAAGCTG









CAGAATAGATAAAACACAGGTTTCCACT









AATAAAAGACATCTGAACGTCCTGAATA









TAGAGACAGAAGTTTTTTGTTGTTGTTGT









TGTTGTTTTAACATGTTTAACCAACAGAA









GTTATTTACAGAAATTCATATATCCAGG









CAACACAAAACTCCTTTATTCAAAATCA









CTGCTATCTTTGGGACTAAACACAGGCT









ACTTTC





 781
2599275
4
TNS1
TGGGACAAACAGCAGTACCTCCCTCATC
9.17E−05
0.008975208
8.42E−06






AGGTACTGTGGGATTAAATGAGATTATA









TATATATATGCTGGGCTCCAAACAGAGC









CTGATATATAGCAAGCATTCAGTGAATC









TTAACCAGCATCATTGTGATTCCACACA









GGAGCCCATCTGCTTGAGGAATTTAGCT









GTAAAAATAAAAGTTTGAACACTACTGG









ATGGGATGATC





1632
2599476
2
USP37
TTATTTGCCATACAGTAACCAGAGACCT
0.029541528
0.006562388
4.64E−06






CCAACTAGGGGC





 910
2599863
1

GGCTTCCTATATCTCCCTTCCTGGTCAGC
4.52E−05
0.008829888
5.90E−06






AATATAGCCCATTCTCTGGAGCTTCCCGT









GGGGATTTTTCTTCCCAGTGAATTCTTCC









TATTAGTTATCTAAGTGGTTTAACTGTTG









AAATGTTTTCCGTCATCTTTAGATCCTTT









TGAAACCACTTTCTCTACCTGCTTCAGTT









CCATTTGATGACCGCCATCATCTTTGAGA









TTCCCATCCAGAACCATGCATACCTCTTA









GGTTCTCACAGCCAGGAGCTATTTCCTA









AGTTGTCTTTCTGGTGGAAAGCTCAGCTC









CTACTAAGCAGTCCTTGCTTCAAAATGG









CTTTGATGAATGACCCAAAGGAGCCAGG









CCAGTCCCTGAGTCATCACAGAGCACCC









TAGGTGAGAAACCCTGAAGTGTTCTCTG









CTGTTG





 965
2599915
9
C2orf24
CCCATGTGCTATGATGCTGGCTCTGGTGT
0.000742232
0.007348425
2.98E−06






ACATTGAACGGCTCCGGCACCGAAACCC









AGACTACTTGCAGCATGTGTCATCCTCTG









ACTTGTTCCTGA





 335
2600704
9
EPHA4
CATTGAGGAAGGCTATCGGTTACCCCCT
1.55E−05
0.018536235
1.63E−05






CCAATGGACTGCCCCATTGCGCTCCACC









AGCTGATGCTAGACTGCTGGCAGAAGGA









GAGGAGCGACAGGCCTAAATTTGGGCAG









ATTGTCAACATGTTGG





 378
2600943
1

TTTTTGAGCCACGATCACCGGAAGGGAG
0.014566395
0.008784565
3.86E−06






GAGGCTCATACCTCTGGCACGTCAACAG









TGACAGC





1809
2601389
4
WDFY1
ACCCTGTGCATGTTCCGATGAAAGAGGG
0.000306094
0.007084701
3.35E−06






CCCCAGAGATGTGGTGTGGAATGATTTC









CTCTGGGGAGCAGAAGGCAGAATTGCCA









TGCCCAAGCCCGAGC





 154
2601681
9
DOCK10
TGAAGGCCATAAGCAGCACAGATCACAA
7.88E−06
0.02628921
2.68E−05






ACTTTACCTATAATTCGAGGCAAAAATG









CACTTTCTAACCCCAAACTCTTACAGATG









TTAGACA





1081
2602465
3
5S_rRNA.424
CATAGTACTCTGAACATGCCCGATTTCAT
0.000144203
0.007318832
2.05E−06






CTGT





1234
2602539
4
SPHKAP
CGCTCTAGTCAAGGGCCAAGCCCTTTGC
9.28E−05
0.008361255
2.05E−06






CATCCCCTCCTCCAGGGAGAACTGACCA









GTCCATCCTTGGTGATAGCTGACCTGGA









TTGTCTTGGATCAAAGCA





1157
2602918
9
TRIP12
TCCAGGGCCTGTTTGCGCTTCCCTTTGGT
1.47E−05
0.008997078
6.95E−06






AGGACAGCAAAGCCAGCTCATATCGCAA









AGGTTAAGATGAAGTTTCGCTTCTTAGG









AAAATTAATGGCCAAGGCTATCATGGAT









TTCA





2061
2602948
9
TRIP12
GGATGATGCTCGAGCACAGCTTATGAAA
0.000753154
0.007525896
5.35E−06






GAGGATCCGGAACTGGCTAAGTCTTTTA









TTAAGACATTATTTGGTGTTCTTTATGAA









GTGTATAGTTCCTCAGCAGGACCTGCGG









TCAGACATAAGTGCCTTAGAGCAATTCT









TAGGATAATTTATTTTGCGGATGCTGAA









CTTCTGAAGGA





 396
2603204
1

CATCAGAGGCGGGATAGGCCCTCCCCCT
0.012720391
0.008693728
8.76E−06






GGCTTGGACCTTGGGCAGTTCCCCACCA









GAGGCTGTGGAGGTCTCCAACATCCGGC









AACATCCTTCCCAAGTGCCTGGCTCAAC









CCTTCTGTGCCTGGGAGTTTTCTCAGATG









CCATGGGGGCTTGCAGGACTGCAAGCTG









GAGAAAGAGAAACTCCCAACAGTTATGG









CCC





 723
2603264
5
CAB39
CTCTTTGACACATGGTGCTGCTACACCGC
0.011153791
0.00928397
4.96E−06






CCTTCATGGCAGGTCTGCTACTTCTGAAT









GGGACATACCCTTCCACCGATGCATTAT









A





 286
2605670
5
FAM132B;
CAACAGGTTTCTCAGCTGCAGGGCTTCT
0.003288508
0.011313889
6.50E−06





AC016757.1
CAGAGCCTGCAAGGGCTCCAAGTCAGGT









GGGAGGGTGGCCCTTCCCCACAGGCAGT









CATTTGGCAGAGCCTTCCGTGAAACCAG









CACTCTAGCCTGGCTGCTCCAAACGTGG









TCATGCACCAGCAGCGTGGTCATGCACC









AGCAGTGTCACATTCCCTGGGAACTCCC









AGAAATGCAGAATCTGGGATCCACCCAG









ACCTGCCTCAGGATCTGCATCTTAAGAT









CCAGGTGGGGCAGAGACCATCTGAGTTC









ACCAAGCATGCTGTGTGGCACCCAGAAG









GGACCTCTAAATGCCTTTCAGCAAGCAC









AGACTCTGGGCCAGACAGCCTGGCCTCC









ATTTCTGGCTCTGCTGTGTGAACTTGGGC









TAACTCGGGGAGTAGCTCTACCTTC





 788
2605785
9
PER2
CCAATGAAGAGTATTACCAGCTGCTGAT
0.000524526
0.009752043
4.77E−06






GTCCAGCGAGGGTCACCCCTGTGGAGCA









GACGTGCCCTCCTACACCGTGGAGGAGA









TGGAGAGCGTTACCTCTGAGCACATTGT









GA





1004
2606698
1

GAGTAAGGTTGGAGCGTTCTCCCTACCC
5.32E−05
0.011144864
8.01E−06






CCCTCCTGTGCGGCTAAGAGGGTGCTGA









CCGTCTCCCCTGGGCCTGGTGACCAAGC









CAGCCTTGTCCAC





1695
2606919
9
KIF1A
TGACCAATGCCCTGGTGGGTATGAGCCC
0.042209752
0.006760359
3.63E−06






CTCATCCTCGCTCTCAGCCCTGTCCAGCC









GCGCGGCCTCCGTGTCCAGCCTCCACGA









GCGCATCTTGTTTGCCCCGGGCAGCGAG









GAGGCCATTGAAAGACTG





2067
2608200
3
TRNT1
GTCCCATCAATGACATGCTACCAGACAT
5.06E−05
0.007942636
2.32E−06






ATCAGATTCCACAGGATAATGGCACCAA









GCTACCCAAGTAGATGTTTCTGGTATTCT









AGACTGCCGTTCATGCTTGTTTCCTAAAG









TATACTTAAAAGTTTCAAATACAGTTTCA









CTTAGAAACTGCAACCCTCCAAGTAATG









TTATG





1430
2608310
8
SUMF1
CGGAGCAGCCAATCCGCGCGCGGCCCAT
0.000664925
0.010575278
7.69E−06






CAGCTGACCGCCTTTGCTTACA





1942
2608320
4
LRRN1
TCCCTTTAGCTCACCATTATAGATGCTAT
0.006310467
0.007137097
3.69E−06






TTTTATACTTATATTCAGAGGTTGCAAAC









TGGCCATGGGCCATAAAGGGACTCTGAA









AGCAGGTAGGTTCTGTTTGGCCTGCACA









GCTAAAACATTTTGGGTTGCCTTTTGGAA









TTCATGCACTCTCCAGCCTTCTACATGAC









TACTGCTTCTTACTGTGTTAGAATCAACT









CCCTACACCTACCTGGCCCTAGAAAGCA









TTAAGT





 155
2608321
2
LRRN1
TGAAATAATTCATGCCACGGACCTGTGC
0.000173296
0.019550721
1.90E−05






ACATGCCTGGAATTGAGAGACACAGTTA









AAAGACTCCAAGTTGCTTTCTGCCTTTTG









AAAACTCCTGAAAACCATCCCTTTGGAC









TCTGGAATTCTACACAGCTCAACCAAGA









CTTTGCTTGAATGTTTACATTTTCTGCTC









GCTGTCCTACATATCACAATA





1549
2608324
9
LRRN1
GGTGCTGGGCCTACTAATGACTTCATTA
0.000363271
0.011008854
7.59E−06






ACCGAGTCTTCCATACAGAATAGTGAGT









GTCCACAACTTTGCGTATGTGAAATTCGT









CCCTGGTTTACCCCACAGTCAACTTACA









GAGAAGCCACCACTGTTGATTGCAATGA









CCTCCGCTTAACAAGGATTCCCAGTAAC









CTCTCTAGTGACACACAAGTGCTTCTCTT









ACAGAGCAATAACATCGCAAAGACTGTG









GATGAGCTGCAGCAGCTTTTCAACTTGA









CTGAACTAGATTTCTCCCAAAACAACTTT









ACTAACATTAAGGAGGTCGGGCTGGCAA









ACCTAACCCAGCTCACAACGCTGCATTT









GGAGGAAAATCAGATTACCGAGATGACT









GATTACTGTCTACAAGACCTCAGCAACC









TTCAAGAACTCTACATCAACCACAACCA









AATTAGCACTATTTCTGCTCATGCTTTTG









CAGGCTTAAAAAATCTATTAAGGCTCCA









CCTGAACTCCAACAAATTGAAAGTTATT









GATAGTCGCTGGTTTGATTCTACACCCA









ACCTGGAAATTCTCATGATCGGAGAAAA









CCCTGTGATTGGAATTCTGGATATGAAC









TTCAAACCCCTCGCAAATTTGAGAAGCT









TAGTTTTGGCAGGAATGTATCTCACTGAT









ATTCCTGGAAATGCTTTGGTGGGTCTGG









ATAGCCTTGAGAGCCTGTCTTTTTATGAT









AACAAACTGGTTAAAGTCCCTCAACTTG









CCCTGCAAAAAGTTCCAAATTTGAAATT









CTTAGACCTCAACAAAAACCCCATTCAC









AAAATCCAAGAAGGGGACTTCAAAAAT









ATGCTTCGGTTAAAAGAACTGGGAATCA









ACAATATGGGCGAGCTCGTTTCTGTCGA









CCGCTATGCCCTGGATAACTTGCCTGAA









CTCACAAAGCTGGAAGCCACCAATAACC









CTAAACTCTCTTACATCCACCGCTTGGCT









TTCCGAAGTGTCCCTGCTCTGGAAAGCTT









GATGCTGAACAACAATGCCTTGAATGCC









ATTTACCAAAAGACAGTCGAATCCCTCC









CCAATCTGCGTGAGATCAGTATCCATAG









CAATCCCCTCAGGTGTGACTGTGTGATC









CACTGGATTAACTCCAACAAAACCAACA









TCCGCTTCATGGAGCCCCTGTCCATGTTC









TGTGCCATGCCGCCCGAATATAAAGGGC









ACCAGGTGAAGGAAGTTTTAATCCAGGA









TTCGAGTGAACAGTGCCTCCCAATGATA









TCTCACGACAGCTTCCCAAATCGTTTAA









ACGTGGATATCGGCACGACGGTTTTCCT









AGACTGTCGAGCCATGGCTGAGCCAGAA









CCTGAAATTTACTGGGTCACTCCCATTGG









AAATAAGATAACTGTGGAAACCCTTTCA









GATAAATACAAGCTAAGTAGCGAAGGTA









CCTTGGAAATATCTAACATACAAATTGA









AGACTCAGGAAGATACACATGTGTTGCC









CAGAATGTCCAAGGGGCAGACACTCGGG









TGGCAACAATTAAGGTTAATGGGACCCT









TCTGGATGGTACCCAGGTGCTAAAAATA









TACGTCAAGCAGACAGAATCCCATTCCA









TCTTAGTGTCCTGGAAAGTTAATTCCAAT









GTCATGACGTCAAACTTAAAATGGTCGT









CTGCCACCATGAAGATTGATAACCCTCA









CATAACATATACTGCCAGGGTCCCAGTC









GATGTCCATGAATA





 645
2608325
2
LRRN1
TGGTAGTAAGGAGCACAAAGACGTTTTT
6.21E−05
0.019434045
1.39E−05






GCTTTATTCTGCAAAAGTGAACAAGTTG









AAGACTTTTGTATTTTTGACTTTGCTAGT









TTGTGGCAGAGTGGAGAGGACGGGTGG









ATATTTCAAATTTTTTTAGTATAGCGTAT









CGCAAGGGTTTGACACGGCTGCCAGCGA









CTCTAGGCTTCCAGTCTGTGTTTGGTTTT









TATTCTTATCATTATTATGATTGTTATTA









TATTATTATTTTATTTTAGTTGTTGTGCTA









AACTCAATAATGCTGTTCTAACTACAGT









GCTCAATA





1008
2608339
5
SUMF1
TGAGCAAAACCACAGGCAGCAATCCTCA
2.54E−05
0.012507145
5.22E−06






AGCCCATTTCTATTCTTCTGGATAAAAAA









GACATTTTTTTTTTTTTTCAAAATATAGG









GGATGTCATCTTTTTCCCAGCCATCTTGT









GAGGGAAGAAGATAGCAAGACAGAAAT









AACTCCTTATAATCTTTTCAAATACCAAA









GCATTCCACTTCCCATGCAATCATTTTGA









ACCTCTAACACGAGCAAAAACTATAGCT









GTTATGGAGAAAAGAACTCTTAGTTTGA









AAAGATCGAGTACTAGCATATAGAATCC









CCCAAACCACTTTAAATTAATGAGTCAT









ACAATATATCTGACATGTTACCAAATCC









TCCCCAGACCCAAGGCTCAACAGTTTTT









GAAATCTCAACACACATTTTCTGAGGAA









TTGCAGTTTGGAATGAAACTAGGGCTTC









TGGTGGAGTGATCTGTACAGTAGTCACA









GGATGGTCCTT





1746
2608671
9
ITPR1
GGAGTCCACCATGAAACTTGTCACGAAC
0.000933891
0.006561627
5.98E−06






CTTTCTGGCCAGCTGTCGGAATTAAAGG









ATCAG





1597
2611429
1

AGCTGCTTCCTGTCAAGGCGCCCCAACT
0.000611594
0.007531947
4.72E−06






CGCTTTCCACCCCCCTTCTCAGAGCTGCT









TTCTACAAGCATGTAGTTAAC





1532
2612685
5
RFTN1
GACCCAGCTCTGATAGGGCTTCTGAGGT
0.000197241
0.007072248
3.46E−06






GCCAGAAACCTCCAGCTGGAATATCCTG









CCTTCAGGACACATCAGACATCTGGCTG









TTCATTAGTCCAATGTTACAAGTCCTGCA









GTCCACCTCCCATTCTATCTGGCTCCCTG









CTCTACCAGAGACAAATCCACCAGAGCC









ATAACAGATGCGCTGCCGGGTCCCCATC









AGCATCTGCACTGAGACCTACCACGGGA









CAAACCAATGATGAAAAACCCAAAGTCC









AGAAAATGAAAATGGTCTCAGAGAGACT









GGCCAATCCTATTTGGGGTCCTCTA





1419
2616182
4
CRTAP
AGGAGGTGGCAAAACTAGGCGACTTTCC
0.001052466
0.006830214
3.37E−06






AAATC





 916
2617484
9
DLEC1
TTCGGGAGCTCTATAAGCAGCGGCTGGA
0.013431886
0.008587469
5.38E−06






TGAGTTTGAAATGTTGGAGAGACATATC









ACTCAGGCCCAAGCACGGGCTATTGCGG









AAAATGAGCGGGTCATGAGCCAGGCTGG









AGTACAGGACCTCGAGAGCCTT





 816
2617540
9
DLEC1
GGGGCAGCAGTACCATCTACATCTCCTT
0.017888918
0.007446384
3.41E−06






CACCCCTATGGTGCTCAGCCCTGAGATC









CTGCACAAGGTGGAGTGTACTGGCTACG









CCCTGGGTTTCATGAGC





1694
2618614
2
EIF1B
GGCTGCCTTGTGAAATGATTCCCTGCAG
6.41E−05
0.006862005
2.47E−06






TAAACGGACTTTTCATTTATTTAATCATT









CAAACTTCCATTCACATCTGCATGATTAC









AGAAAACATGGGGTATGTAGACTAGTAA









CACATAAGAAAATTGCAGTAAGATGGTA









ACAAAACCTCATATTGTCTTTACATGTTT









CCAATGGAAAATGTTTTGAGTGTTTATTG









TTCAGTTTATTACGTTTCACTTGATTAAA









TTTTTTTGTTGTTGTATTAAACCATGTAC









GTTGCAGCTTAACAATA





  98
2619175
9
TRAK1
GCCAATGTCCAGATTGCTAGTATCTCAG
0.004114217
0.025408058
2.25E−05






AGGAACTGGCCAAGAAGACGGAAGATG









CTGCCCGCCAGCAAGAGGAGATCACACA









CCTGCTATCGCAAATAGTTGATTTG





 269
2622081
7
RHOA
GAGAGACTGAGTGCCACCCATGAGAACT
2.76E−05
0.023574859
3.36E−05






GGTGGCTCCTCTGGGAGGGAACCTGGAT









ACAGTGAGGAGAAAAGAGCACTGTGAA









TTAGAGCCAGATGCTTAAGTCCAGGTGA









GACAGGTTATGCCATCTTCCAAAGTGTC









TAATTGCCTCAGGCGTGAAACCAATTCC









TATTTACTTAGCCCAGCTCCATGGGGTAC









TGAGATACATGGGGCCGAAAAGGGGTA









ATATGGCCATCTTTTATCAGAAAAAGTG









ACAAAACGGGAATTTAAAAAATGAATTT









TCCATCTGACTTTATTTCCAAATACACTT









TCTTTTTTAAAAAACCAATACACTTTCTT









TGAGGATGACAGTATTAGGAAATCCAAT









TATACAAAAAATACTACATCTAGTCTGG









GGTAGATATAATTTATTTTTGGTAACATAC









ATTAAGTGGCACTAATTACACAGTAACT









ATAAGGTAACTAACATGAAACCACAGAA









CTGTAACTCTGCCACAGCTGCATGAACT









TGGGCTTTTCTGGTTGAGCCCATTTTCAA









AAAACTGCCCACCCCAGAGCTATGCCAA









CAAAATCTGTTACGGAGTAAAGCCCTGA









AGTGGTGACTCACCAGAGTACCTTGCAG









CTGACAGATAATAGGCAGGACATGTTAG









TTATAAAGTAGTTACAGCCTAATTCACA









AAAGTTACCAACTGTTTCTCTTTCTAGAA









AGAAGCAAGAAGTTAAGAAATTCCTTGA









ATTAGCGCCTGGTGTGTCAGGTGGGAGT









GCAGAGGAGGGCTGTTAGAGCAGTGTCA









AAAGGACCCTGGTGGGCCAGACGGGTTG









GACATCGTTAATA





 545
2623385
5
IQCF1
CAATTGGAGTCTAGCAGGGAATACCAGA
0.00071035
0.008401967
6.10E−06






TCAATTTAAAGCCTAAAATCAAATAGCT









GCAGGATTTGAGTCAATATTTTGTTGAG









AGACAATTAATAAAAATATAGATTGAAT









AAACTACATATGCTACAACCAACAGCGA









TTTATTAACTACACTAGAGATGGTGTTA









AAGGAATAGCTGAGCAATTAGGGGCTAC









TAGCCGGATGGCTTGGGAAAATAGGATA









GGCTTAGACATGATAATAGCAGAAAGAG









GAGGAGTTTGCCTCATGATTAAAACTCA









ATGTTGTACCTTCATCCCAAACAACACT









GCCCCTGATGGAAGTATAACAAAGGCAT









TGCAAGGTCTGACTGCCCTGTCCAATGA









GTTAGCCAACAACTCAGGGTTAAATGAG









CCCTTTACAGGATGGCTAGAAAAGTGGT









TCAGTAAATGGAAAAGAATTATAGCCTC









AATTCTCACTTCCCTGGCAGCCGCAATG









GGTGTATTTATT





 690
2626663
8
FHIT
CTGGCAAGGCATACCGCCTGACCTGCAC
0.007866301
0.010201017
7.71E−06






AC





1156
2627422
9
ATXN7
CTACTGAAATCTGCGGTGGGGCCAACCT
8.27E−06
0.012122322
1.25E−05






GTCCTGCTACTGTGAGTTCCTTAGTCAAG









CCTGGCCTTAACTGCCCCTCAATACCAA









AGCCAACCTTGCCTTCACCTGGACAGAT









TCTGAATGGCAAAGGGCTTCCTG





 651
2629053
5
FOXP1
TGCTAACCCACGATCAAGGTCATGGGGT
0.000436951
0.011217143
6.81E−06






CAGATAGTTATTCAGTGTGGCAGAGACT









CTTTCCTTGCCCATCAGAATGGAGGGAA









AAGAATATTACACAGAAATCAAAGAAG









AGCTTGGAAGGACACGTATTTCACAAAT









GCATTGATGAGTAAGAGAGAAAACTTAT









CCAAGGCAGTGACAAGAGACTCCTGAGA









CAACTGGCACA





 409
2629551
7
RYBP
CGTGCACATGCCAGTAACAGGAATATAT
0.001173835
0.015072362
1.96E−05






TAACATCTTTTATTTGCTAGACAAAGAG









CAGTGTCCAATATAAATTTCCCCCAAAA









CATTTAAGACCTGTGAATTTTTGACCAGT









TCACAAAACCACCAACTGACACTTTAGC









ATGAAGAAAAAAACAAACCTAACAGAC









TGTCAGCTCTAAAGACATTACAGAGCAG









AAACTTCCAAAAGCGTTATACAAGCTGT









CTTTCTGGGCAAATGAAAAATATAGCTC









GTATAATACATTAACAAAAATTCACAAG









ATAAGATTGTTTTGACATACTTAACAAG









CATTCTCTATTTGTCTCCAACAAACAAAG









CTAAGGAAATAATGTAACCATCTTTACA









CAGTAAATTAAGGTTACAAGTCATACAC









AAGAACAGAACTGCTTGCGCATTAAAAA









CTGTTCAGCTCCATTGTCATACTCTAAAT









GTTGGCTCTTAAACCATTTTCGGTTACAT









ACAAGCAAAGGTTATTATATATTCAGCA









ATTAATAAATTTTCAATAATTTAAGATAC









GGTAGCTTAAAAAAGTAGACTGAGAATG









GTCTTGATAAGGCAGGTGAAACATCTTA









GTGGAACTAAACTCACAGAAGCTTCTGC









CAATGTTTTTAAATATCCAGATTGAAACT









GAAAGGTTTTGATTAGAATATTGTGTGG









GTGTCAAGATGTCTTTTTTTTTGTAACTG









CATGACTCAAGCAGAGCAAGTCAGGTAA









GCTCTGTGTGCGCGCACACGCACGAGTG









TGAAAGATTGCGTGGTATTAAAACAAAT









GGAAACTTGCAAGCGTAACACTGTG





 738
2629744
4
PPP4R2
TGTATTCCACAATGGCCGCGCCATTTTAC
0.04726916
0.008537673
9.19E−06






GTTCCCATCAGCAGTGCCCATTGGTCCC









AGTTTCTC





1410
2630507
4
ROBO2
TATGGTACTGTTAAGAACCCTGAGTTTG
0.001302035
0.008310638
3.52E−06






CAGTCATGTTATTTTCATTTTTAACAATT









TAATTTAGAATTCAAAAACTTTTTATATG









TTTTTCCTGATAAATAGTGCTTAAATTAC









TTGTCAATATTCTGTTCCAAAGAATGCAT









ACAAATTGGATTTTGTTTTTCATTTGATG









TGTGTTAAGAGTGGAAAAGATGCATAAC









TGACGTGCATCTGGCATATCTGATGTGC









CGCAACTGCCAACAGTTCAGATAACTTT









ATGGTGGTCACAGGTCAGTCATAATGA





1748
2635824
9
PLCXD2
TCTTATTTTCTACCACTGTCCCTTCTACA
3.62E−05
0.008886785
7.53E−06






AGCAGTACCCCTTCCTGTGGCCAGGAAA









GAAGATTCCAGCGCCCTGGGCAAACACC









ACAAGTGTGCGCAAACTAATCCTCTTCTT









GGAGACCACTCTGAGTGAGCGGGCCTCA





1166
2636575
6

CCACACCATGGTTTCCCAATAGTTCTCTT
0.002123679
0.009197633
9.18E−06






TTTGGAGGACTTTTCAATTGATGAGTAA









ACTGCTTTAGATATTTCAGAACTTCATTC









CCCAAATGAAAGCTAATCTGGACAAACT









ATATATTGCATAGATTTCTCTACAGATTC









TTTGCTTTAAAACCTAAATGCAACTAAC









ATAGTGTAATTTTAACCTATTTGCCCCAC









AGTAAAAACTATCTGTCCTGAAAAATAT









GATGGATATATCCTGTGATTTTCCAGTTA









ACAGAATTGTTCTACTTCAAAGATAATT









ATTATCATATATCAAAATAACCAGCTCA









ACATAGGACATTACTTCAGTCTTTACTGA









CTCATAGGCATATGAACTTGTGCCCAGC









TTT





 423
2638147
9
C3orf15
GGCAAAAATTCAGCGCACGCATGTATCA
0.009193693
0.007970185
8.90E−06






A





1233
2638761
2
SLC15A2
TGACTCCCTAGATTCTGTCCTGACCCCAA
0.000352341
0.00718282
1.84E−06






TTCCTGGCCCTGTCTTGAAGCATTTTTTT









TCTTCTACTGGATTAGACAAGAGAGATA









GCAGCATATCAGAGCTGATCTCCTCCAC









CTTTCTCCAATGACAGAAGTTCCAGGAC









TGGTTTTCCAGTACATCTTTAAACAAGGC









CCCAGAGACTCTATGTCTGCCCGTCCA





1834
2642793
4
DNAJC13
GGCAGCTTATTCACGTGGCCTTTCCTCCG
0.045938047
0.007033282
3.08E−06






CTGCTGTGATTTTATCTTTGAATGTGGCC









TTTGGAGTGGGTAAAGTAGGACTTAGAC









GCTCAGTGAAGTGGCT





 184
2643246
4
TFP1;
ACACATGTGCGTGTGGCCTTCTTGCCCCT
0.018126
0.010721006
8.87E−06





TF
GTTTGCCTGGAGGGGTAATATTATAAAT









ATTCCTTCTATGGTCTTCTCTCTCCCCTG









CAACCCTAGGAAGGTTTTCCTG





1052
2643765
1

GGGCCCAACCACTCTCCACATGGCAGCC
0.000108061
0.008880817
1.02E−05






AGGAAGAACATGGGTGTTTATCAGACTG









TGTCACTTACAATCAAGTCCAGACTCCA









CACCACA





 510
2644440
9
CLDN18
ACAAGAAGATATACGATGGAGGTGCCCG
0.003266926
0.017008691
1.45E−05






CAC





1523
2647113
4
CPA3
TATTTTACTGTCAATGCCCATGGGACTAC
6.21E−05
0.008005576
4.00E−06






AAAAGACTATTGAACATAAGGGGAAAG









CAGGAGCTATCTGGATAATTCAGCCAAT









GGCCAATACTTCACCTGTTCTG





1771
2647816
6

CCTCAGTGTATAAGATGTGCAAGACAAA
1.85E−05
0.010052151
7.45E−06






TATGCTTATTTCCTTTTCTAGAATATAAG









TGATATTATTTGCTTATGACACTAACACT









ATTAATGACAGGAGTCAATCAGCCTTTA









CAGCTATCAAAATATAATGAGATCCCAA









TGATGATTCTTTTTTACTTTGAATGTTAA









TTAGTTTGGGACTTTGATTGGCTGGCAA









ACATTTTATCATTGTCAGAATTTAATTTA









GATTTCAAAAATAGCTTACAGGATTTTA









AACATGGTGTGGTATTCTAAAGCCTTTTT









TTTAAAAAAAGAGATCTTTTTGAGAGAA









ACAAATGAGGATTGTAAAGTTTGGGGAC









TTACCTCTGTAGCATTG





 952
2647934
9
MED12L
TGCTGCTCTTCTGCGAGTTCATCCGCCAT
0.004800285
0.007000581
2.37E−06






GATGTCTTCTCCCATGACGCATACATGTG









TACCCTCATATCTCGAGGAGATTTGTCA









GTCACTGCCTCAACTCGGCCGCGGTCAC









CAGTAGGGGAAAATGC





1723
2648885
9
GMPS
GAGACCTTAAGGATGGCCACCACCACTA
0.000172838
0.007554839
3.61E−06






TGAAGGAGCTGTTGTCATTCTGGATGCT









GGTGCTCAGTACGGGAAAGTCATAGACC









GAAGAGTGAGGGAACTGTTCGTGCAGTC









TGAAATTTTCC





1035
2649525
1

AGCACTGCGAATGGGGCCAAGAAATTTT
8.59E−05
0.007182612
3.53E−06






GGCCTTTCTCGCCGGACCTGGCTGCCTCC









GCGGGCCTCTCCGCCTACCGCGCTCCCG









CCGCGGCCCGACTCCCGCGGGTCTCCGC









GCCGAACCCACCTGGCTCCTATCGCACG









GGACATTCCCGACCCACCCACGCCGCGT









CACTGAGCCTCTGTACCGATA





 934
2649935
2
IQCJ-
GCCCGCCGGTGGATGCTCCGCGCCTGCC
6.02E−05
0.010720906
8.75E−06





SCHIP1;
CTCCGCAGCCTCGCTCAGCAGTCCTGCG








AC063955.1
TTGGGGTCTGCGCCCTAGGATGCACTGA









G





1421
2650228
9
SMC4
AGATATAATTGGTTGTGGACGGCTAAAT
3.17E−06
0.016266742
1.10E−05






GAACCTATTAAAGTCTTGTGTCGGAGAG









TT





2003
2650244
9
SMC4
GGGGACTTAGGAGCCATTGATGAAAAAT
1.68E−05
0.00695319
2.52E−06






ACGACGTGGCTATATCATCCTGTTGTCAT









GCACTGGACTACATTGTTGTTGATTCTAT









TGATATAGCCCAAGAATGTG





 907
2651198
3
RP11-
TGTGATGTCTTTCCCCATCCGTCATAAGG
5.24E−07
0.013460027
1.71E−05





298O21.6;
GTCATGG








RP11-









298O21.2






1508
2651858
4
GPR160
AATTTCCTGAAACTGGGCTAATTCTTTGT
1.95E−05
0.008579857
3.86E−06






AGAAATGTGAACGCTGAATTTATTAAAA









AATAATAATAAAACACAGGAAACAACTT









ACATGTACATAGGTCTTGAAGTGAGTGA









AGCGGCTGTATTTTTTTGGGGGGGGCAT









TGCTTTTGTTTTTGTAGAAGAGATTGAGA









TGATACTCTATTCTAATCAAAATTAGAG









ATTTGTAGTGGGACCA





1855
2652236
5
TNIK
CCTGCAGGCGTTCATATGAGAGATGTGC
9.17E−05
0.007559912
2.17E−06






AATGCCTGTGCTAGGACAGTGGTGGCAG









AGACAGAAAACAGAAGAGAGAAATCAG









GAACCATTTAGGAAATAGGATCAGCTGG









GCTTGGTGATGAAATTCAGGAGATGATG









TCATGGGTGACTCCTAGTTGGTTCTTGGA









GTTGTGATAATGCCCTTC





1823
2652297
1

TCTTGGCATCGCCACACCCAGGACTTGC
3.08E−05
0.006668549
3.20E−06






TCGTGCCGCAATTCCCCACGGAAACAA





 526
2653422
8
TBL1XR1
AATTAAATTATCAACTGTGGTCATCTGC
0.003210012
0.010540491
6.82E−06






AATGAAGTGACTAA





 445
2655291
5
ABCC5
GTCGAGTTATACAGGACTAGCCATCTAA
6.39E−06
0.015888528
1.09E−05






CAGGTCATCTGGTCTCCGACGGTTGTTTA









ACGACACACAGTAGAAATAGAGAATAG









AACCCATATCTGTTTCCAGAGTCCAAAG









TAGTATATCAGGCTGACAGCACTCAATC









AGTGAGGGCTCCTGAGGTTGCAATGATT









CTGCAACGGAGTAGATTCTCTAGGAAAA









AAGACCTTGCTGCTAAGGAAAGAGAATT









AAAAACAAAACAAAACGAAAAGCTCCC









CAAAGAGGTACTCTGCTCAAAATGGCTG









GTGCTACTGGTGCACTAAGTTGTGAGGA









ATTACCTCTGCTCGGGACAGA





1939
2658515
1

TTCCACTGGACTCAACATCCTTTTGCCCG
3.13E−05
0.007764126
4.87E−06






TATC





1213
2658524
1

AATATTGCAGGGTTGAGCAGGTGCAATG
0.002147887
0.007985716
5.27E−06






TTGTAATAGAGGTAGCAGGCCTGAGCGT









GTGCAATGTTGTAATAGAGGTAGCAGGG









CTGAGCGTGTGCAATGTTGTAATA





  93
2658918
5
C3orf21
GGAAGGGACTCGGAGAAAGCTACAAGC
0.000102061
0.020156465
1.03E−05






TGGGGCCCT





 616
2660844
4
SUMF1
TTCCAGGTTGGGTGTAGAATCAAACCAG
0.002052564
0.013982945
1.22E−05






CGACTATCAATAACTTTCAATTTGTTGGA









GTTCAGGTGGAGCCTTAATAGATTTTTTA









AGCCTGCAAAAGCATGAGCAGAAATAGT









GCTAATTTGGTTGTGGTTGATGTAGAGTT









CTTGAAGGTTGCTGAGGTCTTGTAGACA









GTAATCAGTCATCTCGGTAATCTGATTTT









CCTCCAAATGCAGCGTTGTGAGCTGGGT









TAGGTTTGCCAGCCCGACCTCCTTAATGT









TAGTAAAGTTGTTTTGGGAGAAATCTAG









TTCAGTCAAGTTGAAAAGCTGCTGCAGC









TCATCCACAGTCTTTGCGATGTTATTGCT









CTGTAAGAGAAGCACTTGTGTGTCACTA









GAGAGGTTACTGGGAATCCTTGTTAAGC









GGAGGTCATTGCAATCAACAGTGGTGGC









TTC





1801
2660916
4
SUMF1
GCTCTGTGAGGCTGAGTAAACACTATTC
0.006537209
0.006595054
4.89E−06






TCTAACATAGGGACGACATGGGCAACTG









AAAGGATTCAATGTAAGTAATCTCTGTG









AAGCTCCTAGCAGAGGGTTAGATGCACA









AC





 296
2661905
4
AC087859.1
TGGTTTTTAAGTACTGTGGACAGAATGA
7.38E−05
0.010850848
7.91E−06






CCTCTCTTTCTGTCCCAGGGGCCACTCTA









GACCAAAACCCATCCACAGCGAAGTTGG









TGC





 757
2662405
3
RPUSD3
CCAGAGGTGTATGTGACCAGGCCCAGCT
0.011000613
0.009676955
5.52E−06






AGAGGAGGCAGCTTCAGGCTAGCACCCC









AACAGGAAAGAACAGTCCTTAGGCCCGG









TGGCTTCAGCAATTAAATCAGGGTTGCA









TCTCATCATGAGTGGATCCCACAGCCAG









GCAGATTGATAGCTGTGATCGTCCTGAC









GTGTTATGTGTCCCTCTCTGGATGCAGGG









GCCATAGTACTGACCTCACTGA





1357
2663942
3
GRIP2
CTACCCCGCAAGTCGGGCAGCCTCAGTG
0.003473534
0.00850067
5.57E−06






AGACCAGTGATGCTGATGAGGACCCAGC









AGATGCCCTGAAAGGAGGCCTGCCAGCA









GCCCGCTTCTCGCCGGCTGTGCCCAGTGT









GGACAGTGCTGTGGAGTCTTGGGACAGC









TCGGCCAC





1027
2664336
2
COLQ
TGACCACCGAAACGTGCAGGCATTCTCA
0.000769819
0.007370036
1.10E−06






CTCACACTGGGCAGCCCGCTGTCGGGTC









TCTCTAGGCCTATGAACCACAAAGCAGG









GAAGTGGGCACGTTCTCTCGGGGTGGCT









CACAGCTTTGAACCTGCCAAAGGACCCC









TCGACTGGCCACAGCCCAGCCCAGCCTG









ACGTGGATGTGGCTGCCCAGGAAAAGAC









TTAACTGTGAAAAAGTACTGAGAACCCA









CCTGACCCAGGCTTGCCCCAAGCAGAGG









CTAGAGAAGAGGCTCCTCTTCTCAGTGT









TTCC





 963
2666262
3
THRB;
ACTAAGTAAGACCTCTCAGGATCTCAAA
2.79E−05
0.009236679
6.52E−06





AC112217.2
GCCAAGTGTTTTACAGAGAAGAGAAGAT









AGAAAAGGCATATTATCTAGGAGTGGAA









AAGAATTTTATGCTGAAAATGTTGAAGA









GAGAATTCAAAATCAAATTCAACATTCC









ACCTAGGAGGCTTCCATCTCTGCTTAGG









AGCTGAGTAATGGAGGTGATTGGTGTAA









GTGTTCAGTACCTATGAAGACCTAACTC









TTGAGGGAGAGACTCCA





 696
2666522
9
TOP2B
TCAAGATGGTTCTCACATAAAAGGCCTG
2.38E−06
0.013163028
1.15E−05






CTTATTAATTTCATCCATCACAATTGGCC









ATCACTTTTGAAGCATGGTTTTCTTGAAG









A





1149
2666743
1

CTCCATGGGATGGTATCCGAGTGGCTTG
0.005051331
0.008825818
3.83E−06






GAAAATAATATTTAGTTGTGTTCACCCA









CCT





 883
2667008
1

TTCCTTTACATGCTCCCTCGGGTGAAGCA
6.41E−05
0.007673324
2.51E−06






AGGCAGATGGAGAAGGCTTTAGCAGAC









AGCGTGGGCATGTTTCCAAGCCCTCAGG









CTGCTGAGCAACAATGCCGATGCCAGCA





1552
2670412
1

TTGGCTCCCCAGTACCTAGGCATGTTGG
0.004140901
0.008171632
8.16E−06






ATTCAGA





2022
2673028
9
MAP4
CACAGGAACGGGGAAAAAGTGCAGCTT
2.38E−06
0.007570706
7.03E−06






GCCGGCCGAGGAGGATTCTGTGTTAGAA









AAACTAGGGGAAAGGAAACCATGCAAC









AGTCAACCTTCTGAGCT





 113
2673623
9
CELSR3
AGTTCCACTACCGACCGCGGGGCAGTGA
0.003413307
0.016791865
2.15E−05






CTCTTGCCTCCCATGTGACTGCTACCCTG









TGGGCTCCACCTCGCGCTCATGTGCACC









CCACAGCGGGCAGTGCCCCTGTCGCCCA









GGAGCCCTTGGCCGCCAGTGCAACAGCT









GTGACAG





 704
2674247
2
RHOA
CACAGCCCTTATGCGGTTAATTTTGAAGT
3.07E−06
0.018909578
2.10E−05






GCTGTTTATTAATCTTAGTGTATGATTAC









TGGCCTTTTTCATTTATCTATAATTTACC









TAAGATTACAAATCAGAAGTCATCTTGC









TACCAGTATTTAGAAGCCAACTATGATT









ATTAACGATGTCCAACCCGTCTGGCCCA









CCAGGGTCCTTTTGACACTGCTCTAACA









GCCCTCCTCTGCACTCCCACCTGACACAC









CAGGCGCTAATTCAAGGAATTT





1602
2676932
2
RP11-
TCTAAGAAGCAGACAACCGGACATGCGC
0.003181899
0.006579698
2.72E−06





884K10.5
ATTCATAGCAGAAGGAAACCATCAAGAA









GTGGAAGGCTGACCATGATGAGCAGTAG









ATGAATGTGTATGTCTAAACAAGGACTG









CTCTGTGTCCTCACAGATGAATGAGGTC









ATGCTGGGAATTCCCTCTGCAGGGAACT









GGCCTGACTGACATGCAGTTCCATAAAT









GCAGATGTTTGTCTCATTACCTTTT





 512
2676993
5
CACNA2D3
GAACCAACCACACTGTACCAAAATGAGC
0.013302264
0.012413878
1.18E−05






TGTTCCCTAGGTCTTGTCCC





1547
2677357
2
WNT5A
TATACCCGATTTAGCAGTGTCAGCGTATT
0.000483071
0.008107545
3.23E−06






TTTTCTTCTCATCCTGGAGCGTATTCAAG









ATCTTCCCAATACAAGAAAATTAATAAA









AAATTTATATATAGGCAGCAGCAAAAGA









GCCATGTTCAAAATAGTCATTATGGGCT









CAAATAGAAAGAAGACTTTTAAGTTTTA









ATCCAGTTTATCTGTTGAGTTCTGTGAGC









TACTGACCTCCTGAGACTGGCACTGTGT









AAGTTTTAGTTGCCTACCCTAGCTCTTTT









CTCGTACAATTTTGCCAATACCAAGTTTC









AATTTGTTTTTACAAAACATTATTCAAGC









CACTAGAATTATCAAATATGACGCTATA









GCAGAGTAAATACTCTGAATAAGAGACC









GGTACTAGCTAACTCCAAGA





 774
2678668
1

AGGACGGGACTCCAGGTCCACATTACAC
0.000183201
0.013190267
1.35E−05






CAGACACCAGGACGAGCACCGACCCAG









CCCCTGTGGTGCCCTGGAGCACTGAGAT









CTTGTGCCAGCTCTAA





1371
2678742
2
FHIT
TACCTAGACCTAAACGGCTCAGACAGGC
5.15E−05
0.008580237
6.43E−06






AGATTTGAGGTTTCCCCCTGTCTCCTTAT









TCGGCAGCCTTATGATTAAACTTC





1189
2678879
4
FHIT
TTTAGACATGAAGTATGAGGCCGGCATC
0.034438352
0.007911619
3.61E−06


 829
2679967
9
PRICKLE2
ATCAGCAAACTCATGTTTGACTTTCAGA
0.000250234
0.010916403
6.29E−06






GGAACTCGACCTCAGATGATGACTCAGG









CTGTGCTTTGGAAGAGTATGCCTGGGTC









CCGCCGGGTCTGAAGCCTGAACA





1847
2680050
2
ADAMTS9
CATGAGCCTAACACCCTGCCGGTTTTCAT
6.62E−06
0.008282353
5.23E−06






GCCCGCTGCAG





1085
2680626
4
LRIG1
GGAGCCCGGCTGTGGTACAGAAATAGTG
0.001040005
0.00879174
3.90E−06






TCCTCCCA





 264
2682971
9
CNTN3
AAGACGCACACAGCCACTGTAGTTGAGT
0.015576799
0.011505616
5.10E−06






TAAACCCATGGGTGGAATATGAATTTCG









GGTTGTAGCCAGTAACA





 770
2685234
3
RP11-
CTCCACTGGGCAGGGGTTTCTTCTATTTT
0.008044591
0.00862745
5.44E−06





91A15.1
AGGGGCCATTAACTTTATTACCACAGTC









ATTAACATAAAACCCCCAGCCATATCAA









ACACCACTTTTCATCTGATCAGTC





 470
2686545
9
ABI3BP
TCTCAGCAAAAGGACCCCGGAAACATTG
0.000628393
0.011468681
7.23E−06






CAAACTATTCTAATACCTCAGTTTGAATT









GCCACTGAGCACTCTAG





 751
2687361
1

TGAAACATATTGTACGCACCAGGAACTA
0.002066608
0.007528671
2.37E−06






CTTGCTGG





2023
2688904
4
C3orf17
CCTGTGACTGGGAATTGCAGTAATAAAA
0.000438052
0.00735558
2.33E−06






AATTGTTGGTAGTAGTCATATTGCAACA









GGCCGTTTAAAATGATGCTAATCCTGGG









CTGGCTGTATCACTTGATTCTTTCTGTCA









CTCGGTTTCTAATTTTTAATGGCAATGAT









AAATGCAATTTTTGACCTTCTTATGTGCT









AGACTATTTTCTTCCATCTCAAACACCAC









TGCTTTTTTGAGCATATTTAGTTGATGTA









TGCTGGTAATACTTGGAAACTAAAGAGA









CATCTCTTTCATGTCTCTCAGTACATATT









GTGAAACTGATCTGATGGATAATTAGAA









TTTGCCCGTATCTGTAAGAAGGCCTGTTT









TGGGCCATTTCAAACAATTAAGATTATT









AGTTCTAATATGAATGTAAGAAAACATT









GGATGGAGAAAAGAAAAAAAGTTTCTGT









GTTTAGAGATTGAAAACCTTGCTTTGAT









ATCTTAACCTGGATATCTCAAATAGTATT









TCCTATTGTTTTATTTTTTATTCTACTTAT









TCTTAATCAGAGGTAACAATGTTTGATT









ACTAATCATATTATTTTAAAATGCTAAAC









CTTTGATACTCTCTTCTGTAATGAAAATA









GCTTTAATTTTTGCTGATTATAATACATG









CCTGTTTTAAGAAATTTAAAAAGAGAAA









TGTGAAGAACCTGAAATTTGCCTAAAAT









CTCACCATCTACCACACTTAAAACTTTGA









TATGCATCCTTTTGTACATTTCTCCATGT









AGTACTTTTTGAATATATATATATCTTTC









CTGGTAGACTGTCTTACA





 975
2689033
5
BOC
GCTGCAGTTGGTCTGTCAAACAGTCCCT
0.000143818
0.008308479
5.46E−06






GCCTTCTGCTGGAAGCCCCCAGCCCCAA









CCCCTGCCAGCTCTCCCCAACTTGGGAA









GCTCAGTGGCCTCGGTGCAAGGCTGGCA









CATGCAGAGAAAACAAACACATGGAGC









CTTGCCAGCTGGATCAGGCACCACTGTT









TACAGCAGGAGCAAAGTGTGGGGAATTG









GAGAGGCATGAAGAAGGGAAGGAGCAG









AGGGGGTGGGGATAATTCTAGCCTCCTG









CTCTTAGGCTCCACCAGTTGCAAAGAG





1755
2689214
6

GTAGGCTCCCTATCATTATATATAGAGTT
1.57E−05
0.007486134
3.62E−06






TCTTTTTCCACGGTAGTCAGTGACTTAAC









CTGAATTGTAAATGTTTGTAAAGGGTTA









ATTGTCCTACATCAAACTTAGTTAAATA









ATTCCATCCACTTATGGAGGAGGAGGAG









AATGTGGAAGAGGTAAAAAGCTGGGCA









CAAGTTCATATGCCTATGAGTCAGTAAA









GACTGAAGTAATGTCCTATGTTGAGCTG









GTTATTTTGATATATGATAATAATTATCT









TTGAAGTAGAACAATTCTGTTAACTGGA









AAATCACAGGATATATCCATCATATTTTT









CAGGACAGATAGTTTTTACTGTGGGGCA









AA





 106
2689313
9
KIAA1407
AAGGCAGAAGTGACTCCCGAAATTCTCT
0.015311147
0.019661807
1.60E−05






TTCTGGACTCAGAAGGAAACCAAAGCAA









TTGATGACACCGCATCCCATACTAAA





 382
2691686
9
HCLS1
TGGAGAAGGATAAATGGGACAAAGCAG
0.039015171
0.014788972
1.95E−05






CTCTGGGATATGACTACAAGGGAGAGAC









GGAGAAACACGAGTCCCA





1669
2692363
4
ADCY5
GGAGGAAGCAACACCAGCCGCTTTGGGG
0.00180613
0.0065665
2.64E−06






AGGAGCTCCTAGCCTACCAAGAGAGATG









GAAAGCATAGACTGGGACCCGAATGTCA









CCACCATCATCTCATCTTCACCACCATCT









GGCAGCTTCCATGCCTCCTAAGCCAGTG









CGTCCCAGGCACTGGGCCAGGCTCTGCC









CACCTTATCACCAGTCCTCCTGACAGCA









CTGCAAGCCAGCTACCTTTATCAACACA









CCCGGTTGATAGATGGCTCATG





1037
2693582
4
ZXDC
GAGAATTTTGCCCAGCAGTCCCTCGTGG
0.047746878
0.008220293
6.80E−06






CTCCCTCCACACCACTGACCCTTACGCAT









CCAAGGTTGGAGC





1354
2694294
1

GCGGGCCATCTGCATGACAAAGGCGCGC
0.000674778
0.00923119
7.11E−06






CCCGG





 996
2696131
9
SLCO2A1
ATTCTATCTTCCACCCGGTCTGTGGAGAC
0.003217076
0.010887966
6.31E−06






AATGGAATCGAGTACCTCTCCCCTTGCC









ATGCCGGCTGCAGCAACATCAACATGAG









CTCTGCAACCTCCAAGCA





1099
2698045
5
CLSTN2
TAGAGCTAGTCGTCCTTGTAAATTCAGA
6.11E−05
0.007604148
1.93E−06






GTTGAAAAATGTAATTCAGGCATTAAAT









GCTGGGGAGCCATAGTAGAGAAGACAG









ATAATCACCAGCTCCAAAGCACAGTGCC









TGGGCGGGCATATTGTGTGTGCTGAGCA









TCCCACCGTGCAAGGCAGTGTTTAAAGC









TGTGAACACACAGATGCAGGGACTGTGG









TCTCCCTTTTCATGGTGTTCTCACCCTTC









ATGGCATCCTTGGTCAAGGTAGGGAGGC









CAGAGAGAGCTATAAAGATATA





 372
2698593
9
TFDP2
AGCAGAGAATAAACCCTCACCAGGCACT
2.19E−05
0.010880081
5.99E−06






GAATCTGCCGGCACTTTCATTTTGGACCT









CTCAGCAACCTC





1117
2699041
2
PCOLCE2
AGCTCCTCAGGGGAAACTAAGCGTCGAG
0.008011904
0.009640861
1.01E−05






TCAGACGGCACCATAATCGCCTTTAAAA









GTGCCTCCGCCCTGCCGGCCGCGTATCC









CCCGGCTACCTGGGCCGCCCCGCGGCGG









TGCGCGCGTGAGAGGGAGCGCGCGGGC









AGCCGAGCGCCGGTGTGAGCCAGCGCTG









CTGCCAGTGTGAGCGGCGGTGTGAGCGC









GGTGGGTGCGGAGGGGCGTGTGTGCCGG









CGCGCGCGCCGTGGGGTGCAAACCCCGA









GCGTCTACGCTG





 581
2699705
9
PLSCR2
TGTCTACCCTAAGCACCAGGCTGGACAC
4.99E−05
0.013537973
1.13E−05






ACTGGGAAACAGGCTGACCACCTGGGCT









CCCAGGCCTTCTACCCAGGACGTCAGCA









TGACTACCTAGTCCCACCTGCTGGCACA









GCTGGCATTCCTGTTCAAAATC





1699
2701408
1

TGGTAGACAAGGTAGACCCCCAACAGAA
8.76E−05
0.006644833
2.64E−06






TGTGGAGCCACCTGCCTCCCTGAAGCAT









AGGTCACCAAGCCTAAAAGCAGAGAAG





1866
2701986
6

CCATATCGGGAACCAAGTAGTACTGTAA
0.000461778
0.009788617
6.40E−06






TGGGTTTGGCCAGATATCATCTTTGATGA









CCTCTCCTAACTCATCAGCACCTGCATCA









GAATGGTCAGTAAACCAGGTAAAGAAG









CTCTCTGGTTCCTCATGCTGCCTCTTCCT









GCTGGCTTTATTCTGTGTTTGACTTGAAC









GTTTCGTCAAATCCTTTCCAGATTTCCAT









TTGATTTCGGTGGACTTCGAAGATGGAT









CAC





 780
2703842
9
SLITRK3
ATCCAAATGCAATGCCACAGGCTGTTTG
0.002842819
0.00956677
5.48E−06






AGGATGGTGGAGGTGGTGGTGGCGGAA









GTGGGGGTGGTGGTCGA





1928
2704213
9
PDCD10
TGATTGAACGACCAGAGCCAGAATTCCA
0.000203565
0.008620506
6.27E−06






AGACCTAAACGAAAAGGCACGAGCACTT









AAACAAATTCTCAGTAAGATCCCAGATG









AGATCAATGACAG





 532
2705096
5
CLDN11
GGAATGCCTATTGGGAAGGTGCTCCAGC
0.000256815
0.01098403
7.29E−06






CAAAGAATTCAAGGGACCAGAGGTCAA









GAAAGAGCAGAGAATCAAAGCTGGGCC









CCTTGTGGGGAGGCCGAAGTCAGGCAAA









ACAAGTGACA





 809
2706654
6

AATGAGTAAGGTTGATAGTGTGGTAGAG
2.79E−05
0.009580406
3.21E−06






ATAGCTGGGGAGAGGTAGAGGGTGGCA









TAAAAATGGGAATGAGAATAAGAGTGA









GTATAAAAGTAAAGAGTAGAACTTCATC









AGGGTGAAAGAATTGGAGGGTCCCCTGC









CAGCAAAGATCATCTATGCACTCTAAGA









GGGAGTT





 547
2706734
3
RP11-
GTTTGTCAGACTCTCGGGACCATGCTGTT
0.000413384
0.014860356
8.42E−06





385J1.2
GAAACCACTAAACCACGCTGCCTCTG





 805
2708067
2
KLHL6
CTATTCTGGTCTCAATGGCTTCGGGAAA
0.009399078
0.008372295
5.09E−06






CACACATATACACATACACCATGCCCTT









GAACTCAAAGCAAACTACGCTCTCAGGG









AAATACAAATATCACGTTCTTATAGCTG









TAAAGTATAGCTTAGCTATTTATAGAAG









ACTATGAGGTACTGTTGTGAGTTATTTGC









TTATCCTGTTTTATTCTGAAAAATGAAAG









TGCTCAATAGAATTTTTAACGTTGGCAA









CACCATAAGGATTTCTTATGTTAAGTCCC









AACTTGGGGTTGCAAAATCATTTTTTCCC









TTAATACCTGGGTGTTGTATTAGATCTCA









TA





 373
2708335
2
ABCC5
GTAGCTACCTCCAGACCGTGGTGTCTGG
7.23E−06
0.021678507
2.02E−05






CCTCCATTTTTGTCTGTCATTCAGCTCTG









ACTTACAGCTGCAGTCACCTTTGCTATAA









GGCACCTGGGTAGAAGGGTGGATGGGCT









TCACATCAATTTTTTTCTTCCTTTAGGGT









GGGGGATTGGTTTGGCTTTCTTTTGTTGT









GGTTTTTTGTTTTATTTTTGTCAAGATTG









ATTTTTAGATGCAAGGACTTGAAAAGAC









CCAGAAGGATGCCACCAGTTTTTCCTTG









AGGCCTAGGATTTTTTATTCTGTCCCGAG









CAGAGGTAATTCCTCACAACTTAGTGCA









CCAGTAGCACCAGCCATTTTGAGCAGAG









TACCTCTTTGGGGAGCTTTTCGTTTTGTT









TTGTTTTTAATTCTCTTTCCTTAGCAGCA









AGGTCTTTTTTCCTAGAGAATCTACTCCG









TTGCAGAATCATTGCAACCTCAGGAGCC









CTCACTGATTGAGTGCTGTCAGCCTGAT









ATACTACTTTGGACTCTGGAAACAGATA









TGGGTTCTATTCTCTATTTCTACTGTGTG









TCGTTAAACAACCGTCGGAGACCAGATG









ACCTGTTA





 939
2708654
1

AGTGGTCCTCAAGAATCGCTGGTCCAGC
0.029020011
0.007307342
7.26E−06






CACTCAC





 624
2708847
3
TMEM41A
GCTCTTGGGGAGGATACTTAATCTCTCA
0.001685702
0.010692634
7.69E−06






CCTGTAGAATGGGGCAAGGATGGCATGA









CTCAGGGATGTAGTGAGGATTACACAGG









ACATGTAGTCAAGCACTTAACACAGTGC









TTAGCGGCTCCCCAGCTTCCCACTTCCAA









GGCTTCCTTTTACTTTCTCTCTTGGATCC









CATGTTTTGTCAGGATGATGTCTACCAAC









CAAAATGCATTTAGGAAGTATTGGTTCA









CTTTTCCCTTTTTCTTAAACCAAGACATC









TTCAAATGTCTGCTAGAGCTCTGGTCAA









CATGGAACCCCGGTATTAACATACTGCA









TAGATGTAATTCCAGCAAAAAGCAAAGA









AACAAGACATCTTACATAGCTTGTGTGG









TCTTACCAAGGGAAAATTCATGGTTTGT









GTTCATCTTTTGAAATAGTAAAAATAAC









TCGTGAGTTTCATTTCTACTTTCTTGGAG









CCCCAGTCATTGCAGAATCTACCACAGC









CACAGATCCCATTTCATTCTCTCCTGCCC









CCTGAGGCTTTTIATCCTTATCCTCATTTT









CAAGGTGAAGAGACTGACGGCAGGTGT









AGTTCCCAGCCTTTTCATAATTTTTCATT









CACCTCTTTAAATGGCAATTGGGACCTG









GGGCAGTGGCTCACGCCTGTAATCCTAG









CACTTTGGGAGGCTGAGGTGGGAGGATC









ACTTGAGTCCGGGAGTTTGAAACCAGCC









TGGGCAACACAGTGAGACCCCATCTCCA









CAAAAAATTTTAAAAAGTGGGTGAATGT









GGTGGTGTGTGCCTACAGTCCTAGCTGC









TTGGGAGGCTGAGGCAGGAGGATCGCTT









GAGTCCAGGAGTTCGAGGATGCAGTGAG









CTATGATCATGTCACTGTACTCCAGCCTG









GGTGACAGAGCGAGATCCTGTTTCTTAA









AAATAAATAAATAACGCAATTGGGTTTT









AGCTGGAAAAAAGCAGTGAAGGAGGAG









GGAACCTATGACTCTCAGGCTCCAAGAT









GACGTGCCTGGTAGCTGCCA





 671
2710829
1

GCACGCTGGAAGATAGATGTTGAACAGT
0.000480661
0.012195242
9.06E−06






TTGCCAGATTCATTTTGAGAAATCACGG









ATTGGGAGATTA





1884
2711363
1

AGTTCTTCCAGCCATTGCGACTGTGGCCC
6.02E−05
0.006846258
7.64E−07






ACGCATGTGGGGGAAGAGGCCATTTTTC









ACGCCCATCCCAGTTGAGTCTTTAGATG









ATCCCTTCCTG





 824
2711369
1

GAAGACAGTTATTCAAACGGACCTAAAG
0.00250353
0.008479945
8.04E−06






CATATGATGCTCTGTGCAACACTGGCCC









CGTTCACAATGAATGCACTTACA





  74
2712860
2
UBXN7
CTGTATTGATCCTGCTAGTCCAAGAATG
0.00020038
0.035827272
4.83E−05






GACATGAAGTGAACCTATCGTGGTGACT









GGGATAGGAAGGTGCTTGCTATTTTTGC









CAGCACAGCATATTAGTTCCTTTGGAGC









CCTCCATTGTCTGAGTCTGCAGTGATCTG









TAGGAAGGCAGCTGGTCAATAATCATGT









AGTACAATGGCTTGGAATTGTAACCACT









ATGGTTATTGATTGTCCTGTGTTGTTTCA









GGCATACTTAGGTATGTCCCTGGGGAAA









AAGAAAACCATTCAGCTGAGAGTTGCTA









ACCATGTTCTTTTGGTTAGAAATAATGGT









TCATTTTTTGCCCCTGGTTGGAATAGTCT









CTAAAAGGCTCTGGTGACTGAATTGAAC









ATGAGTCCGCATGCTGTTTTCTTTCAAAA









GGTATCAAAACGGAAAGCCTCTCTAAGG









GGAAGACCTTTCAACTCCATTCA





1006
2713195
2
DLG1
AACCGAATCCAAGAGCCGTTAGGCAGCA
0.005359393
0.008326261
5.45E−06






GAGTGTGTTACCACATTGAAATACACAG









TGCTGCTGTTAGACTAAATGTCGTAGGTT









GTTAACCACATAGAAACACACTAGTATG









AAGAAAACTGTTGTAAAATCTCAAGAGC









TTCAGAAACTGCCTTACAAGA





1146
2713748
6

ATCTTACGGGGAGGCTGTCTCCAGACAA
0.000151311
0.012719493
1.44E−05






CCAGCAGCCTGGGCTCCAGGACGACGCC









AAACCCACAGGC





1806
2714218
3
MYL5
ATCTTCAGCTCCTGCTAGGCGCCGGGGA
0.005051331
0.007306045
2.72E−06






AAGTACCAGGCGCTGGCCTGTAACCTCC









TTCCGGCTCTGTCCCCATCAGCGGCTCCC









CCAGAAGTGATGGCC





1527
2714265
9
PCGF3
CTGTGGGACATCAACGCCCACATCACCT
0.00055537
0.006717865
2.23E−06






GCCGCCTGTGCAGCGGGTACCTCATCGA









CGCCACCACGGTGACCGAGTGTCTGCAC









A





 810
2714497
2
FGFRL1
CCGTGAAGCCTGCAGTACGTGTGCCGTG
0.000131632
0.009136359
6.17E−06






AGGCTCATAGTTGATGAGGGACTTTCCC









TGCTCCACCGTCACTCCCCCAACTCTGCC









CGCCTCTGTCCCCGCCTCAGTCCCCGCCT









CCATCCCCGCCTCTGTCCCCTGGCCTTGG









CGGCTATTTTTGCCACCTGCCTTGGGTGC









CCAGGAGTCCCCTACTGCTGTGGGCTGG









GGTTGGGGGCACAGCAGCCCCAAGCCTG









AGAGGCTGGAGCCCATGGCTAGTGGCTC









ATCCCCACTGCATTCTCCCCCTGACACAG









AGAAGGGGCCTTGGTATTTATATTTAAG









AAATGAAGATAATATTAATAATGATGGA









AGGAAGACTGGGTTGCAGGGACTGTGGT









CTCTCCTGGGGCCCGGGACCCGCCTGGT









CTTTCAGCCAT





1686
2715217
2
C4orf48
GGACCACGCTGCTCCGTGTGAATAAATG
5.66E−05
0.009995655
4.38E−06






CCCAGTGGCA





 361
2715538
4
FAM193A
CTAGAAAAATAGTTGATGGCAGTGGCTT
0.014622507
0.010400399
1.38E−05






CCCCCCCACCCTTCCCCGCCAACTGGCTG









TTGCGCTTCTGAGGC





1143
2715773
4
GRK4
GCCCTGCATATATTATCTATGACTAACCC
1.60E−05
0.008298962
6.27E−06






CAAAACAGACAGCTT





 947
2717272
4
SORCS2
TTGTCTGGCTGGAGGTCTTCGTCCATGTT
0.013148205
0.007377617
5.17E−06






GGCTGGCGGGTGAGGTGGTCTCCAGACC









AGTGTAACTCTTTAAGAACAGC





 312
2717882
9
GPR78;
TGTCCAGAGCCTACGCTGACGTCCACCC
0.038548018
0.010132666
9.20E−06





CPZ
CATGATGATGGACAGGTCGGAGAATAGG









TGTGGAGGCAATTTCCTGAAGAGGGGGA









GCATCATCAACGGGGCGGACTGGTACAG









CTTCAC





1025
2718833
1

AGCTTAAGTGGACAGGTTCTGCCCCTGC
0.038548018
0.006597734
7.31E−06


1651
2719625
9
BST1
GACTCGATTACCAATCCTGCCCTACATC
0.000130223
0.008372717
2.39E−06






AGAAGACTGTGAAAATAATCCTGTGGAT









TCCT





1639
2719826
1

GACCCGTGTCCTTGCAGAGCTCATTTCTG
0.000909538
0.007775232
3.00E−06






GAGAAGAAAGATCTGGTTGCATAGAGTG









CCCTGTGATGAGGGCTGTAATGGAAGGG









GCAGAGAGTTCCATGGAAAACTGGAGA









GAGGAGGCAGAAACTGCTGCAATATCTG









GGCTTGAGCTTCACAG





  94
2720275
9
NCAPG
AAGATAGGACATGTCTGAGAGCTTTGGA
2.38E−05
0.025732286
2.34E−05






GAAAATCAAGATTCAGTTAGAAAAAGG









AAATAAAGAATTTGGTGACCAAGCTGAA









GCAGCACAGGATGCCACCTTGACTACAA









CTACT





1227
2720285
9
NCAPG
TGAGACTACCAAGACGAGCCAAAACCGC
1.10E−05
0.010793838
5.59E−06






AGCACTAGAAAAAAGT





 210
2720599
4
SLIT2
CCCTCCGACAGTTCCAATTGATTGAAAA
0.000279712
0.011956609
7.08E−06






AAGCCTAATTTAAAGTTCTGTTTGTTCTA









TGTCTTAAACCATCAGAATTCTCTTTTGG









GACCTGAGGAATGCTCTGGAGGAAAAA









GAATCCAAGGATAAAAAGTCATTGCAAG









CCAACAATTGTTCCTAATCCTCACAAAA









TGCTGGAGAAATTAAATTTATTCTTTATT









GCTCAAAGTGTTACCTAGGTCACTGGGC









GATGGGAAAATTGGACTGGAAGTCGAGT









AGGCGCAAGCTTTGTTTTGTGTCTAGATG









CTTAACCTTAGACACGACAAGGCATCTT









AGAGTGTTGTGGGAACTTGGTTCAGAGC









ATTAACACCAAGACTTTTATTACCCCGG









ATTTATAATAGGCTGTGCTG





 838
2720737
2
PACRGL
CGTGAACCGCGGGTACAGGTGTCCTGTC
0.000111639
0.008424719
2.21E−06






TGCGCTCTCTGCCAAGCCGGCTTGCTTCC









TGA





1040
2721165
4
RP11-
TACTCATGGGAAATTGGGTACTGCAGAG
0.011398396
0.009482342
5.16E−06





412P11.1
CAGAGGAGTGGAATGTAGTATAAAATAT









TAGTAAAGAGCAAGCACTTTGAATTCAA









ATAGGTCTGATTTGGTTACTGATGTTGCC









ACTTCTTACCTGTGTGACCTTGAGCAACT









TAACTTACCTCTTGTGTTAGTTATCTATT









GTCACATAACAAATTAACGAATTTAGTG









GCTTAAAAAAACATACATTTATTATCTC









ACAGTTTCTGTGGGTCAAAGAGTTGGGG









CATTTTTACTGGTCTTCCGCCTAGTGCCT









CAGAAAGCTGCAACTCACGTTTAAATCA









AGCCTGGGTTCTCATGAGAGGCTCAGCT









GGGAAACACTCCATTTC





 592
2724294
4
WDR19
CATTACATTATGACGAGACCCAGGTACC
4.25E−05
0.009963907
5.26E−06






TGAATCTTGGATCCAGACCTTAGCCCAG









GGAGATGACTGGATTGGTAATGACAAAT









GG





1193
2725201
4
LIMCH1
CCAAGTATGGATAAGGGCCAGTCTACCC
0.00081399
0.007780391
4.53E−06






ATTCATCACCTCCTTAGTTGCCAGTCAAT









TTCCAGTCAAGTAGCAGTGGGAATGAAT









TATCTAAAAGCTCTCTGCTAGCATACAC









GTGAAATA





2034
2725364
2
TMEM33
CTGCGCTGTGTTGCTAATGGTTAAAGAA
0.000760518
0.007417092
5.94E−06






GTCTGTATCTAGTGATAAATATACCAGTT









TTTTTAAAAAGATGCTGTTGTGCCTATAT









CATGAAGTACATTAATTTCTCATGTAAA









AAAAATAGCTCTAAAATTTGTTTCAACC









TAATTGGTAACCTGAGTTTATATCTGGCA









TGAATTCATTATGGTGATACACATATGT









GAATTCAGTACATTTTGAGACAGTATTCT









ACCATTCAGTAATTTTGGTTAATGATTTT









AACACTTCTCAGTGTATTTAATTTCAAAT









TGTTTTTTTAATTGGTTTTATGCTGCTTTG









TTAGGACAGATGTGTTTTGAATGTACCA









TTATAAGAAGAATTCTATGTATCTTAAA









CTATGATCTTCTAAAATTTTATTTCCGTA









AGTACTTCTGTGGCCTTGAGTATTTTTTA









AAAGGCTCAACTGTAAGCCTCTTAGCCA









GTTGGATAAATATTTGGGGTCACCTAGC









CATTGAAAGCAGAAAGCAGTAGTGACAC









AGCTTTCCCTTCAAAGAGCCATTGAGAA









ACATTTCTCAAACAGGAAATCCTTCTTTT









ACTAATGTGGACATATAGATTATTCGTA









TTATAGTTTGTAGAACTACCTAGTTCAGA









ATCTTGACTGCCAGTTTTCTTGGTTTCTT









AGGCTTGAATTTTCATAGACAATTGCAA









CAGTTTAGATGCCTTTTGAAAGGAATGT









AATGAAGATTCAGCATCTGACTATATGT









GTGTCTATCCTGAAATAATAATGGAGAG









TATACTGTAGATTACATGTTTACCCATCA









AATCTGACTTAAAAGGTTAAATGGAAGG









TTTTATAGGTAAGGTAATTGATTGGGAA









TGGGGTAGGGGGAGGAGTTGTGGGGGA









ATAATGTGCATTTCAGTCTCAACGCATA









GATAAATTTAGGGGAATTGGATGTATTA









TTCAACTTTGATTTGGGTTGTAAAATGTG









TTAAATCCTGTTCATTGAACTCCCATCAA









CTCTTATAAAATTCATGCTGATCTTCATT









ACCGTTGC





1848
2728354
7
HOPX
TTCTGGCCCAACAGGCTTCTTTCCAAGTT
2.26E−05
0.009545719
6.32E−06






AATGCAGCTATATTCCAAGGAAGTGTTT









TATGAAATCTGAATACTCAAACACCCCT









TCTGTATTTTCACTCAACCATCATTGTAT









TAGATGATACATAAGGAAAGTGACTTAG









GGAAGTAAGTTCAGAAGGAAATGTGTTC









CCTTCTCCCTCATATTATCTTTTCAACAG









AGGCCTGGATTGCTAAATGGATTATGAA









AGCAAATTGCTACTGGGAGGTGATGGTC









AAAAGCAAACTTA





 337
2728905
1

TTATTTAAGCCAACTATTCCAGATGTCCA
0.03372316
0.015384819
1.83E−05






CCCACGGGCACAGAGCCGCAGAATCAG









ATGGTATGACCTGTGTGCCAAAGAAAAA









C





 622
2731160
4
RP11-
CACTTCTCTTTGGTAGGAGGTTCTCTTCC
0.000158328
0.011497866
7.81E−06





692D12.1
AGCTCTGTGCCTTAAATTAACCGAACAT









GGCCATGGTTCCAGAAATTTGCCTGCCC









TGATCTGTTCACTATGATGATTATGTACA









TGATTCCCTGGTTCCAGATCTGCACTCAC









TCCATA





1018
2731449
4
MTHFD2L
ACAGGCCACGTTAGGAATGCATATTTTA
0.000391017
0.00826973
4.23E−06






TAACTTGAATAATGTGTTAGCCTCTTACC









TCTTCACTATATTGGTTACCTTTCAAACA









TACAAGGGCTGAGTTCTTTCTCCCTTTAG









ATCTTAGCGTAAATGTCACTGCTTTGGG









GAAGCTTTTCCAGCCCATGCC





 594
2732857
9
ANXA3
GATTATCCAGACTTTAGCCCATCAGTGG
0.000487927
0.008250723
5.40E−06






ATGCTG





1273
2733095
4
RP11-
ACATTTCTTCTCACAGGTCTCTGTCCCTC
0.000314052
0.00752303
3.35E−06





438E5.1
AATACAAGTAATTAACCCAAATAGATGT









CTGCAAACCTCTGCTAACTTTTTAGCAGA









CACAGGAACTTCTCAATTTTATTGTAATT









ACTACAGACTATGGTAAAAGTAACGGCA









AAGTTTACTTACTAGGGTCTGGGGGGCA









TACATGGAAAAAGCACTTAATTCAAGCT









CAGGGAAGTGAGCATGGGGAGCTGGAA









GGATTCCTGAAAGACAATACAACAAAAC









TGAGAACCTAAGAAAAAGTGGCAATTAG









CTAGGCTACATGGACCCTTA





 426
2734127
8
RP11-
CTGCCTTGATGTGCCCACCACAATACCA
0.002481187
0.014163778
1.48E−05





8L2.1
GGCGGGCAAGATGATAATCATCGAGCCA









GCTATTATGAGCAGTATAAACAAATGAC









AAATCTCTGGGTGCAGGAAA





1873
2735462
4
HERC3
CAAACCAGGGCAACCAGACCGAGAGGA
0.004105357
0.007182623
6.66E−06






GC





 674
2736504
9
BMPR1B
TCCTCATCAAAGAAGATCAATTGAATGC
0.000254163
0.013616013
1.23E−05






TGCACAGAAAGGAACGAATGTAATAAA









GACCTACACCCTACACTGCCTCCATTGA









AAAACA





 933
2736527
4
BMPR1B
AAACACAGTAGAGTCTGCAAATTTCATC
0.009101689
0.006962968
2.94E−06






AGTCAGACCAAGATAGTTACCGTCCTCG









TAGAGGGGTATGCTGGATTTCCAAA





1950
2737930
5
CENPE
AAGGTTTTCCTTGAGCTGGTCTCTCTCTA
0.000664925
0.007944468
5.90E−06






CTTTGAGAGTCTCCTCCACACTCCTAAGG









TCATCTCTTTCTTTTGTTACAGATCTCATT









TCTTCAAGGTTTTCATGTAGTATCTGAGT









CAACCTTATATTCTCCGTTTCTATGTTTT









CCAGGTTTAACTTCTGGGTCTCAAATTGC









TCCTTCAAGTGTTCTATTTCACACATTTT









CTCCTGAGTCTCATTGACAGCTGTC





 176
2737932
5
CENPE
TCTCTCTATCTGAAGGGCCTCCTGTACTC
2.22E−06
0.026656504
2.45E−05






TTTTCATTTCCTCTTTTTCCTTAATCATAA









TTTGTATTTCTTCTTGACTTTCTTGAAGTC









TGTTGGTCAACTCGAGCATCTTACTTTCT









ATACTTTGTAGTGCTGAATCCTTGGCTTT









GCGATGCTCCTTG





 867
2737940
5
CENPE
TGGTTATAGATTTCACTTCCTCATAATTT
4.53E−05
0.015521495
1.13E−05






TCATTAAGTTTCTGAGCCAACTCAAGCCT









CTCTGTTTCCATATGTTCCAATGTCAATT









CTTTGTTCTTTAATTCATTCTTTAAATTCT









CTATTTCATTAATCTTTTTCTGCATCTCA









CTCATCTCTTCTTGTACATTAAGAAGTTG









TTGCTG





1447
2740920
4
NDST3
TGTAACATTCCCTCTATCTCAAATGTCTC
0.001339198
0.008462414
8.23E−06






TTCAAATTACTCCCATCCTTCAAGGCTCT









ACCCAAATCCTACTCCACAGTACAGCCT









CACCACCCCCTGGAGCATTCCACAGACT









CCCCCACTTGCCATGGTCTCTTTCTTCTC









TCATCCTGTTATAGTCATTGTCTCTAATC









CACAACCCTCACATTATTATCATTCTTGT









CACTATCTCTGCTTTATAATTTAGAACAT









TTTAAATAAATTCAGTCTGCTGAACATTT









ATATTTTAAATAGCATGAGAGCTACCCC









ATAAATGTTTGAATGCATGACATATATA









CC





1930
2746264
1

AAGAGGAACTTCCGCCCTGTCCCTGGAC
0.000292246
0.006691996
4.00E−06






CTCACATTTTCCTGGAAAAGAAAGCTTC









TGGCACTGGTGCACACATTAGGCCAAGA









GGAGCCTGCTTTCCTTGACTTTTCTG





 280
2746800
9
ARHGAP10
TACAAACCTCCAGGGAACCTGGCTGGCT
0.000356857
0.010703669
8.03E−06






AGAAGGGACTCTGAACGGCAAGAGGGG









GCTGATTCCACAGAACTACGTC





 161
2746996
1

CACAAAGACAACAGGTGGAACTGGCAT
0.006154763
0.011745989
6.30E−06






AGCATTTACCCTTGGTCTGAGAGATGGC









CTGGGCCACTTTGAGAAAGGAGTAGAGC









TAGAAGC





 238
2747807
1

AGCCGCCGCTTCACATCGGGGTCCCCGC
0.004167745
0.012491376
6.74E−06






CCCCCCGGCCGGGGGGTGGTTGCCGAGC









TTGGTTGGGGCCCCGGTTCATACACTCC









GGGGCAAGATGCTACGGCCCCGGGCGG









GTGGCCGAGTCGGCGGCAAGGCGAGGG









ACCCGGCCGGCTCCGCTCGGCGCCGCCC









CCGCTCCCGGCTCCCGCATGTGTCGCTGC









GGCTGG





 700
2750636
4
CPE
GCATGTATATCCATCATCGAAATACAGT
0.013148205
0.013210393
1.20E−05






ACTCATAAAAGAAACCTTTATTAACTTA









TGTCTAAGTAATGGATTCTGTGTTCCCAG









ACCACTCGACCCGGAGTTAAAT





1147
2750647
4
CPE
TGAGTACAGCCCACTGATTGACATTCAA
0.00059375
0.011114732
9.38E−06






GACCCATTGGAAAAATCAGGAGACACA









AGAGTGGGAAGAGTGCAGATTGGAGCA









GCTATCCAAAAATACA





1003
2751964
4
GALNT7
TTATTCTGGCACACAACCTGGTTTACATT
0.000111337
0.006519285
3.50E−06






TTTTGAATTATTATTTCTAAACTATACAT









TGGTGAAAGGAGATGGAAACATTATACA









ACACACAACACAAAATTATGCTCTATTC









CAGCTCTGTTGTCCCCTGTCCTCTGTAAG









AACGCAAGGCCTGCAGATGTTCCCCAAA









TGGAGGTCCCTAGGACAGCAAAGGTGCC









CCTCACCACCTTCTGTCACCTTCACCCCA









CCCTTTTCCTCCCTCCTTCAGCCCCTTGA









TGTTTCTAATTCCGTCCTGTCTCCCATTC









AAAGTTTCTATCTTGCCCTTTTCCCCAAG









TTGCTATCTTCTGCCTTAGAAGCAAGTCC









CAAATTTCCTTTCATGTTTTACGTATTTT









CACCAATTCTGGTGTCCGTTGTAAATC





1259
2751997
5
HMGB2
CTAGGTCAACTGTGTCTAAGAACTACTA
0.000731459
0.014936895
1.55E−05






GGCAGAAATACCGAAAAAAATCAACAT









AGCTCTGGTCTTCAAATGGCTTTTTTAAA









GTGAAAATTAACTTAGCATATTAAGACA









AAGACAATAGAAATAATATACATAATTT









TATTACAAAATTTTTTTTAAAAAAACGA









AATGCAACATCCTAAAAAACCCAAAATT









TACTATTGATACTAATTCCTACAAGTTTG









CTGTGCTACCATACACAAGAAATTAAAA









AAACCATTAAATATTTAGGAACATTCAA









CATCAGAAGCTGTAAAATCTAACTGTAT









GAGTAGCCCATCAAAAAGCTACAACCTG









CATTTTTTAAAAGTATTTTCTCTACAGAG









AATCTTATCAGCTATACAAAAATCTGTA









CAGTTTTTATACTGAAGCTAGTATTGAGC









TGCACTTGAATTCACATTCTTAGCAAAAT









AATTGCCTGAGCACACACACACATTCCA









CACGCATCATTAAAGGATAGCCATTTAT









TCTTCATCTTCATCCTCTTCCTCCTCATCT









TCATCTTCTTCTTCCTCCTCCTCCTCCTCA









TCTTCTGGTTCGTTCTTCTTCTTTGAGCC





1860
2754413
5
MLF1IP
CCTGGGACCGATTAAGGTGTCAACATTT
0.000257482
0.008133228
5.30E−06






TAAAATTACTCAAGATATTAACCAGAAA









AGATGATTATGGCCTTTAAAACTATTGG









ACAAACTGATGCTATTTAACATTGTTCAC









AGCCATTTAATTTGAATAACAAATTTTA









GATTCTAAGTAGGCCATAACTTCTTTGCA









AAACAATTGATTTATAAAGGTACAGTTT









CAGAAGGTAACAGCATGAGACTAGTCTT









CCTATAGGCACATTTTAGTAGACTGCTCT









TCTCATCCCTGGTCAAGGAGCTTCTCTAA









CTGATGGTTGATATTTCGCAGATGGCTTT









CGGCTCCCAGAAGTGTTCTTGCTTTAAAT









AACAGAGCTGGAAGGCTGGATGAATCAT









ACTGTTGAAAGAAAATTATATAATTAGC









AATATCAAAAACTCATAACCTTGTCCTT









AGATAGCCCAATCTTATGACTAATGCAA









ATTTTGATTGAGCTTTCCATTAACTACTC









CTCCTCTCATTTTTAACTAGGACCATTAA









GACAATTGGTTTTAATCCATTTCCCTTAG









AATATAATTGATCACAAAGTTGCTAGGG









AGCTGCTC





1274
2757410
1

AGGGAACCCTCCATCCAGGTGGTCAGGG
0.000310049
0.008014173
7.49E−06


1130
2757591
4
WHSC2
GGGCCGCCCTGAACATGTTGTAGTGGAG
0.012547908
0.007213149
4.68E−06






CTTCCGTCTGTCTTCAGCTTCCGTCAACA









CTGAACCAGCTCATCTAAGCACCAGACA









CAAGATTTTACTGCTTTTGTCAGGTGGAG









TGGGAAGTCGCACCCACGTCTGGCCAGT









TGGGTCGGCTGTAACTCAGACTTTGGAC









TGACTTGTCACCCAGCTCATATAGCAAG









GAGTTCCTGATGGCAGCTGGGGGAGCTG









ACATCAGTGTCAGCTCAGACTCTTAGGC









AGTTA





  88
2758470
1

GCCAGGCACGCAAATATGGGGCCCTTGT
0.003071703
0.024935438
2.95E−05






GTGGTGTGC





 385
2759511
5
SORCS2
TGGGTTAAATGGTGCTCCACACATGCAA
0.000790656
0.006915943
5.83E−06






ATTTATGCTCACCTCGAACCTCAGAATGT









GACCTTATTTGGGAATAGAGACTTTGCA









GATATAATTAGTGAAGACAAGGTCATCC









TGGAATAGGCTAGACCCTAAATCCAATG









GCTGTGTTCTTATAAGAAGCAGGAAACT









TGGACAAACACACACAGAGAAGTCCATA









CAAAAAGGCAGCTGCAGAGATGGAGTG









GGGTGGCCAAGAAGAAGCCAAGGACTG









CCAGTAACCATCAGAGGCTGGAAGAGGC









AAGGAAGGAAACTGCCCTGGGCTTGGGG









CCTGCCCACACCTTGATGTCAGACTCTG









GTCCAGAGCAGTGTGAGAATACGTTTCT









GTTACTTTAAGCCATCCAATCTGTGGTCC









TTCATTATGGCAGCCATGGGACACAGAT









GCAGGTTGTATATTAAAGCAATACCAAC









CAAAATGAAACAAAACCAAGTAGAACA









TGCAACAGAGACAGCGTATGCCCCTAAA









GCTTAAAGTATGTACCATCTAGCCCTTTA









CAGAAAACGTTTGCCAACCCCTGTTCTT









GAGTAGAATCCAAACTCCCTATCACTAT









CCCAGCGTTCACAGCCTACTGTCTCCCCA









GCCTCATCCCAGGCCATCCCTCCTCCTTG









TAGCCACCACTCTTGCCATGCTCAGTCTC









ACTCACTGACCATCCACCTTTTTTTTGCC









TCAGGGCCTTTGTGTACGCAGCTGATCA









CAGCTCATGCACCACTTCCTCAGGGCAG









CCTCTTTCCCATCTCCCCACAGCCTGGGT









CGAGCACATTGTGACACTACTTCAGAGA









ACCCTGACCTCCCTTTTCCCAACACAATC









ATGGGGTAATTAAGTACAATTACTAGCT









AGTGATAATGAATTATAATCAATCGAGA









AGTTCAATTAACTGGGTGATCATTCACTT









ACTGCCTGCCCCCATACTAAGTTGTCAA









CTCCATGGGGTAGGGGCTAAGTCACCAG









TAACCACCACAGTGCTTTGTACAGATCA









AGTACGTCCTCTAGAAATATTTGTGGGA









CGGATGGGTAGATGGATAAATGAATACA









TGGATTAAGAGGTAGATGGATAGATGGA









TGGATAGGTAGATGGATGCATGAGTAGA









TTGATGGATAGGTAGATGGATGAATGGA









TGAGTAGACTGATGGATGGGTAGATGGA









TGGATGGAAGGATGGATGGGCAGATGA









ATGGATGTATAGATGGGTAGACAGATGG









GCAAATGGACAGATGGACAGATGGATTG









AGGGAGAGATGGGTGGATGAGTAGGTG









GATGGATGGATAGATGGATGGGTAGATG









AATGGATGGTAGATAAATGGATGGGTAG









GTGGATGGATAGATGGATGAATGGGTAG









ACGGATGGATGGGTAGATGAATGGGTAG









ATAGACGGATGGGTAGATAGATGGATAG









ATGGATGAATGGATAGATGGATTGGTAG









GTAGATGAATAGGTAGATGCATGAATGG









ATACATGGATGGATGGGTAGATGGATGG









ATAGATGGATGAATGGGTAGATGGATGG









ACAGGTAGATGGATGAATGGATAGATGG









ATTGGTAGGTGGATGAATAGGTAGATGG









ATGAATGGATACATGGATGGATGGGTAG









ATGGATGTATGGATGAACAAACATAATT









TCAGGAGCTCCCCAGGCTAGTCTGGACT









TCCAGCCGCTCCCCTCCATGTCTGTAGTT









AGTCCTAGGTTCCTACCTGGCCTGGAGT









CCCACCTAGACCTCAGATCCAATAGATA









AAAGTGATTCTCTTGTTCCCATGTCTCAG









TAGCCCTGTATGACAAATTAAAAACTGA









GTGGGTTTGAATAAAGGGCCACGAAGCC









CCCATTTGGGCCCAGATCTATACTGAGT









AGGACTCTAGACACCCAGGGATG





 504
2759598
2
AFAP1
GCCAGCCTGAAGTCACGGTCCTGGCCCA
0.021792834
0.006631939
1.53E−06






GCA





1327
2762889
5
SLIT2
TGCTGGCCCAAAGCCAGTCCAGCACTGC
0.025498894
0.007381634
3.06E−06






CTCCTCTGACTCTAAAATCAGAAGAGTC









CTGA





1676
2763219
4
KCNIP4
GCTCAGGTCTCTTATTGGGAATTTACATG
9.72E−05
0.007286607
5.33E−06






ATGTTCTGGTGTAGGCAGAGGCATTTCA









AATTGGTGTAGGAATTTTCAAATTAAAT









AGGATGTTTCTCTAATTTTTAAACTTAAT









TTTGGGAATCACTTATTTTAGGGATATTA









TTATACATCATCTAATATTTCAAGCACTT









GTGAAAGTCACATTCTGCTCAACTTTTCT









CACATCCTTTCCAAGAATTTTAAATCACT









TTTTCCATATCATCTACTTTCATAAACTC









CCTTTAATTTGAAGATGAGTCTTTTCTAC









TTTGATGCACAGTATTATTGCAGTGGTTA









TCTGTTCCCTGTCCGCTCATGGTCCAGTT









TCATCAGGATTTTCTGCTGAAGTCATGAT









ATCTGAGAGAGTTGGCACATACTCTGAA









ACGTAGGTGCACTGTGTTAATTTAAAAG









TTGTGGGGAGGAAAATCTTGGGGACAAG









TATAAAACAATGAGAGTGCAGAACCAG









GCATTGAGAAACATGGAAAAAGGAAGC









CAGAACCTGTAAAATACAATATCCAGGG









ACATGGAGTGAGGGAATTCTCCTACTGT









GGATTTATAGAATAAATCTCATCTTTTAA









AATGGAGATGTTGTAAGATAGTTTTTAA









GAAAGGGCACACATCTAAACTGGGAAG









CTGGAAGGTAATAAATACTAACACTTCT









GATGTAATTTAAGTACAGGAGTCTCCGC









TACACCCTGTAAG





 231
2763921
9
CCDC149
GACCCCACTCTTCCTAGTGGACAGAGGT
4.35E−07
0.020155155
2.18E−05






CGAGATCCCCACTGCTGAAGTTTGTCGA









GCAGCCCACTGAGAAC





 275
2767308
4
BEND4
GGTGCAGCAAATCCGTTTTCTCCTTTTAC
0.002052564
0.017199346
1.77E−05






ATTGGAGCCCTGGGGTTAGATGCAGACG









AGTAGTGTTTTCCCACGCCAGGCAGGCA









CCGACTGCAAGACAGACACTGGGTAGAA









CCCAGAAGAATGTAATGGAACCAGATCA









TTCCTGGTTTCCCCAAGTCCGAGACATG









GTTGCAGCTAGCA





 475
2769840
9
KDR
TGTAAGTACCCTTGTTATCCAAGCGGCA
0.000199853
0.007321611
4.45E−06






AATGTGTCAGCTTTGTACAAATGTGAAG









CGGTCAACAAAGTCGGGAGAGGAGAGA









GGGTGATCTCCTTCCACGTGACCA





 489
2771025
5
LPHN3
CTCTTGCAAATTTCACAAGCTTTGGCTGT
0.000172838
0.01109885
9.41E−06






GCTCCCTGAAAAATCAGCAGCAGCAATG









TCCTTCAGGCAGCAGCT





 574
2771634
4
RP11-
TTTACTAGGTTGCATAATGACTCCCAAA
0.003428273
0.009027656
3.62E−06





584P21.2
ATTTACGTCCACTTGGAATGTCAGAATG









TGACTTCATTTGCAAATAGGGACTTTGTA









GATGTAAAGTAAGCATCAAGATGAGTTT









ATGCTGTACTAGGGTCAGCCCTAAATTC









ACTTCTAAGAGACAGAAGGACACCCAGG









AATACATGGAAGGCCATGTGAAAATGGA









GGCAGAGCTTGGAGTGATGCCCGCCACA









AGTCAAGGGATGCTGGGAGCCACCAAA









AACTGGAAGAGGCAAGGAAAGTTTCTCC









CCGAGAGCCGTTAGTGGGAGTGTGGCTC









TGCTGGCAACTTGATTTCAGACTTCTAGC









CTCCAGAACTCTGAGGTAATAAGTTTCT









CTTGTTTTAAGACCCCAGGTTTGAAGTA









GTTTGTTACAGCAGCCCAAGAAACAATT









AATATGTCTGAAAGTGCTACCAGATGAT









TTGCATGTCTCTTTAGAGTGATTACCCTG









ACAACATA





1248
2772766
5
SLC4A4
TTCTTCCCTCTCCTAACTCCGTCAGACTG
5.40E−05
0.009353946
6.89E−06






GCCCCAAGACTGTGGCTTCAAGGGCCAC









CAGTCCCTTACTCTTCAAGCCCTGACTAT









GGAGTTGGCAGATGA





 573
2773378
1

AGCATCTCCCAGAGGGCTGCGTGCCTCA
0.000425014
0.008077849
2.20E−06






GAAAAGCCGGCATCCCTAGCCCGCTCTG









GCACAGGCCATGAG





 817
2775033
4
ANTXR2
GGAATAAGACACATTGTACCCACTAAGT
0.002641545
0.011265019
7.43E−06






AATTTTTCATCCTCCACTCCCCTCTCTCC









CCCATGCTTGTGAACTCTTTTCTATTGTA









TATTTTTAGCAGACTATCAGCACAAGTCT









TACAGATAGTATTGTGTATACCAATAGC









TATTTTGCCTAGACGGATTCCTCCTGGAA









GTTCATACCTTTATTTCTGCCTATTCTGT









GCCCTCTGAG





 814
2775038
9
ANTXR2
GAAAGCAGGAGGCTTGAAAACCTCCAGT
0.045938047
0.010132648
2.35E−06






ATCATAATTGCTCTGACAGATGGCAAGT









TGGACGGTCTGGTGCCATCATATGCAGA









GAAAG





 340
2775115
1

TGTCATAGCAGGATGATAGGTACCCCGC
0.000146929
0.015266238
9.71E−06






AAACAAGCACAAACAGGGAACGTGATG









AGAGTGGAAGTGGTGGCCTGCAGCCCCA









AATTGGCTTGGGAGGATCATACCATGAT









GACAGGGAAGCCTGCAGTACTCCAGCAG









ACATGAGAGTCACCCAGAGCTTATA





 948
2776793
3
MAPK10
GCTCCTTGCAGCAATATAGCAACTTAGA
0.001522517
0.00974321
4.48E−06






AATGGCGGG





1164
2776796
2
MAPK10
CTGCAGTGTGGTGAACTCCAACTTTTAG
0.003534738
0.007120783
3.70E−06


 555
2778529
4
UNC5C
TGGGGCTACAACTCATGTTCCTTGGCTCC
0.005485054
0.009116757
6.23E−06






CGGTTCCAGCTGCTTTCTACCACACAGC









ACTGCATCTTCAGCTGCCCCCATGCAGA









TTTATATTGCATGCCTCTGAGTCTTATGC









TTCCTTGGCAAACCAGGCAGTCGCAAGC









TCCAGTGCCTACTGGGACCAATGAGGTT









ACGTGAGTAAGTGGGCTGAATGTAGTAC









AACAGATTCTGCTGGAAAGTGTGGTGAT









CTGGAGAGCACATGTCCCGTCTAAAACA









AAAGACTCCAGGTTCTCACTGCAGGA





  45
2780211
9
CENPE
ACAATTCAAGGAGCATCGCAAAGCCAAG
7.94E−08
0.085631944
0.000102736






GATTCAGCACTACAAAGTATAGAAAGTA









AGATGCTCGAGTTGACCAACAGACTTCA









AGAAAGTCAAGAAGAAATACAAATTAT









GATTAAGGAAAAAGAGGAAATGAAAAG









AGTACAGGAGGCCCTTCAGATAGAGAGA









GACC





 821
2780715
3
RP11-
CAAACTTGTGGCTTGGTGATCCAGGGGT
0.004749446
0.009335921
7.74E−06





710F7.2
TGGAAAAGAGGCTGTTCACTGCCTTGGT









CAAGAGGAGCTGGGATGTGCTCGTCTTC









ACACCAGGAAGAAG





 565
2781004
2
PAPSS1
CAGTCACTCCACCTTTGACACATTACTAG
0.002537394
0.011813474
8.67E−06






TAACAAGAGGGGACCACATAGTCTCTGT









TGGCATTTCTTTGTGGTGTCTGTCTGGAC









ATGCTTCCTAAAAACAGACCATTTTCCTT









AACTTGCATCAGTTTTGGTCTGCCTTATG









AGTTCTGTTTTGAACAAGTGTAACACAC









TGATGGTTTTAATGTATCTTTTCCACTTA









TTATAGTTATATTCCTACAATACAATTTT









AAAATTGTCTTTTTATATTATATTTATGC









TTCTGTGTCATGATTTTTTCAAGCTGTTA









TATTAGTTGTAACCAGTAGTATTCACATT









A





1966
2782139
1

AGCCTGCTTAGACAAATCCTGCTACCTG
0.000402054
0.006574721
2.46E−06






TCAGCCCTCCTGTGGGTGCCAAACCGGC









TGCCAGGTTAACCTCTGGGGAAACAGGA









AGACCTGCTGATTTAACCCCTACTTCCCT









TCCTATAATCCACAGTAA





1129
2788582
1

CCCGCCCGTGCTCTGTTGCCGCCGCCCCT
0.014042909
0.007952057
7.05E−06






TCGCAGCGTCCCGCGGCTGCTACTCACA









ATCGCGCCCCCACT





1902
2790298
5
KIAA0922
TGAATGGTTATGCAAAATGTGGCATATC
2.67E−05
0.008591867
4.35E−06






CTACAATGTGTATTATTTGCAATAAAAA









GGAATGAAATACATGGATGAAACTGAA









AACATGCTAAGGGAAAGATGCCAATCAC









AAAAGACCATACATTTCATTTATATAAG









ATGTTCAAAATAGACAAATCTTTAGAGA









CAGAAAGTAAGAGACTGAGGCAATGAA









AATGTTCTAAAATTAGACAGTGATCGTG









AGGGCTGCACAA





1604
2792487
5
CPE
CTCTGAGGGTTGAGAAACATTTCCCAAC
0.00241526
0.007846726
2.23E−06






TATCCTGTACAATTCTCTACATGTGAATT









ATCATGTAATCCCTTTGAACTACATATCA









TGCACAGAATTTATGATTTCAAGTTCTAT









CCTGTGCTATTTAATTTCTAAGCTGAACA









CATATTTAACAGAAGGCAAGAAAGAAG









ATGAAATGTGGTTCACACATTTTTCATCA









TAATCCATTTATATAAGATAACTTGGAA









AAGAATCTGTAAGTCATTTTTATTAGTCT









GTCAAAGAAATGGCTGCTAATAAAACTG









CCGAATCAAATCATTACCAGTACTGTGC









ATTGACCCTTGGCATA





 840
2793953
2
HMGB2
GTGCAGCTCAATACTAGCTTCAGTATAA
1.54E−05
0.017289428
1.47E−05






AAACTGTACAGATTTTTGTATAGCTGAT









AAGATTCTCTGTAGAGAAAATACTTTTA









AAAAATGCAGGTTGTAGCTTTTTGATGG









GCTACTCATACAGTTAGATTTTACAGCTT









CTGATGTTGAATGTTCCTAAATATTTAAT









GGTTTTTTTAATTTCTTGTGTATGGTAGC









ACAGCAAACTTGTA





 730
2794726
4
ASB5
CTTGGTTATGTTGGATCTGTTTCCCTTTTT
0.024147101
0.007418717
7.68E−06






TGTGTTGTTCCAAGTGAGATTGGAAGAA









AAGATAATGTAAGAGTTGGATGGCA





 861
2795876
1

GCCCTGCTGTAATTGTGAATGGACACAT
0.029646817
0.009793545
8.29E−06






GCAACAAGCCCAGCCTTAGGAGAGTGTG









ATCATCAAGGGCTCACACCTCTCAGGAA









TGAAGAGTTGGTTCACACCACC





1119
2796405
4
IRF2
AGAGGAAGCGAGACCACAGGAACTAAT
0.003781407
0.008632721
4.33E−06






GGGGGCCCAGGTGGAGAGGCGAAGTCC









GGAAAGGCAGACAGCGGGTCGGAAGTT









TGGTT





1330
2798289
1

CTTTGCCGCCGGCTTGGGCACGTTTCCTC
0.001108971
0.00695949
1.53E−06






AGCGTCTCTGGCTCCCCGTATTCTTGTCT









TCAACACAATGGGTGGAAGTGTGGTTCA









GTGTCTAAGAAAGTCTCCAGCACAGTGT









G





1703
2798596
4
PDCD6
CAGTGGGCATTGCTGTCGGTGCTCCCTTT
0.003906364
0.006523124
7.17E−06






CCGGG





 801
2799905
1

ATGCTATTAAATCCGGTCAACGGTGTGT
0.026532368
0.007637195
7.17E−06






GTGGAGCCTGCTCCATGGCCAGCACCCT









ATTGGGTCATCACCCCGACCATGGAGGA









CAGAGGGTGCCATCCCTAGAGATGC





1047
2800042
9
ADAMTS16
CCAGGACTGGTGATAAGTCACCACGCAG
0.049865614
0.007127301
7.62E−06






ACCACACCTTAAGTAGCTTCTGCCAGTG









GCAGTCTGGATTGATGGGGAAAGATGGG









ACTCGTCATGACCACGCCATCTTACTGA









CTGGTCTGGATATATGTTCCTGGAAGAA









TGAGCCC





 909
2801585
1

GAAGCCAAGCATATTCGAACTCCGAATC
0.001054975
0.009377942
6.51E−06






CGCTCGATCGCCGGGGACCTGCCATCTG









GGTTCGGTTCCCCAAGGTCGCTGCCGAC









CTTAGACCGCG





1356
2803060
4
FBXL7
AGGTTTCATTGGACATATACTTCCATGTG
0.001602179
0.007148233
4.28E−06






GCTGGGGAGATCTCAGAATCATGACAGG









GAGGTGAAAGGCACTTCTTACATGGTGG









TGGCAAGAGAAAATGAAGAAGATGCAA









AAGCGGAAACCCCTGATAAAACCATCAG









ATCTTGTGAGACTTATTCACTATCACAAG









AACAGTATCATGGGGAAACCGACCCCAT









GATTCAAATTATTTCCCACCTGGTCCCTC









CCACAACACGTAGGAATTATGGGAGCTA









CAATTCAAGATGAGATTTGGGTGGGGAC









ACAGAGCTAAACCAGGGGAAAAGCACA









TTCTGGGGCCTATCAGA





1721
2803194
7
FAM134B
TTCAGGTATATTCCTCCAAAACCCACAC
0.000412342
0.009777832
1.19E−05






AGTTCAGAGATTTTCAAACACCAGGTTT









CCATTTGTATTAAAATGGGCAAGATAAT









GAAGGCACAGGCTC





1961
2806221
4
TTC23L
TGTTGTACAGGGCAGCATGTCCTGAAAG
0.003181899
0.007438554
4.93E−06






GGGCTGCAAGAAATGCTGATTCCAAGGG









ATGTGTGCCAGTTCTCT





1031
2807753
9
C7
GCAAATGTGTCTGCCGAGAAGCATCGGA
0.001320494
0.009484133
6.00E−06






GTGCGAGGAAGAAGGGTTTAGCATTTGT









GTGGAAGTGAACGGCAAGGAGCAGACG









ATGTCTGAGTGTGAGGCGGGCGCTCTGA









GATGCAGAGGGCAGAGCATCTCTGTCAC









CAGCATAAGGCCTTGTGCTG





2057
2810394
2
MAP3K1
TGAACAGCTATGAACGAGGCCAGTGGGG
0.00010346
0.006765207
3.83E−06






AACCCTTACCTAAGTATGTGATTGACAA









ATCATGATCTGTACCTAAGCTCAGTATG









CAAAAGCCCAAACTAGTGCAGAAACTGT









AAACTGTGCCTTTCAAAGAACTGGCCCT









AGGTGAACAGGAAAACAATGAAGTTTGC









ATGACTAAATTGCAGAAGCATAATTTTA









TTTTTTTGGAGCACTTTTTCAGCAATATT









AGCGGCTGAGGGGCTCAGGATCTATTTT









AATATTTCAATTATTCTTCCATTTCATAT









AGTGATCACAAGCAGGGGGTTCTGCAAT









TCCGTTCAAATTTTTTGTCACTGGCTATA









AAATCAGTATCTGCCTCTTTTAGGTCAGA









GTATGCTATGAGTAGCAATACATACATA









TATTTTTAAAAGTTGATACTTCTTTATGA









CCCACAGTTGACCTTTATTTTCTTAAATA









CCAGGGCAGTTGTGGCTCATTGTGCATTT









TACTGTTGGCCCATTCATTTCGTTTTTGG









AAATTATGGTTTTGTATTTTCATGTTTAT









TTACATTCATTTTTGTTTATTCAGGGAAA









GCTGATCTTTTTTTCAAACCAGAAAAAA









AAAATGAACTAGATATGAAGTAGAGTTC









ATTAAATATCTTGCTATTGTCAGAGTTTT









TAAAATATAGACTTAATTTTGTTTTTTTA









AATTGGAATACAATAAAGTACTACCTAC









ATTTGAGTCAGTCACCACTCTTATTGTGC









AGGTTAAGTACAAGTTAACTAAAAATAA









ACTGTCCTCTCTGGTGCAACTCACAACC









AAGATCAAGATTACCTTAAAATTTATTT









GAATTTTTTAGATGTTTTGGTTGTCAAAC









TGTAGGAAACTTCACAACATTTAAGTCT









TACTCTGTATGTAACAATCCATCATTCAC









CTTCACTACTGGTAGTAACATAGAGCTG









CCATTTTCCTTTTACCATGCATCATCTCT









TTACAGTAGGCCTGGCAGATCATTTTTTA









AAAAGATTATTCAACTACCAATCAGTAA









TGTTTTTAAACAGTACATTTGCTTTGAAC









TTGGAAAATGTGTTCAGAAAGAAAAATG









GAATTGAATTTCATTTATACACTAATTCC









TTGGATTTTGCACAGTTACCTAACGGTTT









TAGTCTGGAGTTAAATTCAGATGCATGG









AATCCTGAAGGAAAATGGTAGCTTTTTA









ATCTTTTTGTGTGTGTGTGAGTCTTTTAA









ATCAAGTACTGATTAACTATTAAGTACA









ACTTTGAGATTTTAGTTTTAACTCTTCAG









AAGCCAGTGTGAAATAGAATTGGTTATT









CTCAAAGACTCAGGATAAACTAAATAAG









CTATATATAGAGTACATTTAAAATGTAC









AACACAAATTGGAAATAAAATAAGTTAC









AAGATAAGTTTACAGGGATATATTGCTT









ACAATTTTTAAAAGGCAGTTTGTTTTTTA









TGTGAATATGTTTCTTAGTGAAATTTTAC









ATTCCTTTGTTTTGGAAGATTGGCGATAT









TTGAAGAGTTAAAAATAGTACAGAAATG









TGAAGTTTGGTATCTCTAAATGTGTTGTA









CTTGACTTTCTTTTTTATTTTGTTTTTTTT









TTTTTTTGACTACTTAGAATTTTCACAAT









TCTAATAAGATTGTTTCCAAGTCTCTCAT









GTGCAAGCTTTAAAGGATGCACTCTTGC









CATTTTATGTACTGGAAGATCATTGGTCA









GATGAATACTGTGTCTGACAAAAATGTA









AACTGTATAAACTGAGGAACCTCAGCTA









ATCAGTATTACTTTGTAGATCACCATGCC









CACCACATTTCAAACTCAAACTATCTGT









AGATTTCAAAATCCATTGTGTTTGAGTTT









GTTTGCAGTTCCCTCAGCTTGCTGGTAAT









TGTGGTGTTTTGTTTTTTGTTTTGTTTTCA









ATGCAAATGTGATGTAATATTCTTATTTT









CTTTGGATCAAAGCTGGACTGGAAATTG









TATCGTGTAATTATTTTTGTGTTCTTAAT









GTTATTTGGTACTCAAGTTGTAAATAAC









GTCTACTACTGTTTATTCCAGTTTCTACT









ACCTCAGGTGTCCTATAGATTTTTCTTCT









ACCAAAGTTCACTTTCACAATGAAATTA









TATTTGCTGTGTGACTATGATTCCTAAGA









TTTCCAGGGCTTAAGGGCTAACTTCTA





 199
2810960
5
PDE4D
GAGAAGGGTAAAAGTCTTCATGCTCTCC
0.000625307
0.017332263
1.85E−05






CACTCTCCAATGATGCTCATGAAA





 520
2811016
5
PDE4D
TGCCCAAATTGAAACTTGAGCCCTGGCT
0.000249584
0.013631798
1.22E−05






TTCAGACTCTGGAGCCGGAGTTCTTCCTC









TCACCCTTCAGCTAGCTGCATTAAGTCA









ATCAATCAATAAATAACTTTTTATTGCCT









GTTCTTTCTCTTCCTCCTCCTTATTCTAAT









CAAGATATTTTAAGTTTTGAATTAAAAA









TTTATCTCATTCTTATGGCAAAGTAGGTT









TCAAGCCATTTCACGGAAATTTATACAA









GTGCCTTTGTGCTACAATGGCTGAACCA









GAGCACCCAGCTCTCAGGCAGTCCCCAC









TGTGGAGACAGAGCCTGCTGTCCCACTG









GACAGAGCCTCAACCCTGGCTGACTCAC









AGCCCTGTGTATGTCACTTGGCAGCTTCT









TCCAGTAGCATGTCCTTCCA





 127
2811062
5
PDE4D
TAACAGCATTGTTCCCATCCAGGTAGCA
1.71E−05
0.024255342
2.78E−05






AGGTCAGCCCTTTCCATTGCCTCACAGG









CCCTTGGAGCCCTCACAAGTGAGGATCT









CATCTGTTACCCCCACCTCTCAACTCAAT









CTCTGGTTCGCTACTAG





1137
2811064
5
PDE4D
AAATGACAGATACTGGCGAGGCTGAAA
0.009608615
0.007519077
2.39E−06






AGGGAATGCTTATACACCATTGGTGGGA









ATGTAAATTAGTCCAGTTATTTTGGAAA









GCAGTCTGGAGATTTCTCAAAGAACTTA









AAACAGAATTACCATTTGACCCAGCAAT









CCCATTACCAGGTATATACTTCCACAAA









AATA





1158
2811075
3
CTD-
TGAAGTTCTTGAGAGCATCCCAGCTCTCT
0.001065067
0.007478452
5.17E−06





2254N19.1
CTCTGTCTAAGATGTCACATCCCTCATTA









CATCTCAATGTCCCTCTCAGCCTGCGCTC









CCAGGCTCCAGATACAGCTGCGAAGCCT









CTATTACAAACATATTCCTTTGCCGATGC









TGACC





1896
2811116
8
PDE4D
TGGATGTGTTCCGAGGCAACTCAGCATG
0.005601625
0.006976064
4.08E−06






TGCAGTTGGAAATGTGCCGCTTTTATTTG









GCAG





1743
2811117
8
PDE4D
AGTCAAATCTCCTCCAAACCAGACCCTT
0.00811033
0.007133926
2.86E−06


1644
2811124
8
PDE4D
GTTGCACTACGCGAATGGCCTTTGCTGA
0.001463501
0.006801354
4.84E−06






CGTCTTCTGAAACAGGATTAGATATAGC









CATGCAGCT





 875
2811133
8
PDE4D
ATCTATGATGCTATCAATCCTCTACTCAG
0.004194748
0.011585515
1.06E−05






AAAAAAAAAAAAAAAATCACCGAAATG









GTGTCTACA





1374
2811137
8
PDE4D
CTACAGGTGTTAGTTTCTCTCCAGAAAA
0.008310486
0.00749324
3.24E−06






GAAAAAGCAAAATACTTGGATATTGAAG









TGCTAATTTTAAATGTCTGTAAAAATTTG









TGAGGGAACAAAGTTATTTTCTATTATG









AATTTACTAAACACTAGATGACATTTTA









AGCCATCATATGTTATCAATAAAAATTA









GCACAAGAGAAATTCCAGCACAGGGCA









CAGGATATAGTAGGCAATAATATACCTT









AGAGAGAGAGAAGAAGGAAAATGAGAG









ACAGAGGAAGGCTCTATTTTAAAATGAC









ATAAATCATTTTCCTGATCTTGAAGACTA









ATGGAGATAGGGAGAAAGGATAAAATA









AGCCCATGTAAAATTGCCTAGACTCTGA









ACAAGCAACAAG





 587
2814538
6

CTACAATTTTGTGAGTAATGGGGACCAC
0.003217076
0.009592647
6.55E−06






GGGCATGGGACAGTTTCACCCAGAGGAG









CTGTGATCTCCCAAGAGACATCAGCAGT









TGTGGTCTTGCC





 679
2814695
9
CARTPT
AGAGCTCCCGCGTGAGGCTGCTGCCCCT
0.001127536
0.009790303
8.15E−06






CCTGGGCGCCGCCCTGCTGCTGATGCTA









CCTCTGTTGGGTACCCGTGCCCAGGAGG









ACGCCGAGCTCCAGCCCCGAGCCCTGGA









CATCTACTCTGCCGTGGATGATGCCTCCC





1334
2818565
9
VCAN
GGTCCACAGACGGTAGTTTCCAAGACCG
4.84E−05
0.014054659
1.35E−05






TTTCAGGGAATTCGAGGATTCCACCTTA









AAACCTAACAGAAAAAAACCCACTGAA









AATATTATCATAGACCTGGACAAAGAGG









ACAAGGATTTAATATTGACAATTACAGA









GAGTACCATCCTTGAAATTCTACCTGAG









CTGACATCGGATAAAAATACTATCATAG









ATATTGATCATACTAAACCTGTGTATGA









AGACATTCTTGGAATGCAAACAGATATA









GATACAGAGGTACCATCAGAACCACATG









ACAGTAATGATGAAAGTAATGATGACAG









CACTCAAGTTCAAGAGATCTATGAGGCA









GCTGTCAACCTTTCTTTAACTGAGGAAA









CATTTGAGGGCTCTGCTGATGTTCTGGCT









AGCTACACTCAGGCAACACATGATGAAT









CAATGACTTATGAAGATAGAAGCCAACT









AGATCACATGGGCTTTCACTTCACAACT









GGGATCCCTGCTCCTAGCACAGAAACAG









AATTAGACGTTTTACTTCCCACGGCAAC









ATCCCTGCCAATTCCTCGTAAGTCTGCCA









CAGTTATTCCAGAGATTGAAGGAATAAA









AGCTGAAGCAAAAGCCCTGGATGACATG









TTTGAATCAAGCACTTTGTCTGATGGTCA









AGCTATTGCAGACCAAAGTGAAATAATA









CCAACATTGGGCCAATTTGAAAGGACTC









AGGAGGAGTATGAAGACAAAAAACATG









CTGGTCCTTCTTTTCAGCCAGAATTCTCT









TCAGGAGCTGAGGAGGCATTAGTAGACC









ATACTCCCTATCTAAGTATTGCTACTACC









CACCTTATGGATCAGAGTGTAACAGAGG









TGCCTGATGTGATGGAAGGATCCAATCC









CCCATATTACACTGATACAACATTAGCA









GTTTCAACATTTGCGAAGTTGTCTTCTCA









GACACCATCATCTCCCCTCACTATCTACT









CAGGCAGTGAAGCCTCTGGACACACAGA









GATCCCCCAGCCCAGTGCTCTGCCAGGA









ATAGACGTCGGCTCATCTGTAATGTCCC









CACAGGATTCTTTTAAGGAAATTCATGT









AAATATTGAAGCGACTTTCAAACCATCA









AGTGAGGAATACCTTCACATAACTGAGC









CTCCCTCTTTATCTCCTGACACAAAATTA









GAACCTTCAGAAGATGATGGTAAACCTG









AGTTATTAGAAGAAATGGAAGCTTCTCC









CACAGAACTTATTGCTGTGGAAGGAACT









GAGATTCTCCAAGATTTCCAAAACAAAA









CCGATGGTCAAGTTTCTGGAGAAGCAAT









CAAGATGTTTCCCACCATTAAAACACCT









GAGGCTGGAACTGTTATTACAACTGCCG









ATGAAATTGAATTAGAAGGTGCTACACA









GTGGCCACACTCTACTTCTGCTTCTGCCA









CCTATGGGGTCGAGGCAGGTGTGGTGCC









TTGGCTAAGTCCACAGACTTCTGAGAGG









CCCACGCTTTCTTCTTCTCCAGAAATAAA









CCCTGAAACTCAAGCAGCTTTAATCAGA









GGGCAGGATTCCACGATAGCAGCATC





 951
2818582
2
VCAN
CCTATCACCTCGAGAAGTAATTATCAGT
2.99E−05
0.013285949
1.06E−05






TGGTTTGGATTTTTGGACCACCGTTCAGT









CATTTTGGGTTGCCGTGCTCCCAAAACAT









TTTAAATGAAAGTATTGGCATTCAAAAA









GACAGCAGACAAAATGAAAGAAAATGA









GAGCAGAAAGTAAGCATTTCCAGCCTAT









CTAATTTCTTTAGTTTTCTATTTGCCTCCA









GTGCAGTCCATTTCCTAATGTATACCAGC









CTACTGTACTATTTAAAATGCTCAATTTC









AGCACCGATGGCCATGTAAATA





1039
2819807
3
GPR98
TTCCCTTGCCATTCTAAGTTTCTCACAGT
0.000212853
0.010053274
4.60E−06






ATTAGTGAGATTTTAGCAAATGGTGCCC









TGCCTCCTTTTTCCCCTTCCCACACTTCTT









TCTGTGTTGACAG





 711
2820736
5
MCTP1
TTGAGCCAATAGCTGATGACTACTCTGTT
0.000175608
0.010900573
6.10E−06






ATTGATCTCTCAGTGTTACCACTTGCTGA









GTGTTGGACCTCTGTCATCACGGCAAAG









TACAAGATGCACCAGAGTCATCA





 215
2820823
3
FAM81B
CAGGCCAACGCAGCCATCTGATTCAGGT
0.027553244
0.01114295
1.20E−05






TGGGTTGCCCAGGGAACAGACTCTGAGA









TGGAGATTGGCGAATAGAAGGCTTATTA









CAGAGCACACTGGGATC





1601
2820990
4
RHOBTB3
CTCCCTCCTTCAGTCATAGTAGTTCCACT
0.013562644
0.007317207
7.76E−06






TTATCTGTTTCATATCTTGAGTTCTACCT









AAAATTTTACTTCGTAAAAAAGACTCTG









CTGGTAAAAGATATAAAAATCATATGGT









CAAGATGGTGATTCCACCTCGGTGTAAT









CCCAGCCAACTTGGGAGGCTGAGGCTGA









AGGATCACTTGAACCCAGGAGTTTGAGT









CCAGCCTGAGCAACATAACGAGACTTCT









GTCTCTAAAAGAAAAAAGAGTAAAAATC









TCTTGTTTTTATTCAGCTACTTGTGCAGT









TAAAGAAAACCCAGGAACACACAATCC









GTTTTTGGGAGATGTATTCAGCC





 831
2821794
2
RGMB
GATGTTTGTCCTGGGACACCCACCAGAT
0.000373569
0.013055543
9.09E−06






TGTACATACTGTGTTTGGCTGTTTTCACA









TATGTTGGATGTAGTGTTCTTTGATTGTA









TCAATTTTGTTTTGCAGTTCTGTGAAATG









TTTTATAATGTCCCTGCCCAGGGACCTGT









TAGAAAGCACTTTA





1496
2822927
1

ATGTACTTTGACAAGGAGTGTGTTGGAA
0.000189098
0.008702002
3.67E−06






ACGACTGCCAGCCTGTGCCTGCTGCCAA









CTCCACTCAGCTACAAATAGAA





 164
2823841
9
WDR36
CTCGTGAAAGTGACTGGGATGGTATCAT
2.38E−06
0.01812122
1.20E−05






TGCTT





 827
2824081
1

AGACCTTCCATCCTGATCTGACTGCACTA
0.000280435
0.009511252
5.20E−06






AGCAATTGCTGACCTGCATCATTCTGGT









GTGGAGCCCCCAGGAGACAAGCAAAGA









ATCCTTGGCCACAACTA





1781
2824971
1

TGCTTCTACCCATGCCCGAAGTGTAACTC
0.046795588
0.006732733
6.92E−06






CAACAAGTGTGGGCCCGAGTGCCGCTGC









AACCGACGGTGGGTTTACGATGCCATCG









TCACTGAGTCAGGAGAGGTCATCAGCAC









GCTGCCGTTTAATGTTCCTGACTA





1124
2827090
4
GRAMD3
TGTAGCTGTATTAGACCTCACTTTTTAAC
0.008480701
0.006592995
5.52E−06






ATCTGGGACATGCTATGGGGTGGAGGTG









GGAGGATGACATGAAATGTAATTAAACT









AAATGGTCAAACTTCAAAGAGGTCAAAT









GCTTACAGTAGCCTGCA





 550
2827181
9
C5orf48
CCATGGGGAAGATCGTAAAGTTGTCTTC
0.000701725
0.010009205
4.36E−06






CAAAAAGGCCCACCAGAAATAAAAATT









GCAGATATGCCTTTGCATTCGCCTCTCTC









CAGATACCAAAGCACTGTGATTTCCCAT









GGCTTCAGGAGGCGACTAGTCTA





 309
2827382
2
MEGF10
TGAACTTGCAGAACTCCCTCGGAGACGC
0.00195225
0.012497339
9.89E−06






AGGTTGCAGTGGACATTGGGATTGTTGC









TTGAAAAATTAAAATTTGAATATTTTCTC









TCTCATTTGCATCATACAGCTCTACCTAG









GATTGTACAGTTTACCATAAAATTTACTT









CATGAAAGTGGGAATCACTGAACATGTA









GAAGACAAGGAACATATTGTTAACTCCT









GATTCTTAACTTTATTCAACTGGACTCAG









AATTGTAGGGATAATATGAATGCAGGAG









GAAACATTCTGTCAGGCGGTATGACTGG









ACAGACTTTGAATATACTCTAAAAGTGG









ACAGAAAATTTACGAAAATCTTAGATTT









TGTTTAGAATGAGAAAATATACAATTAG









AATTATTTTAGAAATAGTAGGAAGTATT









GCAGAAGTCAATACACAAATGTGCCAGG









CAGAGGTGGTTTTCTCTGTTTGACTCTCA









ACCAACTTCAGATCTATGACATTATTCTG









ATCACTGGCTCCATCATACATATTCACCA









CTTGAGATTCATAACATATCAATAGTTAT









TTCATAAATATAGAAATGAAATAATTTT









ATTTTTGACAGACTGGATGGAATGAGTG









TGTAATGATTGATAAAGGTTGTAAATTTT









AAATGCAAGATGACGCTTACGTTCTGTA









AACCATTAGTAATACATGCTGTAATATA









GAATTAGTGGAACATTTTGATTAATCTTT









CCCTAGAAGTGACTGAAATATTTTTGTG









CATATTTGAGAAAGGGAACTTTCCTTTTA









TTAATTGTCAATTTAGAGAAACTATGCTT









AAGCTGGTCTTTTGCATTGCTAATGTGAC









ATGTACCCAACTTTTCATTAATTTGTATT









TCCATTTTTAAATTGCATATTCTATGTTT









TGTAGTGTTTGGATTGTTAATGAAAAAA









TATTATATGTTCGTTATTCCTTGTATTATT









GCCACTTATCTTTTGCTTGATAAAAATGC









GTTGTTCTTTTTTCTTTTGGAGGGACAAG









ATGAAAATATATAATTTGAATTGATTAA









AATTGGTCGTTACTAAAATAGTATAGTA









ACCACAAGTGATTGGCTTATAAATGAAG









TAGAAATGCTTTTTAATATTCCAAAATA









GAGTTCCTTTTGATCTGTTGGTGCTGAGC









CTTGGTTAAACCAGGGAGAAGGGGAGC









AGAAAGGAAACGTTGTTACTGATGAGTA









CCACAGACTCATCTTAAAAAAAACTCTC









ATTATGGTGATCATAGAATTGACCATCC









AAACTGGGACACTCTTGAGAGTAAATGG









AGGGCATTATTAATAATTATCTTGTAATG









AACTTAAATCTGGACTGTTCCAGGCAAA









CCAGACTTATCTTGCAATATGAGAATGC









TGACACAATGCAGGAAAGCCAGTTTCCC









TTTTGTTGATCTACTTGACCAAGCAAAG









GGGCTGAAAAACTGAATAAGGAAACAA









CTTTATAAGAGAAACAGTGGTCTTCAAT









CTTTTAAAGACATGAAATCCTATATGGC









ATTCTGTCTCAGTGAGTCAGTTAACAAA









TACGTATGTGCAACCCTTCTGCTAGTAGT









GCACATAAGTGATTATCCCTGCCAGGTA









TCGAGTTGGAATATCCAGTTATTTCATGT









CACACATCGGCACGTATGATGGTGGTTT









GGTCAGATGGATAATACAGCAGACACAC









TTAGAACACTCACTGCACTGGTGGCTGT









TCATTTTGAGGAACTCCAAAGTCAATTC









AAGGAAATAAGGAATGACCTGGAACAG









GCCTTAGAAACAATTGATTTATTCCAAT









AGTTAACCACTGGCTGGCTCCCAACTCT









AGGTGATAGGCATCTAATTGAGACATGT









GTGAGTCAATAGCCATCGGGGTCCTT





1752
2827801
9
ADAMTS19
GATTATGGTGCAAGGTAGAAGGTGAGAA
3.34E−05
0.008103524
2.94E−06






AGAATGCAGAACCAAGCTAGACCC





1361
2828481
2
SLC22A4
GGCTTCGCGCCCCAATTTCTAACAGCCT
0.015786268
0.007598853
6.85E−06






GCCTGTCCCCCGGGAACGTTCTAACATC









CTTGGGGAGCGCCCCAGCTACAAGACAC









TGTCCTGAGAACGCTGTCATCACCCGTA





 570
2828804
2
LEAP2
AAGGACAGCAGTCACCTCCGACAATGCT
0.021355142
0.006802107
3.41E−06






CCGTTCTATGGAATATTGA





1010
2829040
1

AGCTAATCTAGCCTGGGCTCGGTTGTAC
4.84E−06
0.011084794
9.79E−06






CAGACTCAACTCCAGACTTCTTGTCAGA









TTCACATTTGCCCGCGGTCTTCATTCA





1841
2829806
4
CTC-
GCGCATGGTCATCTTAGCTTTCGAAAGA
2.01E−05
0.007691385
6.15E−06





321K16.1
GGACTGCACTGTTTAACATTGAAGAATT









ACATGGGGAATCACAAATATATTGCTTT









AGTACTGCATGTTCTGTTGTGGTGAGGG









AAAGAAACATGCTTTGAAGGTTTTCCCT









TGTCAACAGAATGTGTGTCTGTAGCTGT









GTATTGCGCATGTA





1053
2829898
5
IL9
TTGTTGATGAGGAAGTTGATGTCCAGGA
0.000185636
0.007264838
4.67E−06






TCCCCGCCAAGGTTGGACACCCCTGGCC









TGCCACGGAGCACAGGAGCA





1184
2830875
9
EGR1
GGGCGAGCAGCCCTACGAGCACCTGACC
0.012281121
0.006583967
3.65E−06






GCAG





 128
2832532
7
TAF7;
CGCCTCGGGTACTTACAATCCAGTGACG
0.001173835
0.021583374
2.37E−05





AC005618.1
ATTATAAGTTCAGTTTCACCGGGCCGGA









GCGAAGGGAAGAGGAGGCCGCAAGGAG









CCAAGCGGGAGAGAGCCGAGCGTCTCCT









TGTCGTTTCCTTAATTCTTCCTGCCGCTT









GGCAGAGTGATCCACTACCGATTACTGA









TGAAAGGGCCCGGGATGGGCAGCGCGA









AATCTTGCCGAGAGGCGCAGCTCGCATC









ACCAGACCCCGCACCTCGCCGGCCCTCC









GTCCGGGTCGCCTACCCAGCAAAAACGG









AAGTG





 466
2834899
4
ABLIM3
TCCGGTTGGCTAGGCCTGAATTCCCAGC
4.52E−06
0.012756132
5.66E−06






AGTTTCCAAGTGCCTTGGACGTTGGCTCC









ATTTCCGGACCCTCCTCAGACATTCATTG









AGCAACAAGCTGATGCTAGGCTTGTCCC









ACATTCTC





 680
2835934
7
SPARC
CCTGTGAGATCCGACCATCCCATTAACTT
1.72E−06
0.018740722
2.49E−05






TGAAGTTTCTCTTGATTAATAGAAGAAA









AAAGGGGAGGGTGAAGAAAAGGAGGAA









CATGCTAAAAACCTTATGACAATCATCC









AAATGTGAGGAAAGAACAACCGATTCAC









CAACTCCACTTTTTCTATTTTACAACTTT









CTACATCTCACTCTTGATTTTGGCCTTCC









TGGCTGAAACAGCCTGGCAGTCCCTAGA









GCCCCTGAGAAGAGCCCTGGTTCTCCAA









AAGACAGAGGAGGAGAAGCCCTGCAGG









ATGCGCTGACCACTTCCCAGAGAACTGA









CAGTCCGTGCTCCCAAAAGTTTGAACCA









ACAGCCTAATGTGAAAAGAAACTGCACT









GAAAGGTAAAGGAGGAAATGGTGATGA









ACTGGGCTTATGTGAGAATGTCTATATTT









TCATAACACAGCCCCAGAATCTTTCTCTC









AGTTACAGCCTCAGGCA





1483
2836555
4
GALNT10
AAATGACCTTTTCTAGAGCCACCTACAC
0.001171064
0.007953627
3.86E−06






CAAACAAAGGAATTGGAGGGTTGATATG









GTTCTGCCCTTGG





2012
2836811
9
LARP1
CAAGTTGTTTGGTGCTCCTGAGCCCTCCA
5.49E−05
0.008860871
6.50E−06






CCATCGCCCGCTCTCTACCAACCACTGTC









CCAGAGTCACCAAACTACCGCAACACCA









GGACCCCTCGCACTCCCCGGACACCACA









GCTCAAAGACTCAAGCCAGACATCACGG









TTTTACCCAGTGGTGAAAGAAGGACGGA









CACTGGATGCCAAG





 904
2840276
4
KCNIP1
ACAAAGTTTTGGACACTAGGCAGGCTGG
0.003724362
0.007065134
1.81E−06






AATTGAGGTGTTGCAGCTGTTTACTGGA









ATTGTCTGGGAAAGCAGAAGCCTTCACA









CTGGGGACTTTGAGACCTGTGAGATATC









ATCATCCCTCTACCAAG





1911
2840930
7
FBXW11
TCCAGAGTATGGCTGGGAATTACTATTA
0.000269075
0.007625411
4.11E−06






TAATCCCAGAAAGTCAGAACTCCTTGGG









TGCCAAAGTCCCCTGCTATAATTTAGTA









GGCACAATTCAAAGGTTGTCTGCATATT









CAAAGGCCATCATCTCCCAAGGAACGAG









GGGAACTTCTATATTAAACATGCAAAAA









CAACAAAAAATCCATTCATTCATTCAGA









ATTGCCTCCTCCCCTGCCCCCTCCCTTCC









CCCTGGGCTTTCCTAACCAGTTTGATATT









GAAGCT





 455
2842772
4
UNC5A
GTGGTGGCCCAATTGTCACAGCCTCCTC
0.001157296
0.011866543
6.61E−06






AGCCCTGGGAGCTCACCACACTGTGCCA









CAATGCCCCAGCTTGAAGTGACATGGGA









CACTAAGTGTATCTGTTGCAAATATTAG









AACCCAACTCACACTGGCTTAAGGAAAA









AAAAGGAAAACGAAGAAGAAGGAGACC









ATAATGGCACATGGAACTGAACTCAGGG









GTGGCTGTGGCTTCAGGCATGGTTGTAT









CCAGGGAGAACAGTATGGCCAAGATCCT









TCCCTCA





1798
2844247
2
CANX
ATGTCTGCAGGTTTCTCCTTGAAGCAAAT
9.77E−05
0.009485266
1.11E−05






GTGTGGGATCATTGCATTTCCAGAAATC









TGCCTCCTTCACCCTCCGTTGACAGTATA









TGTCATGCCTCACTTTC





1222
2844255
4
CANX
TACCCGATGGATTTGTGAGGATTAAATT
0.000636171
0.00806974
3.62E−06






AAGATATGTATACAATAAGACAGGGAA









GTCCGACATTTAGTAACTGCTCGATGAT









CATTGCGGTACGTTA





1615
2844539
2
SQSTM1
GCCCAGCACATAGCTTGCCTAATGGCTT
0.002162534
0.008729973
9.01E−06






TCACTTTCTCTTTTGTTTTAAATGACTCA









TAGGTCCCTGACATTTAGTTGATTATTTT









CTGCTACAGACCTGGTACACTCTGATTTT









AGATAAAGTAAGCCTAGGTGTTGTCAGC









AGGCAGGCTGGGGAGGCCAGTGTTGTGG









GCTTCCTGCTGGGACTGAGAAGGCTCAC









GAAGGGCATCCGCAATGTTGGTTTCACT









GAGAGC





 211
2844540
2
SQSTM1
ACATAGTCGTGTGGGTCGAGGATTCTGT
0.036159066
0.011382357
7.36E−06






GCCTCCAGGACCAGGGGCCCACCCTCTG









CCCAGGGAGTCCTTGCGTCCCATGAGGT









CTTCCCGCAAGGCCTCTCAGACCCAGAT









GTGACGGGGTGTGTGGCCCGAGGAAGCT









GGACAGCGGCAGTGGGCCTGCTGAGGCC









TTCTCTTGAGGCCTGTGCTCTGGGGGTCC









CTTGCTTAGCCTGTGCTGGACCAGCTGG









CCTGGGGTCCCTCTGAAGAGACCTTGG





1645
2844718
4
CNOT6
TCCAGCCTACTGTTGATGGCAGCTAGGT
6.32E−05
0.006891649
2.87E−06






TGATTCCATGTTTTTGCTATTGTGAATAG









TGCTGCAGTGAATATACCAGTGCATGTA









CCTTTTTTGTAGAAAGATTTATTTTTCTTT









GGGTATAGAACCAGTAATGGAATTGCTG









GGCCAAACGGGTAGTTCTGGTTTTTTATT









TATTTATTTTTATCTGTCTGTCTATGTATC









TATCTGTCTATTGAGACAGAGTTTCACTC









TTATCACCGAGGCTGGAGTGCAGTGGTG









TGATCTCAGCTCACTGCAAACTCCATGTC









CTAGGCTCAGACGATCCTCCCAAGTAGC









TGGGACCACAGGTACATGCCACCATGCT









GGCTAATTTTTGTATTTTTTTTTTGTAGA









GATGGGGTTTTGCCTTGTTGCCCAGGCTG









GTCTTGAATTCTTGGCTCAGGTGATCCGC









CCTCGTAGGCCCCCCAAAATGCTGGGAT









TGTAAGTGTGAGCCACTGGGCCTGGCTT









AGTTCTATTTTTA





1525
2845394
4
SLC9A3
TGTCCCACGGGTTCTGGCCTTTCCACCAG
0.000104877
0.007173792
4.58E−06






TGCTTCCGTCCCACACGAACACCTTAGA









GCTCCGTGGCAGCGTACGGCCACGTTTC









CTTTCCCACACAGCATCTGGCTTTGCCTG









GAGGGAACGATGGTCTCTGTCGCTGCTC









TTG





 635
2845607
4
BRD9
TTTGACACTTTGCTGCACTTGGAGCTGTG
0.001877871
0.010609655
7.35E−06






GGCCATTGTGCACGTGCCTGGTGGACAG









TCCTGACCCTCGCTGTCTGATAAAAAAG









CACTGGCCACATGGCCGCTGGGAAATTT









GAATGTGGCCAGTCTGAATTTAGATGTG









ATGTGTGAGCTACAAACTAGATCTTAAA









AAACTAATGCAAAAAACGTAAAAATATG









AGTAACGATTTCTTATGGCCCACATG





1484
2845672
5
NKD2
GATCTTCTACAAGAAACTGCTCCCACTG
0.001354972
0.007318934
3.90E−06






ACCAAGAACTGGGCATCCCACTG





1221
2845675
5
NKD2
GGGTAGGCTCTGTTATCCAAAAACAGCT
0.009101689
0.009826739
8.25E−06






GCTGTAGCTCTTGTCACGTCCCCCTTAGC









GGATGTGAGAGGCCTCGTCCTGGAAGTA









CATCCACGCAGGACCACGGCCTTAAGGG









CAGGTGGGAGCCCTGGAGGGTCCTGCCA









GCTACCGACGTGAGTGCCTCACGGAGAA









CCTCACTGGAGACAGCAAGGAGGGACCC









CCGTTTCCATCGGCCTCTGGCAAGGCTCT









CAGTCTAAATCCG





1536
2846862
1

TCTCCATGAAGCCAAACGTGGGTCCTGG
4.46E−05
0.007535106
1.50E−06


1185
2847247
1

CCATGCCAGTCTGAGCACTCCATTTAATT
0.033429032
0.007973611
7.35E−06






A





1897
2847334
6

CAGCCTGTGGCCTGTAAAGCATATATTT
0.001587412
0.006770776
3.66E−06






CTAATGACTGCAGACTGGTGGGATCATA









GGAGCCTTCTGAATGACCAGGACTGCTT









TCTTTGGAGCTGATGAAAATGTACTCTTT









TAGCGTGTTAGAAATCACTTGTTTTATTT









TGTTTCTTTGGCCAAGCTGGGTCTAGTGT









TTCTTTTGCTGGGAATAGACTTTCAAAAG









TTGTACTTCTATCAAGAAACAAAACTGC









CCTTGCAGAAATTTCAGGTCTTTTGTTAA









GCCTGTATTGGTCTTAAGGTGCAGTATTT









TTTAAATTATTATTTATAGAAAGAATCTA









TAAATTCTTGGGGAAGTGTGTTATAAGC









TTTAATAATTACATTGAGCTGCACCTCAG









TGGTGTGTCATTAACATGCAGTGGGGTT









AATATCTGAGGCCTC





 818
2848815
9
CTNND2
TCAGCCTCAGAGAAGACGAGTTCCCTGA
0.000155817
0.007745231
4.67E−06






GCCCCGGCTTAAACACCTCCAACGGGGA









TGGCTCTGAAACAGAAACCACCTCTGCC









ATCCTCGCCTCAGTCAAAGAA





1032
2849087
9
DNAH5
CCTGAGATAAGTGCCCGTACCTCCATCA
8.61E−05
0.00794934
5.03E−06






TTGACTTCACTGTCACCATGAAAGGTCT









AGAAGATCAGTTACTGGGGAGGGTCATT









CTCACAGA





1333
2849099
9
DNAH5
TTCCTATGATATTGACTGCAGTTTGGAAA
0.040101547
0.007167069
3.66E−06






TCAAGAAGGAGGTGGTCCAATGCATGGG









CTCCTTCCAGGATGGGGTGGCTGAGAAG









TGTGTTGATTATTTTCAGAGATTCCGACG









TTCTACCCACGTGACGCCCAAATCATAC









CTCTCCTTTATTCAGGGC





1285
2849102
9
DNAH5
GTGTCATTCGTACTCCTCAGGGAAATGC
0.002537394
0.006928127
3.69E−06






CCTCCTGGTCGGGGTGGGCGGATCAGGA









AAGCAGAGCCTGACGAGGTTGGCTTCAT









TCATTGCTGGCTACGTTTCCTTCCAGATC









A





 841
2849152
9
DNAH5
GAAGAAGCCCGCGAGTTACTCTCTCATT
0.013562644
0.007538097
6.90E−06






TCAACCATCAGAACATGGATGCTCTTCT









GAAAGTTACAAGGAATACACTAGAGGCC









A





 145
2849177
3
DNAH5
GGCGACTGTCCTAGGAGTATGACCAACC
0.000297559
0.019731072
9.73E−06






CTCCTTCAATGCTAGGCTTCAGCCACCTC









CTCCTGAAAGCTGTCCTGTCATCCCCACC









CCTACCCCTTATCAACTCCAGGCTAGAG









TGGGAGACCCTTCTTTTTGCTCCTTCTCT









GTAGACCCATAAATGCCCCTGCATTTGG









AGACCCATAAATC





 460
2849511
4
ANKH
AGTGAGTTGGGTTGTAAGGAGAGTAGCA
0.006926925
0.010661478
7.13E−06






CGGAGCCATCAACAACCACGCAAAATGT









CAGCATCCCTGAAGGACGGAGTGGAGGC









TTAG





1611
2849802
5
FBXL7
TCTGGTAAGGCTAGAAGGTCATGCGAGA
0.001124866
0.006581459
5.10E−06






AACTGTATGAAGAGACACAGAGTAAGG









ATGGGCATGAGAGATGAACACGAACAA









GTGTG





 117
2849995
2
FAM134B
TCTAGGAATCAGCTTGCAACAGAGCACA
0.00014459
0.026361181
3.38E−05






AA





1701
2850497
6

GCTACTCAAGGAGACTCAATACAGGGAC
0.008143382
0.007243822
3.72E−06






CTCAGACCCACTGATCAGT





 503
2851189
1

AGTTGCATCTTCCAGGGAAGCAGGCTCC
0.000191608
0.011471627
7.40E−06






CAGTACTTTAGTCAGCCCCAGTGGC





 944
2854889
2
HEATR7B2
CCATTTTGTTGGTTAGCAGGAGTTCAGA
0.030501101
0.007657939
3.05E−06






CGCAAGACAATGTCATAGTGGTAGAATA









CAGTATCAACTTCAACAGCAAGCCCATC









TCTGGAAGCTCCCAGACCATTGTGCCAA









TCAAGTGGAGGAGGCACTTTCATTTAGA









GAGGCTTATGTGAACCTTATATGAGAAA









CTTGCCAACCTGCCTCTTTGATTTTTTAG









CCTTACTATTTCTAATACTTAGGTGCTAT









CTTTTAGAGACC





1012
2856493
4
MOCS2
GTCAGAAGAGGAATATTGCCCGGTTTGC
0.000310049
0.007523726
3.12E−06






CAG





 739
2856671
4
ARL15
TTACTCGCCTTCAGGTGTCATGTTCTTGT
0.001095886
0.007898792
4.05E−06






TCC





1390
2857094
4
RP11-
TGGTCGTGAAGGTGGTAAACCCAGCCAA
0.003174906
0.006645723
3.59E−06





528L24.3
CTGTCAACGACTCTCCAGCAACTCATCA









AAGAGTCAGCCTTTTCCATATTTAGGAC









ATTTCTCTCCCCCGTGGAGAAGTCGAAC









CGCTGGATCTACATAGCGCTTTATCTGG









GATCG





1101
2858235
4
PDE4D
AACATAGCCCTACGTTCCATGAACACTC
0.001709174
0.007746921
6.08E−06






AGTAACATCATCAAAACGTGATGCAATT









AAATTTTACCAGGTTTACTGCTGTCCTGA









TGCTTTCCAATTTTTTTTGACAACAGTTT









TGCCTTTTTCAAATTCAAATGGTATAATT









GGGGCTTGGTAGTTGATGTTTATCTTAAT









TGAAACAGATTCTCTTCATCCTTTTGCTC









TGAGACTCCCACTTTGAGGCTGAAAGGT









CATTTTAAATCTGCAGAGCACTCGAGAA









GCCAC





 476
2858299
4
PDE4D
CCCTTGGACTGGGAGTTTAGCACTATCA
0.016744596
0.010941528
4.86E−06






CCTGCACACTAGACCTGCAGTCTATGAA









GAGAGGCTGTCAGGGATTTGGGGCTATC









ACAGTTGCTCCTCCCAGAGCAAAAAATA









TTCAACCCTCCCACACACACAGGCAGCA









GCCTCATCTCAAATGGACTG





 368
2858312
4
PDE4D
TGAGAGGAAGAACTCCGGCTCCAGAGTC
0.007144307
0.010799351
6.79E−06






TGAAAGCCAGGGCTCAAGTTTCAATTTG









GGCATTTCCCAGCTTTGAACAACAGAAA









AACACTGTTTACCTTTTCAGAACCTCAGT









TTCCTTAGATCTGTAAATTAGCAATAAA









AACTAATGTGCCTTCCAAGGTTATGGTA









AAAATCAAATATCTTATGCCTGTGTAAA









TCTTTTTCAAAAAACAATAGACACTGCA









AATATTGGGCATTCTTATGATGATGTTTA









TTCTTCACTGGGAGCATTGATGGATTGAT









TGTTACTTTTCAATAACTTTTTCCATATTT









GCTCTAGTTTTAAATTTGCAAATTTTAAT









TCAGTATTGTTTATAATAAGACAAAAGC









TCTTCTTTAAGGTTGGGGCATTA





 436
2858317
4
PDE4D
CTTTCAGTGTTCTCAGTGAGTGCTTCACA
0.000553994
0.012556713
8.30E−06






GATTAGGTTTCCAAGAGAAGAAGATTGC









CTCTGAGGAAGAAGAGATGGGGTAGCA









AGAGGC





 469
2858354
4
PDE4D
AAATGAGAAGTAACGTCAGCAGCTCCGT
0.000367918
0.014805117
1.60E−05






AGGTTCTGA





1605
2858355
4
PDE4D
ATATTAGGCTCAATTAGAGAAACAATAA
0.01732465
0.007281016
1.82E−06






AG





1360
2858366
4
PDE4D
AGCTACACAGGAAATAACACCACCAAA
0.006926925
0.009640878
7.22E−06






AATAACACATTCAAACTCAGAGGGCAAT









CTTCCCTAA





1445
2858387
4
PDE4D
GGGGAATGCAACTGAAATTGCTAGGAGT
0.001543869
0.009130611
7.79E−06






TGAGTCAGGCAGCTATGAGCAA





1392
2858392
4
PDE4D
GGCCCAGCTTCATGGATATACAAACTAT
0.000931652
0.008377171
7.70E−06






ACATTCACATGGGTTCCACACCTAGATG









GGCTCTTACATCATGTAGCTGGTCCTACC









TGGGAGAGAGC





1867
2858399
4
PDE4D
CAATCATTATGTTGCATGAGGTACAGCC
0.001283816
0.006649943
4.90E−06






ATATGAATAAATATGTACTAACACATAC









CTAGACATACACAATCAGCCCT





 507
2858418
4
PDE4D
AACAGAACAGAAGTTAGGAATGGTGAA
0.000328031
0.013378586
4.08E−06






AT





 835
2858532
4
PDE4D
CTGGTGAAACGTCCAGCCTTATGGAGTA
0.000984436
0.01321077
1.06E−05






GGCCCCTGAGGTATAGAAATGGTTTTGA









TGGCATAGGATGTAGCCTTGGGAATGTC









CTGGAAGAGTAGGAGCGGCCAGTTAGGC









ATTAACACTCAGGAGTAAGGAGACTGCA









TT





1720
2858540
4
PDE4D
ACCTGGTCATCTTCCCCTACATTGTAGCC
0.000720832
0.00689557
3.83E−06






TACCAGAACTACCTGGGCTGTAATCTAA









TAT





 398
2858550
4
PDE4D
CTAGGAGAAATGGTAACACGCAAAGATT
0.000175143
0.015741974
1.65E−05






GGTATCAGTTTACACCAAAACAGAACAC









A





 563
2858551
4
PDE4D
AAACGTATACCAGAGACGAAGAGGCAC
0.00160589
0.011660697
6.79E−06






TTTGAATTTGTCCGGGTAGGTGCTTCTTG









GTTTGGGGATGTTATGACCTTAGATA





1566
2858567
4
PDE4D
GAATCCCTAGATCCAACTTTCTTTGGTGA
0.001752996
0.008574915
4.99E−06






GTTTGCAGGGGTTTCTGATGGTTCTCTTG









TTTCACGGGTT





 360
2858575
4
PDE4D
AATCTGAAAGGGCTTGAAAAGTTAGGAT
0.000142286
0.016665493
1.59E−05






GTAGACTG





 973
2858577
4
PDE4D
AAGTGTGTCTGAATGACTTCGCATGTTTA
4.53E−05
0.013041407
1.47E−05






GTGAAGCTCATTGCCAGAACTGCGACTT









CCCCTGTTGCCTTGAATCTGCTGATCAGC









CCTGGCAGCACACGTTTTTTAAATTATTT









AAAAAGGGACAAGGGTTATAAAGATGA









AAACCACATTTTTACCAGCCTCTGCAAA









CTCCTAATTTGGTGGGTG





1466
2858619
9
DEPDC1B
TGTGGTACAAGCGTCACAGTATTGCAAT
0.019828743
0.007090047
4.33E−06






TGGAGAGGTGCCAGCTTGCCGTCTTGTC









CACCGCAGACAGCTGACAGAGGCCA





 384
2860275
3
RP11-
GGAGTCCATGTTGCCTCGCCTGGTCTTGG
0.038217335
0.014699721
1.45E−05





83M16.5
ACTATT





262
2860360
1

ACCAGCATCTCGAGCCCTGCCCTTTCCAC
0.004426107
0.013556498
1.14E−05






CCAGGACACCAAATGGGATGCTGGATCA









GTTGCTGAGACAATGGCCAAAGGGTCAG









CTGGA





1372
2863463
2
ZBED3
ACGTGTGAATGCAGCGCTGTGTCTTTAA
2.19E−05
0.008828438
5.87E−06






GGGGCACGCGCGGAGGTTTTCCGTCCGG









GACAAAATGTCAGCGAGGCGCCTGGAG









GGGGATCTACCATCTCGGACTCCCGA





 253
2863936
4
LHFPL2
ACGTGTCACCGGACTGACTTCTAGGGCC
1.57E−06
0.015136691
1.37E−05






AGTCACAGAAAGCCATGCAGTTCCTGTC









TTGTTGGAAGGAACACTGCTCTTCAAGC









CCTGAGCTCCGCTTCGTAAGTCCAACTCC









CCTAAGGCCATCATGGCAGGAGAGGCCA









TATCTGGGCGCTTCAGTGGATGTTCTTAT









CTGGACCCAGCCTTCCAGCTATCCCCACT









GACATGCAAACCAAGCCTCTAGACCAGC









CCGTCCACCGGCCGAATGCTGCCTGTGA









CCGACCTCTGCCATTGCCACATGGAACA









GAAGCACCTCCCAGCTGC





 374
2864082
4
ARSB
TTGGCCGCTATTTGCTTACACTTGCCATC
0.001480634
0.012463709
7.11E−06






TGTGCAACCGCTCTACCCGTGGCCTCCCC









CGCTTTGTGGTTGTCTTCTAACAGGAGCA









GTCCACGCAAAGCCTTCCTGA





 336
2864402
1

CGAGTAAAGATCTGCACGCACAGTTGAT
0.004699102
0.012757132
1.00E−05






GGACAAACTCATACGGGGCAGTTTGCCT









GCTGGGCTGGCACACACGTGGTCTACCT









TGGGAATCCTAAAGGACAAAGAGTTACA









ACCTCCACGACAGGCCTTTGCCGTGTAT









CCC





1733
2869244
7
PAM
CAGCCGCTACTTCATGGCCCGGGCACGG
0.042209752
0.008127007
4.53E−06






CGGGCGTCCTGCGGCGGCCACACACCAT









CCGCCAGCGAGAGCAGCGAGCTGGCCGC









GGCGAGGCGTCTCGGTCACGAGCGGCGG









GCAAAAAGCCGTGGGCAGGCGGGACTTT









TGTCCGGCCCGCAGGCGGAAGCTT





1424
2869909
4
EFNA5
AATTTAATGTTCTACCAGAAAGTGCTAT
0.000722593
0.010990528
7.75E−06






GCATATGTAAGTATATTTCTTCAGCTTTT









ATGCCAGAAATTCATATTTAAACTAAAA









CAGAAAAACAATAGGCACCTCCCACAG





 756
2870559
1

GGGTGGTCCTCTAAAGAATTGCAACTTC
0.004851623
0.009976688
7.50E−06






TGGCCCTTGAAAAA





1979
2871561
5
KCNN2
AAGTCAAGTATGGTGAGAAACATCCAGA
0.017956371
0.007538282
3.77E−06






ACACACAGGACAGTCCCACATGAAAAA









GAATTATTCAGCCAAAAAAGTCACGAGT









GCCAAGGTTGAGAGGCCCTGGAATACAG









CAACTACACTATAAAACCAACTTGGAAT









GTCTCCCAAATGAAACTGGTTGACCTCG









GTGAACTTCATAAA





 304
2873260
7
CSNK1G3
GCTGCTCGGATTCGGTCCCTGCACTGCC
0.001286836
0.013895424
1.35E−05






GCTGGTGCCTCCTACCGCCGCCGCTGGC









CGGAGAGTCGCCGCCCGAGCCTCTGCTG









TCGCCACCGATGCAGCCCGGAATGAATG









CACAGCAGCGCCTCGCTTATCCGGAGGT









CAAACATCCTTCTG





1503
2873713
4
RP11-
GAGAACAAGACTTTTGGTGGGACTGGAT
8.45E−05
0.006843065
4.69E−06





114J13.1
AAAGACA





2056
2873861
7
LMNB1
GGAATCCATCATCCAGAGTGCTTACATG
0.001797859
0.008557564
6.17E−06






GTGATTAGGTTAATATTGCCTTCTTACAA









AATTTCTATTTTAAAAAAAATTATAACCT









TGATTGCTTATTACAAAAAAATTCAGTA









CAAAAGTTCAATATATTGAAAAATGCTT









TTCCCCTCCCTCACAGCACCGTTTTATAT









ATAGCAGAGAATAATGAAGAGATTGCTA









GTCTAGATGGGGCAATCTTCAAATTACA









CCAAGACGCACAGTGGTTTATTT





 540
2874627
4
CTC-
CCAGAGTGGGACTAACTGGACTTGAAGG
0.007850273
0.012194012
1.37E−05





575N7.1
ACTGATTGAGCCTGGATTGGATGCCAAG









G





1019
2876122
5
SEC24A
CCACTATTATAGCACTGTTTACATGTGTC
1.65E−05
0.008469393
7.83E−06






CAAAGAACCACCAAAAAACCACCACAA









TGATACAGGTATCTACTGCAAATTTTCTG









CTTCTTGTCTGCTACCTTGTAAAAGGTAC









AGCCTCCCAATTA





 891
2877487
4
ETF1
TCTTTGAACTTGAGATTGAGGATCGGCC
0.002849134
0.008531733
6.73E−06






CAGTACAGCACCAC





1558
2877961
2
DNAJC18
GCTGGATGGGGCAGCATCTCAATCATAT
0.003692121
0.007016632
2.32E−06






AGGGCACAGGAC





 692
2878005
2
TMEM173
AGAAGCTGCCCTTGGCTGCTCGTAGCGC
8.12E−06
0.010978292
9.08E−06






CGGGCCTTCTCTCCTCGTCATC





 775
2880995
4
CSNK1A1
AAGAACCCGGTGCATATAGGCGATCCGC
0.000385118
0.010477403
7.49E−06






TGAGGGAAGCACGGAATGGGGAAGTGG









GTAGAGGCAGGTAATGAGACCAGCTGA









ATCCGGGTCTTGGTGTTTTA





 684
2881838
1

TTGGGGTTGCAGAGGCTATAGCCTCCAT
0.00021174
0.007683315
6.31E−06






GGGGGTCTTCATCTGCATGGGCTTCTGG









CTCCCGTCTGCTTTGGGTTT





1997
2882121
2
SPARC
TGGTGAATCGGTTGTTCTTTCCTCACATT
3.72E−05
0.008293392
7.47E−06






TGGATGATTGTCATAAGGTTTTTAGCATG









TTCCTCCTTTTCTTCACCCTCCCCTTTTTT









CTTCTATTAATCAAGAGAAACTTCAAAG









TTAATGGGATGGTCGGATCTCACAGGCT









GAGAACTCGTTCACCTCCAAGCATTTCA









TGAAAAAGCTGCTTCTTATTAATCATAC









AAACTCTCACCATGATGTG





 115
2882122
2
SPARC
GCTGTTGGTTCAAACTTTTGGGAGCACG
5.12E−06
0.032841204
3.86E−05






GACTGTCAGTTCTCTGGGAAGTGGTCAG









CGCATCCTGCAGGGCTTCTCCTCCTCTGT









CTTTTGGAGAACCAGGGC





2054
2882125
2
SPARC
CCACAGTACCGGATTCTCTCTTTAACCCT
1.71E−05
0.007415852
3.23E−06






CCCCTTCGTGTTTCCCCCAATGTTTAAAA









TGTTTGGATGGTTTGTTGTTCTGCCTGGA









GACAAGGTGCTAACATAGATTTAAGTGA









ATACATTAACGGTGCTAAAAATGAAAAT









TCTAACCCAAGACATGACATTCTTAGCT









GTAACTTAACTATTAAGGCCTTTTCCACA









CGCATTAATAGTCCCATTTTTCTCTTGCC









ATTTGTAGCTTTGCCCATTGTCTTATTGG









CACATGG





2079
2882128
9
SPARC
ATGGAGCATTGCACCACCCGCTTTTTCG
1.47E−05
0.00652917
2.77E−06






AGACCTGTGACCTGGACAATGACAAGTA









CATCGCCCTGGATGAGTGGGCCGGCTGC









TTCGGCATCAAGCAG





1643
2882142
9
SPARC
ATCTGTGGGAGCTAATCCTGTCCAGGTG
3.85E−06
0.012687273
1.48E−05






GAAGTAGGAGAATTTGATGATGGTGCAG









A





 518
2884192
4
EBF1
ACTGAGCCGCTTCACTGGAGCACTAATC
0.000885779
0.011197582
6.32E−06






GATTTGCTGTCAAGGTGGCCTGCTGGGG









TTTCAAGCCAGAGAGGAATTGAGAGGCG









CTCTGGCCCAATTTCCATAATTGCTCACT









GCCTTT





 792
2885859
5
ODZ2
TTACGCCCTCCCAATTGCTACATAATCAT
0.002565937
0.007653162
8.95E−06






GACCTATTCCAAGTTTATTCAAGCAGCC









AAGTCAGGATGTCTCCCCAGC





1554
2886153
9
PANK3
TGACAAGCTGGTCCGTGATATTTATGGA
1.62E−05
0.008848725
5.11E−06






GG





1353
2887118
9
STK10
CTGCGCCTGTCTACCTTCGAGAAGAGAA
0.000160023
0.008064688
4.64E−06






AGTCCCGCGAATATGAGCACGTCCGCCG









CGACCTGGACCCCAACGAGGTGTGGGAG









ATCGTGGGCGAGCTGGGCGACGGCGCCT









TCGGCAAGGTTTACAAG





 365
2887495
2
STC2
ACATCTGACTGCCTGACATGGACTCCTG
0.000619177
0.018246493
2.35E−05






CCCACTTGGGGGAAACCTTATACCCAGA









GGAAAATACACACCTGGGGAGTACATTT









GACAAATTTCCCTTAGGATTTCGTTATCT









CACCTTGACCCTCAGCCAAGATTGGTAA









AGCTGCGTCCTGGCGATTCCAGGAGACC









CAGCTGGAAACCTGGCTTCTCCATGTGA









GGGGATGGGAAAGGAAAGAAGAGAATG









AAGACTACTTAGTAATTCCCATCAGGAA









ATGCTGACCTTTTACATAAAATCAAGGA









GACTGCTGAAAATCTCTAAGGGACAGGA









TTTTCCAGATCCTAATTGGAAATTTAGCA









ATAAGGAGAGGAGTCCAAGGGGACAAA









TAAAGGCAGAGAGAAGAGACAGAACTA









AAAATACGAGGAAAGGAGAGTGAGGAT









TTTCATTAAAAGTCTCAGCAGTGGGTTTC









TTGGGTTATTTAAAACATCACCTAAATA









GGCCTTTTCTTCCTAATTGGCCATCAAAT









TAAAGCCTATCCTTTCTCAAGCAGGAGC









TGGTATTGTAGGGAGTGGCCGGGTATTC









TGGGCTGGGCTCTTCTGGAGTAGGGGGT









CAGCAAACATTGTCTGCAAAGGGCCAGA









TACTGAATCCAGTACTTTCAGTTTGGCGA









GCCGTGAGGTCTCTGTCGAAACTACTC





1188
2887512
4
STC2
TGACACGACCCGAACCGTGCGCCTCCTC
0.039351871
0.008021546
4.68E−06






TGCTCTACCGGCTCTTGGCTCACCGGCA









AGCTGCAAAGCAGAGCCAGGCGTGCAG









GGCACGGGGCTGGCCCTTTTCCCAGCTC









GGAAAGAGAAAGAAAATCTGCCTACAG









CTCCTTCGCTCCACGACCCCTCCCCCGAC









TTTGGGGGGCCGTGTGAACGCGGCAGCG









GCGGCGTGCGTGCGCTCACCGCACGAGC









TGGAATGCACGAGTGCCCATTAGGGACG









CC





 546
2888080
1

ATGGTAACACGCTGGCTAGCCCTGCTGG
4.89E−05
0.010112214
5.90E−06






GTCCATGCCTGGAGCTGGGGTGGGGCTT









ATTCCCTTCCGGACCTCATGGGCTCGGA









GAGGCAAGTGATGGGTCTCTGAATGAAA









TCAGTGCTGGGTTCATGGACACGGAAGG









GAGGGTTGTTGTTACTTCTGTTTTACTGG









TGAAGAAAACACCCGTGTTCACTACTGT









CCTATTGGCAGCGAATTTGAACACC





1727
2888742
2
F12
TCCTTGGTGATTCCGCAGTGAGAGAGTG
0.000183201
0.007635791
5.72E−06






GCTGGGGCATGGAAGGCAAGATTGTGTC









CCATTCCCCCAGTGCGGCCAGCTCCGCG









CCAGGATGGCGCAGGA





1209
2889481
1

GCCTAATCGGATTGTAAGCTCGTCGAGG
0.000292999
0.0077346
3.92E−06






CCGCTGGTCTCTTGCTCTCGAGGACTCCA









TCCCAGCATTGGCAGCCTCCGCCTCCCC









ATGTCCCAAAAGAGGAAACTGGGCTGGA









GAAAGTTTCGCAGCCCAAGGACGCGTGG









CTGGAAGTGGCAGAACCCGGGCTTCCGA









GGTTGGGCGAGTGGGGTCCTCCAAGGCC









CTCAGCACGGGTCGGAGGGATTGGGACT









GAACCCGCCATCCCCCTGGACCTTGGTG









CCCTCCAAGCCCCGCGCTCGCGCCCTGT









CCGTCGCCTCCCCCAGAGATGCTCTGCA









GGGACGATGAGACCTTGGTGTTCCCCGG









TTCTCTGTCCCCTGGCACCACCTGAACGA









TTGACATC





 227
2890130
5
RUFY1
GCCAGAGCTCAGTAACATCCACATCCCA
0.003458386
0.015862344
1.98E−05






GAGTACAGAGAGAAAGCCAGCCTGGGT









CACAGTAGTCAGCGTCTCCAGGGCCAGG









CTGCCAGGAGAGTGGGCTCCCTGCAGAC









CAAGGTTTCAGGATGAGCAAGCAAGGTG









AAAACACCAACTTGCCACACGCAAATGG









CTCGACACAACCCTTA





1442
2890334
9
TBC1D9B
TGCATGTTCCCACGCAGGGAGTATAGTG
0.01496327
0.007323032
1.43E−06






CGCGCCAGTTCCGGCAAATGTCCTCCCC









GAAACGCTGCACCAAGCACAGGAGCTGT









GCACAGACCACCCCTCAGTAACAGGCAC









AGCAGGCGCGGGTGGAAGGGGTCATTA









GGGTTCCCCTGAGTTCTAGCAGGAACAT









TCCCCAGAGTTCTAGCAGGAACTATAGA









ATTCGTTAGTCCTCAGACTGGTCTATAGC









CCTCATCATTGTTCACGTCAAAACCAGC









ATGTTGAGACTTGTATTCATTTGAAAAA









AGGAATTGAGGGTTTGGCGGCCTTTATT









TTAACCTGACCAAGTGAGGGAATGCTCA









GGCCCTTTTGCTCTGGTGCCATAGGGCG









GGGCTGGGCGGGCCAGGCAGGAGGTGT









GGCATGGGAGACCTGCTCCCCAGGGCCT









GGCCTGGGGCTGGCTGTACAGAAACACA









GACTACATCTCAAGGACCCCAGGAGCTT









GCAGTCCCAACAGCA





 767
2891058
4
GNB2L1
CTGGGAGCTAAGCTTTCTCAGCCTCCAC
0.016586586
0.006763538
5.07E−06






GTAATGACATTTTGGTCTGAGTAACTCTG









TTGTGGTGTGCAGTCCTGTACATTCCAGG









ATGTTTAGCAGCATTTCCAGCTTCTACTA









GATGTCAGTAGCAAACCATCCTTCC





1346
2891302
4
DUSP22
TGGCACCATCTCTGTGGTGAAGTCACAG
0.000958852
0.007004444
1.00E−06






GTGCAAGCCCACGTGGATGCAGACGTGC









ACATGTGTGTGACGTTTCGGGTTT





1000
2893481
3
RP1-
AGTAAATGACCATCGTGCGCCCATGGGA
0.049041286
0.007653208
3.62E−06





80N2.2
AGAGTGCTGCATCCACGGAGGACATGGG









CCAACAGTGCTCTCAAATGGGTTTCATG









AAAGCATCTGTGACTCATCCCTGTTCAA









GAATGTTTTCATTACGATTCAGCAGAAG









CGATGTGCCAGGTCAGCAAATACAACTG









CAAAACCGGGGCCTG





 957
2893660
4
RREB1
CTGCAGCCCGCAGTGAACACATGTGCCC
1.26E−05
0.010296887
6.32E−06






CGACCCAGCGCAGTCGGCTCTGCCCTGC









GCTTGCCCGTGTGAAGGGCCAGGGTCCT









TGGCTCTCAGAAGAGGGATATTCTT





1217
2894668
2
PAK1IP1
AGAACCTCCTCATGTGGCATCTTTACTTA
0.000323032
0.00766513
2.99E−06






TTCTCTTCTTGGAAAATCCATGTGACCTC









CCCGCGCTTAAAGTGTTTCCACGTTACA









GGCGACTTAAAGGCAGCCCTGGAGCCTG









ACGTATAATTCGAGCGCCGATGCAGA





 147
2896936
9
CAP2
GGTCCTGTAGCATCCACAGTATCAGCGT
0.032161453
0.02300686
3.11E−05






TTTCTGTCCTCTC





1783
2898612
3
GMNN
TGTAGAAAGCATGGGGCTAAAAGTATTT
0.01160212
0.01009499
9.29E−06






TGACATAATTTATCCAAATTTAGCCTGGC









TATAATTTCTGTAAGCCTTGAGTTAGTCA









GAGGATGAGTAACAATAGAGAACATTTT









TAAAAAACTAATTACGGTTGAATATTAA









GTCTGACCCAA





1595
2898626
2
GMNN
TGCCGAAGTTTACCTCCACTAGTTCTTTG
6.42E−05
0.009780056
3.60E−06






TAGCAGAGTACATAACTACATAATGCCA









ACTCTGGAATCAAATTTCCTTGTTTGAAT









CCTGGGACCCTATTGCATTAAAGTA





1239
2899122
4
HFE
GGTGGAAACACACTTCTGCCCCTATACT
3.62E−05
0.007219004
2.43E−06






CTAGTGGCAGAGTGGAGGAGGTTGCAGG









GCACGGAATCCCTGGTTGGAGTTTCA





2043
2901929
2
TUBB
TCTGGTGCCCATTCCATTTGTCCAGTTAA
0.003390971
0.008049603
8.03E−06






TACTTCCTCTTAAAAATCTCCAAGAAGCT









GGGTCTCCAGATCCCATTTAGAACCAAC









CAGGTGCTGAAAACACATGTAGATAATG









GCCATCATCCTAAGCCCAAAGTAGAAAA









TGGTAGAAGGTAGTGGGTAGAAGTCACT









ATATAAGGAAGGGGATGGGATTTTCCAT









TCTAAAAGTTTTGGAGAGGGAAATCCAG









GCTATTAAAGTCACTAAATTTCTAAGTAT









GTCCATTTCCCATCTCAGCTTCAAGGGA









GGTGTCAGCAGTATTATCTCCACTTTCAA









TCTCCCTCCAAGCTCTACTCTGGAGGAGT









CTGTCCCACTCTGTCAAGTGGAATCCTTC









CCTTTCCAACTCTACCTCCCTCACTCAGC









TCCTTTCCCCTGATCAGAGAAAGGGATC









AAGGGGGTTGGGAGGGGGGAAAGAGAC









CAGCCTTGGTCCCTAAGCCTCCAGAAAC









GTCTTCTTAATCCCCACCTTTTCTTACTC









CCAAAAAAGAATGAACACCCCTGACTCT









GGAGT





1186
2902700
5
VARS
CACCACCATGGGGTTGTCCTCAATGCCA
0.000252847
0.00748735
2.36E−06






CGGAACAGTCCCCGCTCCTTCAGCGCCA









CCAGCACCGCTTTCCTGGCCTCAAACCT









GGGCAGGCCCTGGGTAGGAATGAGGCCT









CATCATGGCGATGCCCAGCCATCCCTCC









ATCTCCCTGACCCGGGCACTCTTGCCTCA









GGCAGCCTCACCAGGAAAGGCGGAGGC









ACATTGATGAGGGCCCCCCGGGAGTCCA









TGATGCTGATGGCCTCCAGCCCGTGCCG









CTGCCCAACTTCATAGTCATTTTGGTCAT









GTGCGGGGGTGATCTTCACAGCACCTGG









GTGTA





1007
2902874
3
CFB;
AGGGCTTAGGGGACATCTACTGAGTGAC
0.016243657
0.006650439
4.11E−06





XXbac-
AAAGGCAATGGGGAGATGACAGTGGTG








BPG116M5.17
GGAGCAGCTGAAGTGACGCAGTCTATTC









GTCC





 936
2903195
9
HLA-
ATGTGATCATCCAGGCCGAGTTCTATCT
0.000384143
0.013596025
1.40E−05





DRA
GAATCCTGACCAATCAGGCGAGTTTATG









TTTGACTTTGATGGTGATGAGATTTTCCA









TGTGGATATGGCAAAGAAGGAGACGGTC









TGGCGGCTTGAAGAATTTGGACGATTTG









CCAGCTTTGAGGCTCAAGGTGCATTGGC









CAACATAGCTGTGGACAAAGCCAACCTG









GAAATCATGACAAAGCGCTCCAACTATA









CTCCGATCA





 216
2903200
9
HLA-
CCCAGAGACTACAGAGAACGTGGTGTGT
0.000226058
0.023137572
2.88E−05





DRA
GCCCTGGGCCTGACTGTGGGTCTGGTGG









GCATCATTATTGGGACCATCTTCATCATC









AAGGGATTGCGCAAAAGCAATGCAGCA









GAACGCAGGGGGCCT





1913
2903425
9
HLA-
TGATTCTGCCCGGAGTAAGACATTGACG
0.019535405
0.007421118
6.20E−06





DPB1
GGAGCTGGGG





1810
2903456
3
HLA-
CCAGGGGCTTCATGCTGGGGCTCATCAT
0.001140973
0.007189358
4.98E−06





DPB2
CTGTGGAGTGGACATCTTCACGCACAGA









AGGAGGAA





1173
2903747
4
SYNGAP1
CCATTTCACCAGAGCGTCCTTAGGGGCT
0.006813471
0.006836913
3.73E−06






GGGGGTGGGTTTGTTAATGGGGTGGAGG









CAATGATGGGTTGGAGGATCTTGGCTAT









AGGGGCTGTGCTGACTGCAGCAGGTAGG









TTGGGTTTCCCTCTTCCTTCCCTAATCTT









GGTTCTCTACCCTCCTTTCCACTCCTCAC









CTGATTCTCTCTCTTCCTCCTCCTTATATC









TGTGAGGCAGAAGGCATCTGAAGCTCAT









ATTAGCCCCCATTGGGTGGGAATTAGGA









GTGGGTAGTTAACTCAGGGAGACTTGAG









ATACCCTGGAAAAAATGCTATTGAGATG









TCCTGACATTAGGCAGGGTGGATGGAAC









AAGAAGGAGCAAGAAAGGAACCTCAGG









CAGATGTTAGGACATGGACTTGATCATG









TGGCCTGGGAGTTTAGAAATGGGGAGAG









ACATCCTCCTAGATCAGATCGTGGGCTC









AGTAGGCATGTTGATT





 914
2904304
9
UHRF1BP1
GCAGTAGAGTCCCTACAGGCCAAGAAAC
0.009512851
0.008610073
5.37E−06






TGAGCAGAACCCAAGCCTCCAGCTCACC









AGCTGCATTGAAGCCCCCAGCTGGCAGG









GAGACTGCTGTGAATGGACAGGGTGAGC









TCATCCCCTTGAAGAACATTGAGGGAGA









ATTGTCAAGTGCTATTCACATGACCAAG









GATGCCACCAAGGAGGCTCTACATGCCA









CCATGGACCTCACCAAGGAAGCTGTGTC









CCTGACTAAGGATGCCTTCAGTTTGGGC









AGAGATCGAATGACCTCC





1311
2905788
2
ZFAND3
TGGCCACCACGTGACGCTGTTCTTAGTTC
0.000250234
0.009189307
1.18E−05






ACTAATGTTAGCCTTATTTAGGACAAAG









TCAGCCAGACACCTTGTACTGGGCACGC









GTCAGACTGCAGCCAGTCCGTTTCCTTTC









TTTAGCCAGCCATCCTGGTACTGTAGTTT









AGGGGTTGATGGTGGTTGAAATTGATTT









CTGGCTGGTTACTAAGGTGCCTGCTAGC









CATTGTATAAA





1522
2906151
1

ATGGGAACAGAGATCCAATATTGTGTGA
0.027602711
0.006514376
3.25E−06






CTACAAGGAAGGAGTCGAACTGAGTGTC









CC





 753
2907867
4
TTBK1
GCCCGGGTAGAAAAGCATGCACTGAGCC
2.23E−05
0.010219124
7.77E−06






CCCTGCCCCTAGACTGCGAGTACTGTAC









AAATCCAACACTTGAAACCGACACGCAC









ACGCGCGG





1617
2909086
5
RCAN2
AGCAGCCAACTTGGACCCGCAAGTGGGA
0.000200907
0.007185162
2.21E−06






CCAAGTATGGAGCATGGCAGGGCTTGCT









TCCAGGATCCCTGAATGACACTGTGGGG









CAAAGCTACCGACCCTCCATGGA





 424
2909642
1

TGTGCAAGTCCGAATAGAGCTGGGTTTT
0.016461142
0.010554498
4.48E−06






GGACTGGTCCAGGGGGAAAAGGCTGTTG









GCCAGGCTGTGCTGGATCTTGGCCAGGT









TGTGGCTGGAGCGACCAGGCGCTCCCAG









TCACCTTCGGACTGGAAGCGGTTTA





 292
2909752
1

TGGGACTCACATGAGGCCTATTACCCCT
0.022567667
0.011174444
1.02E−05






TTCTTCTGGCCTATTCCTCCCTTTTGGAA









TGGGAATGTCTGCACCACCACTGTATCTT









GGAAGTAAATAACTTCTTTTTTTATTTTA









CAGGTTCACAGTTGTAAGGAACTTGCCT









TGAGTCTCAAATGAGACTTTAGACTTTTG









AGTTGATGCTGGAACAAGTTAAGACTTT









GGGGGATGGAATAATTGTATTTTGCAAT









GCAAGAAAGACATGAGATTTGTTTTTCA









TGCCACCAAATCTTATGTTGAAATTTGAT









GCCCAATATTGGAGGTGGGGCCAGATGG









GAGAAATTTGGGAACAGATCCCCCATGA









ATGGCTTGGTGACATTCTCCCAGGAGTA









AATAAGTTCTC





 967
2910038
1

AGCTCCAGCAGGACTACCAAGGGCTGCC
0.000792576
0.007667081
3.42E−06






ACTGGCTGTCTGACAGTGCCTGG





 720
2916447
6

ACAGCTCGGTTGTAGTGCACAATTAAAA
1.19E−06
0.013525256
1.66E−05






TCACACTAACTTCATCTGAAGTGTCATTC









TACAGTTTTATTTACACAACCAGTGAAG









GGCATGTTCTAGAATACCAGCTTTAATC









CTTTTCAAACATTAATATAAGAAGCCAA









ATTGTAATGATACAGCAAAATGAGGCCA









CTGGTATTAATACAGGTAGCAAAGGTCC









ACATCCAGGTGGTACTGACATCAGGGAA









ATTTCCAAAACCAGTTGCTGCTGCCTAA









GAGTGGTTGCCACTGACGAAAGCTTGAA





1842
2918773
3
RP11-
TAAGGTCCCTCCAGTGTACAACAATTTG
3.52E−05
0.008939061
7.01E−06





1414.3






1845
2919791
4
AIM1
TCTGAATGCTGAAGTGACAGTTGGAGAT
0.000116584
0.007440145
4.92E−06






GG





 650
2923986
2
CLVS2
ATGCCAGGGAGTGCCGCATTGCTTAGCG
2.50E−05
0.014201609
9.88E−06






ACCCCGCCTCTGGG





1180
2926824
9
MYB
AGACAGTGCACCTGTTTCCTGTTTGGGA
0.000449203
0.006598249
3.58E−06






GAACACCACTCCACTCCATCTCTGCCAG









CGGATCCTGGCTCCCTACCTGAAGAAAG









CGCCTCGCCAGCAAGGTGCATGATCGTC









CACCAGGGCACCA





1550
2927252
1

CTCTGTCTTGGGAGGCTATGAATTAAGT
3.56E−05
0.006844416
4.85E−06






CAATGGGCTCCCTTCCTTTCTGTTTATCA









GTTGGATTTGGTCAGTGGGGAGTCCAGG









CAGGGATCTGCAGGAGGAAGGACATTG









GGAGCTGGGTATTTCTCTCCTGGACTCAC









TCTGTATGAGTCACTACAGGCTGGCTGT









GTTCTTCAACAGAAGGTTATTGCTCTTCC









CAAGGTGACAGCTCCTATGGGACTCACT









TTCTAACAGGG





1446
2929703
1

TGGGAAAAGGCTGTCCCTTTGCATCCCA
0.000272577
0.008755676
5.51E−06






AATAAGGCAATACGAAATTGTAACTGGA









TGCTACCATGGACACCCAGATTCTATCC









AGGAGAACATAAATAGAAGTGATGAGA









ACACCCTCTCCCTGCTGGAAATACATGT









GGGGTCC





 229
2934526
4
SLC22A3
TTCCGGATTCGCTTATGGTCTCCAGGGTC
0.000205715
0.018234968
1.72E−05






AAAGGAAAGGGCGAACCAACGTTTGAA









GGCAGCAGCAGCTTTTTTCCAGTTGCCC









AAATGGTTACTCAAAATGCAAGGGGACA





1291
2934538
9
SLC22A3
TGACAGAAATAGTAGGTTCGAAACAAAG
0.00362841
0.009917021
1.07E−05






GAGGATTGTGGGAATCGTGATTCAAATG









TTCTTTACCCTTGGAATCATAATTCTCCC









TGGAATTGCCTACTTCATCCCCAACTGGC









AAGGAATCCAGTTAGCCATCACGCTGC





1427
2934539
9
SLC22A3
CCCGTTGGCTGATTACTCGGAAGAAAGG
0.001777336
0.007323945
3.98E−06






AGATAAAGCATTACAGATCCTGAGACGC









ATTGCTAAGTGCAATGGGAAATACCTCT









CATCAAATTACTC





 266
2934543
4
SLC22A3
AGGCTCTCTGAACATACAAACAGTATAA
6.72E−05
0.017329092
1.57E−05






CTGTTGTTCACTAAATGGAAAAATCCCA









AAATCAAAAACCAATGCAAAACAGTGA









AGTGGCTTGAGCTCCTAGGAGGTTAGGT









AGAAATTAAAGAGAATCAGTGGATGGGT









AGAATTTTAAGCAGTAGGTAGTTACCCA









ATGTAGAACGAGGATTAGCTTAGACACC









TAGTCTGG





1565
2934557
4
SLC22A3
AGAGTGTCGATACTAGGCAACAAGCCTC
0.000509079
0.00868456
8.95E−06






TGAACAGATAGTGTTACCCGGAACATCA









CCCTTTTCTCCCTTTGCTTCAAATCAAAA









CCAGCATCCCCCATTTAGACAGCATAAA









AGGTATG





 180
2934569
4
SLC22A3
AGGGGCAGGTAAGTGAGAGTGTCAGTG
4.44E−05
0.022037658
2.59E−05






AGCGGGCGCAGAGGGGACTCCC





 513
2934571
4
SLC22A3
TATACAGGGGCCGTGGTGCTACTCAGGG
0.000771692
0.013671209
1.16E−05






TTTGAGGAAGGGAGAGAACCTTTGAAGC









TGTGGTAAGGGAGAGCTGGGGCATTGAT









CTGGGATGCAGAGGTTGCTGTGGTTGAG









AGCTACTCCAGTGAGCAACATGATGGCT









TCAGAGTGAGCAGGCCCCATGGGAGAG









GGCCCAGCTGTGTCTTCCTGGAGCGGTA









ACACCTT





1174
2934586
4
SLC22A3
TGCTGGCTACAATTTGGAACTGTGCAGT
0.02563769
0.010772341
8.50E−06






TTAAATATTTATTTATTTTGTTTTGTTTTT









ACTCTTTCTAATTTGGATATTAGGTTTTG









CTTCATCTGTGTTTTTTTTCTCTTACTCAG









TCAATAACCATATCTCCAAACTAAATTA









ACGTTACTAAAGTGGGGAATTTCCCCTT









CCTATATTCTCATAAGTGATTGAGCATCT









GTCCTCATATAGGACTTGCTGCCTTGGA









GGGGAGGGGCCAGACCTGGGAAAAAGA









GGAGCCATGAATAACTCTGCTTCCTACA









TTTGGCTTCTTCTCTTCCTCCATATCCAT









GATTTATATATGTGAAGGAAGAACAAGA









AATAACTTAATAGGCCATTTGTCAATGA









GAGTACAGTGTAGGAAGGGTGGAAAGT









GAATATAAAATCTAGATTGGGGCTTCTG









GTTTCCTGTTCAGCCTATAAGGAGCTTAG









AATTTGCCACTCAGTCTTGACAACAAGT









AAAATGCTGAACAAACTGAAAAATCAAT









AATTCTTCTCAGATCCATAAGAGAAGTG









AGATTACAGGGCAAACTACTACCTTCAG









CATCACCCCGCACCCCCAACCCCACTAA









ATAGAAAGACAGGAGAATACAGAGAAT









CATAACACAGGCGCAGAAACCTCCTTGA









GAGAGCCAGGGTAGATAAACATGAACT









GTAATTGATGAATTCCTGGAGGATCACT









GTGGATGACCTGAAGGATTAAAAACTCT









AGAGGGACTCACTCAAAGGAGGGCCCA









AGCTTTTGTGATTTTTTTTTTTTTTTTTTT









TTTTTTTGCCACCTGAAGCTCTACAAGGT









TCCAAAGGTGAATATTAAGGAAAATCCC









TCATGCTCTGGCAGCCAGAGGGGAAAAG









GAACAATTTTGAAATATGCCAGAATATC









GTTCTTAACAATGTCTGCCCTCAGGAGA









AGATGTTTAACCAGAGCCTAATCTTCTG









GGGTTTTCTGAGAGCCTCATTGATCTGG









GGGAAGGGAAATACCAACTCCAGCCCCT









TCTAGCCTTCCAAGTGGAGAAAGAGAAA









CACCAAATTCTAGCCTCCTCTAGCTTTCA









ACTTGGAAGAAGGGAAATACCCAGCTCC









AGCCCCCTCTAGCCTTTCTCCCCTAGTTC









AGAGGAGAGGGATAGAGAAGCATTTGT









GAAGTTCACCGTTTAGAGACATAGGTTC





 990
2934942
8
AGPAT4
ATGGGTTTGCTTTGATCGGACCAACCGG
0.000540412
0.00716353
4.90E−06






ATTCCTGAGTGT





 787
2935707
1

GGCAGCCGGAGGAAACCTCACTCCCCAG
5.15E−05
0.011241051
7.14E−06






ACTCTGCAGGAAACTTACGTGCAAGTCT









TTT





 584
2936726
3
RP11-
TGAAGAAAAATAATGTGGGTAGCCGGGC
0.02244372
0.011771471
1.03E−05





568A7.2
TTCATCTTAGCAACACGAGCACCTCATTT









TGGTTTTC





1366
2937410
4
XXyac-
ACGCTTCGTTGGTCTCGGGAATACAGCT
1.83E−05
0.014910823
1.15E−05





YX65C7_A.2
CCACACGCAAAAAAGTAAAAAGTGCAG









CAAAACAACAACACAACGATCAACCTCA









AAGGAAACAACAAAATTAATTTTATCAA









AATGCAATGTGTACATTAAGACTAAAGT









TATGGATTGTTCCTGTTTGGCATAGAAAT









GTGATGACTATTAACAGAAAGGGGAAA









AAGATTTGCCCCCTATCCATCATCAGAC









AGACAGACTTCTCTTACTAAACCCCTTAT









GTGGAGTGGGATGAGTGACTATTTCCTG









CAGAA





 925
2937411
4
XXyac-
TGGCTTATGCACAGTATTCCCTTCAACTC
3.03E−05
0.017161552
9.44E−06





YX65C7_A.2
CATATACACATAAATACAATAAGTAATT









ACATTTTATATGTAAACGTCATTCTTTTT









AAACAAACAAGAAAAAGCAATGTAATG









GCATGCCCAATTTTCACTCCACATAAAG









TCTCATATATCACCAAACTGGTTTCCTCT









AGTGGGTTAGATGTTCATCTCTGAGTTCC









ATTGATATTTATCCTCTGAAGGCACTTGG









GTTTGGGGTTGCTGGCAGGAGGTGAAGA









ACCATCAGAGTTAAGGTCAAGGGACAGG









AGGTGCTGCTAGAGAGAGAAGCCACAA









GGACCACAATGAACTGAGGTGTCTAGGG









ACCATGGCATGCACAGGGCATTG





 895
2937484
5
WDR27
GCAGGCCAACAACGATGTCTGCGTGCCC
0.039759255
0.008047812
5.15E−06






CAGAGTCTGATAGGCAGCAGCCCGAGCC









AG





 741
2938547
7
FOXF2
TCAGATTGGGGAACGCTACCTTGCCAGC
0.000412342
0.008173684
5.12E−06






GGTTGTCCTTCTTCCAGCAGTAGGCAAA









TAACAGTGACCAACGCGATCCTGGGCAT









TCTG





 381
2938741
9
GMDS
TTGACCTCGCTGAGTACACTGCGGACGT
0.014877417
0.008255843
7.22E−06






TGACGGAGTTGGCACTCTACGACTTCTA









GATGCAGTTAAGACTTGTGGCCTTATCA









ACTCTGTGAAGTTCTACCAAGCCTCAA





 412
2941607
7
TMEM14C
CAAGTAGCAGCATGCGCCCTGCATTCAG
0.000933891
0.019147592
1.94E−05






CGGGTGGAGAGTGGGGCGGGGCATCGC









GGCGAGCTCCTGAGTCCAGGGAACGCGG









CGGGGAATCTCTGTGCTTCCC





 672
2941759
6

GGGAACGATGGCCTCCCAATAGATAGGA
0.000378341
0.00855831
5.95E−06






AACACCTGAAGCTGGTGATCAGCCACTT









CCTGATAAGATCTCAGGAGTTGGGTGCG









CAGGCTCAAGCATGCACCCTAAGAGGCA









AAATAGTGGCATTTAACTCATATATGAC









CTTCCTTTAGGAAGGCTTGACTGGTAAG









GGAAAAACTCCTCCAGTGAACACGTGCA









CAACTTCAGTAAAAACACTGCACATGCG









TCCCCTCCCAAGTGCTGGCAGGCCACTG









TGCATGCAGACAGCCCGCCCCAAAGAAA









AATCAGAGGAGGAGAAATGGAAACCCC









GGAACAATGCCAATGTATAAAACCCCAA









GTCAAGGGCCTACCAAGGCAATTGGATC









TCTCAAGTCACCCGCTTGGCTCTCTTCAA









GTGCACTTTGCTTCCTTTTGTTCTTGCTCT









AAAACTTTTACTCCTGCTATAAAACTTGC









CTTGGACTATCATGCTACCTTACGCCTCC









CCGGCCAAATTCCCTCCTCTCCTCCGGGG









GGCAAGGATGGAGTCTGCTGCAGACCCA









TTGGATTTGCTG





 174
2941893
2
NEDD9
CCACTCACATCCGACGTGTGTGGTTGCTC
0.006757381
0.017550027
2.12E−05






AGTAGGGAAATGCTTACAGCTGCCTCTA









GAAGCAAGTCCGCTCGCTGCATGGAG





1631
2943773
5
CAP2
ATGGCGCTTCTGGCCCTCAATCAGCCAG
0.023624431
0.006508257
4.92E−06






GG





1179
2944071
2
DEK
CAGCGGCAGTGTGTCCATCATATTAAAA
1.41E−06
0.012319789
1.03E−05






ATATACAAGCTACAGTTGTCCAGATCAC









TGAATTGGAACTTTTCTCCTGCATGTGTA









TATATGTCAAATTGTCAGCATGACAAAA









GTGACAGATGTTATTTTTGTATTTTTAAA









AAACAATTGGTTGTATATAAAGTTTTTTT









ATTTCTTTTGTGCAGATCACTTTTTAAAC









TCACATAGGTAGGTATCTTTATAGTTGTA









GACTATGGAATGTCAGTGTTCAGCCAAA









CAGTATGATGGAACAGTGAAAGTCAATT









CAGTGATGGCAACACTGAAGGAACAGTT









ACCCTGCTTTGCCTCGAAAGTGTCATCA









ATTTGTAATTTTAGTATTAACTCTGTAAA









AGTGTCTGTAGGTACGTTTTATATTATAT









AAGGACAGACCAAAAATCAACCTATCAA









AGCTTCAAAAACTTTGGGAAAGGGTGGG









ATTAAGTACAAGCACATTTGGCTTACAG









TAAATGAACTGATTTTTATTAACTGCTTT









TGCCCATATAAAATGCTGATATTTACTG









GAAACCTAGCCAGCTTCACGATTATGAC









TAAAGTACCAGATTATAATGCCAGAATA









TAATGTGCAGGCAATCGTGGATGTCTCT









GACAAA





 246
2945999
5
LRRC16A
AAATGGCAAAAGAATCACATAAGGCAG
2.93E−05
0.01735269
1.41E−05






AAAT





1712
2948594
7
TUBB
GTATACACCACTCCAGAGTCAGGGGTGT
0.002029355
0.013237004
7.19E−06






TCATTCTTTTTTGGGAGTAAGAAAAGGT









GGGGATTAAGAAGACGTTTCTGGAGGCT









TAGGGACCAAGGCTGGTCTCTTTCCCCC









CTCCCAACCCCCTTGATCCCTTTCTCTGA









TCAGGGGAAAGGAGCTGAGTGAGGGAG









GTAGAGTTGGAAAGGGAAGGATTCCACT









TGACAGAGTGGGACAGACTCCTCCAGAG









TAGAGCTTGGAGGGAGATTGAAAGTGGA









GATAATACTGCTGACACCTCCCTTGAAG









CTGAGATGGGAAATGGACATACTTAGAA









ATTTAGTGACTTTAATAGCCTGGATTTCC









CTCTCCAAAACTTTTAGAATGGAAAATC









CCATCCCCTTCCTTATATAGTGACTTCTA









CCCACTACCTTCTACCATTTTCTACTTTG









GGCTTAGGATGATGGCCATTATCTACAT









GTGTTTTCAGCACCTGGTTGGTTCTAAAT









GGGATCTGGAGACCCAGCTTCTTGGAGA









TTTTTAAGAGGAAGTATTAACTGGACAA









ATGGAA





 537
2949541
3
EHMT2
ATTGTTATTGGGTTGTCGCTGCTTCTAGG
0.033900726
0.007162816
5.30E−06






ACTTTTGAGTGGGCAGACTTAGGAAATT









TTTGTTCGTTTTTTCTTTTAAGAGACAGG









GTCTTGCTATGTCACCCAGGCTGAAGTA









CAGTAGCAGTTCACAGACAGTCATAGCT









CTCTGCAGCCTCGAAATCCTGGGCTCAA









GCAACCCTCCCATCTCAGTCACATGAGT









AGCTGGGACTACAGGCATGCACCTCCAT









GACCAGCTCCTGGCTGTATTTTTTGGAAA









GAGAACAATTACTTTATTTTCTCTCTGGC









ATCAGATGGTAGACGCTACTAGTCCCAT









TTTTG





1358
2949792
4
PRRT1
GGCTGATGCCAGCCCGGGCGTGCCCCTC
3.41E−05
0.010959106
4.97E−06






AACAC





 954
2950359
3
HLA-
CGAGGTAAGCGTCTTTCCCAAGGAGCCT
0.0264846
0.006794213
5.43E−06





DPA2
GTGGATCTGGGCCAGCCCAACACCCTCG









TCTGCCATGTTGACAAGTTCTTCCCACCA









GTGCTGAACATCACGTGGCTGCGCAATG









GGGAGCCAGTCATTGAGGGTATTGCAGA









GACCATCTTCCTGCCCAGCAAGAAACTC









AGATTACACAGGTTCCACTATCTGACCC









TCGTTC





1074
2950628
1

AGGGTACTCCACCAGCGAGGATACACCG
0.002531721
0.007373825
5.32E−06






AGCCGACGGGGATCTCGGTCTCGGCGCC









GGAAGCCTCTGAGAGCCGAATCTGGAAC









CGGATGTGGCTGCTTCCTGCCCCGCCCCC









TGCCGAGGGGGCGGGAATCGAGGGCCCT









TCGGAAAACCCGGCCGGGATTTCGGTCA









GCTACATTC





1957
2951240
9
C6orf106
GAGATTGCAGATGTCAGCGTCCAGATGT
0.000742232
0.006740159
2.55E−06






GCAGCCCCAGCAGAGCAGGAATGTATCA









GGGACAGTGGCGGATGTGCACTGCT





1705
2951657
2
FKBP5
GGCATGTCCTCTTAGACCTGCTCTATGGT
0.01612054
0.006552065
5.39E−06






TTTTCTCTTACTCAGACTCCTTGGGTGAG









GGTTGGAGTATTTGTGGGGAGAGACAAC









TCGGCAGTGAGATGTACGCGCTGCTTGG









GCTGTGGTAAATCCTAGTAACATGGTCT









TAACACTGTTGGTCAGGCATTGAATTTA





1150
2952044
4
CPNE5
ACTTTCTACAATGTGGAGGAGGCTGGTG
0.000292246
0.007034962
1.80E−06






TTGGGGGGCCATGGCCCCTGAGAGCCCC









CAATGAAGCCCTTAAGTGGGACAGCAGT









GC





 270
2952341
9
MDGA1
TGTGGCTATACCCAGGACCTGACAGACA
0.029384212
0.01770572
1.92E−05






ACTTTGACTGGACGCGGCAGAATGCCCT









CACCCA





 437
2952713
5
DNAH8
TGTTTGTTGTTTGGTTATGATCTTGCTT
0.000896506
0.012004253
1.16E−05


1280
2954808
3
GTPBP2
GATTGGGTCTGTACAGTGTATGGTAACT
0.008619147
0.009128367
6.34E−06






GCTCACTGTTT





1607
2956143
5
GPR115
TACCATCATATATCACGCATTTCCCCCTC
0.004167745
0.007592338
4.65E−06






CTGGAATATGTGCAAAAACAAGCCTTTC









TTCAACAGGAAAATGGTGCTGGTGTAGG









ACATCTACTCACGGCATCCAGGAAGTAG









ATCTAGCAGCCCAGA





1918
2965266
1

ATGGCACAGATCAACCCAGTGTCCATTC
7.04E−05
0.006704181
4.77E−06






CATGGAAGCATTCAGAGACTGAGGCTCC









TCAGTCCTACCACAGAAACACTGAGAGT









TACAGAATGGCAAATATCTGTAACTGGT









TCCAAGCAAGAG





  89
2965642
1

GGATTATGCCGGTTTCTACTGTGTCATGC
2.62E−05
0.025473063
1.96E−05






AGGTTGTCAGGGAAGTGAGGGAAAGCC









AGGAGTCACAGATCTCACCCAGCTTCCA









TGCAATCCAAAGGGCCGTTCTCACTCCC









AATGTGCCCCCGGACCCAACAGCACTGA









GTCTGTTTCCAGGCAGTGGGTAAGCAGG









GCTGAGAACTTTCCCCAGGCAATCTGCT









TCCCAGCTGTGAAAGCAAATATGGCTTT









CCTTCTTCCCCCACCTGTGGAGACTGCAC









ACCGGATTCACGCCCTTCCCTGAGTTCTG









GCCAGGAGTGTTCTCAATCAGCTCAAAT









TGTTACAAAGTTCAGCTGGAGGTTTTCTT









CTCCTGTGGCTTTTCCCGGCATCTCTGGT









CGCCCTCCTGAAG





1267
2968105
4
SEC63
GGGTCAGCAGCGTTTCCCTCGGCGCTTCT
0.002641545
0.00762644
6.71E−06






CC





1406
2969569
1

ATGTGCAAATATCACCACTAATTCCAGA
7.50E−05
0.009287234
7.32E−06






ATATTTAATCACCTCAAAAAGAACCCCC









CTGACACACACACCCAGTAGCAGTCCAT









GCCCCACTTCC





1046
2970405
1

CTCTCCAGTCTATTGAGCCCCTGCCCCCA
1.39E−06
0.012220589
9.68E−06






CACCCTATCGGGTTCAGAGCAGAGCT





1903
2974773
1

TTGCCTTAGAGGGAAATGATGCCTTGTA
0.000450333
0.006875027
2.38E−06






CATATCTCATCCCACAGTGCTGCTGAAT









GCGTCCATTTCAGGCAATGCCCAATTTG









GAGAAAAGAAGAAGTGCAAAAAAAGAT









GTTTCTTTGACCTCACCGCAAATA





 869
2976265
1

ATGTTCTGGTTCCTAGAGAGCAAGACAT
0.000148906
0.008014361
2.11E−06






GGTGCACAGACCTGTGGGTGAAACCCGA









TGGAGACCCATGG





1216
2980527
9
CNKSR3
GTCAGCTGGTTTACGCGCCTCAAACTGTT
0.006618995
0.010696705
8.84E−06






GA





 779
2980896
4
NOX3
GGTGGCAGTTCTGCCGCTGCCACTGCCT
0.044188955
0.0069985
8.86E−06






GTGCCTAAGACTTCTCCCGTGGTCCCTCA









GCTGGTGGACAGAAACACATTCTCCACG









GAAGAAGTGCC





 763
2982371
4
SOD2
CTGAGCTGTTGGAGGACTTATTACCATTC
0.000562297
0.007631489
4.53E−06






CCTGGAGAAGAAGGAAAGTCATCTTCGG









TTGTGTTGCCCTCCCTGTGAAATCCAGAC









CCAGACGTCCTCTGGCGGGAGGAGCTAC









CATTACTTGGTCCGTTTGTCAGACGACTG









CAGTCTTTACTTGTGGCCTCTGACTGTTC









TACAGGTTCAGAAGCTGTAGTCCTGCTG









GTACTTG





1154
2982612
5
SLC22A3
CAGAAGATTAGGCTCTGGTTAAACATCT
0.00199727
0.007947392
5.12E−06






TCTCCTGAGGGCAGACATTGTTAAGAAC









GATATTCTGGCATATTTCAAAATTGTTCC









TTTTCCCCTCTGGCTGCCAGAGCATGAG









GGATTTTCCTTAATATTCACCTTTGGAAC









CTTGTAGAGCTT





1299
2982619
5
SLC22A3
GTGGTACGGACCCTTTCCATGATCCCCA
0.000394997
0.009799409
9.65E−06






AAAGTTTCCTTGTGTCTCAGTGAAGTCA









GTCCCCTCCCCCCACTCTGGGCTCTGGAA









ACCCAGATCTGCTTTCTGTCATGACAGTT









TTGCTTTTTCTAGAATTTCATAGAAACAG









AATCAACAGTGTCTCACTTGGCGTCCCG









TTTTGTCATACCTTTTATGCTGTCTAAAT









GGGGGATGCTGGTTTTGATTTGAAGCAA









AGGGAGAAAAGGGTGATGTTCCGGGTA









ACACTATCTGTTCAGAGGCTTGTTGCCTA









GTATCGACACTCTCTATTCATGGGAAAA





 598
2982626
5
SLC22A3
GAGGTCTATAAACAGTCGCACTGGGAGA
0.008884278
0.009911085
7.59E−06






GTCTGCCTTATGCGGTTGAGATAAGGAC









TGAAATACACCCTGGCCTCCTGCAGTAC









CCTCAGGCTTACTAGGATTGGGAAACCC









CGCCCTGGTAAATTTGAGGTCAGACCAG









TTCTCTGCTCTAGAACCCTGTTTTCTGTT









GITTAAGATGTTTATCAAGACAATACAT









GCACCGCTGAACATAGACCCTTTTCAGT









CATTCTGCTTTTGCTCTTTGTCTTGTGAT









GTTTGT





1038
2983744
1

CCTGCAGCTGCATAAGTAGTGTTTCATTG
0.025498894
0.008506019
9.12E−06






CACCCCAGCAGGAGCTGGTACCGGTTCT









TCCCTTGCCTCATGCTGGGGTAGATTTTA









TTTAGGATTGGGAGCAGGGAAAGGAGCT









AGAGAAAGGAAGGGTTCCAGGAAGCTG









GGAAGGGAGATGTCAGGTGGGGTGATG









GGAAAGGAGGCCAAGGACCACCTTTGCC









TGTATGGTGGGCTGAACTGTGTCCCCAC









AAAAGATAGGGCGTCCTAACCCCAGATA









CCTGTGAATGTGACCTTATTTGGGAATA









GAGTTTTTGCAAATGGAATCAAGTCATG









ATGACGTCATTAGCATGAGCCTTAATTT









AATAGGATTGATGTCCTTCTAAGAAGAG









AAGACAGGGACACACAGGAGAAAGCCA









TGTGATGAAGCAGGCAGGAGCTGGAGC









GACACTACCACAGGCCAAGGAACATTGG









GACCAGAAGAGGCGAGGAGGGGCCGTT









CCCTAGAGGCTTTGGAGAGAGCATGGCT









CATCAACACCTTGACTTCAGACTGGTAG









CCCCCAAACGGTGACAGAATAATTGTCT









ATTGTTTTAAGCCCCCTGGCTTATAGTAC









GTTGTAAAGGCAGCCCTAGGAAGCCCTA









AGCCAGTTTCACTCATTATGATAAATATC









ATAGATGATGACTGTCATATATTGGATG









TGCTGGAGATCTTCACAGCCACAGAATA









AACTGCAGGCCAAAAAAAGAACATTCAT









ATGAGGTCCCCAGCAGGGGCTGGCTGTG









CAAGTCAGAGACTGCAGAACCAGGTAG









GCAGACAAAGCGAAATTGCCTGGAGCTG









GACACATATGTGCACCACTGGGAAATAA









ATAGACTTGCGGTGGAAATGACCAACGT









GGATGGCCAGGGAAATGCCAGCAGCAA









TAAAAGAAAAGAGTGCACAAGGCCTGT









AAATCAGCAGATGCGAGAGCTCCCGAAA









AGTAGCGAAGTCTGAAATAAAAGGCAG









GCTCAGGCTGGTGGTCCAAGAAGTTAAA









GCAGGAAATGAGAGCGTGGGCACTGTGT









GTGCTGGGCTCCCAAAGACTGCAGGGAG









TGGCCAGATGTCTCCAGAGGCAGCGTCA









TGTGGAGCAAAGGGGACCTGAGGAGTGT









CAGCATCCTCAGTCACCTCCTCCTTTGAA









CCAGCTGTTCGGAATCTGGTCTCTTACTT









AGGATAATTGTAGGAACTGACTTTTTTTT









TTTTTCTTTTCTCACCTATTGGCTGACTG









AAAGAACCGACTTTTAAATGAGCACCTC









CCTCATTAGAATTGCTCAAATGACAACA









GCTGCAGCGGTGGGAGCAGCAGCAAGTT









TGAAAATCCAACAGTCTGCATTCCACAG









TGACAGTATTCTTGGTCACCTCGGAGAC









ATGGCAGCCGGGAGCCACGGCTCTCATT









GCTCGGGGTTGGTTGGGTTACCAGCCCT









AGGGCTACAGAATGTATCTAAAAGAGAG









GCTTGGCTGGCAGTTTAAGAGGGGTGCA









GGACAGCAGGATGGGGTTCATGAGGCA









AGAGTGGATGGAGCCTGTGGCCCAGTTG









GGATGAGATGGGACAGTTCCAATGGGCA









GGACAAACCCCAGCCACCGTCTCAGGGT









ATTTGACAGGAGGTAAACAGCAGACAA









AATCCTGGAGCACAGGGGGGCAGGGCT









GTCTCGTTCCCATGAATGGCA





1545
2985812
2
THBS2
CATCCTTGCAAATGGGTGTGACGCGGTT
9.90E−05
0.012219435
9.02E−06






CCAGATGTGGATTTGGCAAAACCTCATT









TAAGTAAAAGGTTAGCAGAGCAAAGTGC









GGTGCTTTAGCTGCTGCTTGTGCCGCTGT









GGCGTCGGGGAGGCTCCTGCCTGAGCTT









CCTTCCCCAGCTTTGCTGCCTGAGAGGA









ACCAGAGCAGACGCACAGGCCGGAAAA









GGCGCATCTAACGCGTATCTAGGCTTTG









GTAACTGCGGACAAGTTGCTTTTACCTG





 173
2985814
2
THBS2
TCCTGTCCCTTGACCTTAACTCTGATGGT
7.38E−07
0.023947968
2.18E−05






TCTTCAC





1365
2985815
2
THBS2
ATGCCATGGTCCCTAGACACCTCAGTTC
4.36E−06
0.0130199
8.34E−06






ATTGTGG





 257
2985821
9
THBS2
ACCGACGTGGACAATGACCTTGTTGGGG
5.55E−05
0.019474651
1.88E−05






ACCAGTGTGACAACAACGAGGACATAG









ATGACGACGGCCACCAGAACAACCAGG









ACAACTGCCCCTACATCTCCAACGCCAA









CCAGGCTGACCATGACAGAGACGGCCAG









GGCGACGCCTGTGACCCTGATGATGACA









ACGATGGCGTCCCCGATGACAGGGACAA









CTGCCGGCTTGTGTTCAACC





 912
2985825
9
THBS2
TTCAATCCCCGCCAGGCTGACTATGACA
0.000212296
0.009058079
5.43E−06






AGGATGAGGTTGGGGACCGCTGTGACAA









CTGCCCTTACGTGCACAACCCTGCCCAG









ATCGACACAGACAACAATGGAGAGGGT









GACGCCTGCTCCGTGGACATTGATGG





  55
2985827
9
THBS2
ACAAGGACGGGATTGGCGATGCCTGTGA
2.10E−08
0.04925015
6.11E−05






TGAT





1672
2985830
9
THBS2
TGAGCCCGAAAACCCATGCAAGGACAA
0.00060261
0.008283886
6.83E−06






GACACACAACTGCCACAAGCACGCGGA









GTGCATCTACCTGGGCCACTTCAGCGAC









CCCATGTACAAGTGCGAGTGCCAGACAG









GCTACGCGGGCGACGGGCTCATCTGCGG









GGAGGACTCGGACCTGGACGGCTGGCCC









AACCTCAATCTG





1900
2985852
4
THBS2
GACCCTCACTGTGCCTGTTACCTGAGGG
1.07E−05
0.006706587
7.05E−07






GTGATTTGCAGCACAGGCAGAGTTATCT









TGGCTCCAGCACTCTGCGTGCCAGGGCC









TCAGCTTCATGAGGCAGTGCTCTTCTGG









GGGTTCCTGGGGTGCAGTTGGCTGTGGG









GCTTTTGGGTACTTTTTGTTGCAATAATG









TTTTTTCAGTCTGATATATTTATATGTAT









ACGTGTGTGTGTGTGTGTGTGCGTGCGT









GTGTATTTTCACTAATATAGAAAAATATT









GTTTTTATAAACAAAACATATATGCAAA









TATTCTTTGTATGAAAGAAAATATACCCT









TCGCGGTGTTCCTAATCACATGTTTGTAC









TATAATTTCACGTGGGTTCAGTTAAACTA









GAGCTAAGGTTGTCCATGGCATGTTGAG









TCAGTTGTCATAATGGTCAGTGAGTAAA









ACTAACCTACTATGACAAACGTGACTTA









CACCTCTATGTGAGCAAACACCTTGTGT









GTGTGTGTGTGTGTGTGTGTGTGTTACCA









GCATACACCCTAGTAGG





1263
2986383
4
DLL1
GAGATTTCCGTATCCGGCCTCTGTGCCA
0.00076237
0.006667557
2.62E−06






GGTCTCCAGTCAGAGGCGCCCCTTCACG









TGGGAAGGTTCTGGTTTCCCGACTCCTA









GACGCGTTGGTGGCGCGATTACCCGCGC









AGCGCGACCGCTACCACCCGGAGCGTGC









CCATCCCCCAAGAAAAATGACAAGGGCC









CTCGGGCCTCTTCCACCCCATCCTGCCTG









CATTCTCTCTCTCTCTCTAATTAAAAAAA









CAACGTAATATCCTGTAGTACAGGCTGA









AAAAACACGTCAGGAAACCACTCTTTAA









AAAGTTCTTCCATTTCCTTAGGGAAGGT









GAGAGCAGGCAGGAGGTGCGTGGAGAC









CCTCTCCAGACACGCTGCCCCAGACCTG









CAGCCTTCAGGCCTCTGTTGCTGACCTGG









CTGTTAGGAATGACTGCTTTTTGCCGTTT









TCTTTTCGTTACCTTTCTGGGTTGTCTAA









CGTCTTCTCC





1041
2986512
4
PSMB1
TACCAGTGGGTAATGTAGGGCTCGCAAA
0.012305161
0.007787863
2.74E−06






GGTATAGTAAAGCTAGGATTTGCAGTCA









CTGTATTGTCATGCTAAGACCCTGTTTTG









GATGCTTGTGTTCTCTACTGTAGATGTTT









TAAGGATCACGACCACTGCTGTGTATTA









AAATCATGCAGAGTAAGGGTGCTGCCCT









GTGTCTTCTGTTCTCACAGAGATCTGCTC









CACAAAGAGAGGGACTTACATCTAGGTT









TGATCAGGGATTGCCGTAATTTTTCTGTA









AAGGACCAGATAGTAAATATTTACAGCT









TTATGGGCCTCATTTGATCTGCTTCTGTA









GTGAAAAAGCAGCCACGGACAATATTCA









TAGCAATAGGGAGTAGGCTGGATTTGGC









CCCTGAGCCAAACTACAGGGGTAGTTTG









TTGACCCCTGGTCTATATGCAGAGTGAG









GGAGAGAGATGGATTTAAACCCATCTTC









CTTAGGCCACTTCATGTGCCCTTTCATAC









ACATTAGCTCTTGGATTAGCAGTACCTG









AGATAAGGGTGGTATGGAAAATAGAGTC









TAAACCAGAGAGCTGAGGGCAAACTTGG









CATTCCTTCCCTTA





1517
2987970
6

AGTGAGCACACCCAGGCCGACGGCTACC
0.000701725
0.008122069
6.02E−06






CAGATGTATCCAGTGGGTACACCCACGC









CCACGGCTACCCGGATGTATCCAGTGGG









TACACCTTGGCCCACAG





1160
2988685
5
FBXL18
GATCCTCCTATAGTTCCTCAATGTGATGA
2.14E−06
0.013965334
9.39E−06






CTGGGTGTTCACACTCATTGGCGAGATG









TGCCTCTCTCAAACCTTGTTCAGATGCTG









CAGA





 301
2988989
9
USP42
TCAGTTAATAGGTCCTCAGTGATCCCAG
5.20E−06
0.018386695
1.25E−05






AACATCCTAAGAAACAAAAAATTACAAT









CAGTATTCACAACAAGTTGCCTGTTCGC









CAGTGTCAGTCTCAACCTAACCTTCATA









GTAATTCTTTGGAGAACCCTACCAAGCC









CGTTCCCTCTTCTACCATTACCAATTCTG









CAGTACAGTCTACCTCGAACG





1278
2989490
5
COL28A1
TGAATCATGGTGCTCCTACTAAATTCCA
0.003684101
0.006751514
1.06E−06






GGTGTCCC





1425
2989606
4
AC006465.3;
AGAGAGTAATAGCATGCGCACCCTAAAG
0.024995647
0.00697113
4.25E−06





GLCCI1
TTCACATTCCTTTTTCAGCAATCACTGGA









TAATCCCTGGCTCCTGACATTTTCTCCAT









ACAGAGTAGAGGTTCATGATCACTTTTT









CATAATACTTTTAGGTAATTTTAATATACT









GAGGGATAGTGACTTAGGATTTGCTCAC









TTCGTATAAGATAAAACCAATGATGGGC









ACACATTTACCTGTGTAACAAACCTGCA









CGTCCTGCACATCTATCCTGGAACTTTAA









GTTAAAAAAAAACCAGTGAACACCCAAC









TAGACATATTCCTGAATG





 893
2990835
5
AGMO
TAAGAAGAAACAGTAATACCAGCAGCA
0.000106893
0.008642024
4.81E−06






GCATATTGGTGGCTGGATACA





1859
2993333
7
CYCS
TGCGGCCTCCGCGACCCGCTCTCACCTCT
1.63E−05
0.009327163
5.44E−06






TTTTAGTCGCTGGCACAACGAACACTCC









CGCTCCGAAGCCGGA





 558
2993375
1

TGTGTCCAAGAAAGTGTGGCTAGTAAAA
0.000920533
0.009480199
2.07E−06






TAGACTTTGGAGATGGGCCGAAGTATCC









ACTGATTGAAGAAAACAGACAAGTCCAA









GGAGGAAATGCATACAAGGCAGAGGTG









GTAGGCAAAGAGGAGTATAAGATTGAC









AAGGA





 465
2993385
1

GATTTGGTTGTTAGGGATGGAATCAAAC
0.000496534
0.011230659
7.84E−06






AAGACACGGGATTTGAGCTGATCTT





1709
2994249
1

CTCACTCGGTAAAAGCCAGGTCCTGACA
0.000611594
0.008053291
5.10E−06






CGGGCATTCGTGGTCCCACACGAGAGCC









TGCCTGCTGCTTCTTCAATCACACCTCTT









ACCACCCATGGCCCCTTGCTCACTCCACT









CGAAACCCGGAGGTCTCCTTTCTGTTTCT









GCCTCAGGACCTTTGCACTGGCTGTCTTC









CAACCTGAAAGGTTGCTTTTGCCCTTGGT









TCCTCCAGGTCTTGACTCAAATGTCATCT









TACCAGTAAAGTCTTTTCACCTTGGCAGT









TTTTATCCCTCTTTCTTGCTCAGTTTTTGT









TTTATATTACATTGCACTTAACACCATTC









CATACTTAATACCAAACAACGTCTTCTTT









GTTTATTATCTGTCTCCCCCTAAAATGTA









AGTTCCATGAGATTTTTTTTTTTCATTGC









TATATCCAAAATGCCTAGAGTTGTTACT









GGAACATAGTAGGTGGTCTGTACACATG









AACC





1065
2994656
4
CREB5
CTATGGCAGGTATACCAGGCCCAGAGCA
2.98E−05
0.00904156
8.03E−06






ATGAGCGAGAGAGGTGGTCA





1001
2995111
7
SCRN1
CATTTCGGGATGTTTGGAGTCAATCAGA
0.000242546
0.006895394
4.13E−06






TAAAGCACATTATGACAGAAACCATAAG









AGGGGAGCTGGGACCTGGGACTGTGCAG









AATGAAAAGCCACGGCTACGGGAAGCA









TAAGCTTGTGCTGCAACGGCATGTGCAC









ATGACCTGCTGCTCCTGGCCCTCTACGA









AGCATGCCCAGCAAGGGAACCTCCTCCG









TCCCTCCTCCACGTGCTTCCTTCCTAAGG









CTGAGAGCTCAACTGAAGACCTTCCCCA









ATAAATGACAGATGGCTCTTCAGTCAGG









AATGCAGTTAGTGGTTTCATGACAGACA









CACTGGTCCCACCCGGCTTCCCTGCTGA









ACCACCCAGTACTGAATAACACCTGTAC









CAATGTGGGATGACA





1026
2995377
1

CAGGCCCAAGTTCGCCCAGAGGTGACAC
4.39E−05
0.00926322
5.50E−06






ACTTGGGAATTTGTGGTGCCATCGTGCC









AGGTCCCTCCTCGTAAAAGTGCCTACCC









AGCGCCTGCAACCAGAGCCAAAGCCTGG









ACATGATAGGGAAACTCTTGTTAAAACG









CGACACGTGGTCCTG





1782
2995444
9
GARS
ATCTTGCCATTTGTGATGAGTGCTACATT
5.76E−05
0.011995848
8.82E−06






ACAGAAATGGA





 404
2997012
1

GGACTTGCTTCTCAAGGTGGGACTTTGCT
0.000118492
0.012317168
6.55E−06






GCACGCTGTACAAATTGGTTGCTTCTG





 370
2997133
4
SEPT7
AAGTTGTCTTCTCTAGGTTTCTGCATTCT
7.71E−05
0.010482923
5.22E−06






CCTTATTAATTCTTGAGCTTCTTAATTTC









TAGGATGTGTTTTCTCCCTGTGTCCTTCC









CTAATCTTACACCTGTTGCTCCTCAATTT









GTGTGTATGCACATGTACATGTAAGGAT









TTTTCTGATGAATGTTCAGGGAGCAGTG









CTGTACTTAGTTTTACCTTACTTTTGCCA









GATTCTACTAAAAATTTTACGTGAGTTTA









GCCCTGTTTATTCAACTAAATAAGATACT









TGGGAATTTATATCTAAAGGAAGAATCT









CAGTCATTGTAAATAAATGACCTAAAGT









CATTATTGTGGAAATCAATCAGAGAAAT









CCCTTTCTGGAGTTTTACATCCTTTTTGG









AACTCTTTTGGTATGACAGCTA





 444
2997175
6

GGATTCTTGGACCATCCAGAGGACAAGG
0.009101689
0.013517476
1.49E−05






GGCGGCCCCTCTTCAAAGATCTCTCA





1450
2997383
4
ANLN
GCCACTGAGTTTGGGTGGTGTCTCCGGT
0.023754148
0.009205054
7.66E−06






ACCAGCAAGGCAATGGAAGGCACACTG









CCCATGCTTGACATTTAATGAACCCTTTT









CACTCTCTATTTGCTGAACCAACTCTCTA









AAGTTTAGGTTGTTAATCTCCAGAAGTG









GTGGAATTAAACACAAGCACACACACAC









ATACACACAAACAAAAACTCACCTGTAG









TCTTACTCTTTCCTCAATCCTAGGATTGA









TTCCCAGCCAGCATCAGACAGCCTCCTT









AGTCTTTTCCTGGAGTGTA





  79
2997407
9
ANLN
GCTATTACTCCAAAGCGACTCCTCACAT
1.29E−05
0.027389498
2.57E−05






CTATAACCACA





 628
2997645
5
ELMO1
TACGGAGGGGCATTCCTGCTAATCCAGA
0.021002867
0.009159887
6.97E−06






ATCTGCATGTCAGGACATTCTGGAAGCC









TTTTGCTTTGCACTAAAGTCAACCTCAAA









AATTAATATCCCACAATCACATATAGCA









GAAACGCAGAGCAAAGAGTT





1779
2998743
4
C7orf10
AATACTATGGGAGTTGGCAGCTAGAAAC
0.00011347
0.007120881
5.41E−06






ACAAGTTAGGAAAGG





2070
2998957
7
AC005027.3;
GGCGTTGCTGAATACTGTCCACTAACTG
6.01E−05
0.006964308
2.98E−06





INHBA
TACAAAATATTGACTGCATGCCTCGCAA









ACACCAAAATATCCGCTGGAATGCCATA









GAAATAAATAACTTCTGCTATAAACACA









TGAA





 718
2999112
5
GLI3
CCAGGGTGAACACTGTGGTGCACTCCGG
0.001466913
0.009358662
6.89E−06






GATGTTCGGCTGCAAATAGAGAAGACAG









GGCAGCAGCTAGAGAAGACCCAAGGCC









AGAAGTGCTGTGTGGATGTTTTGACTCT









GTTTGTTTATGGGTGGAAGGCACTGGAG









CCACCGAAGTGGAGGAAGAATGAAGTG









AGAAAGGAGAGTACCGATGGAGTCAGG









GTCCCTAGAATCCAGAAT





2058
3000529
7
IGFBP3
GGTGAATCTCTATGTGCTCCCAGTGTCCT
0.000391017
0.006979675
2.90E−06






GGATGGGCTCCCCAGCAAGCCATTCCTC









CTTCCTGTTCTGATATTACTATTCTTTTTT









ACATTGTGCTAAGGAGGACAAAAGATGA









GAGATGAAAATAAAGCTTTGCCTTTAAA









GAGCTTATCCTCAGAAATAAGCTTCGTC









TTGAGTTGTTGAACTACAAAACACTATTT









TCTGCAGTCATCCGAAGAATTGTGCCAT









TACTTGTGATGCCTCTGAATGTGGAGGC









TGACTCTCCCTGTCTCTCTGTCCCTCCTA









CCCCACGGGGCCGCAGCAAAAGCCATCC









TGGGCCTTCGACTGGGCCATGTCTTCAG









GAAGATTCCTGAAGAGGAGGGCCCGAA









ATACCTGCCTTTATAGGTTCCCAGAGTGC









CCTAGAACATTCTTAGATACATATTTTTT









AAACAAGTAGGACTCCACCTTATTTTCTC









CAATAGTCCCCAAGCAGTACAGGTCACT









TGAAGACATAAACATTCTTCTTGGTTGA









GGGATCCACGCCCTTGTTTCAGAAATGA









CACCACAGAAGGCTGTGAGCTCCAGGAG









CATGCGTTGGGATGTCCGGATGACCGGG









GTTTAAAGGTTTTCCTATTCTCGATAAAG









CCTGTGCGCACTGTACGGGGAGTGGGGG









TGAAGCGTGTTCTCTACATAGGCAACAC









AGCCGCCTAAGTCACAAAGTCAGTGGTC









GGCCGCTTCGACCAACATGTGGTGAGCA









TTCCACGGGCGCATGAAGTCTGGGTGCT









GTGCTCGAGTCTCTGAATA





 823
3006506
1

TCTGACTGAGTGTATTGAATGGCCTTCTA
1.22E−05
0.009439851
9.16E−06






CGGTACTAGTCATGTGTCAGACCAGACA









CCTGATCTCAGTGGATATGCCTCCTCAG









GC





1980
3010073
5
TMEM60
ATATGAGGAACCAGTTCCAAGGTGCTTT
0.00041969
0.006577928
3.02E−06






CTCA





 991
3010612
5
SEMA3C
CCAGGTTTATTTCTAGAGGCCCATGGGT
0.001082945
0.009528208
6.30E−06






ATTTACACTTTTCCTTGTGTGTTGTTGAG









TATACCAAAACAGAACTGCCAGCCATTA









GCCCATGGCTTTTCTGCCTACGTGAAAA









CAGCAGGATTATAGTACAAAGGGCAGA









GACCTAAGCCAAGATTATGTGCTAAGAA









GAACGGTAAGAGCATAAGCCCGCTGAAT









TACTGGCACCTTATGATCCTGGAACTGA









GAGCCCTGACAGGGTTTGATCCACTATT









TTGGTTCTTTCTGCTCTACCTCTGCCCAT









CCCTCCTAATGCAGATAAAATTCATTCAT









TCTTTCACTTTCAAGTATTTGCAGTCACG









CATCCCTTAACAATG





 446
3011436
9
RUNDC3B
GACAAGAGTTAACTGCCCATCTCACCAA
5.65E−05
0.009499059
7.55E−06






CCAGTGGCCTTCTCCAGGAGCTCTGGAT









GTCAATGCTGTTGCCTTGGATACGTTGCT









TTACCGAAAACACAATAAACAGTGGTAT









G





1463
3012549
9
ANKIB1
TTCCGTAAAGCACTCATCAATGGTGATG
0.000586459
0.008029494
2.20E−06






AAAACCTGGCCTGCCAAATATATGAAAA









CAATCCTCAGCTAAAAGAATCTCTTGAT









CCAAATACATCTTATGGGGAGCCCTACC









AGCACAATACTC





 548
3013157
9
COL1A2
TTGCATACATGGATGAGGAGACTGGCAA
1.66E−06
0.017474811
1.42E−05






CCTG





1418
3013369
4
PPP1R9A
CAATCCTAAACATATTTGGGAGCTGCAC
4.61E−05
0.009215595
3.64E−06






ACCTAAAAGAGGAGCTCCC





1622
3013678
4
DYNC1I1
ATTGGACTTCAAGGAGAAATTAAGGAGG
0.029646817
0.006940481
2.98E−06






GTGGTCGAATGTAGATCAAATTAA





1796
3014762
2
BUD31
TGGACTCTGGACTTCGCAGGTTCCTGCCT
0.000120755
0.007722082
4.42E−06






GTCACGCCACCCCCTTCCTGGGAGCAGC









GAGCAGTGCCCCAGGCCCGAGTTGGAGC









ACGGTCTCTATGG





1626
3015101
6

GGCATCCCAGTCTTCGGTCTCCAAATCC
0.002212029
0.00893252
8.09E−06






ACCTCCTGTCTGTCCCCCCACACTGCTCC









TCAGGCCTTGTGGATCCATTGACTGTGAT









TTCTGTGGTTCAGCTCCCACATCAGGCA









GGAAGGGCAGCTACTGGGTCTGAGATCC









CACATTGCCTCCAACCCTTGCTTCCTAGC









TGGCCTCCCAGGGCACCACGAGGGGCTG









GGCCAGGCTGCTGTGCTGCACGTGGCAG









GAGTAGGGGGCTGTGTCCTGCGGGGGCA









CTGCCACCACCACCCAGGACTGGTAAGT









GCCATTTCCATTGTGAAGAACATCTCCCC









GTAACTCAGGCTCCTGCACCTCGCCGGC









CCGAGTCCAGTGCACATCAATTTTCCCTG









GGTAGA





1793
3015540
2
PILRA
GGGCCAGCTTTGATAATGGAGCGAGATG
3.04E−05
0.006597037
4.97E−06






CC





 497
3017037
4
LRRC17
GAATGTAAGGGCCAGAAAGCTTGAATGC
0.000200907
0.013948871
7.99E−06






CCAGAA





1269
3017439
4
LHFPL3
GAAATGTAACATGGGCAACTCCGAGCCC
0.011739756
0.006799509
2.22E−06






ATGACATGTTACAAGGACAAAT





1890
3017590
9
MLL5
CGTTTGGCAACATATTGACTGCATGGGG
0.000333103
0.008691028
6.56E−06






ATTGATAGGCAGCATATTCCTGATACAT









ATCTATGTGAACGTTGTCAGCCTA





 585
3017615
9
MLL5
TTGGGAAGCCAGTAGTTTGGGCTTAGTG
0.004464194
0.007736726
6.92E−06






ACAGCTGCTCTGCATATGGTAATTGTTGC









TGCCTTTACATGGGCT





1218
3018430
9
HBP1
GTGATCCTACCCAATCTGGCATGTACCA
0.005019305
0.006977198
6.61E−06






GCTGAGTTCAGATGTTTCACATCAAGAA









TACCCAAGATCATCTTGGAACCAAAATA









CCTCAGACATACCAGAAACTACTTACCG









TGAAAATGAGGTGGACTGGCTAACAGAA









TTGGCAAATATCGCGACCAGTCCA





 900
3020009
4
MDFIC
AGAGTCCTGTTATACCGCCACTGGGCAG
3.41E−05
0.013179927
1.10E−05






GTGATAGTCGTAGCAGCTAAAGAATGGG









GAACAACTGGGGGTGCTCTGTGGCGTTG









ATGTTAAAGCTACAGAGTCAGGTTTGAC









CTCAAAGCAATTTCCTAAATTACTAAAT









ACACATAACTCTTATTGTTCATGCTTTAA









TCCATGGTCTTTGGCATATTATTGGCCTG









TTAAATGCTAATAAACCTTTGTTTCTCAG









CATGTAGTTTACATGATGGGGACTTGAT









TAAGAAAGTACTTTCAAGCATCTTATTTC









ATAGGAAACTTTATTAGAGATAAGATAA









GACCCATTCAAATATGCATTCTCTTAAA









AATGGGTTGTGAGTTATTCTCAGAATTCT









CTGCTGTCTGTCCTTTCCTGTACTCCACT









TTA





 209
3022789
7
IMPDH1
GTGAAGCCTGGGAGACCTCCTGACATGG
0.037823788
0.01275585
1.46E−05






GGCCCACCTGCACCAGCACACCCCCACC









CCACCCCCAGTACCTCAACACCCTCAAA









CCTTCCTGGGGAGGCAGGGCCTGGTGCC









ATACCCCCCAGCCCAACTCTGATGGGGC









TCCAGCCACCCAATGGACAGGGCATACA









GACAGGATAGTGGAGGCGTTGAGACCTG









CTTGATTTATTCCAAGTATTTAATACACA









ATGACGCAACTGTGATCCCAAGTGTGCA









AAGTTAAAGCCTTCGACTGCAGCTGAGG









AGAAGGGAGGAATGGTTCACCTGGGGA









CGGTGGTGAGTCAGGAATGACAGGCAG









GCGGCCATGACCAGGGCAGTCTCCTACC









CATG





1057
3023361
9
SMO
TGCCGTATACATGCCCAAGTGTGAGAAT
0.000729678
0.007489073
4.24E−06






GACCGGGTGGAGCTGCCCAGCCGTACCC









TCTGCCAGGCCACCCGAGGCCCCTGTGC









CATCGTGGAGAGGGAGCGGGGCTGGCCT









GACTTCCTGCGCTGCACTCCTGACCGCTT









CCCTGAAGGCTGCACG





1196
3023750
4
KLHDC10
GCAGTTCGTAACTCCTGACTTTATGAAAT
9.02E−05
0.009325147
9.03E−06






GTCTGAGAAGCCAGGTTCAATGTCCCAT









ATTCCTCATTAATAATTTATAACACTATA









ATGTGATTTCGCCCTGTGGGTGGATAGG









CTTTTTACTAGGGTAATAACAGTATGGT









GATTCCAAATTATTTGGGTCCTGAGTTTG









AATTCAGCTTGTCAGGTGAGTTTTAGCTT









TAATTTCCTAACTTGCAAAATGGGATTA









ATAATATCTTAGAGGGTTCAATATAAAG









TATCACGCAGTAGAAGGTCAACAAATGG









GGCTTATGACGATGACAGTTA





1696
3024264
8
AC058791.2
TCAGTCTGCCATACAGCAATTTTTAAATG
0.000454879
0.006967013
4.72E−06






ACATAATCCTTTAGAAATCAAGCAGTGA









TCAGTGCTCAACTTGAAAAGTGATGGGG









GTGGGGGGAACAGGCAAAAAAAAAAAA









AATCACAGAACTTTAGAAGATACTGTCT









ATCCCAACGGCTCTCAAAGTTTGGCCCT









CTGACCAGCAACGTCAGCATTACCTGGA









AACTTGTAAGAAATATACATTAGTGGGC









CCACCCTAGACCTT





1829
3024911
5
CHCHD3
TTAGAGTGCCTGTGAGATACTAGGCACT
0.01615124
0.006700971
3.74E−06






GTGGGACAAGACCAAGAGACTGAGTCA









GGCAGACCTATCTAGCCCATTAAGAACT









GCTTTAAAGGGACACATCTGGCAACAGT









AAAA





1726
3027105
4
CLEC2L
GAACAAGTGGATAAACGGTAACTGACTT
2.22E−05
0.007139137
3.31E−06






CACCCCATCTGAGAAAGTCCAGAGAGCA









GAGGAGTTACCTGAGCCTCATGG





1885
3027444
1

TCCTGAGCTCACAGGTTTCTCCCACCTCA
0.008028233
0.006511512
4.30E−06






GCCTCCCAAAGTGCTGGGATTACAGGCA









TGAGCCACCATGCCTGGCACAATTTCTTT









CTAGAACCCAAATCATCTGCCAGATCAG









AAGTCATTTT





 487
3027586
5
BRAF
CTCAAGGGTGAAGAATGAGTCTTACCTG
5.28E−06
0.01350394
8.95E−06






ACACACATTAGATAATGAACAAGCTCAA









GTCTTAAAATCCTGATTTATTTTAAACTA









GTGCTTAGACATGACTGTGGTTCAAGTTT









GGCAGACAGGTTTAAATGTCAAATCCAA









CACTAGAGACAATACCATTTATTTCAGTT









AAGGAATATAGACTTTGCCACCAAATAA









TTACATATTTTTCATTCCTGTATGACATG









GATGCCTCTATTTGCATGACCTCTGAGTA









TGAAGTAATAATATATTAATTTTCAACA









ACTGATCTGTCTGAAAAATACAAAGAAA









CAGCAAAATGGTGATATTAAAACTGACT









CACCACTGTCCTCTGTTTGTTGGGCAGGA









AGACTCTAACGATAGGTTTTTGTGGTGA









CTTGGGGTTGCTCCGTGCCACATCTGTGG









GA





1485
3028591
1

TGTTCCCCTATCACCGATGCACAGACCC
0.000945161
0.007818806
4.35E−06






AGAAG





1153
3029904
2
CNTNAP2
CCCGGCGTTGCACTGGCACACAGTGCAA
0.006827559
0.006900031
5.28E−06






GAGGCAATACCCGCACGGAGGGAGAAC









GAAGGCTGAGACTCCCCTGCCGCTCCAA









GCCCGGAAGAACTGGAGCCTGGAGGGG









GGTGAGGGGAGAAGAGGAAGCGGGAGG









GGCTTGGCTTCCTCGCGTATTTGAGGAC









AGCCCATCT





1529
3030862
1

GCAGAAGCAGTTCCCTAGGTCTAGGTCT
4.47E−05
0.010863593
6.72E−06






CCAGGACCTGTCCACAGTCACTGAAACG









CCTTCTAGAATTGATCTAGTGGAAAATC









TAGATGCAGTTTAGGTCTTTGGCACTGTG









CCCATCTCCTTTAAGAACTGTGCAGTGTG









GCTTGGAAGAGGAAATGTGGTCCCTTTG









ATGGGAGAAACTGAAGGACCTTTTTGAA









CTCAAAGGAGCTCCAGGGTTTGGAATTG









GGGGCAGAGAAGGCTCCAGGCTGCTCAT









TCCATCCTGGGTGAGCCGAACGGGTCCT









GGCTGATCTGAGTGCGACCTTCCCAGTC









TG





 747
3030882
3
SSPO
GGCTTTGTGACAACCAGGACGACTGTGG
0.001705241
0.008747664
3.19E−06






CGATGGCTC





 323
3031189
4
ATP6V0E2
AGGTGATTCTGACGTGCTGCCCGCCAGG
5.87E−06
0.015735604
8.36E−06






CCTGCCCTGTTCGCTCCCTGGTGCATGGA









GCCGG





1310
3031580
3
GIMAP5
GTGATGAGTGTTGCGGGCATCAGCAGGT
0.003557945
0.007082989
2.22E−06






GCACAGCTGGTGGAGCACAGCCTGAAGA









ATCTGTGCCTGCACTCACAGCCCAGTCC









CAGGACAGCGGGCTTTGCTGCCCCATTG









CCCATTACTTAGCCAAGTCGATCTCCATG









AAA





1452
3031668
9
ABP1
AAGCCCGTGCCGTCATCTTCTTTGGTGAC
0.002849134
0.00784346
4.34E−06






CAGGAGCATCCCAATGTCACCGAGTTTG









CTGTGGGGCCCCTGCCAGGGCCCTGCTA









CATGCGAGCACTGTCCCCCAGGCCTGGG









TACCAGTCCTCCTGGGCATCGAGGCCCA









TCTCCACAGCAGAGTATGCCCTCCTCTAC









CACACCCTGCAGGAAGCCACCAAGCCCC









TGCATCAGTTCTTCCTCAATACCACAGGC









TTCTCATTCCAAGACTGCCATGACAGAT









GCCTGGCCTTCACCGATGTGGCCCCCCG









GGGTGTGGCTTCTGGCCAGCGCCGCAGT









TGGCTTATCATACAGCGCTATGTAGAAG









GCTACTTTCTGCACCCCACTGGGCTGGA









GCTCCTCGTGGATCATGGGAGCACAGAT









GCTGGGCACTGGGCCGTGGAGCAGGTGT









GGTACAACGGGAAGTTCTATGGGAGCCC









AGAGGAACTGGCTCGGAAGTATGCAGAT









GGAGAGGTGGACGTGGTGGTCCTGGAGG









ACCCGCTGCCTGGGGGCAAGGGGCATGA









CAGCACAGAGGAGCCGCCCCTCTTCTCC









TCCCACAAGCCCCGCGGGGACTTCCCCA









GCCCCATCCATGTGAGCGGCCCCCGCTT









GGTCCAGCCCCACGGCCCTCGCTTCAGG









CTGGAGGGCAACGCTGTGCTCTACGGCG









GCTGGAGCTTTGCCTTCCGGCTGCGCTCC









TCCTCCGGGCTGCAGGTCCTGAACGTGC









ACTTCGGCGGAGAGCGCATTGCCTATGA









GGTCAGCGTGCAAGAGGCAGTGGCGCTG









TATGGAGGACACACACCTGCAGGCATGC









AGACCAAGTACCTCGATGTCGGCTGGGG









CCTGGGCAGCGTCACTCATGAGTTAGCC









CCCGGCATCGACTGCCCGGAGACCGCCA









CCTTCCTGGACACTTTCCACTACTATGAT









GCCGATGACCCGGTCCATTATCCCCGAG









CCCTCTGCCTCTTTGAAATGCCCACAGG









GGTGCCCCTTCGGCGGCACTTTAATTCCA









ACTTTAAAGGTGGCTTCAACTTCTATGCG









GGGCTGA





 764
3032568
1

TGCAGACACCAGATGCGAGACAATAGG
0.001797859
0.006590099
2.66E−06






AAGAGCTGACTGGGTGGTTCAGGACCTG









CCACTGGGGACAGTTTCTTCGTCCACCTT









TGGTCTTGGGTCCATGCTTCCATGTCCTT









C





 417
3033649
1

ATGCAGGAGCGACTGGACCCCACATCCT
3.28E−05
0.016185129
1.54E−05






G





1497
3034150
5
PTPRN2
CAATTCCCGCTCATACACAGCAGGCCAG
0.001268815
0.006942742
3.14E−06






AAAGACTTCCACGCTGCACACAACGCTC









AGAGCAGAACGTCTGGGAATCAATCTAT









CCAAATTTG





1400
3034165
5
PTPRN2
AGTCACTCTGGCATCGCCTGCAACAGCA
0.000142286
0.007604817
5.46E−06






AATAAATGAGTGGCAAACAAGCTCTCGC









GGAGGGTATTTAAATATTTTATGTGACT









AAGAAGAATGAGATACGTCCATTTGCTG









TGATAAGAAAAGATATTCCACAGTTTCG









TATTTGTTAAGTATTTTCAGCAAATCATG









GAACACGATGCAACACCCGATTC





  62
3034212
5
PTPRN2
CCAGAGCCACAGTATGCTGAGGGTCCAC
5.67E−06
0.041004965
4.35E−05






GCATTACATCCTTCCATCTATCCACCACT









AAACCACAGCCACAGTACACTGAGGGTC









CATGCGTCACGTCCCTCTGT





1509
3034226
5
PTPRN2
CCATGGGAACTCCACACCATGAGAACAG
4.26E−05
0.009473058
6.04E−06






GGCTTCAGAGACCGCAGAAACTCCACAC









CACGAGAACAGGGCTTCAGAGACCGCA









GAAACTCCACACCACGAGAACAGGGCTT









CAGAGACCAGAGTAACTCCACACCGTGA









GAACAGG





 449
3034229
5
PTPRN2
AGCTCCTTTGTTCCTAAAATCAATGCCAC
7.50E−05
0.01521519
1.17E−05






GTCCCCAGCTTACAACTCCTTGTTCCTAA









ATCAACGCTGCGTCCCCAGCTTACAACT









CCTTGTTCCTAAATCAACGCCACGTCCCC









AGCTTACAACTCCTTGTTCTAAAATCAAC









GCTGTGTCCACAGCTTACAACTCCTTGTT









CCTAAATCAACGCTGCATCCCCAGCTTA









CAACTCCTTGTTCCTAAAATCAACGCCG









CATCCCCAGCTTATAGCTC





1769
3034583
6

ACAGTTGCAGGCACGCAGCGGTCTCCCA
0.001374129
0.007171184
4.35E−06






GCGTCAGGGCGCACCGCGA





1792
3034982
5
SUN1;
ATGGTTCTACCATGAAGACACACGCACT
0.003031295
0.008267621
3.22E−06





GET4
CAAATGCCCACTGCAGCACCACTCACAA









CAGCACCGACATGGAATCAAGCTGGGGC









CTGTCAGCGGCAGACGGATAAAGAGGAT









GTGGTCCATATACACCGCGGAATACTAT









GCAGCCATAAAAAGGAACAAGATCATG









CCCTTTGCAGGAACTTGGATGGAGCTGG









AGGCCATTATCCTTCGCAAACTAATGCG









GGGACAGAATCCCGGGCACTACACTTCC









CCACTTACAAGTGGAAGCTGAATGATGA









GAACACAGGGACAGAAAGGGGCCAACA









ACACACACTGGGGCCGGCCTGAGGGAA









GAGGGAGAGGCTCAGAAAACCATTTTAA









CAAAACTGTCAGGTACCCATGCTTGGTA









CCCGGTGCTGAAATGATCTGTAGGACAA









ACCCTAGTC





1925
3034996
4
ADAP1;
CTGGATGTAGGGCCTGCCTCGGCGACCT
0.001925692
0.007392579
3.91E−06





COX19
GCCGGTCACGGGCCCTCTCTGAC





1260
3035770
3
GRIFIN
CAGCTGGGACGCGGAGCACTTCCACGTC
0.000180795
0.007217638
2.93E−06






TACGCCCCGGAGCACAAGGTGCTACAGT









TCCCATGCCGTCAGAGGCCGCTGGGCGC









CACCACCAGGGTGCGCGTGCTGAGT





1115
3036697
5
WIPI2
ACTGCGTAAGGCAAGAACGTCTCTACTG
0.000167867
0.00903808
4.79E−06






TGACTTCACCTAGTCACTGTATCTCAGGG









TGCAGCTACTGGCTGTCATCATGTCCACT









CTACAGCCAGCAGCCTAATCAGCTTTCC









CTGCAGGGAGTGCGGGCAGAATCAGATT









GCCAGGGGTCTCCCGGGTGGTGCTGTTA









CCCTGGGCGTGAGCACAAGCT





1516
3036972
6

GAAGCTACTATCATGGGCGTTTAGAGTT
9.88E−05
0.007741062
6.32E−06






ATACAAATGACACTTACAAAAAATAAAA









GACCAAGACACCCAGAGTGAGATGCATG









TTGGGGACGGGGGAGGCTGGCAGCAGG









GGGGCCCCGGCGGCTCACCCCAGGGCTC









CCGGAGGGGGCGACGCCTGGCTTCATCC









ACCCGGGAGGCCCAGGGAGCACCAATC









ACAGCAGGGGCTCTGGCCCAGGTGTCGG









CAGCCCAGGCCCAGGGCTGGGGCTGGAC









GGGAAGGACGGAAAGAGGGGGCTGAGA









TGCACCCCCTGGGGAGGGTGCTGAGACG









CCCCCCGCCAGATCACTCGCTACTACAG









CCAGGCTTGCCTGGGACGCCTCCAGCAA









TAATATTTC





1683
3037200
9
EIF2AK1
GCTCTTTCAGCCGTTTGGAACAGAAATG
2.49E−05
0.007813506
5.78E−06






GAGCGAGCAGAAGTTCTAACAGGTTTAA









GAACTGGTCAGTTGCCGGAATCCCTCCG









TAAAAGGTGTCCAGTGCAAGCCAAGTAT









ATCCAGCACTTAACGAGAAGGAACTC





1958
3037328
6

CAAAGTTCAGTGCTCGGTGTTCTCGGCA
5.98E−06
0.008945527
7.37E−06






CAACAATGCAGTGTAGTTCAGAAGGTAT









TTTGGCAACTCTTAATCTGAACAAGAAT









GGGGGGGGCGCTTTTGAAAAATAAGGCT









TTAAGAAGGCTTGTCATTTTAGGGCTAA









ATTTTAATAGAATGTGAGTCTGAACTCTT









ACATTTAGAACAAACAAAACCTTAAAAT









TACTGATTGGTTCAAAAAATGGTTTTATG









GAAAAATTAATCTGTAACAAAAAGTTGG









CATTGAGTGCGAAGGCTCCACCGTTGTT









TTTTTTTTTTGTTTTTTTTTTTTGTTTTTTT









TTGAGCAAAGCGTACAAAGGTTCCAAGG









GACAGGACCAAGAACGAGGGGCTGAGA









CATTTACAACAGCAGGCATTTTCTCTTCC









TCTTCTTCACGGGAGGCGGGCAGAGGAC









TGCTCGGATCGCTTCGTCAAACACTG





1464
3037738
1

GATAGGAGGTTAAAATGATCAAGGATAG
0.006389661
0.007386167
4.59E−06






TCAGGGACATGACAAAGGTGGCACATGT









GCCTTTACAGATTTGGCACGAGTTTAAC









CCTGAGTCTTTATTTGGAAAATGGTTTCC









AGCTATAGGAGGATTTAAACCCCTCATT









GTAGGTGTATTGCTAGTGATAGGAGCTT









GCTTGCTGCTCCCCCGTGTATTACCCTCG









CTTTTTCAAATGACAAAAGGTTTTGTTGC









TACTTTGATTCATCAGAAAACTTCAGCA









CAGGTGTATTATATAAATCACTATCGTTC









AATCTCACAGAGAGACTCAAAAAGTAAA









GATGAGAGCGAGAACTCCCACTAAAAGT









GAAAATTCTCAAAGGAGGGAAATATGGT









GTGAGACCACCACGTCTCCTGCTG





 784
3039035
5
SCIN
TTTCTCCCTCCTCGACAGCATCATGATCC
7.97E−05
0.009191604
2.92E−06






TCCACCAGAGCATCATGATCCTCCACCG









TATGTCCCTGCTCCGGCTCTACCCCTCTC









CCCCACTCTCTCCAACCAACCCACTTCTG









ACTCTGAGTCCTCTCTGCCTCCTCCCCTC









ACCCGCTCTCGGGCCCAATGTGCTCAGC









AACCAGCTCCCTTGCTTCCTCTCCGGGAA









GTAGCGGGAGTTGAGGGGATCGTCCATG









TCCACGTCCCTTTCTCCTTCTACGATCTC









TTACAG





1383
3039818
2
AGR2
GCTGACCTATTGCTGAGGACTATGAGAA
0.000128137
0.011486351
1.09E−05






AAAAGTTATTACAGAATGAGTCATATGG









AAAACACTTGCAAAC





 629
3041213
4
AC099759.1
ATTGCTGGCAATTCCTGGTCATGCTGGTG
0.004590062
0.011694926
8.46E−06






CATTTCCTCTTGGAGTCAGACATGTGGGT









TCTGTGATGATTCTCTGAGTCCAGGATTT









ATCCAGCC





 254
3042471
3
HNRNPA2B1
TCATTGCGGCGTGAACAATAATTTGACT
0.003098917
0.012381991
9.24E−06






AGAAGTTGATTCGGGTGTTTCCGGAAGG









GGCCGAGTCAATCCGCCGAGTTGGGGCA









CGGAAAACAAAAAGGGAAGGCTACTAA









GATTTTTCTGGCGGGGGTTATCATTGGCG









TAACTGCAGGGACCA





1118
3043075
7
RP5-
AATCAGTGTTGCCTGGTGGATAGCAAAT
0.000701725
0.010817936
7.40E−06





1103I5.1;
CAAGTTTCAAGGTTACAGA








AC004009.3






1457
3043108
8
RP5-
TGCTCAATCTTCGACTTCATACGCTTCAT
0.013431886
0.008758105
6.86E−06





1103I5.1;
TTTTTCCTTACCTCCATCAACTAAATAAC








AC004009.3
GCCCTCTTGCC





 330
3044438
1

GTCAGGAGCCCTCTGTATAGACAAGGGT
0.000224879
0.011215692
7.96E−06






AGAGAGAAGCTCAGGAGGTCCTTAGCAG









CACCCTGTGGGAGAGCAGGGAAGGCCA









CAGGAAACCTGACCCCTAAGACCTGGGT









CCGGGACTCAAGAGAATGGAAATGGAG









AGGAACCAAGAGGAAGCACAGACTGGT









AGTGGGCACCCTGTCATTGGAGCTATGT









GAGGCGATAAGGTTTGGCTGTGTCCCCA









CCCAAATCTCATCTTGAATTGTAGTTCCC









ATAATCCCCACGTGTCATGGGAGGGACC









CGATGGGAGGTAATTGAATCGTGGGAGC









GGTTTCCCCCATGCTATTCCTGTGATACT









GAGTCAGTTCTCACAAGATCTGATGGTT









TTATAAGGGGCTTTTTCCTTTTTGCTGGG









CACTTCTTGCTGCCGCCATGGAAGAAGG









ATATGTTTGCTCCCCCTTCTGCCACGATT









GTAAATTTCCTGAGGCCTTCCCGGCCCTG









CCAAACTTGGTCAATT





1448
3044555
1

CCCATGAGTGGGGAGACTTAGTATTCAG
0.032104854
0.006681803
7.10E−06






CCCGTGCTTTCAGCATC





 136
3044692
9
PDE1C
CAGAACTGTCTGTGGAACTCCCTCATCG
3.19E−05
0.020143883
1.83E−05






ATGGGCTCACAGGGAATGTCAAGGAGA









AGCCAAGGCCAACAATTGTCCATGACCC









TCGACCCCCAGAGGAGATCCTAGCTGAT









GAATTGCCACA





 255
3046448
2
SFRP4
TGTTGTTGCAATGTTAGTGATGTTTTAA
1.66E−06
0.023764559
2.43E−05


 350
3046449
2
SFRP4
AAATAATGCTTGTTACAATTCGACCTAA
6.33E−07
0.020534054
3.08E−05






TATGTGCATTGTAAAATA





 868
3046453
9
SFRP4
CAGGAACAGCGGAGAACAGTTCAGGAC
8.12E−06
0.017228888
1.44E−05






AAGAAGAAAACAGCCGGGCGCACCAGT









CGTAGTAATCCCCCCAAACCAAAGGGAA









AGCCTCCTGCTCCCAAACCAGCCAGTCC









CAAGAAGAACA





 630
3046457
9
SFRP4
TTAGTTGAAAAATGGAGAGATCAGCTTA
4.28E−06
0.01509688
1.74E−05






GTAAAAGA





  49
3046459
9
SFRP4
GTCACAACGGTGGTGGATGTAAAAGAGA
2.62E−09
0.069643156
0.000104049






TCTTCAAGTCCTCATCACCCATCCCTCGA









ACTCAAGTCCCGCTCATTACAAATTCTTC









TTGCCAGTGTCCACACATCCTGCCCCATC









AAGATGTTCTCATCATGTGTTACGAGTG









GCGCTCA





1318
3047600
2
AC005027.3;
GTGCCAATACCATGAAGAGGAGCTCAGA
0.000729678
0.012639164
1.27E−05





INHBA
CAGCTCTTACCACATGATACAAGAGCCG









GCTGGTGGAAGAGT





 943
3047613
4
AC005027.3;
ATTAGGTGATGGTAGCGGACTAGCCGAC
0.000339114
0.011103507
3.96E−06





INHBA
GGAGGGCAGGCAGGGGAGGGGGAGAGG









ACTTTACAGAAAAGGAATTCTCGGTCGA









GCTCTGCCTGGAGATGACTGGCTTACAC









TTACTAAACCCAGCGGGTCA





1475
3049299
9
IGFBP3
GTGTGGATAAGTATGGGCAGCCTCTCCC
0.002537394
0.011328252
9.82E−06






AGGCTACACCACCAAGGGGAAGGAGGA









CGTGCACTGCTACAGCATG





 284
3050416
9
DDC
TTGCAGATTCATTCAACTTTAATCCCCAC
0.02980537
0.010140623
1.36E−05






A





1163
3051219
1

CCTTCAAGCTGGAGGTCGTGGCTGCAGA
0.00102279
0.00821568
4.94E−06






GGCCTCTACCCGACAAAGCATTAG





 559
3052483
6

CCTCCAGCTCTAGGCTGCGGGGATCCCC
0.005952617
0.012033356
1.36E−05






TCTGCCATTGAGGCCTGGCCCCTCTATAC









TGGGCCCTGAGCATGTACCTGGCTCCCC









CAGTGTACCCGAGGGCCTTGCTGTCACT









GGATGGATTGAACAACTCAACCGAGTGT









GCATGCTCATGCTAACCAACATTCAGTC





 742
3052982
6

TTGGAAGCTCTACTTGTAGCACAACTTG
0.032963108
0.009953901
6.39E−06






GTTAACTTCTCTTGTGAATTTCATGTTTT









CCCTGGAACTTGGGCTAGGTCCCATGGC









CCCTGGTGTGTGTGTCTTTTTTTCTGTTA









ATATTTTCTTATTTTTGTTCAACTTGCGGA









GAGATTTTCTCTACTTTTATCTTCTAACC









CCTTCTGTTTTCTTGAATTTTAAAATTTTC









TGCTGTCATTTAAAAAAATTCTCCACCA









GCGGCAGTGGCTTACATC





1444
3056252
4
STX1A
GGAGGAAAGGCCCACTTCGCCCATCCCC
7.08E−06
0.007013993
4.56E−06






TCTAGGTTTTGCTTGGAGCTGTGGCTGGT









TTGACCATGCCTCAGAGGTCAGGCCCTC









AGCCCCCCGACTGGCTTTGGGGCCAATC









TCAATGCCACCTCCAGGGTAGACTTGAC









CTGCGTGCCCCCATCTACCCTGGCCCTGA









TCTCCCTTTCCCCAGCCCTACCCTCATAG









ACGGAGGGTCCAGAGGAGGATGCGGGC









ATCTCTCCTCCCA





1204
3058806
4
SEMA3C
TCGAGTCTAAGACACCATGTCATGGATT
0.01496327
0.007578283
3.96E−06






TGAACAATGTTGATGGTGGAGACTCAGA









CAAATGGGGCTGGAGAAACCTAACCTGG









CTCATGAACTGTCCAAACGATGAGACAA









GTTGCCCTGACAGGGCAGTTGTTTGGAA





1125
3062164
5
DYNC1I1
GCCCAGACACAATGGGGCGTTAGTAGAA
0.000553994
0.007395291
5.33E−06






GTCCAGTCCCTATCCCTACCCGAAGAAA









GACAAACCCCCTGGCGAACATCTCATGC









AATAAAATGGAGGATAAACCCTTCAGCA









TAATC





 567
3062175
5
DYNC1I1
AGGGCTGTTTCCAGAGCAGTGAATGACG
0.000837966
0.007293075
6.55E−06






ACCGGAGAGCATGGGAACCCCTTTTCTT









TGTAGCAGCCCATATTAATGAGATCTCT









GTTTCTCTCAAGACAGTCAGGGCCGTCT









GGTC





1257
3063591
2
AZGP1
CACAGTCAATGGATCCACAAGGCCTGAG
0.007770575
0.010789364
8.53E−06






GAGCAGTGTGGGGGGACAGACAGGAGG









TGGATTTGGAGACCGAAGACTGGGATGC









CTGTCTTGAGTAGACTTGGACCCAAAAA









ATCATCTCACCTTGAGCCCA





 889
3063598
9
AZGP1
TGAGATCGAGAATAACAGAAGCAGCGG
0.002481187
0.013545858
1.28E−05






AGCATTCTGGAAATATTACTAT





1094
3063601
9
AZGP1
GGAGACCCTGAAAGACATCGTGGAGTAT
0.001219026
0.010779914
8.76E−06






TACAACG





 724
3063605
6

TCCAGGTAAGCCTTGGCCCGCTGCACGT
0.001184984
0.012200652
1.10E−05






AGACTGGTTCTGCCTCCTACTTCTGCTTG









GTGTTCTGGGCTTCCGGGACCAAGGGGA









CTCAGGCTGGGATTTCTTTGTTGAATTCA









ATGTAGTCCTTTCCATCATAGGCATTCTT









C





 376
3064449
1

TGGGGCTGCCTAGCTACTCTAGAACCCA
0.004304377
0.007354949
4.54E−06






GACTTGGAG





 979
3065014
9
ALKBH4
AAGTCCTTCGGGAATGCGGTTGCAAGGG
0.003217076
0.007568557
3.61E−06






CATCCGGACCTGTCTGATCTGCGAGCGG









CAGCGCGGCAGTGACCCGCCCTGGGAGC









TGCCC





 625
3066949
4
CTB-
ATTCTAGGGGCCAGTCGTTGGTATCCAG
0.012043037
0.006585706
3.61E−06





111H14.1
AGGCAG





1988
3067307
9
LAMB1
ATGCCAGAAGGAAAGCCGAAATGCTAC
1.96E−05
0.009872566
7.52E−06






AAAATGAAGCAAAAACTCTTTTAGCTCA









AGCAAATAGCAAGCTGCAACTGCTCAAA









G





1658
3067310
9
LAMB1
CGCATCAGCGAGTTAGAGAGGAATGTGG
5.38E−06
0.011224347
8.31E−06






AAGAACTTAAGCGGAAAGCTGCCCAAA









ACTCCGGGGAGGCAGAATATATTGAAAA





1606
3067585
4
NRCAM
AGCAAGCCCCTCTGTTCAGGGAAACCCA
0.000354141
0.009376832
8.46E−06






ATGTCCTTCAGGCTCTCCCTGCTTCTCCT









TACCACGCCCACTGTTGTGGTTGTGCTGG









CT





1443
3068373
6

GAGGCGGACGCATGCCCGGTGGCTCTAA
0.004416632
0.006818008
5.24E−06






GGCG





 416
3070220
9
AASS
TTTACATGGAATGGGTTTAAGGCTCCTTG
0.016398739
0.0070476
9.29E−06






CTTTGGGACATCACACACCTTTTA





 440
3072337
4
UBE2H
AGGAACAAACAGCTCAGATTACACGGGT
4.44E−05
0.011046023
6.90E−06






TTCCTTGTTGGTGGGGGTTACTCGTCTCA









C





2064
3074661
6

TCTAAGCGGTAATGGAGGAAGACTAGTG
5.67E−06
0.007879089
7.19E−06






CTTTGTGCATTTTGATATATTTGAGTTCA









TTTTTTCCACAATGTCATACTTTTGACGC









AGTTGGGTTTCTCATAAGTATCCTAGTTC









ATGTACATCCGAATGC





 778
3075021
4
DGKI
CCCAGCCACCTCATGGCCTCGCAGGAGG
0.002232119
0.007232854
4.83E−06






CTC





1949
3076101
9
SLC37A3
CTCTCGGGTATTGAGGCAGAAGAAAACT
0.001173835
0.008365773
5.62E−06






TTGAAGAAGACTCACACAGGCCATTAAT









TAATGGTGGTGAAAATGAAGACGAATAT









GAGCCGAATTATTCAATCCAAGATGATA









GTTCTGTTGCCCAAGTCAAGGCGATAAG









CTTC





1637
3077525
2
FAM115A
CCGCTCCCAAATCCCGGCTCGGTCGCCC
0.006757381
0.006736752
1.22E−06






AGTCACTGGTACAGGGAAGCCTCTTCCC









TGTGCATTCCTCTCTGCGCCAGGCTCTGC









CCGCTCCCACCTGCCCCCGTGGAAATCG









CAGGGTGACCTG





 363
3077790
4
TPK1
AGTAAAAGAGGTATGCTCTTATTTAAAA
0.026532368
0.009554661
1.31E−05






ATTCATTTACTAAAAACTAGAGCTTCTGT









ATGACAAATTGGAGAAATGACTCTCCTT









AAGATATCTTAATGTCGGCTGGGCACCG









TCGTTCATGC





1531
3081037
7
INSIG1
GACCAGCGCTCACAGGCAAGTTCCTCTA
2.94E−05
0.011796154
8.27E−06






AGCTTCCATTCTGCTGACTGGTGGCTTCC









ATTTAAAAGGAGTCTTTTAATCAAGCCA









CTTTCACAGAATTTAAAACAAACCAAAC









ACATGTAAATTGCAAAATACAAAAAGGT









AAATTTATAAGTAAAAATGACCAAACCC









ACAAAACTGGAGTATTTCGAAGGTTGAG









GGTTCAGTGGAGGGTGTAACACGAAAGG









AACTTCACAACTGAAAGAAATCATTGCC









GAGTTTCCTCCAGGCAGCACTGAAATGA









ATGGAGAACCTTCTCTCGAACATCTCAC









ACGTTAAAAAAAATAAATATTTAAGAGA









TACAAGGCTCAGATTGGTTTTCATATAC









ATTGCACTTGAAGTTTAAGACCCAATAC









TTGCAAATTAGGTCTGGTATGGTCTATGC









CATTAAATGAATACATTGTGCTCACCAA









TATCATTGACTAGAAACACCACACGTTT









AATGCAGTGCCATATGCACTCTCCTTTTT









ACAAGGCAATCACAGATTGCAAATTCCA









TAGGGCTGTGGCAAAAAACAGTCATCTC









TATTCTGTAGTAACAAACAAACAATTTT









GGCTCACTAAGATTGAAATACATGGCAG









ACAGGTATTCATTCTTAGATGACTATGG









ATTTCGAAATAAACTTCATAAACTGAGG









TGAAAATTCCAATATATCGCAGTGTGGG









AACCAAGACTTTTCATTGCCTTTTGCTCA









GTAAGATTGTCTACACAAACTGCCACGG









GAGGAATGACAAGCAGTTGACCCACTGG









TGATACACACACGTGTGACCATGTAAAC









ACGCCACTGCAGGACGGACGAGCGTGAC









CGTGAAGCGTGGCCACGCCGCGACCCCA









CTTAGAGTGTGACCTCTCTATAATCACTG









CTGCTTTTCTTGTTTTGTTTTTTTTTTTAA









ACACAGCCCTATTTTTAAAAATCTTTTGG









ATAAATATTATTCCTATTACACCATACTT









CATGTTTGTTAAGCACCATCAACCTACCT









CCTTTGGGCACTGACACAAAACTGCGGG





2060
3082100
7
DNAJB6
TGTTTAGGGTTACATTGTCCACAGAAAG
0.011785961
0.007939522
6.41E−06






CATCAAATACCACTCCTCTCCCCGCCAA









AACCAAATAAACAAAGCCAACTCTTTGG









CAACAGTTGTGTTAAATAAAATCCCAGG









TCACACTTGTTTCTGGCTCCCAAGCCTGG









GTCACTGCTACATGGATTGCGCCAAAAA









ATTCCCAGCTTCAACACTGCTAGATTAA









AATTGCTGGCATTTTTAAATCACAGCAA









AGCTTTTCACAATGCCCTCAAGTCCAAG









AGGACAAAGGAGAAAGCAACATGAACG









GCAGATCCTCATGTGAAAGGGA





 813
3082532
1

CGTCGACAGGGCAGGATCTTAGGCCCCT
0.000206799
0.008814925
6.04E−06






ACTGCCACATATGGAACAAGCTCCAGTT









CCAGTCTATCACCCAGCACCTGGCCAGC









CTCTGTTAGCAATACTGCTGACTGAAGA









AGAACAAGTTAGAACAGCTCAAAGACTA









AGCCTTCTACAGTGTCTGCCTGAAGAAG









TTTATGACCCTGGAAGAGATAAATCAGA









AGAGGAGATGCCAGAGTGTGTGATCTGT









TTACTGGAATTTGTTTGTGGGGACCCCAT









TCGATGTCTGCCATGCAAACACTTCTTTC









ACCTTGACTGCATAGACACATGGCTGCT









GCGATCTTTCACATGTCCCTACTGCCGGG









GGCCAGTGGATGCAGCGCTGTCTACATC









CTTGGGA





1096
3082626
5
ERICH1
GGAAATGGCCACATGTGAACCACCATCC
4.91E−05
0.009444815
6.17E−06






CCTGCAAGGGCAGGGATTCTGTGCAACC









CAGGAAAAGGCTACACATGACCCACCAC









CCCTGCAATGGTGCATTCACTTGCAGGG









GATGGAGA





1132
3083218
5
CSMD1
AGGTTATTTGAAGCCACGTCCTGCAGCT
0.003855932
0.008232629
5.74E−06






TCACCTTCTCTTTAGGGTTTTAGAAGTCA









CTACTATTCTGGCAGGCACTGTCTTGTCT









GACTATGAATAGCGTATTGGCTTCATGC









TCACAAGGACAGGGGCATGAGCTCACTT









TCTACAAGGACCAGTGAGCTGTCCTCGG









TTCAGGGACAGCACCCTGTGCCGTCATT









GCACTTGGACGCTGTTCAATGTGCATA





1384
3084878
1

GTCAGCATCACAAGACGCATGAAAGAG
0.003420783
0.008068285
1.37E−06






GACTCATCGCCAGGGCATGGAGC





 448
3090530
4
DOCK5
GGGGTTTGTTAATCAGATCTCCTTAAGGT
0.02092529
0.006719573
4.33E−06






TGGAAGAGTAAATTCTCCCCTCTCCATCC









AAAGGGGAAGATGCCTGTGTCTCCTGGG









TTTTTTCCAGGTGGAGGTTTTGTTATAAG









TAAGGTTTGGCTGTTAAATATCTTCCCTT









TTTTAAGAGTTCTAGGAAGGAAGTGTGT









TTGAGGAGGTTTGAGCCTGCAAAGTGGA









AGTGACACTGTGGGTTGCACGGTTTGGC









CACTGACTTCTCACGTGGTTTCAGTCCTT









AGCACCGTGGTATTGACATGACATC





1077
3090561
4
DOCK5
TTCTTGGATGATGTGACAGTGGCGGATA
0.011465942
0.007494898
6.10E−06






ATGCAGAAAAGG





 553
3090589
9
DOCK5
GCTTGTTAAATTGGCGTTCCAACTCCCAG
0.00084815
0.008174387
6.42E−06






AACA





 955
3090592
4
DOCK5
ACACCAGTGACAGTGGCCGTTCCACCCA
0.042066262
0.007251473
6.58E−06






G





1060
3093827
9
KCNU1
TGGTCTGATACTAAATCCACCTCCACAA
2.12E−05
0.012045129
4.30E−06






GTGAGGATACGTAAGAACACATTAGGGT









TCTTTATTGCTGAAACTCCAA





1249
3094697
5
FGFR1
TGGGCTGGCTGCAGACCGCCCTCTCTCA
0.000120755
0.006868788
3.88E−06






GCTCCCTGGTCAATGCACTTCAAATTC





 578
3097271
1

CCTCTCTGGAAACAACGGCACCATGAGC
0.006687861
0.010902639
1.13E−05






CACGTGGAGCACCAAGTTCCTGTACAAG









CGGGACCCACTGTGAGGTGTGCCACCCC









ATCAGGCGGTGTGAGGACCTTTTGACGC









CATTAGCAGAGTGGAGTAGAAAAGAGTT









TAGTGTCTCCCCAAATCACTGGGTTCTTC









AAAAAGTTGTTGGGCAAATGCTCAGAAC









CCAAGTTAAGGTCTCAAGCAAGTC





1107
3099025
4
LYN
TGAATATAATATACGGGGCTGTGGAGAA
0.000180795
0.007929824
4.64E−06






AATATTTGTAACATTAATTCTATATTGTT









TATTCCAGCCTTTTAATTACAAATTAAAA









CATGAACATTACCATACACACAGAACTA









AATATAATGCAAAAAATCTACTTCTTTAT









TTTCCCACATTCTGTATTATATATATGAA









CCAAAAATGCACAGAGAGGCCTAAGTTC









CCCAGCCTGTGGCACATTGTCAGGGGGC









CAAGCATGGTCGGGACTGCAGGGCCTTT









CTTGGGCTAGGATTGCCCACGTGGTTAT









GACTGAGGATTCTTATGCTCTCACCCAC









GA





1711
3100547
3
CLVS1
AGCCTCCGCTTGCACCGTCTAGAGACAG
0.031155964
0.008689629
4.81E−06






GCAGGCACCTTTCTGGGCAGCGTGTTCC









CTGTGGTGTGGCCTTGTTAAAAAGCACT









TGCTTATTCTGAGTAAGATGACATAGGT









CTGCCCTCTGAA





2000
3101370
7
ARMC1
TAGGTGCCCTGAAAGTTATTGTTGCTTTT
0.001873579
0.008741283
4.65E−06






TTTGTTTTTTTTTTTTCAGTTTGTGCGTGT









CACTTGAATCAGAAACCAAACACATGTA









AAAAAATATCATCCTCAATGCCCCCCAT









TAACTCTCTCTCCAGAAGGTGACAATGT









TAGTGAACTCAAGACTCTCACTGATGAT









GGTATTTTACAATGAAAACACAAGGAAA









CCCTTTGAGGTCCAATTTTCACATCATAT









TCTCCAAATAGTAAAATAGCAGCTCTAC









ATGTTGATGAAAAGAAATTTCAATTTCTT









CCTATTTGTTTTTACTCATATCAACATTA









ATATGTATCTGGATTTATTAATTTCCAAA









AAGAAAATTTTAGTTACCAAATATTTCA









GAAATTTAATAAAGCATTACATATATGT









AATTAGCACTTATCTACCAAAAAAACAT









ATGTGTATGTATTTATTTATCTTACCTTC









ACTGAAGTTCTTTTTTCTGGCTGGACATG









AGAAACAGGATTAAGTGATCAATGCTGG









CTTTATTTCTTCATAAGCAGTAATTTGGG









TCTTTTTCATTCAACACAACGCAGCATTT









TCATAATAAATTCACAAAAGACAATACA









AAGAAACACCTACTGAATAGAACTCTGT









CGAGCAATTCATGTTTTAAAGTTGGACT









CTATACCAAACTGGCATTATGGTATTAT









AGGCATTTGATTTTTGTTTTCTTATTTTCA









GTTTGTCAGTTTCTTTACTACCATTATTTT









TTTCTAGCCGGAGATAACGTATAATCA





1952
3102393
9
SULF1
GGGAAGCCTCTGTTCGACTGTCAGATCC
0.00035324
0.009114519
5.56E−06






CCGAGGTTCAGAGGACGGATACAGCAG









GAACGAAAAAACATCCGACCCAACATTA









TTCTTGTGCTTACCGATGATCAAGATG





1870
3102402
4
SULF1
CGGCATCAGATCTTTGGGTTAGTCACTAT
0.000740426
0.007834969
3.81E−06






TGCTGGCTTTAAAAGAAATTCCTTGGCTT









CAGGTAGTTCCTGGAAATTTTTCTAAGC









ATTATGGAACAGGTTGTCCTAGACAGAA









GTAGCATGGCCTGAAGCCAACAATAATT









ACAATCAGGTCTTCTGATCTTTCTCCCTG









CCCCCCAACCCCCACCACCTTCTTAAAC









AGCTGTGAAGGGAAGTGCTTAATGGTAT









CCAAAACAAAGAGGATGGGTAAATGGC









ACATTAGTGATGTATTCAGATAGTAGGA









GTTGAATTGAATTGCCAATGCCGAAGGA









TAGAAAAATATTGAACTATACGTAACCT









ACATGTAGACATAATGGCAGTAAGGGCA









AGAAAGCTAAATTCACCTTAGGAAGGGA









AAAAGAGATTTAATACATCTGGAGGAAA









ATAATTAGAGGGCCAGATAATCAATTGC









AGAGCGCCGCCAGGAAACATCGTGTTGA









AAGAGGCCGGGGTGATTACAAACGAGTC









TCAATGTCATGAGGCAACAAAAAGGCCA









GAGCAACTGGAGGCCAACAGTGCTGCAC









CCTGACACCCAAGGCCCCCATCAGCCTT









GGAATGAGTGTGATGGGTGAGCGCACAT









CTGGAATACTGA





1343
3102414
9
SULF1
GTCCCACAGATCGTTCTCAACATTGACTT
0.000462937
0.012550374
8.12E−06






GGCCCCCACGATCCTGGATATTGCTGGG









CTCGACACACCTCCTGATGTGGACGGCA









AGTCTG





 828
3102439
9
SULF1
GCTCAGGAAGTAGATAGCAAACTGCAAC
2.80E−06
0.015931026
1.68E−05






TTTTCAAGGAGAACAACCGTAGGAGGAA









GAAGGAGAGGAAGGAGAAGAGACGGCA









GAGGAAGGGGGAAGAGTGCAGCCTGCC









TGGCCTCACTTGCTTCACGCATGACAAC









AACCACTGGCAGACAGCC





2010
3102445
9
SULF1
CACACGGTAGAACGAGGCATTTTGAATC
0.000194662
0.008480409
5.98E−06






AGCTACACGTACAACTAATGGAGCTCAG









AAGCTGTCAAGGATATAAGCAGTGCAAC









CCAAGACCTAAGAATCTT





1759
3102461
2
SULF1
TTGCACTGCTGAAGAGTCACTATGAGCA
0.000177948
0.009249871
6.69E−06






AAATAAAACAAATAAGACTCAAACTGCT









CAAAGTGACGGGTTCTTGGTTGTCTCTGC









TGAGCACGCTGTGTCAATGGAGATGGCC









TCTGCTGACTCAGATGAAGACCCAAGGC









ATAAGGTTGGGAAAACACCTCATTTGAC









CTTGCCAGCTGACCTTCAAACCCTGCATT









TGAACCGACCAACATTAAGTCCAGAGAG









TAAACTTGAATGGAATAACGACATTCCA









GAAGTTAATCATTTGAATTCTGAACACT









GGAGAAAAACCGAAAAATGGACGGGGC









ATGAAGAGACTAATCATCTGGAAACCGA









TTTCAGTGGCGATGGCATGACAGAGCTA









GAGCTCGGGCCCAGCCCCAGGCTGCAGC









CCATTCGCAGGCACCCGAAAGAACTTCC









CCAGTATGGTGGTCCTGGAAAGGACATT









TTTGAAGATCAACTATATCTTCCTGTGCA









TTCCGATGGAATTTCAGTTCATCAGATGT









TCACCATGGCCACCGCAGAACACCGAAG









TA





2037
3102463
2
SULF1
CCCTGGGTACCTTTGTGCAGTAGAAGCT
0.000131986
0.008176341
7.53E−06






AGTGAGCATGTGAGCAAGCGGTGTGCAC









ACGGAGACTCATCGTTATAATTTACTATC









TGCCAAGAGTAGAAAGAAAGGCTGGGG









ATATTTGGGTTGGCTTGGTTTTGATTTTT









TGCTTGTTTGTTTGTTTTGTACTAAAACA









GTATTATCTTTTGAATATCGTAGGGACAT









AAGTATATACATGTTATCCAATCAAGAT









GGCTAGAATGGTGCCTTTCTGAGTGTCT









AAAACTTGACACCCCTGGTAAATCTTTC









AACACACTTCCACTGCCTGCGTAATGAA









GTTTTGATTCATTTTTAACCACTGGAATT









TTTCAATGCCGTCATTTTCAGTTAGATGA









TTTTGCACTTTGAGATTAAAATGCCATGT









CTATTTGATTAGTCTTATTTTTTTATTTTT









ACAGGCTTATCAGTCTCACTGTTGGCTGT









CATTGTGACAAAGTCAAATAAACCCCCA









AGGACGACACACAGTATGGATCACATAT









TGTTTGACATTAAGCTTTTGCCAGAAAAT









GTTGCATGTGTTTTACCTCGACTTGCTAA





1982
3102464
2
SULF1
GTGCCTAGCCTCAAAGCGTTCATCATAC
4.81E−05
0.008098921
4.23E−06






ATCATACCTTTAAGATTGCTATATTTTGG









GTTATTTTCTTGACAGGAGAAAAAGATC









TAAAGATCTTTTATTTTCATCTTTTTTGGT









TTTCTTGGCATGACTAAGAAGCTTAAAT









GTTGATAAAATATGACTAGTTTTGAATTT









ACACCAAGAACTTCTCAATAAAAGAAAA









TCATGAATGCTCCACAATTTCAACATAC









CACAAGAGAAGTTAATTTCTTAACATTG









TGTTCTATGATTATTTGTAAGACCTTCAC









CAAGTTCTGATATCTTTTAAAGACATAGT









TCAAAATTGCTTTTGAAAATCTGTATTCT









TGAAAATATCCTTGTTGTGTATTAGGTTT









TTAAATACCAGCTAAAGGATTACCTCAC









TGAGTCATCAGTACCCTCCTATTCAGCTC









CCCAAGATGATGTGTTTTTGCTTACCCTA









AGAGAGGTTTTCTTCTTATTTTTAGATAA









TTCAAGTGCTTAGATAAATTATGTTTTCT









TTAAGTGTTTATGGTAAACTCTTTTAAAG









AAAATTTAATATGTTATAGCTGAATCTTT









TTGGTAACTTTAAATCTTTATCATAGACT









CTGTACATATGTTCAAATTAGCTGCTTGC









CTGATGTGTGTATCATCGGTGGGATGAC









AGAACAAAC





1380
3103453
5
UBE2W
CAAGCCCAAATTATGGACTGCAGCAATT
5.92E−05
0.010791524
6.97E−06






TAATCATCACTGCCATTTTTCTTACTTCC









AAAATAAAGCCTTGATTAAACCATTCAT









ACCCTATATTACTCATACCTTTACTTCAG









AGATTGAGGAACTATATACAACAAATTA









ATTTATTTTCACCATAGGGATAACATACT









GTACCTCTCTGCCAATGTTACTTGAAAAT









CTTCCATGTCAAAACAACTTGACAGTAG









ATATAAACAATTCAATAAATATGCAATG









ATCTTTCATTACAGTCCTTTAAAGACGCA









TGTTAATTCATGCTGTTAACCTTAGGATC









ACAGTGCATAGAATCCAAATATAAACAG









TTGGGGTGACTTTTAAAGTAATGTTGGA









TCCCTCACTTTATTTATATTCCCACTATA









ACCAGTAAGTTCATTTCATAGGCCCTATC









ATGCATTAATCATTGAATGGCAGGAGTT









AATGAAAACTTTTCCTGTTACAACGCCC









ATTGCCGGCAATGAACGTACCAAAACCG









CCAAGGAAGTCATTGTTATTGCACAATA









CATGAGGACCTGG





1576
3103632
2
GDAP1
TAGCTAGACCCTGTGATTGCCCGTGGCT
0.000629941
0.011534464
8.50E−06






CTCTGAGTCTGTCTTATTGAGTAGTTAGC









AGTATTTTTTCCTAAAATTCAGAAGTCAT









CTTTGTTACACAACACAGGGGTTCAGGT









AGCAATAGGACACAAAATTGCTTTATTC









TACAACTGCCAGCTCCAGGCAGAAATAG









GAAGGCAAAGAGATAAGAGAAGGAAAA









ATGAGAGAATGAAGTCTGTATAGGGTAG









AGCAATAGAAAGTAAGCTTCGGGTGCCT









CCAACGTTCATGGCTGCCTG





 218
3103710
4
PI15
CAGAGAGGTGGTAACTCCCGAGTAAGCA
0.000674778
0.015711899
1.73E−05






ATGCCAATCCTTCAGGCAAAGATAAGGA









AGAACCGCACAGCTGCTCCAACATAAAG









TGG





1528
3104056
4
ZFHX4
GAGAACCCAGATAAGGTAGCTAATACAT
0.0001169
0.006655882
2.13E−06






AAATCTGAAACAAAATGCATGACTATAG









AAAAAGAGAGTCTTGAAATACGGGCAG









GTTTTCAACAAGGGGAGAGGGAAGTGAT









TAGGTAGTGATACTCCAGATGAAGTAAA









ACCTGGGAAGCAAAGGCTCTGAGTTTCA









AAACCACAGGGTGTGTTGGAGGTCAGTA









GCACAGTTTGGCTGAGATGCATGGTA





2071
3104305
2
PKIA
CATGTCTTTTTTCAGCCCTCTCAGATCCA
0.001547455
0.007394509
6.93E−06






AATGTTATTATGCACTTTTTAATGTTTGT









AAACTTTTACTAATAATTAGTGTGAATTG









CATTCTGATACAATAATGATTATCATTAG









AAGCTAACAAAATTCTCATTAATACTGT









GTTTGATGGCCTCTGCTGTGTTTTAACAT









CGTGCTTCTTATATGGAAAGTTTTTGTGA









GCTGTGTAATCCCTCTGGTCAGTATTATG









AAATCA





1986
3104626
5
TPD52
TAGGAGGTTCCACTCTCAAGTCACCTAG
1.85E−05
0.008255373
5.59E−06






AAGTTTGATTACATATTGTTACTTACAAA









ACTATAATAAATTGGATGCACAGCTGTT









TACTTCAGTCTGGTGTCTTCAACCAAAAT









ATGTACCTTATACCAAAACAATGCTTATT









CCAAAATATTTTTTGTAGCTAGTAGTTCT









TTCCTTGGA





1893
3104778
7
ZNF704
GGAGGTACTTCCCTTCAGGTCATTCTCTC
0.037111478
0.006548322
6.22E−06






CTTGCTTCAGGCAGCTGCTCCCAGAGGA









GAAAATGGCAGCTCCCTGGGAGGTACTT









AGGGATGGTGACCACCAGCTGATCAGCA









CCAAGAAGATGAGCAAGAGCCAGGTGT









CCACAGCCCTCTTGTACCTCCCCCCTGAC









TCCCTTGCTACCTGTGTGTTTTCTCCAGG









CTGTCACACTGCCTCCCACCCACCAATG









CAGCACACATCTGCTGGGAAGGCCCAAG









GCTTAACACCACTGCCTGCTGGCCACTCT









GCTTTGTCGCTCTCTGGAGAATGTCCTGT









CAGTCACTATGAAATGACTTCTTTGGAG









AGAGATGAAAAACCTTTTCTGAAGGCTG









GGGTGTCAAAGGATAAAAAAAAAATCA









AAAGGCTACATCATGCCTTACTTAGAAA









TATTTTGGGACCAGAATCCATTGTTTTGC









ATGCCTTTTGCGTAGATTGGCCTCTG





1577
3105433
9
LRRCC1
GAAGTGGAAAACGAAGACGGCGACAGC
0.000172838
0.007157123
2.51E−06






AGCTGCGGGGATGTATGCTTCATGGACA









AA





1183
3105924
9
CPNE3
CTGGCTCCAATGGTGACCCAAGGTCTCC
0.009861702
0.007692419
7.28E−06






AGACTCCCTTCATTACATCAGCCCCAAT









GGCGTTAATGAGTATTTGACTGCTCTCTG









GTCTGTGGGACTGGTCATTCAA





1055
3106288
9
OSGIN2
TGCAATACTTTGGTGACAACTTGGGGCG
3.12E−06
0.012037745
1.11E−05






AA





1802
3106314
4
DECR1
GAGCACTGACCTTTGACGTCCTTTGTTGT
0.004800285
0.007172927
6.53E−06






GAGGAAAGTCCATCTATGTGTTAGTTAT









GGAATTAAACACTAATACAAACAAATTA









TCATAAAAATGAAACAAAAACAAAACC









CCAGCTGTTTATAGACTCCCCTTCCCAGA









TGTATAGCTGGGAGAGGTCCGTCTCACA









CTGGCTTCCCCCTCTCTCTGGCCCACACT









CCTGTCACCATCTCCATTGCACCCATAGT









GGAAATAGCTAGGAAGTGAAAACAGCT









AGGAAGAAGAAAGAGAAACAAAAACAA









AAAGAAGCAATAATATCCAAGACAAGC









CCTCCCCACATCTAAATTACAAAATTGTT









ATAAGTAAACTAAAAAGCACATTTTCTT









TAGCCAGGTAGAAAAATTAATATGTCAA









CTGTGAAAAAACTTCTTTTGATTTGATAG









AATAGACAGCCATGGTGTTGTTTTTCA





 881
3107647
6

GATTAGTTTCAGTGGTTCTCATTTCACTT
2.38E−05
0.016569088
1.45E−05






TTATACGTAATTTCTTAACTATATTAAGA









TAGTTGCAGGCAGTGTACCTCAGGTTGA









CTCTGTACATCTGAATAGTGAGTCACTA









GTATTTTGCTTCAAGCCTTCTGAAAATAT









AACCATAGTTACCTAAGCACACAGTGAA









TAGTCACATGGTAGTACTTG





 612
3107695
3
INTS8
GATAGCACCATAAGCCAAACATTTATGC
0.004639335
0.010553457
9.22E−06






TAATTTTATGTAAATTATGTGCTATGGTC









CACGCCCCGCCCCCACATGCGATTAAAA









AGTTGATTTTTAGTGTGCTAAAGCACAT









GCTAAAACAGATGCTACATTTTCAAAAG









GCAAGGGTCTTTTAGAATGCTTGATGTCT









GTGAGGTTGACAGGAGCAATATTAAATA









AATATACATACACTGTTTAAGGATTCTGT









G





1316
3107732
4
C8orf38
TGACCTTACCTAGGATATAGCCTGGCAT
5.22E−05
0.008155705
5.18E−06






CATGTAACATAAGAAAGTTGTTTTCATTT









TGGTACAAGCAAAATGAAATATGTTTAG









CCTCATAAAAAATCATCTACAATATTGA









GACTTGAGAGTATGGCAAACTCTGGTAA









AGTTAATAAATTAATGTGCTGCCTAGGG









TTTGTTTATATCTGGAAAACAGGAAACG









GTAGGTAGGTAGGTAGGTAGGTACATAG









GTAGATAGATATAGATAGATAGATAGAT









AGATAGATAGATAGATAGATAGATAGAT









ATAATACAATACTTTTCTTAGAGTCAGA









GCCTGGACATGACAACACTAACAATAGG









GATATTCTGAACTGCTCCAAGGATCCAA









ATCCACCTGGACCCTCAACCTAAGAGAG









GGAATGCCAACATTC





1812
3107789
4
C8orf38
ATAGAGTAATTTCAGTAGATGGTTGGGG
0.000450333
0.007765135
5.80E−06






GTCAAACTGGAGTATAATGGGTTAAGAA









GTAAGTCAGGAAGTAGAGGGCTTTTCCT









GGTGTTAGGGACAATATAAATGAAGACA









TGGAGACAGGAGTGGGCTTGGCGAACAC









AGGATGATGGGCATCAGCCTGAGTGACC









AGGTGTTCGTAGCTCAGA





 499
3107876
4
KB-
TCTGAGGCACATACACAGCTGGTTGGCA
0.033900726
0.007197605
3.82E−06





1047C11.2
GTTCTGCTTCTAAAGCTGTGGCACTCCCC









ATCTTAAAGGTTTTGAATCTGCCTGCTGT









TCCAGACATGGGGA





1670
3108459
9
MTDH
GTCTGTAAAACTCTCCTCACAGATCAGT
0.006687861
0.00668549
3.67E−06






GCAGGTGAGGAGAAGTGGAACTCCGTTT









CACCTGCTTCTGCAGGAAAGAGGAAAAC









TGAGCCATCTGCCTGGAGTCAAGACACT









GGAGATGCTAATACAAATGGAAAAGACT









GGGGAAGGAGTTGGAGTGACCGTTCAAT









A





2039
3108479
2
MTDH
GCCTTAACCTGTAGTGCGTAGAATATGC
2.93E−05
0.006961325
4.37E−06






ATCAATTTCTTGAAGGAGATTCATGTTTT









TATAAGAATTTTCATGTAATTATTGCAAT









TGTGGTCAAATAAGGAACGTTTCCTGCT









TGAAATTATATTGATTTAAATGATGTGTG









AGATGTTTCACCATTTTCAGGCACTGTGT









AATTCTATTGTAATAAACTGGCAGGTAT









CTTTGTAACTATAAATAGTGCATGCTCA









GCCATGTACACTGTAAATAGCCTTTACC









AAACGTGTTTGACAAGGACCATAATTAA









CATCACTTAGTGAATTGTGATAAAGAAA









AAAAAGCCATGATTTATTCGATGTGATT









GGCTTGTTTTTATGTGGCGCCAAGAACG









AACCTGTTTAACAGCTGTAACCAATGGT









ACTGATCTATCCATCCAATGTTGTCATTA









TATTTGACTGTGGTTCAACAGTATTGCGT









TGTCAGACTAGGAAAGCTAAACGAACAA









AATGGTTTTAGTTTTGCTGAAGACTGGCC









TTATTAATG





1345
3108839
5
STK3
ATGGCTATAAGAACACACCCAATGCCAG
1.98E−05
0.011035218
8.64E−06






TCTCTACCACACCGCAGCAGCATAACTT









ACTACAG





1016
3108873
4
OSR2
ACATCTTCCTTGGTGACAGCCAGTCAAG
0.002531721
0.006675267
5.33E−06






TAAATTTTACAAAATTTCTCCACATGCCT









GGAAATTCCTGTGAAGAAGACTGATGAA









AGAAAAGTAGCCTCAGCTCCACCAACAT









ATTTATGACTTTTCATTGGTTTAAGTTTC









TTTCCTTGCAAGATTAAAAGTAACCAGT









GGTCTGAAACGGGACGGTGGAGAAATG









ACAGCAGATGATGATCGCTGTTATTTCCT









GAAAGGGAGTGTGGGAACTACAAGGCT









CAGCTCTA





 533
3109199
2
POLR2K
CTTATCTTCGGGAGATACATTCCAAGGC
5.32E−05
0.017958214
1.73E−05






CCCCAGTGAACTCCTGAAACCTCAAACA









G





1500
3109252
3
SPAG1
TGTTGCTTCTTTGGACCACTTGGTGGCAC
0.000306094
0.010773506
7.30E−06






TAGATTTACCTTCAGGCAAGCCACTGGA









TGAACCGCCAGCATGACTTCGGGTGGCA









CTGCCATCATCCACACTACTGCTTCCACT









GTTGTGCCTGAATTTGGATGGCTTTGACT









CA





1916
3109448
6

GTGAACCGTTTCTGCCCTTATCCAGAGTA
9.77E−05
0.012137832
1.07E−05






AAATGGGTCACAACTTTGTCTAAAGGAA









CACTTCTGCAGCTGTAGTCAAAGGTGTA









CACATTGAGTATTCCACAGATATACATG









GTTTAATATGTGGTATCCATGGGGTATG









ATTCTACCACAGCCTTGTAAGTGCTCCA









AACCTTAAAGTACCCACAATTACTACAC









CTGTGACTGGAACCAATGATCCCTTTTAT









TCCCCGCCAGGACAAACCAGTATGTAG





 797
3109660
8
KB-
CTCCTCTGAGCCAAGAACGACAGTGATG
0.009842021
0.007123883
3.92E−06





1930G5.4
CCAGTGTCTCCACTGCTGCAAAGGTTCTC









ATTTTGTTC





1704
3109903
7
UBR5
GTAGTTAAGCTGCTCACGAACATTTAAA
0.000260842
0.007334514
3.82E−06






ATTTTCCAAAATGTATCTTCAATAATCAT









GATCTTATAAAACATTTTACAGTTATCAG









AAAGTGCCCAGGCTGAGTTTACATAACT









GAAATACCTTAGTACAAATGTCTAGTTA









GAACTGAAGTGCAGTAACCTCTTGAGAC









TGACTGCTCATTGAAATAGGGATACAAA









GAAAAAGTTGATTGTGATAAAAGTATTG









TGCATTGGCCCCATCATATGTACAAAAA









AAGTGCCCTCACTCAAATGAGCAAATTA









CATGCAAAATATTAGTGATATCATTTAA









TATCCTAGAGCTCAATGCAGTCAAACCG





1805
3109920
5
UBR5
TGCCTTCAAGTGTTCGTAAGCTAGCTTCT
0.000103742
0.009519129
5.07E−06






TCTCGCGCAGTCATCCTCTCTCTTCTCGC









TGAATTCTGAGAAGCGTGAAGAGGATGA









TTTGGATGTCCAGGATCACCAGCAGATG









CTAATGCAGAACCATAACGTAATTGAGC









TTCAGTAGAATCCATAATACTGACCATC









CAGTTCCAAGTGGGAATAAGCTTTTCTTC





1049
3110126
4
KB-
GAGATTGCCACGTGATTGCCCAGTGTGA
0.025777155
0.007009345
8.94E−06





1507C5.2;
TTGAAAGTTTGAAGTCCGTATTTCTCTGA








KB-
AAACTTTGGTGTATCTAGATTCTGTATGT








1507C5.3
CTCTTGGACAGATGAAGAGCTGCTGTAC









ACAGAAGGGAGATTTTTTTTTTTAATTGA









GGAATCTAACTCAAGAATAAATTCAAGG









CCAGGTGCAGTGGCTCACGCCTGTAATC









CCAGCACTTTGGGAGGCCGGGGTGGAAG









GATCACCTGAGGTCAGTAGTTCGAGACC









AGCCTGACCAACGTGGTGAAACCCTGTC









TCTACTAAAAATACAAAAATGAGCTGGG









GGTGGTGGCGTGTGCCTGTAGTTCCAGC









TACTCAGGAGACTGAGGCACAGGAATCA









CTTGAACCTGGGAGGTGGAGATTGCAGT









GAGTTGAGATCATACCACTGCACTCCAG









CCTGGGTAACAGAGCAAGACTCCATCTC









AAAAAAAAAGGAAAAGAAATTTGGATC









CTTTAGAAATCTTCAGACACTTGGCATA









ACATGAAGTTAAAACAACACCCCACTTA









GTTCCATGATATTTCTGATGAATAAGAA









ATATGACACCACAGAGTGAAACCAATAT









TTTTAAAAACCTCCTGAAGAGACTTTTTT









TCTTTGTTGATTACCATCCAGAGACAAC









ATTTGTTTGAAACTTTGAACAGAATCAG









TTTGTAGGGATGAAACCCTCATTCTTCCC









CGCCTGGGCCCAGACTTTCCATATCTTGT









ACTCTGAGAACCTTAAAGTCTTGAAATG









ATTTGCAGTCCCAGCGAAGAAGCTAAAA









TCAAAACTGATTTGGGGAAAAACCGTTT









ACTTTCTGACCTCTTTGTACTCTTCAGAG









AATTTTTGTATGCTTGTTTATTTTCTTAAT









GTCTCTTGGTAATGTTTTTTCCTGTTTTG









GTTTCATATATGAAATGTTCCATCTGTGT









ATTCATTTTCTGGATTTATTCCCTAGAAT









TTTAAGTAAGAGTGTTTCTCAAACTTTTT









TTTTACTCCAACCCACAATAAGAAATAT









ATTTTGCATGTTAACCTAAATACACATAT









ATTTACATATATATCTAAAACAAGTTTCA









TGAAATAATACTCTTGCAATGAGGTATG









CACTATGGTTTTTTAAAATTCTATTCCAC









TTTATATATACAAAAGTTGGGACAGAGG









TTCAGGAGCAGGGAAGGGATGAATAGG









CAGAACACAGGGCACTTTTAGGGCAGTG









ATAGATGCATGACATTATACATTTATCA









AACCCCACAGAACTGTACAACAAAAGA









GTGAATCCTCATGTAAACTGTGGACTTTT









TATTATTATTTTTTAAGACAGGGTCTCAC









TCTGTCACCCAGGCTGGAGTATAGTGGC









ACAATCTTGGCTCACTGCAACCTCCACCT









CCTGGATTCAAGTGATTCTTGTGCCTCAG









CCTCCTGAGTAGCTGGGATTACAGGTGC









ACGCTACCATGCCAGGCTAATTTTTATAT









TTTTAGTAGAGACAGGGTTTCACCATGTT









ACCCAGGCTGATCTCAAACTCTTGGCTTC









AACTGATCTGCCTGCCTCGGCCTCCCAA









AGTGCTGGGATTATAGGTGTGAGCCACC









CACCATGCACGGCCAAACTATGGACTTT









GGTTAATGCTAGTGTATCAATATTAGTTC









ATTAATTGTATCAAATATACTTTCTGTGC









AATTTTTGTGTTAACCTAAAATTGTTCTA









GAGCATATTATAAATATTTGTAAAAGTA









AAACACGAAGTTGGATTTAGCCTACTAA









AATTGACTTTACTATCCATTAATGACTTG









CTTTCCATGGTTTGAAAACTTGTGGCCGT









GGCCTGGTGGGGAGTACCCTGGGTTTCT









CTTAGGTTGGTGCAAAAGTAATTGCGGT









TTTGCCATTAAATGGCAATTACTTTTGCA









CCAACCTAATAACTACATCCCAGCCTCT









GTCACTCTATAGAGCCTGCCCTTCAACA









AGCCACATAATAATGTCTCTCAGCTTTCT









CATCTGAAAAATAGAGTGTTTGATCAGA









TGAATGCCAAGGTCCTTTCCAGATCCAA









AATATTATACCTGTAAGTATAAATTCTCA









TTTTAAAATGTCTTAGAGTAAAAGAAAA









GTCATGAAGCATGAATTGTAAATTATGT









GCATGTTATTTAGGCATGTTTTATGTTTT









ATAGGCATCAAATGGGTACTTTTCATCTT









ATTTAAAATAAGTAAAATGAAAAGTAAT









TGTTCTCCAGCAAAATATATAAATTACA









TTTCTCTCTGAGTTCCTGATTCAAGATCT









CTGTAGAAGAAGAATAACAAAGAACAC









CTAGGAATGATACAAATGATACTTTCAA









TTTTGGCACTTGTCTGCCCTACTGCCATG









TCCTCATGAGAGTATCCCTGAACTCAGTT









CTCGTTGGTCATTTGACGTTTGCTGGGAG









CGTACTATGGGCGAGGTCTTATGCTGAG









GGTGAGCCTAGTGGTGTCTCACTTCTTGT









AGCTTGGGTCAGGAAATGGAGATCAGCT









ACTGTATCCCAGAACCTTCTTGCCTTCCC









AGTCCCAAGGCAGGTGCTGTGGGAAGAG









TGTGTATAAGGTCTGATGGGGACAGACC









TGGGGTGAATCTCAGTGGCACTT





 439
3110185
9
ATP6V1C1
TTAAACCACAACGACTGGATTAAGCAGT
4.20E−06
0.017215388
9.26E−06






ATGAAACACTAGCCGAAATGGTAGTTCC









AAGGTCTAGCAA





 213
3110198
2
ATP6V1C1
CTCACTTGCTATGCTGCTTCCAGGATTTT
1.58E−05
0.023734636
1.63E−05






GTTATATGCTGAGGTGTAACCATTTGTGT









TGTCTGACTTTCGTATGATTTAATTGAGC









CAAATTTGGGTCAGAACACAAATTTGAA









GATGACTTTTCAGTATATGATGGGTATTT









A





1975
3110329
9
CTHRC1
GGCCAATGGCATTCCGGGTACACCTGGG
0.000134132
0.00898655
5.05E−06






ATCCCAGGTCGGGATGGATTCAAAGGAG









AAAAGGGGGAATGTCTGAGGGAAAGCT









TTGAGGAGTCCTGGACACCCAACTACAA









GCAGTGTTCATGGAGTTCA





1548
3110790
4
RP11-
TTTGCATCCGGACTGGATTTGGATGCAG
0.000101783
0.00824034
1.85E−06





127H5.1
CCAATCCTCCTTTGGCTGATGGAATAGTC









TCCCCTCCCCACAGCCCCGGCGCGCCCC









TCCCTCGCGCGCCTCGCCGCCTCCCGCCG









CAGAACAGGAGCTG





 441
3112570
4
UTP23
CCAGGTGCATAATTTCCCATCAGTCTGTC
9.04E−06
0.021427543
1.64E−05






CTTGTAGTAGGCAGGGCAATTTCTGTTTT









CATGATCGGAATACTCAAATATATCCAA









ACATCTTTTTAAAACTTTGATTTATAGCT









CCTAGAAAGTTATGTTTTTTAATAGTCAC









TCTACTCTAATCAGGCCTAGCTTTGCTCA









TTTTGGAGCCTCACTAAAATAACAGATT









TCAGTATAGCCAAGTTCATCAGAAAGAC









TCAAATGGAATGATTTACAAAATAGAAC









ACTTTAAACCAGGTCAGTCCTATCTTTTT









GTAGCTGAAGGCTATCAGTCATAACACA









ATTTCGCGTACACCTCTGCTCATTATGGA









ATTACACTTAAAACGAATCTCAAGAGGG









TGACCATTGTTGTTTCAGATACCATCCCT









AAGGAGAGTGGTTAACAGGAAGATTGCC









AGTGTTACTGATGGAAAGAAGTGTTTGT









TTGTTTTTTTTTCTTGTCAAAGACTTACA









CCATAGTTTTAAATTAAACTGTCAGGCA









TTTTCTCAGACAGGTTTTC





1043
3112714
1

GGGAGTCCGTATCATGTCACAGAGAAGC
0.00160589
0.009852004
4.57E−06






GTACAAGCTTAGGAATCTTGTTTTCTGAA









TTCGAATCGCAGGTTGCCAGTTACACCT









GTATGCGACTCAACAAGTACTTTAACCT









GTCTCTTAGCTGTTATACTACAAACCTCA









GGCTTGTTAAGAGAAAATGCTCCGCAAG









GAACTAAACACAGAAGGTTCTAACGCTG









AGCCAAGACTGGGAAACGAACTCTGGG









AACTCACCCCAGGCTCCCCAAGAACATC









GCCCCTCTGGCTGGAGCGCAATTGGTGA









TTGGCTACTTAACCCGTCCGTCCTTTCCC









GCCCAGGGGTCCAATCCAATCCAGCCCG









GCTCCGCTCGGAGACAGTTCGCCGAGTG









GGCGGTGTCTATGACGTTTTCTGA





1363
3112879
5
EXT1
TAGGGTCTTGGGGTATCAATGTCTCCCA
0.027405312
0.009431374
7.50E−06






CTCCATTTCCTGCTCATCTTCCAGGACTG









GGTCTAGTTTCCCATTCACACACCTCTGT









GGCTCCTCCCTGGTTACCTAATTCTTGAC









TCTGTCAATTTAAGGAGCAGCAGATAAG









GCTTAGTAACTTACTATTGATGTTTTGGA









TCCATGAGCATCAGCTAAGGCCTGCTGG









AAAGCTTCAGGCAACGCACAGAGCACA









GCAGCTCACCAGGACTGACCCTCACACT









GGGCCCGGTGGTGTGCACTCCACCAGCA









CTAACTCGTCATGTCTCTCATCAAAAAAT









TTGGCATGTCCACTGTGCCAACAAAGTC









CTG





 858
3113688
3
HAS2-
CCCGTTCATCGGCTGGGCGCTCGAGACG
0.000219649
0.012595807
9.78E−06





AS1
GCGCCCCCAGATCTCCCACCGGGCAGTG









TCC





1062
3114046
3
RP11-
GCCCAATTCTGCACTGAAGGACAAGGAC
1.20E−05
0.011270582
7.70E−06





557C18.3
TGCTGCAAAAGAAATGAGTGAGACCCTC









AAAATAAATGAAAGGCACACAGCTCAG









CCACTAAGGAGATGGACAAGCCATGTCA









ACCTCTGATCTGCTACTTTTTGCATCTAT









AAAATGGTAACACTGCTACTTATACCTC









AGGATGTTGTGAGGATTAAAAATTGAGT









AAGCTAAGTGCCTGGTGCAGTCCTGGCA









CAGTCACTAAGCATTTACTATCTTTATGC









AGTTTCTTTTTGTAATGCTAACTGCCCTC









CAAATTCCTCCAAAGTAAACACATGGAT









TAGTAAATGAGAAAGAAACAATGCTTAA









AACAACTATGGGTAACATACCTGTTTCA









AGTCGCGTAGAATA





1476
3114081
9
WDR67
GCAGACTTGTAAACTTCTCTTTGAGATTG
0.000280435
0.013530226
1.04E−05






GGAGCCTCGATGAAGGAATTAGCTCATC









AGCAATTAGCCCACATGGACGGTACATT









GCATCTA





 633
3114092
9
WDR67
ATGGAGACCACGCCTACTGACATTCATC
8.88E−05
0.013744083
7.95E−06






C





1909
3114096
9
WDR67
TATATATGAGAGATCGAGAAATTGCTGC
0.000862602
0.008984675
8.61E−06






CACAGCCAGAGACCTAGAAATGAGACA









GCTGGAACTCGAATCACAAAAGAGAC





1551
3114703
5
MTSS1
AGCACGCCATTAATTGCTGATGCTTGAG
0.002997998
0.0115069
6.12E−06






TACAGAAAGAAGAGAAAGAATAGGATT









CCCTTTAGGCCCACGGTTTGAGTTACATT









AAGCCTGTGGTCATTTCCTTTAAGACCTG









GGAACATGGGCATTGCTCATTTTCATGT









ACTATT





1708
3114847
9
SQLE
GCAAAGTTTATTGAAGGTGTTGTGTTAC
0.001236387
0.009381479
7.07E−06






AGTTAT





1837
3115587
3
PVT1
GACTTCGCAGGTGAGCAGTAACGGAAAT
0.000212296
0.007279185
1.96E−06






CAGCCCCGTTTATTCCTCCCAGCACCTGC









CTTATCCAACTCCCCACGCTGTGGCTGA









GTCCCAGCCTGCTATGGAAGCATCACTG









GACTCCCATTGAACTCTGTGCAGATTCG









CTGTTCGTAGACATGGTACCTGATGGAC









ACCAAGCTACGTACAGCTTC





1661
3115998
4
RP11-
GCACACATCACAGCTTTTAACGTTAGTT
0.000553994
0.011864556
1.23E−05





473O4.5
AATAAAGGTTAAACACACAACATACATC









CTTACAAAAAAAGTCAAAATGCAAACTT









AAAACTTTAAACAAAAGTATTACTAATT









TAAAAAAAGTTTGTGTTGGGTACCATTT









GTACAACACAGTTAATTTAAACATTTTC









ATTTTGGTTGCACATGAAAAAGGCGGCA









GTAGAAAATAAAGTCATTGAGGGTTTTT









AAATAGCAGAATAGGCAGTTTTGCCATG









CAGGAGAAGCAATATTAAATATTAGTTT









CAAAAAAAATCCACATTTAAAAATATTT









AGTTCAAGTCACAGAATTTTTCTCAGTA









GAGACCCCAATGCAATGCATAATTAGCT









GCCTTAGATGGCCCGTTTGAAAGGATGA









TATCCCTTCAGAGTGTAACTTTACTGATT









TTGGCACAGAAAAGAAGTCTTAAGAACA









TGATTAAAAAAGAGGGAAGAGGAACAG









AGGAAAGAAATAAAAGCAAGAATAAAT









GAGATAGTAATTGCAATCACTAAAAAAC









TGCATTCTCAGTCATTGCAGAATACTGTC









TTCTGTCTACAGCAGGTGCTTATT





 411
3117908
6

CAGGAACAAATGCACCAGGAAAGGCAA
0.002991379
0.011194815
2.75E−06






TGTGACCAGGTGGGCAGCTGCATCCAGA









ACCTGAGATTCAGAGTGGAGGATGCCAC









CCTCATGTCCCCTGATGATGCTTTCGTGG









AAGAGTGGGGGCCTGGCACTAGAATGTG









TTCACTAATG





 339
3118152
1

CCGCGCTGTGGGCTACGTCTGAGCCGTC
0.010386073
0.011188769
6.80E−06






AGGTCCTCGCTGGGTCTGCGGGCGCCCT









GGGGCGAGGGAGCGGGGAGCCCTACCC









CGAGCAGGCACTCTCCCCAGATTCATTTT









GGAAACCAAGGCCCCCGCGCTCGGCAAG









TGAGCCTGGCT





1168
3118707
3
DENND3
CCCGGGGCCCATAGCCCACACCGTGCCC
0.001965656
0.007321616
4.60E−06






TGCGTTTCA





 185
3119251
2
C8orf55
AGAGTCCTGCCTGGCCCTACGATGAGGC
1.42E−05
0.015914535
1.24E−05






CACTCATGTGGGCCTAGGTAGGGGAGGA









TGGTGCCTGGAGCAGAGGGACCCACAAG









TGCCTCCCGAGCCTAGATCCTGGCTCGG









ACCACTGCAAGGGCCGAGGCAGGGCCA









GACCAGAGCATCCTGGGTACAGGCCTGG









GCTCTCCAGGGCCTGGGCCTGATTCAGG









TGCAGTGGGCACTCCTGAAGGGTCAGAG









CGGCATCTGCCAGGCAGCCCCTCTGGCT









TCCGCTGAGGTGGTTGCAGGCCTGGGGC









AGAGCCTGGGTGGTCAGAGGCCGGGGCT









AGAGGCAGATGGAAGGGAGGCATTTGCT









GACAGAGGACGGGGCACCCGGGCTCCCC









ACTGCAGTCGGCCTTGCCTCCTCCTCCTC









CTCTACCTCCAGTCAGGCTGGACGGGAG









GGTAGCCTTGTGGCTGAGAGGGGTCAGA









CTAGGTGGCACAGGGGCTCCTGGAAAGA









CAGCAGGCTTCCTGCTGGGCGTTCCCTTG









TTGGAGGGAATAGAGTGGGGGTGGGACT









CTGCAGGGGTGTCCTTGTCCACTCGCAC









CCCTCGCCGCCCACCAGGGCCATGCTCT









GTGACTTGGGCTGATCCCCACCCTTTCTG









GGCCTACAGCACCACAGGCCGCTGTACC









CCCTTAGAGCTGCCCCTCTCTGGCCTGGC









CGGCAGGCGTCTTCTTAACTCCT





 137
3119919
7
EPPK1
CACTGCAACAAGAGTACCCGATGGCATG
4.35E−06
0.028826853
2.57E−05






ATGGACTGAGAGTCTAAAGAGTGACATT









CTGTAAAATGGAAGCAGTGAATCCAAAA









CAGACAGAAAAATGTTCTGAAAACGAA









AAAGGAGAGAAAAGTAAAACCATATGA









CACATAGACGACCCAGAAAACACACCA









AAAAACTTATGAAACACCTCGATGGACA









AAGGAAAAGTTTCTGTCACATGACAACT









TAAAACGTTTTCCACAGATAACGAATGG









GTA





 560
3119979
9
SPATC1
CCCAGAGCCTCTCAGCATGGCGTTTGCA
0.0060277
0.013334373
1.31E−05






GGAGCACCCCTCCAGACCTCCACCCCTA









TCGGAGCCATGGGCACACCTGCTCCCAA









GACGGCCTTCTCCTTCAACACTT





1300
3120764
5
ARHGAP39
CAGAGACACCCAAGACGAGCTCGGAGG
0.000122727
0.010438117
4.98E−06






CCTCCCACGACTCTGCCTCTGGTGTG





 806
3124365
2
AF131216.2
AGCTCCTCCGTATTGTCCTGCCGGGAGG
1.77E−05
0.01362045
1.26E−05






ACAGGATCAAGTGGTGGCCCGTCAGGCA









CAGGGTGCCCTCGACAGCCGGGTAGAAA









GGCCGGTGCAGCACCACATTGTCCACCC









GCGGGGTCTTAATCAGCTCCGCAAACTC









CATGCT





1947
3124528
5
FDFT1
CTCTCGGCTTTTGGGTGATGCCACACAA
0.023281585
0.007309709
5.45E−06






CTTGCAGGCGGCATATGCCCGTAGATTT









ACTGATATGCACCTAAAAATTCAGTGTA









AATCAAGTTTACTAAACCCTGAAATTCT









ATAGCCAAATGCTTCTGTGATAGAAATA









ATCAGCCCTCAGTATCTGCTAAGCGTAA









ATTTTTTCCCTAGTTTGCAGAGAGAAACT









GGTTGGGTGCAGTGGCTCACACCTGTAA









TCCCAGCACTTTGAAGGCTGAGGTGGGA









AAATCGCTTGAGCTCAGGAGTTCAAGAC









CAGCCTGGGCAATGCAGCGAGACATTGT









GTCTACAAAAAAATTTAAAAATTAGCCA









TGCATTGGTGACACGTGCCTGGAGTCCC









AGCTACTCGGGATCAGGAAGCCGAGGTG









GGAGGATGGCTTCAGCCAAGGAAGTCAA









AACTGGAGTGAGTCATGTTCAGGCCACA





 848
3125600
9
MSR1
GTCTTAAAGGTGATCGGGGAGCAATTGG
0.000181274
0.017085539
1.35E−05






CTTTCCTGGAAGTCGAGGACTCCCAG





 929
3127573
1

GAGGGATACGGGGAGCCTCCATCTTTGG
0.048959505
0.007288313
3.51E−06






ATTCTTTTGGTACAGGAACAACATCCCTC









CAGGTGACCTCCACCTACCATGGCTCTG









TAGACGCCAGCTCCTCA





 664
3129039
9
CHRNA2
GAACCAAATGATGACCACCAACGTCTGG
0.002388272
0.011092138
6.33E−06






CTAAAA





1458
3129619
4
KIF13B
ACTTGGCGTCAACATAATGCTGGAAACA
0.001135581
0.00738277
4.70E−06






CTTACATCTCCAGGCTTCAGTGCAACTTC









CTTCGCCTGACTTCCCTTCCCTCGGTCCG









CGATCCACTCCTGGGACT





 386
3132919
1

GGAGCCGTGGTGTTGGAAGCAGCATGGG
0.005684569
0.01383766
1.03E−05






GAGGCTGCTTCTCTTCCCAAGTCCAGCA









GCCTGCAGCCTCCTTCCCTCCGCCAGCCC









AGAAGGCATGTGTTCCAAAGCCCCTCAT









TAGGCCTCTCTTAGCAAGCAAAC





2042
3134154
9
PRKDC
AGAAGAGTCTCTGGTGGAACAGTTTGTG
7.26E−05
0.00675565
4.66E−06






TTTGAAGCCTTGGTGATATACATGGAGA









GTCTGGCCTTAGCACAT





1629
3135385
1

ATAGGAGACCTCATTCCTACAAATAATA
0.002024742
0.008228586
4.97E−06






AAAAAAATTAGCCAGCTCTGGTGGCGTG









TGCTTATTGGTCTCAGCTACTTGGGAGGC









TGAGGTGGGAGGACTGCTTGAGCCCAGA









AGATCGCAGCTGCATTGAGCCAT





 902
3135419
1

CACACGTGTGGTAGGATGCAGAGTGCTC
0.002543079
0.009783809
9.62E−06






TGGGCAGGCCACTCAGAGGCCCAGGTCT









GCTCCATGGTCCCAG





2052
3138424
2
ARMC1
TCTTTTCATCAACATGTAGAGCTGCTATT
3.35E−05
0.009405851
3.32E−06






TTACTATTTGGAGAATATGATGTGAAAA









TTGGACCTCAAAGGGTTTCCTTGTGTTTT









CATTGTAAAATACCATCATCAGTGAGAG









TCTTGAGTTCACTAACATTGTCACCTTCT









GGAGAGAGAGTTAATGGGGGGCATTGA









GGATGATATTTTTTTACATGTGTTTGGTT









TCTGATTCAAGTGACACGCACAAACTGA









AAAAAAAAAAACAAAAAAAGCAACAAT









AACTTTCAGGGCACCTATTGCTCTAAAT









GCATAATATAACTTGCTGCCAGAACCAG









ATGTGTTTAAAAAAGAAAATAAAACCAC









CTTCTTTCTATAGCCATTAAAGCAAACTT









TACTGTTCTAACAAATTTGTATTTTATTT









TGCATTGCCACACATCTGCTTATTTAAAA









ACTACATCCCTTTGGTAGTAATGTTTCAG









GACAAGTAGGTATTACAGC





1488
3138480
9
PDE7A
TGGGTGTGAGTCCACTTTGCGATCGTCA
0.01575619
0.011220854
1.37E−05






CACTGAATCTATTGCCAACATCCAG





1971
3138675
7
RRS1;
ACTCCCGCTCTGATACACAAACTTGTTGT
0.006898401
0.006687195
5.87E−06





ADHFE1
AAAAATAATGCAGAAACATATACGTCAA









TCTAAGTCTCTGAAATATGGCCAACTCT









ACCTCGCCGTATATCCAACATTAAAAAG









AAAAAAAAAGGCTGTTTAAGAATAGAA









CTCATTCCCGGTTTCCACCAAATTATTTC









CCTAATTCTTAAATCCTCAAATAAGTTCT









TAATCTCCAAAGTCTCGGTTGTGGGAAA









AACATTAATTTGTGCAGTCCAACACTTA









CATACTTTCTTGACGGAAGGGCAATCCT









GTCCCTTTAAACTCAATGAAGGCAGCGG









CC





1983
3138814
9
VCPIP1
TCAGGTTCGAGCAGAGGCTACTACAAGA
5.66E−05
0.007953518
1.54E−06






AGTAGGGAATCAAGTCCCTCACATGGGC









TATTAAAACTAGGTAGTGGTGGAGTAGT









GAAAAAGAAATCTGAGCAACTTCATAAC









GTAACTGCCTTTCAGGGAAAAGGGCATT









CTTTAGGAACTGCATCTGGTAACCCACA









CCTTGATCCAAGAGCTAGGGAAACTTCA









GTTGTAAGAAAGCATAATACAGGGACAG









ACTTTAGTAATAGTTCCACTAAAACAGA









GCCTTCTGTATTCACAGCTTCTTCTAGTA









ATAGTGAGCTTATTCGAATAGCTCCTGG









AGTAGTAACAATGAGAGACGGCAGGCA









GCTTGATCCTGATTTGGTTGAGGCCCAG









CGAAAAAAATTGCAGGAAATGGTTTCTT









CTATTCAGGCTTCAATGGACAGGCACCT









TCGGGATCAAAGTA





2063
3139046
2
ARFGEF1
CTGAGATACTGGTAATCATCCTGTGAAA
0.000629941
0.007275746
6.32E−06






AATGTACAGAGATGCAGGTCTGTAATAT









AAAAATCTTAAAACATTATATAGTTCTTC









CTGCACTGTTTTCTTTATTTTCTTATTCAT









TTGCTAAATACCCATAATATTTTGTCAAA









TGCACTAAACATTTGGGTGGAACTTTCTT









TTTTATTTTATAGGGATTTTTAGTTTTGC









CCTTTTTGGTAGGTGGTGATTTTGAGGCT









GTAACATGCCCAGAAGCTGTTGTGGCCG









ACACTTCAACAATAGGGAAAAAAAGGT









AGAAAATATCCCTACTGACAGTAACTAC









CTGTCACATATTTCTCTTAGGACTTTTAA









AGATGAGCCATTAAAATAGAATGATCCT









TTATGGACCAAAACTTGAATCACTGC





 984
3139077
4
ARFGEF1
ATGTTCAGATTATGGGTAGATTCCAGTT
0.001852254
0.008893133
6.29E−06






GTTAAAGAGGTTGTGTGTGTTCTAGTTA









GTAAAGGAGAGAGAAAAGATCAGTAAA









CTTTGTTCAGTGATGGCCTTTGATTTTCC









TACCTCATCCCAGGATATGTATGGG





 119
3139107
9
ARFGEF1
TTAGAATGCTTAGTGTCGATTTTGAAGTG
6.61E−08
0.033566027
3.81E−05






TATGGTTGAATGGAGTAAGGATCAGTAT









GTGAATC





1079
3139108
9
ARFGEF1
CTATGACTGTGACTTAAATGCAGCCAAT
1.18E−05
0.015040305
6.57E−06






ATATTTGAAAGACTAGTAAATGATCTAT









CAAAAATTGCTCAAGGAAGGGGCAGTCA









AGAACTTGGTATGAGTA





 265
3139551
5
SULF1
CGGATGTTTTTTCGTTCCTGCTGTATCCG
2.63E−05
0.021575493
2.25E−05






TCCTCTGAACCTCGGGGATCTGACAGTC









GAACAGAGGCTTCCCAGCAATTCTGTGC









CCAGG





1236
3139562
7
SULF1
TTAGCAAGTCGAGGTAAAACACATGCAA
2.88E−05
0.01622433
1.99E−05






CATTTTCTGGCAAAAGCTTAATGTCAAA









CAATATGTGATCCATACTGTGTGTCGTCC









TTGGGGGTTTATTTGACTTTGTCACAATG









ACAGCCAACAGTGAGACTGATAAGCCTG









TAAAAATAAAAAAATAAGACTAATCAA









ATAGACATGGCATTTTAATCTCAAAGTG









CAAAATCATCTAACTGAAAATGACGGCA









TTGAAAAATTCCAGTGGTTAAAAATGAA









TCAAAACTTCATTACGCAGGCAGTGGAA









GTGTGTTGAAAGATTTACCAGGGGTGTC









AAGTTTTAGACACTCAGAAAGGCACCAT









TCTAGCCATCTTGATTG





1337
3139607
9
SLCO5A1
CTGAGAGTGCCATTGTAACTGCTTTCATT
0.01612054
0.00752669
5.63E−06






ACCTTCATTCCCAAGTTCATCGAGTCACA









GTTTGGTATCCCAGCCTCCAATGCCAGC









ATC





 186
3139630
9
SLCO5A1
TCTGGGTACCTGAGCAGCGTAATTACCA
0.000367918
0.011111055
1.14E−05






CCATTGAAAGGCGCTACAGTCTGAAGAG









TTCCGAGTCGGGGCTGCTGGTCAGCTGC









TTTGACATCGGGAACCTGGTGGTGGTGG









TGTTCGTCAGCTACTTCGGCGGCCGGGG









TCGGCGGCCCCTGTGGCTGGCCGTGGGT









GGACTCCTCATCGCCTTCGGGGCAGCCC









TCTTCGCCTTACCTCACTTCATCTCGCCC









CCCTACCAGATCCAAGAGTTGAACGCCT









CGGCCCCCAACGACGGCCTGTGTCAGGG









TGGCAACTCCACCGCCACTTTGGAGCCT









CCGGCCTGTCCGAAGGACTCGGGAGGAA









ATAATCACTGGGTCTACGTGGCTTTATTC









ATTTGCGCGCAGATTCTCATTGGAATGG









GCTCCACACCTATTTATACCCTGGGACC









AACCTACTTAGATGA





1706
3139726
2
NCOA2
TTGCTTCTTCAGCTGACCGGGCTCACTTG
3.46E−05
0.009051694
5.98E−06






CTCAAAACACTTCCAGTCTGGAGAGCTG









TGTCTATTTGTTTCAACCCAACTGACCTG









CCAGCCGGTTCTGCTAGAGCAGACAGGC









CTGGCCCTGGTTCCCAGGGTGGCGTCCA









CTCGGCTGTGGCAGGAGGAGCTGCCTCT









TCTCTTGACAGTCTGAAGCTCGCATCCA









GACAGTCGCTCAGTCTGTTCACTGCATTC









ACCTTAGTGCAACTTAGATCTCTCCTGCA









AAAGTAAATGTTGACAGGCAAATTTCAT









ACCCATGTCAGATTGAATGTATTTAAAT









GTATGTATTTAAGGAGAACCATGCTCTT









GTTCTGTTCCTGTTCGGTTCCAGACACTG









GTTTCTTGCTTTGTTTTCCCTGGCTAACA









GTCTAGTGCAAAAGATTAAGATTTTATC









TGGGGGAAAGAAAAGAATTTTTTAAAAA









ATTAAACTAAAGATGTTTTAAGCTAAAG









CCTGAATTTGGGATGGAAGCAGGACAGA









CACCGTGGACAGCGCTGTATTTACAGAC









ACACCCAGTGCGTGAAGACCAACAAAGT





1822
3139788
9
NCOA2
AAGAAAGCGCAAGGAATGTCCTGACCA
1.08E−05
0.008651908
6.79E−06






ACTTGG





 820
3139840
4
NCOA2
TCAGACTGTGGCTTAATATACAATAATTT
6.21E−05
0.016208818
1.23E−05






TCTCAGAAAAATGAAGCTCTTGCGAAGA









ATGGTTGGGCATATTTCACCAAAATCAA









GTATTTGTGTGTGTGTTTTTTTTTTTTGGA









GTTTGAATATAATCCTGTAAGTAGATGC









TTCAAAACCACTTGAATCACCATGGAAA









GCAAATCTCTTTAGTTATTCTCCATCTAA









GCAGCCTTTGCCGTACAGTTTAATT





 256
3139841
4
NCOA2
CATCTCTTTTAAGGTGGACCAGTTCCCGT
1.77E−05
0.014482929
1.28E−05






GGTTTGTTTTGTTTGTTTAGACTTTTTAG









AGTCTAAGCCAGTTGTCCTGAAGAGGAT









GCAATTGTTCTATCAATTTTGGGGTGTCA









GACTTCAGTTTCTCCAGAACTGTTAGGA









AATTAAGTTGTTAATGTGTTACTGAGTTT









GATCAGGGCTGAAGAAGCACAGCCAAC









CTTTGAGAGCTTATTGCTTGAAATGATG









GCATCCTTGGACCTTTTCATGGCATGTTC









CTTCTGAAGTCTCTAGGTCTGGGCC





1585
3139843
3
NCOA2
TGGCATATGCTGTAGTGATCATGTCCTG
0.004639335
0.007233204
3.77E−06






GACCTC





1969
3139907
2
TRAM1
GTTCTTGAAAATACAGTCTGTGCTCTTTG
6.51E−05
0.008461955
5.00E−06






ATTTTTGCTATTGTACGGTTTCATGCATT









TTTTTAAAGGGCATTTGAGGGGAGGATT









ATTGCTATGAATGAAAAAAATATTTTAG









CTTAGACTAAGCTACCTGCCTTCAAAAT









AGTTTAGGGACCACCACCATATTTTATTT









TGTTTTTATTTTTGAACATTTTTCTAATG









ATTTGGAGAGAAAACTATTTACAAAAAT









TCCACATATCAGTGATACAATTTCTTGCT









GTCACCAATTTTTTATAATAGCAGAGTG









GCCTGTTCTAAGAAGGCCATATTTTTTAA









GTTATCTTTCAGGGTAACATGGAAATAC









TATAAAGTTGGATGTCAAACTTTAATAT









GTTTTCAGTGTTCTCTAATTTTTTGGAAT









TTTTGTAGACTTTACACCTGGAAAAAAA









GATTTGTAAAATCACCGGAACAATTGTG









TGCTTTATTTTATAGGTAGTGGTTATTAG









TATTACATCCCCATTTTAAAAACAAAAA









CATAATAATCGTTACAACACGTGGAGTT









TTACTAACATA





1944
3139925
9
TRAM1
GAAAACTACATCTCAGACCCAACTATCT
0.002671169
0.007740888
7.55E−06






TATGGAGGGCTTATCCCCATAACCTGAT









GA





2001
3139926
9
TRAM1
AATTAACAGGCGAATGCACTTCTCCAAA
1.31E−05
0.008848099
5.28E−06






ACAAAACACAGCAAGTTTAATGAATCTG









GTCAGCTTAGTGCGTTCTACCTTTTTGCC





 447
3140775
2
UBE2W
CCAGGTCCTCATGTATTGTGCAATAACA
0.001052466
0.017989974
1.81E−05






ATGACTTCCTTGGCGGTTTTGGTACGTTC









ATTGCCGGCAATGGGCGTTGTAACAGGA









AAAGTTTTCATTAACTCCTGCCATTCAAT









GATTAATGCATGATAGGGCCTATGAAAT









GAACTTACTGGTTATAGTGGGAATATAA









ATAAAGTGAGGGATCCAACATTACTTTA









AAAGTCACCCCAACTGTTTATATTTGGAT









TCTATGCACTGTGATCCTAAGGTTAACA









GCATGAATTAACATGCGTCTTTAAAGGA









CTGTAATGAAAGATCATTGCATATTTATT









GAATTGTTTATATCTACTGTCAAGTTGTT









TTGACATGGAAGATTTTCAAGTAACATT









GGCAGAGAGGTACAGTATGTTATCCCTA









TGGTG





1526
3140795
4
UBE2W
CTTCTCCAGTACATATGCCACATTGTTGT
0.005613406
0.009006123
6.57E−06






CAGCATGATCATATTTTTATTTAAAAATA









CTTTACATATGTTTATTGCCAAATATTAG









AAAATACAGATTCATGGAAAGAAAAATC









ACTGTCCCAAGGAGATCACTGCATGGTG









AGATTAAGGGGTGATTTTAATTTTTAAA









AATGTATATTTTTTCCTGTGTAGAGTAGT









AACACCCATTGAAAACACAATCCCTTGT









AAAGTCTCTAATTCTGTACTCCGCATCTA









GCTGATCTCTTCTTTCTCAGATATTTTAC









AATTTCATTTATCACCACCTTTCTCTAGC









CTTTACCCGTCTCTTCAATATTTACATAT









GCAGAAGTTTCTCCTAACAAACACCTGC









CTCTGCCTCAGTTCTGCTACCACCCTGTT









GCTTTC





1830
3141853
4
MRPS28
GTCATCTATCCGAAGGCATTTTGTAATTG
0.003636318
0.00677358
3.50E−06






TGCTTGTGTGTGTGTGTATATGTGTGTGT









TTGTGTTACAGTTTAAAATCTTACTGTAT









TACCTACATCATTGAAAGAATCATCATG









CAGCCTTTCTCAACAAAGGCTTATCTAG









AGAATTATACCCTAATATCCTAAAGTAT









ATTTAATGAATTAATAAATATTTAATGA









ATTAACTTACTCATTCCTGGGAGAATTG









AGAATAGAGTCATTCAAATCATTTTCTAT









GGGGTTAAATTCTTTGGCTGAACCCGAG









TTGAGAAAGGCTGCTAGAGAATGCATTG









AAGACC





1663
3141865
2
TPD52
ATGATACTGTAGAACCTGTCTCCTACTTT
0.000637737
0.011384196
1.16E−05






GAAAACTGAATGTCAGGGCTGAGTGAAT









CAAAGTGTCTAGACATATTTGCATAGAG









GCCAAGGTATTCTATTCTAATAACTGCTT









ACTCAACACTACCACCTTTTCCTTATACT









GTATATGATTATGGCCTACAATGTTGTA





1959
3141883
9
TPD52
ATGTTGCTGCCACGATCAGTGCCACAGA
4.84E−05
0.007772796
7.02E−06






G





1920
3141894
4
TPD52
CATTTCAGGTAGAGCGTGTCACATGGAT
0.000961152
0.007445917
4.49E−06






GTAAATACCAAAGGTCAAGGACATGGGC









TTGAGAGATGGTGAGAAGGATGGAGGT









GACTGTGGCTTGCATTCTATCCGTATCAC









TATTAATTACCTTCTAATGCCTTTGGCTC









TAGGTGGTGGAACAAGTAAAGTAATGGA









CAAATACTTTTTCTACCAATATTTAGTGA









CCAAATGCAGAGTTATGGAGAGGGCCAG









GGACCTCATGAACCATACTC





 638
3142136
2
ZNF704
CCTCAGGGATATACAGCGGAGTTTCATG
0.025498894
0.012518258
1.63E−05






ATAAACTACCCATACTTTCCCAAAAAAG









GTTGAGGAGCAATACATAACTTTGCAGA









TTACAAACCCTTGTTTTACTTTTTAAACC









TTTTTTCCATACTCTGCTTATTGGAAATC









GATGGCTGTGATGTGACCAACACCTGTG









ATGATAGCAAAGCCCCTCCTTTCACAGT









CTCCTGACTGTTCGGGGAACCTCCTTGGT









CATTGGTAGAAAGCTTTAGAAAAGACTT









AGCTTTTTAGGGAAGAACTAAAAAATCT









CCAAAACATACTAGTCCCATGACTTCGA









TAACTGAAAATGTCCTGGGTGTAAACTA









ACCCAGGAATGTGGATCATACATGTTTT









TTTTAAAAAAAATCCCTGAATCAATATTT









TCCTACAACACACCCTAAAATTCCTATTT









TTGTAATTAATGGTTGGACAGTGATCAG









CCATTTAAACATAGGCTTTCTGGAATAA









CCAGACACTAGAATAGTTTCCAAAGTGT









TTTGCGTATCAAAATCCTATATACTTAGA









AGAAGAACTCAGGATAAGAAAAAATCG









CTAGGTCCCAAAGGGTTCATGACTATCA









TCAGATGCAACTGCGAGTGGCCTACGGT









CATTTTTTCAAATGAGAAGACTGGAGAG









AGAGAACAACAGTAATCACAAAACCTCT









GTTGCCCTTAGTCCATGACAATGTTTAAG









GAAACTTTAAAAAATTAAGCCATCTTCT









GAATTGTTTTCTACACCAAATCTAAAAT









ATTAAAATGAAATTATTAAATATTTAAA









ATGGGGTATTTAGTGGAAATGCAATCAG









TAGAAAACATTGCTTTTTAGTGCCTGCTA









AACAAGTAAAGGAGAAAGAATGAAGAG









AAAACAGCAGTCCTTCCTGTGTGACACT









CGTGTGGAAATGACAGGCATTCACATGT









CATTGAGTGCTAACTCAAAAGCTAGGTG









GCAATGCTGTCCAATGTTTA





1838
3142146
2
ZNF704
AACAGGATGTAGAAAGACCCATGAAGA
6.13E−05
0.006851634
5.15E−06






AAGAAAGAAGAAAGCTATGGTTCCGAA









AGCAG





1460
3142170
2
ZNF704
TTTCATAGTGACTGACAGGACATTCTCC
0.000357766
0.009437061
6.74E−06






AGAGAGCGACAAAGCAGAGTGGCCAGC









AGGCAGTGGTGTTAAGCCTTGGGCCTTC





 716
3142182
9
ZNF704
AAAGTGTCGGAAGGTGTACGGGATGGA
0.002612225
0.011108751
5.96E−06






GAACCGAGACATGTGGTGTACCGCCTGC









CGCTGGAAGAAGGCCTGCCAGAGGTTCC









TCGACTGA





1022
3143340
4
FAM82B
TGCCTTCACATCTGATATGTGTTTGTCTT
5.59E−05
0.01435305
9.55E−06






TTTCTCCGAATTTTTTTCCTGATTTTAGCC









AGTCATTCACATCTGCATTTTGTTTGTCC









AGTTCTGAGTTTTTAAGTTGCTATTTCAG









ATTTTTTAAATATCTAATAATTTAATTCA









TATTAGCATATTGTGTTAAAGTTTACTCT









CCTTTTTCTCATTTTCAATTTCTCTTTAGA









GTGACTTTATTTTTTTTCCCTAGGGATGT









AATTTTATGTTGAGTTACCAGCAATACTA









GGTCATCAAATGGGAAGAAAGGGTCTGG









GTTAGTTCAAGAATAT





 325
3143470
4
CNGB3
AGTCCCAAGTTGAGTGCATGCTGTTTTGT
2.71E−05
0.017979346
2.25E−05






AAACCACAGTGTCTAAACTGTAGCAAAA









ATCAGATGCATAGACAGGTTATTTTTAC









CTTGCAGAAAAGCACTGTATACAGAGTT









ACAGGAACAAATTTGATATCATATAATT









TAAGAAGCTCTCATAATCAGGTATGGAC









ATTGGCTTATACAACATACACTGTGAAT









CAGGCACAGCAACCTGCAAACCACATCA









TCCCAACAGTTTTCCATTCTTCCTATTGA









CAAACACTTAAACACAGCATTTTCATCA









TATGAAAGTAAACAAAAACAACAACAG









AATAAGCTTTCCCCACACTAATTTCTAAT









CCAAAGAGCTTTACTGCAATTAATGTAA









ATTGCTATCAATCACTGAATTGACTGGG









CAAAGATGGACTTGGCACTGTCCC





1584
3143922
4
RP11-
ATAATGTTGGTGACTCTGTGAAGGATAT
3.87E−05
0.007023854
5.38E−06





37B2.1
TAGAGGAGGCAAGAAGACCATTGATGA









GGTTCCTGCAATAGGTCATTTGA





2036
3144771
9
RBM12B
CGGGGCCTGTGGATATTCGTCACTTCTTC
0.001852254
0.007359204
5.57E−06






ACGGGATTGACTATTCCTGATGGAGGAG









TGCATATAATTGGAGGGGAAATTGGGGA









GGCTTTTATTATTTTTGCAACAGATGAAG









ATGCAAGACGTGCCATAAGTCGTTCAGG









AGGGTTTATCAAGGATTCATCTGTAGAG









CTCTTTCTTAGTAGCAAGGCAGAAATGC









AGAAGACTATAGAAATGAAAAGAACTG









ATCGTGTAGGAAGAGGGCGTCCAGGATC









TGGGACATCAGGGGTTGACAGCCTGTCT









AATTTTATTGAGTCTGTTAAGGAAGAAG









CAAGTAATTCTGGATATGGCTCTTCAATT









AATCAAGATGCTGGGTTTCATACTAATG









GTACAGGACATGGTAATTTAAGGCCAAG









AAAGACAAGGCCATTGAAGGCCGAGAA









TCCTTACTTGTTTCTACGAGGTTTGCCTT









ACCTAGTAAATGAAGATGATGTACGTGT









CTTTTTCTCTGGTTTGTGCGTGGATGGAG









TAATTTTCTTAAAACATCATGATGGCCG









AAATAATGGTGATGCCATAGTAAAATTT









GCTTCATGTGTTGATGCTTCAGGAGGTCT









TAAATGTCATAGAAGTTTTATGGGTTCA









AGATTTATAGAAGTAATGCAAGGATCAG









AACAACAGTGGATTGAGTTTGGTGGTAA









TGCAGTTAAGGAGGGTGACGTTCTTAGG









AGATCTGAAGAACATTCTCCACCAAGAG









GAATTAATGATAGACATTTTCGAAAACG









GTCTCATTCAAAATCTCCCAGAAGAACA









CGTTCTCGTTCCCCTCTTGGATTTTATGT









TCACTTAAAAAATCTGTCCCTCAGTATTG









ACGAAAGAGATTTAAGAAATTTCTTTAG









AGGTACTGATCTGACTGATGAACAGATT









AGGTTTTTATATAAAGATGAAAATAGAA









CAAGATATGCCTTTGTGATGTTCAAGAC









TCTGAAAGACTATAATACCGCTCTGAGT









TTACATAAGACTGTTTTACAATATCGTCC









AGTTCATATTGATCCAATTTCTAGAAAA









CAAATGCTGAAGTTCATTGCACGTTATG









AAAAGAAGAGATCAGGGTCACTAGAGA









GAGATAGGCCCGGACATGTTTCACAAAA









ATA





1393
3145100
6

AGTACAATGCATACTCCTTAGGTTCTTAA
0.011131791
0.007702451
5.96E−06






ACTCTACCAGTCTAACAGAAAGCACCAA









GATACAGATGCCAAAGTCAGAAAAAAT









ACAAAGCAGCTCAGAATCAATATCATAT









ATCTTATTCAAGGTAAATTTTATGTTAGA









TTCTTTGTCTGGCATTTGGGAGGCTAAAT









TAACTTAGGAGGCTAGAGATCCCATCTC





 777
3145187
5
C8orf38
TTTTGGAACCTATAGAACACAACAAAGA
0.000468776
0.009489743
4.21E−06






GAGAATTTTACTGCATGTACTTTTAAATA









AATTCATTCATTCATTCTTTAAGTAATTT









TTAAAAAGAAGATTATTAGATTGTCTCC









CTCACTCACTACTAAGAATGG





 204
3145592
9
MTERFD1
ACTAGAGATCTGGTAGTTCGTCTCCCAA
2.95E−06
0.023094718
1.57E−05






GGCTGCTAACTGGAAGTCTGGAACCCGT









GAAAGAA





 454
3145807
2
TSPYL5
TGAGGACTGGGCCTATATAGAATCCAGA
0.001925692
0.011918826
6.99E−06






TACCATTGTCAACTTCCCTTATTCCCGTC









TAAGATGTGAGCAGAGTGCCATAGTAGG









GGTTCT





 102
3145886
5
MTDH
TTGGTTCCTGGGACTTTAGAAGTGAAGC
3.41E−05
0.03013173
3.38E−05






TCTTTCTTCGTCTACCCAATTGCCCCACT









CTTCTGCTGGTGCATTCCAATCAGAGTTG









GGATCAGCAGAAGACAGACCATCTAAA









ATTTAA





 130
3145888
7
MTDH
TTTTATGGTGGTGTCCGCAGTTTTGTTTT
2.84E−05
0.027153197
2.73E−05






AAAAATTGGTTTAAATTTATATAAAACT









CTGTACATGTTCACAAATTATTGCATAA









ACAGCATAATCTTCAAGACAAGTGTTTG









CAAACACATGTCCAATTCAGGAA





 149
3145890
7
MTDH
GTTTGCTCAATTGTCGGTACAGATAGGT
0.000101783
0.020297858
2.08E−05






AGGATTCCAGTCTGGAGAAACCCCTAAA









CCACTACACCCTGCCTCAGAGTAGGGAA









GAATTTTCAGTATGTATGTGGAGACAGG









CTGGATTAGGGAGCCTTTTGAGTGGCTT









C





1811
3145981
2
HRSP12
TGCTGTGTAGTCTGGAATTGTTAACATTT
4.53E−05
0.009789405
6.30E−06






TAATTTTTACAATTGATGTAACATCTTAA









TTAACCTTTTAATTTTCACAATTGATGAC









AGTGTGAGTTTGATGAAAATATCTGAAG









CTATTATGGAAATACCATGTAATAGGGA









GAGTTGAACATGAATATTAGAGAAGGAA









TCCAGTTACTTTTTTAAATTACACCTGTG









TGCACCTGTATTACTGAATATAGGAAAG









AGATACCCATTACATAGTTACTCAGTAA









ACAAAAGAGAAATACCAGGTAGGAAAG









AAGAGTTACTATTCCTGAGAAATAATCA









AGAACATATTTAATTTAAACTAATGATG









TGAACTATTTAGTTTTGATGTCCGTTATG









TGATTCTGC





1722
3146344
4
RP11-
GACCTATTCCATACCTATCAGACTGACA
2.08E−05
0.008830151
5.09E−06





410L14.2
ATATTTTTAATGTATAATGTTAATGAGTG









GCATGATAGGAACCTAGTGCACTGTTGC









TGAGAACAACACAGTGGAGAGGAATTA









AGCAATATCTAGCAGAGTTGAAGACGCA









TATACCCTA





1738
3146442
9
COX6C
TTTCGTGTGGCTGATCAAAGAAAGAAGG
0.000110135
0.010882068
6.38E−06






CATACGCAGATTTCTACAGAAACTACGA









TGTCATGAAAGATTTTGA





1244
3146529
9
FBXO43
ACTGATCGGCAAGAAAATGGGTATAGAA
0.003390971
0.011341658
9.24E−06






AAACTGGACATCTTAACAGAATTAAAAT









ATAGAAATTTAAAGCATATTCTTGCTAT









GGTTTTAGAGTCCTTGACCGCAGAGAGC









CTATGCA





1215
3146566
2
RNF19A
CATTATGGTGCTACTGAGCGTTTTCTTTT
0.000148906
0.010441166
1.00E−05






GGTAAAAAGAAAAATGCCATGGGCTGC









AGTCTTCTTCCATCACTTTTCCCTACCAG









GTCCATTAATATGCTTATAACACTAGTGC









CAGTTATTTTATTTGATAATGCTTATGGT









ATTTGTATATTTGTTTGCATTCCAATTTT









GTTTAATAATGAGTGTGTAAACTGCATA









CGTTA





 362
3146569
9
RNF19A
CACCCGAAGTCATGCTGGCGGTTCATCC
0.00010545
0.021503954
1.92E−05






AGTGGCTTGCCTGAAGGTAAATCTAGTG









CCACCAAGTGGTCCAAAGAAGCAACAGC









AGGGAAAAAATCAAAAAGTGGTAAACT









GAGGAAAAAGGGTAACATGAAGATAAA









TGAGACGAGAGAGGACATGGATGCACA









GTTGTTAGAACAACAAAGCACGAACTCA









AGTGAATTTGAGGCTCCATCCCTCAGTG









ACAGTATGCCTTCTGTAGCAGATTCTCAC









TCTAGTCATTTTTCTGAATTTAGTTGTTC









TGACCTAGAAAGCATGAAAACTTCTTGT









AGTCATGGTTCCAGTGATTATCACACCC









GCTTTGCTACTGTTAACATTCTTCCTGAG









GTAGAAAATGACCGTC





2019
3146577
9
RNF19A
TCGGTGTTCCTATTATGTTAGCTTATGTC
0.000885779
0.006579631
3.15E−06






TATGGCGTAGTTCCAATTTCTCTTTGTCG









AAGCGGAGGTTGTGGAGTCTCAGCAGGC









AATGGAAAAGGAGTTAGGATTGAATTTG









ATGATGAAAATGATATAAATGTTGGTGG









AACTAACACAGCTGTA





 478
3146675
2
ANKRD46
TTTCTTAGCGCAAAGCAGTGAGGGCAGT
3.35E−05
0.019301227
1.64E−05






ACATGTTCTTTTTGCATTTTTAATTATTGT









AATCCTTTTAGATAATGATGTGTTCATTT









GAACTAACTACATACTATGATCAAGTAT









ATTGCATCCTAACGCTACCTCTGACTCAA









CCTGACTTTGTA





1945
3146698
3
ANKRD46
AGTATGGAGTACTGAAGGCCAAGTAAAG
0.006376399
0.006617936
4.09E−06






AGTTTTTCAGGGAGAAAGTGACCAACTG









TGTCTCCTCCTGCTGATTGACAAGTCAAG









TAAGATGAAGACTAGGAGATGACCATTG









GATTTAGTAATAGGAAGGTCCTTGGTGA









CCTTGCAAGAGCACTTTCAGGAGAATAG









TGAGGAAGAAAACCTGATTGGTGTGGTT









TCAAGAGACAACAGGAGGAAGAGCATT









GGAGACTGCAGTATGGACAGCTCTTTGG





 639
3146904
6

TTTTCATGTAAATTAGTCTTGGTTCTGAA
1.45E−05
0.020079582
2.10E−05






ACTTCTCTAAAGGAAATTGTACATTTTTT









GAAATTTATTCCTTATTCCCTCTTGGCAG









CTAATGGGCTCTTACCAAGTTTAAACAC









AAAATTTATCATAACAAAAATACTACTA









ATATAACTACTGTTTCCATGTC





1126
3147061
2
ZNF706
TCCCTCCAGTTTGTCGCATTTAATCAAGG
0.002671169
0.009051504
4.43E−06






AGCGGTTGTAGCTGCCTACGATTTTGTA









GAAAATTGTGTTGGCTTGAGAGCAAGTC









CTAAGTTGAGCTGTCCAAAAGCAGGTGG









TTGGTTCGTTTGAATTTCTGCTTTCAGAA









AGGAAATCGATGGGGCGTGTTGTCAGAA









GTTAGGGGCCTACCTCATGCATTTAGCTT









ATTTTATTCCATTTCCTTTACCTGGTGTT









AAGTTTTCTGTCTTCAGAATAAGAACAA









GTGACTACTGTCTTTATTAAGTCTCTTCG









GTCTTTTTGGTTGCTGTTTGGTGACAATG









GAAAATGGGTTGAATCTATTGTGTAATG









TTATATTTTAGGGAAAGTCCTAAGTGCA









AAAGTTAAAAATAATTTTGTGTGTCTAA









TGACATTGCTTTGTACGAGTCACAACAT









GGAAATATCAAAATAGCTAGTAACTTCT









AGAAAGCAAAGGAACTTCTGAAATTAGT









GGCTTACCATTTTTGAAGATTTTTTTTAA









CATAAAACAAGATTTCCCACAAAATCAG









TGTATTAAGATACATAAAATACATTGTG









TCGAAGAGTTAAGATGTGTGAGAAGACT









GGCTATTTTGTTACAAGGTCCTGATAGTA









AGACATTGAGACAAAAAACCTTGCAAAA









CATTGGTATACATAAAGGCTGATCACGT









GACTACTGTCGTCCAAATAATACATAAG









TATCCAAACCTGTTTCCATGGGAATAGG









TTTGTAAGCTTGCGGTAACATCGGACTT









AAATACACTTTTAAAAAAAATGTGCCAT









TTGGCTTAGAATTAATAATTTTTTTTAAA









GCAAAAATGGAAGCTTAGTCTTCAAGGA









CTGATAACAGCTGGTAATATTTACCATT









GTTTGGTGGGAATGGGGTTCTCATATTA









GGCTAGCACGCTAAACATTTTCAATTAC









GAAAATGTATTAGGCTCGTGTGCTACCC









TAATATAAAAACCCCATATTTCCTCAGTT









GAAATAGTCAGCTGACTATCCTGAAAAG









CATTGACCCTCTTTTATATTTTATCTGAC









TTTCAGTTCATTTTTTTAATGCTAGTGGG









AACTTCTCCAATCAGTGTATTTTTTTAGT









TTCCTTTTTTGGGGAACAGGAGGAGCTC









AGTAATTTTTATGAAATGCTTTGACCTCA









TATCCATTAACTAATTATGGTCCTAGTCA









GAAGAAGCTAGCACCCTTCCCTGGTGAA









GTTGATACAAATCCATTGTATGTTCCTGT









CCTGCAATGATTTACATTCAGTTACAGTA









CTAGTCAAAACTATATATATATGAATTCT









ACTTAGGATCCAATTTTGATATATTTAAA









AAGCAATTGAGACTCATGATAGACTTTA









TGAGCAGGTTTAACTTGTGTGGTCGAAT









AAAAGCCTTTAATTTAAATGGAAAAGTA









AAAGTAACTTTTTTCAGTGACTTGATTTT









TTTTTTTGTTTTAATCCATTTGGGTTCAC









GTCAGATCATCGGTA





1323
3147137
5
GRHL2
TTTAGGAAAAGGCTGCTATACTGTGGAC
5.83E−05
0.007715533
3.80E−06






GAAGTCTCAGATCAGAA





1821
3147154
5
GRHL2
AGACAGATTATGTTGGATTGAGAAATGG
0.000250234
0.006855299
2.16E−06






GTGACAGTTTAAGATGTCGGGCAGGAAG









TGTAGGCTCCTCTTTTAAGAAACATGAG









GTGCCTG





1778
3147288
2
RRM2B
TTTTTTGGCTTAGTATGTTGAAATAAACT
0.000691504
0.00650489
5.26E−06






ATGG





1312
3147309
4
RRM2B
GAAAGAGGACTGTGGCGGCTCTGCTGGA
0.002509145
0.006651229
1.26E−06






GAGGTGCATACCATTTGGGATGGTGACA









AGGAGTTGGAGAACGCGTGTGGAAATTG









AC





 133
3147316
8
KB-
TCGGTTGTTTACGCACGAAACCAGCCAG
1.68E−05
0.02024896
1.20E−05





431C1.4
CCC





  95
3147353
9
UBR5
CAGAGATTAAGGAACCGAGGAGAGAGA
1.40E−05
0.029777153
2.71E−05






GACCGGGAAAGGGAGAGAGAAAGGGAA









ATGAGGAGGAGTAGTGGTTTGCGAGCAG









GTTCTCGGAGGGACCGGGATAG





1951
3147355
9
UBR5
CGGGATCGAGATCTTCTCATTCAGCAGA
4.38E−05
0.008446581
2.80E−06






CTATGAGGCAGCTTAACAATCACTTTGG









TCGAAGATGTGCTACTACACCAATGGCT









GTACACAGAGTAAAAGTCACATTTAAGG









ATGAGCCAGGAGAGGGCAGTGGTGTAG









CACGAAGTTTTTA





  57
3147362
9
UBR5
ATGATAAGGATGATGACTCTCTTCCTGC
3.58E−05
0.042037758
5.21E−05






AGAAACTGGCCAAAACCATCCATTTTTC









CGACGTTCAGACTCCATGACATTCCTTG









GGTGTATACCCCCAAATCCATTTGA





 693
3147378
4
UBR5
GCCAGTATATGTGTCCCAATTTTTCCTTT
1.55E−05
0.014008764
7.94E−06






AATGTCAGGTGTCCCTTTAATCTAAATCC









AGTTTTGTCTGACAGAGCTCTCCCATAGT









ATCCTTGATACTGATATACATCCAGGAC









TTGTTGAAAACTGTTACAAATCAAGCTG









TGTATCTTCAGACTTGTCAAATCTATCCC









ATGATTAAATAATTCTGCTTGTGAGATCT









GCTTGGACTCTGTATGATTTTCCTGATCT









TGATACCCTGTGAGGAAC





1937
3147416
4
UBR5
CTACACAGTAGCACAGGAGGCATTGGGA
1.05E−05
0.007966735
3.42E−06






AATCACAGGAGGCTGCACAGAATGATTA









CAAAGAGTGTGGACTCTGAAGTCAAACT









GCTGGATTTCCTATCCTAATCCTACCACT









GTCTAGTTGTGTGATCTTGATCAAGTTCT









TTAACTTCTCTCTGCCTTGGTTTTCTCAT









ATAGATAGATATAGTAATACTTTTTACAT









TATGGGTTTGTTATGAGAATTAAATAAG









TTAGTTTATGTAAAGTGCAAAGAGCAAG









GAGAAGCATGGTCCTGTCCCAGGAAGGG









AGAACGGGCAGTTCCTGCAGGTCATGGG









AGGGTGAGAGAGCCCAGTTGGGTATTTC









GAAGTACGTTTATGTGGCACTTGTGTGTT









ATGTGCCAGGTTCTCTGTTAGTAGTGAAT









TGGACACAGACCAAAAAGATACAGATC









ATGCATGCCCCCTTTATCTGACTGGACTA









GAATGAATTCAAGTTATGAAAACATTTT









ATTATAGTAATAATTTAGTGTAATAGGA









AATTAAGGGCAGCCTATATGTACCAAAG









TGAGAAGGGGAGGGAGTGCCTAAGTCTG









TGCTCTAAGTTC





 571
3147425
9
UBR5
GTCAAAGTTGAACAGCAACTCGGGGGCA
0.000504026
0.016922667
1.60E−05






GGGAGGACGTCAAGGCCTGGTAGGACA









AGCGACTCTCCATGGTTTCTCTCAGGTTC









TGAGACTCTAGGCAGGC





  90
3147426
9
UBR5
TGGTTTTTCAGTACAGCCAGACAGATTG
3.18E−06
0.031095942
3.24E−05






GAATTGGGTAAACCTGATAATAA





 175
3147427
9
UBR5
TTGAATGTATTGGAACAGGCTACTATTA
5.48E−06
0.025869674
1.89E−05






AACAGTGTGTGGTGGGACCAAATCATGC









TGCCTTTCTTCTT





1992
3147613
9
AZIN1
TTGATGATGCAAACTACTCCGTTGGCCT
0.000264928
0.007282996
6.61E−06






GTTGGATGAAGGAACAAACCTTGGAAAT









GTTATTGATAACTA





1750
3147677
7
ATP6V1C1
TGTGGGTGTTGACAGTGCTCATTGATTG
0.02057934
0.007555028
6.58E−06






AAATTTGAAACGTTCAGAAATCCCATAC









CTGAAGATGGTCACATATTCTTTACATCA









TGATTCAGTAACTATTCAACAGTTATGTC









TACTAAATACAGTGAACAAAACAGTATA









AATGTTTACACCATTCCCCTGTGAACAG









GGCTTTTGTGCACAATAGTAAC





 793
3148720
9
TMEM74
ATGGAGCTCCACTACCTTGCTAAGAAGA
0.007582294
0.010273983
6.22E−06






GCAACCAGGCAGACCTCTGTGATGCCAG









GGACTGGAGTTCAAGAGGGCTGCCTGGT









GACCAGGCAGATACAGCAGCCACAAGA









GCTGCTCTCTGCTGTCAGAAACAGTGTG









CATCCACCCCAAGAGCAACCGAGATGGA









AGGGTCTAAACTTAGTTCTTCTCCAGCAT









CCCCCTCCTCCTCTCTGCAAAACAGTACT









CTTCAGCCAGATGCCTTTCCACCAGGAC









TTCTC





1693
3148899
4
SYBU
GCAACAGCCACCAAGAAGGGTTCTCATC
4.91E−05
0.006815011
2.32E−06






ACCCTGTTATTCAGGGCCAGAGTTTCTTC









AGGAGTTCAGGAAGAACGCAACGTATTT









AAAAGAGCCCGAAGACTGCAGGCATGA









GCAGCACCCTAAAAACCA





1953
3149782
3
EIF3H
AGCAGTCTGGCAGGCCTTCTCAAGTAAA
4.99E−05
0.006519112
2.50E−06






TACCAACCCTGTTTCTGCAGCAGCCTCA









GCAGCAGCTCAGTCTAGACAGGGTTTCC









TTCTTTCTGTTTATTTTTCTTGCTATCAGA









GCCCTGATGTGTACATTTTGGAATGCTG









GAGTAGCTGCTTCATTTCTATTCCTCCAT









CTCCCCTCCCTCATTGAAGGGGCTGGTG









GAACTAGACCAGATGTCTAACAAACCCC









GATTGCTAGAGTGTCTGGCTCTGTACGT









GACTGACCAATCATAATACGGTGTGCCA









AGTTTTTTTTATACCTCTGACAACAGCGT









ACAAAACCTGGACTGTTTC





1978
3149863
9
RAD21
GATTCAGTGGATCCCGTTGAACCAATGC
3.09E−05
0.010598225
6.84E−06






CAACCATGACTGATCAA





2069
3149864
9
RAD21
GCAGCCTGCACATGACGATATGGATGAG
0.000142286
0.006938925
5.44E−06






GAT





  96
3149866
9
RAD21
AGCAGTTCAGCTTGAATCAGAGTAGAGT
5.86E−05
0.032413212
3.97E−05






GG





 566
3150181
4
EXT1
TGGATTCCAAATAATGGGGCTTCTCATA
0.007337714
0.011167989
7.79E−06






AAAGATTTGGACCCTGCCCCGAGGCTTT









TGGTAATAAATGTGGCCGCTTTGTTTTTT









TCCCTAATTATTTCATTCGTAAAAGTCTT









ATCTTCCCAATAAAGATGGTAACTCCTCT









GGACTGGGTCTGCTTTTCGCATTTTCCTT









C





 200
3150260
1

AGCAGTTCAGCATGGGACTAGTACCAAG
0.005450518
0.009774559
1.03E−05






ACTCACACTAAGGAAGAAGGAGTTGGA









ATAAATTGAAAGAACACTCTGGGGTTGT









GCATTCCCCATTGCAGAATTGGGGACAC









TGCTGTAAATGGGGAGTACTCACTGGA





1535
3150537
4
RP11-
TTGTCATTCAACTCACAAGTCTAGAATGT
1.59E−05
0.012061709
7.83E−06





4K16.2
GATTAAGCTACAAATCTAAGTATTCACA









GATGTGTCTTAGGCTTGGTTTGTAACAAT









CTAGAAGCAATCTGTTTACAAAAGTGCC









ACCAAAGCATTTTAAAGAAACCAATTTA









ATGCCACCAAACATAAGCCTGCTATA





1956
3150666
9
TAF2
ACCTTTGGAGATGAGTATGCATCCAGCG
2.80E−05
0.007484629
3.54E−06






GCAAGCGCTCCACTCTCAGTCTTTACTAA









GGAATCTACAGCCTCCAAACACA





 221
3151057
1

TGGGAAGTTTAGACCAGGAAATTGCAGC
1.19E−06
0.016560632
1.54E−05






TGTATTCACATGCTATCATGCTTCGGGTA









CAGAGAGGCCCTCTATGCCCCATGAGTT









CAGAAACCTA





1758
3151568
4
ATAD2
CGTTTTTTAACCAGGGATGATGCCATCCC
0.000958852
0.006912877
2.11E−06






CCTCCCCGAAGGGACAGATATCTAGAGA









CAGTTATGGTTGTCACAACTGGTGGGGG









CAGCTACTTAGCATTTGGTAGATGAAGG









CTGTTAAACATCTTACACGTACAGGACA









GCTCTCCACAACAAATAATTATCTGGCC









CAAAATGTCAGTAGTGCTAATTTGGGAA









ACCTTTATCTAAACAATAATTATCAATG









GCCACTCAAGCAGTAAGATAAAAAAGA









AGTTTGATGGGGATATTTATGATGGGTG









GAACAAGCTGTTAACACCTGACCGAAAC









TCAACCCACTGATTGACCTTAAATGGGA









AACTGATATTAGGTGCCTCCTGTGGGGA









TATAATAG





1148
3151571
9
ATAD2
ATCAGATGCGCCCATCAATTATTTTTT
2.14E−06
0.01249276
1.03E−05






GACGAAATTGATGGTCTGGCTCCAGTAC









GGTCAAGCAGGCAAGATCAGATTCACA





1530
3151576
9
ATAD2
CATGCAATCCACAGTAGTGACTCGACTT
0.021434136
0.007350183
7.31E−06






CATCTTCCTCCTCTGAAGATGAACAGCA









CTTTGAGAGGCGGAGGAAAAGGAGTCGT









AATAGGGCTATCAATA





1931
3151874
1

CACATATTGGAGTTCACTGGCAAGAACT
0.00010865
0.008065512
2.97E−06






CTAAGATAACTATGACTAATGTGTTTGA









GACAATTATGGATAAGATAATAGGCAAA









GACTTTGATCAGAAAAGTAATCTATAAA









AATCAAATGGATATTCTAGAACTGAATA









CAGTGTCTGGAGTTGAGAACACAGTAGG









TGGATGTAATAGTGGATTTGTGTAACAA









AAGACAAGATTAGTGAACTACAAGACA









GGTCAGTAGAAAAAAATACATACTGAAG









CATGTATTGGAGGCATGTAAACACAATG









AAAAGCCTTTAGAAAGATAATTGGAGTC









TTGGAATAGAATGGGGCCAAAGTA





1544
3151880
1

CTTTCTGCCTTAAACCCTGGTGCTCACTT
0.000986793
0.007880354
4.89E−06






CTCTTCTTTACTAATAAATGTTCTTTGTG









GCATATTATTATTTTTCCATAATAGGGCA









CTTCTGTCTGCCTTAAGAACCTGTTTTGG









TAGATATGCTTTCTCCTCAATGATTTTCT









TAATGGCATCTGGGAACTCATTTGCTGC









CTCTTGGTCATCAGGAGCTGCCTCTTCTG









TTATCTTAACATTTTTAAAGCCAAACTTC









TTTCTAATATTATCAAGCCATCCTTTGCT









GGCATTAAATTCTCTAGATTTAGATCCTT









CACCTTCCTTTTGCTTTAAATTGTCATAT









AATGACCGCCTTTTCTCCAATCATATTAG









AGCCTATAGGTACGTCTTTCTTGTAGCAA









TACTGCACCCACATAAAAGTTGCATTTTT









AATACGAGATAAAAAGGTATATCACAAA









AAGTGTAAGGTTTGCTGGTATAGATGCA









GTAATGGCTTCATAAATTTTCTTAATTTT









TTTTAACAGTGGTCCTTATGCTGGATTCA









TTTATCTTGAAGGATGGGCAACTACAGC









TGCAGACCAGTACACATCAAGCAATTTA









ACTTTTTCTTGTAATGTCATGACTTTGCT









CCTTGGGAGCACTTCCAGCGTCACTAGC









GGGACTTCATATGGGTCCCTTGGTATTAT









TGCAAGGTTTATGGTTGTACTAAACATG









ATGAAAAATAACTGAGAACCATGAGAG









ATCACTTTTTACTACGATACACAATTTAC









TGGAGAGATGAACTGCCCATGTGGAGAT









GATAAACATCACATGGCATTTTAAGTGA









ATACAGCACTTGAGCTCACAGCAACAGC









AACAGGAGGTAGCTCTGAAATTATGGTA









GTAGTGCAGTATGTACTATAGTTAATCTT









ATCCAGTTGTAATTTAGTACTGCATCTTT









ATGTTTGTCTCAACTGCAAATGGCTCCA









ATGTATAGTCTGTGTA





1541
3151942
5
RNF139
TGCGCCTGTGTGCTGAATCACTCCATTTC
0.000302186
0.01206077
9.57E−06






TTTCTCTTTGAACATCATCATCACAATCT









GTACTGTCATCTTCGTTCAATTCCCTGTC









AGATTCAGCAGCAGCTTCTCTTACAGCTT









CCTCTGGAGTTTCATTGGGTGGAATAAA









TCCATTGTTGTTAGATACATTTGAATTAT









CCTTGATATCATCTTCGATGTATACTTTC









TGATGGCACATTGGACAAGTATCTTGAA









TGTACAGCCATTTCCGAAGGCAAAGTGC









ATGGAAATAATGATTACACGGTGTAATA









CGAGCAGATGTTGTAAACTCATGATAGC









AGATTGCACATACATCATTTATTTCTTGT









AAGCGGCTCCCTTTTATTTCAGGAAGTG









AATTAATTTTCTTCACAGCAGTCCTACGA









TTCATAAATGTCTTCCAGCCATTTTTGGC









TTGTAAGTAGATGTTAAAATATGCATGT









AGGCACATCATAAAAGCCCGAATTTTAC









TTCCCGACTCAAACATCATAGTGTAAGC









CCCATTTCCAAACATTACAACTCCAAAT









ATAAATTCAATAATACTGCCTGTTGAAC









GAACGTAGTAGACATAATCGTCAAGCTT









TTCCCAGAGGACATTATAGTAGCC





 725
3151996
9
MTSS1
AATCTCAATGCTAGGGGAAATAACCCAC
2.75E−05
0.013085414
6.46E−06






CTTCAGACCATCTCGGAAGATCTAAAAA









GCCTGACCATGGACCCTCACAAACTGCC









CTC





2011
3152016
9
MTSS1
CGCTTTAATTGATTGTCTGATAAACCCAC
0.001921299
0.006534607
2.49E−06






TTCAAGAACAGATGGAAGAATGGAAGA









AAGTGGCCAACCAGCTGGATAAAGACCA









CGCAAAA





1564
3152038
4
MTSS1
AAGGTTTCTGGCTCTAATCAGCCCATCA
0.002514771
0.006782061
3.70E−06






CAAAAATGAGATGAGTATTTCCCTGTTG









TCATAACCCCTTAGGGTGAGGAGTGTAT









CCTTGGTGACAGACCAAAATCAAATCAT









TTTTACAAATATTTATGGAGTATGGTTTG









AGAGGATGAAGAAGAAAAGCATGTGGA









AACATGGGGCAAATTGGGACTTTTTAT





1573
3152088
9
MTSS1
TGATTGAGAAGGAATGCAGCGCGCTCGG
0.038614454
0.007217448
6.83E−06






AGGCCTC





1877
3152261
9
KIAA0196
GAGATGGTTCTGGACAATATCCCAAAGC
0.000153344
0.008032919
2.64E−06






TTCTGAACTGCCTGAGAGACTGCAATGT









TGCCATCCGATGGCTGATGCTTCATA





1042
3152298
5
NSMCE2
ACTGGTGGAATGGTGATGTCTCTGACAG
0.031432454
0.00702341
4.58E−06






AAACCAACCTAGATCTGTGATTACAATA









TATTTGGGAGTTATGACAATCTTATCACG









AGTTTCATCTCCTCCATCTCTGTTTTCCCT









GCCCCAACTCATAAACTTCCTTGTATTAA









TACAAAGATGTCTTGGA





 496
3152302
5
NSMCE2
ATGGCACAAAACGATGCAGATGGGCATC
0.000199853
0.012091556
8.22E−06






ACCT





1029
3152910
8
PVT1
TGGGGCTAATTATAGCACCATCCTCCTA
0.025177619
0.00679582
3.81E−06






GGATTATTACAGGAATTAAATTATTTAA









CAGATGAGACCAAATTCGCACTGCCCAG









AAGTTAATAAGCACTAGATAAATGTCAG









CTATGATTATTAGTTACTAATCTAATTAT









TATCATTAGGAAGTCATTTAATTTAACTG









ATTTGACTGGTAGGTTCTTCATGAGTTAT









CAATCACACAGAGATTTACCAAGGAAAG









GCCATAAAGAAAAGAAGGAAGAAAATT









AGCATTCTTTGTCAGCTTCCTACACATGT









GATCATTTCAGGTCAGGATTTCACATTC





 874
3152978
8
PVT1
TTCAGCTGGTCCAGACGCAGTGGCTCTG
0.018228464
0.007100921
6.91E−06






ACGTTCTCTGGCAG





 157
3153331
2
FAM49B
ACGGGCCATCTAAGGCAGCTAATTATGC
8.86E−07
0.031562714
3.42E−05






ATTGCATTGGGGTCTCTACTGAGAAAAA









TTCTGTGACTTGAACTAAATATTTTTAAA









TGTGGATTTTTTTTGAAACTAATATTTAA









TATTGCTTCTCCTGCATGGCAAAACTGCC









TATTCTGCTATTTAAAAACCCTCAATGAC









TTTATTTTCTACTGCCGCCTTTTTCATGTG









CAACCAAA





 481
3153338
4
FAM49B
GGCTTCTACTACGTATTTGGCAATATAA
0.000449203
0.008890397
4.61E−06






ATAGATAATTAGATATAAGGAATTTTGA









GTCATATCCTTTAATTCCTTTGGCCAAAG









GCCATTTCAAATAAAATGTTTATTTCAGA









ATGCATATAAAAAGTCAGTAGTGCTGCT









GGGCGTGCTGGCTCATGCCTGTAGCCCA









AGCACTTTGGCAGGCTGAAGCAGGAGGA









TCACTTGAGCCCAGGAGTAGAAGACCAG









CCTGGGCAGCATAGTGAGACCCCCATTT









CTACAAAAAAAAAAAAAAAATTAGCCA









GGTGTGGTGGCACACATCGGTAGTCACA









GCTACGTTGAGAGGCTGAAGTGGGAGGA









TCCCTTGAGCCCAGGAGTTCCAGCCTGC









AGTGAGCCACGATCACACCACTGCATTC









AGTCTGGGTGAGAGAGAGACCCTGTCTT









GAAATTAAAAAGACAGCCAGTAGGATG









CTCCAGTGGAAAAAGATGAAGACTTTAT









GTATTTTCCCTCCCCTACCTAGTCATAAT









AATTTGTGACTATAGTTGGCTCTCGACTT









TTCTTCTCTCTGTAAAAGTTTGTATTAGA









AATAGTTTTCTAATTTCTCTACTTCGTAG









TTTCTTTCCCCAACCTCTCACATCTAGTT









CATTAGTGTTTGGTGAGAATTGTCTTCCC









GTTTCCCTTTCATAGCTAGTTTAGGCTCT









TAGCATTTCGGATCTCGATTACTGATTAC









TAGCCAAGCTTGTTGCCTTCATGTACACC









TGTCA





1474
3153369
2
FAM49B
CTGGAACAAGTGAACTAGGAAAGAGGG
0.016492423
0.010486458
6.26E−06






AACGCCAATCCAAG





 542
3153531
9
ASAP1
GAGAAAAGAGAGCACGCAAAACAACAT
0.000611594
0.015079374
1.42E−05






GGG





 791
3153572
4
ASAP1
TTATTGTGATGGGAGATAGTCGTCCTGC
0.000563692
0.013482063
1.03E−05






ACTTCTGTAGATTACAGGCCAGCAGGTG









GAAGCCTGGGCTGTGGAATCAGATTGGG









TTTGAGTCCCAGGTCTGCTTCTTGGCCAC









TGGGCATGCAAGGCCTTCATTTTC





1713
3153586
4
ASAP1
GTGAGTCGTAGACCCTGTTCCTACAGTTT
0.003557945
0.007447963
1.39E−06






CAACAAACCCTGATGGTGGCATTTCAGT









TTATCGTAGAGGTTTCTTTTCCCCTACAA









GGGTCATTCTCTCTTGCCCAATTTTGGCT









GAGAAGGGAGGAATATCATGGCCGTTTT









GGCTGTATGGTGTTACTGTATAATGATAT









GGGGATTGGTGAGTGAAAAATAAAATG









AACCCTCACTTGCTTAGGTACCAGTTT





 517
3155043
5
KHDRBS3
GCACACGGCGACCAACTCAAACATAAAA
0.000319739
0.010247178
7.03E−06






TTTAAGTTCAGAATCTGGATTCATGCAAT









CTTCAGCAAGTCTTTAGTCCTCTTCAAAT









ATTTATATAATAAAGGAGCCCTAAAAAT









AGCTAGACATGCACAAATGAATTGACAG









GAAGCTGCTGTTTCAGAGTCCAAATGTC









CTTATTCTCTTCCCATTAATATCTTTAAG









GTCTTTCTACGGCCATCTCTCCTCCCTCT









CTTCACATGCTCTGGCCAGTCACTCACCG









TAGGAATCATAAGTCTCCTCACTGAGTC









CATGTCCGTAATC





1984
3155047
5
KHDRBS3
GGCTATTTCACAACATCAGACAGTACAA
0.000192114
0.006667798
4.43E−06






TCAGTATCTGCCATATGGCTGGTCTCTGT









AGACGCCCTTTGCTGTCCTCGCTGAAGG









TGCCTTGTGTCTTGAGTTAGTCCACTC





1262
3155524
4
FAM135B
TGCAGTCACTGCAACAATGACAATACCA
0.00247563
0.006678738
3.02E−06






ACATACCTGGCCTAGGGAATGCTGGCTC









CCT





 490
3156104
4
TRAPPC9
CTTGGGGCTCGGATTCTTGAATCTTTATC
0.000636171
0.01047113
6.63E−06






AGTGGGAGTCAGAAATTGCCTTTGAGTT









CATTGGCATG





1914
3156387
9
PTK2
TTGGCCAACAGCGAAAAGCAAGGCATGC
0.036159066
0.008448362
6.92E−06






GGACACACGCCGTCTCTGTGTCAG





 958
3156443
4
PTK2
TTTAAGAAGCTGCTCCGTGTTTGGCCAA
0.000130223
0.010054359
6.30E−06






ATTGGAGAGA





 388
3158057
5
SPATC1
CAGGCCTTTCCTATGCAGCACTCGGGAC
5.48E−05
0.018175287
1.55E−05






ACTGCCACGGACGGGCTCCACGGCAAGT









GAGTGGCAGCAGGTGTCACAGAATCTCT









GTCTGAACACAGGGTGGGCGCATTACAA









ATCAATC





 745
3158586
9
SLC39A4
CTCCCGGCGATGTTGAAAGTACGGGACC
0.000385118
0.010205084
4.89E−06






CGCGGCCCTGGCTCCTCTTCCTGCTGCAC









AACGTGGGCCTGCTGGGCGGCTGGACCG









TCCTGCTGCT





1461
3158698
2
CYHR1
CTCTGTCATGGGGTCTTGAGACTGAGGC
0.004759574
0.010659625
7.27E−06






TTGGGCAGGAAGATCCAGGTAGGGTCGG









GGCTGCCCTGGCCAACCGGCCGCTCCCA









GGGAGACAGGACTCAGCCACCAGGGCTC









AGCAGGCATTTTCCGAAAGCAGGGTGAA









ATTGTCTCTTCCCAGGAAAAAGATTAAA









CTCCTTGCAGGCTCTTGGATA





 239
3158768
2
AC084125.3;
GTAGAGCTGGGGTTGTCAGAGGCTAGGG
0.000189098
0.02025759
2.25E−05





RECQL4
CAGTGACTGAGGACCTGGGCAAAACCTG









CCACAGGGTGTGGGAACGAGGAGGCTCC









AAAATGCA





 332
3160259
8
KIAA0020
ATGCCTGGCCGCTTTCCTTACTTCTTATA
0.009010521
0.018759046
1.78E−05






CAAACATTAACTCAAAATGGACTAAAGA









ATTAAATGTAAAATCTGAAACCATAAAA









ACTCTAGAAGTAAATCGGGGCAACACCA









TTTAGGACAT





 205
3162826
5
NFIB
AAACAGCCTTCTTCACGCTTCGGCTCCCC
0.000288505
0.016847222
1.49E−05






TATCGATTCAAACGTAAA





1420
3163197
7
PSIP1
CGTCTCAACGGCTCGGAATCGCAACCGC
7.08E−06
0.009902923
2.89E−06






GCCGCCGCTGCCGCCGCCGTAGCTGCGC









TGCTCCCGCGCGGCTCCCGCTCGGCGCC









CGCTAGCACTGGGGCGCGACCAACTGTT









TACCGAGAGAGGGGGGATGTTGCAGCAC









CCGGCGAAGCTGTGTGGCTCCGAAGCGG









ATTTTCTGGAAACCCTACGTCCCCAAGTT









CGCTTTCATGTAACAGGTGCATGCAGAT









GGAGAGGAAGACGCAAGCGAAGAAGAA









AGGACTGGGCGAAAATAGCTCGGCCTGC









CGCA





2041
3164984
4
MTAP;
TTCTCAGGAGTTAGTGGTAAACCCATGA
0.01575619
0.006644381
4.63E−06





CDKN2B-
ACATGTATTTTTAAACCAAATTACCCACC








AS1
TCTTGGAGTTCAATCTCTGTTAATTCTTT









ATTAAAGTAGTGAAGTATCAGITGTTCC









AATGATATAATGATCAAGCAACCCTGGA









AATTAAATCCCAAAGCAGTGCACCTTTA









GTTTGTTCAGTGATAGTAGGACATCCCA









CGAGCCATCATATATTTTCAAGTTTTTAT









ACTCAATCTACTTTTTCAGCAATCTTTTG









GGAACTATCCCAAGATAATTTACTGCAT









AAGTGCATCTATCTTCTAAAAGACATTT









GGAATATTTCTTAGTCTGACCTCTGCACC









CTGAGACACTCTATAAAGGAAACAATCA









GAAAAATTTAACAAAGAAATAAATAGGT









TAAGAAGAAAGCAATCTAGGCGTTTGCA









CTGAGTTTGCA





 644
3165859
9
TEK
GGCAACCAATATTTCCAAGCTCGGAAGA
0.001040005
0.011526316
8.47E−06






TGACTTTTATGTTGAAGTGGAGAGAAGG









TCTGTGCAAAAAAGTGATCAGCAGAATA









TTAAAGTTCCAGGCAACTTGACTTCGGT









GCTACTTAACAACTTACATCCCAGGGAG









CAGTACGTGGTCCGAGCTAGAGTCAACA





1214
3168684
4
RP11-
TAGCTCACTGTCAACTTTGAACACTTGG
0.008902214
0.008733067
7.44E−06





220I1.1
G





 876
3173552
6

CTCGAGTGGGTCCTGTTGGATTGAAGTC
0.001890803
0.008001967
7.79E−06






TGACAGTGGTGATTCCCTTCAACAAA





 886
3173564
4
PGM5
GCTGACTTTACTATCAAAAGCACTTGAA
0.001187787
0.007799223
4.99E−06






ATTTAAAAATTATGTCCATGATTAAAAA









CTTGCAGAAGTTGCCCAGCAACTATTTTC









ATTCCCCAGAGGCAGAGAGTATAATGGA









AAGGAGGAATTTGGGGTGAGATGTCTTT









CTTGTGTTTAAATTTTCTACTCTGAACTT









GGACAAGTCACTTATCTTCCTAAATCCC









AATTCCTCAT





1281
3173991
4
FAM189A2
TCTCGACAGTATTCTGATGCTTGCAAAA
0.022116149
0.007416716
3.04E−06






AGAAATACTATCATACCACGTTGTTCTGT









GACAGAAAGCTTCTAAGATAAGTTTTTG









GAATTAAGAAGTACACATTATTGCATGA









GGGTCATAATAATAGCCAGCATTTATTT









GGGCACTTTCCACGAGCCAAACACCATC









TAAGTCCTTTACATGCATCCTCTCCTGAG









AATTGTCTTATGGAGGCAGCGTTATTA





1349
3174918
3
RP11-
AACGGCGTGCTGACCTACCATCCAAATT
0.007322669
0.00657993
4.06E−06





549A6.1
TACATGATTACATGAAGAATATTCATGG









TAAAGAGATTGACCTTGGGAGA





 524
3175377
9
PCSK5
GCAGTGCCACTCCTGCCGACCGGGCTGG
0.015107347
0.00744564
4.09E−06






TTCCAGCTAGGAAAAGAGTGCCTGC





1864
3179420
4
CENPP
GCATTTATATAGAGCTTTCGGTTTCTGTC
8.56E−06
0.008122664
4.87E−06






TGTTTAATTTGATGCTCTGCTTATTCAGT









TATACTAGATGTGTTTCTCAGAGTTATCC









AGTCCATACGTATTTGAAGAGACAATTT









GGTGTAGAATTGTTAGTGTCCAGGCTCTT









CCAAGCAAGGTCTTCCAAAGGGATATCT









CAAAAATATTCCTTAGAGTTGAAGTGGC









AATGTTATATAGCCTAACAATTTTCATGC









TATTAAAAGCTTATAATAGCGGATCATT









AAAATGCGAGTTACA





1878
3180308
6

GATCAGTTTCGAATCTGCCTCCTCGACCA
7.16E−05
0.006665582
1.89E−06






ACTAAAACTGGGGAGTTTATGTACCGAA









AAAAGGAATGTAACTATGTGTGAGGAAA









ACAGCAATTAGGAAAAGGATAAGGAAG









CAGTCCTGACCTATGAGGGGAAAGAGGT









GTCTGGGGTCTCATTGTCAAATGGTGATT









TGGTGAGTTTCAGTCCGTTGCCTGAGGA









AAGA





 878
3180982
2
HABP4
GGGGAGACTTTTCCAGCTGGGCCAAGGG
0.000525832
0.014120969
1.08E−05






AGTCAGACTCTAAGAACAATAGATGTTG









CTTTTCCCGTGTCATGTAAATTTGTTGCA









CTTTTTTGGGCTGAGCTGTTAGAGGGGCT









TCTCCAGAGGCTCGAGAGCAGGCCATTT









CCCAAGAAGATGAAGAATGGTGACTGTG









TTTTTATTGAAGGAATTTCAAATGAAGA









ATAATGTTTAAAATGTGTATATAGAGAT









AGTATAGACTCCTCCGCGGAAGCATGGA









GGGAAAGGAGGTTGTAAAATAGACTCCA









TGGAGACTCTTAGGAAGCAGTAGATTCC









CGGGGGCTGTGCCTTTAGCGTTAGAGGA









AACACATAGAGCTGGAACTGTTAATGGA









AAGCAGTCACAGCTGAGTTTTCGGAGAC









CAA





1598
3183013
4
NIPSNAP3B
TGGCTTCAAATGCTATCTGTGTGTGGATA
0.027405312
0.006936068
3.26E−06






GCTCCTCCAGTCCACACCTCTTTTCTGAA









TCTTTTTTCAAATTCACACATGTGAATTT









GAATTCCAGGCTCATCACATCCAGGTGT









GTTCCCCACACCTCCACCTGAATGTCTAT









TAGAAATCTCACACCCCTCTTGTCCAAA









ACTGAGCTCTTGATCTTTAACCAGAAAC









TTTATCTCAGCTATTGGCAACTCCAGGTT









TCTGTTTTGCTCAGGCCACAGACTTCAGA









GTCATTCTCACACTGCCTTTTCTCTCATA









CACCATTATGTACCTGTCAGCAGGTCCC









AAATATCTAGAATTTGATTGCTTCACATC









CCTATAGCAACTCTCCTGGTTCAAGCCC









ATCATCATCTGGATTTTTGGGAAGTGGTC









TTAACTGGTGTGCTGCCCTTC





 953
3184500
2
PALM2;
AACACAGTTTCCTTGAGCCTTCTGAGCA
0.001852254
0.008987807
5.92E−06





PALM2-
ATCTTAGAATTATTCAGAAGCTTTCAGG








AKAP2;
AAACTCAAATTCTATTAATTTGATTTGGT








AKAP2
TCCTTTCCAAAATGTTAATAGACATGTAT









TTGCTTAAAACGTCTACCTATTCCATTTA









ATTTCCTGCTGATAAATGTATTTTATCTA









CAAGCAAGTAGAATATTTTGTTTTGGTTA









AAGTCAAGTTTTTATAAAAGGAGGGGAA









GTATAAGAGAGAGTTTCCTAGAGATACA









ATATCATCTCTGGAGCAAAATGTTGAGG









CCAAGTGTAAAAACAGACTATTTCTCTTT









ACTTCCTGCAGAATTTCATTTCAAGGGA









CCACAGCACACCCTTGAAAATTACCATT









TATTTAATGCCAGTTGAACCAATGGGTA









GCAAAAGAGGAGGGAGGGAACATGGTC









ATAGAGACAAAATCTAACTACTATACCA









GGTCTTCCTTTGTAAGAAATATTAGCCCT









GCCAATATAAAACGCAGATGGACATAGA









CAGAATAAGCATCGAGGACTTTTTCTTA









TTTACTTGAAATCTAGAAGCTCAGTCATC









TCTGCTCATCCCTGGACCCACTGGAGAG









TTTTACTCACTAACAGGTCCTTTCCTGGA









AGAAATAACCTCATCTCCTGCCATATTA









GTTTACAATAAAAATCATTCCAAAGTGA









GCCATTTCACATTGCATTTTTGCCACATG









CACATTTGCTATTGAAACCACAGATTCTC









AGCATAAGTAAGACATAGGTGTTTCAGA









AACTTCATAAATACACGATCTTTCAGGT









GCTCCTCAATTTCTTAATCAAGGTATATT









GAACTCCAGTGATTAGGATAGAACCTGA









AAACATCCTTTGTTCTATTGGATAGTACA









ACACAGCAAGAGCACACAGTTATTTGTA









TAATAAAACAACTTAATTAATGAGGAAG









ATGGGATGTTTGATTCCTGCTACCACCA









GTTCACTTCACAAAGGCCTTCTTCTGGTA









TTACCAGGAAAACTTTCCTGCATTTTCTA









GGGAAAAAGAAAAGTCGTTTATTAGGAG









CACAATGCAGATATGTATCTGTGTTTTCA









TAGCTTCAGCAAACTTCTTAGTAAAATTC









CCATTTCAACAAAAACCAAAATACTGAT









TGTTTGAATGTAGAAAGGTATAGAATAA









AGACTACAAAGGGGAATTTTACCAGGGC









TCCTTAGACCAGCTTCCCCAGCATAATTT









TTATATAACTCAAGTAAGCCTCTGCTTCC









CCTCTCCTTTCCAGTATAATATAAGAAG









GTCGGAACTGTCGCACAAAAGAACTTGA









TTTCAATATGAAAATATAATATGTAATTT









TGGGGACTGCAGACTTTCTGCATCAAAG









ATCTGGACAGCCTTAACTTTTATAAAAA









TAATTTTTCAATGTTCTCTTTTACTAACC









AGGAAAACAAGATGTTTTCTGAAATTAA









TGACTTTTTCTATTTTGGGTCTGTTTTCTA









AGTTTTTACAGGTTGAGGTATAAAGGGT









CGTCTTCTCCTCATATTGCCTCTTCATAA









TCACCTGGGG





1871
3184589
2
PALM2-
CCTGAGGATTTCTAGCCAGAGGTCCCAG
0.000408197
0.009970306
8.46E−06





AKAP2;
ATGCCTGGGCTGAGAACCCAGCGATAAG








AKAP2
GGGGCGTTCCCAAAGCAGACACAGGGAT









AAGAACAGAGGAGGCAGCAGCATTGCA









CAGCCCCAGGCACAGTGGCAGTTAGGAT









GGCTGGAGAGTAGGATAGTTCTATGGGT









TGCCCAAAAAATGTGATGCGCTTCATGT









TTTCTCTGACTCATGGATCTGGTAGAGAC









CATAGACATGATATAGACTAACTTCCCC









ATTTTTCACAAGAGGAAACCATCCTTAT









GACTTACCTTAAAGTTTTTTGTTCTGTTT









TGAAGGAAACCATGTGCTTCATGAAACC









TACAGTTGACAAGAGAATGTACAGCTAA









GAGAAAAGCTTAAGAGGCCACACTATTC









GCGGAATGGCTTTAGAGGCAGATGAAGT









GGTCTTTGACCACAGTTGATTGAACCAG









AGCACTTATTGCTTAAAGAATAACAGAG









TTCTAGAGCTGGGGGTTCTTGGGCCATG









CTCCGTGTGTGGATAAGGAAAGAAATAC









TGTTTCTGGGACTCTCCCACAGTCACAA









AGCTGTTTTCACTGTGGCCCCTACATCTC









TTAACTTTTGCTATTACTCCTATGCTGCC









TTCCGGATTACTGCTGTCTATCTTCTTGC









TCCACTCACTGAAGATCCTATTATAATCC









CATGAAAATGTAAATTACAGTTTACTTG









GGAGAGCCAGATTTTCTCTGTGCTCTTGA









GTTTTTTATTCATTCAAGAAACCTTGGGC









CACCGCTTTGTACATAGCA





 413
3184813
5
LPAR1
TAGTCTCCAGTACCCTTCTACCTCCACAA
0.002868156
0.010363738
7.70E−06






GCTTCGAGATTGGTCCCACCACTTCCTGC









CACAAACCGTCAATTTCAGGCACTCCTC





1922
3184980
2
DNAJC25;
CTTCACAAGTGTTTTACTTCGACGATGTG
1.35E−05
0.009724691
6.25E−06





DNAJC25-
CCTTTGATTTAATTTGGGACACTTTTTTA








GNG10;
GAAGGATACATTATTCGTGTTTGCAACG








GNG10
GTCTTTGAAGAGCT





 969
3187623
9
CEP110
TGCCAAATCTCAGGAGCAAGTTTTTGGT
0.041709394
0.008605407
4.58E−06






TTAGATAAAGAACTGAAGAAACTAAAG









AAAGCCGTGGCCACCTCTGATAAGCTAG









CCACAGCTGAGCTCACCATTGCCAAAGA









CCAG





1741
3187835
1

TCCCGGCGTCTTCCTATTTTAGACATCTC
2.54E−05
0.007378865
4.73E−06






GCTGCCTCAGTCCCTTCTAATGTTTCCAG









CCAGGCTGCGGGGGGAGGAAAAAGAGG









TTACTGCTACTTTAAATGTACTGTATGAA









GGCGAGGGCTGGAAAGGGGCCTGCTTGC









AGGAATACCCAGTCATCTAGTTGGAAAA









GCCGCCAGATGGAATACAAAAGGAGGA









ACCCAGACGCTCATGGAGACAGCCTCGG









TTCATAAATCAGG





1429
3188396
3
RABGAP1
GGAGACTCATTACAACTCCTGCTGAAGC
0.000570716
0.006841685
6.73E−06






TCCTAATCTTCTTCCCTTCTCTTCTACCCT









TTCCCCCTACCCTCACTTGGCCTGAAGAC









GTTCTCCCCAGAGTTTACCTTGCTCCCCT









GGTGCTATGTGTATGGTGAACCTGGCAC









TATGGCCGCGTCTGGGACTGGCCAGACA









ACTGCTGCTGGCTCTCCTTATTCCAGGAA





 315
3188421
5
STRBP
GAAGAAATCTTGAGGGCCCAAGTGAATA
0.000850201
0.01607902
1.45E−05






ATAAATGGTGCGACGCTCAGAGGCTGGC









AATAGGGGCTGTCAATGAAAAAACCACC









TACAGTGGAGAAAAGAGCAGAGAAGCA









AAACTTCATGTTAATCTCAGGCAATTTG









GTGAAGCCAAGA





 712
3188741
4
NEK6
AGCCAGCCTTTGCCACGCTGGGACTCCA
0.000100405
0.010689095
8.10E−06






GCT





 534
3189377
9
PBX3
TGGCAGGACGCAACAACTCCATCTTCTG
0.006232171
0.00879012
7.47E−06






TGACTTCTCCTACAGAAGGCCCAGGAAG









TGTGCACTCGGATACCTCTAACTA





 989
3190108
3
RP11-
CCAGGTGGCAGCTGTCTAACTGGAGCAG
0.005040635
0.006714995
6.12E−06





228B15.4
GAACTCGGAGACGGATGGGGAC





 405
3191266
5
FNBP1
GTCAGGCATTGTTCCCAGTACAGTTGGT
0.023538302
0.014455398
1.63E−05






AGACAATCCTCAAACGGCTGCCTCTTGA









AAGTGCACACCACGATCAGGGTC





1151
3193448
1

ACCAGCAAACAAGCCCTAAGGTGGACA
0.011131791
0.009354179
9.05E−06






AGTGCCACAGCGACTCAAGGGCACCTCC









ATCGTGGTCCA





 399
3196844
2
RFX3
TACACTGGAGGCATGCCCATTTGGCAGC
0.002978182
0.009216545
4.49E−06






AGATGCATCAAATTTGCTTTTGAAAGGT









GCTTTTCATTGGACAGAACCATAAGACA









CTATTTTGATAACATTTTGAGTATGGAGA









GAGAATACAGAGCATTTTTATTATAGTG









CTAGAGGGTTTGGAAGGTCATCTATTTTT









CTCTGAGGAAAAAATGAGCTGTACATTT









ATCAGTTCAGAGTAAATGACAGAATTGC









AAGAGATTATGCTAATATGTACATAATT









TGTGTACATAATTATTAAACCATGTTAAC









AATGCAAGCTTCCGTTAAACATTGAATT









TTAACTATTATTTGCATACCAATTCCTCT









GTTTAAAGACTACTGATTCTGTATTTGGG









ACCACTGCACAGATGCATTCTGCTGTTA









AGTGGGGGCTGTTATAGTTAGATACTGA









AGCAGAAAAAAAAGACTTGACTTTTTTT









TTTTAAGTGTACATGCTACTTATGCTGAG









CTGGACATACAGGAAACCATTCCATTTG









GATGACTTTCTTTTATTCCAGGTCTTTTT









CCTAATAGTAGTTCAATATGCTGCTATTA









TAAACGAGAATTTATAGAATGCAAGGAA









TGTAGCAACCTACATAACGTTATTTCCTT









CAAAACTATTTCCTGGTTTCTAAAGTATG









TGGATTTAAATTGTAAACAGAACCTGAA









GGCAGTGTAACTGGCACACCTCACTGTT









ACTTATCCCCAATTCTGTAGGATTTGGAT









AGGTGGCTGGATGGACCATTGCCATTGA









AGAATGTACATCAGGGATCATCGTACCT









CGGCTATTA





2047
3203380
6

GTGCAAGCCTTCAAGAAGCAGCATATTA
6.62E−06
0.006812633
5.06E−06






TGATAAACCCCTCCTACAGAAAGGTATC









ATTTTTATCACTGATACCACAGGATAAA









TTATATATTACGCCATCTTCAAGTAACAG









CTGAGGCAACAGAATAAATGCAGAGGC









ATTACAATGAATCCCACTTAATATAAAG









AACTATACAGACCAACACTTCTCTACAA









AATTTTTTTTTCCTCATTGCCAGTTAAAT









ACAGAGTTTTACTTTCATAGCTTAACAAT









GAAGGGTCATACACTGAAGCCAATACAT









ATACCTAGCATTTCAGTCTAAGCTTGTCC









ACGTACATA





 698
3203820
3
UBAP2
TCCATGTAAGAGAACACTGGTACACAAG
0.002817689
0.016552722
1.81E−05






ACAAACCATCAAATTTGTGATTTTTTTTT









TTTGGGAAAACCATATTATATGATAAAT









TAAAATTTTGAATAGTTTTTGTTTACTGA









CCTGGGACTAAGTATCCTGGGTTTTGCA









AAATATGGAGGATCTGTTTACCTTATCG









CTAATGGGTACAGCAGAGAGTGGCT





1386
3204770
9
TLN1
TGTGAAACGGCCATTGCAGCTCTGAACA
0.035351019
0.008277517
1.13E−05






GTTGTCTACGGGACCTAGACCAGGCTTC









CCTCGCTGCAGTCAGCCAGCAGCTTGCT









CCCCGTGAGG





 167
3204782
9
TLN1
CCTCCTAGCACTGGGACATTTCAAGAAG
0.023971749
0.016308237
1.76E−05






CTCAGAGCCGGTTGAATGAAGCTGCTGC









TGGGCTGAATCAGGCAGCCACAGAACTG









GTGCAGGCCTCTCGGGGAACCCCTCAGG









ACCTGGCTCGAGCCTCAGGCCGATTTGG









ACAGGACTTCAGCA





 429
3205204
4
RNF38
TCCCTTTTTGCCGAGACGCAGGTGAAAT
4.84E−05
0.013951133
8.09E−06






GATGTCACCCAGGAGAACGCGGAACCCG









GTCGAAAGGGTCCTCTCTGGCGTCCTTCT









GCTTCCGTGGGTTTCTGGATAGGCTGCGT









TTTGTTCTCAGGGGATGCAAGTTCTTCCT









TTCAGGGTTGAAGCGTGAGA





 245
3205740
2
SHB
AGGACGCCGAGAAGTTCCCGCGGCAGCC
0.002743526
0.0122041
1.11E−05






GCGGATCCCGGCCAAGGCGGAGGCTGCG









GCTCCGACGGGGCAGGAGCGCGATCCAC









GGCGAGGGGCGTACGGCCAAAGGGTCC









GCGGCGTGGAGCGCTCGGACCTTCCGCT









CTCCCCCGGGCGTGGGCCGGGACCCCAT









GAGACGCGCCCACGAGGGGCGCGAGAT









TCCTAGCTTGGGCGGCGCTAGGCGGAGG









GAGGTGTTGCAGCCGCCGGAGCCAGAGA









GCTGCCGGCAGGAGGCGGCGGCGGCAA









GAACTTGAACTTG





1054
3208576
8
PIP5K1B
AGAAACTCCAGGTATTCGAGGCCTTGCA
0.003024609
0.006720951
4.71E−06






AAGTGTGATGCTCACCCTCATCTCTG





1241
3210613
4
PRUNE2
ATCTTGGATACAGGTGGCCAGACTAAAT
0.007218138
0.007096218
4.96E−06






GGTCTCTCAACTTGTCTTCAAGTTTAGGA









TTTTAATTTTTGATATTTTTCACTTCTCTC









TGGAAATTTGTTCAATTCTCAATTGTTGG









GGGAGTG





 259
3212839
7
PHBP7
CAGTGAGTTGGTGATCAGCTCGGCCACC
4.89E−05
0.017439809
1.18E−05






TTGGA





2048
3214846
2
ASPN
TCATGTCTTAGAGCCCGTCTTTATGTTTA
0.00021566
0.007049369
3.82E−06






AAACTAATTTCTTAAAATAAAGCCTTCA









GTAAATGTTCATTACCAACTTGATAAAT









GCTACTCATAAGAGCTGGTTTGGGGCTA









TAGCATATGCTTTTTTTTTTTTAATTATTA









CCTGATTTAAAAATCTCTGTAAAAACGT









GTAGTGTTTCATAAAATCTGTAACTCGC









ATTTTAATGATCCGCTATTATAAGCTTTT









AATAGCATGAAAATTGTTAGGCTATATA









ACATTGCCACTTCAACTCTAAGGAATAT









TTTTGAGATATCCCTTTGGAAGACCTTGC









TTGGAAGAGCCTGGACACTAACAATTCT









ACACCAAATTGTCTCTTCAAATACGTAT









GGACTGGATAACTCTGAGAA





1938
3214862
9
ASPN
TTTGATCTGTTTCCAATGTGTCCATTTGG
6.07E−06
0.006832329
4.54E−06






ATGTCAGTGCTATTCACGAGTTGTACATT









GC





1023
3215437
5
PTPDC1
GGCTGGACACTGGACTAAGACACTGAAT
0.027851225
0.007438226
1.37E−06






TCTGTAAGCCCCAGTTTCTCTCTATGAAA









CTCATCCCCTGCTTCACAAGCTGTTGGGC









TGATTGACTGAGATAAGGTCGGTTAAAG









CTTATAGCACAGGGAAAGGGCTTAGTTA









ATCCAAGTTCTCTACTTTATTCAGAAACC









ACAGAAACAGTTCACAAGAGTCTTCCTT









TTCAGCCTTCTGGTGAACAAAACAGAAC









TATTTTTTTGCAATAAAGTAGATGGTAG









ATGAGAAAGTAGAAATAAGGGAACATTT









ATACATTAACCTGGGGTCTA





1504
3219170
5
RAD23B
CTCACCCTAAGAGGCCAGTATTACCCAG
0.001095886
0.007364521
2.15E−06






ACACCAAATTCAGACAAAAACATCACAA









AAAAACTACAGACCAATATGACTTATGA









ACAGATGCAAAAATCCTCAACAAAATAC









AAGCAGGCTAAATCCAGCAACATATAAA









AAAGATCATATGCTGTAACCAGTAAAAT









TTATCTCAGAAATGCAAGGTTGGTTCAA









CATACAAAATCAATCAATGTAATAAAGC









ATACTAAAGGACAAAAATCACATGATCA









TCTTAATAAAGAAAGAAAAAAAATTTGA









CAAAATCCAACACCTTTTCGTGATGAAC









AAACTAGTAACAGAAGAGAATTTCTTCA









ATCTGATAAAGGGCATCCACAAAAAACC









CATAGATAATATCATACTTAGTGATGAA









AGACTGAATGCTTTCCCTTAAGATCAAG









AACCAGACAAGGATGTTGTTGGTTCTTG









CTAGTCTA





 250
3220872
2
SUSD1
AGAGGCTCCGTGTGACTTCCGTCCAGGG
0.009531934
0.011306015
8.69E−06






AGCATGTGGGCCTGCAACTTTCTCCATTC









CCAGCTGGGCCCCATTCCTGGATTTAAG









ATGGTGGCTATCCCTGAGGAG





1917
3221558
2
CDC26
AAGTCGTAGTAGGAAATGGCGTCGTGGC
0.00011347
0.006784429
2.24E−06






ATTGAGGGGCATCCCTCCTAGAACCTCC









AGGAAAAGCTCGCGGAAGACGAGGTTCT









GCGGAGAGAGAGGCTCCAAGCAGTCTG









GGAAGTGTAGTCCAGTTGGCTTAGCAGT









AGTTTC





1172
3222049
5
ATP6V1G1
GGAGACACAGGTATTTTGGTTTCTAGAA
0.00160961
0.011736719
9.61E−06






GTGAGTGGCTTAACATACAGCTGGAAAA









AATCTCTAGGTTTGGTCAGAGTCTACAT









GAAAACAGACCACAAGGACAGCCAACA









TATA





1561
3223277
1

ACACCACCTGTCATGCTGCGTCCTCCTCC
0.0264846
0.006904205
5.16E−06






TACTCGGGTATCTGACAGTTTCCACGAC









ACGTGA





 656
3223629
9
FBXW2
GTGATAAGTGCCTGTACAGAGGTGTGGC
4.32E−05
0.012411705
9.21E−06






AGACTGCATGTAAAAATTTGGGCTGGCA









GATAGATGATTCTGTTCAGGACGCTTTG









CACTGGAAGAAG





1833
3224597
9
STRBP
CAAAGGCGAGTGCAGCTTTAGCTGCCTT
0.000148906
0.008661385
4.92E−06






GGAGAAACTGTTTTCTGGACCCAATGCG









GCAAATAATAAGAA





1784
3224614
2
STRBP
AGAACAAGCCTTCAGACATTTGCTATAT
6.13E−05
0.007866017
4.57E−06






T





 195
3224665
4
DENND1A
CATCTGCATGGGAACTCCACGCGGAGAC
0.00877735
0.010604445
9.39E−06






AAGGTGGGCAGAGGCGGGAGCAGCCGT









GGGGGATGATGGGGTCTGATCCATGACG









GACGGCCAGCCTTTCTTCTGCACCAAGA









CTCTGGCAGCCCTCGCTGGGCAGCCAAG









TTTGCCGCAACCTGCCTTTTCACAGACAG









CTCTTTGTGTGTAATAAAATCCAGGCAA









GTGGTGGGTGGCAGACCGCAGGGGAGT









AGCTGAATT





 595
3224695
4
DENND1A
CCAGCTTTGCCCTTATGGTAGGTTGTCCT
8.71E−06
0.010346806
7.49E−06






TGAGTCTTTTCCCGGGTCCCTGGTTTGAT









GGGCTGTTGACCGTAAGAAGTACGGTTT









CTAGAGCACCTACTACCGGCAGGCATGA









GTTTTAAGGACTTGATATTCTTCCCAAAG









AACAGTCTCTTGAGTTTCATTTCAGAAGT









TTTTACCACACTCTCTTACCATCTATACT









ATTTTCTTTACTTGATAGTTTTCTTTAAAT









AAGACTCAGACCTGACATCTATAGCATC









TTAGCCTCATCTTCAGAGATGCCATTGGT









AAAATTATAGGCTTGATATACTAGTCCC









AGTTTTTTCTAACATATAAAACAATTTTA









AGTGTTCATCTATGAATCACCTAATGCA









CTCACGTAGCCCTAATGG





  64
3224721
4
DENND1A
GTGTACCAGCGCATCAATAACGGTGTCC
0.000204101
0.030370222
2.60E−05






CAATAGCAGCTTCTAATTAAATTTTATCA









CAGTCCTGAATGCACCGCTGACCCACAC









ACTCTTCCAAGTGGGTCCGATTCACAGG









ATATTTGCGCAGTTCCGCAGATCTGCAG









ATTTGAAGAGGTATTTATTCTCATTTCTG









CCTTCCCAGTCCAGCAGAAGTTCTAATTT









GTGGACGGCAGCTTTGGTAATTAACAAA









GTGTGTTCTGTGAAGTGAAGCAGGAAAA









CTCAGGACTGGGGAGTCTCGCTTTGGGT









ATTTATA





2055
3225482
9
MAPKAP1
GATTCGCAAATTGACATAGCCACAGTAC
0.000357766
0.007505626
3.36E−06






AGGATATGCTTAGCAGCCACCATTACAA









GTCATTCAAAGTCAGCATGATCCACAGA









CTGCGATTCACAACCGACGTACAGCT





 683
3225668
1

CCACCATGCTATGACTGGACATCTGATT
0.015967819
0.007726744
4.05E−06






GAATCTCAAACTCACCCTCAGCGCCCAG









CACCGCCAGATTCCCGCAGGCACCTCCA









GAGGGGCCTGTGTCCACCTCCGTCGGCA









CCAGGTGGCTGCTTTAGAG





 662
3226162
9
ST6GALNAC6
TACCACTACTACGAGCCCAAGGGGCCGG
0.008619147
0.010328204
3.83E−06






ACGAATGTGTCACCTACATCCAGAATGA









GCACAGTCGCAAGGGCAACCACCACCGC









TTCATCACCGAGAAAAGGGTC





 235
3226361
2
PTGES2
AATTTTATGGTTCGGGTCACAGTAGGAA
0.000332253
0.01043034
6.55E−06






GCGGACAATGAGGCGGGAGGGCAGAGA









GAACCGCAACACCTGGTGCCGGGTCGGG









TCGTTTCCGGGGCTTTCAGTGGCCGGAA









GTCGCGGCGCCTGTACTGACTCTAGGAA









GGGCTGGAGTTGTTTTGAATGGGCGCCC





1724
3227198
9
FNBP1
CTCCCATCGCTTCAACGAGTTCATGACCT
0.019499011
0.006759972
5.10E−06






CCAAACCCAAAATCCACTGCTTCAGGAG









CCTAAAGCGTGG





 972
3227514
1

TGACTGCACGGCTCAGAAAAGAATTGCA
0.029020011
0.007096129
5.16E−06






GCTCCCTTGGCGGATCCCCCAGAACCCC









CTGTGATGAGCTTTGGGAACATTTTC





1145
3227768
4
RAPGEF1
TGGCCAGCTCGCCTTGGGAAACCACCCA
0.003105755
0.009440612
3.72E−06






TGCCATCATCGTGCATATGATCTAATGG









CTTTAGAGAACTAGGAACAGAGTTATTC









CCCAACAAACTGACTGGGAACCTGTTCT









GATGAGTATTTTAATTTGTGTGATAAAC









AATCATTTTGAGAGGCTGGGGTTTGCCA









TTTCCCCTTCCAAGAGGAAGTGCCTTTAC









GCATTTGAAACTTGACATGCCATGAAGG









TATTTTTGGAGGGCAGGGGACATTTGGG









AAGTCATGCAGATTACCTAAGGCAAGTG









ATACTTGCGTTTATGGTGCGTGGGGAAT









CTGTAGGCACAGAAATGAGACTCAGCAG









CAGAGGACAGACAGCACCTGCCTGCCTT









CTGGTGGAAACTCAGTGGTGACGGGAGC









TTTGCTCATTGCCTTTTTC





 663
3228519
4
RALGDS
AGTGGCGTGGTCAGTCACCATTGCACGC
0.012305161
0.00667609
3.78E−06






TAGCCACAGGACTATTCTCCACAGAGTC









CTTCCCTCTGTCCCCTGCTGCAGAGGTGC









CTGGTGATGACAGCCAGCCTGTAGGCCT









TGTGCTAAAGTGTCCCTTGTATCTGCTCA









GCACTCTGCAAGATAAGTGCCACTGCCA









TCCTCACTTCCAGGTGGGGAAACTGAGG









CACTGGAAGGGGAAGGAACTCCCACAG









CTAGGTAGTGGCAGCTTGGCAATGGCGC









CTCCCCGTGTGCACACAAGCCTGGGAAG









GGCCAGGCACCAGGACCACATTCCTTCC









AATTACAGTGGCCTTCCAACGGTCAGG





1401
3228844
4
SARDH
GAGGGTCTGGGACGTCCTCAGGGCAGCG
0.001647248
0.007061409
3.19E−06






GAGTGACAGAAATGCAAGGTGTACCCCA









ACCGCAG





1195
3229079
9
BRD3
ACCCAATGGATATGGGGACTATTAAGAA
0.004454644
0.010177232
9.25E−06






GAGACTAGAAAATAATTATTATTGGAGT









GCAAGCGAATGTATGCAGGACTTCAA





1325
3232245
1

TCGTCTAAGGTTTCCAAAAGAAGCATCA
0.000288505
0.006672542
4.35E−06






GCCCCAGTCAGAGAAACCCCAATGTCCC









AGTCCCTCGTAGGAAGGCAGTGT





 383
3233209
4
NET1
TGTAGTGAGTTGTTGACCCCAGATACAG
0.000490372
0.014676043
1.08E−05






TTTCTTACAGATGTGCCATGTTGCAGTTT









CTGATGAATATGAGACAGATTTGATCCC









ACAACTCTGTTCTACAAACACATAAGGC









GTTA





1600
3233220
6

CCATGAAATGGCTTGATGTATTCTAGAC
0.005404779
0.011800116
1.59E−05






TACTGAAAGAAAACCACTTCAAAGATTT









TGTTGAAAGTTTTAGTGTTGTCTGAAATG









CAAGAGGGAAGGTGATTGGTAGTGAGTT









AAAAGAAAAAGAGAGGAAAAGAGAGTA









GTTTTGTCTTCAAGTAAAATGTCTGGTTG









TGCCAGACATTTCACAAGTGTGAAAGGA









GATAGGAGAAGCTCAACTTGAGGGCGTG









TAGTAAGTTGTAGAAGGCTCGAGGGGAC









GTGGACTTATTTGCCTTG





1768
3233333
4
C10orf18
GCCAATCATGAAGGACCGCGTGCTGTAT
0.002531721
0.006884206
4.90E−06






GACTCTGTTTATAGGAAATGGTCTGGAA









TAGGCAAATCTGTAGAGACCGAAAGTAA









ATTATGGTTTCCTAGGCCTAGGAACCAG









TGAGGGGTGAGGAGGATAGCTAAGGGG









TAGAAGGTTTCTTTGGGGATAATGAAAA









TACTCTAAAATTGATTGTGGTGAAGGTT









GCACAATTCTGTGGATATACTAAGCACA









ATTCTGTGGATATACTAAAAGCAATTGA









ATTGTACACTTTATGTGGGTGAATTGTAT









GCCGTATGAATTATATCTCAACATTGTAT









TAGAAAATAAAATTAATGAAGCATAGAA









GTTACGGAGAACTACTG





1219
3233453
9
FBXO18
TGAGACGGTTTAAGCGGAAGCATCTTAC
0.003781407
0.008479823
5.51E−06






TGCCATTGACTGCCAGCATTTGGCTCGG









AGTCACTTGGCTGTGACCCAGCCCTTCG









GTCAAAGATGGACAAACAGAGATCCGA









ACCATGGTCTCTATCCTAAACCGAGAAC









A





1791
3233454
4
FBXO18
TGTCCAATCTGTCACTAGGTCCATGTGTC
0.006245159
0.006903255
5.00E−06






ATTGTTTTTCCTCCAAAATATTCCTTCAT









CCTGAGCTCTTTGTCACCTAGGACCTGG









ACTACTACAGTAACCTTGCTCCTTGACTT









CAGA





 678
3237409
9
CACNB2
AAGGATCTGATGGAAGCACGTCATCTGA
0.006442959
0.009187946
6.21E−06






TACTACCTCAAATA





1367
3238738
9
ARMC3
CAGAGCCAGCTTCTGGACGAAATACTGT
0.001558259
0.006682987
5.03E−06






TCTCAGCAAAAGCGCCACCAAAGAAAA









AG





 219
3238928
1

CCTGCTAGTGGCACATCCATCAGTACAT
0.048552369
0.014256799
5.10E−06






GAACTGAATATGTCACAGAGTGTATCAA









AGCTAAGGTAGGTGCCTGTCCCACCATC









AGTTGAATGAGAAGGTTTCTGATATCAG









AAATTGGGCTACCCTGCTTTGCCAAGAC









TCTCTTTTCCAATCTCTCAAAGGCAGATA









ATAACACTAATGGACAATGTGGCCATGA









GCATTAAAACAAATCATTAGGCTGGAGG









CTTCTCATCAGTGCTTGAGGGCAATTTCA









CCACCTGGGGCTTTC





1264
3242177
5
PARD3
AGTCTGTCTGGGTCAAGTCAATGGAAAG
0.044114238
0.007389697
4.64E−06






AG





 609
3243790
1

GCCTCATGGGCGCAAACACTCGGGAGCA
0.004987466
0.009165899
5.63E−06






CACGTGGA





 706
3245925
4
WDFY4
GGGCCCACTGGCGACAGCCCAGAGTCCA
0.000481864
0.010700417
3.49E−06






CTGGAGCACCCCATCTGCCGCAGGACAG









CTCGCAGCCCTGTGGCAGCTTTGCTGAC









CGCCTATCACCTGGGA





 983
3245926
4
WDFY4
ATGAAGCAAGGAAACGGCTGGTACTCTG
0.001628328
0.007000229
3.48E−06






GGAAG





1301
3246011
3
RP11-
AGGTCTCAATCAACCACCATATGTGTGA
0.003133247
0.007051697
5.62E−06





507P23.3
GTGAAGGAACCTTCAGATAATTTTGCTT









CCCAGACTTCAAGTCTTTCAGCTGGGGT









CCAAGACATCACAAGGCAGAGACAAGC









CCTCCTGGAATTCCCCACCCACCGTGAG









CATAAGAAAACT





 906
3247960
1

GGCAGAGAGCAAGCCGGGAAGTTGGTG
0.008412239
0.007147019
6.25E−06






AACTTGGAATTTGATGAGCTCCTTGT





 846
3248990
1

TTTGTATTCGTTGCTCCCTCAGAGGTGGA
0.001314314
0.007676396
8.78E−06






GGTGAGGGGAAAGTGAAGTGTAGTGGTT









CCACTCTGATCACAAAATAAACTCCTGG









GTTGACGCCTCACCCGCGGTTTGATGTTC









AGAGCACACAGCGCCCGCCGCCTGAGTT









AGCCTGAATTAGCAGTCCCGCAGTAACA









GCAGC





1981
3250089
9
DDX21
AGAAATGGCATGATTCACGACGCTGGCA
0.007597824
0.007720875
6.45E−06






GCTCTCT





1728
3251407
2
DDIT4
CAGAGACGACTGAACTTTTGGGGTGGAG
0.002001825
0.00976791
1.12E−05






ACTAGAGGCAGGAGCTGAGGGACTGATT









CCTGTGGTTGGAAAACTGAGGCAGCCAC









CTAAGGTGGAGGTGGGGGAATAGTGTTT









CCCAGGAAGCTCATTGAGTTGTGTGCGG









GTGGCTGTGCATTGGGGACACATACCCC









TCAGTACTGTAGCATGAAACAAAGGCTT









AGGGGCCAACAAGGCTTCCAGCTGGATG









TGTGTGTAGCATGTACCTTATTATTTTTG









TTACTGACAGTTAACAGTGGTGTGACAT









CCAGAGAGCAGCTGGGCTGCTCCCGCCC









CAGCCCGGCCCAGGGTGAAGGAAGAGG









CACGTGCTCCTCAGAGCAGCCGGAGGGA









GGGGGGAGGTCGGAGGTCGTGGAGGTG









GTTTGTGTATCTTACTGGTCTGAAGGGAC









CAAGTGTGTTTGTTGTTTGTTTTGTATCT









TGTTTTTCTGATCGGAGCATCACTACTGA









CCTGTTGTAGGCAGCTATCTTACAGACG









CATG





1895
3251899
2
SEC24C
AGCTGGAGCGCCGTTCTCTCCTGCTGGG
0.009861702
0.006512534
6.03E−06






ACACCGCTTGGGCTTTGGTATTGACTGA









G





1279
3253147
5
KCNMA1
ATGCATAAAGTAGTGAACAGGCCCGGTG
3.45E−05
0.008675527
4.82E−06






CTGATGACAGGACGGACTCTGT





1817
3256044
9
LDB3
TGCCTGCATCTACCTACAGCCCGTCCCCA
0.002743526
0.00667878
5.31E−06






GGGGCCAATTACAGTCCCACTCCCTACA









CCCCCTCCCCTGCCCCTGCCTACACCCCC









TCCCCTGCCCCTGCCTACACCCCCTCACC









TGTCCCCACCTACACTCCATCCCCAGCAC









CAGCCTATACCCCCTCACCTGCCCCCAA









CTATAACCCTGCACCCTCGG





2065
3257391
9
KIF20B
TTGAAGACATGCGAATGACACTAGAAGA
0.00010865
0.006823504
5.42E−06






ACAGGAACAAACTCAGGTAGAACAGGA









TCAAGTGCTTGAGGCTA





1211
3258781
9
TMEM20
ATGTCCCTCGCTGATGCCACAGTTATCAC
0.006523669
0.007770014
6.38E−06






GTTTAGCAGTCCAGTGTTTACGTCCATAT









TTGCTTGGATATGTCTCAAGGAAAAATA









TAGCCCTTGGGATGCTCTTTTCACCGTGT









TCACAATCACTGGAGTGATCCTTATCGT









GAGACCACCATTTTTGTTTGGTTCCGACA









CTTCGGGGATGGAAGAAAGCTATTCAGG









CCACCTTAAGGGAACATTCGCAGCAATT









GGAAGTGCCGTATTTGCTGCATCGACTC









TAGTTATCCTAAGAAAAATGGGAAAATC









TGTGGACTACTTTCTGAGCATTTGGTATT









ATGTAGTACTTGGCCTCGTTGAAAGTGT









CATCATCCTCTCTGTATTAGGAGAGTGG









AGTCTGCCTTACTGTGGGTTGGACAGGC









TATTTCTCATATTCATTGGGCTCTTTGGT









TTGGGGGGTCAGATATTTATCACAAAAG









CACTTCAAATAGAAAAAGCAGGGCCAGT









AGCAATAATGAAGACAATGGATGTGGTC









TTTGCTTTTATCTTTCAGATTATTTTCTTT









AATAATGTGCCAACGTGGTGGACAGTGG









GTGGTGCTCTCTGCGTAGTAGCCAGTA





 949
3258921
4
HELLS
GGTGTTAATATCAGAACCAGTATCTACT
0.003504013
0.009449736
7.75E−06






GTGTCATCTAAAACAATTTAGGAGGTTA









TCTGAATTTCCTTATATATCTAGATTTTT









ATCGATTTCTGTGAGTCATTTCATTTGCT









GCTACTCTGGTGTTTATGCCCTTACTGTG









CCCTATTTATAG





 272
3258959
2
HELLS;
TTCTGGCTGTACTGAAGGGACTTTCATG
9.61E−05
0.020646723
1.09E−05





RP11-
ATTTCTTCGTTTTTGTACTCTTAGTTTTAT








119K6.6
AATATTGCATAGTAGCTAAGGCCTGGCT









GTAGCAGTTATAAACTGTTCTGCAAGTG









CGGGAAGTAATAGTTATTCCTATCTCAA









GGATGTGGGGTTTAAATGGGTTAGTGCA









CAAAAGGACATTTATTAAATTTAGTCAT









AATCATCTCAAGGACATGGTAAGTGAAA









GAGTGTACATAAAGTACTTAATGTAATG









TTTGCTACTTAATGTTCAATAACTCAAAG









AGACCACCACCACTACTACATTTTACTTT









TATTAGTAATTAATAATAATTAATAATTA









GTAATTCAGTGGTAATTAGTATACTACC









AAAGAAAGTACTTGAGCAGAAGAGCCA









AAATTCAAACCATAGAATCATTTTACTG









TGCTTTTATTCTACCTCAAACACTAATCT









CCAGGCCTTGGATAAAGGGATTATTTCT









CTGAAGGGGAAAGTTATCCTCTTTTTGCC









CAAGTCACACTTGTGTCATTTCTTATACT









GTAAACATGTGGTTCCAATTCTGAGGTA









TTTTCCCGGTTTGTAGGACCCAAAAAGA









AGTTAGGCTTGAGAAATTTTAAGTGAAG









AGAACAATTCTAGTTCAGAGTGATTGGC









TCTTCCTAAAAGCTGACATTTGACTGAA









AATTTTGAGGGGAGGGAAAGAAACAAT









ACCTTTTACGGCATGTAATAGGAAGAAG









ACCTGGATTTTAGTTGCTGCTCTGATGTC









CCAACTTGGGTAAGGCAACATAACATAA









ATGTCAGTTTCTTCAGATTTGTGATGAAG









CTGATAATCCATGCTCAGCTTCCTTTATG









GGTCTCTTGCCTATCAAATAAGGTACAG









TATGTGAAGATACATTGCAGATTATCTT









ATGCATTGCTTCAGGGGATGATTAAACC









ATCCTTTATTATAGCCAGAGTCTAGTCTA









AGGGAAGAAGGTCATTCTCTATACCAGT









GAAGGCTCCATCCAAACCAGTGTT





1666
3260203
1

TTTTGTTGTGCCTAATAAACTGCTCTCCA
0.014792007
0.007368352
7.25E−06






CTCAATGAATATTGTTACTTGACTCCCAT









TACAACTC





1616
3260608
6

CTTGAGAAGGTTACTGAGTGAGTTATTG
0.000117217
0.009690655
4.08E−06






GGAGTC





 790
3260609
2
SCD;
GCCTAAAGTATACAACTGCCTGGGGGGC
0.000153753
0.01256466
6.16E−06





AL139819.1
AGGGTTAGGAATCTCTTCACTACCCTGA









TTCTTGATTCCTGGCTCTACCCTGTCTGT









CCCTTTTCTTTGACCAGATCTTTCTCTTCC









CTGAACGTTTTCTTCTTTCCCTGGACAGG









CAGCCTCCTTTGTGTGTATTCAGAGGCA









GTGATGACTTGCTGTCCAGGCAGCTCCC









TCCTGCACACAGAATGCTCAGGGTCACT









GAACCACTGCTTCTCTTTTGAAAGTAGA









GCTAGCTGCCACTTTCACGTGGCCTCCGC









AGTGTCTCCACCTACACCCCTGTGCTCCC









CTGCCACACTGATGGCTCAAGACAAGGC









TGGCAAACCCTCCCAGAAACATCTCTGG









CCCAGAAAGCCTCTCTCTCCCTCCCTCTC









TCATGAGGCACAGCCAAGCCAAGCGCTC









ATGTTGAGCCAGTGGGCCAGCCACAGAG









CAAAAGAGGGTTTATTTTCAGTCCCCTCT









CTCTGGGTCAGAACCAGAGGGCATGCTG









AATGCCCCCTGCTTACTTGGTGAGGGTG









CCCCGCCTGAGTCAGTGCTCTCAGCTGG









CAGTGCAATGCTTGTAGAAGTAGGAGGA









AACAGTTCTCACTGGGAAGAAGCAAGGG









CAAGAACCCAAGTGCCTCACCTCGAAAG









GAGGCCCTGTTCCCTGGAGTCAGGGTGA









ACTGCAAAGCTTTGGCTGAGACCTGGGA









TTTGAGATACCACAAACCCTGCTGAACA









CAGTGTCTGTTCAGCAAACTAACCAGCA









TTCCCTACAGCCTAGGGCAGACAATAGT









ATAGA





1827
3261067
9
TLX1
CCTGGCCACCGGCTTGCCCACCGTGCCC
0.000620704
0.007366558
7.93E−06






TCTGTGCCTGCCATGCCGGGCGTCAACA









ACCTCACTGGCCTCACCTTCCCCTGGATG









GAGAGTAACCGCAGATAC





1319
3261680
9
NFKB2
AGGTGAAGGAAGACAGTGCGTACGGGA
0.00620627
0.007045917
5.59E−06






GCCAGTCAGTGGAGCAGGAGGCAGAGA









AGCTGGGCCCACCCCCTGAGCCACCAGG









AGGGCTCTGCCACGGGCACCCCCAGCC





1087
3262195
7
USMG5
TCACCCACCTGCCAAAGCCGCAAATTCC
1.18E−05
0.011314813
4.65E−06






GCAGCTGGTGTCCTT





1308
3262201
9
PDCD11
GGAGGTACAAGAAAGATCCACAAACCA
0.003266926
0.008070873
4.26E−06






GAGAAAGCTTTCCAGCAGTCAGTTGAAC









AAGACAACTTATTT





 714
3263441
1

CCCCTCGTCCCTTGCTGCTGAGTGAAATT
0.000273283
0.011872655
6.77E−06






CTGCTCCCTGCTCCCAGCTCATTTTCATC









CCGTCCCACAAGCTCCCAGGTATAT





1994
3263816
9
SMC3
GTGACCAAGTCAGCCATCGGGGTGCTCT
2.66E−05
0.00676427
4.02E−06






AACTGGGGGTTATTATGACACAAGGAAG









TCTCGACTTGAATTGCAAAAAGATGTTA









GAAAAGCAGAAGAAGAACTAGGTGAAC









TTGAAGCAAAGCTCAATGAAAACCTGCG









CAGAAAT





2066
3263824
9
SMC3
CTTCAGAAGAGTATGGAGCGCTGGAAAA
0.000146929
0.007441363
6.30E−06






ATATGGAAAAAGAACATATGGATGCTAT









AAATCATGATACTAAAGAACTGGAAAAG









ATGACAAATCGGCAAGGCATGCTATTGA









AGAAGAAAGAAGAGTGTATGAAGAAAA









TTCGAGAACTTGGATCACTTCCC





 297
3265208
9
TDRD1
ATGTGTGTTGCTGGGATAAAATTGCAAG
0.011264381
0.012192501
1.62E−05






CCAGAGTGGTTGAAGTCACTGAAAATGG









GATAGGAGTTGAACTCACCGATCTCTCC









ACTTGTTATCCCAGAATAATT





2080
3266824
7
C10orf46
ACATCCTCTTCCATGAACAGCTTTGTGAC
1.60E−05
0.006900786
2.85E−06






AGAGCTCCTGAGTGTGTGCAGCCCCCAC









TGTGCTCTGAATACAGTCTCTGCAGC





1340
3268609
9
ACADSB
CCTTCTTAGTAGATCGTGATACTCCGGGC
0.00453157
0.007532844
4.87E−06






CTTCATATAGGGAAACCTGAAAACAAAT









TGGGGCTCAGAGCTTCTTCCACCTGCCC









GTTAACATTCGAAAATGTC





2072
3268687
6

CTCTATGGAAAGCTTTGTTTGCTTCCTAC
0.000408197
0.006896832
5.98E−06






AAATACATGCTTATTCCTTAAGGGATGT









GTTAGAGTTACTGTGGATTTCTCTGTTTT









CTGTCTTACAAGAAACTTGTCTATGTACC









TTAATACTTTGTTTAGGATGAGGAGTCTT









TGTGTCCCTGTACAGTAGTCTGACGTATT









TCCCCTTCTGTCCCCTAGTAAGCCCAGTT









GCTGTATC





 549
3270603
1

ATGGCGTCGGGAAGAGCCAGGGACCCG
0.001587412
0.010264099
7.78E−06






GCTGTGCGCTTGGATCCATCACTGCTCTG









GGC





1608
3270778
1

AAGGCCAGCACAGCGTGGTAAAGCATCA
3.33E−05
0.00732201
4.59E−06






GATCTCTGGCTCTGCATGCCCCGCCGCTG









AGCCTCAGCCCAAGCACACT





2033
3271719
9
PPP2R2D
CGGACATCATTTCCACCGTTGAGTTTAAT
1.57E−05
0.006604433
4.28E−06






TACTCTGGAGATCTTCTTGCAACAGGAG









ACAAGGGCGGCAGAGTTGTTATTTTTCA









GCGTGAACA





 752
3271859
9
JAKMIP3
GACAAGCTGTTAAGATTCCGGAAGCAAA
0.007566793
0.009133827
1.66E−06






GA





1317
3273492
2
LARP4B
GTCGCAGAGCGCTGTGTTAACCACAAAC
0.000163031
0.008013788
4.84E−06






GAGACACTCTCCCACTCAGTGCGAGGGC









GAGCCGCTGGTTAGGAGCTTGCAGTGTC









TGAGGCCTGTGGGATCCTCAAGTTGGTT









TTCTTCTGTGAGTTGGATTCTCCCCCTCT









TGAAAAAAAATCGATTTTTCAGGATTTA









ATTAATACAAACCTTATTTTAGGTTGGTG









CTAACTGGAGGTGATGCATAAGTCTGA









TTTTTTTTTCCAAGATAGAAAAAGCATTT









ATCCTAACAAATTGGTATTTTTTATTAAG









CCTCCATGTGGCTCTGAATGCAAGCTAT









ATATAGTGAGTTTTTCTAAATTAAGGGA









ACTCTGCTTTTTTTTTTTTTTTTTAAGTAA









CTGGTCTGTAAGTGCATATCTCTAGAAC









GTCCCCGCAGATGAATGAGGGCCAGTGG









CCTTGGCAGAGGCAGGTGTGGCCTCGTA









GAGGCAGTGCTGGCCGCGCCAGGGCATC









AGTGCTGATGTGGGAGCTGTGCTTCCAC









CTAAGCCGTTGGTAGGGGACTGTGGCAT









TTAAGAATGTAGAGAGCGCATCCTTTTT









GATCTCCTGGGCGGAGTGAACCTGCAGG









GGCCACCCCAGAAACCTTGGTTCTGATG









CACTGCAAGCAAGTAACCAGCTTCTCAC









TCCAGTTTCAAGTGGCTATTATGTAATAT









AAATTCAAAGCACATTGTGAATAGAACC









TACATGAAAACATACACTTTGTTGCCCA









CTGACATGTTA





1831
3273589
7
IDI2-AS1
ATCCAGAGCTCGCTGGGCATCCACCCGG
0.045476068
0.007550062
5.19E−06






TGGGAGACAGGCCAGCACGACCAAGTG









GCCAGCACACCA





1134
3273785
9
ADARB2
TAAAGTAAGCATATTGTCAACCTTCCTC
0.041003559
0.007815956
5.26E−06






GCTCCTTTCAAGCACCTGAGTCCTGGCAT









CACAAACACGGAGGATGACGACACCCT





1465
3274485
1

AAGTTGGCCACAAGCACCGTGAGTATGG
0.015428709
0.009244812
1.10E−05






CGTGGGTCGCCCTCTTCCCTGTCTCCCTG









CTGGACACCCACCCACCCCTTAGCGCCT









GCAGAGAAGTCCCCCCAGGAGTCCAGGC









CTGGGTCCCTGTGGCCCTGGGGGGTTTG









TGGCGACCCCAACACGAGCTCTCTGCGA









CTGCACG





1682
3276980
1

TGATCCATTAAGTGAGCTGGGGTTTGAA
0.024015481
0.007284984
4.12E−06






GTTCAGAGGCGTTTGGTGGAACACGTGG









ACGGGCTAATAAGACGCTGTGGATCCAT









GGGAAAAGGATGGGCACGA





1116
3277460
1

GGCCTTCGATGCTGGCACTGTCTTGGCG
8.36E−05
0.007347087
4.76E−06






CCTGGCTCTACATCATGACAGTGTGACA









AGGAAGACAGGCTGCCTGCTGACCATCT









TTGGGACAGAGAAGCTTAATATC





 468
3280630
2
NEBL
TGGTAGACCTCTGGGATCCTTTTCTGTTC
0.00349637
0.007402615
5.15E−06






ACTCACACACCACTGAGATAAGGAGTGA









AGTGTGGGCTAAATAGGGCTGAGGCTTG









GGCAAGGGCATTTCTGCCAGAGCACCAG









AGACGTCAGCATCTCAAGGGCACTGTGG









TATGGAAAAGGACGCCACATGAGTAAAT









TTTA





1232
3281132
4
PIP4K2A
TGTGACCAGCAGTACAGAGAGAACTATA
0.000412342
0.008458062
6.54E−07






CTGTGTTTGCCAAAGGGGATT





1093
3281422
7
KIAA1217
CGTTTCTGCCCGACTTGCAGTTTCAGGGC
0.000272577
0.00776324
3.40E−06






ATGCCAGGACTGCAGCACCCTCTCCGTC









CTCCCCCGGAAACGACTTTCAATTCACCT









GGAGGCTCTCGAGGCTCCCCCGCGGGCG









GGTAGCGTGACAGTGGGTGCAGAGGAG









AGGGAGGAGCGCGGGAACGGCGGCGGC









CCCAGTGCGCCTCCCGCTTGCTTGGCGA









GAA





 926
3281437
1

TGCCTTTAAAAAGCTGCGCTAGAGGTTT
0.00877735
0.010032762
6.39E−06






AGGGGGGAAGAGTGGGATAGACGGTGT









GGGAGAGTTGGTTTCCACGCTCCTGTAG





2017
3282231
9
YME1L1
TTTAAACCCAATGAAGGAGTTATCATAA
4.43E−06
0.006735584
3.51E−06






TAGGAGCCACAAACTTCCCAGAGGC





1970
3283993
2
KIF5B
TACTGTGCGTAACTCTCAGTTTGTGCTTA
0.000784922
0.007852174
3.97E−06






ACTCCATTTGACATGAGGTGACAGAAGA









GAGTCTGAGTCTACCTGTGGAATATGTT









GGTTTATTTTCAGTGCTTGAAGATACATT









CACAAATACTTGGTTTGGGAAGACACCG









TTTAATTTTAAGTTAACTTGCATGTTGTA









AATGCGT





1820
3283995
2
KIF5B
AGGACATGGTATCAAGCAGTCATTCAAT
5.94E−05
0.008521667
5.86E−06






GACTATAACCTCTACTCCCTTGGGATTGT









AGAATTATAACTTTTAAAAAAAATGTAT









AAATTATACCTGGCCTGTACAGCTGTTTC









CTACCTACTCTTCTTGTAAACTCTGCTGC









TTCCCAACACAACTAGAGTGCAATTTTG









GCATCTTAGGAGGGAAAAAGGACAGTTT









ACAACTGTGGCCCTATTTATTACACAGTT









TGTCTATCGTGTCTTAAATTTAGTCTTTA









CTGTGCCAAGCTAACTGTACCTTATAGG









ACTGTACTTTTTGTATTTTTTGTGTATGTT









TATTTTTTAATCTCAGTTTAAATTACCTA









GCTGCTACTGCTTCTTGTTTTTCTTTTCCT









ATTAAAACGTCTTCCTTTTTTTTTCTTAA









GAGAAAATGGAACATTTAGGTTAAATGT









CTTTAAATTTTACCACTTAACAACACTAC









ATGCCCATAAAATATATCCAGTCAGTAC









TGTATTTTAAAATCCCTTGAAATGATGAT









ATCAGGGTTAAAATTACTTGTATTGTTTC









TGAAGTTTGCTCCTGAAAACTACTGTTTG









AGCACTGAAACGTTACAAATGCCTAATA









GGCATTTGAGACTGAGCAAGGCTACTTG









TTATCTCATGAAATGCCTGTTGCCGAGTT









ATTTTGAATA





1621
3284211
9
ITGB1
AGGAATGTTACACGGCTGCTGGTGTTTT
1.31E−05
0.01042158
1.05E−05






CCA





1648
3284305
9
NRP1
GAGCACGCCAGGATACGAAGGTGAAGG
0.006429597
0.011846842
1.13E−05






AGAAGGTGACAAGAACATCTCCAGGAA









GCCAGGCAATGTGTTGAAGACCTTAGAC









CCCATCCTCATCACCATCATAGCCATGA









GTGCCCTGGGGGTCCTCCTGGGGGCTGT









CTGTGGGGTCGTGCTGTACTGTGCCTGTT









GGCATAATGGGATGTCAGA





1762
3284324
9
NRP1
AAAGCCCACGGTCATAGACAGCACCATA
6.28E−06
0.008755286
5.38E−06






CAATCAG





 110
3289058
9
TIMM23
TCTGACAGGACTAACACTTACCAGCCTC
2.58E−05
0.018804344
1.65E−05






TATGCACTATATAATAACTGGGAGCACA









TGAAAGGCTCCTTGCTCCAACAGTCA





 673
3289482
2
A1CF
AACAGTGCTGTGCCAAAAACCTGTGGAT
0.04509417
0.00800955
7.31E−06






T





1757
3290799
9
CCDC6
TGTCTGCACAAGGATTAAGACCTCGCAC
1.95E−05
0.009372214
7.09E−06






TGTGTCCAGCCCGATCCCTTACACACCTT









CTCCGAGTTCAAGCAGGCCTATATCACC









TG





1999
3290817
9
CCDC6
AAGCCGAACTAGAACAGCATCTTGAACA
6.16E−06
0.007807125
6.97E−06






AGAGCAGGAATTTCAGGTCAACAAACTG









ATGAAGAAAATTAAAAAACTGGAGAAT









GACACCATTTCTAAGCAACTTACATTAG









AACAG





 920
3292591
2
PBLD
CTTGATATATGGCTTGAGAATGATAATG
0.000264928
0.00979269
6.69E−06






TAAAAGGAATTCTTCTCTTACTTCAATAA









AATGGGTTTTAACATAACTTTAAATTCA









GTTAAATATACAATATTGAATACCTATA









GTTGACTTTGGGATGGGGACTTTTTCAA









GTCATTAAGAGTGTTTGTTTAAGGTGATC









TCATTGATGGTAGTTCTCAGCCGTCTCAA









AAACTGCAAGCTAATCAGTCAGACATTC





1732
3292766
4
SLC25A16
GCCGCACAATTATAGCTCTCCGTGACCT
0.000164774
0.006568018
1.05E−06






CCAACTGTTGGCTCACGTCATCCTCCAGC









CTTAGTCTCTGAGTACTGAGGCACACCA









CCATGCCTTGCTAATTTTTTTTTTTCTTTG









AGATGGAGTCTCGCTTTGTCGCCCAGGC









TAGAGTGCAATGGTGTGATCTCGGCTCA









CTGCAACCTCGGCCTCCTGGGTTCAAGG









GATTCTCCTGCCTTAACCTCCCAAATAGC









TGGGACTACAGGCGCCTGCCACCATGCC









TTGCTAATTTTTTTGTATATTTGATAGAG









ACGGGGTTTCACCATGTTGGCCAGGCTG









GTGTCGAGCTCCTGACCTCAGGAGATCT









GCCCGCCCCGAGCTGCCAAAGTGCTGGG









ATTGCAGGCATGAAGCACTGCGCCCAGC









CGATTTTAAAAAATTTTTTGTAGAGATG









AGGTCTCACTGTGTTTCCCAGGCTGGTCT









CAAACTCCTAGTCTCAAGTAATTTTTCTA









CCTCAGCCTCCGAAAGTGCTGGGATTAC









AGGTGCGAGCTACTGTGCCTGGCCTGTT









ATTCACCTTTTTATAAAAGGAGCAACCC









ATTTTTTCAAGTCATTACTAGATGTACAG









TATTGTAGAGAAGTCTATATTATTGCTTT









AGAAGCATGCCAAGCTCGAAGGGCTGGC









CTGGACTCTGACCTATGCTAAAGCCCAT









GTATGCACTTTATTCTACTTTCATCTATA









CTTTTCCCCAGTGGCACATGGTAGGGTC









GAAATACA





 193
3293219
9
TYSND1
GCATAATCACCAGCAACACCCGGGACAA
0.037563396
0.014951746
2.22E−05






TAA





1413
3293539
2
PCBD1
GAATTTAGACCTTTTCCCTGCACCACTCT
0.00020953
0.012455715
5.62E−06






CTTCATCCTGGGGGCTCTGTTACACTAAT









TTGAATAAACTCTCCCCTTTCTTTGCAAC









TTCCCAGCAACAATAATGATTTTCTTGCC









AGGCCGTCTCTTGCTCCCTAATTCATTTC









CCAGGAAGCTGTGATACAGGGTGAAATA









AAGTC





 905
3293767
2
PSAP
CTGCTGGTGGCTTGGGACATCAGTGGGG
6.74E−06
0.014379385
1.31E−05






CCAAGGGTTCTCTGTCCCTGGTTCAACTG









TGATTTGGCTTTCCCGTGT





1194
3294169
2
P4HA1
TTTGAGCATCCAGTTTTAGTATTTCACTA
3.50E−05
0.008388232
5.05E−06






CATCTCAGTTGGTGGGTGTTAAGCTAGA









ATGGGCTGTGTGATAGGAAACAAATGCC









TTACAGATGTGCCTAGGTGTTCTGTTTAC









CTAGTGTCTTACTCTGTTTTCTGGATCTG









AAGACTAGTAATAAACTAGGACACTAAC









TGGGTTCCATGTGATTGCCCTTTCATATG









ATCTTCTAAGTTGATTTTTTTCCTCCCAA









GTCTTTTTTAAGAAAGTATACTGTATTT









TACCAACCCCCTCTCTTTTCTTTTAGCTC









CTCTGTGGTG





 884
3294190
9
P4HA1
CCTGAACATCAGAGAGCTAATGGTAACT
0.000151311
0.012053017
9.96E−06






TAAAATATTTTGAGTATATAATGGCTAA









AGAAAAAGATGTCAATAAGTCTGCTTCA









GATGACCAATCTGATCAGAAAACTACAC









CAAAGAAAAAAGGGGTTGCTGTGGATTA









CCTGCCAGAGAGACAGAAGTACGAAAT









GCTGTGCCGTG





1767
3294612
9
USP54
AAGCATGTTTGGTGAGCTGCTGCAGAAT
0.002152759
0.006663838
5.69E−06






GCCAGCACCATGGGGGATCTGCGGAACT









GTCCA





1582
3295307
7
SAMD8
TAGTCCGCATTATTTAACTGACTGGTTCT
7.16E−05
0.008856807
3.98E−06






AAGGATAAGTTCTGATTTCAAAGGATAC









AAATAAATAGAGCTAGAAGTTCTATTTT









TGCCCTTGCAATTCTGGTCAGAAAACTA









TGGAGAGGATAGCCACATAAAGAATTCT









TGCAGCACAGCCACGAAAGGTTTC





1502
3295752
5
C10orf11
AAGCGGCAGAGTCACCCAGAGCCTTTGC
0.003914828
0.008579333
3.46E−06






TCAGCGGAGCTCAGGCTGACTCTCCTTCT









GAACTCAGTTCAAACCCTCACTCCTCTG









AACACCCTCAGCCGCCGCACAGGGAGCT









CCAGGGCTCTTGGGTCTTTCACAGTCCTC





 177
3296861
8
ZMIZ1
GCCCTGTGTAACCAGCCTGTCCTCACAC
0.000850201
0.017485614
1.56E−05






CCACCAGGGAGGAGGAGTCGGCACTGGT









TAACCCTCTGGTCTACCAGGCCCGGTTCC









CAGGTTGCAGCAGGGA





1341
3297947
5
NRG3
ACCCTTGGTTGGCTCTCCGGCATTCCAGC
0.014905986
0.006924227
7.73E−06






TGCAGCTGCTGGGGCTGGCTGCAGGCAC









GTCTGACTGTTCTCCCCTTTGGAGTAGAC









AGGGTTGTTCTGGCTGTCCCATGCATTGC









CTTTCAATA





 392
3298214
1

TCTGCCTCAGGCATATTCGGAGTCTCATG
0.000954268
0.009857566
6.07E−06






GGGGTATCTGTGAAGAAGACGAGCACA









AGAAAGCCTAAGTT





 839
3298765
9
WAPAL
CTGCACCACCATCCAAAGTGATAAAAAC
0.023239041
0.007619348
8.04E−06






TGTGACAATACCTACTCAGCCCTACCAA









GATATAGTTACTGCACTGAAATGCAGAC









GAGAAGACAAAGA





1856
3301491
4
SORBS1
GGATTTTGGACAAGGGCTGGGCCAGGCA
0.020694087
0.006725547
5.24E−06






CAGCACTGTGTTCTGACCCGTTACGAAG









AGGTA





2018
3301871
9
TM9SF3
TATTATGTCTATGGCTTCATGATGCTGGT
0.000358678
0.010592662
6.42E−06






GCTGGTTATCCTGTGCATTGTGACTGTCT









GTGTGACTATTGTGTGCACATATT





 602
3301947
9
PIK3AP1
GTGAGTGGACTGGTGCCAAGCATGTCCC
0.040239182
0.009496091
6.27E−06






A





 407
3302849
2
HPS1
GACATCTGTCTTAGGCTCCAGTGGACCC
0.000475873
0.011980131
1.06E−05






CCGTGCCTCCTAAGGCTTGAGTGCAGGT









ACCCGTGTTCCTAGAGCACAGGACGCTG









TCTGCGGCTCCCCATCTTCCCTGCCAGCT









CCAGCCTGAACTCAAGGATTGTTAAGAC









CACTCCACTGATCCCTAAAGCTGTT





1940
3303460
6

CAGACTTCTGCTTTGATGACTGAGCTAC
0.000933891
0.006757907
5.65E−06






AGGGACAGGAGTGGTCCAAGGTTCTCAA









ATTCTGTTTTTGTTTTTTTCCAGACTTCTA









TACTATTGTCTGCCCTAGGCTGTAGGGA









ATGCTGGTTAGTTTGCTGAACAGACACT









GTGTTCAGCAGGGTTTGTGGTATCTCAA









A





 108
3303461
6

CATTTCCAAGGGGTAGGTGCACAGGTCA
6.24E−07
0.02895629
2.30E−05






ACAGAACTAAACTACAGTGATCTTCCCT









TAGATCCTTTTCTACTGAGGTGAATAGCT









CAAAAGACAAGGATGCCTTTAGTCCAGG









CTAACCCCTGTAGCCTCTACGCAATTAA









CACAGA





 597
3304424
4
ACTR1A
TGGATCAACATTCCTGTCAAACTTAAAA
0.004749446
0.008965086
8.27E−06






CTGTCTTTGTGACTATATGGACCTAAATG









CAGGCTCTTCAGAAGTTCAACAATAAGC









TAAGCATTTGTTTGTTTTGCTTTGGATGT









TGTGCTGCTTCAGCCCCCTTTAAAAAAA









AAAAAAGAGAGAGAGAGATACTTTAAA









CACACAGAAAAATTCGGTGTGGTATATA









ACAAGCACCCAGGTAGCATGTGTCTA





 125
3305521
5
SORCS3
AGGAACAAGTCCTATTTGATGAAGATAC
0.002324635
0.016042517
9.05E−06






CTCAGGGAGCCTGGGAGCCTATGGAACC









AACAGTGCCCTCGACTCTGTCCTTTCCAG









GATGGCCACTGCACACTGC





1575
3306389
8
ADD3
GGAGGAGGTGGTAGCGGACTGACTGAGT
0.04624829
0.00697595
7.55E−06






GGG





2038
3306415
8
ADD3
GTAATCAGAAAGGTGATAAGGTTTACTG
0.000862602
0.00712363
4.55E−06






ATTTACTGCAGAACTGGAATCTCCAATG









GGAATTAGTGCCCTCTGG





 667
3306762
4
BBIP1
AGTGTCACATAGCAGGCTTAATAGCTAA
0.001080374
0.007248372
4.19E−06






ACATCTGCAGCTATTGTGTTCCGTATTAT









CTCATTTACTGTCTTTTACTATATGCTTTT









TCATGACATCCAGTAAAAGGATAACAAA









TGAAACATTGTTTCTTATACCTAAAATTG









CCTATTAATTAGCTAATTCCTAAAATTCC









TAATTACAATATGAATTTTTTTTAAGAGA









CAGGTTGTCACTCTGCCACCCAGGCTTG









GGTACAGCTGGCACAACCGTAGCTCACC









GCAGCCTTGAACTACTGGGCTCCTGCCC









TAGCCTACTGAT





 759
3307486
1

CAGTCGGGCTGGGAGAAACATATGGTGC
0.005416181
0.008128483
3.67E−06






CACAAATATCCCTTTTCCAA





  69
3308170
1

ATGGAGTGGACGCTAGCAGCCAACAGA
1.05E−05
0.037128898
3.04E−05






AGGAAAGCAGGCTCCCGCTGCTCCAGCC









ATTTCTGCTATGCTTACCTGCTGACTCCC









GGGACAGATATCTTGCTGCCTTTGAGGT









TAATTCACCAAACTCTGAACTGTCTGAA









TTCTGTGGAAGCAGAATATATTGAGGTC









CTGACCACGGTGTCCAGCCCTGCTGTAG









AACTATGTGGATCA





 131
3309791
9
MCMBP
GTACCATCACTGAACGAAGTTCCCCTTC
1.23E−05
0.026269881
2.80E−05






ATTATTTGAAACCTAATAGTTTTGTGAAA









TTTCGTTGCATGATTCAGGATATGTTTGA









CCCTGAGTTTTACATGGGAGTTTATGAA









ACGGTTA





 843
3309876
1

AGCCATCCTAGAAGGGCTCATGCCAGTC
0.024015481
0.008960388
5.20E−06






TCTTGGTTGCAGAGCCCCGGCTT





1350
3310831
1

CCCAGGACAAGTTCTGTGGGCATCCTTC
0.000802243
0.006806731
3.45E−06






GAAAATGAAAGCACCGTTACAACACACC









ACTGATCAAGGGGAAAGTGCCTTTGTAC









TCAATGGCGCAATTGGTA





  53
3312502
9
MKI67
CAGAAGAGTGCGAAGGTTCTCATGCAGA
4.20E−06
0.060126952
7.13E−05






ATCAGAAAGGGAAAGGAGAAGCAGGAA









ATTCAGACTCCATGTGCCTGAGATCAAG









AAAGACAAAAAGCCAGCCTGCAGCAAG









CACTTTGGAGAGCAAATCTGTGCAGAGA









GTAACGCGGAGTGTCAA





1716
3312508
9
MKI67
GGAGAACTCTTAGCGTGCAGGAATCTAA
0.004061321
0.007855735
5.63E−06






TGCCATCAGCAGGCAAAGCCATGCACAC









GCCTAAACCATCAGTAGGTGAAGAGAAA









GACATCATCATATTTGTGGGAACTCCAG









TGCAGAAACTGGACCTGACAGAGAACTT









AACCGGCAGCAAGAGACGGCCACAAAC









TCCTAAGGAAGAGGCCCAGGCTCTGGAA









GACCTGACTGGCTTTAAAGAGCTCTTCC









AGACCCCTGGTCATACTGAAGAAGCAGT









GGCTGCTGGCAAAACTACTAAAATGCCC









TGCGAATCTTCTCCACCAGAATCAGCAG









ACACCCCAACAAGCACAAGAAGGCAGC









CCAAGACACCTTTGGAGAAAAGGGACGT









ACAGAAGGAGCTCTCAGCCCTGAAGAAG









CTCACACAGACATCAGGGGAAACCACAC









ACACAGATAAAGTACCAGGAGGTGAGG









ATAAAAGCATCAACGCGTTTAGGGAAAC









TGCAAAACAGAAACTGGACCCAGCAGC









AAGTGTAACTGGTAGCAAGAGGCACCCA









AAAACTAAGGAAAAGGCCCAACCCCTA









GAAGACCTGGCTGGCTTGAAAGAGCTCT









TCCAGACACCAGTATGCACTGACAAGCC









CACGACTCACGAGAAAACTACCAAAATA









GCCTGCAGATCACAACCAGACCCAGTGG









ACACACCAACAAGCTCCAAGCCACAGTC









CAAGAGAAGTCTCAGGAAAGTGGACGT









AGAAGAAGAATTCTTCGCACTCAGGAAA









CGAACACCATCAGCAGGCAAAGCCATGC









ACACACCCAAACCAGCAGTAAGTGGTGA









GAAAAACATCTACGCATTTATGGGAACT









CCAGTGCAGAAACTGGACCTGACAGAGA









ACTTAACTGGCAGCAAGAGACGGCTACA









AACTCCTAAGGAAAAGGCCCAGGCTCTA









GAAGACCTGGCTGGCTTTAAAGAGCTCT









TCCAGACACGAGGTCACACTGAGGAATC









AATGACTAACGATAAAACTGCCAAAGTA









GCCTGCAAATCTTCACAACCAGACCCAG









ACAAAAACCCAGCAAGCTCCAAGCGAC









GGCTCAAGACATCCCTGGGGAAAGTGGG









CGTGAAAGAAGAGCTCCTAGCAGTTGGC









AAGCTCACACAGACATCAGGAGAGACTA









CACACACACACACAGAGCCAACAGGAG









ATGGTAAGAGCATGAAAGCATTTATGGA









GTCTCCAAAGCAGATCTTAGACTCAGCA









GCAAGTCTAACTGGCAGCAAGAGGCAGC









TGAGAACTCCTAAGGGAAAGTCTGAAGT









CCCTGAAGACCTGGCCGGCTTCATCGAG









CTCTTCCAGACACCAAGTCACACTAAGG









AATCAATGACTAACGAAAAAACTACCAA









AGTATCCTACAGAGCTTCACAGCCAGAC









CTAGTGGACACCCCAACAAGCTCCAAGC









CACAGCCCAAGAGAAGTCTCAGGAAAG









CAGACACTGAAGAAGAATTTTTAGCATT









TAGGAAACAAACGCCATCAGCAGGCAA









AGCCATGCACACACCCAAACCAGCAGTA









GGTGAAGAGAAAGACATCAACACGTTTT









TGGGAACTCCAGTGCAGAAACTGGACCA









GCCAGGAAATTTACCTGGCAGCAATAGA









CGGCTACAAACTCGTAAGGAAAAGGCCC









AGGCTCTAGAAGAACTGACTGGCTTCAG









AGAGCTTTTCCAGACACCATGCACTGAT









AACCCCACGACTGATGAGAAAACTACCA









AAAAAATACTCTGCAAATCTCCGCAATC









AGACCCAGCGGACACCCCAACAAACAC









AAAGCAACGGCCCAAGAGAAGCCTCAA









GAAAGCAGACGTAGAGGAAGAATTTTTA









GCATTCAGGAAACTAACACCATCAGCAG









GCAAAGCCATGCACACGCCTAAAGCAGC









AGTAGGTGAAGAGAAAGACATCAACAC









ATTTGTGGGGACTCCAGTGGAGAAACTG









GACCTGCTAGGAAATTTACCTGGCAGCA









AGAGACGGCCACAAACTCCTAAAGAAA









AGGCCAAGGCTCTAGAAGATCTGGCTGG









CTTCAAAGAGCTCTTCCAGACACCAGGT









CACACTGAGGAATCAATGACCGATGACA









AAATCACAGAAGTATCCTGCAAATCTCC









ACAACCAGACCCAGTCAAAACCCCAACA









AGCTCCAAGCAACGACTCAAGATATCCT









TGGGGAAAGTAGGTGTGAAAGAAGAGG









TCCTACCAGTCGGCAAGCTCACACAGAC









GTCAGGGAAGACCACACAGACACACAG









AGAGACAGCAGGAGATGGAAAGAGCAT









CAAAGCGTTTAAGGAATCTGCAAAGCAG









ATGCTGGACCCAGCAAACTATGGAACTG









GGATGGAGAGGTGGCCAAGAACACCTA









AGGAAGAGGCCCAATCACTAGAAGACCT









GGCCGGCTTCAAAGAGCTCTTCCAGACA









CCAGACCACACTGAGGAATCAACAACTG









ATGACAAAACTACCAAAATAGCCTGCAA









ATCTCCACCACCAGAATCAATGGACACT









CCAACAAGCACAAGGAGGCGGCCCAAA









ACACCTTTGGGGAAAAGGGATATAGTGG









AAGAGCTCTCAGCCCTGAAGCAGCTCAC









ACAGACCACACACACAGACAAAGTACC









AGGAGATGAGGATAAAGGCATCAACGT









GTTCAGGGAAACTGCAAAACAGAAACTG









GACCCAGCAGCAAGTGTAACTGGTAGCA









AGAGGCAGCCAAGAACTCCTAAGGGAA









AAGCCCAACCCCTAGAAGACTTGGCTGG









CTTGAAAGAGCTCTTCCAGACACCAATA









TGCACTGACAAGCCCACGACTCATGAGA









AAACTACCAAAATAGCCTGCAGATCTCC









ACAACCAGACCCAGTGGGTACCCCAACA









ATCTTCAAGCCACAGTCCAAGAGAAGTC









TCAGGAAAGCAGACGTAGAGGAAGAAT









CCTTAGCACTCAGGAAACGAACACCATC









AGTAGGGAAAGCTATGGACACACCCAA









ACCAGCAGGAGGTGATGAGAAAGACAT









GAAAGCATTTATGGGAACTCCAGTGCAG









AAATTGGACCTGCCAGGAAATTTACCTG









GCAGCAAAAGATGGCCACAAACTCCTAA









GGAAAAGGCCCAGGCTCTAGAAGACCTG









GCTGGCTTCAAAGAGCTCTTCCAGACAC









CAGGCACTGACAAGCCCACGACTGATGA









GAAAACTACCAAAATAGCCTGCAAATCT









CCACAACCAGACCCAGTGGACACCCCAG









CAAGCACAAAGCAACGGCCCAAGAGAA









ACCTCAGGAAAGCAGACGTAGAGGAAG









AATTTTTAGCACTCAGGAAACGAACACC









ATCAGCAGGCAAAGCCATGGACACACCA









AAACCAGCAGTAAGTGATGAGAAAAAT









ATCAACACATTTGTGGAAACTCCAGTGC









AGAAACTGGACCTGCTAGGAAATTTACC









TGGCAGCAAGAGACAGCCACAGACTCCT









AAGGAAAAGGCTGAGGCTCTAGAGGAC









CTGGTTGGCTTCAAAGAA





  48
3312516
9
MKI67
CATGGGCAGATGTAGTAAAACTTGGTGC
1.16E−08
0.076247204
0.00010532






AAAACAAACACAAACTAAAGTCATAAA









ACATGGTCCTCAAAGGTC





 307
3312517
9
MKI67
AAGAGAGTGTCTATCAGCCGAAGTCAAC
3.35E−06
0.022040564
1.75E−05






ATGATATTTTACAGATGATATGTTCCAA









AAGAAGAAGTGGTGCTTCGGAAGCAAAT





 322
3312528
9
MKI67
TGTGACATCCGTATCCAGCTTCCTGTTGT
0.000276123
0.011794395
7.23E−06






GTCAAAACAACATT





1192
3316579
3
RP13-
TGTGTGTGGACACTGCAACCCTCCCGAA
4.46E−05
0.007081656
4.90E−06





870H17.3
GCTGGGCCTGGAAGAAATGACTTCCCCA









GAACCTTATCTGGGCCGGAGAGGGGCGT









TGGCAGCGGGGGTCTTGCCGCCTTCCGG









TCCTCTGCATGCCAGGCACCACCTGGGG









CCGGGCCAGGGCAGGCTGCCTGGACACC









ATGGACCTGCCCAGCTGTAGGGGAGGTG









TGTCCTGCAGCCCTACCCGAGGCCCAGG









CCTGCGTGGCTGAGAGGACTGAGGACGG









CTGACCCCCTTGGTGACTGCCTGGGCCC









AGAGGGGAGTTGGGGGAGTGGTCAGCT









GGGTGTGGCCAGCCCTGGGGGAAGGATC









CAGGGACTGTGTCCACTTAGGGATAGGA









GGCAGCTAGCAGAGCCCTCCCAGCTGAC









CAGGGGAGGCCCTGTGGGCACAGGAGG









GGCCCCAGGTGTAGGTACAGGTGCAGGG









CTGTGCGGCTCTGTGTCACCCAGGTGGA









GCGTCTTGCCCCGTTTGATGGCTGACAA









AGTGCCCTTGAATGCGTCAGACCCAGCG









TGGTCCCAGGGTCCTGACCCTAACATAC









CACCCCAAATTACCCTCACCCCAGCCTA









CCCCTGCCCTAAATTCACCCCAAGCCTCC









ACCCAAACCCCTTAGTCCCAACACCTTA









ACCCTAGACCCAACCCTACACCCCAAGC









CCTAATCCCTAACCGCTAGCCTCACCCTA









ACCTTCCTACCGGATGCCACCTGGCAAA









CATCCTCCTGGCCCCTATCTGCCCCTCCC









CCGGGGATCCGGGAGGCAGTGGGGTCCC









TGGGAGGCTGCTCCCTGCAGAACGCGAT









GGACA





 456
3317399
4
KCNQ1
GCTCTGGTTGGAAAGTGGCTAGGGTGAC
0.006154763
0.010928167
7.03E−06






CTCTGGGCCTACTGGCAGGGACGCCA





2082
3318045
2
RRM1
TTTGCTTGAGGTGGTAAGGCTTTGCTGG
0.0001169
0.00747355
4.30E−06






ACCCTGTTGCAGGCAAAAGGAGTAATTG









ATTTAAAGTACTGTTAATGATGATAATG









ATTTTTTTTTTAAACTCATATATTGGGAT









TTTCACCAAAATAATGCTTTTGAAAAAA









AGAAAAAAAAAACGGATATATTGAGAA









TCAAAGTAGAAGTTTTAGGAATGCAAAA









TAAGTCATCTTGCATACAGGGAGTGGTT









AAGTAAGGTTTCATCACCCCTTTAGCACT









GCTTTTCTGAAGACTTCAGTTTTGTTAAG









GAGATTTAGTTTTACTGCTTTGACTGGTG









GGTCTCTAGAAGCAAAACTGAGTGATAA









CTCATGAGAAGTACTGATAGGACCTTTA









TCTGGATATGGTCCTATAGGTTATTC





  77
3319231
5
CYB5R2
TCTACAGCTGGAGGCGAAATCTCTCATG
0.007337714
0.028273098
4.44E−05






TTGTCCCTTAGAGGATCAAATGACTCCC









AAGTCAGAATGGGTCTCGGGGCTCACTC









TCTGGATGGAGCCCCTAGAAGCCTCTTA









CCTGTGCCCCCAGCAATCATTCCCAGGT









GATCGGCCAGTGTTTTTTTAGGCTCACTC









GTCTGGTCTGGTCTGATTCCAAGATTCCC









TGGAAACACAGAGAATGCTTATGACCTC









TGCAGTTCTTGCCTAAAGAGACTGCAAA









AGATCACTGACATTCCTTAGGACTCCCA









GGAGGCACGTCCAGCTAAGGGACTGTCT









GCACCATTTTAAGC





 731
3320141
2
ADM
AGAATCCGAGTGTTTGCCAGGCTTAAGG
0.000194662
0.007431738
2.85E−06






AGAGGAGAAACTGAGAAATGAATGCTG









AGACCCCCGGAGCAGGGGTCTGAGCCAC









AGCCGTGCTCGCCCACAAACTGATTTCT









CACGGCGTGTCACCCCACCAGGGCGCAA









GCCTCACTATTACTTGAACTTTCCAAAAC









CTAAAGAGGAAAAGTGCAATGCGTGTTG









TACATACAGAGGTAACTATCAATATTTA









AGTTTGTTGCTGTCAAGATTTTTTTTGTA









ACTTCAAATATAGAGATATTTTTGTACGT









TATATATTGTATTAAGGGCATTTTAAAA









GCAATTATATTGTCCTCCCCTATTTTAAG









ACGTGAATGTCTCAGCGAGGTGTAAAGT









TGTTC





1849
3321317
2
FAR1
CTCATAAAACTTAGTGAACACACTGTGT
0.00094743
0.00693472
6.58E−06






TATGCCAGCTCAAATCTACAGTAGCCAC









CAAAACCATGACTTAATATTTTGAGCCC









TAGAAGAAAGGGGTGTGCTGAGGACAA









GAGTGGGGAAATAGGAACACTGACCAG









TA





1231
3322467
4
OTOG
TTCAGAAGACGGGTTGTGCCAGCAGTGA
0.00877735
0.007993957
8.02E−06






GAGGTCCAGGGTACCCAGGGGATTCCTA









CCTGGACATCCCTGATGAAGTGGGGCCT









G





 343
3326990
4
LDLRAD3
GATAAATCATGTGCAAGTGTCATCGATA
0.008566991
0.009998305
9.60E−06






GACTAACAAGAG





 346
3329359
9
MDK
CAGGCCCGAGATGTGACCCACCAGTGCC
0.000111942
0.019795601
2.22E−05






TTCTGTCTGCTCGTTAGCTTTAATCAATC









ATGCCCTGCCTTGTCCCTCTCACTCCCCA









GCCCCACCCCTAAGTGCCCAAAGTGGGG









AGGGACAAGGGATTCTGGGAAGCTTGAG









CCTCCCCCAAAGCAATGTGAGTCCCAGA









GCCCGCTTTTGTTCTTCCCCACAATTCCA









TTACTAAGAAACA





1760
3329848
7
CELF1
TGGCTTGCTTGGCACCCAGGGACAGTAG
0.005225318
0.007191149
5.91E−06






CTGTTTGGCTCTCCACCCAAT





1309
3329913
2
NDUFS3
TGAAGTTAGCTGTTCCCTCAGTAGCTCTT
0.02450122
0.006617557
5.96E−06






TGTTCCC





 236
3331846
3
GLYATL1
CCTCATCTCTGGGGATCTCAACCTCTC
0.002099724
NA
NA


 279
3331847
9
GLYATL1
TGTATCACATCAATCACGGGAACCCCTT
0.003636318
0.013971736
1.16E−05


 488
3331877
6

GATTGGGCATTTATGATATGGCAGGAAC
0.040446406
0.011268756
7.13E−06






TCCTTCTCACATGGAGACCTGATGTTAA









AGGACACAGCCATGCTCTTGAGGAGCTT









ACAATCCAAGCTGGAGGCAGGGGAGGG









TATAGTCTTTAAATATGCTTAAGTGTTGT









AGGGAAGGACAGAGTTACCAATAAACA









TGTAACTAGAAAGCCAGGCTCAGTTCTT









ACCTCTGGGAATCAGAACTCTTTATGAA









ACTTGATTGATAGAATCTACTA





1593
3331913
2
FAM111B
ATATGCCAATAATTCCTGGCAAAGATTT
1.74E−05
0.009308618
5.06E−06






CATGACAAAGACACTTAAAGCAATTGCA









ACAAAAGTGAAAATTGGCAAATGAGAC









CTAATTAAATCTTCTGCACAGCAAAAGA









AACTATCAACAGGGTAAACACACAACCT









ACGGAATGGGAGAAAATATTTGCAAACT









ATGCATACAGCAAAGATCTAATATTCAG









AATCCATTAGGAACTTAAACAGATTAAC









AAGCAAAAAAAACAAGCAACCCCATTA









AAAAGTGGGCAAAGGACATGAACAAAC









ACTTTTCAAAAGAAGATATACACATGGC









CAACAAGGATATGAAAAAATACCTGATA









TCACTAATCATTAGAGAAATGCAAATCA









AAAAAATGCCATCACACTAATCAGAATG









GCTGTTATTAAAATGCCAAAAAATTACA









GATGCTGGCGAGGTTGCAGAGAAAGGG









GAATGCTTATACACTGCTAGTGGGAAAA









TAAATTAGTTCAGCCATTGTGGAAAGCA









GTTGGGTGATTTCTAAAAGAACTTAAAA









CAGCTACCATTCAAGCCAGCAATCTCAT









GACTGGGTATATGTCCAAAGGAATATAA









ATTGTTCTACCATAAAGACATGCACATA









TATGTTCACTGCAGCACTATTCACAATA









GCAAAACATGAAATCAACCTAAATGCCC









ATCAATGGTAGACTGGATAAAGAAAATG









TGACACATATACACCATAGCATACTACA









CAGCCATAAAAAAGTACAAGATCATGTG









CTTTGCAGCAACATGGATGGAACTGAAG









GTCATTATCCTAAGCGAACTAATGCAGG









AACAGAAAGCCAAGTACCACATGTTCTC









TCATAAGTGGAAGCTAAATATTGAGTAC









ACATGGACACAAAGAAGAAAACAACAG









ATATGGGGCCTACTTGAGGGTGGAGGGT









GGGAGGAGGGTGAAGACTGAAAAACTG









CCTATGGGGTACTATGCTTATTACCTGGG









TGATGAAATAATCTGAACACAAAACCCT









GGTGACATGCAGTTTACCTATATAACAA









AACTGCACATGGACTCTTAAAC





1489
3332111
3
AP000442.1
CAGGGTCTGAACTCTGTAGGTCTTCACC
0.011353565
0.006946152
3.91E−06






ACGGCTCAGGAGGATGAGGAGCAGTGA









CAGGCCAAACTACGAGAAAAGACAGAG









GGAATCAAACTCAACACTGTGTCTAAAC









CTCCTCCACCACTGTTGAAGGGATCCTG









GCATCAGATGGGGAACAGCTCTAAATCA









AAATAACCTCACTACTGTGCTTTTCTGTA









AAACCAGGTAAAGATCAGACAAGCATG









AGTTGAAAGGCTATGTCTCTCTCCAGGC









TTTATTCTGCCATAGCAGTGACCAGGCG









CAGCCAACAGAAACGGAAAGTCATGGT









GTCCAACACGCCTCTCTGTT





 168
3332705
2
CD6
GAGCCCTCTGTCTCGGGGATGAACAAGC
6.62E−06
0.024221205
2.00E−05






AGAGTCTGGGCTACCTCTTGACAGCTGG









TGGAGGGGAGTTGGGGAGCTGGACTGG









ATGACTCTGGAGGCCCCTTCCAAACCTC









AAGTGTCCGGCGCTTTGATTGCCTGAGTT









TCTGACACTTCAGGGCCCAGAGGTCCTG









CGAGGGGCAGAACTGGACCCCCATGCCA









GTGCTGCTGCAGGAGGGCCCATATACTA









GGGTCTGCTGAGCTGTTGTCACTGATCG









GTGGGCGCTGGGGGGGTAGGGTAGCAC









ACCAGCTGTCCCAGGCTTTGCTCCGGGC









GGTAACTGCACTTGGGCAGGGAATATAG









CCTTCCTGGGCACAACTAGCTGACAATG









ACAGGTTGACTGTGTACCCCCAACCAAG









GAGCTGGGGCCCAAGGCCAGTCCTGCCC









CAGAGACACTCCAAGTCCGCCAGGGGCA









CAGACCAGTTCTGCAGTGACTGTCCCTG









GACAATGGGTCTTTATTCTGAGTTTCCTA









TGGTTTACAAAGAGGGCCCCAGCCCAGC









CCCACCACAGATCCCAGAGATAGGGGCC









CAGTCTCCATGGGGGCAAGGAGCATAGA









GATGTTTTCCAGGAAGGGGCTCAGAAGC









TGCACTAGGCCCCGAGTCCCCATGTGTC









TCCTTGAATTGATGAGGATGCTCCTGGG









AGGGATGCGTGACTATGTGGTGTTGCAC









CCGGGGCTGCAAACGTCTCCGTGCAGCC









CCCAGAGAGAGGCCCATGGGCTCAGACC









AGGCTTTGTTGTCCTGCTCTGAGTATCCT









GAGATTA





 654
3332877
4
DAK;
GACGGTCAATATTAGCCCTTCTGCCAAC
4.74E−05
0.008544328
3.23E−06





RP11-
ATCTGGCAATGTGAGGCTGGGGTGGACG








286N22.3
TTGGCCTGATGTTGCCAGGAGTAGGATG









CTGATGCTGCCAGAGAGTAGGTGGGCTC









CAAACCCCAGGCTTCTCACTTGCTTACTA









AGCACAGCAGTCTGAAGCTTGGGACCTG









GCAGTGCGTCTTTGGAGAAGGCAAAAAA









GCCACAGCAGCAACACTTAGGAGCAAG









ACCCTTCCCGCTCTCCACCCTATTTCCTC









CCCTGAAGAAGAGCAACAGCTCAAGCTC









TAGCATGGCACAGAACGCTAGGTTGGGC









CAGGCAAGCAGCCATGGTGGGGCCAGGT









GAAGCAATGTGGGTCTCAGCAAGGAACC









CCTCTGAAGGTGGCAGTGGCTCCCAGGG









CTGCTGCACACTGGACACCACAACTTTG









GCATCAGCTGCATGGTGAGCTGCAGAGT









GGTCAGAGGGGCTGGGGCCCTGCCAAGA









GAGCAAGGCCAGACCTGCCCAGCGGGA









GGCAGGAAGGCCCTGATCCAGCAAGGA









GAAGTAGAGGAAGTCCACAGCCACCTCT









GTTACTCATCGCTACTGGGA





2009
3333236
6

TGTTTGTGACTGATTACTGGCTGTGTCTT
0.000457168
0.009182253
5.87E−06






GGGTGGGCAGAAACTCGAACTTGCTATG









TAATTTGTGTCTA





 632
3333240
7
FADS1
CATGGGTGGTGCATCTGACCCTATCCCA
9.43E−05
0.014572418
1.23E−05






ACATGCCTTAGGACGCTCATCTCCTTGAC









TGTCTGCCATCCCCTCCCAAAACTAAGT









GGAGGCTCTGTCTTTTCCTCCTAGTTTGA









GGTTCTCTTCTCCCAGTGTCTAAAATGAT









CAATATGCCTAGAGTAGATGCTGCTGAA









GAGGCAAAGTAGTAATCCTGCCACCTGG









AAGCAAAGGCTGTGGGTTGGAGGGGGA









AGCGGGTGTGAGGGCTGATGATAAGCCC









TAGGAGGCTCCTGAGTCATATTCC





1972
3333487
2
ASRGL1
GGACCCTCTGGGAATCCATAGCTTCCTA
0.001265835
0.006689375
4.50E−06






ATCTGGAGATGGGAGGTCATAAGGGAG









ACGCTGTGGGGTTCCTTGAAGTTTCTTGG









GTTCACAGAGGAGCCCCCTCACTTGGTG









TTCTCCCGTGAGCCAGCCTCCACCTGCCA









AAGACACTCTGGTCCTCGTATAGTGAGT









AATGGGGCTCAGGGCCTCTCCAACAACA









GAGAGGAGCTGATGCTGTAGGGCTGACC









CCGTGACTTCCTGAGTCCTCACCCTGTCC









AGTGCTTTGAGATTCTTCCCACCTCCCCA









TCCTCACCAGCCGGATCGGGCGCTGTGC









AGTGTGGTCAGCATGGTGAAGAAAGTCA









TTTCCTCGGTGGGCAGTATTCCTCTTTAT









CTCTCATTACACTGGAAATGTTATTTCTG









CTGTATCATCCGTGCTCAACGTTTTAGTC









TGTCAGGCTCA





 187
3333728
2
SLC3A2
ACATGTTGACCGGTCTGGTTTTGAACTCG
3.46E−05
0.02137965
1.84E−05






CCTGGCCTGCCTTCCCATATCTTAAGGCC









CTTCCTTGCTCACATCTGTTTCAATGGAA









TGA





1679
3334217
5
MACROD1
GAGCCAGGAACCTCATAAGGACCTAGAA
0.000438052
0.007910565
3.13E−06






ATGCCCACCACCATCCTAATCTGTAAAA









TGGATCAGCCCCTTCAGGCCTAGAGGGG









TGGGGTAGGGGGCTGGGCTAGGCAGGA









AGAGGGGACTTAGAGGGTGTCACTGATT









CGTGCAGCCCCTCCCACCATCTGACCAA









CTCTCAAGGGCATGGAGTCACTTATTCA









TTCAACAAACATCAGGTCAGACATGG





1889
3334931
2
MRPL49
GGGGTCAGGCCTTGCTTGCATAAAGGAG
9.46E−05
0.00816066
3.93E−06






AAAACAACTCTATGTACATGCTGGGG





1744
3335187
3
MALAT1
ATTCTTACATGCAGGAACACTCAGCAGA
2.12E−05
0.006711132
4.85E−06






CACACGTATGCGAAGGGCCAGAGAAGC









CAGACCCAGTAAGAAAAAATAGCCTATT









TACTTTAAATAAACCAAACATTCCATTTT









AAATGTGGGGATTGGGAACCACTAGTTC









TTTCAGATGGTATTCTTCAGACTATAGAA









GGAGCTTCCAGTTGAATTCACCAGTGGA





2032
3335239
3
NEAT1
CCGATCTGCCATATCCTGTGTAATGACA
0.000296032
0.007557915
4.73E−06






AGTGAGTTGCATTCTCACCGTCACTCCTG









GGGTCTCTCCGCTTCCCCTGAGCTGGCTC









AGCAGTCTGCTCCATGTGTTTTGATGCAG









GGTGACCCATTGGTATTCCCGACACTA





1640
3335344
4
SSSCA1;
CAAATGTTTTGCTGACGTTACTTCATTTC
4.05E−05
0.007034036
6.22E−06





FAM89B
ATCCGGCTAAATGGATAACCCCATTTTTT









GGGTGAGGGTCATGACTAAAGTTGCATA









GCTTGCAGGTGG





 283
3335444
9
PCNXL3
TGGGACTTGCTGTACAAGCTGCGTTTCGT
0.009647164
0.012006177
6.85E−06






GCTGACCTACATCGCGCCCTGGCAGATC









ACCTGGGGCTCGGCTTTCCACGCTTTTGC









C





2035
3335570
1

CTGTCTGCTCCCCTATTGGCGGGTGGTGC
7.50E−05
0.006753736
2.46E−06






TGGCTCTGTCCCTGGCAAGGCCAGGCAT









GGAGCTGAGCTCAGACTGTCACCGGACT









CACCCGGGACAGCAACATCCCAGTCGAG









GGCCCAG





2078
3335635
6

AGGTCCCTTACTGGTCCTGCTTCCATGAG
5.37E−05
0.007183286
6.76E−06






TAGCCGTGACCAGGGGAAAAGGGAGAG









GAACCAGCCGGCACAGGGAGGGGTCAT









CTCCACAACATTCCATTTATACACAGAA









CTAAACAGACAAGCACAGAGTCACTATT









GCGGTTAGAAGTTGGCAGCATGGGAAGG









GGGAGGACCAGGTGGGGAATGGGGATG









TTGTTAAAAAAAATACAGGCTCCCCCAC









AACTGGGGTGCCTGGGGGGAACTTGGTC









TGCTTCAGCCCAAGAGGAATCAAAAGAT









CAAAAGCAGTTTGGGAAGGCCAGAACC









GTCAAGGGATGGAGGGAGAAGGAAAAT









CCAGGGGGTGGGGGGTCTGTTTGGCAAC









TGGGGTGAAGGGATTGCCCTCCCCCTGC









TGGGATCCCCCCAGCCCCTCCGGTCTGG









CAGGAAGGGGGCAGCCTGCAACCCCCA









AGGGCAGGTGTGGGGCTGCCAGATGCTC









CAGGCAGGGGGCCAGAAGGGGCTCACA









AAGGCTTGC





1624
3335777
9
SART1
CGCGTGAAGCGGGAGAAGCGCGATGAC
0.000133772
0.007144549
4.34E−06






GGCTACGAGGCC





1764
3336464
5
RBM4B
AGCTGCATGGTGGTCTCAAGAGATCTCA
0.00271316
0.009071279
8.82E−06






AGTCTTGCTGACATGCATATAGGGTACA









ACTTATTACAGGTTCATAACATTTGCTTC









TCAATTCACATAAAAGAGCAAATTGCTG









TGGCTTTGCTTTTTAATTTTTTTTTTTTTT









TTTAAGAGAGAGAGGAGCCACTCTTGCC









CAGGCTGGAGTGCAGTGGCTAACTGCAG









TCTCTCACTCCTGGGCTCAAGGGATCCTC









CAGCCTCAGCTTCCTGAATAGTTGGGAC









TACAGGCACAAGCCACTGTACACAGCTG









CTTTGTTATCTTCTACATATATACCAAAG









GGATAAGTTAGGAACACCAGAAACTCAG









TAGTAACTCACTTTAACCTTGCTTCTGGG









GCTCCAATTCAAGTGATGCTCAATTTCA









AGGTACAAGGAAAACCATGAGAATATA









AAGTCATAATGCCATTTCCACTCAGATG









AAAAGATTTATCTATCTTTAGATACTCAA









AATTATTCTTGGCATTTTAGCACTTTTGG









TACACATTTCCTGATGTAGGAAATAGTA









AAATTTCAGAGCCTATGGCATTGGCTTTC









ACCACCTATGCAATTTTCTACACATCTGA









AAATTACCAGTTTATCTAACTCCTTAAAT









GTTCCTCTCTTCAACAACAAAAAACACA









AACAAAAATTGCTGGAAGAAACAGGAA









GCATCCAGGTCCAAATGACAGCATAACA









GACTATGAAGAAACAGGGCTTAAGTGCC









CATCTAGAACAAGATGGTCTAGATTACA









ATAAGGACCCCATGGGACAGAACATCAA









AACATTCAACTTTCAAGTAAATGTCTTG









GAAGTAAACATTTAAAATTTATAGGACT









TCCTCTGGCATGTAGGTA





 669
3336491
4
C11orf80
TTCTGGGTTCGAAGCAGCTGGACGTGGA
0.000122396
0.008642129
3.62E−06






AGGGCGAGGTTCAGAGGCCACACCTGTG









CTCGGGGAGCTGCTCTGGAAGACGGCAC









TGAGCGCCTGGCGCCGGCCACGCCCCGT









GTGCTCATTTCATTACCCACTTTCACGGC









CGGTGCCCAATGGGACGTTGAGCTGCTG









TTT





 183
3336510
4
C11orf80
GATTTCATCATGGATGCCTCAATTGAGG
2.67E−05
0.021906893
2.50E−05






AGAAA





 248
3336517
4
C11orf80
TGATTTCTGATAATTTGTGACAACCTGGA
0.000611594
0.017681213
2.55E−05






GCTGTGATATAGGGCTCAATATATTTAA









GATTTAGAATTTAAACACAGGCAAGCAT









TAAGTATGTTTA





 473
3336722
4
KDM2A
CCTTGGCAAACTGACAAGGATGTCATAT
6.62E−06
0.015914087
1.54E−05






ATGTATTGTAGTGGTCAAAATTAATGTTT









TGTTTACTTTTTTTTTTGGAGACGGAGTC









TTGCTGTGTCACCCAGGGTGGAGTGCAG









TGGTGCGATCTCGGCTCACTGCAACCTC









CGTCTCCTAGGTTGAAGCAATTCTCCTAC









CTCAGCCTCCTGAGTAGCTGGGATTACA









GGCACGTGCCACCACACCCGGCTAATTT









TTTTTTTTTTTATACTTTTAGTAGAGACG









GGGTTTCGCCATGTTGGCCAGGCTGGTC









TCGAACTCCTGACCTGAGGTGATCTGCC









CACCTTGGCCTCCCAAAGTGCTGGGATT









ACAGGTATGAGCCACCACACCTGGCCCT









TTTTTTTTTTTTTTTAACTCTTCAGAGACA









GGGTGATGATAATTTCTGTTTAGCATTTA









TAAGATGACTCACTATTAGTAGTCCTATC









CCCATATTATTTAAGCTCTAAATTTCCTG









TGGAAATTTAGACTTGGAATATAGACTT









GGAAAACCCCTCAAGCGTTGCTTCTCAA









TGTGCTC





1202
3336851
2
ADRBK1
GCAGGTTGGGCCATACTGGCCTCGCCTG
0.005203274
0.007814406
2.76E−06






GCCTGAGGTCTCGCTGATGCTG





1009
3337064
9
CARNS1
TGCTCGATGGAGTCTTCAACGTGGAGCT
0.005348101
0.00726324
2.93E−06






CAAGCTGACCGGGGCTGGGCCTCGGCTT









ATCGAGATCAACCCCCGCATGGGTGGCT









TCTACCTGCGTGATTGGATCCTGGAGCTC









TATGGTGTTGACCTGCTGCTGGCTGCTGT









TATGGTGGCCTGTGGCTTGCGTCCTGCCC









TGCCCACCCGCCCACGTGCTCGTGGCCA









TCTGGTGGGCGTCATGTGCCTTGTGTCCC









AGCACCTGCAGGCCCTGAGTTCCACCGC









CAGCCGTGAGACCCTGCAGGCCCTGCAC









GACCGTGGACTGCTACGCCTCAATCTGC









TGGA





1226
3338508
9
PPFIA1
CTGGTGTTTCCGAGACGGATAACTCATC
0.043299568
0.006560039
7.24E−06






TCAGGATGCCTTGGGACTTAGCAAATTG









GGGGGACAGGCT





 873
3339046
6

GAGGCAATTTTACACCCATCCGACGCCT
0.003098917
0.007737485
4.79E−06






CACATTTGAAAACCCAATGGCGGTACTG









ACAGGCCTGGGGCAGCGGACGCTCTCAG









GCATTGCTGAGGAGAAGGGAAAGCAGC









TTGAGCGTTTGGAAAGCTGTCTGTTTCTT









AGAAAGTTAAGCATACACTACTCTATGG









TCTAGCAAGGCCAGTCCTCAATATTTAA









CCAAAAAATTAAAACCAAAAACATGAAT









ACGGAAGGACTGGAAGGCATGATTATGT









GTTATTTATCATCGCCCCAAACTGCGAA









CAATTCAAATATCTATGAACAGGAGAAT









GGAGGAACGCCGTGGAGAGTATTTTTAC









A





 815
3339248
9
RNF121
CAAACCAGAAGATGCCATGGACTTTGGC
0.000337386
0.006535423
3.33E−06






ATCTCCCTTCTCTTCTATGGCCTCTACTA









TGGAGTTCTGGAACGGGACTTTGCAGAA









ATGTGTGCAGACTACATGGCATCTACCA









TA





1599
3339697
5
FCHSD2
AAGGCAATGGAGAGTTTGGCTCCTGCAA
0.000228432
0.006761278
4.54E−06






AGTAAAGGAAACTAAAAGGGCTCACAG









TGGGACAGGGATCAGGAGCCAGGTTCAT









AGCTTGAAACCAGGCACTATAGTGAGAT









TCCCGTGTTCATGAAGGA





 794
3339872
2
ARHGEF17
CACACATGTGCCTGCGTGGGCTCTGCCTT
0.034740252
0.006686228
3.12E−06






GTCTTCGCGGAAGCATTCCTGATGGAAC









ACCCACTGGCCAGCCAGGCCATGGCTTC









TCCCGACCCTCT





  92
3340087
4
PAAF1
GGAGTCATTTATGCAGCTCCATCTTCTCT
2.10E−06
0.030966825
3.44E−05






GCCCTTGTAGTTCCTTTACTCCATCCTCC









ATCTTAGGGAGTTTTT





1268
3340183
9
PPME1
GTAGAGTTCAGTGTAGGATTGTAGCTTT
0.002514771
0.007854617
3.58E−06






GGATCTGCGAAGTCATG





 111
3340387
4
SPCS2
TCAGCTTCTGAGTTTGCCATCAGTTTTTA
6.42E−05
0.027924152
2.54E−05






TTATCTCCTTATTTTAGTTTAGAACTCCA









CATATACAAATGGGTATTTATCCTTTTTC









CTCCTGTATTCTTCTTCTTGGAAAATGAC









ATGATGGCTCCAACAAGTCATCCAAGCC









CTAATTCTAGTAGGTGGTCATCTCTGTCT









CTTCTCTTTCATGTTCCTTATAACTAGTC









TGTTACTAAGTCCTGCCAATTCTACCTCA









GAATACTCCCTTTCAGTCCCCCTACTGCT









GCTCTGTTGAGCATTGAGGCTCTGCACTT









ACATCAGGCCCCATCTGCATCTCTATGTC









CAGTGTTACTC





 758
3340768
4
UVRAG
TCAAAGAAGACGACATTCCCAGATAGAA
0.006855816
0.012411782
9.19E−06






AAGGAAGCAAACGTTTTTTGAGAATGGA









GACAAAAACTATTTTGCACATCATAATT









TTTCCATTAGCAAGCACAATGCCAGAA





1787
3340811
4
UVRAG
CATTTATTTATGATCAACCAGAGAGACT
7.63E−05
0.008875995
5.36E−06






AAACAGTGGACTCATGGGTTTGGACTCT









ATTGCAATTCAA





1574
3341181
9
CAPN5
TGCCGGTACTTCACGGACATCATCAAGT
0.000496534
0.009800362
6.74E−06






GCCGCGTGATCAACACATCCCACCTGAG









CATCCACAAGACGTGGGA





1294
3341189
2
CAPN5
GTCACCACTGCTAAGGGACTCTATCCAT
0.009436864
0.015307962
1.31E−05






TGAGCACATTTTCCTAAGGCCCTGCTGTC









TGCCGAGGAGCGCCAAGAAGATGTCACT









TGTTTACACACGAACTGCCACATCCCCA









AGCTCCGTTCTTGCCCCTCGTGTCCTAGG









CCCAACCCAGCCTCCCAGACCTCACTTTC









CCCATCAGCAATACCTGGTGTTCTCCCAC









CTTGAAAGGACTCTTGGCTCCTGCCGGG









TTCCTGCTCAGGCTGGAATTGGGAAAAT









ATGCAGGTGACATTTGTTCATTCTCTAAT









CCCATCCTCTCACCCATCCATTTCCTCAC









TCAGTGGAGATTTGCCAAATGAATAAAC









GACACCTTTGAGGCCCCAGGTGAAGCGG









GGCCCTACTCCGGCCTCTGCCTTGGGCCT









CGCCTCTGTCCTCAGGTCCTCTCAGAGGC









AGATACCTAGGGGAGCTGCTGCTGCCTG









CTCATTCTAGCTTCCGA





1857
3341212
4
CAPN5
CCCACTTGGGTCCTTGGCGTTGGTGGCA
2.80E−05
0.006838246
3.07E−06






GCA





 617
3345158
4
PIWIL4
TGCAGCTCACACAGAAGGGACTACTGCA
0.006687861
0.010150886
6.44E−06






AAGGACCCAGGTCTACCCTGGCCATTGA









CATTAGAGGGCCAGGGATCCTCCCTCAC









CCCACCTTCTGCACGCTTCTGTAGGG





2013
3345244
9
AMOTL1
CCCAACCGAGAACATGAACTTGCTGGCC
0.001689593
0.006558789
5.28E−06






ATTCAGCACCAGGCCACAGGGAGTGCAG









GACCAGCCCATCCTACAAACAACTTTTC









TTCCACGGAAAACCTCACTCAAGAAGAC









CCACAAATGGTCTACCAGTCAGCACGCC









AAG





1534
3345406
3
SRSF8
TGGGTCCTCCACTAGCTCTCGCTCTGCAT
0.010080553
0.006911306
3.45E−06






CAACCTCCAAATCGAGCTCTGCGCGACG









ATCCAAGTCCTCCTCGGTCTCCAGGTCTC









GCTCGCGGTCCAGGTCTTCA





  82
3345480
4
RP11-
GATCCATTTAGGTCAGCTTTAGTCAGAA
1.81E−08
0.037576248
4.27E−05





712B9.2
CTGTAAAATCAGCAAACATAAGAAAAAC









AAAACCTAGTAATACATACAAAAGCTTT









CATGGGTTCTAGAACCTTCTTAACTGCTG









ATTCATGTGGAGGGCATTAAGAGTTGAA









AAGGCTTATATGGTTAACTACCTTAGAC









TATATCTACAGCAGGGTCTGGTTTGCCA









GAACAAGTTTAAAGTGGCTGTTTATTAA









GTTTGCTATTTTCAGAATTGAAACTATAA









GACCGCCATTTGACACTGAAACTTGCGT









GAATCCTAAATTGCATCAATTATCTATTT









GATAAAAGCTTATTCTAATTTAAAACCTT









ATAGAGTAAGAGACTGATATATATAGCA









GTCTTAAAGATCACGTCATCTGCCTTACA









TTAGTCCAGTCACGTGCTTCGTA





1964
3345483
4
RP11-
TCAGTCTTGTGTGGGTACAGGTTTATATG
1.05E−05
0.010257851
4.80E−06





712B9.2
TGCCAACTAAATGAACTGTAAGCAGCAC









TGTGAGCACTGATTATTTAAGGTGACTG









AGGATTACTGTCAGTGATAGGATTGTGT









TATAATTCCACTTATATACATCTGATATG









GAAAACTGAAACTTCCATTTTAGAAGAG









AAAGAAAATAGCTGAATTTGGCATTTCA









GTAGCATGCTATAGAATTCATCATGATT









AATTTCACATTAAATTATGGGCAATAGC









TGTATCACATTTCA





 959
3345752
5
MAML2
GCTGACTCATGTACCTCACCATGCAGAT
0.001302035
0.007036077
1.13E−06






GAGGGTGTGTTATAACCCACAGTGTGTC









TGTGTCCCTGGATGAACTGAGCACTTTAT









A





1290
3346491
4
YAP1
CTGCCTACTGTGTCGTCTTTTCTTATGTT
0.000368854
0.008650836
4.28E−06






GAAGTTGACAGACCTGCTCTATTCTCAT









ACTAATAGACTATTTTTAGATTTTTTTAA









AGTAATCACAATAAATTCAGTATATCTT









AAGTCTTTTGGCTTCCTGTGAACTTCTTC









CCTTGACAGTTTATCTTAGCACTGAAAC









ATCAAATATATTGTATCTGCTTTATCTAA









TACTCAGAAACAAAGAACCTACGTGACC









AATATCAAATTTTATTTTTTAGTTCTGAC









TCCTAAAGTCTTGCTGTCCTATCCTCAAT









GCTGTTAAAAACTTCTGAGGTTCCAGTTT









TGTTATGTGGTGACTCCATTGGCTCCTGT









CTTCGTCAGTCTGCTTCTTCTTGGGTA





 401
3348854
2
DLAT
TTTGCAACCAGTACAGCCTGCGCGGGGC
0.025452776
0.011991906
1.01E−05






GCGGCCCAGTCCATCCCCCTTCGGATGC









GCAGAAGCAGAGGTCACCACGCCGGAC









CCCTCGATTCCCTCGCGGGCGATTCCTGG









CTCCTTCACCACCCCAGCACTCCAAGAC









CCCCGCCCTTTGGCCTGAGGCTCCCACTG









CCCTAGCCAGTTCCCGGGCTCACTTCCA









GCTTTTCCAGAAAGCTTGGCCACGCCC





 349
3349774
4
ZBTB16
CCTTTTGGGGATCTGGCATTGAAGCATCT
0.017855277
0.010864318
6.21E−06






GTTGATCCACTGTCTCTTCGCCACTCCTT









GTCGTAACACGAGAAGTGATTCCTA





1915
3350647
6

CAACCTTAGAGGATAGAGCATTATGTGG
0.00028925
0.007811622
4.02E−06






AAGGAGGGTGAGGACTTGATATGAAAA









AAGTGATGACATACCCCTGGTTCATTTCT









GGGTTTCCTCCTAGGCCAATTCAAAACTT









CCAAAATAAGGTCAAGTAACACAATAGG









CTCACACTTGCATCACAAGCTG





1210
3350849
6

ATGGGCACACTCTTGGCATCAACTCTCTT
0.038283273
0.007497037
3.10E−06






GGTCCAATGGCAACCCTATATATTGCAC









ACGGGACACTTTCTGTGGGGACTCTGAG









ATGCAGAGGGACCAGATAACAAGCAGG









AAAGGTAGGGCCTGGTGTGAGGGCACG









AGACTCACCGACATCCCTGATGACAAGC









CTGTAGGTCCCTCGGGCTCTCTCCCCCCA









GCATCGCACAGTGGAGAAGGTCCAGTCA









TTGAAGCCGTTGGGATCCCTGAGGAAAG









AACACAGCAGAAACAGGTGGAAGGCGT









GGGCCAGAGAGCTGACCTTCCCCCAGCA









ACACTTTCTTACTGTAGTAGCCGTGGAA









ACAACCTGGGAGGGTGCCACGAGGGCTT









CTCAGGTGCCCCTTTCCCCTGGGGTCTCA









TGGAAGGAGGAAATTGTGTTAACGTGGT









GTGGTGGAAAAAGCAAGCATGGAGCGC









GCACAGGCTTGGAGTCCCACGGATCTAG









GTTTATTCTTGTTCTCTTGGGCACTTACT









AGCTCCATGACTTGTTTTCTTTTTCTTTCT









TTTTTTTTTTGGAGACAGGGTCTCACTCT









GTTATCCAAGCTGGAGTGCAGTGGCATG









ATCACAGCTCACTGCAGCCTTGACTTCCT









GGGTTCAAGTGATCCTCCCACCTCAGTCT









CCTGAGTAGCTGGGACTACAGGCATGTA









CCACCATGCTCAGCTAATCTTTAAATTTT









TTGTAGAGACAGGGTCTCACTTTGTTGCC









CAGGCTGGTCTTGAACTCCTGAGTTCAA









GTGATTCTCCTGCCTTGACCTCCCAAAGT









GCTGGGATTACAGGTGTGAGCCACCACA









CCCAGCCAGTTTCCTCATTTGTAAAAGG









AGGTTACAAAGTCTAATCTAGGGGGTTC









TTAGAAGGATTAGAGAACATGTATGTGA









GGTGCAGGGCCTAGCGCTTGAAGAAGGT









ATGTGACGAAAGGCTTCCAGCCGCCAGG









GATAGCCAGTGCCACAGTAGTTTAGGAC









AGTGCCAGGATCCACTTCTTCCATTTCTT









TTCCCTGGAAAGGCCCTTGCTGAAAAGG









TTGCTCAGGCCTCGGGCGGGTGTACATA









CGAGTCCATGCTGCGGGGGGCGCCGATG









AGGGACATCATGCCACTGGGGCAGAACA









GCTTCAGCTCCAAGCTGCCGCGCCGTGG









GTGAGTGATGGAGACTGTCACTGCCACA









TGCTCCAGGGTCTTCAGCCCTGACATCTC









CAGGTCCATCCTGCTGACTGTAGAAAGT









CAGGCTGGGCAGCTGGGAAACCAGCCCA









CAAACACGCCTTCACTTCACCCCCACGT









ACACAAAGACACACGCTCACTGAAGCCA









CATACAAACATCTACGGCAACCCTAACT









GGGACCTCGCCTATACTAGTAAATGGAA









TGGAGCTGCTGCTCTCAAGTTTACAACG









TAGCTTCGAGTGCAGTTGGGAAGACGAC









ACATACCCAAGACACAATATAAGAATCC









AGCAGAGCAACTTCAATCATTCATTCAT









CCAAAACATTATTTACTGGGTACCTCCTC









CATTTCAGGCACTGTACTAGATGCTGGG









AATATAAAGATAAGATGGGCGTGGTCCC









TGCCTCCTACCTGCAAGTGGAAAATGAT









ATGGTATGGGAAATATACATAATTGATA









AGGGAAGAGAAATAAGTCAGATGGGTTT









AGGCACACAGCAGTGAGACACACTGAA









GGAAATGAATACAGATCGGTAGACAGG









GTTGGTAGAGGGCATTCTAGGCAGTGGA









AAAGGCATGAACAAAGACGAAATGCAC









ACATCTCACTGAAGATGATGCACAGTTA









ATTTTTAAAAAATGCTGGTGGATAAATT









TCAAGCAAATTATGTGAGTGAAAAAAGC









AATCTCAAAAGAAGCATATAGCCAGGTG









TGGTGGTGTGCACCTGTGGTCCCACTAC









CGGGGAGGGTGAGGTGGGAGGATCGCTT









GAGCCTGGGAGGTGGAGATTGCAGTGAG









CCATGCTCATGCTACCACACTCCAGCCT









GGGCAACAGAACAAGACCCTGTCTCAAA









GAAAAAAAAAAAAAGAAAAAGGATGCG









TAGCACACAATTCCATTTAGGTGATGTT









AATTGAAGTACCTGCAGTGATACATAAC









AGATAAATGGGTGCCAGGGGCCAGGGA









CAGGGGAGGGGATGGGTGTGGCCAGAA









AGGGGTAACACAAAGGAGTCTTGTGATA









ATGGAATTGTTCTGGATCTTGGTTGTGGT









GGTAGTTATGCAAGGCTACATGTGATAC









AATTGCATACAGCTACACACGCGCATAC









ACAAATATTGACAGCATGTGTATCTGGT









GAACTCCAAATAAGCTCTATGGATTGTA









CCAATGTCAATTTCTTGGTTTTGATATTA









TACTTTAATTGTGTGAAACATTAAGATTG









GGAGAAGGGTGCACGGGACTTCTCTTGT









ACATTTC





1024
3351637
4
UBE4A
CACGAGAGTCAGCTGTTGGAGAATTTTG
0.0001886
0.013100313
9.63E−06






AAATCATTGACAAGCTTGTGTGTTCATTA









AGATTCTTCTCTTTTTAGGGTTTCTCCCC









TTCTCTTCTTTCTTTTCCTTCCTTGTCCCC









TTTCCCCAGAAAACATTTTTTAAAAACC









AGCAGTTAGTGCAACTAATGTTCAGTCA









GCACACAGTG





1511
3351903
3
C2CD2L
GCAGGGGCGGTTCCATTGGCTCAGCTTC
0.000138152
0.006533071
1.21E−06






TTCCATTTGTTTCCTCTCTGGGATGGAAT









TCAGGAAGGGAGAGTCCTCGAATTAGGA









GTCCTTGGGTAAATGGGGCAAGTCAGCC









CAGTCACTTT





  83
3352135
7
MFRP;
GGGGACTTACACTTGCCAGCACAGCACA
1.97E−07
0.031497369
3.10E−05





AP003396.1;
CTCCTCTGGTCTTGGGCAGAAATCCAGC








C1QTNF5
CACTGCCCCATGCTGCCAGACCTGATCG









CAGACAGCCACTGTTCCCATTCCTTG





 992
3352315
1

GCCTCGGGCTGCAGACTCTGCTGGTGGA
0.000142286
0.008881946
2.42E−06






TTCAGCGATGAGGCCCTCAGA





1718
3354757
6

AACATCACCGTGAGTCTGAAAGGACCAC
0.00050277
0.011369051
1.04E−05






AGGTTTTTCTGCAGCTATTTTCTAGCATT









TGCCAGTCCCTGTGCCTGGACTGATTGG









AACACTTTGTTTTTCTCCCTGTGCCATTT









ACCCTTCCACCTTTCCATCCTGCCTTCTA









CCACCCTTGGATGAATGGATTTTGTAATT









CTAGCTGTTGTATTTTGTGAATTTGTTAA









TTTTGTTGTTTTTCTGTGAAACACATACA









TTGGATATGGGAGGTAAAGGAGTGTCCC









AGTTGCTCCTGGTCACTCCCTTTATAGCC









ATTACTGTCTTGTTTCTTGTAACTCAGGT









TAGGTTTTGGTCTCTCTTGC





 482
3355746
4
FLI1
CATGCTCCTCCTATCTGGGCTGCAATCAG
0.018924879
0.010554527
5.80E−06






CAGTGAGGAGAGGAGCGACAGAGCA









CATGATTATGACCGGGGCTTGCTGCTGA









GCTGCAGGGGTTCAGAGTACTGCTACCT









GTGCAATGGCAGCTTCCCCAGAGCGCCC









AGGGGCTCCGAGGCCACAGACAGAAAA









TATCTTTGCTACCACGTGCTGAAAAATA





 554
3355776
9
FLI1
AGAAGAGGAGCTTGGGGCAATAACATG
0.010763744
0.009348037
6.32E−06






AATTCTG





1467
3355783
9
FLI1
CGGGCCCTCCGTTATTACTATGATAAAA
0.000731459
0.00654568
4.54E−06






ACATTATGACCAAAGTGCACGGCAAAAG









ATATGCTTACAAATTTGACTTCCACGGC









ATTGCCCAGGCTCTGCAGCCACATCCGA









CCGAGTCGTCCATGTACAAGTA





 971
3357277
4
RP11-
CATGAAACTTATATGTAGACGTTCCTAA
0.000111639
0.013337881
8.58E−06





700F16.3
TTAGTGGCGTGTCTGATACCAAACTAGG









TATCTTTTAAATTTTTATTATTCTACTATC









AGTTATATTCATTTTTCCCCTCATAAAAT









ATTCCTTAAAGTAAAGAATAAAATTTCA









CAATTCATTTCAGACTCTTCTTATCCTCC









TCCCCTCCAAAATTTCTACATAACTGCAT









GGGGTCAGTTACAGATACATCCAGA





 516
3357313
3
ACAD8
CTAGAAGATAGAATTGTGCTGGGCTCCC
2.85E−06
0.014817037
1.29E−05






TCGACCTCACTGACTTTCTCACCTTCTCT









CTGCTGCCTTTTGATCCCTCCTC





1814
3357388
2
GLB1L3
CCACTCCCGGCCGTGAACATATTTTTTGG
0.00180613
0.008448428
5.79E−06






GTTGCTGGAGTTCATCTATAAGTCATTTT









TGAGGAATAAGATTTATGTTAAGACTAT









CAAACACAGTGTTGCCTACAATAGCAAA









AATGTGAAAATAACAACAACAACAAAA









CAGCAGAGGAATTGTTATGTATTTTGTA









GTCTATCTATATGATGCCTATTTTTAGGC









TTTAAAAAGTCTTCAAAATCTTTAATGAC









TGATTTATCTAGTTAAATGCTTAATCCTT









AGCAGGCTCTTATTCTTTAATTAAACGTG









CCTTTGAGTAGATGTG





1086
3359084
3
H19
AACCACTGCACTACCTGACTCAGGAATC
2.99E−05
0.013078059
7.77E−06






GGCTCTGGAAG





 528
3359501
3
NAP1L4
GATATTTCCCGCCAGTCCATCGTTGGTTT
9.46E−05
0.014646313
1.11E−05






TTTTAACCTCACGCTAGTCTTTTTTGCGG









TGGAGAAGTTTTTCTTGTTCATGGCCCTA









TCTGTTGAGCTTTCCCAAAATAGCTTCTA









GTAAGTGTTGTGTACTCCAAGCAATCTG









TC





 842
3360089
3
OR55B1P
TGACAGTGCCCTTGGTAGTACTAACTGC
0.006167603
0.010590966
7.17E−06






AAAAGCCCGATTCTGCCGGACAGCAGTG









ATTCGACACTTCACCTGTGAGTGCATTGC









ACTGCTGAGCATAGCTTGTGGAGACCTG









ACCTTCAACAACTGGCTGGGGCTGGCTA









TGTGTTTGGTCACTGTAATCTCTGATATG









GCCCTGCTGGGGACCTCCTACACCCACA









TCATCTATGCTGCCTTCCGGATCTCTTCT









TGG





1780
3360163
1

CTGGTGGCTCCCAACATGATAGGACACA
0.002951948
0.006890013
7.80E−06






GAAACTCATGCTCAATGGTACCCGTACT









TCGATAAGGAGCAACAGCAAAGTCAGAT









GGTGGAAGATCTGTCAGGTGTTTACTTA









TGTTGTAGATATGGTTACAAAGCTCAGG









GAGCCCCTGTCTAATGGGAAATATGGCT









ACCAAACTGATGATGGCCTCCCAGGGAA









TCCAATTCTGC





 430
3360381
9
OR52A1
CTACATGCCCTCTGTGTTGACACTAGTAG
0.000412342
0.009965671
3.84E−06






GGATCCCAGGCCTAGAATCTGTGCAGTG









CTGGATTGGGATTCCATTCTGTGCCATTT









ATCTCATTGCTATGATTGGAAATTCCTTG









CTTCTGAGCATCATCAAATCTGAGCGCA









GTCTCCATGAGCCCTTGTACATTTTCTTA









GGCATGCTAGGAGCCACAGACATTGCAC









TTGCTA





 611
3360900
1

CCTGTTAGGCCAGAAGGAGACTGCACCC
0.000148906
0.009149581
4.11E−06






TTGGACTGGCAAGTCAGTGCAAGGCCCT









GCTAATAGGACTATTGAAGACTCTCACT









ATGGGTTTTCTGTGGGGTGTTTGTTTCTT









GGGGTGAAAGCTTCCCTCTCCCCAGGCA









GGCCCAGCAAAATCTGTAGGA





 230
3361622
5
TUB
AGTGAGTCGGCCTCTTGAACTGCTCAGG
0.000457168
0.017258817
1.23E−05






AAACATCCCCAGATGGAGAGAGAGAAA









CAGGCAGTGGGTGAGACCAGAGCTCCCA









CCTGAACACAGTCCCCAGCACAGCATTT









TTGACTGCACCCCGAGTCCCACCAGGGC









CCCTGTACCACTTCTACAGCCCACAGGA









TCAGGCCCACTCATCTCTACTAGGCAAA









GATTCCAGGGCAGGCCCAGCTGGAAGGA









GGCGGCACCCCCAGCCCAGTGTAATCAA









GTCAACAGCCAGACCAAAACCTGTGATC









AGCCAACAAAGTGCGCACTCAAAAGTTC









TGGGCCACCAAACCATACTGAGCCTGAA









CAGGGGCAGGGAGAATGTCTGAGAGGA









TATGGCCATTGAAGACGGGGAAGAAAG









AACAAAGGCTGCATCTTCTGGAAGAGAC









CACAACCAGGGCAAGCACTCCAGGGAG









CCTACGAGGGGGCTCTGCGGGGATGAGC









CCATGGGAGGCTGGGGTGTAGGAGTGCT









CAGAACAACAACTCTGGGACACAAGAA









GCTACAGGCACCAACAGTGAGGTCTCAG









AAGGGTCCCAGCTGGTGGCCTCCAAATT









CTCCATACTGCAGAACCCCAATCTGCTC









AAAATCCTTGAATGGTTTCTGATTGCTCT









TAAGCTGAAGACCAACATTCTCTCCCTTC









CCCTAGGTCTAAAATAAACACATACTCC









CCACCTCTGGGGCACCAAGAGTTGCAGC









CACACCAGGCTGGTCTGTTGCCTCACAT









GCACTGCACTCCCTCTTGCCACAGGGCC









CTTGCTCCTGCTGCCTGCACTGCCCTCCC









CCTCGCCCCCCTCAGTGATCAACTCCCAC









TCATCCTGCAGATTTCAGCTTGGATGTCA









CCTCCCGAGGGACGCTGTGCCTGCCTCC









CTCGTCAGAGCAGGTGTTGTCATCTACTC









ACAGAATTTGGCTTCCTTCCACAAAGCA









ACCCCGTGACCATCTGTTTAACATTGTCT









CTCCACCTAGACTGTAAGGTCCGTGAAA









GCAGGGACCACACCCATTTGTGCTCACT









TGGGACCTACAGCCTCTA





1111
3361630
2
RIC3
GTAGGAAATGCTCTTGGTCACATCAGAA
0.010262873
0.007017678
4.08E−06






CTCTAGATCTGGGGGAATA





  91
3361748
1

AAGCATTGAATGGAGCACCTACCTGCCC
0.001151831
0.018169375
1.73E−05






CCAGTCAGAACATCCCCATCTCGACTGG









TGATGAGTCAAATGCAGGGATCACAGTG









CATGGGGAGA





 122
3362161
2
NRIP3
AGTCAGTTGTCATGGGGTCATTCCCTAG
0.007173756
0.01771743
1.45E−05






GCCCCCTTCCTATCAGCCTCTACCTAAAG









AAGCTAGATAGGAAGCTAAGCACAGCC









ATGGTTGGGAGGCTATATCTAAAGCTCA









TGAGGGGTGATCCCGGGGTTACCAGCCT









TCAGCACTCCCTCTAGCAACACCCCATTC









TCTTACCTAGCGGGGATTTGTACCTTTCC









ACTGAGGCCTCTCCATGCTCMCCCTAC









CTTTCATGGCAATACTTTGGCCTGCCTCT









TATCCTGGTACTAAGTTGAAGTAAAGCT









CACCCTTTACTTCCCTACTTGAAAGTTCT









ACTCTGAGCCTTGACTCTTAGCCACAGT









G





 649
3364941
9
ABCC8
CTTCCTGACAGCGAGATAGGAGAGGACC
0.001173835
0.011380468
9.19E−06






CCAG





 242
3365534
2
SPTY2D1
CAGATGCCAGCCTTGATCCTGATGAGCT
0.000208981
0.010413807
5.07E−06






ATGCACTCTAATGTGGGGCCACTCACCA









GTCAGCCAATCTTTTATTGTTCCTTTGCT









ACTTTGAAAGGAAAAAAAAGGTTGTCTC









TTGATTTCTGTAATTCTTCTGCTGATCTG









TGAGTAGGGCACTGCCCTGCTCCCAATC









AAACTTAGT





1417
3366734
5
LUZP2
TGCTCCTTTCCCTTATGTCAACTCTCCCA
1.89E−05
0.00914798
8.89E−06






CAGGCTCTAGGGAATCCCTTCTCCTCTCT









TAATGGCAAGCA





 457
3369637
5
LDLRAD3
GCTTCTTGTGTTCCCACAAAACAGCTTCT
0.00020038
0.010462696
7.14E−06






GTTCAAACTTCTGCCCAGAGCAACTCCA









TCTCCAGACACCTCTCCAACCCCAGTAA









AAATCCCAAACTTGTGTAAACACGCAAA









G





 425
3370248
6

TTTAATGGCAGTGTGTTTTAATGGCAATG
0.008126841
0.0128565
1.47E−05






TGTTTTATTTCTCTGGTGGAAAAAAGGGT









TATGCTCCAGCGACCTAA





 887
3370702
3
RP11-
CGCAGCCTGTGGCCTCCGAGATTGGCTT
0.0007279
0.006946076
3.70E−06





384E5.2
CTCTG





 735
3370815
6

TGTGCAAAGTACGTTCCCGAGAATTCAG
1.54E−06
0.013058631
1.33E−05






TGAGTTCTTCTGGACAAAATAAAC





 505
3371611
9
AMBRA1
AGGATCCAGAGAGCACCCAATTTACCCA
0.004360173
0.007627791
2.57E−06






GACCCAGCGAG





 434
3372262
2
CELF1
CTGTACAGCTACCTTCTGGGAAATAGTTT
1.18E−05
0.011210977
4.51E−06






TTGACACCTATTTTTCAGATTCTTGTCCG









GAATTTCTGCTGCTCTTTTCAAAAAAGG









GCATTAACAATTCTCTGGAAATAAAGCA









CCTGTTAGCCTGACATATGCAAAAAGCA









GGGCGGCATCACCCATTACGAGCTCCCC









CAGCCAGCAGTCAGTATTGGATTGGCCT









TGCC





 427
3374540
4
RP11-
CAAGTTGTCTTTGTTATCGGCATCATCTG
0.000148906
0.011207134
8.37E−06





142C4.6
TTGCTTTCTGAGGGAAGTATTTTGAGTTC









TCCTACTGAGACTGTGGATTTGCCTATTT









CTTTTTGTATGTCAGCTTTTGCCATATGT









ATTTTGTAGTTGTGTTGTGAGGAAGATTC









ATGACTTATCTTGTGGGAGAATTCTGTAT









TTAGCAGATTTTCGTCTTAAGTTCTGTTT









TGCTTAGTATTGATGTTATTACTTTGCTT









TTTCAGTTTCAAAATCATTTAGTATATCT









TTTTCCTTTCTTTTAGCCTTTGTGTTTTTA









TTTCAGATGTGCTTTCTTATGTACTGACT









GTGATCCCCAAATTCATATGTTGAAGTC









CCAACTCCAAATGTATTTGGAGGTGGGC









CTTTCAGACGTAATTGAGTTTAGATGAC









GTCATGAGGGTGGAGCCCCCATGATGAC









ACTAAGTCCTTCTAAGAAAAGGAAGAGA









GTCTGAGCCCTCCTCTACACCATGTGAG









GGCACAGAGAGAGAGCAGCCATCAACA









AGCTGAGAGAGGAGGACTGAGAATGAA









ACCTACCTCGCCAGAACCTTG





 634
3374581
4
RP11-
GTTAGGCTCAGCTTATTATTATGTGGGG
0.013588933
0.010869048
7.19E−06





142C4.6
GCTCAGCGTCTATACCCACCTGAAGCTG









GGCTGTCCATGAGGCTTCAGTTCACTAA









CCAGATGTGCATGAAACAGATACAAAAA









GGGGAAGCCTTTAGGGCCAAAAAATAG









ACCTAGGTTTGTATTACTATTTCAGCTTA









ATCGTGTATACCTTGTGTTTCCTCGGCCA









ACAATGGCTAATTATGGTAAATACTATT









TAGAATTATGTGCTATGTACTAAGTGTTT









GACATATGGTATCTCATTT





1090
3375092
2
SLC15A3
TTGCTTCACTCTACCGGACAGACGGCAG
0.000358678
0.009310369
7.70E−06






CAGTCCCAGCTCTGGTTTCCTTCTCGGTT









TATTCTGTTAGAATGAAATGGTTCCCATA









AATAAGGGGCATGAGCCC





 160
3375544
2
FADS1
ATGAGCGTCCTAAGGCATGTTGGGATAG
2.85E−06
0.023685263
2.93E−05






GGTCAGATGCACCACCCATGGAGAGGTT









TGTCAACACAAAGACATGGAAGGTTAGA









GGTTTGTCAACAAAAAGACATGGAAGGT









TAGGTTTGTCAACACAAAGACATGGAAG









ATTAGAGGTTTGTCAACACAAAGACACA









GGAAGAATGGGCTGCAGAAGATTTAGAT









GTTTTCCATTTGGGCACATTTTACTTAGC









TGGAGAA





1749
3375547
2
FADS1
GGAGGGACCTACTGAACCCAGAGTCAGG
0.002152759
0.00685867
2.62E−06






AAGAGATTTAACACTAAAATTCCACTCA









TGCCGGGCGTGGTGGCACGCGCCTGTAA









TCCCAGCTACCCAGGAGGCTGAGGCAGG









AGAATCGCTTGAACCGGGGAGGTGGAG









GTTGCAGTGAGCTGAGATCACGCCATTG









TACTCCAGCCTGGGCGACAGAGCAAGAC









TCCATTTCAAAAAAAAAAAAAAAATCCA









CTCATATAAAAGGTGAGCTCAGCTCACT









GGTCCATTTCTCAGTGGCTTCTCCATCCT









CATTTGCAAACCTCAGAGGGATAAGGCA









GTTGAACCTGATGAGCAAGAATTATAAC









AGCAAGGAAACATTAATGCTTAGAATTC









TGAGATCCAGCACAACTCAGTCTGTGGG









AGCTCAGCTCGCTGCCCAGGGATAGGTA









TGACCTATGTCTGCCTTAGGCTGCTGGG









AGATGCCATTCTCCAGTTTCAGAAGCAG









GCAGGGCAAAGGTCAAGACTGTGGTATT









GGGGTCTTTTGGCTCTGAAGGATCCTGG









AACCACTGATTTTGGTTTATTCCCTCCAG









GGTCTAAAGAGAACA





2074
3375864
2
MTA2
CGGACTTTCCTAATTGGAGTTTGAGGCC
0.000461778
0.007768584
5.69E−06






CCTAAGCTGGCATCAACCCCAGGCCACG









CTCGCTCTTTCCTTCCCTCCCCTCCCCCTC









TGCCTTTTGTACGCCAGTTCTCAGAAA





1462
3376302
3
SNHG1
CTGTACTGTACGCAACAAATGTCAGGGC
0.000579253
0.008432056
3.82E−06






CCTATTGATTTGTCTGAGGTGTTAGTGAA









GGGTG





 495
3376751
9
MACROD1
CTGAGCACCTCCACCGACTGGAAGGAGG
0.001974641
0.014172182
1.21E−05






CGAAAT





 126
3377027
9
PYGM
AGAGAGGGAATACAAAGTCCACATCAA
0.00035324
0.01933795
1.59E−05






CCCCAACTCACTCTTCGACATCCAGGTG









AAGCGGATTCACGAATATAAACGACAGC









TCCTCAACTGCCTCCATGTCATCACCCTG









TA





1872
3377621
7
NEAT1
GCTACAACATAGACGCATCTCGAGGACA
2.62E−05
0.008003529
4.98E−06






CTGTGCTCAGAGAAATAAGCCAGTCACA









GACAGACAAATACTTCATGATTTAACTG









ATATGAAGTGCTTGGAATAGTCAAACTC









ACAGAAACAGAAAGTAGAATGGGGTTG









CTGAGGCTGGAGGGAATGGAATGTTTAA









TGTTATTTAATGGGTACAGAGTTTGTTTT









GCAAGATGAAAAAGTTCTGGAGATTGGT









TGTACAACAATGGCGACATACTTAACAC









TACTGAATGTATACTTAAAAATGATTCA









GATAGTCAACTTCTATTATATGTATTTCA









CCACAAAAATTTCTTAAAGTAGCAAGAA









ATAAATAAAATTGTAAAAACCTGATGTT









AGTGGCTATGTAGGGAAATGGATATCAT









ATACTCACAACAGGAAGTGTAGCTTTCT









GGAGTCATTTGAGTCTGTGAAGAGAGTT









ATAAAACCATAAGTGCTCACTGCCGAGG









CAATGCCACTCCAGGGGATACATGTGTA









CACTAAATTTACAGAGATGCTCACAGCT









GCACGATTTAAAGTAGTCAAAACAGTTT









AACAGCTCAAGAGATGGGCTACATATCC









TTTAGTATAAGCACAATGGCATAAAATC









ATGCAATCATTCATTCATGATCTTTTTTG









AGCACGAACAAGCAGATGAAAGTTATGC









TTTCCACAGAAAAATACAATTTCAGAGC









ATTTATAGACTTCTAGAAACCCATCCAT









GGGACTTCCTTTGGGAAGGTTAAGAATC









CTGAGAAAAAGCCTCTTCAAATGTGTTT









GTGAACTCTGCCGGTACAGGGAAATA





 442
3377625
7
NEAT1
ACCATAGGAGTTACTGTCTGTATTGTCCT
1.99E−06
0.018865238
1.97E−05






AGTTTTTGTATTGGATAGGAGATTCAGA









AATGCTTACCACATTATTAAAAAACAAT









TAAAGAAAGCAAGTAAAAGAGAGCCAT









GTTGTGTCCTGAATCAAAGATTAAGATT









GAGATTTACCCAGTTCTGTGTATTTGAGT









TCCAACAGAGAGAATATTCTTGCCTTAC









AGGAGTGTTCTAGCCTCCATTTACCAGA









TTTTAAAGCATAATGAAAAGTGATGATC









ATTACATTCCATTGCATTTTATTAACAAC









AACAACAAAAACTGGAGCCTAAAATTTC









CAGAAATAGATCCAGAGAGAAAATGTTA









AGAACCATTTGATCTAGCAATCCCACTC









CTGGGTATCTACCCAAAGGAAAAGAAGT









CATTATACCAGAAAGACACTTGATGGCA









GTACAAGTCACAATTGCAAAGATGTGGA









ACCAACCCATCAACCAGTGAGTGGATAA









ATAAAATGTGGTATCTCTACACCATGGA









ATATGACTTAGCAATAAAAAAGAACAAA









ATAATGTTTGTGGTTTTTTTTTTTTTTGCA









GCAATTTTGGATGGAGCTGGAGGATATT









ATTCTAAGTGAAGCAACTCAGGAATGGA









AAACCAAATACTGTGTGTTCTCACTTATA









AGTGAGAGCTAACTTATGGGTACAAA





  85
3377627
7
NEAT1
CAGCTGCAGCCACTACGCAGTTTTACCC
0.002805201
0.030343821
4.67E−05






CAGTTCCACGGCACATGAGGAGAGGACC









AACATTATTCTATTTTGGCAGCACGTGCT









TTCAACCCATCTCACAAAACAGTGTCAC









CAACCAGATGTGCCAAGAGCCAGAGCA









GGTGAAGACACCTACAGATGCTGCCTCC









TCTGGACACTGCCTCTGGGTGCCTCAGCT









CTGCACCCAGAGGGATGCAAAAGAGATC









CCCGCAGCACACTTTGAGATGGCTA





1514
3377629
7
NEAT1
CACACATCTATTCATAGGTGAAATTAAC
8.09E−05
0.009289123
3.99E−06






TGGAAGGAAACTAGCAAAGCATTTGCCT









TTGGGGTCAGCACAGGAGCAGAGGCCCA









GGCAGGGCCTTGCTTTGACACACAGATG









ATGGGTCACACAGTTGTCACCTTGACAG









AAGAGTAACAGGGACAGCACACCAGTC









ACTCTAGGAGCTGAGGCCAGAGGAACTC









AGGTATTTCCTTCTAGAGGTAGTAAGTC









CA





 826
3377633
7
NEAT1
CAAATTAAATAGACGTGAGTGGATGGAA
3.71E−06
0.014719313
1.56E−05






AGACGTACCTTATTCTTGCATAAGAAGA









CAACGGCATGAAGACATCACAGGGAAG









GTTAAGGTAAACATGCAGCCTGGAATAG









C





1790
3377635
7
NEAT1
TCCAGGGAACATACACATATGGCCAACA
0.000417578
0.006683799
4.19E−06






GCACCAGCAAAGGTGCTTGATAGCATCA









CTCATCAGAGAAATGCAAATCCAAATGA









CACCAGAGGCTACTTCACACTCATTAGA









ATGATTATAACCAGAAAGTCAGATAATA









ACTAGTGTTGGCAAGAATGCGCAGAAAT









TGGAACCCTCTTACTTACTGGTG





1329
3377637
7
NEAT1
CAGCGTCTTAGTCTGTCGCCAAGGCTGG
9.78E−06
0.011817785
1.08E−05






AGTGCAGTGGCGCAATCAAAGCTTGCTG









CAGCCTTGAACTCCTGGGCTCAAGCAAT









CCTCTTACCTCAGCAACTAGGACTACAG









GCACATGCCACCACGCTTGGCCTTCTAA









TTTATTTCTGTGTCAACAAAATAAAACTC









AGGCCTAGGAATAGCTTGGTTCAGAAAT









CACAGAGGGACTTAGTATTCCATTAATA









CAAATGGAAACATTAAGTTCATCATCAG









ATGATAAAAGGAAAAAAAAAAACCTGA









TACTCATCTCAAAAGACGCAGAAAAGAC









ATTTGCATAAATCCAGTACCTATTATTAT









TTCAAATTTAAAAACTTCTTCTTTTTTAA









GAGATAGGGTATCACTATGTTGCCCAGG









CTGATCTTGAACTCTTGGCCTCAGATGAT









CCTCCTGCCTCAGCCTCCCACAGTGCTGG









GACTACAGGCATGAGCCACCACACCCAT









CATAAATTAAAACTTCTGAACAATCTAG









TAACAAATGGAAATGCTTTCCCATGATC









CAGCACATCTAGCAGGGGGTGTCTGCTG









ACATTCTACACAAAGAGACACACTGGAG









TTGTGCTTCTCATCATTTCACATTAAGAA









CCCAACTGCACCTTTTTCTGTGCCTCTAA









ACACCTGTAGTCTGATAGGGGACACCC





1646
3377641
7
NEAT1
CTGCCTTCGCAGACAGGAATGCTGTCCT
0.000129873
0.010091592
9.01E−06






TCCAGCTTCTCCTACCCTTCGGGTCAGAG









CCCAAAGGTCCCCACCCCTGGTTAGGGC









TGTTTTCACTGGGCGGGGGGCGGGGGAC









TACACTCCTTGGTAACTGTCACAACTGCC









CTTAACTAATGATTTGTGCATTGCCACCT









GAGGC





1590
3377659
7
MALAT1
CCTCATTTTGTCCACTGGTGAATTCAACT
3.52E−06
0.009063684
6.47E−06






GGAAGCTCCTTCTATAGTCTGAAGAATA









CCATCTGAAAGAACTAGTGGTTCCCAAT









CCCCACATTTAAAATGGAATGTTTGGTTT









ATTTAAAGTAAATAGGCTATTTTTTCTTA









CTGGGTCTGGCTTCTCTGGCCCTTCGCAT









ACGTGTGTCTGCTGAGTGTTCCTGCATGT









AAGAATTAAGACCAAGGGAGGGGAGAG









AGAAACCCACACATAAACAATGCACTAA









AGATCACTGAACTGTTTAAACATTTCCA









CTTGCCAGTTTAATTTCTTGAAGACTGTT









GCTTGTTTGGAATGTTTCTTGTCACTGAT









TTTAAGGTTGCATCTGGAAAAGACTAAA









GGCTTCAGTCCCCTCCCACCACCAGAAA









TGAACAAAAAGCATTTTACCTAAAAATA









CACCAGCAAAATGTACTCAGCTTCAATC









ACAAATACGACTGCTTAAAACTGCAGAA









ATTTCCTCAACACTCAGCCTTTATCACTC









AGCTGGATTTTTTCCTTCAACAATCACTA









CTCCAAGCATTGGGGAACACAACTTTTA









ATCATACTCCAGTCGTTTCACAATGCATT









CTAATAGCAGCGGGATCAGAACAGTACT









GCATTTA





 760
3378515
3
RP11-
GGAAGTTAGCTTTTGGTCCACCAGCGAG
1.71E−05
0.011361311
9.90E−06





658F2.3
TTTGAATGGA





 894
3379539
8
PPP6R3
CCATAATCAGGCAACAACCAACTTCCAT
3.93E−05
0.011032576
9.23E−06






GACTG





 580
3379566
5
PPP6R3
AGTGCTTTGGAGTGTATTTATTTTCAAAA
0.006456347
0.011482378
1.43E−05






TGATCCATGATTGGTTTAAACATGCAAA









GAAAAATGTACTGGAAGCTTGTCAATCA









GAAAAGAGTAATTATTCTTCCACTTTGA









AAAGTTCATATGAAGTGGGTAAATTCTG









CAAGCTAAGAGCTTGGCAAGGGCTGTTG









TAAGTTAGTTTTG





 395
3379697
1

CCCCTTGGCCCTCCTGTTACGCTTGGGGC
0.001001048
0.01468751
1.53E−05






CCCTCTCCCTCCCCCTCAACCCCCTGGGT









CCCCTGCAGCTGCGCTCGCCCTAGACTC









C





 290
3379916
1

GTTAAGGGCAGCCTCGGATCACAGAGGT
0.002099724
0.00944787
5.89E−06






TCCATTTCCGATTTTCCAGAAGTTGCCGA









TTATTAATGATCATTGTTCTTTCCTTCTG









GGGCATAACAAAGCAG





1596
3380081
2
ORAOV1
GGGTCGCCATGAATCCACTTTGGTTTTAA
0.000102061
0.006925599
2.34E−06






AACCATTCCCGAATGTCCTAGTGGATTG









TGTTGTGCTGCCTAAGCTGCCGGCTGCA









GGAGCCAGAGAAGTGACCCCCGCGGGA









GCAGCGGCAGGTGGATCTCCACGGTGGC









TCGCTTTGTTTTTGTTTTGTTTTTTCTTTT









AAGACGGAGTCTCACTCTGTCGCCGAGT









TTGGAGTGTATTGGCGCGATCTCGGCTC









ACTGTAACCTCCGCCTCCTGAATTCAAGT









GATTCTCCTGCCTCAGCCTCCCTAGTAGC









TGGGATTATAGGCGCCCCCCACCACGCC









CAAGTAACTTTTGTATTTTTAGTAGAGAT









GGGGTTTTGCCTTGTTGGCCAGGCTGGTC









TTGAACTCCCAGCCTGAAATGATCCACC









CACGTCCACCTACCAAAGTGCTGGAATT









GCAGGCATGAGCCACCACTCCCGGCCTG









CTTTTTGTTTTTGAAGACAGGACTTAGGT









CTCCTCCTCCCGAACTCTAAACCTGCGTG









TGTGGCTGTGCACCGCTCGTTTGTAGCGT









CACCTCAGGTCTGGGGAAGTCTGTGCTG









GCATCTCCTCATTGTGCCTTCATCAGAGC









TGGTGCCTTCGGGCCAGAAAGACTCTCG









TTC





  68
3380323
4
AP000487.6
TTCAAGAAATAGTGCATATCTCGTCTAT
0.000119134
0.03317763
4.24E−05






GCTGGCCGCTGCAGCAACACAGAAACAG









GGCCTGTCCACTCCTCAGGATGCTTTAA









AGAACAGACAGACGAGCTGGCAGGAAC









CT





1302
3380437
4
SHANK2;
TCTCCATCAATCATAGCCCGGTGTGTTTA
0.000378341
0.006723456
4.70E−06





A001271.5
ACTTAGAGTAGATGGTGGCACCACCCGA









TAACAATGGTGGTGGCATTCAGCAGCAG









CTCAGAGGGTTCCAGAAGCATTCCTCCA









GCCTCGAGGGGAAATGGTGCCTCTGGCT









AACGGAGGGAACCATCAAAGCCGGGTA









TGGTTTCTTTGATCGTGTTTAGCCGCTTT









GTGGCTGAGTAGAGATTCTTCCTTCTTCC









TGTCCAGGTAATTAATGAGGGACTTCAA









AGGCATGAGGCTTTTCTGCTCCAATCAA









TTATTCAGATTGGCATATCCAAAGGTCTC









TGAACAGGAAATAGAGAGGAAATGGAT









TGCTAAGTGGTTATGATGGAGACTAAAT









GAATTACTTGTTAATCACCCTTGTCTGCT









CTGGTAGTATCTG





 217
3381818
2
UCP2
TGGCTTTGTCTCTAGCCGGGCCATGCTTT
5.30E−06
0.022035487
2.14E−05






CCTTTTCTTCCTTCTTTCTCTTCCCTCCTT









CCCTTCTCTCCTTCCCTCTTTCCCCACCTC









TTCCTTCCGCTCCTTTACCTACCACCTTC









CCTCTTTCTACATTCTCATCTACTCATTG









TCTCAGTGCTGGTGGAGTTGACATTTGA









CAGTGTGGGAGGCCTCGTACCAGCCAGG









ATCCCAAGCGTCCCGTCCCTTGGAAAGT









TCAGCCAGAATCTTCGTCCTGCCCCCGA









CAGCCCAGCCTAGCCCACTTGTCATCCA









TAAAGCAAGCTCAACCTTGGCG





 997
3383041
2
RSF1
CGCTGGGATCCGCAGAGGAGCCCACTTG
0.039284329
0.007912749
2.11E−06






AGAGCGCCTCCTGTCGTCTGTAAGGTTG









CCTTGCCATCCCTCGGC





2007
3386740
6

ATCGATAAGTAGCTCCACCTGAAGAGGG
8.24E−05
0.00957179
7.94E−06






ATGGAACCTCTGGGTCAGGAAACAGCTG









GAATCCACACTCACCTCATTCCCATTGTT









TGGATCATGCTTCTTTCCAACACGTGTTC









ACAATCTCCAAAGGGACTGTATTTCTTCT









CTGTGCTTAATGTGATTTGA





 864
3387255
2
SESN3
TCTTCTCTCCAGCTAGGTGCACTTGAGGT
1.75E−06
0.014386509
9.69E−06






TGTTCATAAATGTAAAATTATGTCAGGTT









TCTAACATGGGACACTGCACACAGTTGT









CTGACCTGATGAACCATCCCATTTGAAA









GTATAGATTATTATTATTTCTTGTAGTAT









TTGGTTGTTTTCCATCTCATTCATGAACA









ACTCAACCTGATAGTAGTATCCAATAAA









TGCCTTTCAGGGCTCAGGAATGAATTGA









CATCCTAGTTAAGAAATGAGACTTAATA









ATGGAGACTGAATGAGGCGGTTTGTATT









AAATTATATGCCATGAAGTGTTCATTTTA









GCTTTAACCTAATTATGACTGTACCACCA









TGAAGTACAGAATGAAAAATTATATATA









TGGGGGGGAAACAGAATGAATATCTGAT









TCTTTTGAATGCTTGTGGAAATCTTTGAG









ATCGTGCAGGGCATACCACAAAATAGCC









TTTAGAACAGATACCCAATTTTACAGTTC









ATAGGACAACATCAAACATTAGTAAGTC









TAAATAAGATGAATAGAATTTTTTGTTAT









GTAAATTTTGCTAGAACAGTCTATTTTCT









TGCACCCCTCAAGTTAACCTCTTAAAAA









AATGAATGTATAATTTCTACCGAAAGAA









TATCAGAGAGAATCTCTCTGGCCTATAG









TGTTAAAATATTGTTCACAAATCCTGATT









AGTTAAGTGCATACATTATGAAACTTAC









AGAATAAAACTTATTATACATCTCTTTCT









TAAATTAATATCTTTACACATTTTCAACT









GGCTCCCCAAGTCTGATAAGGAAGGATT









AAAAGAAAAAAGAAATGTATTAGTTGG









GTGGCCAAGGAGTTTCCTTTGTAATGTTG









AGAGACTTCCGCTTTCTGAATTTCGCTGG









TTCTCTAAGGTAAAAGAGTTAAATAGTA









CCCTTGTTCACCAAGGAAAGTGATCCAA









ACTATATATCTAGTGCAGATATTTCCTTT









GCATTATTTAGTCTTCTCTGGAGAGAAA









ATACAGTTTCCCCTTCCTCTTTCTCTTCA









CATTTACTCTTTTCAACCCAAAATAAGA









GACATAGAAAGCAAACCACAGCCAGTTT









GGCATCTTCTCAGTGCTACTAGTA





1050
3389367
9
CASP1
AGTCAAGCCGCACACGTCTTGCTCTCATT
0.005684569
0.008445273
5.16E−06






ATCTGCAATGAAGAATTTGACAGTATTC









CTAGAAGAACTGGAGCTGAGGTTGACAT









CACAGGCATGACAATGCTGCTACAAAAT









CTGGGGTACAGCGTAGATGTGAAAA





 150
3391911
8
ZBTB16
CCCGAACGCATCAGGTGCAGAGACCGGC
0.005359393
0.01781851
1.50E−05






ACCCACCGAGAGCGGCCGGGAGCGCAC









GGCGAGCTCCGGTGTCACCGCCGGTCCC









GCCGAGAGCCGAGGAGGGCCCGCAGCG









CTGCAGACCCTCTGGAGCTTCCCTCCCTC









CCCTGCAAAAGGGGGGTGGGGATCAAGT









CCAATCAAGAAAAAGCCCACCACGTTTT









CTCAAAGAGAAACAAAACGTAAGCAGT









CCCAGTCCTGCTCCCCTCCGCCCCCAGAT









CTACTCGTCAGCTCCTCCGATT





1501
3392582
8
AP000797.3
CTCTACCCTTTCCAAAATCAAGGTGAAG
0.00060261
0.007086086
3.38E−06






GCAAGACGGCCTCTTCCAGCT





 880
3393305
8
CEP164
TGCCTACACTGAGAACTGAATGATGAGT
2.01E−05
0.008257925
3.45E−06






AGGTATTCACTAGACAAAGAAAAAAAG









GAAAGCGTGTTCTAACAGATGCATGCAA









AAGTCCTTCAGCAGAAGGCAACACGAGG









CAAGAAGCAGCACAGTTGGATAGGATGC









TGGGGAGGCCAGTGGGAGCCAGGCCAT









GCAGACTTGCCCTTTATCATAACAGAAC









TAGGGCTGGGCACAGTGGCTCACACCTG









CAATCTCAGCACTTTGGGAGGCCAAAGC









AGGAGGATCGCTTGAGCCCAGGAGTTCA









AGACCACCGTGAGCAACATAAGACGACC









CTG





1627
3394419
9
THY1
GAAGCCTCAAGTTCCAGTGCAGAGATCC
0.00080419
0.007549673
4.89E−06






TACTTCTCTGAGTCAGCTGACCCCCTCCC









CCCAATCCCTCAAACCTTGAGGAGAAGT









GGGGACCCCACCCCTCATCAGGAGTTCC









AGTGCTGCATGCGATTATCTACCCACGT









CCACGCGGCCACCTCACCCTCTCCGCAC









ACCTCTGGCTGTCTTTTTGTACTTTTTGTT









CCAGAGCTGCTTCTGTCTGGTTTATTTAG









GTTTTATCCTTCCTTTTCTTTGAGAGTTC









GTGAAGAGGGAAGCCAGGATTGGGGAC









CTGATGGAGAGTGAGAGCATGTGAGGG









GTAGTGGGATGGTGGGGTACCAGCCACT









GGAGGGGTCATCCTTGCCCATCGGGACC









AGAAACCTGGGAGAGACTTGGATGAGG









AGTGGTTGGGCTGTGCCTGGGCCTAGCA









CGGACATGGTCTGTCCTGACAGCACTCC









TCGGCAGGCATG





1415
3397595
2
ETS1
ATCAGTGGATTCTCGGGGITTGGACTTA
0.042209752
0.009491646
1.11E−05






ATGTTGAGCTAAGAAGCATTAAGTCTTT









GAACTGAATGTATTTTGCATCCCTGGTTT









TGGACGACAGTAAACGTAGGAGCACTGT









TGAAGTCCTGGAAGGGAGATCGAAGGA









GGAAGATTGACTTGGTTCTTTCTTAGTCC









TATATCTGTAGCATAGATGACTTGGAAT









AAAAGCTGTATGCATGGGCATTACCCCT









CAGGTCCTAAGAAATAAGTCCTGAATGC









ATGTCGTTCCAAACTAACACTCTGTAATT









TTTCTTTTATGTCTTATTTTCCAAGAGTC









CTCCATTTTTTGCACCCCCTCACCGCCAA









CTCTGTTATTCAGTAGA





 387
3398942
5
NTM
CCTCTCTAAGGCAGTACTAGCGAAGACC
0.005672651
0.012339334
1.02E−05






GACTCAGATGCTGCCACA





 319
3399568
4
NCAPD3
TCACCAGCAGGAATACGAAGTGTCCCTC
0.005792861
0.010903697
8.85E−06






TGGGTAGCCAGAACGAGCTGACTTCTGT









TCCAAGGGGAGGGTGTTGAATTGAGGAC









TGAAGGTGGAGCAAGAGCCAAGGTCCCT









CAGGGTCTTCTGTGGAGATTTGGGGCTTT









TGTCAAAAGCTACTCAACATGTTTCTAAT









TCTTTTTCCCCATTTAGAATATATGAGTA









GTATTTGTCCCCACCCTATCTTACAAAGC









CTTCAGAGTGTTTTTGAGGTAATGCTTACA









AAGTCTCCCAGAGAAAAGCAGAGGTCCT









CTACATCCAGTATCATAATGAAAAGCAA









AAATAAACTTACATAGTGTGGTAGGGTG









GCTCTACTCAAAGAACTAGA





 921
3399590
9
NCAPD3
GAGGATCAGGGATGAGAAGACCAACGT
0.001666372
0.010212699
6.68E−06






TAGGAAGTCTGCACT





1171
3399602
9
NCAPD3
GCAGTGTAGCCAATCAAGTATTCCACCC
0.001095886
0.008878141
5.06E−06






AGTGATGTTTGACAAATGCATTCAGACT









CTAAAGAAGAGCTGGCCCCAGGAATCTA









ACTTGAATCGGAAAAGAAAGAAAGAAC









AGCCTAAGAGCTCTCAGGCTAACCCCGG









GAGGCA





1498
3401999
4
KCNA1;
ATGCTTCTGATTTTCTACCCCCGTATCAC
0.030501101
0.00691775
4.16E−06





RP3-
TTTCTATTTCTCTGCAGCGTGCATCGATC








377H17.1
GCCCTGGTGGGAGCTTAGAAGGCGGCAG









GCGAA





 431
3402336
3
CD9
ACTAGCTTGAGTGGATTCATCTTGCTGG
0.000194662
0.013880303
7.94E−06






AAAGAGCTGACAGACTGGACCAGTTTGC









ATTCCGAATGTAGGGATTCCCGTGGATA









TTCTCTGTCCTGGATTGAGGGCTAATGG









GCACCTTCCA





 172
3402965
2
RPL13P5;
GTTAACCCTTCTCTTGCTGCGGCAGAGTC
0.000284076
0.015901702
1.90E−05





LRRC23
CGCACCCGGGCAGGCCCATCTCAGAATT









AACGCTTTGATGGCATCACCGCGTCGGG









AATCCCTGGGGATGGTGTTCTCCACCGT









CAAGACCTTTGAGCCGCCTGAGCGA





 596
3404455
4
CLEC2D
CACTAGACAGCAATTCAGAGCCTCCAAA
0.004749446
0.013360002
1.34E−05






ATAAAGAATATTCATAAAAGTAACAATA









GAGGTAAATATAAAACCCAGAATTACTA









CATGTGTCATATAGTTTATAACTTCTCCT









ATTTATAGCTTTCTATATTTATATTTATCT









ATAACTTCATAGGCAAATGAATAAAAAT









TATAAATATGATAGTGGTCATATAATGT









ATAAAGATGCAATCTGTGACAGTCTTAT









GAAGCAGGGATGAAGACATATAGGATC









AAAATGTTTGCATAGTTATTGAAGCTAT









GTTGATATTATGAAATTATATTGTTACAA









GTTTAAGATGCTAATTATAATTCTCAAG









GTAACCACTAATAAAATTACCAAAATTA









TGCAGAAAAGGAAAAAAGAAAAACAAT









ACACTATAAAAAACCAATTAAATACAAA









AAAAGTCAGTAACAGACAACTTGAGAA









ACAAAGACATATAAGATATAGAGAAAA









CAAATGATTAAATGGCAAAAGTAAATCT









TGTTTTAGTAATCACATTAAATAGAAAA









GGATGAAGCCATCCTATTAAAGGGCTGA









GACTGACAAGTTGGCTAAAAACTAAAAT









AAATTAAAAAGAAAAACAAGACTCATCT









ACATGCTGTCTATAAGAGACTTGCCTTA









GATATAAGGACACAAAGAAGTTGAAAG









TAAAAGGACTGAAAAAGATATTCCATAC









AAACAGTAGTAACCAAGATAGTGCCGAG









TGGCTATATTTTTGTCAAACAAAATAAA









CTAAAGTAAAATTTACAAGAGAAAAAG









AAGGGCATTATGCATTGACAAAAATTTT









GACATAGCCAAATAATTATGTTATAAAA









TATATGTACTTAATAATACAGCCTCAAA









ATATATGAAGCAATAATTGCTATAATTT









AAGGGAGAAAAGAACAGTTCTATGAAA









AGTTAGAGAATGAAATATTCCACTTTCA









ACATGAGATTAAACAACTAGACATAAGA









TCAATAAGGAAATAGAAAATTTGAACAA









CACTATAAACCAATTATCCCTAACAGGC









ATATACAGAAGAATCTACCCAACAAGAG









CAGAATATTAATTCTTCTCAAATGCACAT









GGAACATTCTTAAACCATATGTTAGGCC









ACAAAACAAGTGTTAGTAAGTGTGAAAA









TTTGAAGTCATAAAAAGTATCTTTTGCA









ATTACAATGGAATGAAGCTAGAAATCAA









TAACTAGAAAAACCAGAAAAGTCACGC









ATATGTAGAAATTTAAAAACCCGCTCTT









CAACAGCCATTGGTCAAAGAAGAAATCA









CAAGGGACATTAGAAAATACCTTGAGAC









AAATGAAGTAAAAATACAAATAGCACGT









TTATGGTATACACTGAACA





 501
3405316
4
LOH12CR1
AGCTGAGGTGCTGTTAAGAAAATTCTGA
0.008884278
0.011806462
6.56E−06






TGTCTGGGTCTCACTCCGAACCGATTAG









ATCAAAATCTTTGAAGGGTGATAGGGTT









AGGGCGGTGGGATGTTGGGTATTGGTAT









TTATGAAGGTGCTCTAGGTGATTCTAGT









ATGTAACCAGGGGAGAACCAGTGTTTTG









GAGCATTCATTTAAAAATAAACTGACTT









TGGCGGGCGACATG





 237
3405606
2
GPRC5A
GACTCCAGTTCTTAGAGGCGCTGTAGTA
2.19E−05
0.020038313
1.78E−05






TTTTTTTTTTTTTGTCTCATCCTTTGGATA









CTTCTTTTAAGTGGGAGTCTCAGGCAACT









CAAGTTTAGACCCTTACTCTTTTTGTTTG









TTTTTTGAAACAGGATCTTGCTCTGTCAC









CCAGGCTTGAGTGCAGTGGTGCGATCAC









AGCCCAGTGCAGCCTCGACCACCTGTGC









TCAAGCAATCCTCCCATCTCCATCTCCCA









AAGTGCTGGGATGACAGGCGTGAGCCAC









AGCTCCCAGCCTAGGCCCTTAATCTTGCT









GTTATTTTCCATGGACTAAAGGTCTGGTC









ATCTGAGCTCACGCTGGCTCACACAGCT









CTAGGGGCCTGCTCCTCTAACTCACAGT









GGGTTTTGTGAGGCTCTGTGGCCCAGAG









CAGACCTGCATATCTGAGCAAAAATAGC









AAAAGCCTCTCTCAGCCCACTGGCCTGA









ATCTACACTGGAAGCCAACTTGCTGGCA









CCCCCGCTCCCCAACCCTTCTTGCCTGGG









TAGGAGAGGCTAAAGATCACCCTAAATT









TACTCATCTCTCTAGTGCTGCCTCACATT









GGGCCTCAGCAGCTCCCCAGCACCAATT









CACAGGTCACCCCTCTCTTCTTGCACTGT









CCCCAAACTTGCTGTCAATTCCGAGATCT









AATCTCCCCCTACGCTCTGCCAGGAATTC









TTTCAGACCTCACTAGCACAAGCCCGGT









TGCTCCTTGTCAGGAGAATTTGTAGATC









ATTCTCACTTCAAATTCCTGGGGCTGATA









CTTCTCTCATCTTGCACCCCAACCTCTGT









AAATAGATTTACCGCATTTACGGCTGCA









TTCTG





 802
3406085
9
ATF7IP
CTAAATCACACTCCTGTATCAACCATGA
6.62E−06
0.012402676
9.80E−06






GTTCTTCTCAGCCTGTGTCACGACCATTG









CAACCCATACAACCAGCACCGCCTCTTC









AACCATCTGGGGTGCCAACAAGTGGACC









ATCTCA





1245
3406450
8
EPS8
GAGAGCATGGCCTGCCAACTTAAACCCA
0.043006584
0.007576256
5.93E−06






AATCAATT





 590
3408793
7
BHLHE41
CCTCACTCATAGTCAGACTGTTGTGTCTC
0.000617654
0.008783782
3.44E−06






ACCCCTTACATAACATCCAAGTGAGATT









TCTCACAGTGCTACCTTGGCAACAAACT









AAAAATATCTAGACAAGGTCTTGGTTTA









AGCCTTATTAAAAAAGCTTTCTTTGTGAT









TATCTGGTATCTGGTTTGGTCTCCAGAAA









ATACATAGACTTGGAGATAGGAAGGCCT









CACAGGACTTC





 855
3409273
4
PPFIBP1
AAAAAGCAGGGGTGCTACAGCAAAGAC
0.030178237
0.007142121
5.18E−06






ACTATCAGATGACAGATGTAGGAGAGTG









GTCATGTCAAGAAGCAAAAGGA





 727
3411330
9
LRRK2
TATCCATGTGCCTCTGTTGATCGTCTTGG
0.008812862
0.008052347
5.33E−06






ACTCCTATATGAGAGTCGCGAGTGTGCA





1021
3412547
6

AAATCTGGGAGTGTTCTTTGTGAGGGTG
0.001543869
0.010561963
5.59E−06






GAACAGACTCCCTGTGACAGGGAACTAG









ATGAAGGAGTCTTGAGAAGCTGATGATC









AGGAGTGGTCACA





 988
3413308
2
TMEM106C
CAAACCATGGAGTGATGTGGAGCTAGGA
3.81E−05
0.017324674
1.55E−05






TTGTGAGTGACCTGCAGGCCATTATCAG









TGCCTCATCTGTGCAGAAGTGGCAGCAG









AGAGGGACCATCCAAATACCTAAGAGA









AAACAGACCTAGTCAGGATATGAATTTG









TTTCAGCTGTTCCCAAAGGCCTGGGAGC









TTTTTGAAAAGAAAGAAAAAAGTGTGTT









GGCTTTTTTTTTTTTTAGAAAGTTAGAAT









TGTTTTTACCAAGAGTCTATGTGGGGCTT









GATTCACCCTTCATCCATT





2027
3413826
9
TUBA1C
CTGTACTTTTACACTCCTTTGTCTTGGAA
1.38E−05
0.009416863
6.80E−06






CTGTCTTATTT





 607
3414084
4
RP11-
TCAGACACTCTGCATGCTTGCCAGAGAG
0.01309721
0.011337491
8.76E−06





133N21.2
CTCGCTAGAGGACGTGCAGAAGGTCAAA









GTCCTCCATCACCAGAGCAAGTTCAGCC









ACCAGGC





 116
3415017
9
SCN8A
GCTGGTGTGTCTCATCTTCTGGCTGATTT
0.005756556
0.027631416
3.31E−05






TCAGCATCATGGGAGTTAACTTGTTTGC









GGGAAAGTACCACTACTGCTTTAATGAG









ACTTCTGAAATCCGATTTGAAATTGAAG









ATGTCAACAATAAAACTGAATGTGAAAA









GCTTATGGAGGGGAACAATACAGAGATC









AGATGGAAGAACGTGAAGATCAACTTTG









ACAATGTTGGGGCAGGATACCTGGC





 922
3415243
4
NR4A1
TTCCCTTCGGGGAACGTGCATCTGTTTTT
0.004790078
0.00857609
7.18E−06






AGGAGCGGTGCATGAAGGAGATGGGTG









TACGCGCGGGCAGAGAGGATGTTGTAGG









GCCGGCATGC





 919
3415245
2
NR4A1
TGAGGCTTGTTCAGCAGAACAGGTGCAA
0.036791598
0.008209899
4.22E−06






GCCACATTGTTGCCAAGACCTGCCTGAA









GCCGGATTCTCC





 511
3415254
9
NR4A1
AGAGAGCTATTCCATGCCTACGGCCTTC
0.000146537
0.010832039
6.60E−06






CCAGGTTTGGCACCCACTTCTCCACACCT









TGAGGGCTCGGGGATACTGGATACACCC









GTGACCTCAACCAAGGCCCGGAGCGGGG









CCCCAGGTGGAAGTGAAGGCCGCTGTGC









TGTGTGTGGGGACAACGCTTCATGCCAG









CATTATGGTGTCCGCACATG





1131
3415256
4
NR4A1
GAAGCTTTCATTTGCCGGGACACTCGGG
0.00421284
0.007543327
3.79E−06






CCCATGGGATTGCACAGAGCTGGAGGGA









GGGGTGAGATAGGGGCAGATAGGAGCT









GCAGGGGTGCCTGGCGAGCCTCTGGTTT









TCCTCTGCTCCTCTGCCTGTCCTCTCCCA









ACTCAAGGTTCTAGTGGGAAGGGGTGCC









CCCAGGCTCTCATGTTCCTGGCGTGAGA









TGAAAGGATCCCTGCGGAGGGTTTGGTT









CTTGAGGGCTGGGGGTGGACTTGGGAAC









AGGCTGTGTGTTTGTCCCAGCGATGGTG









CCTGCTTAGCTTCCCGTCCCCACCCCCCA









GCCCCTTGGCCCTCTCCTGTCTGCCCTAG









GGAGAAGGCAGGTGGACAAGGGCCCAT









GAAAAAATACAGGTGTCTAGACTGCCAG









GGAGACCCTGGCCCCCAGTAGTGTGTCC









TGGGGACTTCCTCAGAGCGAGAAACCTC









CCCCAATGTCTTCAAGACTTTTCTCTCCC









CCCGCCCAACCCCGTCTCTCCCTCCCTTG









CCACCCAAATGTTAGAAAAATAGCTGTG









AACAGAGAGCGCTTTTGTCTGCAATGGC









AGCAGGATCTGGACGGTCCCCTCCCCTA









AGTTCCCCCCTCCCCACCCCACACTCTGA









CAGCTTGTTCCGTGTTGCCC





 486
3415264
4
NR4A1
CTTTCCCTGATACACCTGCCTGTGAACCA
4.81E−05
0.013327502
1.58E−05






CCCTGATCGCTCTTCGTGCC





1619
3416307
4
AC012531.1;
CGCATTCCCGGTTGTTTGCAGAAAATTTA
1.54E−05
0.007942225
4.10E−06





HOXC6
CAGCTGAGTAATAAAAGTTTACGATCGA









CTCACAAGTTGGATTGGCCACAAGAAGT









CATGTGGATTCCATCCATGAACGTGAAC









TTTTTATTGTGGTTTGTCCGTTCCGAGCG









CTCCGCAGAACAGTC





1692
3418367
9
ARHGEF25
TGAGGGGAGTATATCGGCTTCTGCTGCC
0.000310049
0.007360913
4.16E−06






TCC





1520
3419870
9
TBK1
ACTTATCTACGAAGGGCGACGCTTAGTC
0.000261519
0.008358427
3.52E−06






TTAGAACCTGGAAGGCTGGCACAACATT









TCCCTAAAACTACTGAGGAAAACCCTAT









ATTTGTAGTAAGCCGGGAACCTCTGAAT









A





 888
3419989
2
TBC1D30
TGGCACAGGTTTGACACTGCAGGTCGGA
0.000436951
0.0081496
9.21E−06






GGAGGAAGACAGTGGCTGCAAAGGCAA









AATCGGGTGTTATTTTCCCAAGAGTCCCT









TCAGCGTGAGTGCCGGGGTCAGCTCGAA









CTGGAGCCTGTA





1662
3420374
4
HMGA2
TGCATGGATCTATTAGTGGATGGGCGCC
0.00051035
0.007578034
4.27E−06






AGAACGACACAGTCAATGCA





 985
3421317
3
MDM2
ATTGTAAAAAGCCATCTGGGCTAACATT
0.000444711
0.013007873
1.22E−05






TC





 710
3421365
7
CPM
CAGATACAGGGGACACAAACAGCTCTGT
0.002052564
0.011613351
1.08E−05






GTTTATGAACTACAACCAGTTGTTGACTT









TTGTTTCAAGTGGCTCCCCTTCCCCAGTG









CTGTGTGGACGATGGACTGAAGAGGAGA









AGGCTGGGAGCAAGGGACCAGTAAGCT









GTTGCAGCAGTGCAGGTGAGATATGAGG









CCTCAACTC





 613
3421368
7
CPM
ACGCGAGTCTGAAGCTCAGGCAAGAGGC
0.017687915
0.008834732
8.09E−06






TAGAGTTACATCTTTGGAGTCATCAGCCT









AATGGAGGACTGTGGCA





1331
3422466
9
TRHDE
GTTACTCAGTTTTCGCCTACACATGCCAG
0.003428273
0.007617866
7.06E−06






AAAGGCATTTCCTTGTTTTGATGAGCCA









ATCTACAAGGCTACTTTCAAAATCAGCA









TCAAGCATCAAGCAACCTATTTATCTTTA









TCTAATATGCCAGTGGAAACTTCCGTGTT









TGAGGAAGATGGATGGGTTACGGATCAC









TTTTCACA





 112
3426457
1

GCACTTGACAGAGCCAACTTTAACACAG
0.015458225
0.015811581
9.94E−06






ACTTTGAGAAGTGGCCCTGATGAAACCC









TGGCCAACAGCCAGCCAGCCACTACCCA









AAAATGTCTGCCTGAAAGCAGCTCCAGG









AGGCAGGCCATGGGGAGTGGAAGTCGG









GGAGAAACTGGAAGAGGCGCCAAGCAG









CTGTCA





 923
3426889
1

CCTGGTACAGTCGTGGAGGTCCATATGG
0.000389041
0.006909422
6.41E−07






GTGAAAAGCCCAGAAGTCTACCTGAGCT









GAAAGCACTCCCAAGGAGTTTGGTTTTG









TTTGGGTTTGTTCTAGGTATGGTCCCAGG









GATCCC





1072
3426905
1

GAAAAGGCTTTGAAGTGTCTGAAGAGGA
0.002836517
0.006581456
3.08E−06






GAGACAGGGAAGTGACTCACAGCTCAAC









AGCTTCACCCTCTGGCTTTGATGGTCCTT









GGCTCCGTGATGCTCAG





 783
3427524
4
RMST
ATGATATTGATCTCTGGCTTACCTAAGCA
0.001689593
0.009272144
3.88E−06






TACTGCGTGATAGTAATTATATTGAAAG









ACATTTTTCAATTAAGTTAGGAAAAGAG









TAAATCATGATCAATGAAAACTAAATTT









GAACTATTAAGAAGCCTATGGGGAGCAG









TTTATGTTTCTGATATGATTTATGCTCTA









AAATTTCACTAGTTTCCTTTACACTCTTA









ACTTTTCATAGTTAGGCCTAAACTAAAC









CAAATATTCATGTGCTTTATTATTCTTCC









TTGCTTCTCAGTATCACTTTCCTTATCAC









CTAAAAGGCATTATTAAAAATCAAAAAA









CAAAAAATCTGCACATCTATTATAGTCT









GAATGTATGTTTTTAGAGAATAGAAATA









AGAAAAAAGGGAGGTATTTAAAATGTTG









AAGTAAGTTGTGGCAGACCTGGAAGACA









ATGCATGGCTAAAGTACAGAATTACTTT









CTCTGAAAAATCTTTAAAACAAGGAAAC









CAGTTCATGTCTGTTCAGGGACCTTGCCA









ATTTCTTCATC





 273
3428610
9
MYBPC1
AGAGAAGGAGGCCGGAACTACACCAGC
0.000102061
0.019860486
1.97E−05






AAAAG





 121
3428624
9
MYBPC1
CATTTGAGATGCAGATCATCAAGGCCAA
0.000138152
0.025277716
2.87E−05






AGATAACTTTGCAGGAAATTACAGATGC









GAGGTCACCTATAAGGATAAGTTTGACA









GCTG





  50
3428626
9
MYBPC1
AGGATGCAGGAGAACTTGACTTTAGTGG
2.14E−07
0.070836699
9.91E−05






TCT





 421
3428630
9
MYBPC1
CAGTGAGTACGAGAAGATCGCCTTCCAG
5.22E−05
0.012819523
8.90E−06






TATGGAATCACCGACCTGCGCGGCATGC









TCAAGCGACTCAAGCGCATGCGCAGA





 509
3428631
9
MYBPC1
CTTGATCCTGCATATCAGGTTGACAAAG
0.001171064
0.014030378
9.24E−06






GAGGCAGAGTGAGGTTTGTTGTGGAGCT









GGCAGATCCAAAGTTGGAGGTGAAATGG









TATAAAAATGGTCAAGAAATTCGACCCA









GTACCAA





1901
3428639
9
MYBPC1
AGGAAACAAGCTTCGTCTTGAGATCCCC
4.76E−05
0.007216313
4.05E−06






ATCAGCGGAGAACCACCTCCTAAAGCCA









TGTGGAGCCGGGGA





1440
3428640
9
MYBPC1
GGCAGTGGCCGGATAAGAACAGAATCTT
0.011488537
0.007374662
2.66E−06






ACCCTGATAGCAGCACTCTGGTCATTGA









TATAGCTGAAAGAGATGACTCTGGTGTT









TACCACATCAATCTGAAAAACGAAGCTG









GAGAGGCACATGCAAGCATCAAGGTTA





 100
3428641
9
MYBPC1
CTGATCCTCCAGTGGCACCGACTGTGAC
7.61E−05
0.029360211
3.68E−05






AGAGGTGGGAGATGACTGGTGTATCATG









AACTGGGAGCCTCCTGCCTACGACGGAG









GCTCTCCAATCCTAG





 498
3428643
9
MYBPC1
CCTCCTACTCTTCTGACTGTGGACTCTGT
0.000547163
0.014490122
1.22E−05






CACTGACACGACTGTCACGATGAGGTGG









CGCCCCCCAGACCACATTGGTGCAGCAG









GTTTAGATGGCTATGTGCTAGAGTATTG









CTTTGA





1495
3428647
9
MYBPC1
TGCGTGTGAAGGCTGTTAATGCAGCTGG
0.005280805
0.008215244
3.64E−06






TGCCAGCGAGCCCAAGTACTATTCTCAG









CCCATTCTCGTGAAGGAAATCATAG





 459
3428651
9
MYBPC1
CCAAATTGTGAAGATTGAGGATGTCTGG
0.000664925
0.015153353
1.32E−05






GGAGAAAATGTCGCTCTCACATGGACTC









CACCAAAGGATGATGGAAATGCTGCTAT









CACAGGCTATACCATTCA





 355
3428655
9
MYBPC1
TCAGAGGCACCCATGTTTACTCAGCCTTT
0.000579253
0.015754106
1.72E−05






GGTTAACACCTATGCCATAGCTGGTTAC









AATGCCACCCTAAACTGCAGTGTG





 202
3428665
9
MYBPC1
AGACTCCTCTTGCAAGGCGTACCTCCAA
0.003339377
0.020953424
2.12E−05






ACATAATTGATTCGTATCTGCGAGACTT









ACACTCAAGCAATC





 970
3429167
9
STAB2
CTTCTTACAATTAGGACCGAGTGCCGAT
0.045322973
0.007449469
6.24E−06






CCTGCGCTCTCAACCTTGGAGTCAAGTG









CCCGGATGGTTACACCATGA





1104
3430743
2
FICD
TCAGCCGCCTGTGGACATGCGCAAAGGG
0.00551979
0.008200033
5.38E−06






CCCTCTCCTGAGT





1313
3431048
9
ACACB
CCAGCGAGTGATCCAGGTGGAGAATTCC
0.001298982
0.006971522
3.36E−06






CACATCATCCTCACAGGAGCAAGTGCTC









TCAA





1840
3431135
6

TGCCCAATACACGATTTTGACATTCAGTC
0.00023941
0.010844051
5.73E−06






ATGATTGTTTTAAAGTTTTATTGTAGACT









TTGCTGTTGGATACAAAATGAAGGCATA









CAACTGTCACAGGCAGGGCAGTAAGTAC









AAAGTCTAAGCTGTAAAAACCGTTTGAA









AATATAAACTCGTTTTTGGAATACATGT









GTCAAAGGCTGCCCATGTTAATACCTTT









GGTATAAAACGGTAACGATTCCCTTGAC









AAACCCATCCATCACCTGACGCACATTC









ACATCTCCTGGTAACTACTCTACCTAGTC









TAGTCTCAACCACCCCTGTCAGTCACGA









CTCACTCCTGTTC





 224
3432191
5
TMEM116
TGTCTGGGTATCTGCATCACGCCGAGCC
0.003302969
0.016329795
1.27E−05






TCCTGCTTTAGTTGGTGGAATTTGTGCTG









CGTCCAGCCATATACTCCACAGTTGAGT









AGACCCTGAGATGTTGCCGTTAGAGCC





 899
3433246
1

AGGCAGCAGATACTCGGGTGCTAAAAAT
0.01286993
0.008994596
7.50E−06






CCCTCCAAACATCTCAACATTTTTTCCCC









CTCGGGATCAGTATGGTGTCACG





 627
3433531
1

TGGCTAAGTCACGAATAGGCATTTCACC
0.000170561
0.015569748
1.05E−05






ATATGTACATGATAAATGGCCAATCAAA









ATAAGGAATGGGGCTCATTCTGCTGGAA









ATTAAATACATTCAAACAAGAACAGAGA









TCCATTAGCAAAATGTTTAAAAATAATA









TCACAGGGTTACCAGGGGTATGACAAAA









ATGGACACTTCCATACACACTAGGTGAA









TATATTGGTGAAAATAGTTCAGATAAAC









ATACAACCATGTATGTAAAAGTATTTAT









CATCAATGCATTATTTGTAGTAGCAAAA









ACAACAAGCAGCCTTGGAAACCAGTTAA









TGTCCTCAGCAGGGAATTAATAATATTA









TTGTATATTCATGAAATTGACACCATGTG









GCCACACAAATGCATTACACAGGCCTCT









ATGTAACATAGGATATTCATTAGAGAAT









TGTTTTTCAAGAGGACAAAGTACTTTCAT









TTTTGCCTAGAAAATGGGGGAAGACAAA









AATGCGCTTCTCTCTAGGTTGTGTGATTT









TAGGTTATCCTAAGTTTCATCCTTACGTG









CTCCTGA





1825
3435731
8
PITPNM2
AGGAGAAGGAAAGATCTCGTTCTTAGCG
0.001877871
0.007175536
7.03E−06






AACCCCAGGGAGTGTGGCCTCCCTCCAC









CCCATGACTCTCGCTACCAGGGCCCGGT









GGTCACTATGCCACAAA





1654
3436139
9
DNAH10
CTTGGGCTGACGACAAAGTTGTACATCC
0.009627872
0.006840034
6.70E−06






TGAACCCCAAAGCCGTGAGTGTCATAGA









ACTCTACGGCATCCTGGACCCAACCACC









CGAGACTGGACAGATG





 271
3439162
2
P2RX2
CTGCTCCCGGTCTTGGGCCCTGGGAACC
0.000425014
0.015078838
9.02E−06






CCACCCCACCCCACCCCACAGGCGTTGT









AACCTTGAATCTGCCCAGACTCTT





 334
3439330
1

CTGCTGATGATCAGTGTCAATGCCCCAG
0.001332936
0.008574024
3.79E−06






CAAAGAGTGGCTTTTCTGGCATGCTGGT









CCTTGGACACAAGGGTACAAAGTTCCAT









GCTGTATCTGTAGTTTATAATTTAGAACA









CTCTGTCCTC





1199
3440108
4
CACNA2D4
CACAACGACAGCACAAGGCTCTTGGCTG
0.000318921
0.007172134
3.04E−06


1555
3440184
3
RP5-
ACGTGTCATCCGTCAGTGCTCCATGCAG
0.012305161
0.008586488
8.01E−06





1096D14.2
TGCTCCACCACGGCATCCGCCACTCTGC









CACCAGCTCCGCGGGGATGGACGCACAG









GCCCCAGTCATGGCCCTGCCCTGAGGAG









ATGCTGGTCGTCTTCCTGCTCATTCACTC









CCCTGTGCTGCACTGCTGGGGTCAGACA









AGGCTCCATCCAAGAACCCATGACTTCA









AAAGAAAGAAACCTTTGTCCTCAAATTT









GGTAACAGGCAAACGGTCTGCGTGGAAG









CCCTGTCTGCAGCCTCTGCTCACTCCAGG









ACGTGCTGCCCTCACTGCTCCTCTGATGT









GCCCCCGGCTCAAGGCTGAGCATTCCCG









TATCCACGCAGGAAGGCCGGGGGACTGG









CTCCCAAACAGCGGCCAGGACCTTGGGG









GCACCCAGGGAGACTGGGGCCCTGCACC









TCAGGGCTTTGGATCCAGGTCTGGGACG









AGCCCTGGGAATCAGCATGGGAGCAGTG









GCAGCCATCCTGTGGCCCTGAGGGGAGC









TGGCTGGAGGACAACCTGAAATGCTGAG









GGCAGCAGGAGGAAACACAGAAGGAAC









CTGCGTCCTGGGTGACATCCCGGACCTG









CTGCACTCGCCGGCCCTGGAGCCACCTG









CCTCTGGCTTCATGTGAGCTGTCACACTG









TTATTATTATTTCGTTCCTCAAGTAGGGG









TTTCCTGCTCCTTGCAGCCGGAAGCAGT









AAGTGGTAGCCACCCCACCCCTGCAGGG









CAGTCTTCTGATGGCTCTGAGCTCCCTGA









GGTGGGGGCGAGGCAGGGTCTGTGCTCC









ACTCTGAGGGCCCAGTGGAGCAGCAGGT









GTTCGAACACATAGGGTTTACCCCAGGC









AGAAACCACCCTCATAAGGGCATGAGAC









CCAGGCAGAGTGAGCTCTCTGGCCTCTT









GGTATTTTCTTTTGTGTCTGTCTTCTCAG









CAGCCTATGAGCTCCTCCAGGGCAAAAA









ACTGCCATCATGCTAAGGGGTTCTGGAC









CCTGGGGCCAGGCACAGGGCCAGGGAC









AGAGTGGGCAGGTAACGAAGGCTTGCTG









GGCACCGTGGGAGAGAAGGGAACGGAG









GCATTGAGGGGCAAGAGAAAAGGAGAA









GTGGAAGGCCAGACAGGCAGAGAAGGA









AAGGTTCGTGGAGAGCAGTCTCTTCATG









GGGACCCAAGGAGGCCCCACCAGAGAG









GAACTGAGGCTGTGAAATGGAAGGATG









GAGGCCTGAGGGATCCAGGCCAGTGGAC









AAGTGAGCCCGAGCAGACGGAACCATCC









CCATGCCTATCTGGTTGTCTCCTCCTCCT









CCTGCTCCTCACCCCCTTCCTCCTCCTCC









ACCTCCTCCTTCTCCCCCTCCTCCTCCTTC









TCCCCCTCTTCCTCCTCGCCCTCTCCCTC









CCCCTCTTCTTCCTCCTCCTCCCTCTCTTC









CTCCTCCTCCCCCTCTTCCTCCCCCTCTTC









ATCCCACTCTTCCTCCTCCCCTCTTCCTC









CCCCTCTTCCTCCTCCTCCCCCTCTTACTC









CTCCCCTTCTTCTTCCCCCTCTTCCTCCTC









CCCTCTTCCTCCTCCTCCTCCTCCCCCTTC









CTTCTCCTCCTCTTCTTCCTCCTCCTTCCC









CTTCCTCCTCCTCCTCCCCCTCTTCTTCCT









CCTTCTCCTATCCTCTTTTTCTTCCTCAAC









CTTTTCCTCCTCCTCCTCCTCCTCCTTCCC









CGCCTTACCCCTCCTTCCCCACACTCTGA









AATGAGCACATGGCTCAGACTGAGAGGA









CAAACCTCCAGCTGAATTTAGTTGTAGC









TGTGGTTCCCCAAAATGCTTTGAGGATTC









ATCAGAACCAGTAGCTGCCTCTCTGCTTC









CTCATCTACACACCTAATTTTGTAGCTTC









AGAACAGGTGTGACTCAGGCAGAGGAA









GGGCTACACAGGTGTCACTGTGCCCACC









CCTAGGGAGACTGCTACAGACAGACTTC









CCGGTGGGACCCGGCCCCCACCCATGCA









TGGTGGCCACGGGCATGAGGAGGGTGAT









AATGACAAGGGGAGCCACGATGACCAC









AGGGTTTATAGAGATCTCGCCATTTGCT









GAGCAATGTGGAGGAACGTTACACACAC









CATGTCGCCTCCCCCGATGCCTGCAGGG









CAGGTATCATTGCCCTGCATTCTATTGAG









GAGGAAATTGAGTTGGAAGTGCCCAAGA









TCACGTCGTTA





  81
3440944
6

GCGTGCCTGGGCATTTAACAAAGGCAAG
0.00180613
0.026417303
3.09E−05






AAGGAAAAAAAGGAGAAAATTGGGGAT









TGAGAAAATTGAATTAAAGAAGAAAAG









ATTGATCAGATTATTTGAAGAGAAACCT









CATCACATCCCACCGTTGTTTGCCCCCTT









CCCGACCCTGTGCTCTCTCTTCCGATTCA









GATTCAAAAGCATTAACTGGGCACCTAC









TTAAGCTAGACTGTATGCCAAGCTCCTC









GCATACAATTTCCTACACTTTTAAAGTTG









CAGGCTTTGTAACTGCTCTTAGCAGAGG









CAGGTTCTGCTTTAGAAAGTTTGCATACC









ATCATTTTTCTCTTGGTTCTTAATCAGCG









AATC





1169
3442059
9
CHD4
CAAGCTCTGGTGATTGAGGAACAGCTGC
0.000570716
0.009351255
8.12E−06






GCCGGGCTGCTTACTTGAACATGTCAGA









AGACCCTTCTCACCCTTCCATGGCCCTCA









ACACCCGCTTTGCTGAGGTGGAGTGTTT









GGCGGAAAGTCATCAGCACCTGTCCAAG









GAGTCAATGGCAGGAAACAAGCCAGCC









AATGCAGTCCTGCACAAA





1114
3448127
8
SSPN
ACCAACCCACGGTCTCTGGAGCACCTGT
0.011131791
0.007354431
5.34E−06






GGAATTCGACTGGACTGGCTCCAGCTTT









TACAGTCTCTCTGA





 379
3448205
4
ITPR2
CCCTTCTCATTAGGACCTGGCTGTGGATA
0.003147077
0.013261635
1.12E−05






AAAATTTCTCCCCAGGTCCATCCCATCTT









ATGCAGTGACAATGACCTGTAATGCTAT









CCTGACACCAACTGGTAACATACTGCAG









TATAATTCCCGGGCTAACCACCCAGAGT









CAGCACAGACCACACAAGTTCCAGGGCA









TAGTCCTCAAA





 107
3449806
9
DENND5B
GTTTGCAGATTACGAAGCATTTGTCATTC
0.001925692
0.017715275
1.68E−05






AGACTGCCCAGGACATGGAATCCTGGCT









GACCAACCGGGAACAGA





 626
3452385
1

GTCACATGTGCTAGATAGTTCTCCACAG
9.00E−05
0.009592315
3.89E−06






AGAAGACCTTGGTCTTCAGGATGTCAGG









CAAACCTCCTGACTCAAGCACTGAAATA









AACACAAATCACCATTATGAAGTCAAAT









CTATAAACAAGCTTGGAAACCAATCCAA









AATCCCTCAGATCCACACCTATACACTC









AGTGACTCATGTCTATGAGCCATGGTGA









CCATGCCCAGGGTTGGGGTCAGAAGAAT









CAGGGGAAGTGCAATAGCAAGGGGACT









CTTCCACAGCCTTTTTTGAGGGTTCTTCA









GTCCTGGCTAACTCTGCATTCCATTTATG









ATGCCTATGAGGAATACAAGAGGAGCTT









CAAATAAGCACTGGGTATATGAGCCTGG









AGCTCACCGAAGTCAGA





1819
3452862
7
TMEM106C
CTGGGCACAGGCTAGGCACTGATTCTGC
0.000319739
0.008530675
3.81E−06






TGGTTCTGAGAAACATAAATGGTACCAT









AGGGAGGTGTTTCCTCCTAAGTGGCAGG









AGGATGTTTGCTGGGAGTTAAGTGAACC









AATTCCTCCTCTGCTTACACCACGTGGGG









GTAGGTCCAGAACTCAGGCCTTGGGAAC









ATATGCTGTGCTCTCTTCTACAGGCGCTG









TG





 993
3453875
6

CAATTTACGGCAATAGACATTTACAGAA
1.50E−05
0.017942905
1.38E−05






CAAAAATAAGACAGTTCCAAGACAAAG









GAGTGTAAAAGTACAGCACACAGGTTAA









TACTCTTCACCCTCATCCTCTCCGTCAGC









ACTATCTGCTCCAACCTCCTCATAATCCT









TCTCAAGGGCAGCCATGTCCTCACGGGC









CTCTGAAAACTCGCCTTCCTCCATCCCCT









CACCCACGTACCAGTGAACAAAGGCACG









CTTGGCATACATCAGGTCAAACTTGTGG









TCCAGGCGAGCCCAGGCCTCGGCAACAG









CTGTGGTATTGCTC





2014
3454060
4
FMNL3
TCTCTCTGGGGTACAATGGAGTAGAAAA
0.000984436
0.006743349
4.61E−06






CTTAGGGACAGAAGGAATATACGAATGG









AGAAATTCGATTTGCCCAATCTTTATTGC









TCACCTATTAAAGTGCTAAACAAGCTGA









TGGTGATTCCTGTTCTCAGAAGCCTGTGT









TCTAGCAGGTTATAAGAAGATGAGTCTG









GTTAAAGAGAAGAGCAGGGAAGTGGCT









TAGATTATGGCATAAACTGAAGTTGAAA









CTCAGAATGAAAAGTAGGAGTTTGCTGA









GGGGAAAGCAATATATAAAGTGATTTGT









GCTATAGGACATAAGACAGATTATAGAT









AAGAGAACTCAGAAATAGTAAGGACAG









TGGTAAAAAGTTAAAGGATCCTCCCTTT









CCCCAGTTAACCAGGAGACCAAATAAGG









GACTTGGTGGTAGGAGTGGTAGGAGCAG









GATCAATCACTTATTTATTAAGCACCTGC









ACATGATTCAAAGA





1908
3454236
9
RACGAP1
ATCTCTGGCTGTGACCGCACAGTAAAAG
0.000165652
0.008552193
5.05E−06






AGCTG





1892
3454247
9
RACGAP1
TTGAGGATTTCCGTAAAAAGTGGCAGAG
0.007337714
0.008243299
4.88E−06






GACTGACCATGAGCTGGGGAAATACAAG









GATCTTTTGATGAAAGCAGAGACTGAGC









GAAGTGCTCTGGATGTTAAGCTGAAGCA









TGCACGTAATCAGGTGGATGTAGAGATC









AAACGGAGACAGAGA





1591
3454249
9
RACGAP1
TTGTGCGCCGGGTGGAGATTCTCAGTGA
0.004304377
0.011117041
8.17E−06






AGGAAAT





1689
3454251
4
RACGAP1
GGTGACAACCTGCAAGTGATAAGGGGGT
0.00076237
0.010799497
7.64E−06






GGGTATGGTAGATACATGAGAGAAGAGT









ACACAAGGTTTAGTGATTATGCTGTGGG









AAGGGGAGGAACCAGAGGTGATTCTGA









AGTTTGGAACTGAGCGACTGAGAGAATG









ATAAAAATAGGGAAATCAAAATTGGAA









GTCAGTAGGGTATGGGATAGGGTAGGTC









AGTGAGTAGCGTAGTTGATGGACA





1797
3454663
2
CSRNP2
CCATCACGTATGTCGCAGCAGCATTTCA
0.026058101
0.006874234
7.89E−06






CCCCTGAAGTCTCTAAACTCTGAGCCTG









AAAAGATTTGTATTTAATACACATAACA









TTTTTTAGTTCATTCTGCCTTTCCTATTTG









TTCCAGTTTTTGCTTGGTTTTAGTTTGGA









GGGGAACTTAAGTACACAGATCCTTATC









TCTCCCCATCCCCTAGCCTCACAAAACA









CAGTTGAGAGTCTTTTAAGTACCTGAGC









TCTCGAAGCTACCCAGAACTGAACTAGA









CTCCCCTACCTTAGACTGGTACCCTCAAA









CACAGGACTGAAGCTTAATTGGGAATTT









GGCTTTATGGAGAAAAGAATCTTTTTCA









AAGTTTGTGTCGGAAGGGGAGGGTGAGG









TTTGCCCACTGTCTCTGCAGGAAGGCTCC









GGCTTAATCTAGGAAGTAGATTCCAGCT









GCACGATGAGGAACACATTAGCTTTTGG









GATCAAACCAGGAATATGAATCTGTAAT









TATTAAGCTCATTGCCAACCCACAAGAT









ATGTTTCTGAAAACCTGTAGTTTCTTAAT









TTAAGTCCATCCCCTTCATTAACGCTACA









GTTGTGACTCACACTGATCCCAAACTTTT









AAGTGCTAAATATTAACATTTAGCATTA









ACTGTCTTGTCAAGCGAAAGGCCTTCTCT









ACAACCTAGTCCATCTCACTTCTGGTGCT









ACCTGAGTTGGACAGAATTCTAGCTCAT









GGTTGCTAGGAAAGCTAGGCCTCTGATC









ATAGAAGCAGATAGCTTCAGTCCCAGTC









TAGGCCTAGA





 377
3455102
5
NR4A1
GCTCTGCTGGCACTTCACAAAAGCGCAT
0.000708617
0.013562634
1.16E−05






TCACATGTTGGCCATTAGTAAGCATCGT









CACAAGTCTGAGAAGCAGTAACCCTCAT









TATCCTCATACTCCAAGTG





 994
3455119
1

AAATTCTGGGGCTACATTTCCATCCTGTA
0.034019558
0.007187542
3.36E−06






TGAAACTATTGAACATCCTTGGTCAACA









CTCTCTGTAGAGATTTGTTTTA





1468
3455129
1

TATTGATGAAGGTGTCACAACGGCAAGA
0.024191116
0.006911722
5.22E−06






T





 389
3455389
1

TAGCATCATCATTGAAGTCAAGGCCCAG
0.014179003
0.010346618
6.20E−06






CATGAAGACATCGCCAACAACAGCAGG





1436
3456343
1

CTGCCGCCCGCCTGCAAGATGGATTGGC
0.013379902
0.008092246
3.37E−06






CGCATTGAAATTCCTCCGCGAG





1977
3457204
2
SARNP
GTCACATATATGCCTAAATGCACAGTCA
0.00011347
0.007559171
2.29E−06






TGTGCCTACGTCCTGCCTCGCAATGAGG









GAGCATGTA





 924
3457859
9
TIMELESS
TCGATTTGGGGGCTCCTATATTGTCCAGG
7.10E−06
0.011459793
8.55E−06






GGTTGAAATCCATTGGGGAGAGGGACCT









CATCTTTCACAAAGGCCTTCAC





1048
3461394
4
CPM
TTCAGTATCTTTGGCCTTACAGAAGTTTT
0.000172838
0.008653889
5.97E−06






TAATTTTTATGAGATCGTATTCGTCAGTC









CTTTTCTTTATGCTTTTATGTTCCATGCCT









CACTTAAAAAGGCCCTCTTTCCCCCAAG









GTCATAAATATATTCTATACCCTTTTCAA









TATTTTTATGGTTTTAGTTTTTATGTTTAG









CACCTAACTCCATCTGGAATCTATTTTTG









GGAATCGAGTGGTATGTAGATAGATTTC









ATGTCTGACAATATATATTTTTGAGCACT









CAAATTTTTAAAAAGTATGTATGACTTTG









GTAAGCAGAAAGAGCCAAGAGGAGTTT









GAAGAGACACTCAGAAAGTGGATGTCCA









TTCTGGGTGGGCCCAGGAGTTTGCAATT









TTAGC





1453
3462104
2
ZFC3H1
CCTCAAAGTGACTGACATTTATTTTAATT
0.002887295
0.008108262
5.31E−06






TTGCTTTGTTTTTTTTTATTTTCTCCCCCA









TTCCTTTATTTTGTGTTATTCCTGACTCAC









TTGACACTCTCTGATGCCTGAGAGATTCC









TGTTTGGGATTTAATATCCAGGGCTGTGT









TTAC





2025
3462988
9
OSBPL8
CTGAATCTAAACTTTATAATGGCTCAGA
0.000563692
0.006950222
6.46E−06






GAAGGACAGTTCAACTTCAAGCAAACTC









AC





2040
3462998
9
OSBPL8
AAGAAGCTTATCCAACGCCAACCAAAGA
0.015311147
0.007361228
4.24E−06






TTTGCATCAGCCATCTCTTAGTCCAGCAA









GTCCT





 749
3465245
1

CAATAATGTTGGGAGATGGGACCTAATA
0.000552621
0.006681797
3.72E−06






AGAGGTGATTTGGTCATGGTCATGAGGG









CTCTGCCCAAATAAATGAATTAATTTCAT









TATTGGAAGAAATAGTTTTGTTATAAAA









ATGAATTTGGCTTATTTTGCACATGTGCA









TGTGTTCTCCTACCCTTCCAACATGAGAT









GACACAGCAAGAAGGCCCTCACCAGATG









TGAGCGCCTTGACTTT





 589
3468064
5
MYBPC1
ATGGTGTGTCAAACCATTTGGAACAATT
0.000873066
0.012604826
6.35E−06






TTTTCATTGCTTAGTGATTTATAAAGTGC









TGGTGTATCTTAATAGCAGTGGTGTCTTA









GACTTGCAGAAATACAGTACATCATAAA









TAATACATTAAAGTAGGTCTGCCTCTTAC









AATGTGTATACCTTCAGACTTCTACCAA









ATCATATGTGCAGTCTTAGAGGTTTCTAG









GTA





 192
3468071
5
MYBPC1
TCTGTTCTTATCCGGCCACTGCCTTCCAT
4.98E−05
0.018785189
1.97E−05






AATAGCCTAAGAAGTGG





 419
3468104
2
GNPTAB
TCACGTGCAGGTCTAATTTCAAAGGGCT
0.000655208
0.015552323
1.51E−05






AGAGTTAGTACTACTTACCAGATGTAAT









TATGTTTTGGAAATGTACATATTCAAAC









AGAAGTGCCTCATTTTAGAAATGAGTAG









TGCTGATGGCACTGGCACATTACAGTGG









TGTCTTGTTTAATACTCATTGGTATATTC









CAGTAGCTATCTCTCTCAGTTGGTTTTTG









ATAGAACAGAGGCCAGCAAACTTTCTTT









GTAAAAGGCTGGTTAGTAAATTATTGCA









GGCCACCTGTGTCTTTGTCATACATTCTT









CTTGCTGTTGTTTAGTTTGTTTTTTTTCAA









ACAACCCTCTAAAAATGTAAAAACCATG









TTTAGCTTGCAGCTGTACAAAAACTGCC









CACCAGCCAGATGTGACCCTCAGGCCAT









CATTTGCCAATCACTGAGAATTAGTTTTT









GTTGTTGTTGTTGTTGTTGTTTTTGAGAC









AGAGTCTCTCTCTGTTGCCCAGGCTGGA









GTGCAGTGGCGCAATCTCAGCTCACTGC









AACCTCCGCCTCCCGGGTTCAAGCAGTT









CTGTCTCAGCCTTCTGAGTAGCTGGGACT









ACAGGTGCATGCCACCACACCCTGCTAA









TTTTTGTATTTTTAGTAGAGACGGGGGTT









CCACCATATTGGTCAGGCTTATCTTGAAC









TCCTGACCTCAGGTGATCCACCTGCCTCT









GCCTCCCAAAGTGCTGAGATTACAGGCA









TAAGCCAGTGCACCCAGCCGAGAATTAG









TATT





1936
3468105
9
GNPTAB
TGCACTTAAGCGGAAGATATTTCCCAGA
1.12E−05
0.007894032
6.49E−06






AGGAGGATACACAAAGAAGCTAGTCCC









AATCGAATCAGAGTATAG





1843
3468121
9
GNPTAB
CACAAAGTGCGCCATTCTGAGGATATGC
9.90E−05
0.010165009
7.09E−06






AGTTTGCCTTCTCTTATTTTTATTATCTCA









TGAGTGCAGTGCAGCCACTGAATATATC









TCAAGTCTTTGATGAAGTTGATACAGAT









CAATCTGGTGTCTTGTCTGACAGAGAAA









TCCGAACACTGGCTACCAGAATTCACGA









ACTGC





 618
3468122
9
GNPTAB
TTTGGATTCACATCGCGGAAAGTCCCTG
6.95E−06
0.011918652
7.85E−06






CTCACATGCCTCACATGATTGACCGGAT









TGTTATGCAAGA





1921
3468125
9
GNPTAB
CAAATGACAGTTTGGTGGCTCCACAGGA
0.00020953
0.007617622
6.03E−06






AAAACAGGTTCATAAAAGCATCTTGCCA









AACAGCTTAGGAGTGTCTGAAAGATTGC









AGAGGTTGACTTTTCCTGCAGTGAGTGT









AAAAGTGAATGGTCATGACCAGGGTCAG









AATCCACCCCTGGACTTGGAGACCACAG









CAAGATTTAGAGTGGAAACTCACACCCA









AAAAACCATAGGCGGAAATGTGACAAA









AGAAAAGCCCCCATCTCTGATTGTTCCA









CTGGAAAGCCAGATGACAAAAGAAAAG









AAAATCACAGGGAAAGAAAAAGAGAAC









AGTAGAATGGAGGAAAATGCTGAAAAT









CACATAGGCGTTACTG





 579
3468126
9
GNPTAB
TGAAGGTGCCTATAGTGACAATCCAATA
3.85E−06
0.014435127
1.06E−05






ATTCGACATGCTTCTATTGCCAACAAGT









GGAAAACCATCCACCTCATAATGCACAG









TGGAATGAATGCCACCACAATACATTTT









AATCTCACGTTTCAAAATACAAACGATG









AAGAGTTCAAAATGCAGATAACAGTGGA









GGTGGACACAAGGGAGGGACCAAAACT









GAATTCTACAGCCCAGAAGGGTTACGAA









AATTTAGTTAGTCCCATAACACTTCTTCC









AGAGGCGGAAATCCTTTTTGAGGATATT









CCCAAAGAAAAACGCTTCCCGAAGTTTA









AGAGACATGATGTTAACTCAACAAGGAG









AGCCCAGGAAGAGGTGAAAATTCCCCTG









GTAAATATTTCACTCCTTCCAAAAGACG









CCCAGTTGAG





1015
3469401
1

GCCATCCACATGGCCAATTCAACCTGCT
0.003557945
0.008173686
6.81E−06


1076
3469805
5
RIC8B
TGCATTCTTGTTTCCCACTTGCAGATCTC
0.025498894
0.009095378
6.52E−06






CCAAGAGTCCCTTCGAATTTACCTATAC









GAGTTTCAGCTTCCCGCTTGCCACTTAGC









TTGATAACGACTCAAAAATCATTCCCTT









GTTTTCAAGGGCTCTTCTTTCTTGTCTGC









TCTGTGTACTACAGGGC





  73
3470260
4
SART3
CCTGTGACCAGCAGCATACGGGCTTTGG
0.01575619
0.021496487
3.64E−05






GGT





 189
3470958
4
TRPV4
CCCGGCAAGACTGATTTGGAATGGCAGG
3.23E−05
0.013118108
8.19E−06






CACTCACAGTTGTGTTTATTTGAGGGTAC









CACAGGAAGTGGGGGCCCCCAAATTGGC









TAAGGAGCCCCAGGGTGGAGGGAGGTA









GAAGCACACTGGGTCTGTCTGGGAGCCT









GAGCACCTTCTCTGTGGGCTCCTTCCTAC









CCATGGATTCCAACCCCCACCCACCTCC









CCACTGCCCACCCACTCACCCATCTCTTC









TGCTTTCCTTCTCCCTGTGCCCCAGGCCA









CACCATTCCTCTGTGCACCCTGCACTTTC









CCCTCTACACCTTTGTCCTTGACACCTCC









TCTGCCCTTTATCTTCCTCCTCCTCCTCCT









CACAGCCTTTCCCCCTCCCCATCAGGATT









CTGGCTGCCCTTGCTCTGCAACCCTGCCT









GGAACTTCAGGTCCCTGATCTTACAGCC









TA





 543
3471602
4
ATXN2
GTGAACACATCCTACTCTGCTTCTGATTC
0.001339198
0.012656175
7.58E−06






TCAACTTACTGTTTTTGAAGCACATGAAC









AGGCCAGGCACGGTGGCTCACGTCTGTA









ATCCCAGCACTTTGGGAGGCTGAAGTGG









GCGGATCATTTGAGGTCAGGAGTTTGAG









ATCAGCCTGGCCAGCATGGCGAAACCCC









ATCTCTACTAAAAATACAAAAATTAGCT









GGGCGTGGTGGCACATGCCTGTAATCTC









AGCTACTCGGGAGGCTGAGGCAGGAGA









ATTGCTTGAACCTGGGAGGCAGAGGTTG









CAGTGAGCCTGGGCAACAGAGTGAGTGA









GACTTATATCTCAAAAAAAAACAAAAAA









CAAAAAACTGAAAGACATGAAGAAATG









GTTTTTGTACCAAGGTTTGGCCCACGCTG









AGATTCACAAAGAACTGGCTTTCAGTTC









TTATCTTTATTTTGATTTAAACTGGCCCA









TCATGTTGTCCTTTG





1136
3471633
9
ATXN2
AGATTCCAGGCTTCAAGATCAGAGGCAG
0.004061321
0.008273273
6.75E−06






AACTCTCCTGCAGGGAATAAAGAAAATA









TTAAACCCAATGAAACATCACCTAGCTT









CTCAAAAGCTG





1028
3471764
5
MAPKAPK5
GAGTCAGCTGGACGTGGTAGATCATGCC
0.001705241
0.007376753
3.38E−06


 687
3472790
4
TBX3
GAACATGAATCCAACCAAGGGTCCCCCT
0.002880903
0.008033958
6.27E−06






TTCCACCTCTGAGTAACTCTGTGTATATA









ACTTCTTCTTCCCACCAAGGGGAAGGGA









TTTGAAAGATTACACACTATAGCATTTTT









CTCAAAGTGCAAAATGCATGTGCCCTCT









AGACCCAGAATCCTGTGAAATGAAGTTG









TTAATGTAATAATAAAATGTAGCATTTTT









GATCAGACAAAAAGGCCATGGGCCTTCT









CCACCTAATGGCCATGGCAGAGCATATA









AATGAAAACAGATGTTTCCAGTGGTCAT









TCAGTACTGTAACTGTCAATATTG





 556
3473370
5
RNFT2
TGTTGACAGTGGACGATACACCCTCCCT
2.29E−06
0.012094303
1.14E−05






TCTCTCTCCGACAGGGTCGCCATCAAAC









CCAGTTGAAGAGGGTCCAGTGAGAGCCT









ATTAGAGGCTTCACAACTCACTTGCCAG









CAGCAGATTTCTCCCATCGCTTAGAGAC









TGCTCACTCACACCACTCCTCAGAAGAC









CTCCAGCAACATACACAGCCAGGAACGA









CAGGAAGGAAGGGACATGACATTTACTG









AACGGCAGTGCTGAACCAGGCACTGAGC









CAGGGCCTGTTACTAAGGGCAAAGC





1518
3473458
9
TESC
TCTCATCGGATCAGATCGAGCAGCTCCA
4.91E−05
0.007870352
2.49E−06






TCGGAGATTTAAGCAGCTGAGTGGAGAT









CAGCCTACCATTC





  47
3473622
9
KSR2
GACAGAGTCCGTTCCGTGTGACATCAAC
4.80E−07
0.065638753
8.65E−05






AACCCTCTACGGAAGCCACCTCGCTATT









CAGACCTGCACATCAGTCAGACGCTC





 311
3473690
9
KSR2
CAAAAAGCCTTACAGCAGTGCGAACTGG
0.000664925
0.013784107
1.32E−05






TCCAAAACATGATAGACTTGAGCATCTC









CAACCTGGAAGGGCTTAGGACCAAATGT









GCTACC





 557
3473708
1

AGGGGCTCCCCCCAGACAGTGTCAGGAG
0.046404092
0.008792034
8.42E−06






ACCTGATGGGTGAAGGAGGGATCAGTCG









GCACAGTTGA





 452
3474192
9
CIT
GAAGAGCGGAACATATTATCTCGAAGCA
0.001852254
0.018785154
1.33E−05






CAAGCCCGTGGATCCCCCAATTACAGTA









TGCCTTTCAGGACAAAAATC





1441
3474713
3
AC069214.1
CCAACTCCCTCTGTTAAAGGCATCTCTCC
0.002217036
0.008112305
5.71E−06






AACTCGGC





 364
3474739
4
AC069214.1
TGACTCCAGAGACGTTCCCATTAAATGC
0.01809196
0.007620008
2.94E−06






ATCACCAACCCTAGAGTTTAGGTCCTGC









ACATTGTTAGCTCTGCTGTGCGAAAACA





  72
3475900
2
ABCB9;
AGAATGAAGCATCCTGCAGGAGCCCTGG
0.000368854
0.025422078
2.24E−05





RP11-
CTCGATGCCTGGTAGCCACTATAAATAA








197N18.4
AGAAGAACCAGCAGGCTGTGTGGATGCA









AGGCCCAGTGCTCCCCTGTTCTCTGAGG









AGG





 931
3475981
2
PITPNM2
TTCCCCATCGACGGGAAGGCTTGGACTC
0.00592778
0.007346276
5.13E−06






CAA





 267
3476305
5
ATP6V0A2
CCTGAGCCACCAGTTATCACCAGTAACA
0.040585072
0.011750362
7.01E−06






GGGGATGACACACCTACCTCCTGGGGCT









GTTGTGAGAATTAAGAAACACTAAGTAA









GGAAAGCACACTCTCAGGTATGCGGCA





 347
3476911
8
TMEM132B
ACCTGCCTGACATTGCCAGTAATTACCA
0.001093286
0.011585565
1.01E−05






TCTTGGTATGAATTTCAGTGATGCAGAA









CCCCTGTCAGAGACAGCTGCGTTTGTAA









AAGCAAGTCTGGATGACACAGTGATGAT









TACATCATCTCCATCTTCATCGCCATCTC









ATAGTAAAGTTAACCCACTGTGGCATCT









GGCTGATGGTTTTGTGGGAGAGGATTCT









ATGTCCCACCGCA





 366
3481437
4
TNFRSF19
GTACCTGCCTGCTAAGGAACAGACCCAC
0.001095886
0.012314567
6.70E−06






CTGCCTGCTGTGGTTGTATTGCCAGAAGT









GTTGGATTCACATCTTGGCTGCGCTTTGT









ACTGATGGTGTAACCTTGGGCAAATAGT









CTCCCCTCTTTGAACCTCTGTTTACTCTG









GAAAATGCCCAAGTCTGCAGATTTTGGA









TAGAACTAAATGAACTAGTAGTCCAGCA









ACATGATA





 798
3481446
4
TNFRSF19
TCCAACTCCTACCTTGGGAGAGAATGAC
4.12E−05
0.011301562
3.72E−06






AGTGAACCAAACAAGTAAAGTAT





 945
3481456
9
TNFRSF19
TGCGCTTGCTCCCATCCATGTGCTGTGAG
2.53E−05
0.009087909
6.89E−06






GAGGCCTGCAGCCCCAACCCGGCGACTC









TTGGTTGTGGGGTGCATTCTGCAGCCAG









TCTTCAGGCAA





1490
3482106
6

GCCCCAACATTGAAGTGCCAGGATCAAA
0.009647164
0.006783836
4.16E−06






GCCATTCACTAGCATCTCCTCAAACACCT









GCCTGCCATCACCACCACAAGTGCCAGG









ATCAAAGCCATTCACTAGCATCTCCTCA









AACACCTGCCTGCCATCACCACCACAAG









CACCAGTAGGAAATCCTCCCTTGGTGC





 879
3484182
1

ACCGAGACCCTGATGGGCCAGTGTCTCG
0.00587839
0.006816243
3.47E−06






GGTGGGGTCTGTGCAGCATACTGAACAC









AGCGGCGATCCTGAGGGACCCGTGATGC









TTCTAGCCCA





1905
3485957
7
POSTN
CATAACATACATACAAGGCTCGGTCTTT
0.000905174
0.006832111
4.62E−06






TCAATGGGATAACAGTTCACAACTCTTC









GATTTGAATTGTAATGAATCTGGTGACA









AGGATTTTTCTCTAATGGATTCCAAAGTT









AGCCAGAACTTTTAATGTCAAGATGAAA









AAGGGTGTAAGGTGTTATATTTTCTTCAA









TTCCTTTACCACAGGAGGCTAACTCCAC









AATTTCCCTCATGTTTCTCATTCAGAAAA









AAAAATATTAAATTTGTGTTCAGAATTA









TTTGATGATTGCTTCTTTGTGCTGATGTT









TCAGTTCCTGAAGTCAACTTGGCTCTCA





1492
3487850
4
SERP2
CATTTGGGATTGTGTAGAGGCTCTCTCTC
1.77E−05
0.009359098
3.89E−06






AGAAGCATCTTTCTGTTATTTTAATGCGG









ATAGAAAGCTTTACATTCTTTGCTAATAA









CATCTGGGTTTTAATAGCGCCTCCTTGCC









CTGCCTGTCTCCGGCATCTCTCTTTTTTC









CCTCTTCTCCATCTCTAGAGAAGCCACCA









GAAAATGGCATCTTGCTTTTGACTTTCTT









TGTGCTGATTCTTTTAGAGAACTTAGTGA









TCCACTTTGCAATGTCTCGTCTCCTAACA









TTTCAGCTTGTTTCTCAGAGGGCCTGTAC









TTTGCTTTCTACCAGCTCTTTCATCATTTT









CATTTTCTTTAATGAAAAATAAGCAAAA









CTGTATGATTTCTAGGITGTCTTCTTCTC









CTAAAGGATATTCTTCTTCCGGCCTCTCT









TAATCTCTCTTCTCAGCAACTCCCTTGAT









CTCTTTTATCATCAATTTATTGTCAATAA









AAGTGGCTTTAGGAAGCCTCCTGTTACC









TGGCAGGGTTCCAGCTTTCTGACACTTTC









CTATGGGACCCACTTGTTATGTCA





1469
3492720
5
PCDH9
CCAGGTGATGGTCTTTAATTAGAGACTT
4.68E−05
0.008721471
8.18E−06






GAATATTGAATCAAAACCACAGAAGATT









ATGTTATTACAGCACAACCCTCACCTTG









AAACGTGAAAAATGTGTTAAATTATTTT









GCTACTTTTCCTTTTAGCCAGGAACTATT









CAATACTTTCACAAGTACCTGTTTAACTC









AGCCCACTACACTGGCCATCATAAATAA









CCAAAACGTGATTTCTTTACTTTCTTTAA









GGAAACAGTATCTCGCACTTCCAGTG





 551
3494195
4
LMO7
GATTATTGAGTTTCGTATGCTTTTCGAAT
0.000367918
0.009638476
5.96E−06






ATGGTAGGATGTTAAATGTGGTAAAAAG









AATGGCTCTTAAATGTGTTTCATAGATCA









TATATTAAGCTTGACTAGTGAGAATATTT









TTCATCCCTCTATTTTTAGTTATACATAT









CTTGAAGCCATTTCTTCTGTTTTAGAATG









TCAGCATATGATTTGCTAGGTC





1976
3494747
1

TTGGCTCCACTAACACACTGCACTAACT
0.001265835
0.006763304
1.25E−06






GTGGTCCGGGGATCAGGAAGCAGCATCG









TGGCTGCATCATCATGCCTGCCACATTTG









CACCAACAG





1887
3497274
3
DNAJC3;
TATTCATTTATTGATCTCCCCACACCATC
3.19E−05
0.009677701
3.97E−06





RP11-
CAACATCTCTACATGATG








10E18.2






  87
3497377
4
HS6ST3
AAGGCAGGCAGTCATCGCCGGAGTCCTA
7.38E−05
0.027178585
2.76E−05






AGCGGCAAAAA





1082
3497692
2
RAP2A
TTCCTTCTCGCCTTTAAGGGCTATGGTTG
0.008795089
0.007805083
5.00E−06






TAGTGTGACCCGTGGCTAACCTGCTTTCA









AAATCAAGTATTTGCTGTAGCAGAGCTT









TATTGCAGGCATTTTAAAAATTGAATAA









CCATGTGAAATAATTTGGGCTTAAAAGT









GAACATAAATTATAGAGTGGAAGGTAAG









GGACAAAAGCCTTTTACCTTTAATTTTCC









TGGAGAATTATATAAAGGTTTTCTTAGA









ACAATTTTGCCCTGATTACTGAAGCGTC









AAATAAAGCTGG





1882
3499158
9
ITGBL1
GCAGGTGTAAGTGTGATAATTCAGATGG
9.32E−06
0.009461541
7.12E−06






AAGTGGACTTGTGTATGGTAAATTTTGT









GAGTGTGACGATAGAGAATGCATAGACG









ATGAAACAGAAGAA





1993
3499164
9
ITGBL1
GTGGTGAATGTACCTGTCACGATGTTGA
1.12E−05
0.007754542
4.29E−06






TCCGACTGGGGACTGGGGAGATATTCAT









GGGGACACCTGTGAATGTGATGAGAGGG









ACTGTAGAGCTGTCTATGACCGATATTCT









GATGACTTC





 521
3499195
9
ITGBL1
TTCTTGTCATTGTGGGAAGTGCATTTGTT
0.002350957
0.016058117
1.81E−05






CTGCTGAAGAGTGGTATATTTCTGGGGA









GTTCTGTGACTGTGATGACAGAGACTGC









GACAAACATGATGGTCTCATTTGTACA





1459
3499197
2
ITGBL1
TGGTTCCTAACGAGAGCAATTTTTCCACC
0.000475873
0.009854259
3.60E−06






CAAAAGTCATTTGGCAACATCTACAGAC









AATTTTGATTGTCACACTGGGTCGGGTA









GGAAGGTATGCTGCAGACATTTGGTGGG









TAGAGGCCAGGGATGCTGCTGAGCATCC









CGCAGTGTACAGGACAGCCCCCAAACAA









GGAATTATCCAGCCCCAAATGCCAATAG









GGCTCAAACTGAGAAACATTGAGTTATA









TGGCTATTAGAAATCCACATTCTTACAC









AAGAAAGACCATATTAGAATCTAAGGAA









AACATGCATATTCACATTAATTAATCGA









TCAGATTTTTCCAGAATTCCGTATCAGTC









ACCA





1261
3499203
4
RP11-
AGCCCAGTCGCTTTCCCTTGATATAGCCT
0.013881148
0.006923667
2.88E−06





397O8.4
TGTTCTGAATTAAAATGGAAAAAATATT









TCAATTATTTTCATCTTGTTCTCAACTGG









ATGTTAGTCAATGTGGTCTCTTTTTGAAT









ATGTATCAAATATTAATGATCCATAATA









TTAGGGAGATAATTTTAAATGAAGTGAT









ACGTGTCTAACTTACTTAAAGAATAAGT









TTTTGGTTTTTGCTTTTAAAGACAACCAA









ATCTGATATTGTTCATCCTGATAAAAATA









ACAACTTTTAGTGCTTAAAGCATTAATTA









AGCAAGTGGCTAGGTATGATAAAGAACT









TCTGCTTGCTCCCCAAGAGGCAAACTAT









TAGAAGAACTGGAGCGGGAGTCCTTTGG









ACCCATCGTGGATCTCTTTAAGCCACTGC









TACCCAAAAACATTCAGGACAAGCAAAC









ATTTAGAGCAAGAATCTCCAAATTCTTC









AGGATTTGTAATGAAATGATGTTCAGTT









CCATTTTGCTCTTTACATAGGGTGGAGA









ATTGTCATGTCTTCTCTAATTTTTCCAAG









TAAAGTGGTAGCAAAATGTTTTAAAAAG









CAATCTTATATTAGAAAACAAAAATGTT









GTCACTTGAAATACCAAAACAACATTTC









TGAGCGTTGTTGAGGGACTGGCAAAGCA









ATCAGCTACTATAACAAATCAGTAGAAA









TAACCCTCCCACACCAGATATGCATGCA









GAAGGAATGGAGTATTATAGAGACTTGA









TACAATGGACATATGCACATGGAGGTAC









AAAACACACAGTCTAAATACAAATGAAT









TCCATCAGATTTACTATACGGAACATCA









GTAGTGACAGATTGCACTTCTTACTTAAT









AACAGCAAACTTAATTTCTGAGGGGAAA









AAAATGGCGAAGTCTTATCCCAAACAAA









TAGCAAGAGAGGTATCATCAAAGAGCTA









AAATTTTCTTTGGCATGGTAAAGGGGGA









AATTGAGTTTACCAACTTATTTACATGAC









ATTTCTCTATATTGGTGAGTAATGCAATG









CCATTTTGTTACATAAAGTTGTTTGATGT









TTTTTAATATGCCTTCATATAAATATTTT









ATTCAATATGTTGTATTTGTGAATTTAAC









AAATGATATTAAACACAAACTACAATGC









AGACAGACAAACTCTTTGTATGCAAATT









AGCAATACATACCAACAGTTCTTGATAC









ACAGGTACCTACTACATGCAGCTCATCA









TTGCTGTCCTCTTCCCATGCTACAGGTGA









GACCAGA





 163
3499919
1

TGGAAACAAGCTGTGGACAAACTCTTCT
3.23E−06
0.02130792
1.70E−05






CTT





1020
3499954
1

TCCATGGTCCCGTGCCTGACTTCATGGAT
0.046404092
0.008798959
6.33E−06






GGTTCAATGCTGCAGTTCGTCCAGTTCAT









GGACAC





 158
3501363
9
COL4A2
TGGCCAATCACTGGTGTCACCGGGCAGC
0.011533849
0.018104363
2.52E−05






TGTCTAGAGGACTTCCGCGCCACACCAT









TCATCGAATGCAATGGAGGCCGCGGCAC









CTGCCACTACTACGCCAACAAGTACAGC









TTCTGGCTGACCACCATTCCCGAGCAGA





1408
3502223
9
ATP11A
ATTGGACACACACTACTGGACTTGGATC
0.002212029
0.006829333
5.34E−06






AACCATTTTGTCATCTGGGGGTCGCTGCT









GTTCTACGTTGTCTTTTCGCTTCTCTGGG









GAG





 913
3506074
6

TTTGCTGCGACCACCTTCCATCATAACCT
3.18E−06
0.016317744
1.38E−05






TTGCACTAGTGATTGTACCAAATGGAGA









AAACGCTTTCCGGAGACG





1569
3507963
2
KATNAL1
TGGCGAGAGTTTGCTAGTCTCCCTCCCCG
0.015967819
0.010333182
8.40E−06






GCTTTGTGCTGGTATTCCACGTATTCCTG









CATTAATATTGCACACCCAAACCAGTCT









ATCAGGGAGGCTGAAGCAAGGGCGCAG









TGTGATATTTTAGGAATACAGAAGATTT









AGAAATACCCCTATTTCTCATTTGCAGTT









TTTTTTTCCAATTCTGTGCTCTGTCAACA









TGAGGGACCTATC





1929
3510072
9
POSTN
ACACACCCGTGAGGAAGTTGCAAGCCAA
0.002951948
0.010200983
8.04E−06






CAAAAAAG





1568
3510096
9
POSTN
AGGGAGAAACGGTGCGATTCACATATTC
6.49E−06
0.008737308
7.60E−06






CGCGAGATCATCAAGCCAGCAGAGAAAT









CCCTCCATGAAAAGTT





1777
3510099
9
POSTN
GTCTATTATGGGAGGAGCAGTCTTTGAG
0.000751323
0.008159496
4.59E−06






ACGCTGGAAGGAAATACAATTGAGATAG









GATGTGACGGTGACAGTATAACAGTAAA









TGGAATCAAAATGGTGAACAAAAAGGA









TATTGTGACAAATAATGGTGTGATCCAT









TTGATTGATCAGGTCCTA





1332
3510150
4
TRPC4
TGACTATTGTAGCTCCAAGAACCTCACC
1.22E−05
0.008844699
3.51E−06






CCCAAAGCCAAACAACTATTTTACAAGC









TGCGGTGGACCCGCTTACAAAATCAGCT









TAAGAAACGTAACCTTAAATTTTAGAAT









TACAGATTTTAATGACTTCATATTCCACG









ACTGACCCTCTGAGTTTTTT





 519
3511633
5
TNFSF11
CCCAGAAAATGAGAACACGGACACAGA
0.000595218
0.012364946
6.51E−06






ATCTCCATCTCACATTGTTTCCTGCTCTG









CCTACTTCACCACAGATGACAGCAAAGG









ACCAAGAGTTACAACTGCTICTCATCAG









AGCCCTGGATCAA





 463
3512032
4
ENOX1
TCAAAAGAGTGTGGGACTGGTGTCCCAA
0.033960096
0.007007489
5.15E−06






CAGAAAAATAGATCCTTGGAACAGAAG









AAAGAGGCAGAAGTAGATCCACATGTGT









ATAGACCGTGGATTTTAGACCAAGGCAT









GGGGGCAATTCAGTGGAGAAAGGATTA









ATTTTTCAACAAATAGTGTCAAAACAAG









ATATCCATAAGCAAAAAATGAACATCAA









ACCATATTTTATAATATATACAAAAATG









AACACCACATGGACATATATGTAACACC









TAAAACTATAAATCTTGTGGAAGAAAAC









CTAAGAAATAATCTTTGTGAGATTGGGT









TAGACAAAGATTTCTTAGATATGACACT









GAAAGTGCAATTC





1613
3513641
1

GCCCACACCAGGGACCATGTTTCATCCT
7.74E−06
0.009463004
4.74E−06






CCTAAA





1123
3517038
1

GCCATGTTGGGAAGCCGCATGACTCGTG
0.012450296
0.006662742
3.90E−06






GACAGGCGGGGAAAAAGAATTGTCACA









TCTATGTGGATAACTTACCTTCAGGTATC









CCAACCAAGGACACTGAGG





 786
3517930
4
KLF12
AGCAGCTGTTTCCAGGTCATATTCAGCT
0.00059375
0.008249929
2.90E−06






GTTTTATTCCTAAAGATATAACAGAAAT









CTTTAAGCTACATTTTGGTGTGTCTGTGT









AGGCTGGCATAGGACAGGGTGGTGTTTA









GTGGGAAATATCTGTGAACCAATTATTG









CAGTTGACTTAAGGCTCCAGAAATTTCC









AGAATCCATGTTCATATTCTAAAGACGT









GCACATTTATGTATGCTCCATCTTTAGAT









TTTCACTTTCTTTTTTCCTCTCCACTTCTT









GCTCTATCCTGCTCCATTTTTAAGGTTTT









AAAGGACTTGGGCATGTGTCGTTGCTTG









ATAATGGTGGCGGTAGTGATTGTGCTGT









GTACCTAAAACCAGTATCAAGGGCTGTT









GTGTAACA





 191
3521655
5
HS6ST3
TCTGCACCAGGAATGAGACACACTACAC
0.031823166
0.016338133
2.03E−05






TAGTTTGCTAATTTGTTTCCTAGGGCTGG









CATGACAAAGTACCATCATCATGGTGGC









TTCATCAACAGAAATATUTTATTACCTCA









CAGTTCTGGAGGTAAGAAGTCCAAAATC









AAGCAATCTACAGAGITGGTGCTTCTAA









GGGGTATGAGAGAACAATTTATTTCAGG









CCCATCTCCCTCTATGTGAGTCTGTCTTC









AA





 428
3523505
7
ITGBL1;
GGTACCTGTGTATCAAGAACTGTTGGTA
0.006310467
0.014771455
1.26E−05





RP11-
TGTATTGCTAATTTGCATACAAAGAGTTT








397O8.4
GTCTGTCTGCATTGTAGTTTGTGTTTAAT









ATCATTTGTTAAATTCACAAATACAACA









TATTGAATAAAATATTTATATGAAGGCA









TATTAAAAAACATCAAACAACTTTATGT









AACAAAATGGCATTGCATTACTCACCAA









TATAGAGAAATGTCATGTAAATAAGTTG









GTAAACTCAATTTCCCCCTTTACCATGCC









AAAGAAAATTTTAGCTCTTTGATGATAC









CTCTCTTGCTATTTGTTTGGGATAAGACT









TCGCCATTTTTTTCCCCTCAGAAATTAAG









TTTGCTGTTATTAAGTAAGAAGTGCAAT









CTGTCACTACTGATGTTCCGTATAGTAAA









TCTGATGGAATTCATTTGTATTTAGACTG









TGTGTTTTGTACCTCCATGTGCATATGTC









CATTGTATCAAGTCTCTATAATACTCCAT









TCCTTCTGCATGCATATCTGGTGTGGGAG









GGTTATTTCTACTGATTTGTTATAGTAGC









TGATTGCTTTGCCAGTCCCTCAACAACGC









TCAGAAATGTTGTTTTGGTATTTCAAGTG









ACAACATTTTTGTTTTCTAATATAAGATT









GCTTTTTAAAACATTTTGCTACCACTTTA









CTTGGAAAAATTAGAGAAGACATGACAA









TTCTCCACCCTATGTAAAGAGCAAAATG









GAACTGAACATCATTTCATTACAAATCC









TGAAGAATTTGGAGATTCTTGCTCTAAA









TGTTTGCTTGTCCTGAATGTTTTTGGGTA









GCAGTGGCTTAAAGAGATCCACGATGGG









TCCAAAGGACTCCCGCTCCAGTTCTTCTA









ATAGTTTGCCTCTTGGGGAGCAAGCAGA









AGTTCTTTATCATACCTAGCCACTTGCTT









AATTAATGCTTTAAGCACTAAAAGTTGT









TATTTTTATCAGGATGAACAATATCAGA









TTTGGTTGTCTTTAAAAGCAAAAACCAA









AAACTTATTCTTTAAGTAAGTTAGACAC









GTATCACTTCATTTAAAATTATCTCCCTA









ATATTATGGATCATTAATATTTGATACAT









ATTCAAAAAGAGACCACATTGACTAACA









TCCAGTTGAGAACAAGATGAAAATAATT









GAAATATTTTTTCCATTTTAATTCAGAAC









AAGGCTATATCAAGGGAAAGCGACTGG









GCTAAATCCTCAATTTTTTTTTCCAAAAT









GCAGGCATATCAAAATCCAGGATGTACA









TGGTCTTACTTTGAGTGAAATAGTAGTC









ATAGCTGAGGTTTCTTAGCCTACAATGT









GACATAGGGCCTGTTGACTCTCTTGAAT









ATGGAGTAGGGTTTCAAAGTGTTGACAG









TTGAGTCTGCAAACTAAGGCTGAGTTAT









ATTTTAGTTTTTTTTTTTTTTCCTGGTTTT









CACTAAGTCTAATTCCAATGTCTACTGGC









AGAGATTGTGTTTGCATTTGAGGTAGTG









GAGGGCGGTACTTTCCAAGTGCTGTTGG









AATCCAGATAAACTCAAGGAGCCCAGAA









AGACAACGGGTATAATGGCTCTCCTCTT









ATGACTTAGCACTTTAGTTGACTTTTTTG









AAAAAGTCTCTGGGTGGAATACCTCAGT









GATGATGATTTGCCAAACAAGCAGCGTT









AGTGCCAACACCTTCTCTAAACTTGCTGC









ATCCCTTCCAATTGACATTA





1471
3524517
1

AGGCACAGGCGGGAAGGCTGCATACTCT
0.006129156
0.007067951
6.11E−06






CC





1570
3525217
1

TGAAAGGGATAGTCACCTTGGGTTGGGT
0.000794501
0.008468936
4.75E−06






TGGAGGGGATGGTCACGTTGGGTTGGAA









GGGACGGTCATCTTTGGATGGAAGGGAT









GGACACCTTGGGATGGAGTAAGTGGTCA









CCTTGGGATGGAAGAGATGGTCATCTTG









GGATGGAAGAGATGGTCATCTAGGGATG









GAAGGGATGGTCATCTTTGGATGGAAGG









GATGGTCACTTTTGGATGGAAGGGATGG









TCATTTTTGGATGGAAGGGATGGTCATC









TTGGGATGGAAGGGACGGTCACCTTGGG









ATGGAAGAGATGGTCATCTTGGGATGGA









ATGGCTGGTCACCTT





 799
3525316
2
COL4A1
CCCAGGTTCATGAATATGGTGTCTATTAT
0.00034347
0.014745656
1.67E−05






AGTGAAACATGTACTTTGAGCTTATTGTT









TTTATTCTGTATTAAATATTTTCAGGGTT









TTAAACACTAATCACAAACTGAATGACT









TGACTTCAAAAGCAACAACCTTAAAGGC









CGTCATTTCATTAGTATTCCTCATTCTGC









ATCCTGGCTTGAAAAACAGCTCTGTTGA









ATCACAGTATCAGTATTTTCACACGTAA









GCACATTCGGGCCATTTCCGTGGTTTCTC









ATGA





 282
3525317
2
COL4A1
AGATGTCAGCAATTAGGCAGATCAAGGT
6.70E−07
0.02435786
2.92E−05






TTAGTTTAACTTC





 120
3525318
2
COL4A1
GGTGTGGGTGCCTTCCATACTGTTTGCCC
9.07E−07
0.029855107
3.15E−05






ATTTTCATTCTTGTATTATAATTAATTTTC









TACCCCCAGAGATAAATGTTTGTTTATAT









CACTGTCTAGCTGTTTCAAAATTTAGGTC









CCTTGGTCTGTACAAATAATAGCAATGT









AAAAATGGTTTTTTGAACCTCCAAATGG









AATTACAGACTCAGTAGCCATATCTTCC









AACCCCCCAGTATAAATTTCTGTCTTTCT









GCTATGTGTGGTACTTTGCAGC





1702
3525346
9
COL4A1
GAGATCAAGGGATAGCGGGTTTCCCAGG
0.017555038
0.007078593
7.84E−06






AAGCCCTGGAGAGAAGGGAGAAAAAGG









AAGCATTGGGATCCCAGGAATGCCAGGG









TCCCCAGGCCTTAAAGGGTCTCCCGGGA









GTGTTGGCTATCCAG





1572
3525347
9
COL4A1
CTGGCCCACAAGGTTCACCTGGCTTACC
0.002951948
0.008002999
5.89E−06






TGGAGACAAAGGTGCAAAAGGAGAGAA









AGGGCAGGCAGGCCCACCTGGCATAGGC









ATCCCAGGG





2002
3525376
9
COL4A1
TGTGGAATGTCAGCCCGGACCTCCAGGT
0.00140662
0.008255721
7.04E−06






GACCAGGGTCCTCCTGGAATTCCAGGGC









AGCCAGGATTTATAGGCGAAATTGGAG





1138
3527440
9
PARP2
GCTTTGGGAGACATTGAAATTGCTATTA
0.000417578
0.009113313
4.95E−06






AGCTGGTGAAAACAGAGCTACAAAGCCC









AGAACACCCATTGGACCAACACTATAGA









AACCTACATTGTGCCTTGCGCCCCCTTGA









CCATGAAAGTTA





1135
3527672
2
RNASE6
TTCGAGTGCCTAGGATGCCAGACCAGAG
0.000909538
0.012047043
1.21E−05






TTGAGACAAAAAGAAATAAGATTATTTT









CTGCTTTGTAGTTCTGTACTTTTCGAGAG









AAGGGAATAGGGAAGACAGCAAAGAAA









GATTCAGATTTCTAACCCTGCAACTTTTG









CCAAGCTTTATTGCCCTG





1084
3527990
6

CCAAACATCAGGCTGTTCACAAAAATAA
3.69E−05
0.017132822
1.65E−05






CCCACAGTATCAACTTTAGAAAACAAAT









CTTAAGACTATAACACTAATTATTTTTCT









AGAGGATGCATTTGACATGCCAACTCTC









ATTCA





 999
3528533
4
AE000661.28
ATGGTGGCTACTGCAAGGGGTTTTTTGTT
0.005348101
0.006614602
5.62E−06






TAGGGAGAACGCACTGTGGAACTCA





1208
3529692
4
RNF31
TAATCTTGTTCGTCCAGGTGTCTCAGAGT
0.035044469
0.007877746
3.05E−06






CCAGCTATGTTAGACACACTCAGTTAAT









ATTAGCCAACACAACAAATATTCTGCTC









CCTTTTC





 980
3529894
4
LTB4R
CAGGGGACATCCACAAGTACACATCTGT
0.045706551
0.007831994
3.62E−06






GGTCACTAAGGTGACCAGCTCATCCCAG









TTGGCCTGGAACTTTCCCAGTTTAAGCAC









TGAAAACTCCTTGTCCCAGCCCTGCCGG









TTTCCCAACAAACTGAGATGGTTGGCCG









CTCAAGTGGCTACCCTGACCATCACCCC









AGGCTCTACTTTAGCGACTGCTCACACCT









CCCTGCTTCCCAGACAGAAGTCAAAACA









GCAAAAGAAACCCAGTCCCCAGGGTCAT









GCTAGGGCTACCAAAACTGGGATGAACT









AGCACCTGTGAACTAGAACAGCAGGGA









GTATGCTTAGAGTGCCTGGTCCTGGGTG









TGGGGAAGAAAGGCCATCAAGGTAGAT









GCGGGTGGGGAACAGCTTGAGAGAGGA









GGCAAGGACAACCCAGTTTCTGTCTGAA









GGGGCCTCTGGTTGACCCTGGAGTTTCT









GTCCCCAAACACAGGCCTCACGGGATTC









TTTC





1869
3531193
4
COCH
GCCATTAGCAAGATGGATAATCCTTGAT
0.030285522
0.006501799
5.60E−06






AAATAAACTTGTAAATACAGTAAGATGT









ACAAAATATCACATAGTGATAGGATGCC









AAGATTAGTTTTTTTCTTTAAGAGTTCAT









TTGGAGTACTAAACCCCACTGTTTCATTT









TAATACACTTAATAGTCCTTGGTTTATGA









AGACATTTATGTGATGATGAAAGTTATT









TAGCATCTTTATGGAAGGACTTAGCTGA









GCTGTATTAGGCAAAAGAAGGAAAGAA









AGTGGTTACAGGGCAACGGGTCAGTGAG









ATCT





 642
3532227
7
SNX6
TTCTGAGTATGACGAGTGCACGATGATG
4.38E−05
0.010058046
7.03E−06






GACCACTGTCATGGGGAACACAGTGCGG









CATCACGGCACACAGACTGGCATCGCCT









GGGCGTGCGCTGCTCCATGTTTCTCAGA









AAA





1850
3533039
1

GGCATGGGTATTTTCCAGCCCCAGATTG
0.002187152
0.007213692
5.97E−06






CTTGGTAAAATGATGGTGGAGAACAAAA









AGGTGAGGGCTGCAGTCCTAGCTGGCCA









AAGTTCAAAGAACCATGCTGGGCTGGGG









CTAAAAGAAAAACCAATGGAATTATTAT









GCCCCCAAACTTAGCTATTTGGAAGAAA









AAACACAAGATTTAAGGTAATCTGTTGT









TAAATGTTATTTGGATACACTAACATCGT









GCATGAAA





 327
3535010
1

CTAGTGAGCTGAACAGGCAAGGAACAC
0.002182207
0.013765072
9.95E−06






AGAGGTGAGATCAAGGAAGGCAGAACA









AGAATGGAGCGGGATTTAGGAATTAAAG









CAAATCTGCAATTAAATATAACTGAAGT









AATGGTAAATTTCAAGAGAACTAGACTG









TAAGAACTAACCTCACATTGTGGGAAAA









TAAAAATTTTAACCTTTTCCCCCTTTATT









TGAAATGTTCTATGACTACTTGAAAGAA









TTTAAAAATGAAAGTATTTGTCAGTTTTG









TCCTTGAATATCTTTCATTTGTTATAGAA









TACATATTTTGTCCATAGTATTTTGTTTT









ATAAGTGTGAGGGTAGATTTTTTTATTGA









GAGCCTACTAATATGCCTGG





1102
3536724
4
LGALS3;
GGTCATTGTCTTTCCTGTCTCAGTAGTAA
0.011264381
0.007864671
3.99E−06





AL139316.1
TCAATCACTGCTTATCTTCAAAAACCCA









GAGTAGGGGATGGGGCAGTTAGTGGGG









ACAGAGGGCAGATGGGTAAGATTCAGA









GCACAGGCTAGTGTGACGGAAGTTTAAA









CTTGTGAGTTAAATAGGGTTTGGCAATC









TAGCTGGATAGCATCCCTGCCCCTTGAA









GAGATGTTTTTGTGGCGCCACACTACTG









ACTTAGG





1162
3537877
7
C14orf37
CTTTATCCCGTGAGGAGCACGCGGAAAC
0.039082309
0.007619176
4.86E−06






CTCTACCCATGCAGGATGTTTCTAAGAA









CCACTTCTTCCCTGTCTTAACTAAGAAGG









CTCCCACAGCTGGTGCCAATCAGGTGGA









GAACATGGCAAGTCCCCGAAATGCACTT









CCAAAGACAGGAAAGATTGCAGTGGGA









CAGAACCCAGAAAATCTCTCACATTCTC









GAAAACCCGAAAGAGAACCTCCAAGAA









AGACGTTTGCCTCTCCTCCACCTCTTTAT









CTCGGCGGGAGAGGAAGCCTCGCCCCCA









TTCATCCCGCCCCTTCTCCCCACCCCGCC









GCAGGGAGAAGTTTACCATGGCTGCCTG









CGGCCCCTTCACTTCCGGTGCCGGTGCC









GCTAGGGCTGCGCCATCCCCCCAGTCAA









TCGGACAACCATAGCCTCCAACTGACCT









TTCTGACAGCTCTGAGACTCCTCCGGCC









ACGACTAGGTGCTGTCCTGGAGGAAACG









GTGGAGGACGGCCGCACAAAAACCAAT









CTA





 766
3540148
2
HSPA2
TTGCACTCAAGTCAGCGTAAACCTCTTTG
0.014622507
0.007412038
3.46E−06






CCTTTCTCTCTCTCTCTTTTTTTTTGTTTG









TTTCTTTGAAATGTCCTTGTGCCAAGTAC









GAGATCTATTGTTGGAAGTCTTTGGTATA









TGCAAATGAAAGGAGAGGTGCAACAAC









TTAGTTTAATTATAAAAGTTCCAAAGTTT









GTTTTTTAAAAACATTATTCGAGGTTTCT









CTTTAATGCATTTTGCGTGTTTGCTGACT









TGAGCATTTTTGATTAGTTCGTGCATGGA









GATTTGTTTGA





 927
3540771
1

CGGGGATATTCAGGCCAACACTAGGAAA
3.85E−06
0.010896849
6.72E−06






CCACAGCCAAGTCAGGCAGGGCTTGGGG









CGGAACTGCTGACACCTCCACCCTAGCC









AATCCAAGGTGCACGCCTGCCTCATGCA









GCCCAGCGTGACTCCCGCCATTGGCACA









CTGTGCCCATCACAGGCTGGAGCTCCTTT









CCTCCACCGTCTTCCCAACTCCTGCCAAC









CAGAACTTAACTACTCCTTTGGATTCTGC









TTTTCACTTGTTCTTCATCAGACTATGGA









AGCTTAGACTTCATAATTTGGCTGAGAC









TTCAAAAATAGTTTTAAAGAAAGCTATT









CCCACCCTGCTAAAGTAATTACATGATT









CTGCCCCCTTAAACACCCAAAGCCCTAA









TCTGTGTTCTCA





1630
3542092
2
SLC39A9
TTGGCTACCAAAGAGACGCAATTGATGA
8.12E−06
0.010138736
5.76E−06






TGAGAAGCATGATTCTTGCTTCCATATA









ACCAAAGTTAATCTTAATTGCAATTTGA









CTCCGTTTCCTTGGTAGGGATAGACTTTC









TTCAGATTCCAAGTGCTCTCTTAAATGGC









AAATTAAGTTAAAGAATACTACTGCTCC









ATTCCCCTCACTTATTCTCCAGTTAATTG









CTTGTCAGTTCCATTTCAAGAAAGCAGT









GATGTTCCAGGTTTGATTCAGTTTTCCTG









TGCACACTATTGCCAAATTTTTTTTTAGC









AAAGATTCTGCACTGGAACGTAGACAGT









TGGAAACAGTACTACCTACCTAGAGGTT









ATGTGTTTTCTCTTTCTCCCCGCTTTCACC









TCTTTCTTTCCCAATTCAAAACAGCCAAG









TGAGCCCTGTTCTGGTATTTTGAATCATT









AGAGAAAAGAAAGGGAGTGGCTGTTTTG









AGTTGTCCTTTCTTTGCAGAAAGGAGAA









AATGTGATTGTGTTTTTTTTTTACCAGCC









TACTTCTAAGTGTCACTGCCTGGTTTTTC





2031
3542093
2
SLC39A9
ACCAGCATCGGAGTGTATTAAGCCCCTG
1.71E−05
0.008672443
6.82E−06






AAACACATGGTAGCTAGGGACTGAACAC









AGGAACCGTATGACAGCAGCACAAACCC









CCAAAGGATGTTCCTGCCTTGTGGGCCC









CTGAGCCCCTTGGGAGACTGAGAATCAT









GACCAGATTCATCCAGAACTGCTGCAGT









GTTAAGTGAAAATCCTCTGTAGTTGTTCT









GCAGAGGAACCTTCCTTCCATTAGAAAA









TTTCTGCTCAATACAGAATGGTCCACATC









ACCCAAAGTGCACTGTTGGAGATGCTGT









GAAATTAAAACCTCTTTGTACCTGAGAC









ATCTAGATTCACCTCAGGAGGCCTGAAG









GAAATGTGTAACTTGTGGGAAAGAACTA









GACAACCATTTAGGAATTCTCTAGATAT









ACTCAGCCTAACCCAGTGGCTTAACACA









AGGAGATTGGCTTTGATCTTTTTTTCTTG









TGGCATCTTCCAGCAAGTTAGAAGTCTC









ATGGGATAAGACTGCAGTTCCCCTGGTT









CAATAGCTGGAACAGTG





1583
3543814
8
C14orf43
CCCACAGGGTGTCCATGGGAAGCTGGGA
0.047987301
0.006772589
5.92E−06






TA





1412
3544272
9
YLPM1
GGACCTCTTCGAAGGGCTGGGAGTAGAG
0.003965967
0.006997005
4.50E−06






AGAGAATACCACCCCGAAGAGCT





 750
3544533
4
FOS
GAACTCTAGCGTACTCTTCCTGGGAATG
0.004800285
0.008329058
7.28E−06






TGGGGGCTGGGTGGGAAGCAGCCCCGG









AGATGCAGGAGCCCAGTACAGAGGATG









AAGCCACTGATGGGGCTGGCTGCACATC









CGTAACTGGGAGCCCTGGCTCCAAGCCC









ATTCCATCCCAACTCAGACTCTGAGTCTC









ACCCTAAGAAGTACTCTCATAGTTTCTTC









CCTAAGTTTCTTACCGCATGCTTTCAGAC









TGGGCTCTTCTTTGTTCTCTTGCTGAGGA









TCTTATTTTAAATGCAAGTCACACCTAGT









CTGCAACTGCAGG





 181
3544721
4
TTLL5
GGATCAGTGATGGACAGGGCCCATTTGG
0.008619147
0.018014742
1.83E−05






CTGCCTTCTTGGAGTACCCAGGGTAGTC









ACGTTTGTGCCAGGCCTCTTGAAGTCCA









GCAACCACAGTGATAGCCTTTTGGCCAC









AGCTCTTTTCTGTGTTACTGATGTCTCTC









ATC





2075
3545532
6

CTTCAGAAGAAGGACTTCGGAATGCACT
0.003188906
0.007127484
3.35E−06






ACAACAGGAAAATCATATTATAGATGGA









GTA





1376
3546925
4
FLRT2
AGGCTTTGTCTTTCACCTGGAGAGAAAA
0.013721065
0.007711219
4.82E−06






TAGGCAGCTTAGCTCTCTCTCGACTTTGG









GGACATCTGTCTGCTGGTCGAATCCACC









TC





1105
3549156
5
ITPK1
CTGGATTCTGCAGTATGAACAGGGCAAC
0.00247563
0.007281351
2.35E−06






CTCACCAA





 298
3549159
5
ITPK1
GACGCTTCCTGGTCTTTGGAACTGACCTG
0.000122396
0.011814315
4.49E−06






AGGCAATGCATCTCCATTCCTGGCTTTGA









CTACGATGGTTCTGCGCCCAGCTGGACA









AGGAGCACAGTCCAGGGCCCTCAGGTCA









AGATGCCTCCTCCTCAGAGTCTCAGCCCT









GCACCAGGCCAAACGGGAACCGA





 410
3550007
7
CLMN
TGGAAGTTTCCTACAAGGGGTGACAGCT
0.024191116
0.007528968
1.46E−06






CTGGACAGGGCATCAGGTGCCTGTGTGC









TCACTGCAAGTCTGCCCCTGGTCGGCTAT









ATGATCTTGGTCAAGCTGCTCTGTCTCTC









TGGGTCCAGCTAGACAAGATGCTCACTG









AGTCCCCTCCTGACTCATTTGTGATTTTA









TAAGGGTTGCCTGGTACATGCTTTCTGA









AGGGGAGAGCAAGGGGAGGAGGAACCA









ATGCAGAGACTCACCACGGACCTGAGTC









TTGGCAGGGAGGAGAGAGCAGAGGGAG









CCTGGGGCTGAGGAAGACTGGGGGCAG









GGGTGCTAGAGATGCCTCTCTTCTTTCAC









AAACCTCCTGTGCTGGCCTGCTCCCGGA









GTGCTGTCCAGAAAGCCTCTTCAAGAAA









CCCATTACAAGTGACCACAAAGAATGCC









CGTTCCAAGACATGCATTCTGAGGGAGG









TGTGCACCAAAGCTTTAGTGGGCAGGAA









GCTACCCCACCACCCAGCTCCAGCACTG









CTGGGAGCTGATTCCAGCCCAGCCACTC









CTCATGGCTTTTATATGGCCCTGCTGGGC









CCTGGCGATCTGGTTTGAAAATC





1182
3550126
1

ACGGGTTGAAGATCCGAGAGGCTGAGTC
0.019902689
0.006509539
3.04E−06






ACTTCCACAAAGTAACACAGCTG





1307
3550432
9
PAPOLA
GTTTGAGGTGGATATGAAAATTGCTGCA
0.002543079
0.008731933
6.43E−06






ATGCATGTAAAAAGAAAGCAACTCCATC









AACTACTACCTAATCA





1152
3550451
2
PAPOLA
GGGTACAAGACTAGACATGACTGAAATG
1.66E−05
0.015015134
8.97E−06






GATTTGGGTTTTTTGGTGACCTCCCTTAC









TGGGCTAATCAGCACTTGATCGGAAGTC









CAGGTTAGTATGTGAAGCCAGG





 620
3551602
4
EVL
TTGCCACTTGTGAGATATAGATTTGTACA
0.001526056
0.010602987
6.67E−06






GATGTGTCCCTGAAGCCACATATCCAGA









TCTGTTTTAAACTTGCCATCCTGTTTCCA









TATTCCAGAGCAAACATTTGAGAGAGAT









GGGAGAAAACAGTCAAGAATTTATTTTT









GAATTTAATTATTCATTCATATGTTTAAC









AAAAGTTTATTAAATGCTTACTGAGGGC









AAGAAACCGTGTAGGCAAAATAGATAA









GAAATGAACAGCGGCCTTCCCCTCAAGG









CATTTAGTTTTTCATGGTAGACAGGTTCA









TAAACAGCTAACTGGAATGTATTGCAGT









AAGTGTTTAAATAAAGGTACGTGCAAGG









TACTTAGGGACCACA





1243
3552386
1

AGGAAGGCAGACTCTGGTGAAGACGTG
0.000731459
0.00793614
3.48E−06






GGCCGTCACCGTCAGCCTT





 515
3553052
4
WDR20
CACTGACAGCACATTCCACTTGAGACCA
8.57E−07
0.018753834
1.95E−05






GTGCTGCGGGACTGGGGAGTGCAAGCGT









CAGGGTCCCAGCCGAAGCCCTTTAGCTT









GGGACTTCACAGCCACAGCCTGAGTCCC









AGCTCACAACTCCAGACCAAATTCCCCT









CCCAGCTCATGTGCTGCGATCAAGACAG









ATGC





1912
3553727
9
MARK3
ACAGGTGGATCAATGCAGGGCATGAAG
0.00041969
0.007515649
5.85E−06






AAGATGAACTCAAACCATTTGTTGAACC









AGAGCTAGACATCTCAGACCAAAA





 134
3553758
2
MARK3
CCGTTACCCTGAGAGTCGGTGTGTGGCC
0.000265615
0.022135548
2.26E−05






CCATCTCCATGTGCCTCCCGTCTGGGTGG









GTGTGAGAGTGGACGGTATGTGTGTGAA









GTGGTGTATATGGAAGCATCTCCCTACA









CTGGCAGCCAGTCATTACTAGTACCTCT









GCGGGAGATCATCCGGTGCTAAAACATT









ACAGTTGCCAAGGAGGAAAATACTGAAT









GACTGCTAAGAATTAACCTTAAGACCAG









TTCATAGTTAATACAGGTTTACAGTTCAT









GCC





 166
3553838
9
C14orf153;
GATAAATATTCAAACCTTCGACCTGTTC
9.17E−05
0.018661694
2.19E−05





RP11-
ACTTTTACATACCTGAAAATGAATCTCC








73M18.2;
ATTGGAACAAAAGCTTAGAAAATTAAGA








AL139300.1
CAAGAAACACAAGAATGGAATCAACAG









TTCTGGGCAAACCAG





1681
3554544
7
CDCA4
CTCTTAGGTCTAGGAAGATGTGGCTGTG
0.001054975
0.010173309
7.36E−06






TGCGGCTCCTGATTTTCACCCAGGTCTCA









CTGCAGCGCAGGACATAATGAAGAAGTA









TCACACACACATTTAAAGTAAAACATGA









TACATTCACACT





1287
3554623
2
PACS2
CGCCGCCCGCGGGCCTGTCCGACGCCGG
0.009193693
0.006617289
5.66E−06


1932
3554841
2
CRIP2
CTGGCATCCTCTGGGCGTCCCATGATCCC
9.17E−05
0.007654287
3.52E−06






TTCTGTGTCTGCGTGTCCGAATCCCCGTG









TGACCCTGTCCCAGCATTTTCCCGCCGAC









CCTGCGTGTCCCCGTGGCGCTGTCCGCTC









TCCCTCTCCTGCTGCCCACCCACCTGCCA









GTGTTATTTATGCTCCCTTCGTGGGTGAT









GGCCACGCCCTCACCATGTCCCTGGCAG









AGGGCTTCCCTCCGGGATCCCCTGCCTG









GTGCCCACACTGCCTCGCAAGCGCTC





 351
3556347
9
SUPT16H
AATTGAATTCCGTGAAGGCTCCCTAGTA
1.29E−06
0.02158001
2.25E−05






ATCAATAGCAAAA





 568
3557916
9
TM9SF1;
TGCCAATGTTTCAGTGCGGGACGTCAAG
6.72E−05
0.01010437
7.35E−06





RP11-
CCCCACAGCTTGGATGGGTTACGACCTG








468E2.1
ACGAGTTCCTAGGCCTTACCCACACTTAT









AGCGTGCGCTGGTCTGAGACTTCAGTGG









AGCGTCGGAGTGACAGGCGCCGTGGTGA









CGATGGTGGTTTCTTTCCTCGAACACTGG









AAATCCATTGGTTGTCCATCATCAACTCC









ATGGTGCTTGTGTTTTTACTGGTGGGTTT









TGTGGCTGTCATTCTAATGCGTGTGCTTC









GGAATGACC





 243
3557960
4
TM9SF1;
TTAGAACTCATACTGCCACATCTTGATTC
0.000191608
0.016704805
1.10E−05





RP11-
CTGCACAATCTCTTATTAGTTGTGATTTT








468E2.1;
TAACATCTTTGTGGTTGTTTTCACATTTT








AL096870.1;
TAAAGTGAAGAGATAGCACGTTCATTGT








CHMP4A
AGAGATTTGGGGATTAGCAATAACACAG









TCAGGTCTCTAGCACATACTATGTATTCA









ATGATTGGTGGCTAATATTTTTCCTTCAC









AAAATTTGGGCCTACTCCACTGGACTC





 960
3560007
8
AKAP6
AGCTTAAAGGACTGAGAGTAGCAAGCAT
0.009417954
0.009483293
6.50E−06


 637
3560223
5
NPAS3
ATGTTGCAGCGGGACCCAAGTCGCAGAG
0.006389661
0.009451309
7.54E−06






CAGACAGCAAT





 937
3560438
2
EGLN3
GCGCCTCGGCTTCGCGCTCGTGTAGATC
0.001877871
0.009109859
6.72E−06






GTTCCCTCTCTGGTTGCACGCTGGGGATC









CCGGACCTCGATTCTGCGGGCGAG





1960
3561338
9
MBIP
GTGGTCCAGTGCCAAGAGACATTTATCA
0.001877871
0.00715965
1.92E−06






GAGAATTAAAAAACTTGAGGATAAAATC









CTTGAATTGGAAGGCATCTCTCCTG





 220
3561724
1

TTGCAAAAAACTGCCGAGATCAATACAA
5.66E−05
0.02169482
2.54E−05






ATTCCTTCCAATGCTGGCCAAAGTAGAA









GACCTGTCACCCAAATTAATTAACCTTTC









CTCAAGATCAATTGGTTTTCTGTTGATTT









AGCAGTAATATTGTAGAACATTTAGCTA









TAATGTATTTTAATGTGATCCCTCAATGT









CAACA





 124
3561767
8
CTD-
ATGGGCAGTTTGACAAAAGAGCCACCCT
0.000146145
0.013827712
1.59E−05





2058B24.1
CTGAGAGAAGCAAGAAATCTCCTCGGTG









GCCTAACCAGGCACTCTACCTGCATCGC









TCCAGGAAACTGCTATG





2008
3562015
9
TRAPPC6B
GGCATCTATGTACTTCAGGACAACAAAT
9.90E−05
0.007586042
5.75E−06






TTCGCCTGCTTACTCAGATGTCTGCAGGA









AAACAGTATTTAGAACATGCATCTAAG





1774
3562032
6

TGCTAAGGCCATCCATTGTCTTTTGTTAG
1.42E−05
0.009799503
2.98E−06






GAGTCAAACAAAATTTTAGTAACCAAAA









CATATTTTCAATAAAATTTTATATGTATA









TAAGTAAATAACAAAACAACAAAAAAC









AAAAAAAGAACAAAACAGCACCAAGAA









CCTATGTAAAATTTCATCATACAATTTCT









ATGCAAGCTGCTTGATTACAGAAAACTG









TTCAAACTGTTCATCAAAAACTGAGTGG









GATTTTCCATTGATATTTCAGATATTCAA









ATCAACCCATATTCTGAGTATCAATCTG









AATTGCACAGGTTAAGATGTGAACCCTT









CACATAGTGTTGAAGATGTGTTGAAATC









TGTACTTGAATTGGCATTGTTTTCCTCAG









AGTTAGGCTGCCTTCATGAGAAATATCT









TCTATCCCTGAGAGATCAGCTACATC





1589
3562055
5
CTAGE5
CATCCCGACCCTCTTGTTATACTTTACAT
0.03244577
0.007294252
6.93E−06






CCCGAGGCAGCGCAGGTCCGAGCCCGAC









CCGCACAAGCCTGCGACGTACCCTGTCC









TCGCCACCCCACCCCTCGGTTTGGTTTCG









GCCGGGCAGCCGCGAGAAGGCGGGGAG









GCGCGGACAGCCGCAAACTTCCCCTTCT









TCGCGCAAGCTTCGCAGACGTGTCCGGG









TCGTTTGCTCTTAAAGGGGCCGGCGCTCT









ACCTGGCGAAGCCACCCAGCCCTGGTAG









TGGAGAGGCTTGGGACTAGAGGATGAG









ATTCGGCCTCATACTCCGCGCTGT





1543
3562729
9
FKBP3
GGTCCACCAAAATATACTAAATCTGTTC
0.000158328
0.012294869
8.50E−06






TGAAAAAGGGAGATAAAACCAACTTTCC









CAAAAAGGGAGATGTTGTTCACTGCTGG









TATACAGGAACACTACAAGATGGGACTG









TTTTTGATACTA





1394
3565024
9
DDHD1
CATCAAGTAGTGGTACCAGACTTCATAG
0.014650635
0.00854315
5.67E−06






AGGTTATGTAGAAGAAGCCACATTAGAA









GACAAGCCATCACAGACTACCCATATTG









TATTTGTTGTGCATGGCATTGGGCA





 144
3565594
9
WDHD1
TACAGGATTTGATGGGGATCAGTGCCTT
3.92E−06
0.029618511
3.19E−05






GGAGTTCAACTGCTAGAGCTGGG





1320
3565810
1

GTACATAGGCTATGCAAAAGGAACGAG
0.039419514
0.006735638
4.08E−06






ATATGCAGAGGCAGAGCCCAGAGTAGAT









GCCAGAAAGGCAGTGGAAGCAGAGACT









CGTGGCA





1803
3565943
1

ATAGCGCTCTCTCGACGTCACTGTGTCCC
0.009323916
0.006563171
4.38E−06






GGCTTACAACTAGAGGTGTCGCACACAC









CCACTTGGGTGCCTCCCCTTCCAAAACC









AAGCAGAAAGGCGTCTAGAAAATTAGA









AGGTTTTGCCAGTTGGTGCTGGCGTAGA









GGACGTTTCGAAGGCGCTTGGAGCACCC









CACCGTTGCACTGGATGTAGCTACCCCG









GCTTGTGGTCAATAGAGCTCC





 898
3566362
1

CTGCTACTGTGGAATAGGTGGAACATGT
2.38E−06
0.01176147
1.04E−05






ATAGTGGGAACCACAAGCTGTCACTGCC









ACATTCTTGCATGTCTCAAGAAGCTACT









GGCAGGCTTCCCCTTTTTGCCTTATTGGC









CAGAAAAGTATTGCATGCCCGCGCCTAA









GCCAACCATGACAAGGGAATGGTAGGTA









CCATCATGATTAGCTTA





 733
3570152
7
SLC39A9
GCCTCCTGAGGTGAATCTAGATGTCTCA
8.43E−06
0.017920236
1.69E−05






GGTACAAAGAGGTTTTAATTTCACAGCA









TCTCCAACAGTGCACTTTGGGTGATGTG









GACCATTCTGTATTGAGCAGAAATTTTCT









AATGGAAGGAAGGTTCCTCTGCAGAACA









ACTACAGAGGATTTTCACTTAACACTGC









AGCAGTTCTGGATGAATCTGGTCATGAT









TCTCAGTCTCCCAAGGGGCTCAGGGGCC









CACAAGGCAGGAACATCCTTTGGGGGTT









TGTGCTGCTGTCATACGGTTCCTGTGTTC









AGTCCCTAGCTACCATGTG





 676
3570164
1

ACAACCATTGCTGACCCAGGCTTGAGGA
0.000742232
0.007613108
4.51E−06






AGCGGCAGCTGGATCCCAGAAAGGATGT









GGTCCTGCTACTGCCGCTGTTCCTCAACA









TGACTCACCCTGTGATGCAACAGTTCGT









CCTGGCAG





 729
3571068
4
DPF3
CTGGTTTTTAGCCTGTCGTGGAAGTGCTG
0.003217076
0.00842338
9.64E−06






GGACAGAAGCAGCCCCTTCTTCTCTCAC









TCCCCGGCTGCCCCTCCTAGCCCCTCTTC









AGGGGGTCCCCATGTCTCAGCCCGAGGG









AGAAGTTGGCTCTGGCCAGAGCCACGCT









CACACTCCCACAGGATGCCGCAAGTCCC









AGGCCT





1293
3571928
2
NPC2
AACAACATTAACTTGTGGCCTCTTTCTAC
1.42E−05
0.014150671
1.02E−05






ACCTGGAAATTTA





1756
3572106
5
YLPM1
GCCCATGAATCTCATCGGCTTTATCATGA
0.001143679
0.008301208
6.42E−06






AAGTTTATTGTTTTTAATCCTAGTACAAT









CAGCTACCAGTTACATACAGTAAAAAAC









AGAAACAGCCACAAAGCAATGATGATA









GAGATAGTCTGTGACATTGTACAGTGGA









GGAAATACTCTCTGTTGGAATCCTCCAG









CAGACCCCCGCCTGGCTTCAGCAGTTAA









GCTATCACTCCCTCCCTCCCCAAAACAGT









TAAAAGAAAAATTAACGTCTTGCTTGGG









TACAGCA





1167
3572167
2
RPS6KL1
CCCTATCTTGTGATTTCAGACTTGGGAGA
0.011762838
0.006906632
3.92E−06






GCAAAAGGGAGGGGAAGAAAATAAGAG









TAATGGGGGGAGGAAGGAATGCATGGG









TCTGCCCCTTAGAGCAAGTCTGAAACCA









GAATCAAGAGTCCTCCTCCCCAGTGGGC









CTGTGTGGGGGAAGAGGGGCAGCCTGCC









CCAGGGGTGCAAGAGGACAGCAATTCA









GCTTCCAGGCCAAAGCAGTTTAGA





 978
3575711
1

CACTCCCTACCCTGATGTTGACAAGTGC
0.046404092
0.008276865
7.07E−06






AGCTTGTTTTAAAACTGGGCGCTGCATTT









TACATGGAAAAGATTTTATTTTGAAATCT









AGGGTGGAGTAAAACTCCAGCCAGTGAA









GACTTGCCATGTGCTGTG





 755
3576107
1

CGGGGTCTGCGAGGAGGACGTTCATGGG
0.000579253
0.007787951
3.24E−06






CGAGTGTGTGGTGGTGGGTGAACTGCGG









CAGAACCCGAGATTAACAGCTGGAAC





1275
3576442
2
CCDC88C
CTGTCTCGTGGTTGAGCTCGCAAACCTG
0.000894351
0.006736738
4.90E−06






AAAACTACTGACGCGCCTTCCGACTCTC









ACGGCCTTTTCTCTTGCTTGCCTGCGGTG









CCAGGAGAGGGTTTGGAATGAGGAAAG









GGGTTCCCACGCATTTCTGCTGTTTGTTC









TGTGAATGGAAACACTGTGCCAAGCCCC









AAGAGGATTACGCTTCCAGGTGTGTAAC









GTGTTTTCTGTGTCTGCCGCTTCCAGCAG









CTGATATCTTTGGAACAAATAATCCACG









TCAGCATGGGGACCAATTAGGATGCAAT









GACAAACTGACTTCCCCCAAAGCAGACA









CTACTCCAGTATGTCCCAGTAGAACACT









CATTTGCAATGTGTTGAGCTCCGTTAAGC









ACACACACACTCACACAACAGGCTTACG









AGGCTCAGGCCTGGCGGGTCAGAAAGCC









CACTCCCTCTCCCAAGGCCACTGGATCC









CAGGAGAAGCCCAGACTGGCGATACTAC









AAAGGTCTCCAGGGCCTGGCAGACCCCA









GAGTCAGGCCTGCTGTTAAAAAGTGAGA









GTGCTGCTGTTCCATTCCTGGGGTCCCAA









GCACTTCCCTTTACCCCAGGACCCAGGG









CAGCCTGCAGGGCAGCTGGCGGTGGCCT









TGGCCATTTGCCCCCAGCCTCCAGCTGG









CTCCTGAGCTCTGCACCAGGGGGTTTGG









GGACCACACAGGCACCTGCCTTCCTAGA









TTTCCCTGGCTCACTTTTCTGCAAACACT









GGATCTGCCAGGCCTGGGGATTGGGGGG









CAGGAAAGAGGCCCCCATCCAGCCCCCT









CCAGGCCAGTGTGCACAGTGCACCGAGG









GGTCATCCGCACAGAGCGAGGTGCAAGC









TCGATGTGTAACCTGGCTGCGGCACCCG









ACATCCCCGGTCTCGGGGTGTTGATTTAT









TTCTGAATAACTTTTTGGGTATAGAAACC









AATTTTTTTTAATATATGACATGTATATG









TACACACTCATGTGAAATATGTATACTTT









GGGGGGATCTATTTATGTTCCAGTGGGA









GTCACTCTCTTCTGTCGGGAA





1580
3576864
4
TRIP11
TGGGGAGCTACCGAAATCCATTTTACCG
0.002951948
0.006832084
5.69E−06






CTTTACGTTCCCCATGCCATAAAGGTGC









ATCAGTGAGACAGCTTTGGGGATAGAAA









TGAAAGGGCTTCTTTATGTGTGGGGGAA









AGCATGGGACCTTGAGGGCAGTCAGAAG









CACAGAAGGGCTGGATAACTATGGGAA









ATGACTGGTCGCTCCTTGTATCCTAGATA









GGGGAAAACGGTTGGCTGTTCCITAGAC









CCTAAGC





1828
3577079
2
LGMN
AGAAGTCTCCGCTGCTCGGGCCCTCCTG
2.67E−05
0.009777743
6.33E−06






GGGAGCCCCCGCTCCAGGGCTCGCTCCA









GGACCTTCTTCACAAGATGACTTGCTCG









CTGTTACCTGCTTCCCCAGTCTTTTCTGA









AAAACTACAAATTAGGGTGGGAAAAGCT









CTGTATTGAGAAGGGTCATATTTGCTTTC









TAGGAGGTTTGTTGTTTTGCCTGTTAGTT









TTGAGGAGCAGGAAGCTCATGGGGGCTT









CTGTAGCCCCTCTCAAAAGGAGTCTTTAT









TCTGAGAATTTGAAGCTGAAACCTCTTT









AAATCTTCAGAATGATTTTATTGAAGAG









GGCCGCAAGCCCCAAATGGAAAACTGTT









TTTAGAAAATATGATGATTTTTGATTGCT









TTTGTATTTAATTCTGCAGGTGTTCAAGT









CTTAAAAAATA





 941
3577685
2
SERPINA9
TTCCAAGGCTCAATCACCAAACCATCAA
0.047746878
0.009206783
9.30E−06






CAGGGACCCCAGTCACAAGCCAACACCC









ATTAACCCCAGTCAGTGCCCTTTTCCACA









AATTCTCCCAG





1818
3579555
9
WARS
GATCGGCTATCCTAAACCAGCCCTGCTG
0.004639335
0.006620066
5.48E−06






CACTCCACCTTCTTCCCAGCCCTGCAGGG









CGCCCAGACCAAAATGAGTGCCAGCGAC









CCCAACTCCTCCATCTTCCTCACCGACAC









G





1710
3580123
6

CTGGGGATTGGCTTTGGCTAGATTTTCTA
0.000674778
0.008482164
4.73E−06






TTTTAACCCATGCTTCTTCCCGTTCTTTC









ATTT





 514
3580457
8
TRAF3
AGGGCTGACATTCCAAGACTGTAACTCT
0.002404431
0.00816779
3.06E−06






AAGGAACACAAGTCCTTCATAACCAGCA









AGGATCCCACTCCCTCTATAAAAAGCCT









GCCAGGAGGCCAAGCCAGGAGCGTAAG









CCACTGATAGGGCTGTGTCTC





 208
3581157
9
AKT1
TGAACGAGTTTGAGTACCTGAAGCTGCT
9.72E−07
0.017106987
1.81E−05






GGGCAAGGGCACTTTCGGCAAGGTGATC









CTGGTGA





1846
3584519
4
SNRPN;
GATCCAGGCAGTTAGCGATATGTTGGAT
0.005336831
0.006734131
8.20E−06





SNORD108
GAATTGAGAAAAATGAGTTTTTCCTTTCC









TACTAACTGAATTAGATTAGAAATAAGC









AGTTAAGTGAGAAAAATAGGGAATTAGT









GCCAGATATGTTGAGGTGTAGTGTTGAC









AGGGGGTCTTTTACCTTCAGATGTTTGGT









GCAACTTAGAGAATGCAGTGGTAGTTGC









TGGCCCAGCCCATCCAAACAACCTCATT









TGTGGGGTGATACTTCACAGATGACTTA









AAATAAATCCCCTGAAAATAAGAATCTC









TGGAAGAGATGACACGTGTATGTGCGTG









TGTGCACGTGTGTGCGTGTGTGCACGTG









TGTGTGTGTGTGTGTTTTGGTGGAGTGGT









AGGAGGAGGGTTGGCTTAATGATGAGAA









TCATTATTTCTTGAATTGGATGACACTTT









CCATTCCTGCAAAGGGAGCGTG





1894
3587051
6

CCATTGGTGGAGCTTCTCTGGAATCATTT
0.000483071
0.006821996
2.71E−06






GCCAAAAGCCCAAGGCAGAATCCAAGG









GTCCAAGACCATTTCCATGGAGCTCATG









TTTTTCTTTTCTGTAGGAACTTTTTTTTAA









CCAGCACCCACCATAATTCCGAAGGCCA









CGTTTCATCTTTCCTGGATCACTACAGTG









AAGTATTACAGTTGTACAGTTCCCAGTCT









GGC





1853
3588099
2
TMEM85
CTCCATGGTGGGGTGACAGGTCCTAGAA
0.000587911
0.00910916
9.28E−06






GGACAATGTGCATATTACGACAAACACA









AAGAAACTATACCATAACCCAAGGCTGA









AAATAATGTAGAAAACTTTATTTTTGTTT









CCAGTACAGAGCAAAACAACAACAAAA









AAACATAACTATGTAAACAAGAGAATAA









CTGCTGCTAAATCAAGAACTGTTGCAGC









ATC





 493
3590406
9
NUSAP1
AGCAACGGAAGAAACGCGAGCAAGAAC
5.35E−07
0.018890824
2.23E−05






GAAAGGAGAAGAAAGCAAAGGTTTTGG









GAATGCGAAGGGGCCTCATTTTGGCTGA









AGAT





1073
3590434
9
RTF1
CATCCCACAACAAGGAACGGCGTTCCAA
0.002874523
0.01035944
1.38E−05






GCGGGATGAGAAACTAGACAAGAAATC









TCAAGCCATGGAGGAGCTAAAAGCAGA









GCGAGAAAAACGAAAGA





1272
3591735
4
WDR76
GGAAGCCAAGAGATGAGTTTCAAGGATG
6.02E−05
0.010372129
5.14E−06






GGAGGTTGACAGAGCCTTTTGCAGAGAA









GTTAAAAGAATGGAGAAAAGGCCATTG









ATTTTGAAAATAGGGTACCATGTAGTGA









GTTGAGAGAATAGCTTTGACA





 141
3594180
1

GAGCAGGCGGCTCAGACTCTTCCAACAT
0.020503158
0.019553702
2.88E−05






CAACTCCTGTTGCTTTGCCTCCTCTCCCT









CATTCTACAACTATGGCTTCTTGGGATGC









TGCCTATGTCCAGTTGACTGAGGGAGAA









AAACCTCCAGCCTGGATTATAGATGGGT









CTGTATGATGTGCTGGTACCACATGAAA









GAGAACAGCTGCAGTATTCACTCACACT









CACTCAGGGGTGACTGTGAAGGGCAGTG









GTGAAGGAGAATCCTTCCAGTGAGCAGA









AACTCAAGGCTGTCCACTATGTCTGGAG









TGAGAGATGGCCAGAATACAGACCTAAA









TTGATTCATGGACAGTCGCTGATGGTTTA









GCTGGATGGTCAGGGCCTTAAAAAGAAC









AGGACTGGAAGATTGGTGACAAGAAAA









TCTTGGAAAGAGATATGTGGCTGAATCC









CTCCGAATGGGCAGACTGAAGATATCTG









CATCTCACCTGAATGCCCACCAAAGGGC









ATCCACTGCAGAGAAGACCCTGAATCAG









ATGGACAGAATTACATGCTCTGTGGCTG









TCAGCCAGCCTCTCTATGCAGCTGCTGTG









GTGTCTGCTCAACGGGCCGATGAACAAA









GAGCTCTTGGCAGCAGGGACAGAGGATA









TGTATGGGTCCAACAACATGGAATTCTC









CCTCCAAAGGCTGA





 471
3595274
3
AC016525.1
TGGGGCCCACGAACATCCCAGTGTGGCC
0.006090929
0.010571349
1.04E−05






CTGGACGGGACATCATGCTGGGCAACAC









AGCTAAAATGCGGGTGAAGACCAGATTT









CTTGCACATGGCGGTGACGGGATGCTCC









CTAGAGAGCTT





1106
3595459
9
GCOM1;
AAGCCAATGCTGAGGTGATGCGAGAGAT
0.000540412
0.00953604
8.67E−06





AC090651.1;
GACCAAGAAGCTGTACAGCCAGTATGAG








GRINL1A
GA





2083
3596392
6

GCCAGGCAATGCTTAGGCAACTAAAATG
0.00360478
0.006859042
4.20E−06






AGGTTGGGGGTAATGCTAACGTCACCCT









CACAGGGATGGCCACGGGGACTGTTATT









CGCAAGCTGGTTTTCTAGACCTGTTAGCT









GG





1128
3597927
4
SNX22
AAGTCAAAGCCCTAGCCCGCGCTTGGCC
0.005236373
0.009698804
7.02E−06






CCTGCTGCCCCCTAGTGGCCATATGCTA









GGAGGCAGGCCTGCTGCCTGGGCCTGTC









TGGCCTGGGCCCTGAAGTCTGTTTTCCCT









TTGGTGCCTCCTGAGCCCATTTCCCACTC









ACCTTTTCCTTCATGGGTCCCTGGTGATG









GCAACCCCGTCTCCACCCCTCTGTGGGA









TTCTGCCCTGCCTCCCGCACCCATGGTTC









ATGACCCTGTTT





 771
3598798
9
SMAD6
CTGTCCGATTCCACATTGTCTTACACTGA
0.0079631
0.013209737
1.11E−05






AACGGAGGCTACCAACTCCCTCATCACT









GCTCCGGGTGAATTC





 950
3598809
4
SMAD6
GGGCCACTGCCGTGTTGAAGAATCACCA
7.32E−06
0.013268823
5.23E−06






CCAGTTTGAGGATCCAGCAGAAATTTCT









GTTTGTTCACAGGACGGTGCCAGGCAGG









TTCTCATGGACTCAC





 658
3600663
5
PKM2
AGGGAAAGAGCCTCCACGACTCCTCCAG
6.11E−05
0.006935628
3.53E−06






ACGCTCAGTCCAGGGCCGCCAGGGTCAG









CCACCCTCCCCGCTGTCTCTATCTGTGGC









CCTGCCACCAGTCACTCAACCCGACTTTT









TGGTCTAGAGTAAGAGCAGCAGCTGTAC









CCCAATGGCACAGCAAAGCAAATCCCCC









TACAGGCACCATGCAAGGCCAGCACAGG









CAGCTCAGTGAAGGCAACAGACTCCAGT









GCAGGTCCACAAGGGCCCCCTGCGGGAG









CGCCTGTCTGCAGGATGCGGGGCAGAGG









GAACTGAATTGGAAGCCAAAGGAAGAG









GGCAGCTGGGAGCAGGAGCCCCTAGCCC









TTTTCAGAATAGGGCAAAGGTACTCAGA









ACTTCTGACTCTGAGGAAGAGGTACAAG









ACCTCCTTTCACTGCAGAAGTATCCCAG









GACTTAAGCCATGGGAAGAATTCACAAC









CTTGAAGTCAGAAGTGAAATAAACTGTG









TGGTGTCCAATGAAGG





 691
3600707
7
CELF6
GCACCACCATTGATCAGCTTTATATGGC
0.005817181
0.008292249
4.96E−06






ACCCACTGTATACAACAGACAGACAAAG









ACAGACAGACAGAGCACACACCACTTCT









AAGCTCAACACTGCTCACCAACTAGAAG









CACCTCGGTTAAGCACATGTGAGACACT









CTTGCATAGGAAAG





1265
3602135
9
C15orf39
ATGCCATGCCAAGGACCAACTTCCACAG
0.000348767
0.008774654
6.01E−06






CTCTGTGGCCTTCATGTTCCGAAAGTTCA









AGATCCT





 300
3602538
9
FBXO22
AAGAACTAGTATGGAAACAGCACTTGCC
0.000271873
0.010327297
4.23E−06






CTTGAGAAGCTATTCCCCAAACAATGCC









AAGTCCTTGGGATT





2024
3605298
6

TGGTTAAGGGCAACTTCATGCAACCAAA
0.000516748
0.007297057
4.19E−06






TAACATGAAATTAAATCAGTAACTTTTA









AAAAAGGCTAAAATGTCTTTTCCCCCCG









AAACACAACAGAGAGGAATATGAATAA









TGTACATACAAACTGGGGTTCTGTCAAT









GACAACAAGGACTATGTGTTGGTTCATA









TCAAATCCAAGAATATTAGACAACCAAA









CATATAACCTTCTTGTGGTTTCTCTTAAT









ATGCAGC





 531
3606365
9
AKAP13
CGTTCTAGGTTTGCCAGTGGCTCTACAG
0.011925564
0.014048446
1.47E−05






GACAAAGCTGTGACTGACCCACAGGGAG









TTGGAACCCCAGAGATGATACCTCTTGA









TTGGGAGAAAGGGAAGCTGGAGGGAGC









AGACCACAGCTGTACCATGGGTGACGCT









GAGGAAGCCCAAATAGACGATGAAGCA









CATCCTGTCCTACTGCAGCCTGTTGCCAA









GGAGCTCCCCACAGACATGGAGCTCTCA









GCCCATGATGATGGGGCCCCAGCTGGTG









TGAGGGAAGTCATGCGAGCCCCGCCTTC









AGGCAGGGAAAGGAGCACTCCCTCTCTA









CCTTGCATGGTCTCTGCCCAGGACGCAC









CTCTGCCTAAGGGGGCAGACTTGATAGA









GGAGGCTGCCAGCCGTATAGTGGATGCT









GTCATCGAACAAGTCAAGGCCGCTGGAG









CACTGCTTACTGAGGGGGAGGCCTGTCA









CATGTCACTGTCCAGCCCTGAGTTGGGT









CCTCTCACTAA





 789
3606371
4
AKAP13
TCTGACTACTTAACTCTTCTCCGTGGTGC
0.000562297
0.008998609
4.54E−06






TCTGACAAACTTGCCT





 689
3606507
8
KLHL25
CCCACGTGCTCAAGTTGTTTCCAGATAC
0.001268815
0.008091689
3.62E−06






AGAGGCTGGGTTCGGCGACTGAGAAGGC









CC





1567
3607176
1

ACTCCACGTACCCTTATCCTTCATCCTCC
0.03244577
0.006957836
8.45E−06






AACAGAACCAAGCAATGCGTGGTGCCCT









GTACTCCCAGCTTGGTGCATAGCTCCATC









CCT





1962
3607875
4
ZNF710
ACCTGAAGGGCCTACAGATGGATTCATT
0.002887295
0.00824511
3.71E−06






TCTCTATAATTCTTAGCTTGCAGTTTTGA









CAACCAGAACCTAAACCCACATAAGAGC









CTGCCAATGACCACAGATTCTCAGAGGA









ACCTTTTTTTTAAAACTCCACCCACAGCT









AACACTAAGATTACTTCCTTCCTGAATAC









ATATCACCAGACGCTCTCCTTTGTCCCAT









TGTCGCTATATTGCCAAATGCCTTCTCTC









GATTTTTGGTCAAAGTCCTAATCATTTCA









GGTCCAATTAAAAACTCAGTATCTCTTG









AGCCTTCCCCACACCATATGTTGCAAAA









TTATCTGGTCTTTCCACATTCACAGCGTT









CACAGGCCACTGTTGCATTACCTATTAGT









CTGTGAGTGTACACGTTCGGACCC





1122
3608291
9
CRTC3
AGCACCAGCCTGTTCAAAGACCTCAACA
7.71E−05
0.006560753
1.92E−06






GTGCGCTGGCAGGCCTGCCTGAGGTCAG









CCTGAACGTGGACACTCCATTTCCACTG









GAAGAGGAGCTGCAGATTGAACCCCTGA









GCCTGGACGGACTCAACATGTTAAGTGA









CTCCAGCATGGGCCTGCTGGACCCCTCT









GTTGAAGAGACGTTTCGAGCTGACAGAC









TG





1051
3608380
1

ATGCTTGTCCCAGTCCTGATCCTAAGCCC
1.52E−05
0.014679978
1.04E−05






CTGCCTCGTTGG





 171
3608542
9
AC068831.1;
AGATCTTCCGGAGTAATGGGGTTCAGCT
0.024147101
0.014062914
1.15E−05





UNC45A
CTTGCAACGTTTACTGGACATGGGAGAG









ACTGACCTCATGCTGGCGGCTCTGCGTA









CGCTGGTTGGCATTTG





 308
3609034
1

TTGTCCTGCCTCCTAAATATCAAGAAGG
0.00809385
0.008166242
6.40E−06






CAAGGAGGAGGCCACACAAAGAAGCCC









AGCTCCATGTCCTGATGATCGCATCAAA









ATTGTGGTCACGTTTGCCAGAATAGAGG









CTACGCGATGGCGC





1409
3610580
1

AGAAGTCCACTTGGCTCTATCCTGGGTC
0.018126
0.008073478
3.34E−06






CTGAAGGAGAAGCAAGAAGAAGGTCTT









CGCAGGGAAGTCTCTGCTCAAAGCAAAA









TCTCTTTATGGAATGGCATGAGCTATCTC









ATTATTAAATTCACCAGCAGCCA





 461
3610850
4
IGF1R
ACAGCCGTGAAGAGGCAATTTTCTCCTC
0.000115329
0.011783696
6.89E−06






GAAGGAAGGAACTGGAATGATTGGTTGT









ATAATTGCAGAATTGTTTTCAGTATGTCA









GCAAGCACTGAAAATGGGGAAACTGTCC









CTTCCTACCTCTGTAGGCTGGAGACCTCG









GGTTCAGCTCCATTTATCAGGGCACAGG









ACCTTCCTGTTCTGAGACTTTGTTCCAGG









GGACTTTCACACTTCAGAGAATAGCACA









TGTCATCCTGCACTTTTGTGGGGTGATTA









AAAGCTCACGGTATCCTTTTATGTTTAGC









CCATCCAATTCTTCCAACTGGCCTCAGCC









AGAAAAGCAGGGAAGGCACCCCCAGTTT









GCAGCTGAGAGACTCCAGCCTGGGAGAG









CTGAATAAATCTTTTGCCCAGAGGGGTT









CCTCAGTAAATGCTGGAGATGAGGCTCA









GACCTGACCTTTGGATTCCCAGATG





1480 
3613297
5
CYFIP1
GGCTCTTGACGACCTTCAGCAGCTCCTCC
0.000338249
0.007322941
3.43E−06






ATGACCACGGCGATACCCTGGTAGCCGA









GAAGCCGGCAGATGACTTGAAAGTGTGG









AGGTCCCACGAAGTTCCGGTAGCTGCCG









TAAATGCTGGAGTAGGCCAAGTTCAAAG









CCTGGAAAACAGGGCACAGAGCTCTCAG









CATGGTCCCCGCACACATGTGCAGATGA









AGAACTGTGTGAGAAGATCACTCAACAC









ACACAGGCTCAGGTGAGCGGGTCTGAGT









CTACTGACTTGTA





 433
3615994
9
MTMR10
ACGGTGTTATTCTGCCACGTGTCTCTGGA
0.032789863
0.012174049
9.65E−06






ACACACATAAAACTGTGGAAACTGTGCT









ACTTCCGCTGGGTTCCCGAGGCCCAGAT









CAGCCTGGGTGGCTCCATCACAGCCTTT









CACAAGCTCTCCCTCCTGGCTGATGAAG









TCGACGTACTGAGCAGGATGCTGCGGCA









ACAGCGCAGTGGCCCCCTGGAGGCCTGC









TATGGGGAGCTGGGCCAGAGCAGGATGT









ACTTCAACGCCAGCGGC





 472
3619652
9
DNAJC17
CGGCAACAGCTGATCGCACGGATGCAGC
0.020051318
0.007567661
2.83E−06






AGGAAGACC





1335
3619970
5
TYRO3
CTGATATGGCAAGGAATGCTGTCTCAAG
0.024995647
0.007527987
5.58E−06






AGAAGATGCCAGCGGGTGGCCGCTGTCC









TGGCCTGTGGCTCTTCCCTGCTCCCTTCA









CCCTCTCAGGACCAGTCACAGGATGGGG









GCCAGCCTCCCGCTCCCTATATGCCCATC









AGTCCCCGAGGTGCGGGGTGGGAACTTG









GAGAGCACCGTGCTGCATGGAACGCTCT









TGTCACCAGCAAATGCCTCAGTGGCTAT









GTGGGAACACAA





 408
3622256
9
DUOXA1
TTCTGGCTGCTTCGGGTGGTGACCAGCTT
0.001111606
0.013225165
8.44E−06






ATTCATCGGGGCTGCAATC





1685
3623298
6

AGGTGTGTTCCTTATGTCCGGTCTATTCT
0.001201893
0.008487235
4.64E−06






GTAATCTCATTTTGGTTGCTGTTACTGTG









GAAAATCCTGCCTCACAAAGATAGGATG









TTGAAAATGGAAGGAGGCTTTTCAGTAC









TTTTGTGGCAATCTCAGGATGTTCCGCCT









TGACTTTAATCGAGAACGTATGGAGATT









TGAAGTTGTCTCAAACATACTTTTAAGG









CCACCGTCATTTGCAATATCAAGCAGTT









GATCCTCTTCTAGCGTGGACAAAGTGGA









TTCACCTGGCTTATTCACAAATGGGTCAC









AGATCCATTCCGTCTTTT





1201
3624150
9
DMXL2
GTTTCACGTGCCACGATCATGGTGCCAC
0.000113163
0.008737126
3.53E−06






GGTACTGCAGTATGCACCCAAACAGCAA









CTCCTAATCTCGGGGGGTAGGAAAGGAC









ACGTCTGCATTTTTGA





 603
3625209
1

ACCAGCTACAGGTGGAATGCCCAAGTGT
0.000909538
0.009521061
6.84E−06






GCGAGAGAGCAGCTTGGATGGCATAATG









GATATGGTGGTTGGCTCCTCGATGGCAT









CTCTACCATTCCTAATGCGGTTTGAAAAT









TGTGCTCAGC





1355
3626324
9
ALDH1A2
GAGAATTTGGCTTGCGGGAGTACTCAGA
0.006363163
0.006967527
5.37E−06






AGTTA





 329
3626947
4
MYO1E
TGGGTGTCCTTCCATCATGTCCAAGTCTT
0.000165213
0.012396011
8.86E−06






AGATCAGTTTCTAGATCTAGGCTCAACA









AAATTCCCTCCCCTGGACCCCCAAGCCTT









CCCAGATAGTCACCTTCCTCTTCCATATG









TCCATGGCACCTAGTTTGAAATGTTCTTA









CCTCATGCATCATGTTCTGCCTTGTGTTA









GACCCTTTAAGCTTTTGTGTCTCATTAAG









ATATTGAACTCGGCTGCGTGC





1297
3629800
5
SLC24A1
GGATCCTTAGACTCACCAATAACTGAAG
0.00241526
0.007108487
5.22E−06






CTACAGTGATTACAAACCTGATAGAACC









TCACAATTTGAACAGAAAAGGAGGAGA









CAAAATTGCAGCGTGTGTTTGGGGCAGA









GGTCAGGAAGGCTGAGATGTAGACCACA









TCTGCATCTTTTGGGCCAGCAGCCTTTGG









AATGATCAGGGAACAGTGAGCGTAGGA









GCTTGTCTTATAGCTGCTGCGCCTATCCC









AACCTTTGCCCCCAGTTATCTCATTTAGA









AAACCCTCTGGCTCCAGGGGTCCTTCTA









CTGCCTCCATGTAATAGATGTCTGCATG









AGTCAGGGGTAGAAACTCCACCCCTCCA









GGGGTGAGGTTCTTAATCCACAATGAGC









TGCAGGTGTTTCCAAGGACAAACTTTAG









TCTCAGATCACATTCATATCAGAGGTCCT









AGGTCACCCAGTTCACTTTCCAGGATCA









TATACATTCTTTCATTAGGGTCACAAGA









GATACAGTAACTTCTGCATGGTCTTCTGA









TCCATGCCCATTGTG





1649
3630807
4
ITGA11
ACTGCCACCGTGATGCCATCAGATGGGA
0.043006584
0.007070619
3.20E−06






GAAAACACAGAACTCGGGATGAAACGT









CACACGGTCTGGGCTAAAGATCTTGCTC









TTTAATTTCCCAGCAGGTAACCITGTGGC









AGTCAC





 800
3631715
5
THSD4
CAAAGACTCTACCTGCTGTTGTTAAGCA
0.002350957
0.008460984
5.38E−06






TGAGGTTTATCCCCAGACTACA





1881
3631998
9
PKM2
CAAGATTATCAGCAAAATCGAGAATCAT
1.77E−05
0.008339926
7.97E−06






GA





1707
3633108
7
CSK
GTCCTCATGGCGTGGTTTATTACAATTCC
0.00010346
0.006803205
1.99E−06






ATCTCACAAGGCGGGTGGGCGGGTGGCA









GCGGCACACGAAATCCAAGCCCCTGACA









GACGTCTGCCTCGGGCGCATGCAAACAG









TGCAAC





 281
3633239
2
RPP25
CACCCCCACCGTTGACAGAGGAAGGCAG
0.004749446
0.011305801
9.00E−06






GGGGTGAGAATTAACTGCTTGAGGGTAG









GAGAGTCTGAGATGTGGGGGCCCTATTC









CGCTCCC





 701
3633468
2
PTPN9
TAGAGATCGTCCTGAGTGCCAAGCACGT
8.24E−05
0.01263796
9.39E−06






TTATAAGTAGGGCGTGTATTCCAGTCCTT









TCTGTCATTCTGTGTGTGTGTGTGTGTGC









ACTTATGTGTATGGGTCCATATGTACGTG









TGTATATAATATATATTGTATGTGATAAT









ATGATCGTATTCTATAAATACATATACA









CACGATACTCCTTTCCAGAAGTTCCTGG









GGCTCCGTGTTGCAGTTCAGGACTCCTTG









CTTCTTGGACCCTACTATTTATCCTGGAC









TAGCTTGGGTTGGTGATCATGTCTCCTCT









TGTCAGGCTACAGAGTGGTGGAAGAGGA









CACACACACATCTCCTCCATGTTCCTGCC









ACAGGGCCCCTTCCTTAAGTAATGACTT









ATCTCCTTCCAGTTGCCACCTGTTGGAGC









CAAGAATGTATTAGTTTGTGGTGACACT









GGGTTAGCTCAGCATGGATTTCCCTTATC









CGATGATTTTTCTACATTTACTTGGCCAA









TTTGGGGAACAGACCTCCACTGTGATTC









CATACTCTCTCTTTGCTTTCACTATCCCA









GGGATGGGAGGCGGAGGGTAGAGATGA









ACTCACTGAGCAGCCAGAGCCAAATGCA









ATCGGTACGAATCTTAGAAGGAAGGAGG









GGGAGCCCAGGTATGAGAAAGAAAAAA









CCACTAAGAAAATACCTCCCTGGGAGGA









TGAGCTGGGGCCCTTTTTCTTTTGCTGGA









TGGTTCCTTTATGCAGCTTGGCCCTGTCT









ACCGAGATGCCCATCTCTTCCTGCCTGCT









AGCCTGCTAGACCCTCAAACTG





 342
3633789
1

TGACTCTGGCTTCCGTCAAGAGCTGTCTT
0.031655198
0.010760075
1.29E−05






GGAAGGAGAAAGGAGCTCCTGAGTTGA









ATTTCAGGTGGACACCCACCATGCTAAA









TAGAATTCCAAGCCACTAGCCTCTAGCC









ACACAGGTTCCATCCCAACACTCCTGTCT









GTGGGACTTGATCTGAAAAGCCACACTT









TGGTTGGGAACCTTGCCCAGGGCTGGCT









GGAGAGGGGCCTGTTGTGCCACTCAGGG









AAGGCCTTATGGTTCCCTCATCCTGGGTG









GGCTTCAGGCTGGGGCTGCAGACTCTGG









CCCAGCTCCCTGGTGGGCCAGTCACCAG









CACTGCTGGCTCTGAGTCCTGATTTCTTA









CTTTGGCTTTCCTGGTGGCACCTGGTTTG









ATTCTGGACAGCTCATTTCACATCTAGCA









TGGCATATAATCCAGCCAGACCTGGGTT









TGAATCCTGCCACTACAGCTCACTAGTT









AGCTGTGTGCCCTTGGGCAAGCCCCTGA









ATGAGTCATTCCATGGCTGCTGTTTTCTC









CTCTGTAAAGCAGGGAAGATAGCGCCCA









CTTTCCAGGGCTGTGCTAAGGAGGGAAG









CCTGTGAAGAGCACCTGTCACAACAGGA









AATGCAGACGTGGGAGTCACTATTGTTA









CCACCCTCTTGTTCTAGCAGGAGACA





1785
3635006
1

GGCGAAGAGTGTCCTCGGCTCTCCTCTTC
0.007013144
0.007732766
5.49E−06






CCAGGGAGCACTCGGGGCTTCGGACTCT









GCAGTGGTTTGCAAGGCCAGGGCCAAGT









GGTCACTTCACTCACTGA





 506
3636219
1

TGCCACTTAGGCATCCCTGAGCATGTCT
0.000487927
0.011230631
7.37E−06






GTTCATGGGTAAGATGGGGTG





 530
3636467
3
C15orf40
CCAGGAGGCTGTATTCTGCTTTCTCCTCC
3.19E−05
0.012446094
6.72E−06






CTTGCTTTGGCTGATCGCACCCCTTCTGT









CAAGAATACAGCACTCCCATTTCCACCA









TCTTTGTTTGGCCAACCCCAGTCCGTTTC









TCAGACTCAGCTCAAGCACTGCCTCCTG









CTGGCAGCATTCTCCAGTGCCCCAATGC









TGATTTGCCTGTGGGGTAATGTTCTGTGC









CTATCTCATCGGTGCACTTAGCACAGTGT









ATTATAATTTTGTATGTTCTTTCTCCCTC









GCAGCAGTCCGAGCTCCTTGAGAGCAAG









GACCATGTACCTTTTCATCTTTACATATC









CATTGCCTACATATTTGTTGAACGAAAG









TTCCTAGCACAGCCCCTGTCCCATAACA









GGCCTTTAAATATCAAGCACTATTTTTTT









TTCCTCCCTTTCCCGCAACATGCAGACAT









ACACACTTTCACCAACATTTATTAGCTCC









GACTGCATGAGATACAATGATGAATAAT









AAATGATCCCTGCCCCCAAGGAATTGGA









AATACAAAGCAGAGGGAGGAGCAAGCA









TTAAGGTTTAGAAGCCAGAGTTAGGTTT









TCTTGCAAGGGGGGAAAAAACACTGTTG









GGTTGATGGGAACCCTTCGTGGGAAAAT









TGAGTAGAGCCTTGAAGGTTGTGGGAAA









AGCTTTCTAGGTGGCCAGAAGTCCCTGG









ACACCACTGATGAGCCTAGTTTG





 320
3636521
5
TM6SF1
GCTACTCTGAGTATTTGTTACAGCAGCA
7.74E−05
0.013827425
7.45E−06






GAGCACATAGCCTATCCTTAGACAAATA









GGTAAGTAAAACTTTTAACGTGGTTTGC









CTGGCATGAAGTAAGGTAATGAGA





1927
3636531
6

CATAGTCCTTGTTGTCATTGACAGAACCC
4.46E−05
0.006967514
2.72E−06






CAGTTTGTATGTACATTATTCATATTCCT









CTCTGTTGTGTTTCGGGGGGAAAAGACA









TTTTAGCCTTTTTTAAAAGTTACTGATTT









AATTTCATGTTATTTGGTTGCATGAAGTT









GCCCTTAACCACTAAGGATTATCAAGAT









TTTTGCGCAGACTTATACATGTCTAGGAT









CCTTTTATCAAGGCAGTTATGATCATCGT









TTTCCTGCCTTGACCCCACCATCATCAAA









CACTCAGTTAAATATAAATTAACATTTTT









TAGATGACCACTCAACATAATGCTTAAG









AATGGAATTTCCTCTCTGTGACAGAACC









CAGGAATTAATTCCTAAATACATAACGT









TGGTATATTGAAGACGAAATTAAAATTG









TCCTTCAGTTTTGAGGCCATGTGTAAAGT









TTAACCA





1955
3636534
9
AC024270.1
TGGAGATGCGGGCAACGACACAAGAAA
6.74E−06
0.008661601
7.98E−06






CACA





 522
3639047
9
PRC1
TTCATGGAGTATGTGGCAGAACAATGGG
0.000293755
0.021280706
1.95E−05






AGATGCATCGATTGGAGAAAGAGA





 123
3639054
9
PRC1
TGAGGGGCTGCGTACTCAAATCCGAGAG
0.010100664
0.025201383
3.68E−05






CTCTGGGACAGGTTGCAAATACCTGAAG









AAGAAAGAGAAGCTGTGGCCACCATTAT









GTCTGGGTCAAAGGCCAAGG





1923
3642244
4
PCSK6
TGAGGTACGCTTGGGCATTCCTGTTGCCT
0.00076237
0.006698636
2.18E−06






GCATGGTTCGGCATT





1486
3642303
9
PCSK6
CAGTCGCTGCCGGTCGGAAATGAATGTC
0.011398396
0.006563752
4.97E−06






CAGGCAGCGTGGAAGAGGGGCTACACA









GG





 935
3644067
4
MAPK8IP3
ACCTAGGTGGCCAGGCAATTGTGGGAAA
0.014482591
0.006785207
4.01E−06






TGGAAAGA





1142
3644647
9
E4F1
GACTTCACCCGTGATTCACCTGGTGACA
0.012043037
0.009620411
8.84E−06






GATGCCAAGGGCACCGTCATCCACGAAG









TCCACGTCCAGATGCAGGAGCTGTCCCT









GGGCATGAAAGCCCTGGCC





  70
3645319
1

CTCAGGATGTCCACCAGAAACCAGGAGT
0.009940781
0.024791572
2.57E−05






CACCATCCTCTTAAGGGTGGTGCCTGTCC









TCCAGAGAGCATATCACTGGGTTCAAAC









CCCAGCTCCTACCGGCAAAGCCCGGGGC









CTCCACCTGGGTGTTCCCATCCATGAAG









CGGGGATACACAGTGTGGAGCCCTTGGG









AGGTTGGGGAGTGTGCCTGCCCTCACCG









CGCATCAGCTCATAAATACAACAACAGT









TGCCTTCACGTGCTGATGCTC





 306
3645476
2
KREMEN2
GCGAGATGGACACCTGAGATGCTGTGCT
0.025777155
0.009389094
7.22E−06






GCGCCCTGCCTCGGCCTTGCGCCTGTGTA









GGGGCAGCTCGGCCTCTGGTCGCCTTGG









GGAGACCAAAAGTCGGACAGGAAACAT









CTGGTGCTATTATCTGGGACTTGGCCTGA









CCGTGGGGGTCCAGATGGTCCAGGCCCT









CTCCATGGACCTGTATGTGGGGGTGGTC









TCTGGTTTCGGAGGTCTTTGAAC





 341
3645652
1

CCAGTCACCGCGCACCCACCCTGACCCC
0.022361426
0.016525847
1.46E−05






TCCCTCAGCTGTCCTGTGCCCCGCCCTCT









CCCGCACACTCAGTCCCCCTGCCTGGCA









TTCCTGCCGCAGCTCTGACCTGGCGCTGT









CGCCCTGGCATCTTAATAA





 552
3646448
9
UBN1
TAGAAAAGACCGAATACAGGACTTGATC
0.000120755
0.016425661
1.61E−05






GATATGGGGTATGGTTATGATGAATCCG









ACTCCTTCATCGATAACTCTGAGG





1680
3646802
4
RBFOX1
AAATGTCGTTAACATTAACAAGAGCTCT
0.023281585
0.00682901
3.36E−06






CTCTGGCACTGGCAGGGGGTCTGCAAAC









AGAACTGGTTTGGAATATGCAATGGGAG









GCTTGAATCAAAGAAAAGCTGTGATACA









GACTGTGGAGTGTGTAAGACAAACTCGA









TAA





1155
3649263
4
BFAR
TAGGCAGGCCTGTGCAAACCTATCCCCT
5.94E−05
0.009644722
5.18E−06






AAATCAGAGGAAGCTGAGGGGCTGAAG









GAAGAAGCTGGCAAATTCAGTTTCTCAG









AAAGAAACACTTAATAAGGCCTTGCCAA









CAGAAGCCCTGTCTGTGTCTTGGATGGT









AGCGAGACAAGATGGTGGATCCCCAGAC









TCAGGGCTTGTATACATAGGGAAGGGGC









ATACATGCTTCAGAAGGGATGTGCAGAA









CAATTGCTTAGGGTCGGGATCTATGGTA









AGTAAGAGAACATCAAGGCTGTTTCACC









AAAGGGCAGGATTTACGTGATGTACGTG









CTCTTACACAAGA





2068
3650718
7
ARL6IP1
GCTACAATGGGCACCACTGTTCACAGCA
0.000408197
0.008537529
6.97E−06






ATATTAAAGAGGAGAAAACAACACTTAT









TTAATAGGGACAGATATACCACAAGGTA









CAACATCAGTGCAATAAATTCACAAAAC









TATATTACAGCTAGTTAATCAGTTTAAG









AATTGTTCCCGTCAGTCACATTTTTTGGC









CCTCAGAAGTTCATTCCTAAAGATTTCA









ACTACTCTAAATTTCTAGCTACCAAGAA









GTTAAGAATGATTATAAGAAGCTTTCCA









AGGAGTTATGAAATCTTTGTAGACCAGA









GGCCAACTATCATCACCTCAAGTCTGCT









CTCACCAACAGCCCTTGTATTTTTCAGGG









AGAAATCTCTAGGAAAAAAGTCAGACAC









CAGTGTAGTCACTATCTCCCATGTCAA





 491
3650720
7
ARL6IP1
TGTCCTTTTGCCAGTCTTAGAGTGAAAGT
0.000397001
0.017872044
1.57E−05






CATAGACATGAGTCTTAACCTACTGTAT









ACTATAGCTAATGTCAGCTGAAAATCTG









AAATTAAAAGCATGCTAGAAATCCTAAA









TGCAATCTTTTGGAAGTCTGCTATTAAAA









AGCCTTTAAGGATTTACTAACTTCGAGTC









TAAGTGCAAGGGGACGAAAGCTTAAGCC









TGTCAGACATTCCTTTTCTTGGACAAAAA









GATCAAAGTTTCCTACAAATTGCTAAGC









TTTGCACAAGGGAGAAGCCTACATGTAC









TAGTGCATGGAATCAGTTTCATCTTATTT









CATGGGGACTCTTCTCCCACTGGAAAGA









AACAGAATGAGGAATGAATCTTAATTGG









TCTCTTCATCAGAAGTGGTAAACTTGGTC









TCTATATTCACGAAGTCAGACAGTTTTTT









AAGCAGACTGTGGAAGCAGACAGAACC









AGCTTCCTGTAGCCACAGACCACTACAT









GGTATCTAAGCTAAAGCAAAGATGAACA









ATTATCCAGATTCACTTGAACTGTACTAA









AGGGCAAGGTTCACCACTACAAAAAGG









A





2049
3650850
2
ITPRIPL2
TTTTGTGGCGAGACACCCTTTGGTAACTC
0.000563692
0.006746985
5.10E−06






CCACTGACCAGTCTTGGGAGCCTTCCTG









GAATGATCGTGGGCTGAGCGGAGATGTT









TTTTGCAAAATGAAACTGAAGCTGAAAG









AAAGGAGAATTCGAGTGAACCAAGAGA









AATCCAAAGACCTGGGGAAGGAGGACTT









AAGATGAAAGTGAAGCAAGAGAGGGAA









GGGGAAATGAAGTGAAAATGGCGTGAG









GGTGTGAGAGAGGTTTGGGTTAGGAAAC









ATGTTTTTAGTGCTATTTCCAACCAGGGG









TCGCAAACTCAGCAGCCTGTAGAAACAG









GGGTGGGAGGTGGGGGGGAAGCTGTGC









CCACCTTTAAAGAGGGGGCCATTGCTCA









GCCATGCAGAAAAAAATGGGGCAACAA









GCTGGAAATCAGGTTTTTTTTTTTTAAAG









TGAAACTTGATGATTTTTAAACAAGTAA









TTAAAAAAATGTCCAAAACACCATGTGG









GCCAAACATTTGTTTGAGCCTGGGGGCC









ACCAGTTTGCGACCACTGCCTTACGTAG









TTAACACCCTGAGTATGTATACAGTCAT









ATTTTTTGTTTTGGATATGGTAGTGTTAT









ATATACTTGGGGGCGTGATATTTGAAGT









CATCTTTATCTCTCAGAGTTAAGCTTTAT









TGTAGAAGAAAAAAAAAAAAGTTAACA









CAGCCATAGATAACACTTAACTCACAGT









TCCCAGGAGGACACTTGATCTCGAAGCT









GCTCTTTTTGAGTCAGATCCTACATCAAA









CCACTTAGGGCCAGTTTTTGGCATTTCCT









TCCTGGTGATTTGGGGTAAACTTCTTTGC









TCTGTCGGAGTTTGCAGATGAGTAATCA









GAAGGATTGCAGAATAACTTGTTTCTTT









GTATTTTATTCTTACATTTAAATTAATTT









TGGGGGGTTAGTGGTATCCTAGCTCGTG









CCTTTA





1336
3656881
1

AGGCCAAGAGCGGATGTTCTTCATTTCA
3.67E−05
0.007684195
2.95E−06






CTT





1276
3658909
5
SHCBP1
CAGCAGTGATTCTTAGGGCAGCATGTGC
0.000483071
0.010824915
7.91E−06






AAAATCCAGTATTTTGCTATCTACTTACA









TCACTGTAGTCAGAAAAGAAATGTGCCA









AAACTACCTTTCCCATTCCACTTGAACTG









GTTCCCCACAATCCCAACAAACATCTCC









TGTGACATTAAGTTGTCATCAGCTTGCGT









GATCCCCAGTTCACTCAACCTTTTCTTCT









TTATCTGGCCTTTCTGTGTGGAGGCAGCA









ATTAGTTCATTTACAATTTCACAATTTCC









CTCGACTTGCTCAGAAGGGTC





1482
3659265
1

TTTTGAGGCAGTTCAAGTGGAAAAAGAA
0.024995647
0.006856396
6.12E−06


1133
3659928
1

AACAGTCCTTACTTATGCCTCCTTGCACC
0.000457168
0.012434795
1.58E−05






CCAGTGTTAA





1205
3662100
4
MT3
CCCGCTCGCATCCTGCGCACTGCGCGCC
0.000203565
0.007595331
6.87E−07






CTTGTACCTGCAAAGAAACCCACGCCCT









GCGCCTTCGCTCAAGGACACTTGGGGGA









AGGGCCCCTGATTCCCTATTCTTCACCTC









GTGAAGGGCGGGCATG





 705
3663746
1

GTGCGTAGATTGATGACATGGTCCCAGG
0.040170313
0.010447485
7.74E−06






TGAC





 252
3665867
4
NUTF2
AGTGGGTAGGAGTCACTCCCATCAATGA
0.002293409
0.012252329
1.43E−05






AGAAATATCCTAGAAAGGGCCAGGTCAG









GTAATCACCTGGCCTCGGGGAAGTAAAC









TGCCCCCATGAGACTAAGGGATCACTTG









C





1120
3667448
5
HYDIN
TGGCTTTCCCTCTTACAATGGGTACTCAC
0.00051035
0.007418618
2.56E−06






TCTCCACAAAGGGTTATGCCCACAGGAC









AAGAATGATACTGAAACACTACTTTGCT









ATTTTACTTTCTTTACTTGGATCTCCTTTC









CAACTTTCCCTTCAAGCATGTTGGGCCAT









TTTGATCGCTGGTGAGCACATGTGAGTC









GGGGAACCAGGGCAAAGGAAGCAGTAC









TGGATCCTTTTCC





1623
3667557
1

TCTATCTCAGCTGCCGACTACAGGGCCC
0.003781407
0.006522573
2.35E−06






CCTGCTGTTTCCAGTTCCTGGCCCACCCA









GAGTTTTTCCTACTCATGTGGGCTACCCC









CAGGACACTGGGAGCGAGGCCCTTGTTT









AAGGAATCGTCTTCAGCATCACGGCAGA





 159
3668335
1

GTAGAACAGACACAACCGCAGATGCTGC
0.006389661
0.018264551
2.24E−05






TGGATGGAGGCTCCAGGCCCCTTTGGAT









TCACTCTTCCCCCACCACAGACTGGTTCA









GGTTGTCCAGACCAAGGTGCATAGGGGC









TGGCCAGAGTGGTAGGTGGACAATGTCA









TCTACTGGCTGCTAAGAATGTTATCCCTG









TAGTTTGGGGCTGGTGTGGCTCAGTAAT









CAAATGTGTGAGCTTCTTTGAAGTAAGA









TGGCCCTGGGTTC





1177
3668759
5
FA2H
CAAGGGAGGGCTCCGAAAAGGACATGG
0.000165213
0.009488445
5.47E−06






CGAAGTGGCAAAAAGA





1924
3671836
7
COTL1
CTGAGTGCAGAGATGTTCTTTACAATCC
2.19E−05
0.009188463
4.39E−06






CAATACAGTACAGATTTCTTCCCCAAAA









CGAAATGAGCAAGGAAAAACAGAAAAA









GAGCTATATCAAATGTGCTCATGAAGAA









CCAAGCCAATCTCACCTTTCTTTAAAAAC









AAAACAAAACGATCCTTTTGAATGTGTG









GTGCAGACGCAGGACTGAAGCCACAGG









CTTTTGGGGTGCTGTGAGCCCAGGGCTTT









GCTCAGCTCACAGCTAGCGCGGCGG





  46
3672375
1

GCATCCTGGTCTATCGAGTGGGTCATTGT
9.32E−08
0.068293918
8.00E−05






GGTGGCTGCCGCCTACCTAACCAAACCT









GGTCCCACGGGCCAGCTCTCACTGTGGG









GCAGCCAGCTGGAGGGACGGGGCCAGC









TTGCCCCACCCCGCCCCTCCCCTCCACAG









CAGAGAGTGCCCTGGCTCCATGGGGCCC









AGCACAAGCTCTGGAGGCCACAGGAGTG









CCTCCCCTCCAGGGCCTGGCAAGGCTGG









CTCTCTGCAGGGCTGGTCAGGTCAGCTG









CCTTGATTTCCCTCTCCCAGGGGCCTGAT









GTCATCATTCAGGGGCAGCCTGGGGACT









TGAGGGAGGATGCAGTTCCCACTGCCTT









CTCCCGTCCTCCCCTCCCCTTCCCTTGCT









TCTCCTTCTCCTTCCTGCTTCCACGTCCT









GACCCCCTGGCCCTCCCCAGCCCGGCCC









CTTAGCCTCCCCTCCCTCCCGGCCCCTCA









CTCCCCCCCTACCAGGGCTGCCCTGTGCT









AGCGCCTGCCTGTGTGAATGTCTAATCTC









CAATTTTATTCGCTGGGCTCCAGCCCATT









TGCATAATCCACACAGTCACCCTGGTTTT









AATTGCCCACAACTCTGCAGAAAGATCA









TGTGGTTAAGTGGTAAATCATAATTAGA









TAAATAATTGGTTTGGCCACAGCAAGCT









GCTTTTGTTACACCTGCCATCTGCTGGAC









CCGTTTTTTCTTCTGGCCAGAACAATGCG









GTTCTGATGACAGAGCATGCTGCTTCTCT









CTTCTGGGGGGGCCGGAGGGGGCTGAAT









GGAGGGGCTCGGAAGCAGTGCCTGGAA









AATTGCCCGGTTGCTGGGGTCCGCGCCT









GGCCTGCGCTTCTTTCTCTCCAAGCGGGC









ACACCACACACTCGCCATTCATTACCCG









GCTTGGTTAATGCATCAGAGTGGCAAAT









TTGACTTCTTTGCAGAAAAGGGAGGGAG









GAAAGGGGCCTGGAGGAGGAGGGGGAC









CAGCCAGGGCTGCCCAAGGCCTGGCCTG









CCTGCCGGTTGTCGGTGGCCCCGATGGG









CCAGGGCAGGAGGCCTGCTGTGGAGGGC









CTGGGCCCGATCCCTGGGGGGTTGGGGG









GGGGGGGCGGAGGGGACAGGCGGGCAG









GGGTTGGAACCGCCAGACCTCCCTGCCC









CACCGCGGTCAGCTTCTCCATCTGCTCTC









CACCGAAGCCTCCTTTATTTTCCATGCCC









CAGGCCCCATCTGTGAGCCCTGAGTCTC









CAGGGGAATTGTGGCTCCCTGGCTGGAC









GGTCGCCTGGCCAGGGCCTTCCTTGGGG









CTGCTGGCCTGCCTTTCATGCTGTCCTTC









CAGCAAGCTCTTAGCTCCTAGACTTCAG









GAACGGTTTCAAATTGTCCTTCCTTCACT









CGCTCCCTCACGCATACACGCACACATT









CATTCATTCAGCAAACGCCCGTGGAGCC









TCTTCCTACATCAGAGTGCAGGTTCGAA









CTTGGTCTCCGTGGGTCAGATGGCCGCT









GTGGGATGTGAGCAAGTTTCTCAGCCTC









TCAGAGCAGGTTTCTTCCTCTGTAACACA









GGAGTCATTATTGTCCCTGCCTTCTGGGC









CTATTAGGAGGATCAAAGGACAGAATGT









GGATAAAGTCTGTCGAGTGACACCTGCA









CGAAACACAGGCCCAGTGTCTGTGGCTG









GTGAGTGCGTGACTGCTGGTCATGCCCG









CTCCCGGGGAGGGCGCCAGCGCCGCTCA









CCTTGGGCATCATTGGAGGCCCACGAGG









CTGTGCTGAACATGCTGAAGGAAGAGGT









ACCAGTGCCATGGGAAGGGCCCAGGAAT









GAGGAGCCTTGGAAAGAAACCAGGGGG









CCAGGGGAACAGGCAGAGGGGCGGTAA









GGAAGGGCAGGTTCTCTGGGGCCTGCAC









AGGCCAGGACGTTCCTGTCTCTGTTGAG









TTCGGACTGGCAGGTTCTCTGGAGCCCA









CACAGGCCAGGACGTTCCTGTCTCTGTT









GAGTACAGACCGGCAGGTTCTCTGGGGC









CCGCACAGGCTGGGACATTCCTGTCTCT









CTCGAGTACAGACCAGCACATGGTCCTG









CTCTCTGGCCCCTGCATCCCCTCCAGACT









GCGTTCTGGAAGCCCTGCCCAGGCCTCA









CACGCTGCCCCAAGGGTCTTTATTACCTG









GGGTCTTCTAGCATTTTCCTCTGGAGAAA









CTCAGGAAGCATCCTTTCTCTGCATCCTT









TCTCTTTGGGGGCCCAGCTTCTCCTTTTC









AGTTTGACAGACACAGCCTGAATGCCCA









AGGCCCCTCTGCGGAGACTTAGAGACTT









A





 153
3672652
9
FOXC2
GGCTACCAGTGCAGCATGCGAGCGATGA
0.010386073
0.014074276
1.46E−05






GCCTGTACACCGGGGCCGAGC





1506
3672970
2
JPH3
TGAGATGTCGCGGTAGCAAAAATAGAGA
0.004521888
0.007853911
3.53E−06






AAGGGTAGAAAAAAGGGACATTAAAAT









TAAAAGCAAAACCACAAGAAGGGAAAG









ACCGCAACTCGGACAGCCCAGCGACTTC









CAAGT





  78
3673319
6

CACTAATATGCAGAACGTGGGGTCCACA
0.011533849
0.025675715
3.77E−05






GAGACGCAGATGCATCAACCAGAGAGC









GAGAGAAGCGTCTCTGGAGCTGGGATAG









GCCACTGTGTAAGATGCAAGGCTGGAGA









GTGGGTATCTGCCAACCC





 917
3675052
3
AXIN1
TCCGACAAACTTCGCTGCGGGGTCAGGC
0.046795588
0.007478615
2.60E−06






TTATCCAGAAATCGTGCACAGTTCTGTTT









GTCCAATCCCTGCCCTTCAGATGTTTTTA









AGGTTTGGGGGCCGTAGGTCTTCCTGAG









ATAGGAGCCCTGCAGCCTGCCCTGCCAT









CCTAGAGGTGGGAGCTGCAGTGCACCTG









GCAGCCAGGCCCTGGCCAGTCGAGGGTG









GGGCTGTGAGGCAGCAGGGAGACCTTCG









TGCTCCCAGTGAGCGGAGCCGACTCCAC









TGCTAGCGGACTAGA





 406
3676115
2
NME3
AGATGCGCGTCACAGAGGCTCTCACACT
0.000203565
0.011839051
7.55E−06






CCAGCCTCCTCCAGGGCCCAGGTGGGCG









GGCTTCTGGCCCCACCCCACAGCGCTTG









GAGCATCCCTTTGGACGGGCTGCTGAAC









ATCCACCTGTCTGGACGTTGCATGGA





1315
3676601
4
CASKIN1
TGTCAGTGTGTCAGGGCACCTGTGCGGG
0.001168298
0.007803578
3.44E−06






CACGGACAGGGCTCTGCA





 299
3677917
2
ADCY9
CCGAGGTGCTCTGTTTGTCGAAACACAG
4.55E−05
0.019273282
1.32E−05






TAATATTTGTATTTGGCTGTTGTGCTTTC









CAAGCGCCACAGTTGCCCTCCCCGGACG









TGGTGTTATGTGGTCATTTCAGCCCTAAC









TTCTGTGTGGATCACAGTTATTCAGGGTT









CATTTTCATCCATTCTTCCCTTTCGCTCCC









TTCCCTGGAAACCCCGCTGCCTCTGGGTC









ATCCGTTCAGCACGTGGTGGAGAACAAG









TGCCTTCAGGGCTGGCCTCGGCCTCGAG









TCTCGGGACAGAGGCCGCCAGTGGAGAT









CATGGCTTTGGGTATTATTTGACTTTTAG









AACAAAAGCTGTGGTTAAGATCTCATTT









TTATTGCTTTTTCCCACGTCCCACGAGAC









ACTATTTTCGGTTCTCTGGCTAATACCCT









GTTTTTGAGTTTATTTTGTTTCTGTCTATG









TCACAGTGTTCCTCTACGACCCGACCTCT









CTATGTAAGCACA





 974
3680474
7
SNN
ATGTGCACGTGAGAAATGTTCCCTGGGT
0.001283816
0.008241237
7.03E−06






CCTAAGTGCCTTTAGAGCTGGGTCAGGG









GACTGGAGACCCGCTGAGGAAAGTGAA









GTCAGAACCCCATAGGCGGACGGTCATC









AGAGA





2015
3680538
9
ZC3H7A
CCAAAGACCGGCGTGCGATGAGAGTGAT
6.62E−06
0.008429013
5.75E−06






GTCTATTGAAC





1898
3681408
4
PARN
GTGATAAACCCAGGCAACATTCTTTTCA
0.000110135
0.006617645
5.82E−06






AATGGATAATCAAAAGAGAGAATTGATC









AACCAAGATGAAAGTGTCATAAGGAACC









AATAAGTGATAATGTTGGAAGTGAAATT









CAAATCAAAACAAGTAGAATTATAAAGA









AGAATTAGCTGACCACGGGAATGTTGAC









ACTGCTGCCATTTGAGTTACTGTAAATCT









GCAGCCAGAGGAACTTAACGAAGGCAA









CTTATCAGCATAAATGAGGAAAGTGGTT









GTGACAAAAAGGATGAAGATGTCCCAG









AAGAAGTAACGCCAGCACA





1242
3685365
1

CCAGGCAATCATTCTATTAAGGATGTGC
0.030555206
0.008234817
1.17E−05






TAGATGACCCACAGACTCAGGCCTGACT









CCTCAGGAGCTCACAGTTAGTAGGGGTT









CAGACAAGAACACAGGTACATAACTAA









AACTCTATTGATAAGGGCGCCTCGGTAA









GGTGCTATGGGAAC





1091
3685648
9
ARHGAP17
AAATCCTATTTACGGGAATTGCCTGAAC
0.005416181
0.009485484
9.37E−06






CTTTGATGACTTTTAAT





1253
3685774
1

AGTGAGCTCATCAAAAGCACGGACAGG
0.01415169
0.011101576
7.70E−06






AA





1422
3685788
1

GATTCTACCTCTGCTCTTTCCGCAATCCA
0.002080741
0.008376621
5.65E−06






CCAAGCCCCGTAAACTTGCCAGAAGTTA









CATTGTGTCTGCAGTTATAATGTTTAAAA









CATGCTCTCACTTGACCCCAGGATTCTCA









TTAGCTGGGTTACCC





 331
3686345
4
XPO6
ACAGGACTGAGCTTCTGTGCCTGGACTG
0.002571681
0.009429634
1.25E−06






AACTAGTAACTTTTACACCCAGGAATTC









CAAAGCAGTTTAAAAATACTTTGCTTAG









CCCCCAGGCAGAGGCTTAACCTCCAGG





1324
3686981
8
RUNDC2C
TTGTGTGGGCGTTATAGGACAGACCGTG
0.000751323
0.010013645
2.70E−06






GGGTGGGGCGGGGGATGGGGGAGGTGG









ACAAATGAGGTCTGGATGAGAAGTGTGA









CCAGGCGTGTTTGACTCATGC





1100
3687400
1

GTCAAGAGACACAGTTACCATTCTTGTG
2.99E−05
0.009900281
3.48E−06






CAGGCCTCCAGAAACAACATATGAACAA









CTAAGCAAACACGGCTAAGCTCTTTCCC









T





 435
3687775
5
ZNF48
CTGAGTCACAGAGGACGCAAAGGCAGA
0.009627872
0.010281022
1.32E−05






GAGAGACCGAGGGACAGCGGCTGACCA









AAAATAAGGGGAGCCAAAGATTAGCCG









CTAGAGACAGAGACGTAGAAACGGATA









AGAGATAAAGTCATTGACGCAGAGTCCG









AG





 244
3687981
3
C16orf93
ACAGCTGTTGAGTGAAGTGAATGAATGG
3.74E−05
0.012026254
7.79E−06






ATACCAGAGAGGGCCTCACTGC





 207
3688068
3
CTF2P
TGAGCCCATCAGTCAAGCCTATAGCCTG
3.07E−06
0.018860953
1.72E−05






GCCCTCTACATGCAGAAGAACACCTCAG









CGCTGCT





2044
3689930
2
VPS35
CGCTAGGTTTCCCTTCCATAGATTGTGCC
0.000319739
0.007906231
5.17E−06






TTTCAGAAATGCTGAGGTAGGTTTCCCA









TTTCTTACCTGTGATGTGTTTTACCCAGC









ACCTCCGGACA





1660
3689951
9
VPS35
TCAGTTGGAAGGTGTAAATGTGGAACGT
6.38E−06
0.00913068
8.04E−06






TACAAACA





1364
3690072
5
GPT2
TGGCTCCCTGTTGTTCTTAGCACAATGAC
0.001561876
0.010540522
6.53E−06






CCAAATCCTCAGCATGGCCTCTAAGGCC









CTGTACTGGTGCCAGCTGCCTTGCCAGC









CCACGCCTGGTAACTCCGACCCTTGCTGT









GCACTCATCCCCCAGCATCTCCAGTTCCC









AGCACTCAGACTCCTGCCAGCTCTAGGC









CTCTGCACACAGTGACCTTCAGCTCAGA









GCACACCCCCTCTCCCAGTTCACTCCTGT









GTGTCCCTCAGGTCGGTGTCTACT





1989
3694664
2
CDH11
TCTAACGCTGAACTGACAATGAAGGGAA
0.00207602
0.008120261
7.70E−06






ATTGTTTATGTGTTATGAACATCCAAGTC









TTTCTTCTTTTTTAAGTTGTCAAAGAAGC









TTCCACAAAATTAGAAAGGACAACAGTT









CTGAGCTGTAATTTCGCCTTAAACTCTGG









ACACTCTATATGTAGTGCATTTTTAAACT









TGAAATATATAATATTCAGCCAGCTTAA









ACCCATACAATGTATGTACAATACAATG









TACAATTATGTCTCTTGAGCATCAATCTT









GTTACTGCTGATTCTTGTAAATCTTTTTG









CTTCTACTTTCATCTTAAACTAATACGTG









CCAGATATAACTGTCTTGTTTCAGTGAG









AGACGCCCTATTTCTATGTC





1250
3694693
9
CDH11
CCCTACCCAACATGGACAGGGAGGCCAA
4.31E−05
0.008270469
7.34E−06






GGAGGAGTACCACGTGGTGATCCAGGCC









AAGGACATGGGTGGACATATGGGCGGA









CTCTCAGGGACAACCAAAGTGACGATCA









CACTGACCGATGTC





 928
3695096
9
AC132186.2
GGGACCTCACCACACCCATACACGGGGA
0.008619147
0.011094646
1.11E−05






CCCAATGATGGCTCTTGTGGACTATCAC









GATGGCGTCATCGCCAGCACG





1423
3695391
7
CES4A
CCCTGTGTATAGACTTTGGAGTGGCCCT
0.0038061
0.006571526
5.20E−06






GGGGGAGATAAGTGTGGGTGGGAGAGA









AGATCCCAAACTACCAAAAGTTTGCTCC









ATGTCACAACCTGCCCTAGGCCTCCAGG









CCAATGTGAACAGACAGGCACAAGGTTG









AGCAGGATGGATGGTAAATGCCAAGCTG









GGTGCAGTGACAGGGGCAGTGGCAGTCT









GGGTCGACCTCCCATAAGAAGGAGTCAC









AAGGAGACATTGAAGGGTGGGAGGATTT









GAAGAAGGGAAAAAAAGAGGTTGTCCT









GAGGCTGGAGAGCTGAGCACAGTGTGGT









GTTGACAGGGCCTGGCCTAACTGGATGT









CAACAGTGAAGTAGAGGGGCATCATGG









GATGTCAGGCTGGAAAGGGCAGTGCAG









GTCCCACACAACAGGCA





 586
3696274
1

GCCTCCCGCAAATGGCTGGCCAATAGGG
0.001689593
0.009564298
6.29E−06






ACTCGCCGCCATATAC





1247
3699295
5
ZNRF1
CCTGGGGCTTTCCAGAGTCCGGCTGTGA
0.000873066
0.008486615
4.04E−06






GCGCCCAGCTTGCTGCTGGCGTGGCGCT









GGGGAAGCGGGGCTATGTGGGGAG





1690
3699734
9
ADAT1
GTGGGGATGCCTCCATCATTCCGATGCTT
0.000712087
0.006749163
2.51E−06






GAGTTTGAAGATCAGCCTTGCTGT





 685
3699913
1

GCCTGTCCATTTTTAAGCCTCCAGGAAA
1.41E−06
0.013152305
1.07E−05






CCCAGGCTGCAGCTTCCAACTATGCCAC









AGAGCAGAGTTTTTCCTGTGCCAAGAGG









GCTCTGATGAGAAGACCTGGTTGCTCCC









TTCTGGAGAAACAGAGGATTGCCTGTCA









ACAGATGGGCTACAATTGCTTCTCTTTGG









AGAACCAAGAGACTCCCAGTCAACAGGT









GGGCTCCATGTGCTCTTCTCTGGAGAAA









CAAGGGATTTCCCAGTCAACAGGTGGGTT









CCCAGTGCTCCTATCTGGTCGCAGGTACT









G





 295
3703547
1

TCCTGGAAATGCCATTGCCCCCCTGGGG
0.000221959
0.015552834
1.72E−05






CCTGACCCTCGCTGGCAATCCTCCACTTC









CC





1715
3704487
4
FAM38A
CTGAGGCGGTCCCACACTTTGGAAAAAA
0.022526284
0.006567648
3.55E−06






ATAGTGTGGGTTCCTCCCTGGTCCTCCCT









TGCCCTACTGGGCTCAGTTTCGCAGGGG









CGGGGGCCGGCCTCTGCCCTGGTCTGGG









GGAGGGGACACCCCCGGAGGCTGTGGCC









TGGTGTCAGGGCGGGGCAGGGGTCCCCA









GTCCTGGCATCTGTGTTCCCTGCTTGCCG









GGCAGTGGTGCCCCTTTCGCGAAGCACA









CCCGGGTGGCTTGGTGCTGCACGGCCTG









GCACCCCTACCCTTCCCCGACCCTGGCCT









AGCCGGGACCCAGGGTCCGCGCCCTCCG









CCCGGGGGCTCCCCACGTGTGATTGATC









TGGGAAGCAGTCGGATGGAATTAACCCA









CGGACAAGTGGGACGGTTTGCATTTGGGA









GTCCGCCATGGACACGGCAGGTGGGGCC









TTTTGATTGTAAAAGCCCTTTCGGAGCCC









TTGCCTCGCTCCAGGTGGGAGCTCGCCC









AGCGCTAGCTTTGGGGATCTAGAGCCGC









CTGCCTGAGGCTCCCAGACAGACTGCGT









TTTGATCGGTCGCACAGAAAGGTGGTGA









AACTTGGGGAAGATTTTCTAGACAGGAA









TCAATGAAAACCATTGAGGCTGGAGAGG









AGAGGTTTTGAGCAACTCTCTTCAGTGC









GGTCAGCCCTGTGTGGACTGGGCAGCCT









GGGACCTGCTCCCAGTGCAGGGTCAGAT









GGGCCGTAAACAGGGCCCGGCTGTGTTC









CTTCCTGTGCCTTGAAAACAAGCAGGAC









AGCCTGGCACAGAGGCAGAGTCTAGAGC









TGACAGGCCTTAGAGAGGGAAACAGGA









AAGCTTCTGAAACGTCCCGTTCACACTG









ATCGTTCCATTTCCTCTTGTGTCTGAGTG









GGAGCGGGTGTCCTCCCTGCAGGGAATG









CCCCCCCTCTCAGATGGCAGCTGCTCCTT









GGGCAGAGTTGGCAATGTTTTTCTTTAA









ATGACCAGATGGTAAATATTTTCATGTC









ACAAAATCTTCTTCTTCTGGTATTTTTCC









AGCCATTAAATGTAAAAGCCCTCCTGAG









TTCATGGGCTGTACCTAAACAGGTGTTG









AGCCCGATTCTGTGGCACATGTGGTTTG









CTGCCCCCTGGGCATTGGTCAGGGGGCC









TGGGTTCTGCCTTCTCGATTGCTATCCGC









GTGGGGGATCTGGGGGAGGGATCACTGT









TCTTCTTGCTTTTGGCCTCCTTGGGGAGG









ATGGGGAGGTAGCCCAGGGGTGCTCACC









CAGGCCCCGTGTCAGTCTTCTATGAAAC









TTTTAAAGAATAGTGATGACTGACTGTC









TGTCTGTATGGTACTTTCCTTAAACCTAA









AACTGGTCCCAAATAAAGTCTCTTAATTT









GAAAGATGCTGAAGCCCGGGCCATACCC









CACACTGATTCTGTGTCTGGGGATGGGG









CGTGGGGCCTGGGCCTCACTCAGTGTTTT









CTCTCAGTCACCTGGGGGAGATGGAAGT









GGAGCCGGCCAAGAACCCTGCCTGCCTG









CCTGCTGGCCGGGACTCCTGAGTCAGGC









TCTCTGGCCCTGGGGTGTGGGCAGCTCC









AGATGGACCCGCGATGTGCAGGTTCAGC









TGGCCTGGCCGGAGGTGGGACACTGGCT









TTGCTGTCTTTGGAGTGCCCCCTCCCTCT









CTGGCGAGCTTTGGCTGGAAGCAGTTCT









ACCGTGTTTTGGAAATGAATGAGGCCTT









CAGAAGGCATTAGTCAGTGTGTGCCTGC









GCTGGCTCAGACAGTGCCTGGTGAGGGT









TTGAGTCATCCTGGGGTGCCCCTGGCCC









CCACGCCCTCCCTCTCCAGTGCAGGATC









ATTACCCAAAAATCTGGCAGGGAGCTGC









CCCACCCACAGGGAGCAGGGGCCTCCTT









CAGCAGTCTCACCTAATGTTGCTGGAGC









CTTGGGGGATCAGGGCCCATCTCTTCTA









GAGAGATGTCAGGGCAGGGCTGGGCGC









GATGGCTCACACCTGTAATCCCAGAGCT









TCGGGAGGCCAAGGTGGGAGGATTGCTT









GAGCGTAGCCATTCGAGAGCAGC





 640
3704496
1

GGATCCCAGGGAAATATCAGCCTTGGGC
0.012720391
0.009555613
5.12E−06






AACTGCAGTGACCAGGGGCACCGGCTGC









CCACAGGGAACACATTCCTTTGCTGGGG









TTCAGCGCCTCTCCTGGGGCTGGAAGTG









CCAAAGCCTGGGGCAAAGCTGTGTTTCA









GCCACACTGAACCCAATTACACACAGCG









GGAGAACGCAGTAAACAGCTTTCCCACA









AGAGCCGTCTCCTGTCCTCCTGTTCCCCA









GGGCAGGGAGCCCCAGGACAACACCAG









ACTTCAGCTGTACTGTGGG





1995
3707126
2
ARRB2
CCCACTGTCAATGGGGGATTGTCCCAGC
0.001628328
0.006507684
4.21E−06






CCCTCTTCCCTTCCCCTCACCTGGAAGCT









TCTTCAACCAATCCCTTCACACTCTCTCC









CCCATCCCCCCAAGATACACACTGGACC









CTCTCTTGCTGAATGTGGGCATTAATTTT









TTGACTGCAGCTCTGCTTCTCCAGCCCCG









CCGTGGGTGGCAAGCTGTGTTCATACCT









AAATTTTCTGGAAGGGGACAGTGAAAAG









AGGAGTGACAGGAGGGAAAGGGGGAGA









CAAAACTCCTACTCTCAACCTCACACCA









ACACCTCCCATTATCACTCTCTCTGCCCC









CATTCCTTCAAGAGGAGACCCTTT





1610
3708862
9
CD68
TACCAAGAGCCACAAAACCACCACTCAC
0.00071035
0.010528404
1.33E−05






AGGACAACCACCACAGGCACCACCAGCC









ACGGACCCACGACTGCCACTCACAA





 541
3711048
6

CCACGTGTTTGGTGTTGGTTATACATTAA
0.000996275
0.008838354
6.05E−06






GATGGGGCGGGAGTGAGAACAATCTCTT









AACATTCATTGAAAAAAATACTGAAACA









TATTTTCAGCACAAATATTAAACTGTCTC









TTCTCTACCGATTGGTAAAAAAATATATT









ATATTTTGATTTTTTTTTTCTTTTTAAATT









ATATGGTTATCCATCCCAGCCAAAGTCG









TGCCCGGTCATCTGGTAGAACT





1493
3711987
9
PIGL
CTCTGGGTTTGGGACTCCTCAGAACGAA
0.013379902
0.008147589
7.37E−06






TGAAGAGTCGGGAGCAGGGAGGACGGC









TGGGAGCCGAAAGCCGGACCCTGCTGGT









CATAGCGCACCCTGACGATGAAGCCATG









TTTTTTGCTCCCACAGTGCTAGGCTTGGC









CCGCCTAAGGCACTGGGTGTACCTG





1454
3717119
9
NF1
TGCTTAAAAGGACCTGACACTTACAACA
2.26E−05
0.009405833
4.88E−06






GTCAAGTTCTGATAGAAGCTACAGTAAT









AGCACTAACCAAATTACAGCCACTTCTT









AATAAG





 561
3718005
5
ACCN1
TGGCTGATAAATCTGTGGACATGTGAAA
0.033664154
0.007046032
5.45E−06






ATGAAGTGCAGCTTGCTATATTATAGCA









TCCAAACTGCAGGGGAGCCAACAAACAT









CTAACTCTGCCCACTCATTTTACCACTGG









GGCGAACGAGGTTCAGGGAGGAGCAGG









GACTCACCTGAGCCCAGGAATAGGGAGG









CTCAACGGAAACTCAGGCCATTG





1112
3718104
5
ACCN1
CCCGGTGAAGTACGCATGTGAGCTCATC
9.72E−05
0.009822418
5.26E−06






CAATCTGCAGCCACTCCAGGAGGAGGGC









ATCATTATCCTCAATAAACAGATGAGCA









AACAGAGGCTCATGGAGGGTCAGCGAC









GTGTCCAAGGTCACTGACTCATCAGAAG









GCTACTTTGTTCTCACTCCATCAGGTGGC









CCAAGG





 665
3718684
4
AP2B1
ACGGAGAGAAGGGTAACACCAGGCTGG
0.000742232
0.008729072
4.07E−06






GTCGGAGACCGGCGGAGGCGAGGAAAT









CCTAAGAGCGTGACCGTTGATGATGCAG









GGAACCGTC





1314
3719372
9
AATF
AAACTACAAAAAGCTCTGTTGACCACCA
0.000461778
0.007820628
6.09E−06


 847
3719860
1

TGCGTGCCTAGAGGTCAAGTGTAACTGG
0.019317948
0.007902788
4.29E−06






TGTTCGTGAGCACCTCGTGGTTGCGGGT









CTCTAACTCTCGTGGGTCTCTAAGCGCAC









CCGCGGGGCTGGAGCGGAGGTTCGTGTC









TCTGGGAGGGTCAGTGGTGTGACTGAAG









CTGGGAGTTAGCTCGTGTCTGTGGGTGC









CTCGGTGTGTGTCTCTGGGGCTCTGAGTC









CCTGTGCGTGCGTGTGTGTCTGTGAACCC









GACAGGAAGCTCCCCGAGGGCAGGAAT









ATGTTTTGCTCTCTACTCGATCCCAGCGA









CTGGCAACGAGCGTTTAATA





1387
3719966
4
PSMB3
CTTTTGACAATGAGAGTAACCCAGCCAC
0.000155402
0.008781182
3.21E−06






TGAGTATCCCTCTTTGCCTTGCCTGCTAG









GGGGCTCAAAACAAAACTTTGTGTTCAG









TCTGAGTTATCTTGTATTATGTTTTAATG









GTTTAGTTTTATTTTTCAGTGTTTTTCATA









TAAACTGCCTCCAATCTTTTCTCTAAAGG









AGTAGAGGTATAAACATACACATAGAGG









ACTGAGTGATGGTAGGACCTTGGGTGAG









GAGAGGGAGGATTAGAAGAAAACAATT









CTGAAAGAAAGAAGGAGCACAAGAGGG









TCAGAGGTGAGAAGGATAGAAAGGTAA









GTGTTGAAGAAAAGAAAGTGGAAAAGT









CTTAGAATATTTCTAGCTGGCAGGAGAA









GGGAGAGGGAGCTGGCCTCAGGGAAAG









GTGATCTTCCTAAACAGGTCCTCCATTTC









CCTTTGGGTCTGGGTCTAGGCCGGGGCC









TTGTCTGAATAGGCTTAAACATGAAAGC









GAGCGTTCTTGAGTTCTGGTTTC





 762
3720001
2
LASP1
GCTGGGCGTCTGTTCTTTACCAAAACCAT
0.000136311
0.015837481
1.21E−05






CCATCCCTAGAAGAGCACAGAGCCCTGA









GGGGCTGGGCTGGGCTGGGCTGAGCCCC









TGGTCTTCTCTACAGTTCACAGAGGTCTT









TCAGCTCATTTAATCCCAGGAAAGAGGC









ATCAAAGCTAGAATGTGAATATAACTTT









TGTGGACCAATACTAAGAATAACAAGAA









GCCCAGTGGTGAGGAAAGTGCGTTCTCC









CAGCACTGCCTCCTGTTTTCTCCCTCTCA









TGTCCCTCCAGGGAAAATGACTTTATTG









CTTAATTTCTGCCTTTCCCCCCTCACACA









TGCACTTTTGGGCCTTTTTTTATAGCTGG









AAAAAACAAAATACCACCCTACAAACCT









GTATTTAAAAAGAAACAGAAATGACCAC









GTGAAATTTGCCTCTGTCCAAACATTTCA









TCCGTGTGTATGTGTATGTGTGTGAGTGT









GTGAAGCCGCCAGTTCATCTTTTTATATG









GGGTTGTTGTCTCATTTTGGTCTGTTTTG









GTCCCCTCCCTCGTGGGCTTGTGCTCGGG









ATCAAACCTTTCTGG





  59
3720978
5
TOP2A
GATCATCTTCATCTGACTCTTCCAGGTAC
1.72E−06
0.047128916
4.13E−05






TTTATAGGTTTCTTTGCCCGTACAGATTT









TGCCCGAGGAGCCACAGCTGAGTCAAAG









TCCATATGGAAGTCATCACTCTCC





  44
3720986
5
TOP2A
TTTTGGTCTTAGGTGGACTAGCATCTGAT
6.24E−07
0.096289981
0.000148557






GGGACAAAATCTTCATCATCAGTTTTTTC









ATCAAAATCTGAGAAATCTTCATCTGAA









TCCAAATCCATTGTGAATTTTG





1557
3720988
5
TOP2A
CGTGGAGGGACATCAAAATTACTTTCGT
0.000229029
0.01011419
8.45E−06






CACTGCTCCTATCTGATTCTGAATCAGAC









CAGGGATTTCTCTTCTTTCCTTTTTTGATT









GGCTTAAATGCCAATGTAGTTTGTT





  51
3720992
5
TOP2A
CATTTCTATGGTTATTCGTGGAATGACTC
2.14E−08
0.063588907
7.19E−05






TTTGACCACGCGGAGAAGGCAAAACTTC









AGCCATTTGTGTTTTTTTCCCCTTGGCCT









TCCCCCCTTTCCCAGGAAGTCCGACTTGT









TCA





 877
3721456
9
FKBP10
TGGGGGATTTTGTGCGCTACCACTACAA
7.36E−05
0.009162263
6.97E−06






CGGCACTTTTGAAGATGGC





1512
3726146
1

GGCCCCGTGCCTTCTGACTCACAGCAGC
2.49E−05
0.007143351
5.19E−06






TCAACAGGAAAGCATCTGATCATGCCCA









CAGCCCTGGCATCTGGCCCACAGGAGTG









GCACCCCTCCCCAAGACCTTCCACACAG









TTTCTATATTA





1941
3726285
7
COL1A1
AATAGGTACAGAGTCTTTTGCTTCCTCCC
2.08E−05
0.010400379
8.52E−06






ACCCCTAGGGGGAAAAACTGCTTTGTGC









TTTGGGAAGTTGTCTCTGAAACCCGGGG









ACAGAGGACGCAGGACAGACTAGGAGG









GAGCCGGGAGGATGGGCTGCAGCTGTGG









AGGAGGGTTTCAGAGGAGAGAGGTCGG









AGAGCAGAGGCCTGAGAAGCCAGAGGC









AGGTGGAGAGAGGGTGGAAAGTGAGCA









GCGGGCTGGGCTGGAGCCGCACACGCTC









TCCTCCCATGTTAAATAGCACCTT





 397
3726287
5
COL1A1
CGGCACAAGGGATTGACACGCGTTCCCC
5.98E−06
0.021237214
1.83E−05






AAATCCGATGTTTCTGCTTTGTCGTGGCC









CTTCCTGACTCTCCTCCGAACCCAGTGAG









GGGCTGGTGGCTCCCCCGGCATGACCCC









CTCAAAAACGAAGGGGAGATGTTGCAA









GAGCCATGGGAGCGCCAGATGGCAAGG









CTTCTTTGGCAGTCTGAGAACCCCAGGT









CCCCCAGGGCCTGGGGGTGCTGGGCGGG









CAGGAGCGGGCTGAGGGTGGGGGCCAC









TTGGGTGTTTGAGCATTGCCTTTGATTGC









TGGGCAGACAATACATTGTTTCCTGTGTC









TTCTGGGGAGACAGATTTGGGAAGGAGT









GGAGGGGAGGCCCCAAGGGGGGTGTGG









AGAAAGGAGCAGAAAGGGCAGCATTGG









GGTTTCATAAGCCCAACGGGCAGAAAGG









GACTTACCCCCGCATGGGTCTTCAAGCA









AGTGGACCAAGCTTCCTTTTTTAAAAAG









TTATTTATTTATTCTTTTTTTTTTTTTTTTT









TTGGTAAGGTTGAATGCACTTTTGGTTTT









TGGTCATGTTCGGTTGGTCAAAGATAAA









AACTAAGTTTGAGAGATGAATGCAAAGG









AAAAAAATATTTTCCAAAGTCCATGTGA









AATTGTCTCCCATTTTTTGGCTTTTGAGG









GGGTTCAGTTTGGGTTGCTTGTCTGTTTC









CGGGTTGGGGGGAAAGTTGGTTGGGTGG









GAGGGAGCCAGGTTGGGATGGAGGGAG









TTTACAGGAAGCAGACAGGGCCAACGTC









GAAGCCGAATTC





 833
3726289
5
COL1A1
CGTGCAGCCATCGACAGTGACGCTGTAG
2.23E−05
0.016265471
1.43E−05






GTGAAGCGGCTGTTGCCCTCGGCGCG





 688
3726379
9
EME1
AGAAAACCAAGCCGAGTCAGAAGGTCC
0.000474683
0.00860949
8.22E−06






AGGGAAGAGGCTCACACGGATGCCGGC









AGCAGAGACAAGCAAGGCAGAAGGAAA









GCACCCTGAGAAGACAGGAAAGAAAGA









ATGCAGCACTGGTTACCAGGATGAAAGC









CCAGAGGCCAGAGGAATGCTTAAAACAC









ATCATTGTAGTGCTGGATCCA





1144
3728550
1

TGGGGCCATGTCTGATGAAAGCTTGGTG
0.000862602
0.011254423
5.64E−06






ATCCCTTTTGGGTCAAAAACAAGCTCTG









ACTGAAGAGATGCAAGATTTTCTCAGAT









GATTTGTGTGTCAGTCAGAGTTCCGCCA









GAGAAACACAACCAGTAGGATATATTCT









ATCTTGTCTGTCTTCATATCCATGTATCT









GTCATCTACCTAGATTTAATGCAAGGAA









TTGGTTTATGCAGTTGTAGGGGCTGGCT









AGGCAAATCCAAAATCCACAGGGCAGG









CCGTGTGGAAGGGAGGTCTGGAAACTCT









CAGACAAGACCTGACATTGCAGTCCACT









GGTGGAATTTCTCCTTCTTCAGGGAAAC









CTCAGCTTTCAACGGAGTGGATCAGACC









CAACCATATTATCCAGGATAATCTCCTTT









ACATAAAGTTAACTGATTGTAGATGTAA









ATTACATTTACAAGATACCTTCATAGCA









ACACCTAGGTCAGTTTTTGAATAACTGG









GTATTATAGCATAGCCAGGTCAACACGT









AAAATTGATCACCACAGTCCATGTCTTG









TTAACTTGGCACCTGTA





 615
3728572
1

ATGAAGGAAACCACCCTAGACCTAGAAC
0.00028925
0.009148564
6.03E−06






ACGGCCAAGACACTGTAAAGCTGAAGA









ATAGGGAGAAATTTCTGCATGAGGCTAA









GCAAAG





1305
3728970
9
PRR11
TGCCCAAGTTCAAACAACGAAGACGAAA
2.42E−05
0.013089929
7.09E−06






GCTAAAAGCCAAAGCCGAAAGATTATTC









AAAAAAAAAGAAGCCTCTCACTTTCAGT









CCAAGCTAATTACACCTC





  99
3729181
9
CLTC
AAAATCGTGTGGTGGGAGCTATGCAGCT
6.11E−08
0.03000392
3.82E−05






ATATTCTGTAGATAGGAAAGTGTCTCAG









CCCATTGAAGGACATGCAGCTAGCTTTG









CACAGTTTAAGATGGAAGGAAATGCAGA









AGAATCAACGTTATTTTGTTTTGCAGTTC









GGGGCCAAGCT





1068
3730880
5
STRADA
GGACCCAGGCCCAAACCAGTGAGATTAA
3.45E−05
0.008004559
4.75E−06






TCTACCACCCTGTTGGCTGACGTTTCACG









TGTATCTGGTTTGTTTGTTGTTTTGTTGCT









GTTGTTTTTAAGATATGGGTTATCTCTTT









GTCGCTCAGGC





1655
3731133
1

ATACAACATCCACGAGGGTCCCTGCAGC
0.001204733
0.00994669
1.39E−05






TGTGTCACTGAGGCAAACAGGAAAAGTG









ATTTTGGCTAGGCGTGGTTCTCATCTGTG









AAATTCCACAGCGCAATGACAGCAGCCT









CTCTCCCACCCACTCAAGACACTGTCAG









GAATGTCTTAAGACCTCAGGAGACCACT









TCTTTAGCAAGCAATTTTGTTTTTTGTTTT









TTTTGAGATGGATTCTCACTCTGTCACTC









AGGCTGGAGTGCAGTGGCGCGATCTCCG









CTCACTACAACCTCCGTTTCCTGGGTTCA









AGCGATAATCTCACCTCAGCCTCTTGAG









TAGCTGATACTACAGGCATGCGCCACCA









CGCCCGGCTAATTCTTGTATTTTTAGTAG









AGACAGGGTTTCATCAGGCTGGTCTCAA









ACTCCTGACCTCAGGTGATCCGCCCACC









TCAGCCTCCTGAAGTGCTGGGATTACAG









GCGTGAGCCACCTTGCCTGCCCTGGCAA









GGAATACATTTTTAAAAATTAGTAAGAA









ACATACACATTTCAAGTTTTCAATTAAG









AATAATATTTGCTGATGGCACCATCTTCC









TGTCTTTCAGCCITCAGCATGGTAGAGG









AAAAGAGAAAGAGTGTAGACAAAAACA









GTTGAAGAACATCTGTGCTTGTTCCACCT









TCATTTTCTGTTTTGTGCGTTGCCTGAAT









GAACGGTGTCTTCAGGTTGGTATTTCAC









AGGCGGTGCTCCCAAGTAGTCTGGTTTT









CCCATTTGTGGAGGGCGAGGTCATAGAG









GGGACAGGGGGAGGCTGTCTGGTCAGCA









CTGTGTATTTCCAAAGAACAAGGACTAG









CCAAAACTACAAGCCTTTGAAGGACCAA









AGGAAAAGAGAAAAAACCAGCCTCTAA









CCAGGCCATGCGCTAGAAATGATTG





1674
3731143
6

AGTTAGTTCTGCCTTCGGGCCATGACTCG
8.09E−05
0.006870019
2.73E−06






CTCAGCAGAAGGCACTGCCCACAAGTCA









CCGTTGAGAAACCCGCCCTGTG





1254
3732739
6

GGACGAGGCTGATTCCGATTATCTGGAG
6.32E−05
0.009173345
7.10E−06






GAGCTGGAAGACGACGACGACGCCAGTT









ACTGCACAGAAAGCAGCTTCAGGAGCCA









TAGTACCTACAGCAGCACTCCAGGTACC









CACCCAGCCCAGTTGCTGCAGACTCCTT









CCCCACCTCCTCTGCCCTCCCCCCTTGCT









CACTCGTGTGCTGTGCATCCTGCTCCGAT









CTCCCCCCAACCCCGCCTCCCCCCCAAA









CAGAGGGGAAATGCGAGGGCACATCAA









GTGGCAAAAAACTAGATTTACAAGAGGA









AAGAGGCGCATTGTTAAAAATGGAGATT









GCATTGTTGCAGTTTGCAGGCTACACTC









GCTCGCTCTCTCTCTCCCCCCCAACCTCC









TCTTTTTCCTCTTCAAAATTTGTGCCAGT









GCAGTGTCTCCACCGGGCAGGATTGAAA









CTTTGGCAAACACGTATCCATTGCATTCA









TTTCTTTCCCCTTGTTTTGGTCTGGTTTTC









TGGAATGAAAGAAGCCTCTTGTTTTACA









AACCTCTTTGCATTTCTAATGTGGTTTCT









TTCAGATTTTTATTAGATATGTTACTTAA









AAGGGAATTAAGGGTTTGGACAGATTGT









GGCACACAAACACACACAAAAACATGTC









TGTTTTCACATCCCTAGCTGTGGTTTTAA









AATTGTGTTAAGGAAATGGATCATTTGG









GTTAGTAGGGGAATTTTATCTGGTCCTGT









ATGTTTGCTTTTATTCTTCGAGTGCTAAT









GGGCCTGTGCAACAGTTGCTGGTAAATG









GCTGATTAAAAAGCAAAGCAGAAAGCC









AAACAAGACCCACCCAACTTTGGTTATT









CATTCGATTCAAAATTGTTTTTGGTTAAA









TCAAAAATGAAAGTACAAAACCGCAGG









AACGCGCATCTTAGCTCATTTGATCGCTT









TGCCTTGCTTGGGAAATGCAGTTTCGTGT









CACCTGTTGCAGAAGATATGTAGTTGAT









CATCTAGACATAATTGCTGAAGATAAAC









TTTTGGACCAACTTCTAAGTCACACAGC









ATCATTATCAGATTTATTACACAACGACT









TTTTTGTTTTCACTCTATTTCTGAGGAAA









AAGCCTTCCCGAAATCCGTAATGAATTT









CTCCATGGTAACCCCTCTTCTGTTTTCAC









ACAGAAAAGTTTCTCTAGACTGTTGCTA









AGATGCATTTTGTTAAATACCCCCCCCCC









ACAAAGGCTGCTTTGTATTAAATACGTA









GTTGGAATTTACTAAATTGTGAAATTAA









CGTAACCGAAGCAACAACCGGCAAGACT









TT





 569
3734860
9
KIAA0195
GGTCCGAGTCCGCTACCAGAAGCGACAG
0.000712087
0.010991321
6.89E−06






AAGCTGCAGTTTGAAACTAAGCTGGGCA









TGAACTCTCCCTTC





1110
3735014
2
MYO15B
CCTCTTTGACGTGGGACATGTGACAGAG
0.000203031
0.0074482
3.26E−06






CAACTGCACCAGGCAGCCATACTGGAGG









CCGT





 773
3735349
9
C17orf106
GCTGCCCAAACCTGGGACCTATTACCTC
0.012043037
0.009510322
6.39E−06






CCCTGGGAGGTTAGTGCAGGCCAAGTTC









CTGATGGGAGCACGCTGAGAACATTTGG









CAG





 844
3735745
1

AGCTGTGGCCGGAAGGAAAGCTTCAGTG
0.004194748
0.007501714
3.37E−06






ATTCCCGAAGCAAAGCAGACAGTCGAGT









TCGGAGT





 938
3737994
4
RP13-
CAGAGCTGAGGCTTAACCCAGGGCCTGC
6.62E−06
0.009372956
8.59E−06





766D20.2
GCCCTCCACGGCCTGCACTGCCCCACCT









CCAGCTCCTTGCCCTGTTCCTCCCTCTGC









ACCGGATCAGCCCCCGGACTCTGGGTCA









CCTCCACACCAGTTGACAGGGCCCCCCA









GTCCCCACCGCCAACCACCTGGCCGGCT









ACTTGTCAGACA





 940
3740825
3
MIR132
TCCAGGGCAACCGTGGCTTTCGATTGTT
0.006674036
0.007581392
2.03E−06






ACTGTGGGAACTGGAG





 225
3742407
4
PFN1
GTCCGGGGCACTGCTCCGGTTTGGACCC
0.000909538
0.012421274
8.61E−06






TGA





 223
3743231
1

CTCTTGCAAAAGAGGCTCCACATTTTCC
4.19E−05
0.015381152
5.64E−06






AGGCTTTGATGAGAACTTCGACATAAAC









GTCAAACACAGTTCCTGCATCCGAACCG









ATTCTGAGGCCTTGTA





 599
3743292
3
MIR497HG
CCAGGAGATCCACAGGTCCGGCATGAAC
0.001098492
0.009759828
2.84E−06






AGTGAGAGGTCAGAGGTGGAAGGCTCA









GCAGGAGAGGAGAGGAGGATCAGCAGA









GGTCATGAGAAGGCCAGAATCCAGGGTC









AGGCTGTCTGGAACAGGAAGTAAAATGG









GCCGAGATGGAGCGAGCCCCCAGTGTGC









TTCCAAGGCCACTCCCACCTCCCTGAAA









CACCCTGCTACGTACTGATCCAATGCCCT









GCGCTGTGTATGAGAGC





1788
3745080
1

TGAGTGACACCGTGGGATTGCAGAACCA
0.000126422
0.008893994
4.71E−06






CACGCTAACCATGAAGAATT





 870
3748225
9
FLII
GAGTGGGCCCAAGGACCCTATGGCTCGC
0.025777155
0.009133044
8.23E−06






AAGATGCGACTGCGGAGGCGCAAGGATT









CAGCCCAGGATGACCAGGCCAAGCAGGT









GCTGAAGGGCATGTCAGATGTTGC





 608
3748820
7
RNF112
CCAGAGGCATTGATGCGAACCAGCAGCA
0.001543869
0.008899881
2.96E−06






GCGGCTCCGCCCTCACAGGACACGTCTC









CTGGGCCAGGAGAAGAGAGGGGCCCCT









GAGCATCCAGGACCAGCTCCTGACCCTG









GAATGTGTTCAGCCTGGAGCTCTGTGTC









CTGATGTTCTAGAATAGGGCCAAAGCCA









CCCCCTCCTCTTGGGTCTGACTGATTAGG





 344
3749011
2
ULK2
AGCTTTTCCATTTGGTGCTCCAATGTCTC
1.52E−05
0.014790792
6.57E−06






CTGCTGGACCCATCTGCCTAGTGGAAGG









CAGCAAAATTTCAAGAAACAGGTGAGGT









TGAGCAGCTTGGTGCAACCCCATGGGGC









CTGGAGTTGGAGCTCAACAGCAATGGAT









TTCAGAGACCACCCTGAAACTCCCAGTA









AAAAAGACTTGGGAGACATGTTAATA





1388
3749061
9
ULK2
AAAACTGATTGGGAGGTAGCTATTAAAA
0.000310049
0.006756375
6.24E−06






GTA





1539
3749447
6

TTGGGTGTTTGCGCACAAGCAGCCAACC
0.003773209
0.006991449
6.66E−06


1391
3750115
1

GGTCTCGGGAAAATGCTGCCCGCGACAA
0.013302264
0.009082288
7.05E−06






CCCACTGCGGGACCCTAAATGTCTCGAC









AATAAGGCCTCCTCGGCACGTCTCTG





2004
3750596
7
TMEM97
TGCCAAGCATCAACGTGAAGAGACCCTC
4.69E−05
0.010906008
6.44E−06






TATGCACACAGTGGATATGTTATGCCTG









GCTGTAGCCACCTTCTCTTCTGAAAACA









AGATGGGAATGACGGAACTGTATTAAAA









GATTAAGTTATCCACTAGGGAGCATACT









AGCACACTTCCAGATCAGCCTTGAGATG









CTAGA





1071
3751077
4
C17orf63
TTACAGGCATGATCCGTGATGGCTGTCC
0.000645623
0.008905467
3.00E−06






AGTTTCTAGTATCTTTATATGTGAAAATG









GGGCTGATGATACATACCCAACCTATCT









CAAAGGGCATCTTGAGAAGATGGAGAG









AGAATCATGTGAAAAAGCACTTTGAAAA









TTGTAAAACTCCCTACAAATGTAAGATA









TTGTTAATGACCTTACAAAAACCACCTTT









TTAAAATGATTTGGAATCATAGACTCTA









AAAGTTGATTCTAGTGGTCTAGTCCA





1286
3752264
9
EVI2B
TGGGTCAACCAACACAATTCAGCGACAC
2.99E−05
0.012105796
6.65E−06






TTTTTCTGGACAATCAATATCACCTGCCA









AAGTCACTGCTGGACAACCAACACCAGC









TGTCTATACCTCTTCTGAAAAACCAGAA









GCACATACTTCTGCTGGACAACCACTTG









CCTACAACACCAAACAACCAACACCAAT









AGCCAACACCTCCTCCCAGCAAGCCGTG









TTCACCTCTGCCAGACAACTACCATCTGC









CCGTACTTCTACCACACAACCACCAAAG









TCATTTGTCTATACTTTTACTCAACAATC









ATCATCTGTCCAGATCCCTTCTAGAAAA









CAAATAACTGTTCATAATCCATCCACAC









AACCAACATCAACTGTCAAAAATTCACC









TAGGAGTACACCAGGATTTA





1519
3752342
5
RAB11FIP4
CTCATTCGGAGATGCCTGCCTTCTGGGA
0.00401772
0.006569666
5.67E−07






ACTGCTCACCTGCTATTTCATTGGGAGCC









TCTCCTACCCCCTTCACCCCCTCCTTACC









CATACCTAAAACATATAAAGTGAAATTG









CGAAGTCTCCTCAGAACAGAATCAGTTG









TGAAAAACCTCAGCATAACGGGCTGCCC









AGATCGGGGACTGCCAGATACCTA





  66
3755466
5
LASP1
GAATCACAAGCTGTCGCAGGTTTTAAAA
4.43E−06
0.036109365
2.80E−05






AACAGAGACACTGAAGAATGGACGGGT









CACGCCCAGGACGGATGCGATGCCGTGG









AATGTGCTGAAGACAGATGGGGGCGCTG









CGGGTTCAGATGGCCTCCACGTAGTTGG









CCGGCAGCATCCCCGTGTCGCCGGTGCG









CTCCACCGTCCCGTACATCCAGCCGTCGT









CGATCTGCTGCACGTT





  65
3755470
6

CCAGGAGAAAGATTCACTTGTGGTTCAA
4.15E−06
0.044191091
5.33E−05






GTCAAATGTTCAGAATCATAACAGGCCA









GAAAGGTTTGATCCCGAGCACAAGCCCA









CGAGGGAGGGGACCAAAACAGACCAAA









ATGAGACAACAACCCCATATAAAAAGAT









GAACTGGCGGCTTCACAC





1013
3755539
9
PLXDC1
TGTCTGTCCCGGAAATCAGCTCCTCCCA
0.001501439
0.007489452
3.31E−06






GCATCCTGTCAAAACCGGCCTATCGGAT









GCCTTCATGATTCTCAATCCATCC





1863
3755856
2
IKZF3
AACAGAACCAGTGCTCCAGGTGTTTTTT
0.00016045
0.007545863
2.81E−06






AATTTTTTAATTTATTTTTATTTTTTTTGT









ATATGTATATATATGTATGTATATTTTAG









AGGACCAGGGTC





1375
3756091
1

ACGACTCCTAGCATCTTCGGGAGGCTCC
0.006167603
0.00745408
3.32E−06






TGAAGGACTGAAGCAAAGGAAATCTCTG









AAGGGATTTAGTCCTTGAAAGGGAGTAG









GGATACTTAGGGTGTTCTGTGTTGAGCG









CTTCTTCCTATCTCTCCAGCTTCATGTAT









GTGTGTCTTTATGTCCAAGCAATTGAGCC









AACAAGTCCTCAGAATTCCTTGTGAAAA









AAACGTTTTTTTTTTTTGAGACGGATTCT









CACTCTGTCGCCCAGGCTGGAGTGCAAT









GGTGAAATTCAGCTCACTGCAACCTCCG









CCTCCGGGGTTCAAGCGATTCTCCTGCCT









CAGCCTCCCGAGTAGCTGGGATTACAGT









CACGCGCCACCACGCCCAGCTAATTTTG









TATTTTTAGTAGAGACAGGATTTCTCCTT









GGTCAGGCTGGTCTGGAACTCCCGACTT









CAGGTGATCCGCCCGCCTCGGCCTCCCA









AAGTGGTGGGATTACAGGTGTGAGCCAC









CGTGCCCAGCCCTGAAATAGTCTTAATT









GCTTGTTTTTCTTTTTTGTCTGAGGTGTG









CTTTTTAAAATCTCTATGGAGATGGAGA









AGACTGACATTCTCTGGCCTGATGTGAA









AACCTCTC





 268
3756105
7
MSL1
TCTGCTAAAAGGATGAAGCCCAATGAAG
1.95E−05
0.015854797
1.50E−05






GAATACTTGAGAAGTGATGTGATACAAG









GACATTTATACAGGTTTTGGCATGCCATC









CCAAATACTAAGTGCTTTTGTTTACAGCT









GTAACTTGTTCTGAAACTAACCATCCCC









ACTTTCTTTTCCAAAGATTTTGGTTTTTG









AGCAGTAAAGAAATTGTTATCCATTAAC









TGAAAAAATAATCACAGCCAAACATCCC









TTCCCACATGACTGTATCACAGAATAGT









TTCAAATGAACAACTATCTTTTCAGACA









GTTATCTACCAACTCTCCGATGTCTTTTC









TACTCTGTGAAGATGGCTTGCTTCATCGC









TTCACTTGTCATTCCTCTTCTGGTCCTAA









AGCTCATGGTGAGGTTGTTTGTTTTATTT









TAGGGTTAAAAATCACTATACCCACTAT









AAGGAGGGTGTACCAGGGTGAGAAGAG









TGCCATGCAGGCACAGCTCTAAAGGAAG









GGGCTGCTTCATCTTCCACATGTCTAATG









AAGAGAGCCCTTTTACCCCTTTAACATA









GGCAAATGTATAGAAACAGACCCCTGAA









ACTTCTGAATCTGCCATCCTATAGCTTTA









GCTTGAGAGCCCATTTCC





 151
3756196
9
TOP2A
CAAGGGGGAGAGTGATGACTTCCATATG
1.82E−06
0.028647724
1.83E−05






GACTTTGACTCAGCTGTGGCTCCTCGGG









CAAAATCTGTACGGGCAAAGAAACCTAT









A





1556
3756197
9
TOP2A
CTGGTGTCTCTCAAAAGCCTGATCCTGCC
0.008619147
0.0072412
3.45E−06






AAAACCAAGAATCGCCGCAAAAGGAAG









CCATCCACTTCTGATGATTCTGACTCTAA









TTTTGAGAAAATTGTTTCGAAAGCAGTC









ACAAGCAAG





  54
3756230
9
TOP2A
TAATGCTGCGGACAACAAACAAAGGGA
8.74E−07
0.053313237
6.05E−05






CCCAAAAATGTCTTGTATTAGAGTCACA









ATTGATCC





1206
3756234
2
TOP2A
GTTCTTGAGCCCCTTCACGACCGTCACC
0.003465953
0.010570624
8.22E−06


  63
3756235
2
TOP2A
TTCAAGTGGAGCTCTCCTAACCGACGCG
3.94E−06
0.043172399
4.70E−05






CGTCTGTGGAGAAGCGGCTTGGTCGGGG









GTGGTCTCGTGGGGTCCTGCCTGTTTAGT









CGCTTTCAG





1434
3757088
9
KRT15
AGAGGTGGCCTCCAACACAGAAATGATC
0.008028233
0.00842142
6.04E−06






CAGACCAGCAAGACGGAGATCACAGAC









CTGAGACGCACGATGCAGGAGCTG





1203
3757100
9
KRT15
GGTGGAAGCCGAAGTATCTCAGCTTCTT
0.000689814
0.009508723
9.53E−06






CTGC





 577
3757573
4
ZNF385C
AGGCCTCCAACTCCAACAAGAAGTGTAA
0.00240984
0.008390462
4.38E−06






GCGTTACTTCAACGAGCACTGGAAAGAG









GAGTTTACCTGGCTGGACTTTGACTATG









AGCGGAAGCTGATGTTCTGCCTCGAGTG









CCGCCAGGCCCTGGTACGGAACAAGCAT









GGCAAAGCCGAAAACGCCTTCACTGTGG









GCACAGACAACTTCCAGCGC





 196
3757645
9
KAT2A
GCACAAGACTCTGGCCTTGATCAAGGAT
7.65E−07
0.020633913
2.39E−05






GGGCGGGTCATCGGTGGCATCTGCTTCC









GCATGTTTCCCACCCAGGGCTTCACGGA









GATTGTCTTCTGTGCTGTCACCTCGAATG









AGCAGG





 214
3757985
9
PSMC3IP
GAGCAGCTGGCGCAACAAGGCAAGATC
0.006245159
0.015412602
1.46E−05






AAAGAGAAGATGTACGGCAAGCAGAAG









ATCTATTTTGCGGAT





 464
3758792
2
TMEM101
AGGGGCAGAAACAGTACCGGCTCTCTGT
0.002047903
0.009826673
1.07E−05






CACTCACCTTGAGAGTAGAGCAGACCCT









GTTCTGCTCTGGGCTGTGAAGGGGTGGA









GCAGGCAGTGGCCAGCTTTGCCCTTCCT









GCTGTCTCTGTTTCTAGCTCCATGGTTGG









CCTGGTGGGGGTGGAGTTCCCTCCCAAA









CACCAGA





1998
3758943
2
ATXN7L3
CGCCTGGCATTACCGCATGCTGGGGTCA
0.002162534
0.007948762
3.78E−06






TTGGGGGAGGGGGGTGGGGCTCACGCTG









TCCTGTGGTCTTGAGATTTTTATTTTTGC









ATATGTAATCCATTCTGTACAG





1178
3759233
4
GPATCH8
GGGTGACTTCACTAAGTCCTGAGGAGGG
1.09E−05
0.00904615
6.29E−06






AGGAATAGATATTACCAAAGATAGGAG









ATACTGATGTATACAAGGTAATTGCAGT









TGACAAAGAGTAGGTGTGGCTAATTGGA









GCAGATTATGTCCATGGTGTAGTGGATT









TTATGCGTTTTTTAACAGAAGAAACCAC









CTCAATTTTTTTTTTTTGAGGTTAAACTT









CAGTATATGAAAGAGGGGGCAACCCAG









CAGTTGTTTTGATTGAAGCAGAGTTCTA









GGTCTCCAGGAATAGTTTAAAAACTGTA









ACTAGGCTGGGCACGATGGCTCATGCCT









GTAATCCCCAACACTTTGGGAGGCTGAG









GTCGAAACATCTCTTGAA





 872
3760226
1

CCTGCCATTTCCTCGCATGTAATTTTTTA
0.032732293
0.00868694
6.90E−06






ACACTCATATCTCAGTGGGCTCTTAGAG









GTAATCCAAGGTAAGAACCACCTTTTTA









GTTAGGTCTGATGGTTAGAAAGCTTGAG









TTGAAGCGTGCCCTTCTGGAATTGCCACT









TTGGGCCCAATTTTGTCTACACGGGAAC









TGCTTA





 178
3761459
2
HOXB7;
CGGTGGCTGTCGTGAAATTGTGCTTGTGT
0.023754148
0.016255176
1.79E−05





HOXB9
TTCGTGATTTCTTTGGGGGTGATTGTCTC









GCTTGTTTTCAGTTGTCGATTATATGGGA









GGGTTCTGGGTGGGAGTGGGGAGGGCG









AGGGGCCTAGAGCTCTAATTGTT





  75
3762200
2
COL1A1
ATTATTTTGATTGCTGGAATAAAGCATGT
0.000102339
0.036754271
4.77E−05






GG





 438
3762201
2
COL1A1
TTCTAAAGGTGCTATTTAACATGGGAGG
1.26E−06
0.020791186
1.69E−05






AGAGCGTGTGCGGCTCCAGCCCAGCCCG









CTGCTCACTTTCCACCCTCTCTCCACCTG









CCTCTGGCTTCTCAGGCCTCTGCTCTCCG









ACCTCTCTCCTCTGAAACCCTCCTCCACA









GCTGCAGCCCATCCTCCCGGCTCCCTCCT









AGTCTGTCCTGCGTCCTCTGT





  67
3762203
2
COL1A1
GACAATTTCACATGGACTTTGGAAAATA
0.000124394
0.038573659
5.08E−05






TTTTTTTCCTTTGCATTCATCTCTCAAACT









TAGTTTTTATCTTTGACCAACCGAACATG









ACCAAAAACCAAAAGTGCATTCAACCT





  76
3762204
9
COL1A1
AGTCACACCGGAGCCTGGGGCAAGACA
2.02E−05
0.035560963
4.53E−05






GTGATTGAATACAAAACCACCAAGACCT









CCCGCCTGCCCATCATCGATGTGGCCCC









CTTGGACGTTGGTGCCCCAGACCAGGAA









TTCGGCTTCGACGTTGGC





1456
3762206
9
COL1A1
AGCTGACCTTCCTGCGCCTGATGTCCACC
4.39E−05
0.014078043
9.84E−06






GAGGCCTCCCAGAACATCACCTACCACT









GCAAGAACAGCGTGGCCTACATGGACCA









GCAGACTGGCAACCTCAAGAAGGCCCTG









CTCCTCCAGGGCTCCAACGAGATCGAGA









TCCGCGCCGAGGGCAACAGCCGCTTCAC









CTACAGCGTCACTGTCGA





 324
3762208
9
COL1A1
AGCGCTGGCGACTTCAGCTTCCTGCC
1.53E−05
0.025263426
1.75E−05






CCAGCCACCTCAAGAGAAGGCTCACGAT









GGTGGCCGCTACTACCGGGCTGATGATG









CCAATGTGGTTCGTGACCGTGACCTCGA









GGTGGACACCACCCTCAAGAGCCTGAGC









CAGCAGATCGAGAACATCCGGAGCCCA





 746
3762212
9
COL1A1
TGAGACAGGCGAACAGGGCGACAGAGG
3.75E−05
0.013541175
1.07E−05






CATAAAGGGTCACCGTGGCTTCTCTGG





  80
3762238
9
COL1A1
TGGGATTCCCTGGACCTAAAGGTGCTGC
5.32E−05
0.027867168
2.65E−05






T





1224
3762257
9
COL1A1
GGTGCTCGAGGATTGCCCGGAACAGCTG
0.000120755
0.013331704
1.14E−05






GC





 686
3762258
9
COL1A1
AGCTGGAAAACCTGGTCGTCCTGGTGAG
9.74E−05
0.014149484
1.04E−05






CGTGGGCCTCCT





 703
3762268
9
COL1A1
CCTGCGTACAGAACGGCCTCAGGTACCA
5.08E−05
0.018236337
1.83E−05






TGACCGAGACGTGTGGAAACCCGAGCCC









TGCCGGATCTGCGTCTGCGACAACGGCA









AGGTGTTGTGCGATGACGTGATCTGTGA









CGAGACC





2076
3764125
2
SRSF1
ACATATCTGAAGAGATGGATTAAGAATG
0.000628393
0.007325163
4.57E−06






CTTTGGATTAAGGATTGTGGAGCACATT









TCAATCATTTTAG





1510
3764880
5
CLTC
TGCTCCTGAATGGAATGGTCCCACAGAA
0.000142667
0.010897302
5.34E−06






AAAGCACAGGATACAGCACAACATAAG









GGCACCTGTTACATATGAAGTGAGCAAA









ACATACTAGCATTTTCTATATGCATAATG









GGGAAACCTGCATAGGTTAGAGGGCCTT









TTACGCTCATTTAAAAATCAGGCAAGTT









GTCTGTAACATTTTTCAATAATCTGGGAA









GCACTGCAATCCAGTGTACGATGTGCTG









ATTAGTGTTGTCTTTGTTGGCACTGACAG









TCTTGCATGGTCATATGCCAGTGTTTTTG









CTTTAGCTTTTCTTTGAATAAAACAGATT









TAAATGCATTTAGACAATACGTATTTGT









AAGCTGTTTACATACACTAAATTTAAGA









GATTCAATATTAGAGTTTCTTTGTTTCTT









TAAACACTACAGAGTGCAAATCAGGTTC









TTCACAACAGATTGAATATTGAGCAGTT









CTTTAAAGAAAGAGGGGGAAGAAAAAA









AGCCCAAGTGAATAAAACATTGAAACTA









TTCCCCTTCGAAAATAAATTCTAAAATG









ATGTGGAATGTGAAATAAGGTTTTAACA









TAGGTGATCCAAGTTTATAGTTAGAAAC









AAAAAGAAGTCCTTCATGAAATAAAGGT









TACAAGAACACGTTGCCTGTTTTCCCCCA









TTATAAACTGAGAAGTGGGTAAAGACGA









TGTTTCAGTACGAAAATAGGTGACTACA









GGATCAGCGCTTCATCTCACATGCTGTA









CCCAAAGCCAGGCTGTGGCTGTCCATAC









GGTGGTGCGGTATAACCATAACCAAAAG









GTGCCTGGGGAGGGACGGCAACACTGG









GTCCTGCTGTCAGCATCAACTGGGGCTG









ACCTACAGTAGAAGAAAACAAAAAGGA









GCAGGGGGCAGGGGCAAGGAGGCAGGA









CAAACTGTTAGCATTTAGAACACTCCAA









TCTCCTCCACTCTAGCAACATAATCTCAA









CCTCAAATGAGTTGTATGGGGGGCACAT









TTGATTGCTACAATTTTAGCATGACAGTC









TTACTCTAAGAAGGTTCCTACCTAAAAA









GCCAACAAACAGTGCAGGGCCAAAGGC









CAGAACTGCTTATGACTGAACACCGTAT









GCCTGACACTCTGTATA





1369
3765948
5
TLK2
TTTTAGCTGTAACAATTAGAAGGAGAAA
5.31E−05
0.009267069
3.83E−06






AGTTGACAGTTATTGAGATGTAGAAGGC









TGTGGAAGTCAGGCACGGTGG





1240
3766160
1

CCTCCCAAGAGGATGGCCTGTTAGAATG
0.000402054
0.009821347
6.87E−06






GACTCTGAGCACCTTCTCTTCTATGTGGG









CCCTCTCTTCATCACAGGGCCTTCCAGAC









ATGATACCTGTTATCAGTGCCCCATCTTA









TTCCTGAGAATGGAATAACTCAGCTGCC









AAGACTCCAAGCTCCTCCAACTTGTTTTT









AAAGCTGAAAGAGGGTGACTCCATTCCC









CGCTGGTTCGCCTACCCATTCCCAGCCG









ACCGCAGGGGAGTTTGGCCACCATGTGC









ACGTGCGTACTGTGTCTGCCTGCAGTTA





1283
3766835
6

CAAGCCCGAACTGGAATCTTCCTTCACA
0.015281883
0.006658549
3.35E−06






CATCTGGACCAAGGTGAAAGACTGAACC









TGTCCTGCT





 860
3767533
1

GTGCTCTCCTCTGGTTACAAGCTCAGGCC
0.000306094
0.006888914
3.37E−06






AACTCCTAAAAGCCAAACT





 326
3768673
9
ABCA8
GTTGAGGAAAACATAACATCACTTGTTA
0.00659163
0.009956292
7.56E−06






AACAGCACATCCCTGATGCCAAATTATC









AGCCAAAAGCGAAGGAAA





 458
3769694
4
AC007639.1
TCAGGCGGGTGGCAAACAAACATCACAT
0.000547163
0.009413625
2.22E−06






AAAGGAGAGTGTCTGGCTTGTGTCTTCT









GGGTACGTGATCCCCCTGACTTCAGTGT









GAGAATGTGGCCAGAGCGTCTGGGGAA









GACAGGGAGAGTTGTCAGAGAGGAGTTT









TGAGGAGGCCCTGAAGGCTCGCCGGCTG









TTAAGGCCTGAGCTGTAGTGGGCAAGAA









GAGATGGCCAGTTCAGGTAGAGGAAGCC









TGCTTTGAGCTGAAGACCGGAGGTGAAT









CTGGACAGGGCTTCCC





1170
3770533
4
C17orf28
TCAGGCCAAGCAGTCCCAGTTCATGTGT
0.000357766
0.007280479
2.38E−06






CTTGTGATCTTGGTGGGAAGGTGCTTGA









ACTCCCAGAGTTCTAACTTCTGCAGCTA









AAACACAGGACCCTAGCTGCCTTCTCAC









CCCAGCTAGTGGCAGGCCTCAGTAAATG









ACAGAACAGTGGAATGCTCCTC





 197
3770609
9
HN1
CTCTGACTGTCCTGAACGCTGTCGTTCTG
0.002303775
0.025254776
2.62E−05






TCTGTTTCCTCCATG





 142
3770610
9
HN1
CGTGCCTGCTGCGCCTGTGCCCAGCCCG
2.02E−05
0.021529189
1.88E−05






GTGGCCCCGGCCCCAGTGCCATCCAGAA









GAAATCCCCCTGGCGGCAAGTCCAGCCT









CGTCTTGG





 402
3770724
2
SLC25A19
CCAGCTGCCCCAAGCGGGGTAGCAGCCT
0.000228432
0.011282404
7.12E−06






TGAACCCAC





1014
3772175
5
AFMID
GGTATACCAGCGACCGCTGTGCCTTTAG
0.007582294
0.006943524
2.20E−06






CCAGCTGGCAGCCTTAAGGGGAGATGAG









GTCCCCCAAACGAATTCAGTTAATGCCA









TCATGGGCACCACTCCCACAGCAGTTAC









GACCAGGGGAGGCC





1763
3772574
4
CYTH1
CACCTATAATGAGCTGGACACTCTATGG
2.15E−05
0.008498103
5.41E−06






GCCTTGCAATTTAGACATGAATAGAGTT









CTCAGGTACCTTACATTCTAATTAGAAG









GAGAACTTTGACCTCTAACCAAGACCTG









TTTAATTCATAGGAGGGTTTCTTTTCTTT









TTTTTAAACTGCACTCACGGTCATCCCCC









CAAAGGATGAGGGTTTCTTAAGTTATGT









TGAAAATTCAAACCTTGAGTCCGGGCAT









GGT





1351
3772842
9
RBFOX3
TGCCGACCCGTACCATCACACCATCGGG
0.004426107
0.006930221
4.64E−06






CCCGCGGCGACCTACAGCATTGGAAC





1862
3775861
9
TYMS
CTCTGCCAGTTCTATGTGGTGAACAGTG
0.003071703
0.008057605
3.71E−06






AGCTGTCCTGCCAGCTGTACCAGAGATC









GGGAGACATGGGCCTCGGTGTGCCTTTC









AACATCGCCAGCTACGCCCTGCTCACGT









ACATGATTGCGCACATCACGGGCCTGAA





1836
3775862
9
TYMS
GGAGATGCACATAACCTGAATCACA
1.38E−05
0.009694831
4.94E−06






TCGAGCCACTGAAAATT





1754
3778001
9
KIAA0802
GGACCGCGCTAATAAAAACTGCCGAATC
2.89E−05
0.0068828
3.01E−06






CTGCAGTACCGTCTTCGGAAAGCCGAGC









AGAAAAGCCTGAAAGTGGCTGAGACGG









GTCAGGTGGATGGTGAGCTTATTCGAAG









CCTGGAGCAGGA





1295
3778069
9
KIAA0802
TCTCCAGGCCCGAGAGACCAGCAAACCG
0.000663296
0.006827917
4.67E−06






TCGCCCTCCGTCCCGTTGGGCCCCACATT









CCCCCACTGCCTCACAGCCTCAGTCACC









CGGAGACCCGACGTCCTTGGAGGAGCAT









G





1540
3779045
5
FAM38B
GTTTGTTGAAAAGACGCCTCCCAGACTC
8.85E−06
0.006719053
3.01E−06






TTCACTCACGAAGTGTG1TACAAAAACT









CTCCCGGCAACTGTCCTGACCCTCACCA









ATCACGCTACAG





 661
3782809
1

AGGGTAGAATAACATGGAAAGCAGCTTT
0.020732462
0.009591141
7.34E−06






TATTCACTCCAAGGACAGCTAA





1061
3784854
4
FHOD3
GGGCAGTAGGGTCTTGTGATTCCAAGTC
0.00010346
0.009326947
5.90E−06






ATGTTCTATGGGCCCCACCATCCAGGAA









TGCAAGCAGATGAGGGCAGGCAGCAGC









CAACTGGCTGCTTCGGGCTCATAGCCCA









GAACCCAACAGGAAGTGTTGAGTGGTGG









CCTGCCCTAGGACCGACTCCATGGGTGT









GTAACGAGTGTAGTTGCACAGGGCCCCA









TATGCAGAAGGGGGCTCTGCACTTGGAA









TTTAATGCTATGTGGCTATAGTCCTGAAA









TTCTTAATTTTATTTTTGAAGTTGTGTCTT









TTAAGCAAAGGCCAACGGGACAGTG





1665
3784859
9
FHOD3
AGAAGCACAGCATCATCCTAAGGACGCA
0.024456705
0.007280018
5.36E−06






GCTGTC





1740
3787462
8
ZBTB7C
TCTGCCAATGTGAGAAGAGTCAGGAACA
0.002951948
0.006763521
4.40E−07






GGATTTAGAATATGGGCAACCTTGGTTC









CT





 986
3787934
6

ATAATCATATTATCTAAGGCAGAAGTGG
0.001628328
0.015025107
1.58E−05






TGGTTACTTGGCAAGAATACGATTTCTTT









TAATG





 314
3788043
1

TGGGAACCAAAGAGACTAGAACCTGCCA
0.001628328
0.011501453
7.55E−06






TTTTGTCTCATGCAAGTAGCCCATCCTGC









ACTGTCCCGGGAAGCCCCACAGCCCGGA









TGGCCCTCAGGGGAGCCTCGCGGCCCTT









CACCGTCGCGGGAAAAGCCAAGTTGGTG









GCAGGAGGAGCCCACCACCAAGGCGAT









CTCACTGCGGAAAAACTCGACCCTCCGC









CTTCACGTCTAGGGCGGCAGGTGGTAGA









GCTGGGCCTCTCAGGCCCATGCCCGAGG









GCAGGCGAGACAAGGAGCGCCCCCAAG









TGGCCATGCGGTGTCCTCACGGAAGGCA









GGGAGGGCGTCACGGGCCTTGGGGACCT









TGACACAACCTGGAGCACGAGGCTGAGA









AACCCACCACGCAGGCCAGCTGGAGGCT









GCCGCCCAGCCGGGAGTCAGAAGCTGGA









GCCACTGGGTGCTCCCGAAGCCAT





1431
3788695
9
DCC
TCCACTCTGGAGAGGTCGCTGGCTGCAC
0.000802243
0.007942304
3.46E−06






GCCGAGCCCCCCGGGCCAAGCTCATGAT









TCCCATGGATGCCCAGTCCAACAATCCT





 709
3790001
4
NEDD4L
CAGAACAAGTGCATCTGCTGGCAGCCAG
0.002951948
0.008086304
6.49E−06






CTTAAGGAGTTAGCAGCCCTCAATTCCA









ATAACGAACGTGTAAATCAGAATTC





 623
3791665
5
BCL2
GTCAGAGCGAATGGGGCCACATCAACAG
0.007675909
0.012378141
1.24E−05






AAAGAAGACCCTGTGACCATGGAGAAA









CCACCAGTCACAGGACCTTCCCCATCAC









CCCCGCCCCCGCCGCCCTGGGCACTGTG









CAAGGCTGGATCCCAC





 260
3794316
5
ZNF516
GGCCAAGCCTAAGTCCGTCCCTCTCCGC
1.63E−06
0.017848595
1.49E−05






CCACGGGCTTCTCCGAGGCCATCTCCGA









AACGCCCTGCAGCTGCTGGCAGAGCCCG









CATGGGCCCCTATGTGGCCCCTGGACAG









ACCGACGGCACTCCTGG





1612
3794399
1

TCTGATGCTAGAGAACGAGAACCGCAGT
5.57E−05
0.007036327
2.08E−06






GCGTGCCCGACACAAAGGGAAGGACAG









GGGACACTGGAACAGGGGAGACGACAT









GGAAGAAATCTGGGGGAGCCAAAAGCC









GCCATGCCGAGAAGGGGGTCGGAGGAG









GCGCGGGAGAGAAAAGCCCAGGGCTGT









ACACTCGCATCCCTCTG





 918
3795871
5
TYMS
GGCCCGTGATGTGCGCAATCATGTACGT
0.000413384
0.009451406
6.52E−06






GAGCAGGGCGTAGCTGGCGATGTTGAAA









GGCACACCGAGGCCCATGTCTCCCGATC









TCTGGTACAGCTGGCAGGACAGCTCACT









GTTCACCACATAGAACTGGCAGAGGGCA









TGGCATGGAGGCAGCGCCATCAGAGGA









AGATCTGAGGAACCAGCAGAGGAAGAT









AAGGAGGGATGGTGGTTTGAAAGACCAC









AGCTAAAGGCAAAGTAAAACAGGAGAG









AAACAGAAGCCAACTCATATGGTGGAGA









CCAGGAGAGAGAGCCACTGGGCTGCAGT









GATGTCCATAACAGCCTCTGCAGCGATG









GCACGGAGCTGAGGGAGACTATCCATCG









GTGCAAGGTTTCTG





 666
3797622
9
LAMA1
TTTCTAACGGGAAAGCGGCCGTGCAGCG
0.000132342
0.012744611
1.54E−05






CAGCTCCAGATTTCTAAAAGAAGGCAAC









AACCTCAGCAGGAAGCTTCC





1521
3798448
7
RAB31
GGGGCACAGCCCTTATTGTTAGCTAAAA
0.017588173
0.01180553
1.14E−05






GTTAGTTTCGGGCCTTCAACCTTTTAGTC









TGCAAGGTAACGTCATATTCAACTGCCT









AATGTGCCGTTTTTAACCATAAAATGGC









AAGTCAATTATGTGGCAATGTAAAATGC









TTGCACAACTCCACTGTCATTCTCAGAG









ATTTCCATTGGGAAGCCATGCCTACTTTA









TATTAACACATGGCTAGGGGCCAAACTC









AGCCAGTGAAATGGATTACATATCGGAG









TAACACATATACAATCATATTTACACAG









ATACACACTCATGCCACACACGAAAGAA









AAAAAAAAGGGAGAAGGAACAAATTTT









GGAAAACGATGCCAAGGATGCTACACTA









CATGAAACTACATGACTTTTTTTAGCAAC









AGTAATTTCCAGGCCTTTACATAATATTA









CATGGTTATGGTTCAATTATTAGACAGC









CAGGAAGTAATCCCGAGCCAAAACAAA









GGAAGGTTGTAAAGCCTCATTGTAGACA









AGGCCTGAGCATCCACAGAGAAGATACA









ATGTTTATGTGAATCCTGGTGTGCCCAA









GTGTGATCTACTCTCTTCACTGACTACTC









TGAGTGCTGATGAGAATATATATATTAT









CCTCTGACTGGCTTGAATAGCTAAGACA









ATACAGAAAGGTAACAGAGTGGTTTCAC









ACCCTCATGTGCTTCTGAAATAAAACCA









TGGGCTCATTAGTGGGTAGCTCACTATCT









GTGGCAAAGACTAGACATTTTATGCAAA









ACACAACCACTGCAAACCCAGCCCAAAG









ATGCAAAACTCTCAGCTAGGATACTTAC









CCCTCAGCTAAAAAACCTGAACAGCTAT









CTAGAGATAAACCCAGGTTCTCAGGGAA









AACTGGATGAGGAAAGGTTACAAAATA









AGCCTGCAACTCAGCTGGAAAGAGGTCA









CTTCAATTTTCAACTCATTTTTTTTTTTTT









TTTTTTACCTTTGGCAAGGGGTATGATCA









TTTCTTGGCCTGCAAGCACAATCATGCC









AACCATTAATGTGGACAATGTGGAAAAA









ACCCTAAAAATCCCTGCAAAGCCCCTGT









CAAGACATCCAAATGCCGCTTGCTAACA









GTTTTTGAGGTACCTATTTGGGAGAGCC









AAGTGGAACTCTTGAAGCAAAATAAGTG









TTTCCCAGCCTTCACATCCTAACACTGTC









AATGAACTCTCTTAAGTTGAGTGAAGTG









GAAGCGTGCTGAGTTACTGAAGTGCCAG









GTCTTTAATCCAATCAGCTCACAACCTCT









TTCCTGACTTTTGCGATATAGATTGTCAA









TAAAGGTTAGCCGTCCCTTGAATGCTCA









TGGCAAAGAAGGTACCAGCTGGCCCTGG









CTAGCACACAGCATGATTAACCATTTCT









GAGCACCAATCCTAATGTCCTTTAAGAA









TCACCCCCTAATATAAGCCCTGGCAGGA









AATCAGCTGCTTCTTGATCCCAACTTTTT









ATGAAAGTTAGAATGGTAATAGAATTTG









AATTTTCAGTAGGAATCAGTTCTCTTCCT









TTCCATGCTTTTTCTTCCTTGACTTCCTTT









GGATTCAAACATCTTTAATTGAGCAGAC









AGGGAATCTGAAAAGGAAGGTTTTCATC









GGAGCCCATTCTCAGTTCCTTGGCATTCT









AGGGTCAGACCTC





 274
3799752
8
C18orf1
GATGCCGCTGGACTTCCTGGCAGAAGCA
0.022526284
0.009387286
1.00E−05






TGGAGGGTCGCTGGCACTCTAGGTCCAG









CTATGCCCATG





1844
3799904
5
C18orf1
GCACGTGAGGGTACATCCAGTCTTCTAC
1.71E−05
0.007083003
2.77E−06






CAGCTAATACGTCAGAGACCACATAATG









TTAGGCTGGAAGAGACCCTAAAGGTTAT









ATAAACCAATTCCCTTATTTTAGAGCTGA









GAAATTTCAGGTGCAAAGAAGGGAGAG









GCTATAACATGGTGGCACTAGAATAAGA









CTGCCGGGTTTGAATCCTGGTGCAACTA









CTTATTACCTGTGTGATCTTGGGAAAGTG









ACTTAACCTTTCTGGGTCACAGTTTGGAT









ACCTATA





1664
3800020
5
C18orf1
CTCAAAGTGTGGTTGCTAGAACAGCAGC
0.035784134
0.007025272
3.31E−06






ATCAGCATCACCTGGGAACCTGTTAGAA









ATGCAAATTTTCAGGTCCACCCAGATCT









ACTGGGAGCTCTGGGCATGAGGCCAGCA









GTCTGGGTTTTACAGAGCCATCTAGGAG









ATTCTGATGTATGTTAGAGTTTGAGAAC









CCTCTGACCCAAGGAAGCGGTGGTGTTT









CAAGAGTGGAAACCTCCAAAAAGAAAA









TGAATAAACATATAATATTTTCATATTGC









CAGCTTCCTAGGCAATCTGATTT





1187
3802335
1

TCCACCACAATTTGGCCGGTCCAGAGAC
0.002298587
0.007497642
2.52E−06






TGCTGGCATCATTAACTCAGAAACTCAG









AGATACAAACGCTCTACTTATCTTGCCG









GGCCCTCAGCCAGAAGTCTCCTATAACT









CTGCGGATGTTTATACATGCCCTCTGCTT









C





 659
3803102
1

TGGAGGGGACCGTATCCTAACTATATTA
9.78E−06
0.012949041
5.98E−06






ACTTCCAATTTTCATCGAAAGCCCACCTG









TCTAAGAAGAGCTCCTAGACATTCCCTTT









CCCCTTCAACTTGGAGGAATTGGGAATG









ACAAAGAGAAATTAATCAAAAGAAGAA









TTAATCTCTCCAATCAGCCTTGGCATTTT









CTTTCTATCTTTGATATGTTGTTTTTTACA









GTGTCTTGGTTTTCAGAATAAGCTGTTTG









TAACTACTTCCTCCACTATATTGTGAGCC









TCTGGAGG





 657
3803770
5
DTNA
TCATCCATTCCACTAGACGCCTTAAAAA
0.000264928
0.011040738
1.09E−05






AGATAACCTCTGGCCGTGGAGAGATTTG









CTTAGAAGTT





1159
3809977
5
NEDD4L
GTCCGCGCATCTTTACCGATGCATCTCCA
0.004913892
0.007014438
2.16E−06






CTCATATCAGTCCTCACTC





 527
3810024
5
NEDD4L
TGACTGTACAGATGGCGAGGCCATCACG
0.000151311
0.010952355
3.58E−06






GAGACAGATGATTCCAGAGAAAGAACA









GTTTCTGATATTTTGACATTCCAGGCCAA









GAAACTATGTAAGGACAAACAAAAGAT









CCTGAATTATACGGCCCCACTAGTGGGT









GAAGTCTCACTTCAAGAACATGATGGCT









TGACTACATATGCAATAATAAGAGAAGA









TGAAATCACACTCCAGAGAGCCAGTACA









CCACCGTGGAAGAAAGATATTTG





 462
3810026
5
NEDD4L
ATGACACCCACAAGTGCACGAAAAAGCT
0.002571681
0.008565392
4.49E−06






A





 328
3810046
5
NEDD4L
CCTCTGCTGATACCGGGGGAATACCAGC
0.001233477
0.010318079
8.37E−06






AAGTTTTAACACAACTGAGAAGGAATGC









GCCCAGCTCGCTACTTATACTGATGATTC





 249
3810508
1

CCCTGGCTCTAACAGGTTTGGGAGCCAG
0.024859934
0.011192154
5.93E−06






TTACCTTTCCCAGTTCATTAACCGACTGG









CCTTCGCATTAACAGCCCCTCCATCGGG









GGTTGCCTTGGAGAC





 538
3811176
7
KIAA1468
TGCTGTCTTTCCTCAGGTAAGTCCATTAT
6.13E−05
0.012391652
3.65E−06






ATGCATCTAAGTGCTGGGGAGGTTTAAA









TAGCACTTAAAGAATATTCATGAGAGTT









CTGAAATGAAGGTTTCGTCTTTAGCTATT









GACTGTAGGATTTGTAATTCAAATCATC









ACAGCATCCTAAAGAAATACTGTGTGAA









TGGAATGCACACAATTCCTACAGAACAC









ACAAACTGATGTCCAAAAGGCACAGAGT









AATGCTGGTGGCTCTTTCTAGTCAGTTAA









GAAACAATAAAAAGTCTGCATTATTCTT









TCATAATTTAAATACTTAAGTAATCTCCA









CTTTATTATTTTATAACAATGACTTCAAA









TTTACATTATTTTAAGTACCATTGTAATA









GCTTAGTGTA





1296
3816342
9
SF3A2
CACCTGGGCTCCTATGAATGCAAACTCT
0.002514771
0.007861145
2.79E−06






GCCTGACACTTCACAACAATGAG





 605
3816537
5
AC092068.1;
CTGCTTGCATGCTAGGAGCTCCCTCCCCA
0.001119544
0.006736721
5.36E−06





GNG7
GCAAGGCCCGGGCCAGAGAGAGAAGGA









ACAGCCCAGAGCCAGGAGAAAAGGGAG









AGTGAGGCTTTTTATTGTGTATGAATTCA









CGTGGTATCGACAACTCCACACAATATT









AAAACACTGCGAGAAAGTGGGTGCGGC









ACACCTGGAATTTTAAAAAAGTCAGAAA









TAAAAACAACCAGACATCCCAATGCAGA









TGGCATAGAACCTGCTAGAACCACAGGC









GGCGGCTGGAAACAGGAGACAGGTCTTT









ACGAAGGTTAGATGGGCAGCGGTTCCGT









GGACAGAGGAGGAGGCGCGGCTGGCCG









GCATATGGCTTCTGTGCAGAGGGCCTGG









CCTCAGGCCGTGGACTTTTTAATAAGTG









ACCCCTTGAGGAAGGGCGTGGTGGCTCC









ACCTCCACCCGGAAGCCCCCCCGGGTCA









CTCACGGGCGGACAGGTGTGTGACGGCC









CTCTCCTACCTGCCCCAGAACTTGGGCA









GGACGGGCTGTTAACTTGGAGATGGATG









CGTGGCCTGGAGGCCTAGCGTTGCGCCT









CGGACACGGTGGCCGGCCCGTCAAAGGG









ACCACGCAGAAGGAGGGAAACAGGAGC









ACCTTCCGCCCTGGCCCAGCCGCCCCGTT









TATGTCCCCAGAGGCCAGAGGTCGCAGC









TGAGCTATCTGTGCTTGGCCTGGGGTTAC









CCCTGGGGAGGGTGGGAGAGGGGTGAG









GGTTCTGGCTCCTTCCTGGAGAGAGGAG









GGCAGGGGAGGCGGAGCTGGTCCGGGA









AGGTGCCCAGGTGGGTCACAACAGGGTC









GGGGCCTGGCCCGCTGTGGCCCTTCACC









TGGCTACTGGTGTCTCGCTCAG





1513
3817492
7
SH3GL1
CAGGAGACCATGTTCTCTGTCCTCAGGC
0.002242228
0.008418791
8.39E−06






AGATCCCAGCTGGCCTCTGTCCCCGGGC









TGCAAGCTGACAGCAGGCCCGGGAGGC









GGTGAGGCCCTCTGCCCTGGCCTTGAGG









AGAAGGAGTGCGTGTGTGAGGCGGGGG









TGCATTGGCCCTGGAGTAGGGCCAGGGC









CCATCACCAGCACCAGGCTGGGAGGGAT









TTAAAACCAGGGTCCTATCTCTGAGCCA









CCCCATGGGGACCCTCGATCCCATCCTG









TTA





1494
3818943
9
PNPLA6
TGAGCTCTACGAGAAGGTTTTCTCCAGG
4.60E−05
0.008429176
4.84E−06






CGCGCGGACCGGCACAGCGACTTCTCCC









GCTTGGCGAGGGTGCTCACGGGGAACAC









CATTGCCCTTGTGCTAGGCGGGG





1088
3819244
5
AC010336.1
AGGAGGCGTGGCTATGGAAGAGGGCGT
0.0207709
0.007382382
4.02E−06






CTCCGGAGGGGGCGTGGTCAATGGCGAA









GGT





1614
3819416
4
LASS4
CTTCAGGGCAGAGATGTTGCTTGTTTTCC
0.002453518
0.006618225
3.85E−06






CCACCATTTTGTGTCTTCAGCACCCAAAT









ACTAAATGAGCATTCTAGGCAGAGGCCA









GTATTTGTAAAGGCTAGGATGTGTGAAA









CGATATGGTCTGGTGGGAGCAGAGTATC









AGTCAGTAAACTGGTGGGCATTGAAGCT









GGGCACATCAGCAGAGGCAAGGCTTGA









GATTGTGAGAAGCCATTGCTCCTGTGGT









TCTCCCTCATCCCCTACACTCATCATGAC









TTGAATGTACCAAGGTGTGCAAGGATGC









ATCCAAGACCCTTGGGTGAGGGGAAAAC









ATGGAGCTGGGGGTCTGGATGCCTGGGC









CTTCCTAGGACACCTAGTCCCCTTCCATC









TGCACCTTGGGGTCTGTC





1515
3819433
9
LASS4
TACGAGTCCATCAGCAACAGGGGCCCCT
0.000142286
0.007928883
2.25E−06






TCTTCGGCTACTACTTCTTCAACGGGCTT









CTGATGTTGCTGCAGCTGCTGCACGTGTT









CTGGTCTTGCCTCATTCTGCGCATGCTCT









ATAGCTTCATGAAGAAGGGCC





 631
3820347
9
PPAN-
GTTCGTAAGAAGAACTCGCTGAAGGACT
0.004924341
0.010289222
1.17E−05





P2RY11;
GCGTGGCAGTGGCTGGGCCCCTCGGGGT








PPAN
CACACACTITCTGATCCTGAG





1677
3821267
2
CNN1
ACGCCGTGAAAGTGTGGGAGATCCTGAA
0.00140662
0.006567496
3.81E−06






GACAGAGGGGGACGGTGAAAGGCAGGA









AGCGGGCATCAGAAGTGCGGCAGGGGT









CTCCTGACTGTGGAGCTAGGAAGATACC









TGGACACCACCTTCATGCTATGGTTGGG









TAAACTGAGGTTCGGAGAGGAGAGGCA









AATAGCTGGGGTCCCA





 681
3822704
9
CD97
TGCTGGTTGGACTTTGAGCAGGGCTTCCT
2.74E−06
0.013772023
4.92E−06






CTGGAGCTTCTTGGGACCTGTGACCTTCA









TCATTTT





1328
3823462
4
AC020911.1
ATGACCTCCGGCTTCCTGCGGGGCTCCA
0.032789863
0.006785128
6.44E−06






TGTGGTCTGGACAGACACGGAAGCACAG









CAGCGTGAGCGCCAGGACCACCTTCATC









TCAGCCATTGCAAACGCCTGCCCAATGC









AGTTCCTG





 998
3824263
7
PLVAP
GCGGAGGTGAATGGCTTCCTGTTCTCAC
2.71E−05
0.013076432
1.57E−05






CTCCGGGTCCAGGCACTGGGGGTGAGGA









AGTGGCTGGGAGGCCAGGAGGCTGGAG









GAGGGGAGGTGCTGGGGCCCAGGGCTGT









GCGGGAGGGGATGGGATCCTGTGGGTAC









CTTGGCCCGTGTGCCAGGGTCGGGGGAA









CGTGACACTAGGTGAGAATTGGGTAGAA









AGTGTGTGTGAAAGGGCATGCGTGCATG









TGATGTTGGTGCCATATCTATAGGTGTCG









TTGTC





1874
3824338
2
FAM125A
GAACCTTCGCCCTGCAAGGCGTTTGCTA
0.000385118
0.007035401
1.60E−06






TCTTCAGCCACTGGGCGGAGCTGCAGCC









CTGGAGGAGGGGGCGGGTCGAGGCTGC









GTGGTGATGGGGTCTCCGCCCCCACGCC









CTGCCGGGCAGGGCTGGAGCTGGACAGA









AGCCAGTGCCTTTAAGTCATTTGTGTCAA









AACCCTCTGGGGT





1292
3824841
2
PIK3R2
GCGTCCTCAGCTGGCCGAGCATGGTGGC
0.005543059
0.007453355
8.22E−06






AGCCTGCACCCTTGGCTCCCTTGTCTGGT









GCAGCCAGCAGAGCCGCCAGCCTTGGGC









GCCCATGGCCCTCCGTGTGA





 652
3824886
2
IFI30
GGCCGGTGAGCTGCGGAGAGCTCATGGA
4.52E−06
0.017855887
1.23E−05






AGGCGAGTGG





1377
3824888
2
IFI30
CAGATACACAAAATTCCACCCCATGATC
0.003684101
0.010168272
1.04E−05






AAGAATCCTGCTCCACTAAGAATGGTGC









TAAAGTAAA





1671
3825896
5
PBX4
ATTCGGATTTAGCAACATGAAGGTCATA
4.91E−05
0.007660187
5.03E−06






GGTGACTCAGCGGAGAGGGAACAAGGT









TGGGAGAGAATGTGGAGGTGAGGAGGA









AGCGGAAGCAGCAATCACAAAGTCTTT





1200
3829042
7
ANKRD27
TTTGGCACATATCCAAGGCACATTAGAA
0.000124059
0.007752649
1.97E−06






AATTAGAAATCATAAATTACTTTGTAGA









AAAATAATCCCTCCCTTCCTTCTGTACAT









ACACAAGTATTTCCAAGAACATGGACAA









AACCATTTCCCTATCACAAGGTCATTTGA









AAACGGACTCAGGACAAACCCATATACG









TGTAGCTCTAGGCCAATAACATAAAAAT









AACAGTATAATCTATAGAAATTTATAAA









AAGGAATAAATGGCAATAAATTCTAACC









GAAAGTAACTCTGACCTGGTTTGTGCTG









TTAAGTTTTGA





1212
3830127
5
AC020907.3
CTGCCACTGCGAGGCTTCCACCCATGCT
0.03121109
0.010360673
8.51E−06


 896
3832101
8
ZNF573
AGAGGATGGGAAAGCACTATGGGGAGA
0.009627872
0.008241546
3.50E−06






CCACC





 393
3832546
9
RYR1
TGTGGAGGAGATGTGTCCCGACATCCCG
1.49E−05
0.011890674
7.57E−06






GTGCTGGAGCGGCTCATGGCAGACATTG









GGGGGCTGGCCGAGTCAGGTGCCCGCTA









CACAGAGATGCCGCATGTCATCGAGATC









ACGCTGCCCATGCTATGCAGCTACCTGC









CCCGATGGTGGGAGCGCGGGCCCGAGGC









ACCCCCTTCCGCCCTGCCCGCCGGCGCC









CCCCCACCCTGCACAGCTGTCACCTCTG









ACCACCTCAACTCCCTGCTGGGGAATAT









CCTGAGAATCATCGTCAACAACCTGGG





1876
3832722
2
ACTN4
GCTTTGTCTGGCCTCACGTGTCTCAGATT
3.39E−05
0.008349225
6.66E−06






T





 968
3832980
4
ZFP36
CCGCTCAGACCAGCTTGGTGATTTGGAG
0.004114217
0.010049579
4.54E−06






GTGAAAATGGAACCCGCGACACCCGGCT









CTTCGCTCAAACATGGGTGGGGCGGCCC









ATGCAAGTGGAAAGTCGGAGAACTTTTC









TCAGACCGAGGCTGCCTG





1284
3833496
7
BLVRB
TGCAAGGCCTCAGAGTCTCGGCACGCGC
0.03685538
0.006962699
6.88E−06






GGGAACCCACTGGCTGC





 443
3833552
9
SPTBN4
ACGTGTCATCAGTGGAGGTGCTCATGAA
0.005040635
0.011004892
3.37E−06






CTACCACCAGGGCCTGAAGACTGAGCTG









GAGGCGCGGGTGCCTGAGCTGACCACCT









GCCAGGAGCTGGGGCGATCTCTGCTGCT









CAACAAAAGTGCCATGGCTGATGAG





 853
3834543
9
ARHGEF1
GCTTACTGGGCGCTGGTGGGTGGGTGCA
0.018924879
0.0080258
3.50E−06






GGGTCACCGCTGCCATCTGTGCCTGCCT









GTCCCAGGCTCTTGCTCCCCATGCTCCTC









TGCTGCTCTCTGGGTCTGGCCATTCCTCT









CCCT





1943
3835890
2
APOE
CGCGCAGCCTGCAGCGGGAGACCCTGTC
0.000524526
0.007074782
5.65E−06






CCCGCCCCAGCCGTCCTCCTGGGGTGGA









CCCTAGTTTAATAAAGATTCACCAAGT





1832
3837064
2
GRLF1
CCGGAACATCGTCTAGCTGGTGTTAGGA
0.002080741
0.007511443
5.05E−06






ATGTTTGCTTAATTTCCAGACTTTTTTTT









AAAAACACATCGTGGGTTTTTTGAGGCT









CCAACCTGATTAGTGCATGGTCAGCCCT









CAATGAAGGCTGAGGCATCTCTGACTGA









GGTGTTTTTGTTTGGTTTTGTTTTTTAAA









ATCATGTATTTGCTACAAAGTATTTGTACT









TGTCTCAATGGGAATGGTGTAAAAAACA









AAAGGCCTTATGTGATCTGTATC





 600
3837159
9
SAE1
GAATTGTTGAGAGGGTTTATGCCCAGAG
0.004749446
0.010789705
3.01E−06






ACATCCCAGAAGCACTGAACGCACTCAT









GCCAAGATGTTAATACCTTTCCTCACTAA









A





 310
3837244
1

GCTTGGAGCAAAGGACAAATGTCTCTGG
5.29E−05
0.013243168
9.18E−06






GGAGAAGCAGAGTGTCTGCCCTCGTT









ACAGCACAGGAGACAAGAGGAGGGGTG









GGGTGATATAGGACAATAGCTGGGGTTC









TGGGAATTGCTGTTGGTGTAATTATCATG









TCAGGGACAGAGGCTGAATCACCCAGGG









ATCTCAGTTGGCTGCCGAGAGGGAACGA









TGCTGGCCCACTTCCTGGGGTCAGAGAG









ATGAGAGTGGATGGCGGCGGCGGTGGTG









TTGCTTCTCAGCCTGTCTGGAAATCTCAG









AGCCAATGACCAAAGCGCTGTGCTGCCT









TG





 610
3837791
2
GRIN2D
CTTTTTAACGTCACCAGATGGGGCGGGA
0.001921299
0.009458325
6.40E−06






GGTGGGGGGTTCACGCCACTCCCGCGTC









CCACCTCCACGCCCGGGGCCGTGGCCCC









CACATCACTGTGCAGCTCCCCGGCCCCA









GCCGCGCCTCCGGGGAAGCCCGTTTTTA









ACCTTTCATCCATTGGGACTCAAAACTGT









GAGACGCGTTCGCCAAACTGTGACCCCA









GACCTTGGCCCCGCCACACAGAAACCCC









TGACCCAGACTGTGACATCCGACTCCTA









AAATGGTCATCCGACTCCAGACTGTGAC









CCCTGACCCCAAACTGTGACCCGAACCC









CAGACTGTGCCCCGACCAGACTGTGACC









CTTGACATCAAACCGTGACACCCCCTCC









TCCTCTTCCACCCTCGGTCGCTTTTCCCT









ACTCTGACCTAGGACACGTCCCCAACGG









AAGCCCCGCCTTCCCTTGCACCGCGATG









AACCCAACCTCCCTGAAGCCAAAACTTC









CCACCCTGCCGCACCTCCGGACCACCCC









ACTTGCCACCAAGCACATCCTCTCCAAA









TCCAACCCTTATTTGCGACCCTTCAGTGA





1271
3837819
1

CTGGCTTAGTGAAAGGGGCCTCATCCCT
0.030881616
0.00909433
3.40E−06






GACCCCCACCAGCTTATGAAGGCTTCAT









CTCAGGGAACTCTGGACCCCCCATTTCTC









CCTCCGTCCATCTCCCCTTTATCACGTTT









CTTTCTTTCTTCTCTGTGTCCCCCTCTTTC









AGAGTCTCCCGTCCCCCACTGCCAGTCTC









CCTGCCCCCTAGTCGCTGTCTCGCTCCTC









CGCCGCTGTCTCCTGTCCAGCCTGCCTGG









GCTGTGGCCCAGCCGCTCTGCCTGGCTG









GCCTCCCTGGCTCCCCCTCTGCGGCTCTG









AGCTAGCCCCACCCCCGGCCCCCCTCCA









TCCAGCCTCTGATCCATCTGTGGACTCCG









AGGTCGGGTGCCCGTCACACGGCCCCTG









GGACCAAGGACAGACTACAGCCCCTCAG









CACCCACAGAGGCTTCCCCTCAGCCCTA









GCCGAGGAGCCCCCAGCGGAGGGCATG









GGGGTGGGCCGCCCCAACAGGTACGTGC









CTCCATGCAAGGCACCGCTGAGCCATCC









CCTCCTGCTCTGCTGCGTCGCCCCCATCC









ACCCCTGCCCCAGCATCCCTGTCCTCAGC









TTGTCCCCTTCAAGAAGGCCTTGTCTTCC









CATCAGTGACAGGCTCAGCGCCAGGAGA









ATCCACCCCCAGGTTCAGTGCCTCCAAC









TCTCACCCCATCCCCATTTTATGCATTTT









CTCACTGGCTTCCATCCTTTCAGAGAAAC









CCTCTCAGTCTGTCTGTCTCTGTCTCTGT









CTCTCTCCCCCATCTCTGTCTCTCCCATC









TCTCTCTGCCTCTCTCTGTCTTCACAATTT









CATCTCCCCATGTCGCCATTTCTTAAAAC









ATTTCTTTTCTCCTTTTCGTTTTCCCAATT









GCCCTGTCCGCCTCTATCTTCTCTGTCCC









CCTCCATCTAGGTCTCTGTCCCCCCCTCT









CTCTGGGTCTCTGTCCCCCTCTGTCTCTG









AGTCTCTATCCTCTCAAGGTCTCTGTTCC









CCTCTCTCTGGGTCTCTGTCCTCTCTCAA









GGTCTCTGTCCCTTTCTCTCTGGATCAAT









GTCCCTTTCCTGCTGCCCTCTCTGGGTCT









CTGTCCCCCTCTCTCTCAGGGTCCCTGTC









CTGCTTGGTCCCTGTACTTTTTCTTGGGG









CACCCTCTCAACACCCCTCCTCCTGCCTA









TCTCTGCATCTCTTTGTCTTTCTGTAGTCT









CTGCTTTCCAACCTGCTGTCCAGCCCCCA









CCAGTAGGTGGGGAGTGGTGGGGAACA









CCCCTGGTTTCGGAAGAGTGAGAGTGTT









GATTTGGGAGGGTGAGGGTGGGGCCTGG









GGGCGGGGCTTCTTGGCCTCAGATTAGA









CAGTGACTTTGACACGAAGTTGAAGCAC









CTTAAGCCCTGTATC





 995
3840810
2
ZNF765
GGCATAATTCGCACCTGGCACAACATCC
2.12E−05
0.009499038
5.84E−06






TAGAATTCACATTGGAGAGAAAGCTTAC









AAGTATAATGAATGTGACAGGTCTTTAG









TGGGCAGTCAACACTTGTTTACCATCAG









GCAATCCATGGTGTAGGGAAACTTTACT









TATGTAATGATTGTCACAAAGTCTTCAGT









TACACTACAACCATTGCGAATCATTGGA









GAATCCATAATGAAGAGAGATCATACTA









GTTTAAT





 188
3841985
4
EPS8L1
GGAGACGAAAACAAAGCAGTGAGGCTG
0.007398176
0.018336943
1.47E−05






GAGGAGACAAAGGGGGGTCTGGGTGAG









GGCCCGAGCAGAGGGTCTCAGCAGGGA









CAGCGTGCTGGGAGCTGCCGGCCCCACA









CAGGGGGTGCCGCGGCCCT





1352
3843632
1

TACAAAAGGATCAGCCCATGACAGCAGC
0.012019459
0.006787939
6.05E−06






TGAACAACACTTAACAGGACAAAAGGA









AAATAAAAATGCCAGACAAGATATACA









GTGGAGGGATGCACATACAAAGAGTTGG









GAAAAAGGAAAAATAATTACATGGGGA









AGAGGATTTGCTTCTGTCTCTCCAAGTGA









CAATCAGGTGCCTCTGTGGGTGCCCACC









AAACATCTGAAGGTCTATCATGAGCCAC









ACCAGGAAGAGAGGACTCTGGGAAGAG









CCAGAACTCCCTATACGAGTGATGGCAT









GAATGAAAATCTCAGAGACAAAGGAAA









AGACCAAGAATACTCACCAGGCAGACCC









TCCAACATGGGGACA





1789
3844578
4
SHC2
CCCGGACTCTTGGAACTGCGTTTCTTCCC
0.002420691
0.006584521
3.73E−06






TCTCACCCATCCTGACCCTAAGAAGCTG









AGAGAATCTGTGCCCCTCTTGGTAGACT









GGGAAGGCGGGGGAGAAGCCCCTCTGC









CCTCGTCACCCAGCAAGGGCTAGTGCAG









CCTCACGTTCATGTGGATTCACAGCCAG









ACCCTGTTCCAAGGCAGAGGCAGTCTGG









TCAGGACCTGGCAGAATACACATGGGGT









CCAGGCAGCTCCCGAGGGAGATGCCCCA









AGGTTACCTGCGATGCTGTTCCGGTTTGA









ACCATGTGGATAGTTTTTTTTTTTTTTTTT









TGGAGACTGAGTCTCATTCTGTTGCCCA









GGCTGGACTGCAATGGCACAATCTCAGC









TCACTGCAATCTGTGCGTCCTGAATTCAA









GTGATTCTCATGCCTCAGCCTCCCAAATA









GCTGGGATTGCAGGCGCCCACCACCACG









CCTAGCTAATTTTTGCATTTTTAGTAGAG









ACGGGGITTCACCATGTTGGCCAGGCTG









GTCTCGAACTCCTGACCTCAAATGATTC









ACCCACCTCGGCCTCCCAAAGTGCTGGG









ATTACAGGCGTGAGCCACCACGCCCGGC









CCCATGTAAACACTTTACACGTTCAAAA









TACAATTAAAAAAAGAAAGGAAGGAAA









ATCCTGAAATAGAACTGAGTCAGAATAA









GTGACCCTCCGTGCGTCATGTTGATAGC





 852
3844980
9
SBNO2
CCCACAAGGGCTCAGTGGGCCCAAACCC
0.009627872
0.008088964
6.05E−06






TTGAAATCCGTGAAACCGGGTGGTCCCA









AGAGCTAGAAACTCAGGAAACCCCAGGT









GCTCAGGGCCCCGCGTCTCGGGGGCTCC









GTGGGGCAGACCCCTGCTAATATATGCA





 564
3847993
4
CD70
AAATGTTCTTGGTTAGGGATGTTTGAAG
0.019681587
0.007379819
3.29E−07






AATAGAGGAAGTGGGCTGGGCACAGTG









GCTCATGCCTGTAATCCCAGCACTTTGG









GAGGCTGAGGAAGGCAGATCGCTTGAGC









CTAGGAGTTCAAGACCAGCCTGGGCAAC









ATAGTGAGACCCCCATCTCTACAAAAAA









TACAAAAATTAACCAGATGTAGTGGTGT









GCTAGTCCAAGCTACTCCAAAGGCTGAA









GTGGGAGATTGGGTAGAGCCCA





1373
3850013
9
COL5A3
TTGCTGATCACCTTGCGGGGACAGCCAG
0.034258318
0.006866394
6.03E−06






CCAATCAGTCTGTCCTGCTGTCCATTTAT









GATGAAAGGGGTGCCCGGCAGTTGGGCC









TGGCACTGGGGCCAGCGCTGGGTCTCCT









AGGTGACC





1935
3850053
4
EIF3G
GAGGCTCTTCTTCCCCAGGGCTAACCTA
3.34E−05
0.006523882
3.13E−06






GAGGAATTGGAAAACCGTGCTCCCGGAC









TTTGTGTTTAGAGATG





1641
3850436
9
KRI1
GAGACATCGTCGCAAAGTTATGTGGAGG
6.18E−06
0.009498748
5.51E−06






AACA





 523
3850559
4
TMED1
TGAGTTCAGTCTTGATGCCTGCCTGGGTT
0.001219026
0.011207839
1.11E−05






CAGTTACAGCCCTGCCCTTCCCAGGCGG









CCTCAGGTTACCGCCCTGACTGCCCCGCT









GAGTCGGCTGGC





 785
3851376
1

CTGGAAGCCTCTTACAGTGCTGGTACAA
0.008812862
0.010323631
5.63E−06






ACTAGAATACACAAAGGAAGGGATCATT









TTATACGTGTTACTGTGCTACTTGCTCTA









TCTACTTAGTGTTCCATACATGTAATTAC









CTATTCCATCCTATCCCAAAGTACTGAA









AATCTCCATTCTACTTTCTCTGTCTGTGA









ATTTGACTATTCATAGAGAGAGAGATAT









GTGGAAGTATGCATGTGTCCTTCCATGTC









TGGCTTATTTCACTTAGAACGTTTTCAAG









GTTTATCCATGTGGTAGCATGTATCAGG









AACTCATTGTTTTTGTGTCTGAATAAATT









TCCACTGTATGGTTAAAGCATACTTTGTT









TATCCATTTTTATGTTGATAAACATGGGT









TGTTTCCACAGTAATAATTTGACTGCTAT









CAATAAGGCTGCTGTGGATGTGGTATGT









CTATGTCTGTGTGAGTCCCTGCTTTCAAT









TCTTTTGGATATATGTATCCCTAGGAGTG









TAATTGCTGGTTCACAGAATAATTGGTG









TAAACCTTTTTCAGGAACAGGTATATTG









CTTTACAAAGTGGCTACAATGTTTTACAT









TCTCTCCAGCAATGCATAAGGGTTTCTA





1416
3851726
9
HOOK2
TGGACTTTGAGAAAAGCCGAAGTCAGCG
4.98E−05
0.008114691
5.42E−06






GGAGCAGGAAGAAAAGCTGCTCATCAGT









GCCTG





 105
3852452
9
RFX1
AGCCCCAATATGTCACCGAGCTGCAGAG
0.000124394
0.017123737
1.54E−05






CCCCCAGCCCCAGGCACAGCCACCGGGT









GGCCAGAAGCAGTACGTGACGGAGCTCC









CGGCTGTACC





 819
3852796
4
DNAJB1
CCGCCTTTTGACAGACAGGGAAACTGAG
0.002849134
0.00888026
4.00E−06






GCACGCTGGCCCCTCTCGGCGGCCCCCC









GGGAAGGACGCCCCGGGCCGTGGGGCC









GAGCTGCCCCGCCCTCCGGCCTCGCGGG









CCTCCGCCCTCGGATTGGCGGCCGCGCG









GTGGGAGGAGGAGCCTTGGCCCAGCCGC









TCGGCCAGAAGCTTCTAGCATGTCTGGG









GCTGCCCCTCCCCGGGCGCCTCCTCCCGC









GGCCCCGAGCAGCCCCGGGGTGCGGTGC









ATGGGGGTGGGGGAGCCGGGGGTGACG









ACGGGGACGGCGCGGCGGAGCCCGCTG









CGGACCCGGGCTCACCTGGGCTCGGCCG









CCGGGGTCCGCGGGGCGGCGCCTCCGGC









TCAGCTGCGGGGCGAGGGGTTGTGAATG









CAGGAGCCGACCCCGTTCGTGGGCTTGG









GGGCTGGGTTGGGATAATTCCCGGGAAG









TGATGACCTGGC





1933
3852890
9
EMR2
GGCTTCCTTGGACCTGTCTGCGCCATCTT
0.029699585
0.006995595
3.97E−06






CTC





 483
3853114
2
NOTCH3
AAGTAGGCACCCTTGGGCGCACCCACTG
0.000126422
0.016671556
1.24E−05






GGGCCAGGGGTCGGGGGAGTGTTGGGA









GCCTCCTCCCCACCCCACCTCCCTCACTT









CACTGCATTCCAGATGGGACATGTTCCA









TAGCCTTGCTGGGGAAGGGCCCACTGCC









AACTCCCTCTGCCCCAGCCCCACCCTTGG









CCATCTCCCTTTGGGAACTAGGGGGCTG









CTGGTGGGAAATGGGAGCCAGGGCAGA









TGTATGCATTCCTTTGTGTCCCTGTAAAT









GTGGGACTACAAGAAGAGGAGCTGCCTG









AGTGGTACTTTCTCTTCCTGGTAATCCTC









TGGCCCAGCCTCATGGCAGAATAGAGGT









ATTTTTAGGCTATTTTTGTAATATGGCTT









CTGGTCAAAATCCCTGTGTA





1729
3853116
2
NOTCH3
ATCCTTGCCTTGCAGCGTGACCGAGATA
0.003872676
0.007830713
5.66E−06






GGTCATCAGCCCAGGGCTTCAGTCTTCCT









TTATTTATAATGGGTGGGGGCTACCACC









CACCCTCTCAGTCTTGTGAAGAGTCTGG









GACCTCCTTCTTCCCCACTTCTCTCTTCC









CTCATTCCTTTCTCTCTCCTTCTGGCCTCT









CATTTCCTTACACTCTGACATGAATGAAT









TATTATTATTTTTATTTTTCTTTTTTTTTTT









ACATTTTGTATAGAAACAAATTCATTTA









AACAAACTTATTATTATTATTTTTTACAA









AATATATATATGGAGATGCTCCCTCCCC









CTGTGAACCCCCCAGTGCCCCCGTGGGG









CTGAGTCTGTGGGCCCATTCGGCCAAGC









TGGA





1282
3854920
2
LSM4
GTTGACCGCCCTTCGAGCCCGGTGCTGA
0.020465161
0.008117307
7.33E−06


1165
3855225
9
COMP
GTTACACTGCCTTCAATGGCGTGGACTTC
0.010785085
0.009827647
9.87E−06






GAGGGCACGTTCCATGTGAACACGGTCA









CGGATGACGACTATGCGGGCTTCA





 562
3855231
9
COMP
GGATCCGCAACCAGGCCGACAACTGCCC
0.000103742
0.016123279
1.50E−05






TAGGGTACCCAACTCAGACCAGAAGGAC









AGTGATGGCGATGGTATAGGGGATGCCT









GT





 636
3855232
9
COMP
AACTGCCCGCTGGTGCGGAACCCAGACC
0.000674778
0.012020397
1.25E−05






AGCGCAACACGGACGAGGACAAGTGGG









GCGATGCGTGCGACAACTGCCGGTCCCA









GAAGAACGACGACCAAAAGGACACAGA









CCAGGACGGCCGGGGCGATGCGTGCGAC









GACGACATCGACGGCGACC





1089
3855522
4
TMEM161A
CCACATCCTGATCTGAGATCCAGCACCC
0.027951183
0.008592818
4.08E−06






CAAAACCGAACTCCTCTAGGTCATCCCC









AAGGCCTATTTGTGCAGCAGTGCTTGTTC









CCTGGAGTTCTGGGGTCCCAGACGGAGT









GTGGT





 247
3856015
2
AC104523.1
CCCTCTGACTGAACAGGCGTCTGTGACC
8.64E−05
0.01488092
6.53E−06






TGGCCTCACGACCTGGGACATGCCATCC









TCAGGCCACAGACACTGGACTTTGGTCA









AGTACTAGCCTCCAGGTGGGGTCCTGGT









GCAAGCAGACAGCAACCCCCGAGCCGTG









ACTGCGGTTCTCAGTTTGGAGTTTGGTCA









AACAACCAATGGGGACAGAGTCTTGGGG









TCAGGTCCAGCAGGAACTGCCACCCCTC









CCAGGGACAGCCTGTCTCTCCCACTCAC









CATCGCTGGTGCCCACGGGCTGCTGACC









ACCTGCCAAGTCCTCCTGTCCCTGGACC









AGCCTCTCAGGCAGCAGGTCITACCTTT









GCCTCCAGGGCACTGATCGATGGCAGCT









TTGTCTCACTGTAAGGCAACCCAGACAG









AGCTGAGGGCCTGTGCTGGGCCGGGAGC









TGTCCTCCTCCTTCCCTAGCAGTCCTAGG









GAAGGACCAGCCGTGTCTCTCCCCACCC









CACCCCTGGTCTTAGCCCAGGAGACACA









CAGGGAAGGTAGGAAGAGGGTCTCCCTG









TGGGCTGACGCCTGTGAAGGGACAGGAC









CTGGGAGAAGAGGGGTGTGTGGGTGGG









GCAGGGACCACTAGGGCCCTGTAGAGCA









TGGGCTTGGGCTACACAACAGGGCTGCC









CCTCCTGGGCTAGAGGCAGTGCCCTCTG









CAGGAGCTGAGAAAGTCCAGTCCTGAGA









AAGGACGTGTATGGCCCAGGGTGGGTGA









CTGGGCCCCAAAAGCAGTCCTCGAGGGA









GTGACCACATTACCAGGCCAGGATC





 808
3856288
6

CTCCCACGGTGCTGGTATTAGAATCATG
0.002024742
0.010085361
9.23E−06






AGCCACCGTGCCCAGCAAAAGATGATTT









TAAACATTTATTTAGGTGGGTAGGCAAC









ATTCTAAGATAATACCCTGGATTACCAG









TCTGTTGCACACGTGCTGTGTCATACTTT









CCTCTTGAGTGTAAAAAAAATGTGTGAC









TGTGGTGGGAAATCACTTATGAAATTAG









GTTACTCATCCGTAGACTTTGTGTTTATC









AAAATGGAGATTATCCTGATTGTGCTAA









ACTTAATCAGAGGTGCTTTTAAGAGAAA









GAGACACATCACAGAAAAACACCCCTGC









TGGCCTGAAAGTAAGTGACTTCTAGGTA









GAACATGTTGTAAGCTGCTTATGGTGGC









CACATGGCGGGAAAAATGTTTGTATCTT









GCCATCATTTCTGCCTCCTCCATGTTGCT









TCCAGTAAGGAACATAAGAGGATTCTAT









GGCAGAGGGAAAAAAAAGGGAATCTCA









TTCATTCAAGAAATAATCACCTCTCATCT









GGGATAGCTTAAGAGAAACAGGAGACC









ACAACAGGTCCACATTAATGGGAGGAAA









AAGGTAACCTGGGTAAAAGTGCTCACTG









GCATTATGGAACAGTATTTAGTAAGCTG









TAGTGAATGATCAGCCTCTGGGATACCA









ATAGTCTACCAACAAGGCTGAACTCATT





 782
3857807
1

TTCCACTCAGGTTGCCGGTGATACAGAC
0.002293409
0.007008648
1.30E−06






ACTCCTTTCAGAGCCAGGAACCACTCTTT









TTTTCTGTCTCTCCTCTGTTCTGAAATTTA









GCATCTGGGCTTGTTTGATATCCTTGTTA









GAGGTCAAGAGCAGGTT





1348
3857937
1

GGCAGAGGTTCTATGCCTCTGTCCCTGA
4.98E−05
0.008955614
5.35E−06






GAACTTCTCCAGGATCTTGGAAATTCCT









GGCCTTCA





1095
3859962
7
C19orf55
CTAAGGTTTTTGGTCTGAGCGGCAAAGG
2.42E−05
0.00991284
3.70E−06






ACAGAGC





2020
3860139
2
TYROBP
GCCCGAATCATGACAGTCAGCAACATGA
0.003716277
0.008084936
7.41E−06






TACCTGGATCCAGCCATTCCTGAAGCCC









ACCCTGCACCTCATTCCAACTCCTACCGC









GATACAGACCCACAGAGTGCCATCCCTG









AGA





1533
3861561
9
LGALS4
CTGTCCATTCGCTGTGGCTTGGATCGCTT
0.012305161
0.008083965
4.75E−06






CAAG





1288
3862193
9
FCGBP
ATGGTCTCCGAGTGGATCTCCCAGCTGA
0.020351547
0.00902822
8.96E−06






GAAGTTAGCATCTGTGTCCGTGAGTCGT









ACACCTGATGGCTCCCTGCTAGTCCGCC









AGAAG





1687
3865345
2
PPP1R13L
ATCCCGTCCAAAGTGCCTCCCATGCCTA
0.000579253
0.007965781
2.31E−06






CCACCATCATCACATCCCCCAGCAAGCC









AGCCACCTGCCCAGCCGGGCCTGGGATG









GGCCACCACACCACTGGATATTCCTGGG









AGTCACTGCTGACACCATCTCTCCCAGC









AGTCTTGGGGTCTGGGTGGGAAACATTG









GTCTCTA





 956
3867149
4
LMTK3
CCCGGTATCAGAGCTAAGGTAGAAGACG
4.32E−05
0.008497033
5.08E−06






CCACTGGAGGGTTTCACTCCTACTTCCCC









AATCTTGCCTGAGTCCAGATATTGTCCCT









GCCATTTCTTAGCTGTGTGACCTGGGGC









AAGTCGCTTTCCCTCTCTGTGCTTCAGTT









CCCTCATCTGTAGAGTGGGAATGATAAC









AGGATCTAACTCATGAGATTGCTGAGGG









AATTAAATGGCTTAATCCTCCCGAGTAT









GCAGCACAGCGCCTGTGCAGCAGCAGTC









TCTAACCATTA





1370
3867534
5
FTL
GAGCAGAGGCTTGAGGGGTATGGTTGGG
0.000617654
0.006556618
4.97E−06






TAGCCATGGATGCAGCGGGTACGTAC





1579
3867772
9
SLC6A16
TGTCTTGGTACTGCTCCCCTGTTTCATCA
0.0015655
0.007315823
5.70E−06






TTGTCGGTTTCTTCATCCGGACTCTACTC









CTGGAAGGGG





 977
3868126
2
PNKP
AGCTCCCCTCCACAATAAACGCTGTTTCT
0.001843787
0.007146769
4.84E−06






CCTT





1714
3868195
9
IL4I1
TGCGCGCCGCCATCAAGATCAACAGCCG
0.041003559
0.007474114
2.69E−06






GAAGGGGCCTGCATCGGACACGGCCAGC









CCCGAGGGGCACGCATCTGACATGGAGG









GGCAGGGGCATGTGCATGGGGTGGCCAG









CAGCCCCTCGCATGACCTGGCAAAGGAA









GAAGGCAGCCACCCTCCAGTCCAAGGCC









AGTTATCTCTCCAAAACACGACCCACAC









GAGGACCTCGCATTAA





1067
3868892
3
KLK14
AGCATCCTGATCTTTACTCCGGCTCTGAT
0.018331444
0.008434542
8.81E−06






CTCTCCTTTCCCAGAGCAGTTGCTTCAGG









CGTTTTCTCCCCACCAAGCCCCCACCCTT









GCTGTGTCACCATCACTACTCAAGACCG









GAGGCACAGAGGGCAGGAGCACAGACC









CCTTAAACCGGCATTGTATTCCAAAGAC









GACAATTTTTAACACGCTTAGTGTCTCTA









AAAACCGA





1063
3868997
2
CLDND2
GAAGACAGGTTCCTCACAGCAAAGCCTG
0.000998659
0.006686711
1.02E−06






TGGTGAAGGTCTCAGAGGCCTCTCAGGG









GAAGTCTCAAGGTCTCCAGTAAGGGGAA









CGAGGTCTGGAGGGAGGAGGTTGTGGAT









CCTCAGGCAGGGTTGTTGAGGGAGGGGG









GTCTCCAGGTCCCCAGAAGCAGGGACCT









CAGGCAGGAGTACCAGGGGAG





 648
3869569
6

GCCCATCTGAGCTCTTACCTGTGTTCACA
0.005648885
0.007042573
6.92E−06






CCTTTGATCCATTCCCTCCCATCTGGATT









TTTTTGCTATTTTCCCTTCACTCTCCAGA









GTCCAGGGCTCTCTCCTTTGCTCCCACAT









AGAGATAATACTCAGGTCAGGAAGACA









GATTCCTGTTTATAAAAAAAGAGAACCA









AGGTGTACTGTGGCACCTTTAAAACTCA









AGCCCTGGGCTGGGTGCAGTGGCCCAGG









CCTGTAATCCCAGCACTTTGGGATGCCG









AGGCAGGCAGATCACTTGAGGTCAGGAG









TTCGAGACCAGCCTGGCCAACGTGGCAA









TATGCTGTCTCTACTAAAAATATAAAAA









TTAGCCAGGTTTGGTGGTGGACGCCTGT









AATCCCAGCTCCCTGGGAGTCTGAGGCA









GGAGAATCACTTGAACCCGGGAGGTGGC









GGTTGCAATGAGCTGAGATAGCACCACT









GCACTCTAGCCTGGGTGACAGAGCGAGG









CTCCGTCAAAGTGAAAGAAAAGAAAGA









GAGAGAGAAAGGGAGGAAGGAAAGAGA









GAAAGAGAAAGAAAGTCAGTCCATGGTT









TCCAAAACATACTTCTGTTTCCATTAATT









TATTAGGAATGCTCTTCCATCTGGCTGTT









GATCTGTGTCCTGTGTAACATCCTTTATA









ACAAATGGTACACCTCAGTAAATTGTTT









CTCCAAGTTGTGTAAATCACTCTAGCAA









TAGCAAATTCTGGGGGCAGTTTTGTGCA









ACTGAGCCCTCAGCCTCCTGTGAGATCT









AATGCTAACTCCCTATAAATGGTGTCAA









ATTGAGTTCAATTAGAGAACACCCAGTT









TTTATCTGATGAAAAATAGCTTGTTGGTG









GGAAGTAATCCCCACACATTTTGATGAC









CGGAGATGAGGCATTCTGTGTTGAGCAT









TCACTATTGTGTTGATTGTGAGTAGAAA









AAACACTTTGGTTTTTCCTCCTATCTTAT









ACACTCACACACCCTACCCCATCCCAGA









AGTGAAGATAGTGACCCATACCTGAATG









AGTCAAGTCACTGCCTGCCGTCTGGCAG









AATAAGGACAGCAAATGGAAGCTAACCT









CTGATACCAAGAATTAGGAAATGCACAT









GCCTTATAGACAGTTTTCCAATTCTCATC









TTCATCTGTATATTTTAAACAAATGTGAT









GTTTATTATAGAGAAATTAATCATAATA









TCCAATCAATTCATCATTCATCTGGATTG









AGTGTCCCCCTCTTTCCTCATTACTGTGT









GTTTCTCTACCTACCTCTCATTCTCACCT









TCTTTTCCTAGCTTTTTTTTTCTCTTTATT









TTTCCCCTAGGATTCTCCTCATTTCAAGC









CCTTCTTCCTTCTCCTGCTCTTCCCTCTAT









TCCTTCTCTTCCACTTGTTCTGCTCCTTTC









TCACTTCTTTCACCTCTTATTCTTCTTTCT









GCCCAATATTTGTCTCCAATTTTCATATA









GTTCTGCCTCTTTCTTCCCCCCGTCTCTG









CTGCCCCCTAGCTTCCCCTGTTAAATCCC









CTCTTCCCTGCTATATCCACCTGTCCCCT









CTCTGGCATCCCCAGATCCCAGTTCTCCC









CAGGCTGTGGTTCTCCCTGTGCTCTCCTT









ATCACTGGCTGCCCCTCTTGCTCTCCCAG









CACCATGCTGCTCTGTCTGCCCTGGCTCC









AAATCCCTCCTTCTCTCCCCAACTCTCCA









TCTGAGGAGCCTCCCCTTTTCTGCCCCTC









TCCCTATCTTGCTGAACTTTATCTCTCTA









GAAACCCAGTTTTTCTCTAAATTTCTCTA









GTTGCTTTTCTCCCCCTGCTCCTTTCTCA









GCATCTTCATGCACTGTCTCTGCAAATCC









CTCATCCACCATCTACTTTGCCATCTGTT









TTGTTTTGTTTTTTGTTTTTTGAGATGGA









GTTTTGCTCGTCGCCCAGGCTGGAGTGC









AATGGTGCGATCTTGGCTCACCGCAACC









TCCGCCTCCCGGGTAAAAGCGATTCTCC









TGCCTCAGTCTCCAGAGTAGCTGGGATT









ACAGGCATTCGCCACCATGCCTGGCTAA









TTTTGTATTTTTTAGAGACAGGGTTTCTC









CATGTTGGTCAGGCTGGTCTCAAAACTC









CTGACCTCAGGTGATCTGCCCGCCTCAG









CCTCCCAAAGTGCTGGAATTACAGGCGT









GAGCCATCGCACCCAGCTGCCGTCTGTT









TATGGGTCTCCTTCATTCTTCTTTCCCATT









TCACCATTTTTCTATTTCCTCTCCTCCAC









ACATTCATAGGGAGGGGACTG





 854
3869641
6

AGTTTCGCTACAGGAGGTGTCTGCACGG
0.008706715
0.008642584
1.06E−05






CCCTACTGCAGAAAAGACCGGGACGGG









ACCAGCCTCAGGGCGACTTTAAACTCAA









AAGGAAAAGACTCACGGACTCCCACCCG









GACGTCTCAATTTGCTCTG





 981
3870896
2
CDC42EP5
CCCACTTCTGTATACATAAACGGCCAAG
0.001409908
0.012765074
9.25E−06






GTGTGTGCCCGG





1795
3871283
9
PPP6R1
TCTTGCATGCCCAAGTAGAGGGATGCGT
0.000982084
0.006611289
4.50E−06






GAGCACCATGCTGAGCTTGGGGCCACCT









CCTGACAGCAGCCCTGAGACGCCCATCC









AAAACCCTGTTG





1919
3872856
9
A1BG;
CAGGAGCGAGCCTGCAGACCGGGCGTTG
0.000570716
0.007014539
5.81E−06





ZNF497
CGCCCTTCGCCTCTCCC





1967
3873181
2
TRIB3
GTGGGACTCTTCTGGGGACACTTGGGGT
9.59E−05
0.006721722
2.86E−06






CCACAATCCCAGGTCCATACTCTAGGTTT









TGG





 400
3876447
5
JAG1
GGCAAAAGGCGTTTTCTCCACATGCAGA
5.48E−06
0.017523697
1.48E−05






AAGTCCCTTGCTCTGAGCACATACGTAC









ACACATGCTCTTTCTTTGTATACATGCTG









ACTACACGGGCAGGATGCAAATCCTGGC









TGCAGAAAGGAGGCAGGTCAAATCAGA









ACCCCATCCTTAAGCCCTCCATGTGCCCA









CACCATATCTACAGAAGCTCAGGGACTG









GAAAAGACAGCAAAAGGCATAAAAGTA









AGGGCCTGTCAATTACATTCTGTGATTA









GCATCGTGGCAATTG





1934
3878250
6

CCATGTCGCTGGCAATATGTCATTGCGT
0.002600581
0.007315515
4.90E−06






AACACCAAATAACCCCCCAGAAGTAGCC









AGAGGCCAGTTTGAACATCACAATTCTA









AGTGTTTTAGTAACTATTTCTGGCGTGAG









TCAACAGATCATGTAGATAGAGTCAATT









ATTGTTTGTGGAGTTTTTCAGCTATAGGG









GAGGGGAACTATTAAAATCCATTTGTTT









CTATTCAATAGGTAATAAAAATTAGTTG









TCCCTGGGTTTGGGAAACTTAAATGCCC









ATTACAGCCCTGGGGA





 394
3879946
7
NCRNA00261
TGGACGCATGGGAAAACCACTACCCCAG
0.001670221
0.009304477
7.16E−06






CATTGTGGTGCCCTTCTGCTGAGCAAAT









AGTTCAAACTGTTCATTCCCATCTTCTAT









TCTCTCCCTGGTACATTGTTTGTGCCCTT









GCATTTCATTCTGCAAGGAAGGTTGCTCT









CTGGGCCTATAAGCAAACAGTCCAGAAA









AGGGCTAGCCATCCTCTT





1786
3880845
2
GINS1
CCATGCGCCGAGGCACTTCCAGGCTTCA
0.000570716
0.007449206
4.29E−06






C





1322
3881457
9
TPX2
GGAACTGGAGGGCTTTTTCAGGGCAAAA
1.47E−05
0.011597387
5.87E−06






CTCCTTTGAGAAAGGCTAATCTTCAGCA









AGCTATTGTCACACCTTTGAAAC





1223
3881458
9
TPX2
GACAACACTTACTACAAAGAGGCAGAA
0.003181899
0.011954527
9.58E−06






AAAGAAAATCTTGTGGAACAATCCATTC









CGTCAAATGCTTGTTCTTCCCTGGAAGTT









GAGGCAGCCATATCAAGAAAA





 165
3882316
1

GTAAGGATGTTCAAACGCTGGAGCATCA
2.10E−06
0.027157072
2.16E−05






CTGTG





1904
3884900
4
FAM83D
TGCTTCGATTGCTTTCGAGTCATGAGTTG
0.000483071
0.007216721
4.26E−06






GTG





1546
3886774
2
SEMG1
TATAAATGACAAGGTCGGCTCAGCTCTC
0.005890702
0.009568906
6.81E−06






A





1826
3887717
7
SULF2
CCACAACTGCGAGGGATTTTCTTTTACAC
0.006618995
0.007122866
2.39E−06






TGGCCACAGAGCGTTTATTGACACCACC









ACTCCTGAAAATTGGGATTTCTTATTAGG









TTCCCCTAAAAGTTCCCATGTTGATTACA









TGTAAATAGTCACATATATACAATGAAG









GCAGTTTCTTCAGAGGCAACCAGGGTTT









ATAGTGCTAGGTAAATGTCATCTCTTTTG









TGCTACTGACTCATTGTCAAACGTCTCTG









CACTGTTTTCAGCCTCTCCACGTTGCCTC









TGTCCTGCTTCTTAGTTCCTTCTTTGTGA









CAAACCAAAAGAATAAGAGGATTTAGA









ACAGGACTGCTTTTCCCCTATGATTTAAA









AATTCCAATGACTTTCGCCCTTGGGAGA









AATTTCCAAGGAAATCTCTCTCGCTCGCT









CTCTCCGTTTTCCTTTGTGAGCTTCTGGG









GGAGGGTTAGTGGTGACTTTTTGATACG









AAAAAATGCATTTTGTGCAGCTGGTGAG









GTATAATCC





1668
3889268
4
RP4-
AATATGTGCGGGGAGCTGACTGTCCTCT
0.004322902
0.006987245
4.02E−06





723E3.1
GGAGTCCTCCATTGATCTCTGTTCCTTCA









TCCCGTCCATGGCCTTGAAAGCACTTACT









ACAATTG





1070
3890589
2
RAE1
TCTGCCTCATCTCTGTACGAATTTGGGTC
0.002811439
0.009946063
9.48E−06






CCAGCCTTGTTGGGTTGTCAGCCATGGA









CATGGATTTCAACCCCTGGAGAAAACGA









TGTCATTGTTCAGCAGCTGAGAGCCCAG









GCGTCCGCGGCGACTTGCCGTCTCTCCAT









TCCACTGCCTGTTGCAGAGTTTTTCTGTA









ACTAAGGGGGTTGAGGTTATTGTAGACG









TTAGATTGCGGGCACCGCCAGGGATTTT









GCAGCGCTTCA





1059
3890610
4
RBM38
TTTCCACCGTTGCTGTAGGGCTGCAGGA
0.033605237
0.007490625
3.98E−06






TCCACTGAGTGCACCTGCCTTTGTGCTGG









AAGCCAGGGCTCCTCTCTGACCCTGAGG









GTCCCTGGCTCTGGGGAGGGAGCTCGCA









GGGCTCCTCTCTGACCCTGAGGGTCCCT









GGCTCTGGGGAGGGAGCTCGCAGGGCTC









CTCTCTGACACTGAGGGTCCCTGGCTCTG









GGGAGGGAGCACTGTGTTTTCAGTGCCC









ACATGTTGCCAAACCGCGCTCCAGAAAG









CTGCCCAGTTTCTGTCCCTGCCGAACGCA









GGAGAATGCAGGGAAGGATGTTGTACTT









TTTCTCCAGAGCTGCTTCCCTTGAGGGGG









GCCCCTGCCTACAGGTCAGAAGGAAGCT









GAGGTTCCAAGTCACCCCCCAGGCGGGC









CTGGCCTGTGTAACACGCAGGCGTGCAA









GGCAGAGGAGATACTGATGCCCAGGGC









ACAGTGCCGTGCCCTGGAAGACCACTCC









GTGCCTCGGACTCTGCAGCAGCTTCTGA









TGCCGCGGAGGTGGCTGTTCTGTTGCAG









ACGGGAAACTGAGGCTTAGCGGCTTGCC









CCAGGCCACCGAGCAGCTGGTTGGCAGA









GCAGGCACACGCCAGGAGAGCTGCCTCC









CTGAGCCTCATTTCCCCCTGTGCTGAGGG









CTGGGCATGCTGTTGTATGGCCAGCCCA









CAGCAGGCAGGAAGTGTTGGCCTCAATG









CGTTTCCACAGTGGCCTGCCCAGGTAGG









GTTAAGAGCACAGCTC





 338
3891323
5
CTSZ
AGGTCCCATCGTTTCCTGTGTCGCAGGTC
1.03E−06
0.019701911
1.99E−05






ACTTCTTCACCAGGTGGCTGACTGCATC









ATTGTGAGGCAGAGCCATGCTGTGCAAG









TGTCATAAGTCATCCCACTTTCAACTCTC









AGGAACACTCGCAGCCAGTGCCACGCTG









TCCTCGCCATCCAATATTGATAGCCACCC









CAGTTCCTGCCAGCCAGCCTGGCACACA









TAACCATAGGATCCCCTCTGGTCATGGG









TCACCATGCCTTTTCTTAAACTGCGCTTC









TAGTGACATGGCCTTAAACGATGGGGTC









CCCAAATGTACAGTGCTCCTCGATGGCA









AGGTTGTA





1717
3893625
4
ZGPAT
GCCTCCTGAGTAGACGTTTCCCGGCCAA
0.004976894
0.007043225
5.36E−06






GG





 865
3894010
9
MYT1
GTCCAGCAAGCAGAAAGGCATCCTGAGT
0.031823166
0.007346013
6.25E−06






CACGAAGAGGAGGACG





1092
3895779
4
RP11-
CGCCACCCTCCTGTGGCGAAGGAGGGGA
0.000152935
0.007248562
4.58E−06





119B16.2
AGTGGGAGCCGGGAAGTAGAGTTGGCCT









TTTGCAGGAGAGTCTGGAGCCCCTTTCT









GGGTGATGCATTGGGGGCCATAGAAGGA









TTTGGCTGCCGCTTTGGAGCATGGAT





1277
3896023
2
PRNT
AGAGACAGCCTGGAAAGATTGGGTGCCA
0.018126
0.007004643
4.38E−06






GCTGCAGAGAGGAGAGCAAGGCGACCA









AACGCAGG





1078
3896401
4
GPCPD1
TTAGAAGGGCTGTCCTGCATGGGCTCAG
0.000192114
0.009048337
5.25E−06






TATGGCTACTAACAGTTATTCTCATTGTT









GAGTAAATAGAGTTGCTAGGCCTGTCTA









GTGTAAGCATTCA





1963
3899419
4
OVOL2
ATGGTGTCTTTGTTTGGAGCCCAAAGGG
0.003024609
0.006721937
3.45E−06






AAGGATTGACTAGATTGGGAAAAATGCA









GATTGGGAGATGTTTGGAGTGGGCCAGA









TGGAGAAGAAAGAGTCAAGTCACCTCCA









CCCCTAGTGGCCTGAATGCTGTCATGCG









GAATTGCCTGGTCCAGTTAACAAACCCT









CGCTTCATTGTTTTATT





1563
3899905
5
RIN2
CATCATTCTAAGGTGCGGTCCAGGAAGC
8.88E−05
0.008535517
1.66E−06






TGTTTTTTGTTTGTTTGTTTGTTTGTTTGT









TTGTTTTGGAGCCCTTCAGTGATTCATAC









AAACAAGCCAAGGAGAGAACACATGGA









CGACAGCATTGATTCACTGGAAAGCAAA









GTACAGCTTCCACCATAAAACCCTGCAG









CTGAAAAAGGACAAACTGAGCAGCTCTC









AAATAAAGACAGCCTCAGCCGTCTTGCA









CAGCACGGCCCCTCTCCGTGCCCGAGTC









CTGTGCCTGTATGAAAGCACTAAATCAC









AGACCCCGCAACCTGTTATAAGCCCTGG









TAACAATCAGCAGCTG





 305
3901183
5
GZF1
TCCTGATTCTGGAGTGCAGACTGCCTAG
0.006537209
0.011649055
8.10E−06






ATGGCACTCCTTCCAAGCCTGAGAACCA









AAAGACCAGAGACGAGTCCTAAAGCCTG









AAATGGCATCTCACTGAGGTCTCTACTG









AGACTGTGGGACCCGG





1588
3901363
2
CST1
GTGCCAGGCCATTCGCACCAGCCACCAC
0.000435853
0.006853365
3.36E−06






CCACTCCCACCCCCTGTAGTGCTCCCACC









CCTGGACTGGTGGCCCCCACCCTGCGGG









AGGCCTCCCCATGTGCCTGCGCCAAGAG









ACAGACAGAGAAGGCTGCAGGAGTCCTT









TGTTGCTCAGCAGGGCGCTCTGCCCTCCC









TCCTTCCTTCTTGCTTCTAATAGCCCTGG









TACATGGTACACAC





2028
3902753
7
ASXL1
AGCCTCATGGACCAGATCAGTGTCAAAC
2.67E−05
0.006638061
3.60E−06






TGTACCCTTGAGTGTCCCCAAAGGTTCC









AGCAGAGGGAAGAAGAGGACTGGACAT









GTTTGGGCCCCTGTTCCCGGTCTTTGGTA









AACAGACGCTTAAGTTGACAACTTGGAC









TTGGCCAATA





2030
3903852
3
EDEM2;
AAGGAGGCATCATCAGGCTGTGTTCCTG
0.000532413
0.007106081
6.51E−06





MT1P3
GAACCCCAATAACCCTGGGCCCCCAGGG









CCAGCCTGTTGTAGAGGGAGGCTATCTG









ACCGCCGGTCTGGCAGAGGAGATGGGTG









GGCAGCTCCCAGACACCCCAAAGGACCC









GGTTCTCTTCCCAGAGCGTCCTAAGGTTA









CTCTTGGAACCTGATCTTTGTTCCCTCAT









CCCAGGGAAATGACACACTCTGTATTTC









TGTTTTATTTAGAAATGATTTAAAAAAC









ATTATACAAAGGCTGATCAGTTTAAAAT









GTGACTGACACTGAAATGCTGTGATGTC









CCCCAGGCTGAGGGGAAGCTAGGCTCTG









GGGCCCCCAGTGCTTTGCCCCTCTGTCTG









CCCTGTCCTGGGGTGATGGACAAACAGA









TGACCACAGGCAGGAGAATCTGAGATTG









GAAGCCTCTAGGCTGAGCCCTCTGGGCC









TGGCCCCACATCCCTCACCTCTGCAGCCT









GGGCTGCCTGCCTCCATCTCCTGTTCATT









CTCAGCTGGCCTGCCAGGAGCCAATGGG









GAGCCTGGCGGGAGGCGGGGGTGCCTA









GAGCTTTCAAGAAGTGAGAGCACCAACC









TGAGGAGTGGACAGGGACCAGGAAGTG









GGGGAAGGGAGGCCAGGAAGAGGTGGA









TACAGGAGACACTTCTCATCTCATCTCA









GACCCTAGAGGGGTCCACAGATGGGGAC









ACAAGACCCAGCCAGCCCACTGGATGGC









CCGGGCAAGTAACAACCTCTCTGTGCTT









CATCTGAGGGCACGGTGAGAGTTACCGT









CGGCCTCCCAGGGCCTAACACGAGTTTC









ATG





1731
3904090
9
FER1L4;
CCCGAATGGAACGAGCAGCTGAGCTTCG
5.05E−05
0.007249279
5.01E−06





AL389875.1
TGGAGCTCTTCCCGCCGCTGACGCGCAG









CCTCCGCCTGCAGCTGCGGGACGACGCG









CCCCTGGTCGACGCGGCACTCGCTACGC









ACGTGCCGGACCTGAGGCGGATCTCCCA









TCCGGGCCG





 871
3904560
2
NDRG3
TCTTGAGATTCCTCTACTCTCGTTATCTG
0.017888918
0.009731465
6.23E−06






ACC





 901
3907235
2
SDC4
TCCAGCTCTGATTACCTITGAAGTGTTCA
9.59E−05
0.014513443
9.93E−06






GAAGAGACATTGTCTTCTACTGTTCTGCC









AGGTTCTTCTTGAGCTTTGGGCCTCAGTT









GCCCTGGCAGAAAAATGGATTCAACTTG









GCCTTTCTGAAGGCAAGACTGGGATTGG









ATCACTTCTTAAACTTCCAGTTAAGAATC









TAGGTCCGCCCTCAAGCCCATACTGACC









ATGCCTCATCCAGAGCTCCTCTGAAGCC









AGGGGGCTAACGGATGTTGTGTGGAGTC









CTGGCTGGAGGTCCTCCCCCAGTGGCCT









TCCTCCCTTCCTTTCACAGCCGGTCTCTC









TGCCAGGAAATGGGGGAAGGAACTAGA









ACCACCTGCACCTTGAGATGTTTCTGTAA









ATGGGTACTTGTGATCACACTACGGGAA









TCTCTGTGGTATATACCTGGGGCCATTCT









AGGCTCTTTCAAGTGACTTTTGGAAATC









AACCTTTTTTATTTGGGGGGGAGGATGG









GGAAAAGAGCTGAGAGTTTATGCTGAAA









TGGATTTATAGAATATTTGTAAATCTATT









TTTAGTGTTTGTTCGTTTTTTTAACTGTTC









ATTCCTTTGTGCAGAGTGTATATCTCTGC









CTGGGCAAGAGTGTGGAGGTGCCGAGGT









GTCTTCATTCTCTC





 232
3908635
2
PREX1
CATCTTAGCTTCCAGGTTCACCCTAACCC
0.000518037
0.014616305
1.08E−05






TGTACTAACCTGCTTGGTGGACTTGGAA









AAGACTTGGCTCTGTCGGGAAAGGAGAG









ACGGGGCCTCCATCACGCCTGTTACCAG









AGGATCCCCGAGAGCCACACCAGCTCTG









GACATCACCGCCCCTGGAACTGGGGCCA









CCAGCCCTGGGCACGAGATTTGCTCTGA









CTTTATTTATATGGCATGAAATCTCTGGT









TTATTTTGGGATTTTTTGTTGTTGGTGTT









GTCAAAGTTTGTTTTTTCTAAAGTTGTGT









GATTATATATTTGACATTTTACATTTCAA









AGAAAGGTATGTTGTCTAACAGGGGACC









AACAGAAGGTAGTATT





1083
3910198
5
TSHZ2
GGGTCTTGCAGCCAGGACAATCCTGTTT
0.000637737
0.007642783
4.14E−06






GGAAACCCGTATGAACTCTCTCACATTC









ATCATTCACTTCCTGGAGAGACAGATTTT









GTAAACTTTACAGAGCAGCTTTTAATCA









TTCGGTGGTTCCCAGATTCCTAGGCCAG









AGTCTCTATACTGAATAATTTATAATAG









AGGTCATATCCATCATGGTGGCTTGAAT









TCTGTCCTCCCAAGAACACAGGCTCAAG









TCCTGACCCCTCCTACCTGTGAATGGGA









CCTTATTTGGAAATGGAGTCTTTGCAGGT









GTAATTCAGTTAAGATGAGGTAGGCCCG









AAAAGCAATGACTGA





2005
3910788
2
AURKA
GCCAGGGCTGCCATATAACCTGACAGGA
0.002303775
0.008034016
6.32E−06






ACATGCTACTGAAGTTTATTTTACCATTG









ACTGCTGCCCTCAATCTAGAACGCTACA









CAAGA





1776
3911737
5
GNAS
CCAGAAACTCATCTCGAATGAAGTACTT
1.65E−05
0.006751443
4.63E−06






GGCCCGGGTCACGCGTGGGTCCTCTCCG









GGCT





 655
3911768
2
CTSZ
GCCATGTCACTAGAAGCGCAGTTTAAGA
0.000126082
0.017035647
1.84E−05






AAAGGCATGGTGACCCATGACCAGAGG









GGATCCTATGGTTATGTGTGCCAGGCTG









GCTGGCAGGAACTGGGGTGGCTATCAAT









ATTGGATGGCGAGGACAGCGTGGCACTG









GCTGCGAGTGTTCCTGAGAGTTGAAAGT









GGGATGACTTATGACACTTGCACAGCAT









GGCTCTGCCTCACAATGATGCAGTCAGC









CACCTGGTGAAGAAGTGACCTGCGACAC









AGGAAACGATGGGACCTCAGTCTTCTTC









AGCAGAGGACTTGATATTTTGTATTTGG









CAACTGTGGGCAATAATATGGCATTTAA









GAGGTGAAAGAGTTCAGACTTATCACCA









TTCTTATGTCACTTTAGAATCAAGGGTGG









GGGAGGGAGGGAGGGAGTTGGCAGTTT









CAAATCGCCCAAGTGATG





 715
3911769
9
CTSZ
GCTGAGGATCGTGACCAGCACCTATAAG
8.58E−06
0.016324218
1.44E−05






GATGGGAAGGGCGCCAGATACAACCTTG









CCATCGAGGAGCACT





 769
3912527
5
CDH4
TGTAAAGTGGGGCACCTGCCGTGCTCTG
0.004061321
0.009439512
1.15E−05






ATCACGTGGCCCACGGAGCTGGGTCCTG









CAGTCACTCCCTGCCATGGCGC





 892
3913561
4
DIDO1
CTTCTGCCCATAGCGGGGTACTCTGACCT
0.001283816
0.008853705
3.51E−06






CTTCTCCCTCTTCCCTTCTTTGCCACACA









TCAGCTCCTCTGGGAAGCTGATTTGCTCC









AGGGACAGGAGGTGGGGGAAATTGCCT









GTTAACCTTCCCAACACATCACCTCAAG









TTAAAATTGGTGGATTTCCAGAATTTGTA









TAGGATGGGAATGGGGACGACACACTTT









TGAGCTAGTAGCTTCTGCTCGTTTTGTTA









TCCCGTAAATGTTGTCTTCCCAAAAGGT









GATTGATTG





 962
3913575
9
DIDO1
AAGGCGGCTCAGGACATCAAAGATGAG
2.25E−05
0.010752142
1.01E−05






GAGCCTGGAGACTTGGGCCGACCGAAGC









CTGAATGTGAGGGTTACGACCCCAACGC









CCTGTATTGCATTTGCCGC





1542
3913577
4
DIDO1
CCCTGCTGCGCGTGTTTGGCGGCAATGT
0.002951948
0.00662747
1.65E−06






CACCTTTTGTTCTGTGGTCAGTTGGTCAC









TATGTGCTTACACTTTACCGCTAG





1804
3913713
2
YTHDF1
GGACCGTTGAGCTCACTACCACCTGGAG
0.000722593
0.007517051
5.77E−06






TTTGAGTTGAAGCATGAAAATGGTGCCC









ATGCCTGACGCTCCAGCGCCTGGATCTG









CACGTGCCCTTGTAGAGGATCCTTACCG









TCCTAGAGAGCAGACGCTTTCTGAAAAC









TACTTGCTCCAAAAGACCCTCTGAGTTA









ACGTTTCAGCTGTATCATTAGACTTGTAT









TTAGAGCGTGTCACTTCCTCTGAACTGTT









A





1875
3917818
8
TIAM1
GACCACTGCCCAATCACCCATGTCACGG
0.000272577
0.006979198
6.08E−06






GCTTGGCAGCCAGGCTCAGGTGGAAGCT









TCCTGCATCCGTCCTCTCCAC





1220
3918161
4
C21orf63
TGAAACAGCCCAAGGACCTGCGCTTATT
0.04726916
0.008466627
6.54E−06






GATCAAAATCTA





1638
3918604
2
IFNAR1
CAGGCTGGCTTCTCGTCTAGCAGTATTCA
0.000200907
0.007891488
3.40E−06






GATACCCCTTCTGCTCAGCCTGCTTGGCG









TTAAAATACAAATCATTGAACTGAGGGG









GAAAAATGTAACTAGGAAGAAAAACCC









AATTTAAGAAATTACATAATGCTTTCCA









AAGGCACCTACAACTTAGTTTTAAATTA









CTTGCTACTGGGGATTACCCATGGATAT









CCTTAATAGGCAGGAAGTCTGGGAATTC









TGGTGGCCTCTAGGGCAGTGTTCTCACA









GCACCGTTCCGACAGG





 453
3919218
7
RCAN1
CCACATTGCATTGCTGCTGTTTTCACAAC
0.001643447
0.006886772
3.36E−06






CTCTCTGCACTAGGCGGCTTCCTGTGGTA









CCTCTTCCTACCAGTAGAGAGTGGCCC





1437
3920026
9
CHAF1B
GTGGCCTCGGAGGATTCCGTGCTTCTGT
0.000197761
0.007853932
4.30E−06






ATGACACCCAG





1044
3921056
1

GAAGCTCGGTCCACCTCTGAAGCTGGAG
0.003428273
0.009262185
5.83E−06






CTGCTGTCAGTCAATGCTCAGAACCTCTT









GGCAAA





 206
3922319
1

TCTGTCAGCCGACTTCGGGGGAGCTGTG
0.044564191
0.014070978
1.58E−05






TTCAGGAGAGAAGGGCTTGGGAAAGCTG









TGCTCTATTCCATGCTGGATAAAAGGAG









CAGAGATAACCCG





1659
3923366
4
AGPAT3
CACAGATTCTGACAGGGTCCAGCTAGGA
0.000462937
0.006632473
3.14E−06






AGGTAAGTGAGAATGCAGACATGAGGC









CTATGAAGGGGTGGCTGTGGTGAACATG









AGTGAGAGACTGAGGCCTCTTTCACAGG









GTCTGGCTCACCTGACCACCCGCTACTG









ACCCCCAGCTGAGCAGGGCCAGGTGGGT









ATAGGACCAGAGTGACTCCATCTTTAGT









CTTCCG





1766
3923935
7
SUMO3
AATAATGTACAAATTGGTGAATAAACAC
0.000873066
0.009282175
6.64E−06






AACAGAGCCAACAAACATCCCACCCGAG









CCCATACAGCAAACAGGAAATGAGAAC









ATTTCAGCAAGATTTCAAGCAAGCAAGA









GATGATGGGTCATTGTTCAGGTGACT





1396
3925911
8
C21orf34
GGGTCCTTACATCATTCATCACATTAAAC
0.044263782
0.007994666
5.95E−06






TGTAACATACTGTCAGAATTCACTGGGC









ATTAGAGTAGCTGTCTGGCTTTTGTGTAG









ACAAAATACTTTCTCAACTCCACCGCTTG









GGCAAAGGCAAGGCTGTGCTGACCCAAT









TTCCATTCC





1772
3927606
1

TGATCAGAAACATTGGGGACTTGGCACT
0.002641545
0.006502541
3.15E−06






TATCATGAAA





2073
3929666
2
TMEM50B;
GCCAGCACCGACAGCAACGAAAATGTTC
0.000525832
0.007247528
2.97E−06





AP000300.3
CCACGGAGATCAGGATGACTTGCTGAAG









CTCAGTGGAGGCTAAAAAGAGGACACG









AAAGTGAACAGAATGATCTTCCTACGCA









CAACACAAACATCAGTTAATGTTCCATC









CATGCTGCTTAAAGAGCATTCCTGTCCTA









GTAAAATGGGCAAGTCCCTCTACCCCCC









ACCCTCACCTGGTATGCTTACATTA





2006
3930023
5
MRPS6;
TGCACATCCCACTAGTCAAAAGGAGAGA
0.000153753
0.007677257
6.18E−06





AP000318.2
TGCAGAGTAAAAGAACTAGAAATAAGA









CAAAAGACAGAAACAACATCTAAGGCA









CAGGCAGAAACACTTAACAGTGCATCCA









AACTTCTAAAAATTCTTGGGATTAAAAT









ACAAAACCAAATGGATGTTCAACTCCTG









AAGCATATGGGGAACAATACAGCAACA









AAAAAAAAAAAAAACCTCAACTCTGAA









AAGCCATGGAAAGCTGGAAAGAGAGTC









AGAAACTCCTATGAAGAGACAACAGGA









CTTTACAGGGGGCCTACCTTAGGGTATG









CCAGTGAGATCCCAAATTA





1207
3932278
3
HMGN1
GGGAATACGGTCGACGAGACTCCTCCGG
0.00195225
0.009766647
7.74E−06






TATTCAACTTCATGACATTGTCCTGTCAT









GTGGAACTGTAGGGAATAGTGGATGATG









GCGACAGTGGTGAAATATAGCTCGGGCT









TTAGGATTTGTCATATGTCTAATGAGGCT









TGACATGCAAGTACTATTAAAATCTCCTT









AGCATACATTGTTTTCCTGATTACTGGGG









GGGACCTTAAGTTGTCTCATGTAA





1398
3932707
4
DSCAM
TCTACAACTTTAGGGGACACAAGGCAGT
0.014179003
0.007108958
2.59E−06






TCATAGCAGTTGCTCTCCTTTGGTTTGTA









TCCAACTACACTGCCTGGTTGATCTTCTC









TCTGAATATTTCGGTGCTATCTCTTTCCT









TCAGTTTGCATCTTCCCCTCTCAGAAATG









TATGTCAATCTAAAAGTCCAATCCCATC









CACTTTCTGTATTGGTCATTTCATCATCT









TCCAGGGCTTCATCCATGACTTGCACCTG









TGTGACC





1673
3934672
9
SUMO3
GCCGTCCATCCTCGCATTGCTGTTGAATG
0.007946892
0.009316771
7.21E−06






GTGAGCACGTGACCATGCCGACCACAAA









GGTGTCTGCGGAAACTCGAGGACATTCA









CCACGATGATTTTCCTCTCTTTGATGTAC









TTCAAGTGCAACTCAAAACTATATCTGC









AGGGATGAATCTGTAACTTAAATTGGGC









CAATCAGAATTGTTATCTTTGTTCAGGTA









AAATGAGTTGCAAGATATTGTGGGTACT









TTTGTGTGCTCATTTGTGTTTTCCCCCCCT









CCTACAACATTTTTTTAACCCCAAAATTA









TAGCCTGAATGTTCGCTTTTAGTCTGGCC









AGGGATCTGACTCCTGAGTTGGTTGCCT









CTCCCCTGCTCACTCCAGTCACATAGAG









AATTGGTGTTTCCCGCAGTGGGGATGCA









GCTGTTGGACAGGTATTGGGGGCAAGGT









TGGTAGGGAGGACAGACTGTCACTTGCT









GTTACAGGCACAGGTGATTAAAATGCTA









AATATTGCAAATTTAAGCTTTGTCAGTAT









ATGGAAAAGTTGAAGGGAAAATACTGG









AATGCTTCTTCAAAGGTTAAAAAATAAC









CGAGTCTTTTGGTAATTTGACCCCACGTG









CTCTCTGGCCCTCAAGCATGTAACCTCG





1298
3936105
7
CECR1
CAGGGCGAGCACAGGAAAACCTCTCTGA
0.002629781
0.007226038
4.30E−06






GACAGTGACATGAACTTGAAACTTGAAG









GGTAAACAGGAGTGGGCAAGACAAAAG









GGGAAAGAAGGAATCTTCCAGGCAGAG









AGAAAGAGAAAAGACCCAGGCACGGTA









TAGAGCCGAGGACATTTGAGGAAGAAA









GGGCCGCCGGGGTTGGGGCCCTCTGGGT









GACTGGGAGAGGAAGGCGCCGGAATGG









ATCCAGATTAAATCGGATGCTGTATGCC









CTGTGGAGACATGGGGTGTACCTCTAAA









CGCACTGC





 670
3936779
3
DGCR5
GGCCTCTCACTTGTGGGACTCCCGAGAT
0.006297356
0.007821734
5.43E−06






GCAGTGGCCAACACGAGTGTAGTGCCCA









GTTCACTGCTGGATAAGACAGAGGCCTG









TTCTGGTCACACATGGGAGGCAGAACCC









AGAGACTGGGCCCAGGAGCCCTTCTGCT









GACAGTGGGAACTCCCAGCTACGTGTGG









GGGTCCCCATACCAGACAAAGGTCCCTG









ACCTTAGTCTTGCCCGAGAGGCCGACAC









AGCCCAGCTTTGGGGTCTGGCTTTACCC









ACAAGAGGCCACACCTTGCCACAGCACT









GTTTATCTGGCCTGTTTCA





 882
3937768
9
SNAP29
ACACCTTCGAGCCTATCACCAGAAGATC
0.000509079
0.008037211
5.22E−06






GACAGCAACCTAG





1735
3937798
2
CRKL
CCCTAGTAACTGCTGTCGGTGTGGACGC
0.000113778
0.011359599
1.07E−05






TGTGCTGGTTCTGTTTTCTAAAGGAGCAG









AAGGACAGGTCTCTGAGACAGGATCGTT









GTCCCTACAGGAGGAACAGTGGCCTTGC









TTCTTAGACGGTC





 653
3939344
1

GGCACGCTGGGGATTCCTGCCAGAATTC
0.012377537
0.006710491
7.82E−06






TGGAAGCTTGGGCCCCATCAAGGCGGTC









TCTTGCCCCTGA





1725
3939351
1

CAGCAAGGAACGGAAAGTTCACATTGTA
0.002481187
0.007874982
3.76E−06






AATATGTAGCAGAGTCTGTAATGGCTCA









GTCAACGCAAAATGTTGACTACAGTCAA









TTACAGGAGATAATATACCCTGAATCAT









CAAAATTGGGGGAAGGAGGTCCAGAAT









CATTGGGGCCATCAGAGCCTAAACCACG









ATC





1175
3939354
1

ATGGGCCATAGTGACGATGGTGGTTTTG
0.0264846
0.007324555
6.75E−06






TCAAAAAGAAAAGGGGGGGATATGTAA









GGAAAAGAGAGATCAGACTTTCACTGTG









TCTATGTAGAAAAGGAAGACATAAGAA









ACTCCATTTTGATCTGTACTAAGAAAAA









TTGTTTTGCCTTGAGATGCTGTTAATCTG









TAACTTTAGCCCCAACCCTGTGCTCACG









GAAACATGTGCTGTAAGGTTTAAGGGAT









C





 707
3939358
1

CCTTTGAGGGAGATCAAGTCTAAATTTG
0.00040614
0.010891317
8.74E−06






AAGGGAGTCCAAATTCATACTGGGGTAA









TTTATTCAGATTATAAAGGGGGAATTCA









GTTAGTGATCAGCTCCACTGTTCCCCGG









AGTGCCAATCCAGGTGATAGAATTGCTC









AATTACTGCTTTTGCCTTATGTTAAAATT









GGGGAAAACAAAAAGGAAAGAACAGGA









GGGTTTGGAAGTACCAACCCTGCAGGAA









AAGCTGCTTATTGGGCTAATCAGGTCTC









AGAGGATAGACCCGTGTGTACAGTCACT









ATTCAGGGAAAGAGTTTGAAGGATTAGT









GGATACCCAGGCTGATGTTTCTGTCATC









GGCATAGGTACTGCCTCAG





 576
3939495
2
MMP11
GCCTTCTGGCTGACAATCCTGGAAATCT
0.001268815
0.014070716
9.94E−06






GTTCTCCAGAATCCAGGCCAAAAAGTTC









ACAGTCAAATGGGGAGGGGTATTCTTCA









TGCAGGAGACCCCAGGCCCTGGAGGCTG









CAACATACCTCAATCCTGTCCCAGGCCG









GATCCTCCTGAAGCCCTTTTCGCAGCACT









G





 726
3940746
4
ADRBK2
GATCCAGATTGAAACCCACCAGCTATAC
0.003965967
0.011477167
1.06E−05






AAAAGACACTTGAGTCATGGAAATGTGG









TTAGAGACTGGGCATTGGATCTTCAGGA









ATTATCAATTTGAAGGGGGAGTTGGGAA









GTGATAATAGACTGTGTTTATATGAGAA









AATTATCCATAATTTTTAGAAATGCAAA









CTGAAATAGGCTAAAACGACATGTGGTC









TG





1069
3942014
9
RFPL1
CACTTGTTTTTTGCTCCTCCAAGTCCACC
4.10E−05
0.006778254
3.28E−06






TAATGGTGATAAGAGTGTCTTGAGTATC









TGTCCTG





 233
3942071
9
NF2
AAGGACCTCTTTGATTTGGTGTGCCGGA
1.05E−06
0.019752284
1.31E−05






CTCTGGGGCTCCGAGAAACCTGGTTCTTT









GGACTGCAGTACACAATCAAGGACA





1946
3942670
3
MTMR3;
GCTGATGTACCTGACTGGCTCTGTAAGA
0.000153344
0.009669208
9.02E−06





TUG1
TCAGAAAACTGTATCCAGAATAAGCCCT









ATGGATTAACCCCTGAGTACCCAGAGTA









AAAACTAATTTACAGAACTTCCTTATTG









ATCTGCTGGTTCTTCCAGATCATATTCTG









GCTATTGGTATGGCTGGCCTTTCTGAAG









GTACCCTGCTTGTCTATTTTCCTGACTCA









GCTCTTGCCTGCCTTTTTCACATGTTGCT









GCAATTAGACTCACCGTGAGGACTACAG









TCAATTTCAGTCTATCTTGTGCCCAATAC









AACAAGGATTTTTAATAGTAACAACCCA









CACCTCACCCACTAGGACTCAATGTTCA









CAACAGGAAGGACCATTGCTGCATACTC









CTTGACCAGCAACTTTTTTGAAGATATTT









TTAAGTGCAGAGTAGGCCTCTATTCCTGT









ATGTAATTGTTCATTTTCAGCACCTGGAA









CCTCATCTATCGGGTCTGGAAGGAATAC









AGCAGTTCGAAAGCCGCGTCCATTTCTC









TCCTTCAGTAGTGCAGAAATGAGTCCGA









TTCACCAGTACACACAGAACTGTACCAG









TTCAACCTAGCAAAAGAAGAAAAGTTTC









CACTGTACTTAAAATTTACAGCTGACTC









AAATTGCCTCACAGAATTATTTGATGTA









GAAGGCTAGTTGTCTTACTTCAGATCAG









CAGGACAGTTGGGCTCTCAGACTCATGA









CCACTGAGTTTGCTTGTGTTGAAACTGTG









GTTTCATCCAACATATGCTATTGGACATG









ATTATTATTCCATTCAAATGGATTACAGA









CTTCTTGAGGACAGGACAAACTTATCTC









TCATGGTGTTTTTTTAGAATACTTTTATA









ACCAAGGAAGAAACCATGCCAGCTGTTA









CCATTCAACTTCTTAAGCAGAGATTAAG









CTTTTTCATATCTGTTCTTATCCTGGACA









TCAGTAGTTTTTAATTGCCCAGCATCCGT









TCCATCTTGTAA





 930
3943191
1

TAGGAGAGTCCATCACAGGGCAATCTGA
0.000468776
0.010341943
7.19E−06






CCTAGTCATGAAGGTCAGCAAAGGCTCT









CCAAGTGACCATAGAACTGAGAACTACA









GGGTAAGCAGGATTAAGTAGAAGAATTG









GGGAGGAAAAAATGTTCAGGAAGAGAG









GGAAGGGCACGCACAGGGCAAGATAAA









GTTGGGAAGTAGGCCTGACCATGCAGTG









CTCTTGGGCATGCTGAAGATTTTGATTTT









GATTCTTAGAGGTTCTAAGCAAGGAGCA









GGTGACAGGATCAGATTTGTATTTTTAA









GAGATTATTTTGGCTGTGGTTACAGAAG









ATGGAAGCGGGGGATGGGATGAGCAAG









TGTGAAAGCCGGAGGCCTGTGGGAAGCC









AATGTAGATGTCCAGGAAATTCATGATG









GAACCTTGGACTGGGGAGGTGATGGGGG









GAGGGGAGGAGTGGATGGACTTGAGGG









CCATTTAGGAGATAAAATGGACATGATT









GGGCCATGGGTTTTGTGGGAAGGATAAG









GGTGAGGGAGTTATCTAGGATGACACCC









AGGTTTCTGGATAAAACTGTTGCCAGGC









AACAGAGAGAAAGCCAGAAGGGAGTGG









GGAAGGGGTGGGACACATTTTCCCTTGC









AGTTGTTTTTATGCCCATGTTTGCAAAAT









AAAGGGTGTTGGAGGTGTGGGCGTGCAC









AGCTCCCTGACTGCCCACCCAAGGATAA









GAAGACTGGTTTAAGAAGATTGCATGTT









GCAGGGTAAAGGGAGCTAGGTCTTCTAC









TCTGGGCTCTGCATGCAGGTAACTGTGT









GATTTCACTCCCCTGGCCCAGGACTCTG









AAACAGACATCCCTCCTTGTCTGGCAAT









TTCATGGCAAAAAGCAGCCTGAGTCGTA









TTTGTCCACTCATGCTATTTACAGGACTC









CTCCTTGGGAAGTTATTTCTTGTAGATCC









ACTTTATCCAGAGCCTGAAGGTGAAAAA









TCATCAAGTCTAGAATGTGAGATCTGAA









AGGAATCACAGAGCCCATTTTCCCAATC









TTCTAATTTTACACTGGGGCAGCCCCCGT









GTCTGACCCATGTCTCTATGCTACTCTAC









TACCTTGCCTACAGGAAGAGAGGTTAAG









GAGTTTGTCCAAAGCCACAAAGCTATTG









GGCATAAGGAGGTGACCCCACATTCCTT









TTCTTACTTTGGGGGTGGGGATTCTTCTG









CAGCCTGCAGTTATTTCCTAGGACAGTG









GGGCTAGGTAGAGCTGTGGCGATGAGCT









AAGATCATAGACACAGGTGATGCTGAGC









ATCTGGGGGAATAATTCATCTGAAGCTG









TGCCCTGCTGAGTTGGAGTCCTTTCTGAC









TCTTTAAAGATGCCTCTTGTCATGCACCC









AGTCGTGACTCCTGAATATCCTCCTGGG









GTTGC





1451
3943222
2
YWHAH
TTTAACGTGAGGTTTCAGTAGCTCCTTGG
0.00021566
0.013533518
1.67E−05






TTTTGCCTCTTTAAATTATGACGTGCACA









AACCTTCTTTTCAATGCAATGCATCTGAA









AGTTTTGATACTTGTAACTTTTTTTTTTTT









TTGGTTGCAATTGTTTAAGAATCATGGAT









TTATTTTTTGTAACTCTTTGGCTATTGTCC









TTGTGTATCCTGACAGCGCCATGTGTG





1252
3943311
3
RP1-
TGGTCACGGCTGAACAATTTCAAGAAGC
8.73E−05
0.007568258
3.79E−06





90G24.10
GAGTCGATGTCTCATCTCCCTATCTTATC









TTGAAAAACCCGTGTACCTAAGTCGTGG









ATGTGTCTGCTGCATCCGCTGCATCAGTT









CACTTCTGAAGGAACCCCATGAGGAAGG









TGTAATGTGCTCCTTTCGCTCTGTGGCTA









CTCAGAAGAATGACATCAGGCCCGATTT









CCAGCTGGGA





1851
3944661
2
KCTD17
CCTCCTGTGTTTGACTTCCCGGGATGGGT
0.023538302
0.007190772
5.18E−06






CCTTGCTTCTCAGCTGTGTCCGACCCCAC









CATGTAATAA





 359
3944775
1

ACAGTTCTTGCCACAGGAAGACTCGATA
0.000800301
0.009903548
4.44E−06






AAAACAGATTATT





 966
3944939
9
NOL12;
GTGCATCGGGCACCGGGATGCACCCCGA
0.002849134
0.008944874
4.95E−06





TRIOBP
GCCTCCTCCCCACCCCGCCACCCACCCA









GTGACCTAGCGTTCCTGGCACCCTCACCT









TCACCGGGCAGCTCTGGGGGCTCCCGGG









GCTCAGCGCCTCCCGGGGAGACCAGGCA









CAACTTGGAGCGGGAGGAGTACACTGTG









CTGGCCGACCTGCC





 601
3945520
2
APOBEC3A
CAGCAGCTTCCAGGTTGCTCTGATGATA
8.40E−07
0.014765996
1.11E−05






TATTAA





 356
3947246
9
SEPT3
CAGGAGAGCATGCCTTTTGCTGTGGTGG
0.004699102
0.013660068
1.15E−05






GAAGTGACAAGGAGTACCAAGTGAATG









GCAAGAGGGTCCTCGGCCGAAAAACTCC









ATGGGGGATCATC





1428
3947350
6

AGGGCTTCTTCCAGACGGCCTCATCCTTC
0.000372622
0.006796499
3.83E−06






AGCACCGATGACAGGTTGGTGATGAGTG









TCGTTCCCTGGGCAGGAGATGCAGGGTG









AGAGTGGGGACTGGACTCTAGGATGCTG









GGACCCCTGCCACCAAACACACGGGGGA









CACACACTGCCTGGCACACAGCTGGACT









CTGTCAACTAGTCCTGCGCCCGAGAA





 380
3948681
9
FBLN1
AAGGGACATCGCTGCGTGAACTCTCCCG
0.006969913
0.009183224
6.72E−06






GCAGTTTCCGCTGCGAATGCAAGACGGG









TTACTATTTTGACGGCATCA





 101
3949198
9
GRAMD4
ATACAGTGGAGCATCGTGCCCGAAGTGT
3.80E−05
0.021704647
1.73E−05






C





1075
3949566
1

ATGGCACGCACCCAAGTGCTGGGCATTG
0.000248937
0.007112984
2.14E−06






TGAGAGCTTTCTCTGTGCCGGGCTCTGCT









TGTGAACAAGAGCCCTCTGAGACAGTGA









TGGGAACCATCTGCATCACAGAAGCACA









AGCTCTGGTGATGATG





1751
3951205
6

GGGGTGAACATGAGTACCACAGTTAGAC
0.000130223
0.007570276
4.56E−06






TGAGGTTGGGAAAGATTTTCCAGACAAT









TGGAAGAGCATGTGAAAGACACAGATTT









TGAGAAATGTTAAGTCTAGGGAACTGCA









AGGCTTTTGGCACAAGAAAGCCACTGTA









GACTATAGAGGCAGGATGCCTAGATTCA









AATCCCAACTGCTACACTTCTAAGCTTTG









TAATTTTGGCAAGTTTTTACCCTCTATTT









TCTTATCTATAAAATATAGATTTTATATA









TATAGATATAGATATATAGATAGATAAT









AATTGTGCATGCCTAATAAAGTTGTCAA









AGATTAAATGTTATATGTGAAGTATTTG









TACGGTGATAGGAACCCAGGA





1603
3952519
9
DGCR14
TGATCCCCCAGGAGTCCCCTCGAGTGGG
0.015281883
0.008978517
1.28E−05






TGGATTTGGATTTGTTGCCACTCCTTCCC





1899
3953861
7
CRKL
CGTCTAAGAAGCAAGGCCACTGTTCCTC
0.001504933
0.007170792
4.34E−06






CTGTAGGGACAACGATCCTGTCTCAGAG









ACCTGTCCTTCTGCTCCTTTAGAAAACAG









AACCAGCACAGCGTCCACACCGACAGCA









GTTACTAGG





1237
3954368
2
TOP3B
CTGCGGAAGAGTGGAGTCTAAACTTTTT
0.037498543
0.007241529
1.28E−06






CATTGCC





2021
3956783
2
AP1B1
TTGGCAATCACGGACACTTTTTTCCCCTC
7.26E−05
0.007011229
3.96E−06






CACCGAATGTCAGGATTGAAAGCTGCCT









CCGAGTGGTTGGGGATGGTTTTCTGACC









CTACGGTAACTAGATC





1700
3956841
1

GTCTTCATCATGGTGGGACTGGCTCCAG
0.00515944
0.006531317
3.49E−06






GAGGGATGGTGGAGATATGAAGCCAGA









TGGGGCACAGGGCTGTGTTCTGAGGGGC









CTTGAGGCCTCAGAGAGGGCTTTGCACT









TTATCCAGGGATTTCAGCGGGTCGTAAG









CAGGAGGGGCATCTGGTTGGGGCTCTAC









TGGAAGGCTCATTGCTTTGGCCAGGAAG









ATGGGGAGGCTGGTGGCAAAGAAGCCC









GTTGGAGGCTGTTAATGCCACCCAGGCC









AGGGAGGCAGGGCCCAGGTGAGCCAGT









GACAGGAGTGAAGGAGAGAGGGTGCCA









GGGTAGAGAGAGCTGAAGGGGCAGTGG









CAGCGCTGGGTAGCCCTGGGTAGCTCAG









CACATTTT





1235
3957024
9
ASCC2
CCCTGCTGACGTCTCGCCACAACGTCTTC
0.015136312
0.007228397
3.59E−06






CAGAATGACGAGTTTGATGTGTTCAGCA









GGGACTCAGTAGACCTGAGCCGGGTGCA









CAAGGGCAA





1339
3958074
7
YWHAH
CACACATGGCGCTGTCAGGATACACAAG
6.02E−05
0.01323046
7.68E−06






GACAATAGCCAAAGAGTTACAAAAAAT









AAATCCATGATTCTTAAACAATTGCAAC









CAAAAAAAAAAAAAAGTTACAAGTATC









AAAACTTTCAGATGCATTGCATTGAAAA









GAAGGTTTGTGCACGTCATAATTTAAAG









AGGCAAAACCAAGGAGCTACTGAAACCT









CACGTTAAACAGTTTATTATAAAGCTGA









TGGAAAGGAGCAAGTTGTCTCTCTGTAT









CAGCTTCCCTTAACAGTTTTCCATTAATT









GAAGAAAGAGGTGGGAGGGGTGAATTC









ATTTTTGCATGCACAAGATGTACTGCTTA









ACGAAACACTATCAGCTTGTTTTAAATG









GATCTTTTAAATATCAACTGTAGCCTGGT









TGGCTAATTCTTTCTAATCTTCCCCATTA









CTTTCGCCTAGATTTCCCATAGATCAACA









GGCATAGTAAAATGCCTCATCAGAACAC









ACTTCTCCACACAATTCAAAAAGGGAGC









TCCTGTGGGCTCAAAGCAACCATCAGTC









CAG





 885
3958175
9
SLC5A4
TCTTGGGTGGATCTTTGTCCCTATCTACA
0.000873066
0.011103233
8.58E−06






TCAAGTCGGGG





 422
3960135
9
CARD10
TGCTGCGGCAGTGCCGTGGCTCAGAGCA
0.042066262
0.010130553
1.11E−05






GGTGCTCTGGGGGCTGCCCTGCTCCTGG









GTGCAGGTGCCCGCCCATGAGTGGGGAC









ACGCAGAGGAGCTGGCCAAGGTGGTGC









GCGGCCGCATCCTGCAGGAGCAGGCCCG









CCTCGTGTGGGTGGAGTGCGG





 289
3962111
7
SREBF2
GACATACACACAACACGCAGGCGGGCA
0.000511623
0.017319589
1.35E−05






GGGTCCATAAATTACAGTGAGAGTAGGG









GAGGGGCAGGAGAGAAAGAAAGCAGGT









GGGGTCCAAGCACACCCCAGGGATAACA









TTCCAGCCTGCATCAAGGTGGCCCTGCT









GTGAGCACCCCCCAGTCTGTGCTGGGGC









TCCTGCCCACCCTCTGCTCCAACCAGCCT









GAGGATGAGGCACAGGGAGGCAGGGCC









CATCACTCAGGAGGCCATGGGAGAAACA









GTCTCCGGGAGGTGCTGCACCTGGGGAC









CCAGAAAAGTAGGACTTTTTCTCCTAGG









ACCCGCATCGAGGCAGGGGACCTCATTC









CTAGTGC





1113
3962470
6

TGACAGCATGCACGAAAGCCCGCTTCTC
0.003098917
0.007741604
4.41E−06






ACATCTGATTCCAGGAGAAAGAGCGGCG









TGTCCAGCAAGATAAGTTTATCCACCAT









CTCGGGGAAGGTACAGAAAAACTGTGA









GGATGCCAAAAGGGGAGAATGAATAGG









GGGAAGAAGGAAAGGACACTCCCGCCTT









TCCCTGGGGACCCTGGAGTTCCCCGAAA









CATCTTTTAGGCTGGGGGGAGGGTGCTG









ACCAAGAGGCCAGAGGAGAATCTTCTAT









CTATGGTGTGCCTTCCCCCACCACCCCTA









AGTCTGCACCCAGCACTGAGCTCCAGAC









CTTGGTGATGGCTGGACTCC





 804
3962932
3
SCUBE1
CTTTGCAGGGTATGTTCCCGGCCCACAG
0.000197241
0.010510173
4.00E−06






GGGGCTCTCCATGGATCTGAGGAGACTG









GCAGGGCAGGATCGGAATCGGCACCCTG









GAGAAGCTGTCGTTGGAGACGGCCTTGG









CGAGACAGTGTGTTGCAGCTCCAGCTCT









GTCCGCTGGGTTCAGCCCCCTCACCTTAC









CTCAGTCACTAACCTCTGTGCGCTCAGC









GTTCTCAGCTGTTAAGTGGACGTAACAC









AGGTTGAGCATCCTTTATCCAAAATGCTT









GGGACCAGAAGTGTTTCCAGTGTTGGAT









GTTTTCACATTTGGGAACATTTGCAGATA









CATAATGAAGTAGCTTGTGGATGGACCC









A





 190
3965086
1

CACAGCCGAGCCAGTGGAGCCGTTCTGG
0.001219026
0.012512162
7.10E−06






GCAGGTGTAAGGCCGTGGTGTCTCAGGG









GACATCCCGTGTCACAGCCCGGAG





 103
3965316
2
BRD1
GCGGGTCTTGTCCATAGTGTTGATAAGC
0.000113778
0.025245222
2.10E−05






TGTACATGTTTGTATATTGTTCAAAACTT









AACTTATTCTGATTTTTAGTTATAGCTCT









TTAATTCTTTTTCCCCGGGGAGGGGGGA









GGTTTTATTTCCAAGTTTTCTAGGAACCC









ATCTCCGTCTGGGCGCTGTGAGTGGGGT









GGGCACGTCCGGGCAGCCCAGTGCGTCT









GTCGCACGTCCCCAGGCCGTGCTGCTGG









CGTCACTTTCTTTGATATGTAGCTTTTTC









TTAAAGACTTTTGAATGTTTAATAATTTT









GTAAATCATGCTCTTTACACAGAGTACC









ACTTATTTAATAAGACGGGATGTAAATT









TACAATGACAAATGTGTATTTTAAGAAA









GAAAATGACATTATTTTGAATGGTACTTT









GTGGAAAGAGGGGAGAATAAAGTTATG









CTGTGTACATCACTTGCAGATCACCAAA









AACACTCCGCTGCCCGTGACCGCCGGTG









GGTGTGTCCCCGCTCCCGTCGTCCCGCCC









ACCTCAAACCCCGCAGGTGTGCCTCCCA









GCGGATTATTTATTGTAGAAAGTGTATTC









ATTTGCTTTATAATGAAAAATACATTTGC









AAAGGTATATTGATATGCATTTTTATACA









GGCACATAAAAATTCAACTTGGCTTGGG









AGCAGAATGCATTGCATTGTATAAATGA









CTCTGGCCTGTGTGTACTTTGATTTTA





 287
3967872
1

TTTTGAAGGTTATCCGAGGTCACCATCTG
0.01020177
0.012116789
1.25E−05






CATCTTGCCAAAGCCAGGACAGGAAGAT









GCATTCTTGCCTGGTTCTTTCTTCCCCTTC









AGCCTTTCCCAACACACACCCATTAATT









ATCCTTCATTGTCCCACAGTAATTTCTCA









GGGATCTAGTCCCATCTCTTTATTCCTTT









ACTCGTTCCCTGGGATATAATTACAGCCT









GATAACCAGGCTATGACTACGGACTTAT









C





1473
3968670
8
MID1
ACTTGCCCAGTTACAACACATCTGAAAT
0.006297356
0.007050988
1.23E−06






TCTAAAGGCCCTTCCCCTACCTGTCGTGC









AAATCCCCTTCCGTCTAGTCTCTGGCCTA









AAACCAGTTGAGATGGACCCTCCTCCTC









GGGAAGTCCTGCCTCTTTCTGAAGGCAG









GGTGCCTGCTGAATCTGGTCCCTGTGGC









CCTGTTTGCTCAAATG





 132
3968897
1

TGAGCATGCAAGTCTAACTAAAGGCATT
1.39E−05
0.017841672
1.98E−05






TAAACACACGTTTTTAAGAACACTGGGG









AGGCTGAATGAAACACATCCAAGGGCCA









CCACTTTGCAACTCCTGAACCAAGCAAA









ACCAACTGGTGTCCTGTTGTATGCGTGTG









TTGTAGAGCTTTAAAGC





 834
3971935
4
ZFX
CGAGGTCGTGTCTTTTGCGGAAACATGG
0.040585072
0.007638758
3.94E−06






ATGGAGCTGGAGGCTATTATCCTTAGCA









AACTAACGCAGGAACAGAAAACCAAAT









ACCGAATATTCTCACATACAGGTGGGAG









CTAACTGATGAACACAAAGAAGGAAAC









GAGACACTGGGGGTCTACTAGAGGGTGA









AGGGAGGGAGGAGAGAGAGGATCAGAA









GAGATAACTATTGGGTACTGGGCTTAAA









TACCTGGGTGATGAAATAATCTGTACAA









TAAACCCCCGTGACAGAAGTTTACCCAT









GTG





 353
3973877
2
RP5-
CTAGCCCATCTTACTCCAGGTTTGATACT
8.88E−05
0.019334343
2.32E−05





972B16.2;
CTTTCCACAATACTGAGCTGCCTCAGAA








CYBB
TCCTCAAAATCAGTTTTTATATTCCCCAA









AAGAAGAAGGAAACCAAGGAGTAGCTA









TATATTTCTACTTTGTGTCATTTTTGCCAT









CATTATTATCATACTGAAGGAAATTTTCC









AGATCATTAGGACATAATACATGTTGAG









AGTGTCTCAACACTTATTAGTGACAGTA









TTGACATCTGAGCATACTCCAGTTTACTA









ATACAGCAGGGTAACTGGGCCAGATGTT









CTTTCTACAGAAGAATATTGGATTGATT









GGAGTTAATGTAATACTCATCATTTACC









ACTGTGCTTGGCAGAGAGCGGATACTCA









AGTAAGTTTTGTTAAATGAATGAATGAA









TTTAGAACCACACAATGCCAAGATAGAA









TTAATTTAAAGCCTTAAACAAAATTTATC









TAAAGAAATAACTTCTATTACTGTCATA









GACCAAAGGAATCTGATTCTCCCTAGGG









TCAAGAACAGGCTAAGGATACTAACCAA









TAGGATTGCCTGAAGGGTTCTGCACATT









CTTATTTGAAGCATGAAAAAAGAGGGTT









GGAGGTGGAGAATTAACCTCCTGCCATG









ACTCTGGCTCATCTAGTCCTGCTCCTTGT









GCTATAAAATAAATGCAGACTAATTTCC









TGCCCAAAGTGGTCTTCTCCAGCTAGCC









CTTATGAATATTGAACTTAGGAATTGTG









ACAAATATGTATCTGATATGGTCATTTGT









TTTAAATAACACCCACCCCTTATTTTCCG









TAAATACACACACAAAATGGATCGCATC









TGTGTGACTAATGGTTTATTTGTATTATA









TCATCATCATCATCCTAAAATTAACAAC









CCAGAAACAAAAATCTCTATACAGAGAT









CAAATTCACACTCAATAGTATGTTCTGA









ATATATGTTCAAGAGAGAGTCTCTAAAT









CACTGTTAGTGTGGCCAAGAGCAGGGTT









TTCTTTTTGTTCTTAGAACTGCTCCCATTT









CTGGGAACTAAAACCAGTTTTATTTGCC









CCACCCCTTGGAGCCACAAATGTTTAGA









ACTCTTCAACTTCGGTAATGAGGAAGAA









GGAGAAAGAGCTGGGGGAAGGGCAGAA









GACTGGTTTAGGAGGAAAAGGAAATAA









GGAGAAAAGAGAATGGGAGAGTGAGAG









AAAATAAAAAAGGCAAAAGGGAGAGAG









AGGGGAAGGGGGTCTCATATTGGTCATT









CCCTGCCCCAGATTTCTTAAAGTTTGATA









TGTATAGAATATAATTGAAGGAGGTATA









CACATATTGATGTTGTTTTGATTATCTAT









GGTATTGAATCTTTTAAAATCTGGTCACA









AATTTTGATGCTGAGGGGGATTATTCAA









GGGACTAGGATGAACTAAATAAGAACTC









AGTTGTTCTTTGTCATACTACTATTCCTT









TCGTCTCCCAGAATCCTCAGGGCACTGA









GGGTAGGTCTGACAAATAAGGCCTGCTG









TGCGAATATAGCCTTTC





1230
3974321
1

CTGCTAACAACGGACCCAGCCAGTGCCC
0.000103742
0.009748928
6.08E−06






ACCAAATGGCTCCTGCAGCCTTCCTTTGC









AGCCACACTGAAAAGCGATCAAATGTGA









AATCCCAGGGAGGCCAGAGCAATGCGG









CCAGCACTCAGCTCCGGG





 748
3974602
3
RP11-
GGGAAGCTGCGCCTCCGCAAACGCTCAG
7.28E−05
0.01454949
1.06E−05





169L17.2
AAGCAGCTTCGCCAGACAGCCGCAACGT









ACATGTTGACTGCCCGAGGCGGAAGTCG









AT





1407
3975196
1

GTGGAGGATGGCTCATAACACTTCTCGG
0.013854351
0.006635681
5.98E−06






AATCCTCCATCAAATGTGCACTCCACTCT









CCTCTCCTTCTCTCCCCTAAATCCACATC









ACCAGCTTGG





1036
3976688
2
EBP
ACCAGGCTCGAACACTGGCCGAGGAGG
0.002157641
0.013487046
1.43E−05






AGCTCTCTGCCTGCCAGAAGAGTCTAGT









CCTGCTCCCACAGTTTGGAGGGACAAAG









CTAATTGATCTGTCACACTCAGGCTCATG









GGCAGGCACAAGAAGGGGAATAAAGGG









GCTGTGTGAAGGCACTGCTGGGAGCCAT









TAGAACACAGATACAAGAGAAGCCAGG









AGGTCTATGATGGTGACGATTTTTA





1868
3977052
9
MAGIX
CACCGTTGGTTAGAGACATGTAACGCAC
1.55E−05
0.00881525
6.38E−06






CTCCCCAATTGATC





1505
3977310
4
CLCN5
ATGATTAAAGGGGTGTTGTGGTCTTGTTT
0.023452452
0.007299256
7.03E−06






TAAATACATCACTGGAGATGTAGAGGTC









TGGTGGGGACAGTTGAAGCACAACCTCC









ACAAAG





1303
3978435
2
TSR2
ACCAAACAGATGAACGAACGGAGCACA
0.013747629
0.011233971
1.17E−05






GCAGTGCTATGAAAG





2050
3979989
2
AR
AGGTCCATTTCTGCCCACAGGTAGGGTG
0.00041969
0.007110435
2.61E−06






TTTTTCTTTGATTAAGAGATTGACACTTC









TGTTGCCTAGGACCTCCCAACTCAACCA









TTTCTAGGTGAAGGCAGAAAAATCCACA









TTAGTTACTCCTCTTCAGACATTTCAGCT









GAGATAACAAATCTTTTGGAATTTTTTCA









CCCATAGAAAGAGTGGTAGATATTTGAA









TTTAGCAGGTGGAGTTTCATAGTAAAAA









CAGCTTTTGACTCAGCTTTGATTTATCCT









CATTTGATTTGGCCAGAAAGTAGGTAAT









ATGCATTGATTGGCTTCTGATTCCAATTC









AGTATAGCAAGGTGCTAGGTTTTTTCCTT









TCCCCACCTGTCTCTTAGCCTGGGGAATT









AAATGAGAAGCCTTAGAATGGGTGGCCC









TTGTGACCTGAAACACTTCCCACATAAG









CTACTTAACAAGATTGTCATGGAGCTGC









AGATTCCATTGCCCACCAAAGACTAGAA









CACACACATATCCATACACCAAAGGAAA









GACAATTCTGAAATGCTGTTTCTCTGGTG









GTTCCCTCTCTGGCTGCTGCCTCACAGTA









TGGGAACCTGTACTCTGCAGAGGTGACA









GGCCAGATTTGCATTATCTCACAACCTTA









GCCCTTGGTGCTAACTGTCCTACAGTGA









AGTGCCTGGGGGGTTGTCCTATCCCATA









AGCCACTTGGATGCTGACAGCAGCCACC









ATCAGAATGACCCACGCAAAAAAAAGA









AAAAAAAAATTAAAAAGTCCCCTCACAA









CCCAGTGACACCTTTCTGCTTTCCTCTAG









ACTGGAACATTGATTAGGGAGTGCCTCA









GACATGACATTCTTGTGCTGTCCTTGGAA









TTAATCTGGCAGCAGGAGGGAGCAGACT









ATGTAAACAGAGATAAAAATTAATTTTC









AATATTGAAGGAAAAAAGAAATAAGAA









GAGAGAGAGAAAGAAAGCATCACACAA









AGATTTTCTTAAAAGAAACAATTTTGCTT









GAAATCTCTTTAGATGGGGCTCATTTCTC









ACGGTGGCACT





1347
3981275
4
NHSL2
ACCCCCAGTCGGCCTACTGTGCCTCAGC
0.001484083
0.007898961
8.62E−06


2029
3981889
1

ACAACCAACTGATCGTTAACTAAGCACA
0.001070147
0.007759571
5.95E−06






CAAAAATATAAACTGGGGAAACAACATC









CTACTTAATAAATGGTGCTGGGAAAAGT









AGATAGCCCACATGTAGA





1389
3982824
4
SH3BGRL
ATGGGCAGAATCCAATACCCGTTTGCTG
0.000425014
0.007299911
3.97E−06






TCAGTTATACCTGTTTGCCAGTTAGTCAG









ATGCTCAG





1996
3984554
9
CSTF2
GTGGAATGCATGTCAATGGCGCACCTCC
0.01560657
0.006911261
6.59E−06






TCTGATGCAAGCTTCTATGC





1379
3985558
2
NGFRAP1
AGTTTCTGTCAGCAGTAGYTTCACCCATT
1.89E−05
0.013521885
1.10E−05






TGCATGGAAA





 863
3985758
9
PLP1
TGCTTTCCCTGGCAAGGTTTGTGGCTCCA
7.71E−05
0.010589385
6.72E−06






ACCTTCTGTCCA





 890
3988764
4
RP5-
AAGGGGACTTGAGTGCTGGATTTCTGGA
0.000246362
0.009691417
4.17E−06





1139I1.1
GGAGATCAGTGGAAAATTGAGTGTTGGT









C





 737
3990584
9
UTP14A
GTAGCATTCAATAAAACCGCACAAGTCC
0.000438052
0.011094743
5.44E−06






TCTCCAAATGGGACCCTGTCGTCCTGAA









GAACCGGCAGGCA





 744
3990660
9
BCORL1
CCTCAGGAACAGGAACCTTCTCTTGCCC
0.013881148
0.008292344
8.84E−06






AACAAAGTC





 588
3991537
5
GPC3
GTACAACCCAGCCAGCAGGTCAAAGGAT
0.032963108
0.009771426
5.77E−06






TGGAGGACCACCCTGAACAGCATGGGAA









CAACTGGATTACAACAGCTG





 946
3991667
4
PHF6
GCAATTTTCCAAGGTTCATGTCAGCCAC
7.84E−05
0.009377693
4.41E−06






AAGGATCAAAGGAGG





1987
3991676
9
PHF6
ACTGGAGCCCTCATCACCTAAAAGTAAA
0.00022254
0.007170117
5.77E−06






AAGAAAAGTCGCAAAGGAAGGCCAAGA









AAAACTAATTTTAAAGGGCTGTCAGAAG









ATACCAGGTCCACATCCTCCCATGGAAC









AGATGAAATG





1691
3991722
2
HPRT1
GTAAGAAGCAGTCAATTTTCACATCAAA
0.000125743
0.008299216
5.16E−06






GACAGCATCTAAGAAGTTTTGTTCTGTCC









TGGAATTATTTTAGTAGTGTTTCAGTAAT









GTTGACTGTATTTTCCAACTTGTTCAAAT









TATTACCAGTGAATCTTTGTCAGCAGTTC





1618
4001867
2
SH3KBP1
ACGTAGTCAGAAGCGAGTGTCCTTTTCTT
0.000155817
0.008800731
7.41E−06






TTGCTTCAGGCTAAGAGCTGCCTCGCTCT









TTGTCCCCCCATTAGGATTCTATTACATA









TGCAATTGTAGGTTCAACCTGTCCCTTTC









CCTGCCAGCAAACCCCACCACCCTAAGA









GAAATTTTAGCTTATATATGACGGTATAT









TTACAAAAAGAGAAAGAGAAAATCTGG









TATTTGCAATGATCTGTGCCTTCTTTTTA









CCACCCTCTTGATTGGAGCTTTTGTGATG









CAGCTACCATGATTCAAAAAAATTAAAA









ATTAAAAAAAAAAAATCTGCCACTTATC









CAAGTCCACTAGAGGCCACTGTCTTCAA









AGCTTCTCTCACCCTAGCCAAAGGTCCT









AAGAGGAGACAGCTGTGAAGTTGGGCGT









GCTCTGTGGTACCAGCTGTGACTTTTCTA









TTTCTCCTAGTTTTAGGTTGTTCATGAAA









CTAGAAATGTCATCCTGCTTGATTTTTCA









TCAGCCAAGTTAAACCCCTGCTTTCTGTC









CTTTGCACCTTTTGCGTGAACAGAATATG





 390
4001936
9
SH3KBP1
AGGTGTTCTCAACGGGAAGACTGGAATG
2.85E−05
0.018253605
1.50E−05






TTTCCTTCCAACTTCATCAAGGAGCTGTC









AGGGGAGTCGGATG





1800
4004831
9
DYNLT3
ATGGCTCGGAGTCTCGGGGTCCTGGTGG
3.14E−05
0.007135752
4.30E−06






CACTGCCATTCCCGCTCCCG





 263
4005034
5
RP5-
TGTGGGAACCCCAAGTACACCAGAGGCA
6.09E−05
0.014111468
1.22E−05





972B16.2;
CTTCTCCACAAAGAAGCTTCTATCAATG








TSPAN7
GGAAGCCTAGTGTGTCACGGACCA





1402
4005967
4
CASK
CGAGACTCCCCTCGACTGTTGTTGGGAT
0.001561876
0.007092994
4.08E−06






GGTGGTTAGCGTGGTAGAGCCGTCTGCT









TTGAGTCACCGGGCTGGTCTAGAATATA









GAACTGACAGTCCAAATGCTCATCCTTT









C





1761
4007481
5
EBP
AGGCCAGTATGGGTGCAAGGGGCCCGCG
0.000111942
0.009912108
5.20E−06






TTGGTAGTCATGTCTTTGTGGGCTGATGG









CTGCGTGTGTATAGGCAGGAAGTTA





 837
4007956
9
CACNA1F
CTCCAGCGCCATCTCGGTGGTGAAGATT
0.030881616
0.008004059
3.19E−06






CTGCGAGTACTCCGAGTACTGCGG





1736
4009008
6

GGGATGACCTCCTATTGTGCCACGGGAG
6.02E−05
0.008854541
6.11E−06






ACACAGGGCTTGAGCCCACAGCTGGAGG









GAAGGTGCCATCCACACTGAAAGTCAGC









CAGCCAGCCAGTAGAAATTATTTATGAT









AATACAGGAACCATGGCCAGCATGACAT









TTCTACTTCCAGTGGGAAGGCAGGACTT









TAGGAATGAGAAAGGAACTGGGATGGA









AGAGAGAGGCAGAAGGGGAAGGTGGGG









GACAGTGAGGAAAAACACACTGATTGA









GAAGGGACCCTGGGGACTTCTGGGATGG









TGATCGACCTTG





 212
4011774
2
SNX12
TCCCTAAGCCCTTGCTACTTTATGGGTTA
3.98E−05
0.017028115
1.23E−05






GCTTTGCAGGTTTGGTGGCTTGAGGGGT









GGGGGCAACTCACCACTGCCAGGTAACT









CCCTGAAGGGTGGGAGTGGATTATCTTC









TAGGCTCTTACCCGCGGTAGGGAAGGGC









ATCAACACTGTCTTCCTTCCATTCTCCTT









TCCCCCATCCCATTTAGTGCTGCCACAGG





 500
4011923
2
ZMYM3
ACACGAGTGGGAAGCTAAGAGAGACAC
0.004052566
0.008667107
6.03E−06






GGGGAGGGGGAGGGGACCGGGAACCAT









TTGAATGAGAGGAGGGGATCACGGGTA









GAGTGGGCTCCAGGAGGTAGGGCGAGC









AGGGTGTGACGGGGGCCAGACTCTTGAG









CCA





1399
4015424
1

ATGCTGCGTAAGGCCTCAATCCCACTGA
6.21E−05
0.007349564
1.18E−06






AAGCTGGAAGCAGTGGGACAGAAGGGT









TCCAGAGAGAGGTTAAAGAAGAAAGTG









AAGGGGGAGAATATGGAAATCATAGGG









AGATCA





1103
4019335
9
RP13-
CTCTGCCTAAACCTAGGAGTAAGGTTCC
0.000982084
0.007331499
2.59E−06





347D8.6;
TGGAGTTGTGTCTGGAGCCATGTCAGGA








RP13-
GCTGTGCTTCAAAATGTGCCTACAAGTG








347D8.5
CAGTCTGGGTT





1002
4021793
9
IGSF1
AGCCACTTCAATGCAGCTCTGGGGATCC
0.010262873
0.007382385
5.45E−06






ACCAGTAATGACGGGGCATTCCCCATCA









CCAATATATCTGGTACTAGCATGGGGCG









TTACAGCTGCTGCTACCACCCTGACTGG









ACCAGTT





1698
4023960
4
FGF13
CCATTATGAGAGAACGTTTGAACTGAAA
0.000102061
0.006988413
4.80E−06






AAGTCCTCTGAACTTTGTTCACTAATCTT









ATCAAAGAAAATAGAAGCAGAGGATGT









AGACAGAAACCTGCA





1625
4024213
4
ATP11C
TGGTCAGTCGCTTCCACCAACCGTTTCCT
0.000292246
0.00706917
3.99E−06






TTTGCAGATACTGCCTGGGTCTGAACCT









GATTAAAGTTCTACATTATAGGCTTCCTA









CTCCAAATCCTAATGTTTATTCTAACTAG









TATCAGTCTGTTTCAGTCAAAATACAAA









CTATAACAATGAACACGCTATTTTAGAA









ATGTAGCCAAAATCCTTACTTATGATCTA









TGATTATGTTTCTTTTAAATTTTAAATGT









ATTCCTAGGAGTGAACGAAAGCGTTTCT









TCATAGTGTTTTATGGTCACCATTAGAGC









CCAAATCCTGCTTTCCCTATAGCAACTGG









GTG





  86
4025394
6

AGATGTTTGTTAATTGCTCTTGGCCTCTC
3.32E−07
0.027696162
2.93E−05






ATTAATCCCCTGTGGGTCATCCAGGAAA









TATACTCACCACTGTCTGTTCTCTGAGTT









TTCATTTCCAGGCATCCGCCCTGCCTGGA









TCTCCTCACCTGCCAGGAACTTCCTCTCC









ACAAGCCGGCCATCCCAGCAAAAGTT





 765
4025854
6

CTCCTTCAGCTTTGCCGCCTTAGTGATGT
0.001587412
0.013914483
1.16E−05






AAGGCTGCTTTTCACTGTCATTTAAATTA









TTCCACATCTCACCCAGCTTTTTTG





 288
4027060
9
MECP2
TACACGGAGCGGATTGCAAAGCAAACCA
2.41E−05
0.01789865
1.05E−05






ACAAGAATAAAGGCAGCTGTTGTCTCTT









CTCCTTATGGGTAGGGCTCTGACAAAGC









TTCCCGATTAACTGAAATA





1667
4030249
1

GGCCAAAAGTGTACGTTGTCACTAGTGC
0.002577437
0.007582739
2.71E−06






CTTGCCCTCTTACATAGCCAGTAGACCA









CATCTTCTCCAAGAACTTCCTCAAAGAG









GGGAATGCAAGCTACCTCAACCC





1675
4030633
1

TGGATGCGGTTAGAGTCACAGCCTCCCT
0.000126422
0.008284604
3.42E−06






TGAAGCCTGGTTTCTTCCTCCTAATTGGA









CTCGGCTA





 352
4033522
6

AGAGGATCCCACTCGTGAGCCCATGCCA
0.000972729
0.011250995
1.11E−05






CCAGGGCTTGGCTCCCAACCATAGAGGT









GTGCAAATTCTCAACAGCCACTTGTTCTA









GAATCTGCCTAAGCCTGCCAAGTTCCAG









GGGAAGGGGCGGCCATCACCACTGCTGC









AGCTGCCTGCTTTCTAAGCCAGCTGAGC









TCTTTGGGGGAAGGGTGGCAGCAACACT









TCCACTGCAGGGACTCCCTGCAAGAACT









CCAACAGCTCCAGCTAGGGGCTCAGGAA









CAAAACTCTGATCTCCCTGGGACTGAGC









CCCTAAGGGGATGGTTGGTCTTAGTCTC









CACAGACCAGGAGACTTAGTCTTTCCTC









CTACTAGCTCTGAGGAATCTGGGAAGCC









CTGATGAGTGAGTTTCCCTCCA





 294
4037889
1

GAGGGCGCTGCAGAACAACCTTGGAGCT
0.004841315
0.00915344
6.80E−06






AT





1056
4040209
6

ATTTGCAGCGGGATCGTTCTGTGACGGG
0.00587839
0.008940693
5.30E−06






CGGTGGGCAGCCCAGGCAGGGCTGCCGT









TTCGTGTATCAGCCCAGAGGTCTGAGAA









GGGTGTGGCTCCTTCCCTGGGAAACAAC









ATGGGACTAGTTCCAGAGCCA





 156
4041204
6

TGGACTGCAGTCCTTCTCATCCACGTCTC
0.008812862
0.014698895
1.37E−05






CTTGTCTATGAC





1765
4044236
6

ACCACCCTTCCCAACAATCCACTAGCAA
0.005170366
0.007435892
4.42E−06






TCCAGAGGCCACCACCCCTTCCCAACAA









TCTGGCAACGACCCAGAGGCCA





 621
4046788
1

ACACGTGTGTCCCACCCATGGATGATGG
0.000460621
0.011139661
8.65E−06






CACCAGCTGGGGGGTGCACACGTGTGTC









ACACCCGTGGACGATGGCATCAGCCAGG









GGGTGCACACGTGTGCCACCTTCTTCCC









GGCCCTGAATTGTGTGTGA





 285
4053554
9
AGRN
TGGCGGTACTTGAAGGGCAAAGACCTGG
0.005853836
0.006573388
4.59E−06






TGGCCCGGGAGAGCCTGCTGGACGGCGG









CAACAAGGTGGTGATCAGCGGCTTTGGA









GACCCCCTCATCTGTGACAACCAGGTGT









CCACTGGGGACACCAGGATCTTCTTTGT









GAACCCTGCACCCCCATACCTGTGGCCA









GCCCACAAGAACGAGCTGATGCTCAACT









CCAGCCTCATGCGGATCACCCTGCGGA





1487
4053582
9
AGRN
CCGAGTGCGGTTCCGGAGGCTCTGGCTC
0.000183201
0.00684421
3.08E−06






TGGGGAGGACGGTGACTGTGAGCAGGA









GCTGTGCCGGCAGCGCGGTGGCATCTGG









GACGAGGACTCGGAGGACGGGCCGTGT









GTCTGTGAC





 508
4053813
4
RILPL1
CTACCGAATTGGATACGTTGAGCTCAAC
0.03724011
0.010183757
7.18E−06






GGTGCTCTCAGAAGCGCGGTGGCTCATG









CCTGTCATCCCAGCACTTTGGGAGGCTG









AGGCGGGTGGATCACTTGGGGCCAGGAG









TTTGAGACCAGCCTGGGCAACATGGCAA









AGCCCCATCTCTACAAAAAATACAATAA









GTAGCCAGGTGTGGTGGCGTGCACCTGT









AATCCCAGCTACTCGGGAGGCTGAGGCA









CAAGAATTGCTTGAGCCCGGAAAGCGGA









GGTAGCAGTGAGCCGAGATTGCCACCGC









TGCGCTCCAGCCTGGGCAACACAGCGAG









ACTCGCAAAAAAAAAAAAAAAAAACAA









TAACAACAAAATTGCTGTGCCCTCTCTCT









GGGCCTTTCTCCGTATGTTTGC








Claims
  • 1. A method comprising: (a) obtaining or having obtained an expression level of a plurality of targets in a sample obtained from a subject with prostate cancer, wherein the plurality of targets comprises ten or more target nucleic acid sequences selected from NFIB, NUSAP1, ZWILCH, ANO7, PCAT-32, UBE2C, CAMK2N1, MYBPC1, PBX1, THBS2, EPPK1, IQGAP3, LASP1, PCDH7, RABGAP1, GLYATL1P4, S1PR4, TNFRSF19 and TSBP, and wherein the plurality of targets comprises at least one target nucleic acid sequence selected from NFIB, ZWILCH, PCAT-32, EPPK1, IQGAP3, LASP1, PCDH7, RABGAP1, GLYATL1P4, S1PR4, TNFRSF19 and TSBP;(b) prognosing the subject as later developing metastatic cancer based on at least the expression level of each of the plurality of targets in the sample obtained in step (a), and(c) administering a cancer treatment to the subject prognosed as later developing metastatic cancer in step (b), wherein the cancer treatment is a chemotherapeutic agent or radiation treatment.
  • 2. The method of claim 1, wherein the plurality of targets comprises a coding target.
  • 3. The method of claim 2, wherein the coding target is an exonic sequence.
  • 4. The method of claim 1, wherein the plurality of targets comprises a non-coding target.
  • 5. The method of claim 4, wherein the non-coding target comprises an intronic sequence or partially overlaps an intronic sequence.
  • 6. The method of claim 4, wherein the non-coding target comprises a sequence within the UTR or partially overlaps with a UTR sequence.
  • 7. The method of claim 1, wherein the nucleic acid sequence is a DNA sequence.
  • 8. The method of claim 1, wherein the nucleic acid sequence is an RNA sequence.
  • 9. The method of claim 1, wherein the plurality of targets comprises NFIB, NUSAP1, ZWILCH, ANO7, PCAT-32, UBE2C, CAMK2N1, MYBPC1, PBX1, THBS2, EPPK1, IQGAP3, LASP1, PCDH7, RABGAP1, GLYATL1P4, S1PR4, TNFRSF19 and TSBP.
  • 10. The method of claim 1, wherein the plurality of targets comprises SEQ ID NOs: 1-22.
  • 11. The method of claim 1, wherein the plurality of targets comprises SEQ ID NOs: 1-43.
  • 12. The method of claim 1, further comprising sequencing the plurality of targets.
  • 13. The method of claim 1, further comprising hybridizing the plurality of targets to a solid support.
  • 14. The method of claim 13, wherein the solid support is a bead or array.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of priority under § 119(e) of U.S. Ser. No. 61/684,066 filed Aug. 16, 2012, U.S. Ser. No. 61/764,365 filed Feb. 13, 2013 and U.S. Ser. No. 61/783,124, filed Mar. 14, 2013, the entire contents of each are herein incorporated by reference.

US Referenced Citations (312)
Number Name Date Kind
3645691 Guenter et al. Feb 1972 A
3687808 Thomas, Jr. et al. Aug 1972 A
4323546 Crockfor et al. Apr 1982 A
4683195 Mullis et al. Jul 1987 A
4683202 Mullis et al. Jul 1987 A
4800159 Mullis et al. Jan 1989 A
4965188 Mullis et al. Oct 1990 A
5130238 Malek et al. Jul 1992 A
5143854 Pinung et al. Sep 1992 A
5225326 Bresser et al. Jul 1993 A
5270184 Walker et al. Dec 1993 A
5283174 Arnold et al. Feb 1994 A
5288514 Ellman Feb 1994 A
5384261 Winkle et al. Jan 1995 A
5399491 Kacian et al. Mar 1995 A
5455166 Walker Oct 1995 A
5480784 Kacian et al. Jan 1996 A
5494810 Barany et al. Feb 1996 A
5538848 Livak et al. Jul 1996 A
5545524 Trent et al. Aug 1996 A
5677195 Winkler et al. Oct 1997 A
5705365 Ryder et al. Jan 1998 A
5710029 Ryder et al. Jan 1998 A
5711029 Ryder et al. Jan 1998 A
5744305 Fodor et al. Apr 1998 A
5814447 Ishiguro et al. Sep 1998 A
5824518 Kacian et al. Oct 1998 A
5830711 Barany et al. Nov 1998 A
5846717 Brow et al. Dec 1998 A
5854033 Lizardi Dec 1998 A
5854206 Twardzik et al. Dec 1998 A
5888779 Kacian et al. Mar 1999 A
5925517 Tyagi et al. Jul 1999 A
5928862 Morrison Jul 1999 A
5965360 Zain et al. Oct 1999 A
5985557 Prudent et al. Nov 1999 A
5989815 Skolnick et al. Nov 1999 A
5994069 Hall et al. Nov 1999 A
6001567 Brow et al. Dec 1999 A
6022692 Coulie et al. Feb 2000 A
6027887 Zavada et al. Feb 2000 A
6034218 Reed et al. Mar 2000 A
6090543 Prudent et al. Jul 2000 A
6121489 Dorner et al. Sep 2000 A
6136182 Dolan et al. Oct 2000 A
6150097 Tyagi et al. Nov 2000 A
6198107 Seville Mar 2001 B1
6218523 French Apr 2001 B1
6225051 Sugiyama et al. May 2001 B1
6251639 Kurn Jun 2001 B1
6262245 Xu et al. Jul 2001 B1
6268142 Duff et al. Jul 2001 B1
6303305 Wittwer et al. Oct 2001 B1
6410278 Notomi et al. Jun 2002 B1
6436642 Gould-Rothberg et al. Aug 2002 B1
6541205 Yokoyama et al. Apr 2003 B1
6573043 Cohen et al. Jun 2003 B1
6630358 Wagner et al. Oct 2003 B1
6723506 Fletcher et al. Apr 2004 B2
6828429 Srivastava et al. Dec 2004 B1
7008765 Bussemakers et al. Mar 2006 B1
7186514 Zavada et al. Mar 2007 B2
7211390 Rothberg et al. May 2007 B2
7244559 Rothberg et al. Jul 2007 B2
7264929 Rothberg et al. Sep 2007 B2
7280922 Mei et al. Oct 2007 B2
7300788 Matsuzaki et al. Nov 2007 B2
7319011 Riggins et al. Jan 2008 B2
7323305 Leamon et al. Jan 2008 B2
7335762 Rothberg et al. Feb 2008 B2
7358061 Yamamoto et al. Apr 2008 B2
7361488 Fan et al. Apr 2008 B2
7378233 Sidransky et al. May 2008 B2
7407755 Lubinski et al. Aug 2008 B2
7541169 Freimuth et al. Jun 2009 B2
7598052 Giordanos et al. Oct 2009 B2
7662553 Lenz et al. Feb 2010 B2
7767391 Scott et al. Aug 2010 B2
7901881 Libutti et al. Mar 2011 B2
7901888 Kebebew Mar 2011 B2
7914988 Chudin et al. Mar 2011 B1
7927826 Riggins et al. Apr 2011 B2
8008009 Choquet-Kastylevsky et al. Aug 2011 B2
8202692 Giordano et al. Jun 2012 B2
8273539 Klee et al. Sep 2012 B2
8293880 Cote et al. Oct 2012 B2
8299233 Andre et al. Oct 2012 B2
8338109 Vasmatzis et al. Dec 2012 B2
8354228 Ron Jan 2013 B2
8465914 Brown et al. Jun 2013 B2
8541170 Kennedy et al. Sep 2013 B2
8568971 Brown et al. Oct 2013 B2
8669057 Kennedy et al. Mar 2014 B2
8802599 Aharonov et al. Aug 2014 B2
8828656 Bullerdiek et al. Sep 2014 B2
8877445 Shackney Nov 2014 B2
8945829 Keutgen et al. Feb 2015 B2
9040286 Zon et al. May 2015 B2
9074258 Davicion et al. Jul 2015 B2
9096906 Aharonov et al. Aug 2015 B2
9157123 Xing Oct 2015 B2
9175352 Keutgen et al. Nov 2015 B2
9206481 Srivastava et al. Dec 2015 B2
9206482 Davicloni et al. Dec 2015 B2
9234244 Zeiger et al. Jan 2016 B2
9435812 Pestano et al. Sep 2016 B2
9495515 Giulia et al. Nov 2016 B1
9534249 Vasmatzis et al. Jan 2017 B2
9587279 Fahey, III et al. Mar 2017 B2
9617604 Davicion et al. Apr 2017 B2
9708667 Yanai et al. Jul 2017 B2
9714452 Davicioni et al. Jul 2017 B2
9856537 Kennedy et al. Jan 2018 B2
9994907 Davicioni et al. Jun 2018 B2
10114924 Kennedy et al. Oct 2018 B2
10407731 Klee et al. Sep 2019 B2
10422009 Davicioni et al. Sep 2019 B2
10494677 Vasmatzis et al. Dec 2019 B2
20010051344 Shalon et al. Dec 2001 A1
20020076735 Williams et al. Jun 2002 A1
20020090633 Becker et al. Jul 2002 A1
20020119463 Fads Aug 2002 A1
20020168638 Schlegel et al. Nov 2002 A1
20020169137 Reiner et al. Nov 2002 A1
20020182586 Morris et al. Dec 2002 A1
20030119168 Madison et al. Jun 2003 A1
20030152980 Golub et al. Aug 2003 A1
20030175736 Chinnaiyan et al. Sep 2003 A1
20030185830 Xu et al. Oct 2003 A1
20030186248 Erlander et al. Oct 2003 A1
20030190602 Pressman et al. Oct 2003 A1
20030194734 Jatkoe Oct 2003 A1
20030224399 Reed et al. Dec 2003 A1
20030235820 Mack et al. Dec 2003 A1
20040009481 Schlegel et al. Jan 2004 A1
20040019466 Minor et al. Jan 2004 A1
20040029114 Mack et al. Feb 2004 A1
20040058378 Kong et al. Mar 2004 A1
20040259086 Schlegel et al. Dec 2004 A1
20050042222 Yamamoto et al. Feb 2005 A1
20050042638 Arnold et al. Feb 2005 A1
20050048533 Sidransky et al. Mar 2005 A1
20050064455 Baker et al. Mar 2005 A1
20050118625 Mounts Jun 2005 A1
20050137805 Lewin et al. Jun 2005 A1
20050202442 Morris et al. Sep 2005 A1
20050227917 Williams et al. Oct 2005 A1
20050240357 Minor Oct 2005 A1
20050250125 Novakoff Nov 2005 A1
20050260646 Baker et al. Nov 2005 A1
20050266443 Croce et al. Dec 2005 A1
20050266459 Poulsen Dec 2005 A1
20060019256 Clarke et al. Jan 2006 A1
20060019615 Ditmer Jan 2006 A1
20060035244 Riggins et al. Feb 2006 A1
20060046253 Nakao Mar 2006 A1
20060046265 Becker et al. Mar 2006 A1
20060083744 Chen et al. Apr 2006 A1
20060088851 Erlander et al. Apr 2006 A1
20060094061 Brys et al. May 2006 A1
20060105360 Croce et al. May 2006 A1
20060127907 Matsubara et al. Jun 2006 A1
20060134663 Harkin et al. Jun 2006 A1
20060204989 Kopreski Sep 2006 A1
20060211017 Chinnaiyan et al. Sep 2006 A1
20070010469 Chan Jan 2007 A1
20070020657 Grebe et al. Jan 2007 A1
20070031873 Wang et al. Feb 2007 A1
20070037165 Venter et al. Feb 2007 A1
20070048738 Donkena et al. Mar 2007 A1
20070065827 Pauloski et al. Mar 2007 A1
20070065833 Gupta Mar 2007 A1
20070083334 Mintz et al. Apr 2007 A1
20070099197 Afar et al. May 2007 A1
20070099209 Clarke et al. May 2007 A1
20070105133 Clarke et al. May 2007 A1
20070148667 Williams et al. Jun 2007 A1
20070148687 Bedingham et al. Jun 2007 A1
20070161004 Brown et al. Jul 2007 A1
20070172841 Wang Jul 2007 A1
20070172844 Lancaster et al. Jul 2007 A1
20070212702 Tomlins et al. Sep 2007 A1
20070220621 Clarke et al. Sep 2007 A1
20070238119 Yu et al. Oct 2007 A1
20070259352 Bentwich et al. Nov 2007 A1
20070275915 Hallenbeck et al. Nov 2007 A1
20080009001 Bettuzzi et al. Jan 2008 A1
20080028302 Meschkat Jan 2008 A1
20080044824 Giordano et al. Feb 2008 A1
20080076674 Litman et al. Mar 2008 A1
20080124344 Combs et al. May 2008 A1
20080131892 Becker et al. Jun 2008 A1
20080145841 Libutti et al. Jun 2008 A1
20080254470 Berlkin Oct 2008 A1
20080269157 Srivastava et al. Oct 2008 A1
20080274457 Eng et al. Nov 2008 A1
20080281568 Kao et al. Nov 2008 A1
20090020433 Cohen et al. Jan 2009 A1
20090036415 Rubin et al. Feb 2009 A1
20090062144 Guo Mar 2009 A1
20090075921 Ikegawa Mar 2009 A1
20090149333 Knudsen et al. Jun 2009 A1
20090191535 Connelly et al. Jul 2009 A1
20090204333 Friend et al. Aug 2009 A1
20090239221 Chinnaiyan et al. Sep 2009 A1
20090280490 Baker et al. Nov 2009 A1
20090298082 Klee Dec 2009 A1
20100055704 Giordano et al. Mar 2010 A1
20100075384 Kong et al. Mar 2010 A1
20100099093 Weaver et al. Apr 2010 A1
20100130377 Vasmatzis et al. May 2010 A1
20100131286 Houlgatte et al. May 2010 A1
20100131432 Kennedy et al. May 2010 A1
20100178653 Aharonov et al. Jul 2010 A1
20100021538 Iljin et al. Aug 2010 A1
20100215638 Ijin et al. Aug 2010 A1
20100257617 Ami et al. Oct 2010 A1
20100279327 Ossovskaya Nov 2010 A1
20100285979 Zeiger et al. Nov 2010 A1
20110009286 Andre et al. Jan 2011 A1
20110045462 Fu et al. Feb 2011 A1
20110092375 Zamore et al. Apr 2011 A1
20110136683 Davicioni Jun 2011 A1
20110152110 Vierlinger et al. Jun 2011 A1
20110178163 Chowdhury Jul 2011 A1
20110212855 Rafnar et al. Sep 2011 A1
20110229894 Levy et al. Sep 2011 A1
20110230372 Willman et al. Sep 2011 A1
20110236903 McClelland Sep 2011 A1
20110287946 Gudmundsson et al. Nov 2011 A1
20110294123 Nakamura et al. Dec 2011 A1
20110312520 Kennedy et al. Dec 2011 A1
20120015839 Chinnaiyan Jan 2012 A1
20120015843 Von et al. Jan 2012 A1
20120041274 Stone et al. Feb 2012 A1
20120108453 Smit et al. May 2012 A1
20120115743 Davicioni et al. May 2012 A1
20120122698 Stacey et al. May 2012 A1
20120122718 Reisman May 2012 A1
20120157334 Beaudenon-Huibregtse et al. Jun 2012 A1
20120172243 Davicioni et al. Jul 2012 A1
20120214165 Walfish et al. Aug 2012 A1
20120220474 Kennedy et al. Aug 2012 A1
20120304318 Ohnuma et al. Nov 2012 A1
20130004974 Klee et al. Jan 2013 A1
20130023434 Van Laar Jan 2013 A1
20130142728 Beaudenon-Huibregtse et al. Jun 2013 A1
20130150257 Abdueva et al. Jun 2013 A1
20130172203 Yeatman et al. Jul 2013 A1
20130184999 Ding Jul 2013 A1
20130196866 Pestano et al. Aug 2013 A1
20130225662 Kennedy et al. Aug 2013 A1
20130231258 Wilde et al. Sep 2013 A1
20130273543 Gudmundsson et al. Oct 2013 A1
20130302808 Vasmatzis Nov 2013 A1
20130302810 Latham et al. Nov 2013 A1
20130303826 Jurisica et al. Nov 2013 A1
20140030714 Paschke et al. Jan 2014 A1
20140080731 Davicioni et al. Mar 2014 A1
20140087961 Sulem et al. Mar 2014 A1
20140099261 Keutgen et al. Apr 2014 A1
20140121126 Bivona et al. May 2014 A1
20140143188 Mackey et al. May 2014 A1
20140228237 Kennedy et al. Aug 2014 A1
20140243240 Soldin et al. Aug 2014 A1
20140302042 Chin et al. Oct 2014 A1
20140315199 Rhodes et al. Oct 2014 A1
20140315739 Aharonov et al. Oct 2014 A1
20140349856 Schnabel et al. Nov 2014 A1
20140349864 Kennedy et al. Nov 2014 A1
20140371096 Umbright et al. Dec 2014 A1
20150011401 Davicioni et al. Jan 2015 A1
20150038376 Tian et al. Feb 2015 A1
20150099665 Rosenfeld et al. Apr 2015 A1
20150141470 Garraway et al. May 2015 A1
20150275306 Bernards et al. Oct 2015 A1
20150292030 McConkey Oct 2015 A1
20150299808 Gonzalez et al. Oct 2015 A1
20150307947 Basu et al. Oct 2015 A1
20150329915 Davicioni et al. Nov 2015 A1
20150368724 Aharonov et al. Dec 2015 A1
20160024586 Delfour et al. Jan 2016 A1
20160032395 Davicioni et al. Feb 2016 A1
20160032400 Gomis et al. Feb 2016 A1
20160068915 Kennedy et al. Mar 2016 A1
20160076108 Davicioni et al. Mar 2016 A1
20160115546 Rosenfeld et al. Apr 2016 A1
20160120832 Rabinowitz et al. May 2016 A1
20160251729 Chinnaiyan et al. Sep 2016 A1
20160312305 Kennedy et al. Oct 2016 A1
20160312306 Kennedy et al. Oct 2016 A1
20160312307 Kennedy et al. Oct 2016 A1
20160312308 Kennedy et al. Oct 2016 A1
20160348184 Chinnaiyan Dec 2016 A1
20170016076 Barnett-Itzhaki et al. Jan 2017 A1
20170145513 Kennedy et al. May 2017 A1
20170166980 Fahey, III et al. Jun 2017 A1
20170329894 Kennedy et al. Nov 2017 A1
20180016642 Kennedy et al. Jan 2018 A1
20180216197 Davicioni et al. Jan 2018 A1
20180030540 Davicioni et al. Feb 2018 A1
20180068058 Abdueva et al. Mar 2018 A1
20180112275 Davicioni et al. Apr 2018 A1
20180122508 Wilde et al. May 2018 A1
20180127832 Kennedy et al. May 2018 A1
20180291459 Al-Deen Ashab et al. Oct 2018 A1
20190017123 Davicioni et al. Jan 2019 A1
20190191133 Ostrow Jun 2019 A1
20190204322 Alshalalfa et al. Jul 2019 A1
20190218621 Davicioni Jul 2019 A1
20200165682 Chinnaiyan et al. May 2020 A1
20200224276 Chinnaiyan et al. Jul 2020 A1
Foreign Referenced Citations (64)
Number Date Country
0 684 315 Nov 1995 EP
1 409 727 Nov 2005 EP
2 366 800 Sep 2011 EP
WO 1990015070 Dec 1990 WO
WO 1992010092 Jun 1992 WO
WO 1993009668 May 1993 WO
WO 1993022684 Nov 1993 WO
WO 1998045420 Oct 1998 WO
WO 2001060860 Aug 2001 WO
WO 2001066753 Sep 2001 WO
WO 2002000929 Jan 2002 WO
WO 2003012067 Feb 2003 WO
WO 2004037972 May 2004 WO
WO 2005040396 May 2005 WO
WO 2005085471 Sep 2005 WO
WO 2005100608 Oct 2005 WO
WO 2006047484 May 2006 WO
WO 2006091776 Aug 2006 WO
WO 2006110264 Oct 2006 WO
WO 2006127537 Nov 2006 WO
WO 2006135596 Dec 2006 WO
WO 2007056049 May 2007 WO
WO 2007070621 Jun 2007 WO
WO 07081740 Jul 2007 WO
WO 2007081720 Jul 2007 WO
WO 2008023087 Feb 2008 WO
WO 2008046911 Apr 2008 WO
WO 2008086478 Jul 2008 WO
WO 2008112283 Sep 2008 WO
WO 2009009432 Jan 2009 WO
WO 2009020521 Feb 2009 WO
WO 2009020905 Feb 2009 WO
WO 09029266 Mar 2009 WO
WO 2009045115 Apr 2009 WO
WO 09074968 Jun 2009 WO
WO 2009074968 Jun 2009 WO
WO 2009143603 Dec 2009 WO
WO 10018601 Feb 2010 WO
WO 2010056374 May 2010 WO
WO 10073248 Jul 2010 WO
WO 2010056374 Sep 2010 WO
WO 2010099598 Sep 2010 WO
WO 10123626 Oct 2010 WO
WO 2010124372 Nov 2010 WO
WO 2011150453 Dec 2011 WO
WO 2012031008 Mar 2012 WO
WO 2012068383 May 2012 WO
WO 2012135008 Oct 2012 WO
WO 13006495 Jan 2013 WO
WO 2013088457 Jun 2013 WO
WO 2013090620 Jun 2013 WO
WO 2013116742 Aug 2013 WO
WO 2014028884 Feb 2014 WO
WO 2014043803 Mar 2014 WO
WO 14085666 May 2014 WO
WO 14151764 Sep 2014 WO
WO 15073949 May 2015 WO
WO 2015071876 May 2015 WO
WO 16141127 Sep 2016 WO
WO 17062505 Apr 2017 WO
WO 20170059549 Apr 2017 WO
WO 2017062505 Apr 2017 WO
WO 2018165600 Sep 2018 WO
WO 19023517 Jan 2019 WO
Non-Patent Literature Citations (417)
Entry
US 5,962,233 A, 10/1999, Livak et al. (withdrawn)
Cuzick, J. et al. Lancet Oncology 12:245 (Feb. 2011).
Bibikova, M. et al. Genomics 89:666 (2007).
Penney, K.L. et al. Journal of Clinical Oncology 29:2391 (Jun. 2011).
Penney, K.L. et al. Appendix (9 pages) of Journal of Clinical Oncology 29:2391 (Jun. 2011).
Wang, Z. et al. Nature Reviews 10:57 (Jan. 2009).
Chen, J.L. et al. Clinical Cancer Research 18(16):4291 (Jun. 2012).
Kiessling, A. et al. The Prostate 64:387 (2005).
Zelefsky, M.J. et al. The Journal of Urology 166:876 (Sep. 2001).
Romanuik, T.L. et al. BMC Medical Genomics 3:43 (2010).
International Search Report regarding PCT/US2013055429, (dated Mar. 3, 2014).
Extended European Search Report dated Apr. 4, 2016, regarding EP 13 82 9137.
Abdueva et al., “Quantitative Expression Profiting in Formalin-Fixed ParaffinEmbedded Samples by Affymetrix Microarrays,” Journal of Molecular Diagnostics, vol. 12, No. 4, Jul. 2010, pp. 409-417.
Agell et al., “A 12-Gene Expression Signature Is Associated with Aggressive Histological in Prostate Cancer: SEC14L1 and TCEB1 Genes Are Potential Markers of Progression,” Am J Pathol, 2012, vol. 181 (5), pp. 1585-1594.
Aldred et al,, “Papillary and follicular thyroid carcinomas show distinctly different microarray expression profiles and can be distinguished by a minimum of five genes,” J Clin Oncol. 2004;22(17):3531-9.
Amundson et al., “Integrating global gene expression and radiation survival parameters across the 60 cell lines of the National Cancer Institute Anticancer Drug Screen,” Cancer Research, 2008, 68(2):415-424.
Ausubel, et al. Current Protocols in Molecular Biology. Wiley & Sons, New York, 1995, Table of Contents.
Baetke et al., “Molecular Pathways Involved in Prostate Carcinogenesis: Insights from Public Microarray Datasets,” PLoS ONE (2012), 7(11):e49831, 1-11.
Ballman et al,, “Faster cyclic loess: normalizing RNA arrays via linear models,” Bioinformatics, 2004, 20 :2778-2786.
Bannert et al., “Retroelements and the human genome: new perspectives on an old relation.” Proc Natl Acad Sci U SI\. Oct. 5, 2004; 101 Suppl 2:14572-9.
Barlow et al., “Analysis of Case-Cohort Designs,” J Clin Epidemiol, 1999, vol. 52 (12), 1165-1172.
Bauer et al., “Identification of Markers of Taxane Sensitivity Using Proteomic and Genomic Analyses of Breast Tumor from Patients Receiving Neoadjuvant Paclitaxel and Radiation,” Clin. Cancer Res. (2010), 16(2):681-690, American Association for Cancer Research.
Bergstralh et al., “Software for optimal matching in observation al studies,” Epidemiology, 1996, 7(3):331-332.
Best et al., “Molecular differentiation of high- and moderate-grade human prostate cancer by cDNA microarray analysis”, Diagn Mol Pathol., 2003, 12(2):63-70.
Bibikova et al., “Quantitative gene expression profiling in formalin-fixed, paraffin-embedded tissues using universal bead arrays,” Am J Pathol., 2004, 165:1799-1807.
Bibikova et al., “Gene expression profiles in formalin-fixed, paraffin-embedded tissues obtained with a novel assay for microarray analysis,” Clin Chem., 2004, 50:2384-2386.
Birney et al., “Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.” Nature. Jun. 14, 2007; 447(7146):799-816.
Boorjian et al., “Long-term risk of clinical progression after biochemical recurrence following radical prostatectomy: the mpact of time from surgery to recurrence.” Eur Urol. Jun. 2011; 59(6):893-9.
Boormans et al., “Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer,” Int J Cancer, (2013) vol. 133 (2), pp. 335-345.
Bostwick et al., “Prognostic factors in prostate cancer: College of American Pathologists consensus statement,” Arch Pathol Lab Med, 2000, 124(7):995-1000.
Bott et al., “Prostate cancer management: (2) an update on locally advanced and metastatic disease”, Postgrad Med J, Dec. 3, 2003, 79(937), 643-645.
Breiman, “Random Forests,” Machine Learning, 2001, 45:5-32,.
Brouha et al., “Hot L1s account for the bulk of retrotransposition in the human population.” Proc Natl Acad Sci U S A. Apr. 29, 2003; 100(9):5280-5.
Bull et al., “Identification of potential diagnostic markers of prostate cancer and prostatic intraepithelial neoplasia using cDNA microarrav,” British J Cancer, Jun. 1, 2001, 84(11):1512-1519.
Bussmakers et al., “DD3: a new prostate-specific gene, highly overexpressed in prostate cancer.” Cancer Res. Dec. 1, 1999; 59(23):5975-9.
Cerutti et al. “Diagnosis of suspicious thyroid nodules using four protein blomarkers,” Clin Cancer Res, 2006;12(11 Pt 1):3311-8.
Chalitchagorn et al., “Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis.” Oncogene, Nov. 18, 2004; 23(54):8841-6.
Che et al,: “Prognostic Value of Abnormal p53 Expression in Locally Advanced Prostate Cancer Treated With Androgen Deprivation and Radiotherapy: A Study Based on RTOG 9202”; International Journal of Radiation: Oncology Biology Physics, rvol. 69, No. 4, Nov. 15, 2007, pp. 1117-1123.
Chen et al., “Significance of noninvasive diagnosis of prostate cancer with cytologic examination of prostatic fluid,” J Nippon Med Sch., 73(3):129-135, Jun. 2006.
Chen et al.: “Molecular determinants of resistance to antiandrogen therapy”; Nature Medicine, Nature Publishing Group, New York, NY, vol. 10, No. 1, Jan. 1, 2004, pp. 33-39.
Cheng et al. “Cell Proliferation in Prostate Cancer Patients with Lymph Node Metastasis”, Clin Cancer Res, Oct. 1999, 5(10): 2820-2823.
Cheville et at., “Gene Panel Model Predictive of Outcome in Men at High-Risk of Systemic Progression and Death From Prostate Cancer After Radical Retropubic Prostatectomy,”; Journal of Clinical Oncology vol. 26 , No, 24, Aug. 20, 2008.
Chifman et al., “Conservation of immune gene signatures in solid tumors and prognostic implications,” BMC Cancer (2016) 16:911, pp. 1-17. DOI 10.1186/S12885-016-2948-Z.
Chow et al., “LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation.” Cell. Jun. 11, 2010; 141(6):956-69.
Cibas, et al. “The Bethesda System for Reporting Thyroid Cytopathology,” Am J Clin Pathol. Nov. 2009;132(5):658-65. doi: 10.1309/AJCPPHLWMI3JV4LA.
Clancy et al., “Profiling networks of distinct immune-cells in tumors,” BMC Bioinformatics (2016) 17:263, pp. 1-15. DOI 10.1186/s12859-016-1141-3.
Clark-Langone et al. “Riornarker discovery for colon cancer using a 761 gene RT-PCR assay 2007,” BMC Genomics 8:279 pp. 1-18 2007.
Cooperberg et al., “The CAPRA-S score: A straightforward tool for improved prediction of outcomes after radical prostatectomy,” Cancer (2011) vol. 117 (22), pp. 5039-5046.
Cordaux et al., “The impact of retrotransposons on human genome evolution.” Nat Rev Genet. Oct. 2009; 10 10):691-703.
Dalela et al., “Contemporary Role of the Decipher Test in Prostate Cancer Management: Current Practice and Future Perspectives,” Rev. Urol. (2016), 18(1):1-9, MedReviews®, LLC.
Dalsgaard Sorensen et al.: “Discovery of prostate cancer biomarkers by microarray gene expression profiling”; Expert Review of Molecular Diagnostics, vol. 10, No. 1, Jan. 1, 2010, pp. 49-64.
D'Amico et al., “Cancer-specific mortality after surgery or radiation for patients with clinically localized prostate cancer managed during the prostate-specific antigen era,” J Clin Oncol., 2003, 21:2163-2172.
Dawood, Shaheenah, “Novel Biomarkers of Metastatic Cancer,” Expert Rev. Mo/. Diagn. (2010), 10(5):581-590, Expert Reviews Ltd.
Day et al., “Estimating enrichment of repetitive elements from high-throughput sequence data.” Genome Biol. 2010; 11 6):R69.
Demichelis et al., “TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort,” Oncogene, 2007, 26:4596-4599.
Dhanasekaran et al., “Delineation of prognostic biomarkers in prostate cancer,” Nature, 2001, 412: 822-826.
Dougherty, “The fundamental role of pattern recognition for gene-expression/microarray data in bioinformatics,” Pattern recognition. 2005; 38:2226-2228.
Eder et al., “Genes differentially expressed in prostate cancer,” BJU Int., May 2004, 93(8): 1151-1155.
Edwards et al.: “MicroRNAs and Ultraconserved Genes as Diagnostic Markers and Therapeutic Targets in Cancer and Cardiovascular Diseases”, Journal of Cardiovascular Translational Research, vol. 3, No. 3, May 5, 2010, pp. 271-279.
Englisch, et al., “Chemically Modified Oligonucleotides as Probes and Inhibitors,” Angew. Chem. Int. Ed. Eng. 1991; 30:613-629.
Erho et al., “Discovery and Validation of a Prostate Cancer Genomic Classifier that Predicts Early Metastasis Following Radical Prostatectomy,” PLoS ONE (2013), 8(6):e66855, 1-12.
Ernst et al., “Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: a gene expression analysis on total and microdissected prostate tissue,” Am J Pathol., Jun. 2002, 160(6):2169-2180.
Fan et al., “Concordance among gene-expression-based predictors for breast cancer,” N Engl J Med., 2006, 355;560-569.
Finley et al., “Advancing the molecular diagnosis of thyroid nodules: defining benign lesions by molecular profiling,” Thyroid (2005) 15(6):562-8.
Finley et al., “Discrimination of benign and malignant thyroid nodules by molecular profiling,” Ann Surg. (2004) 240(3):425-36; discussion 436-7.
Fodor et al., “Light-directed, spatially addressable parallel chemical synthesis,” Science, Feb. 15, 1991; 251(4995):767-73.
Foley et al., “Molecular pathology of prostate cancer: the key to identifying new blomarkers of disease,” Endocrine-Related Cancer, 2004, 11:477-488.
Fontaine, et al., “Increasing the number of thyroid lesions classes in microarray analysis improves the relevance of diagnostic markers,” PLoS One. Oct. 29, 2009; 4(10):e7632. doi: 10.1371/journal.pone.0007632.
Fujarewicz et al., “A multi-gene approach to differentiate papillary thyroid carcinoma from benign lesions: gene selection using support vector machines with bootstrapping,” Endocr Relat Cancer (Sep. 2007) 14(3):809-26.
Gait. Chapter 16: Oligoribonucleotides. Antisense Research and Applications, Crookeand Lebleu Eds., CRC Press (pp. 289-302) (1993).
Gao et al., “VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer,” Nat Med. (May 2017) 23(5):551-555.
Gibb et al., “The functional role oflong non-coding RNA in human carcinomas”, Molecular Cancer, Biomed Central, London, GB, vol. 10, No. 1, Apr. 13, 2011, p. 38.
Glinsky et al., “Gene expression profiling predicts clinical outcome of prostate cancer,” J Clin Investigation (2004) 113(6):913-923.
Glinsky et al., “Microarray analysis identifies a death-from-cancer signature predicting therapy i failure in patients with multiple types of cancer,” J Clin Invest. (2005) 115: 1503-1521.
Greenbaum et al.: “Comparing protein abundance and mRNA expression levels on a genomic scale”; Genome Biology, 2003, 4(9):117.1-117.8.
Griffith et al., “Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers,” J Clin Oncol. (2006) 24(31):5043-51.
Griffith, et al. Biomarker panel diagnosis of thyroid cancer: a critical review. Expert Rev Anticancer Ther. Sep. 2008;8(9):1399-413. dol: 10.1586/14737140.8.9.1399.
Gupta et al., “Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis,” Nature (Apr. 15, 2010) 464(7291): 1071-6.
Guttman et al., “Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals”, Nature Mar. 12, 2009; 458(7235):223-7.
Guttman et al., “Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi- xonic structure of lincRNAs,” Nat Biotechnol. May 2010; 28(5):503-10.
Haiman et al.: “Multiple regions within 8q24 independently affect risk for prostate cancer”; Nat Genet., 2007, 39:638-644.
Hamada et al., “Diagnostic usefulness of PCR profiling of the differentially expressed marker genes in thyroid papillary carcinomas,” Cancer Lett. Jun. 28, 2005;224(2):289-301. Epub Nov. 18, 2004.
He et al., “The antisense transcriptomes of human cells”, Science Dec. 19, 2008; 322(5909): 1855-7.
Heemers, H. V. et al.: “Identification of a Clinically Relevant Androgen-Dependent Gene Signature in Prostate Cancer”; Cancer Research, vol. 71, No. 5, 2011, pp. 1978-1988.
Heidenreich et al., “EAU Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Treatment of Clinically Localised Disease,” European Urology, (2011) vol. 59, pp. 61-71.
Henshall et al., “Survival Analysis of Genome-Wide Gene Expression Profiles of Prostate ancers Identifies New Prognostic Targets of Disease Relapse,” Cancer Research 63, 14196-4203, Jul. 15, 2003.
Holzbeierlein et al., “Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance,” Am. J . Pathol., Jan. 2004, 164(1):217-227.
Hornberger et al., “A Multigene Prognostic Assay for Selection of Adjuvant Chemotherapy in Patients with T3, Stage II Colon Cancer: Impact on Quality-Adjusted Life Expectancy and Costs,” Value in Health 15 (2012) pp. 1014-1021.
Huarte et al., “Large non-coding RNAs: missing links in cancer?” Human Molecular Genetics (Oct. 15, 2010) 19(2): R152-R161.
Hughes et al., “Molecular pathology of prostate cancer,” J Clin Pathol., Jul. 2005, 58(7):673-684.
Hughes et al., “Topoisomerase II—a expression increases with increasing Gleason score and with hormone insensitivity in prostate carcinoma,” J Clin Pathol,, 59(7): 721-724, Jul. 2006.
Jhavar et al., “Integration of ERG gene mapping and gene□expression profiling identifies distinct categories of human prostate cancer,” BJUI (2008) vol. 103 (9), pp. 1256-1269.
Kanehisa, “Use of statistical criteria for screening potential homologies in nucleic acid sequences,” Nucleic Acids Res. Jan. 11, 1984;12(1 Pt 1):203-13.
Kasraeian, et al. , “A comparison of fine-needle aspiration, core biopsy, and surgical biopsy in the diagnosis of extremity soft tissue masses,” Clin Orthop Relat Res. (Nov. 2010) 468(11):2992-3002.
Kebebew et al., “Diagnostic and extent of disease multigene assay for malignant thyroid neoplasms,” Cancer (2006) 106(12):2592-7.
Khor et al.: “Bcl-2 and Bax Expression Predict Prostate Cancer Outcome in Men Treated with Androgen Deprivation and Radiotherapy on Radiation Therapy Oncology Group Protocol 92-02”; Clinical Cancer Research, vol. 13, No. 12, Jun. 15, 2007, pp. 3585-3590.
Kikuchi et al., “Expression profiles of non-small cell lung cancers on cDNA microarrays: identification of genes for prediction of lymph-node metastasis and sensitivity to anti-cancer drugs,” Oncogene (2003) 22, pp. 2192-2205.
Kosari et al., “Identification of blomarkers for prostate cancer,” Clin. Cancer Res., 2008, 1734-1743.
Koshkin et al., “LNA (locked nucleic acids): An RNA mimic forming exceedingly stable LNA,” LNA duplexes. J Am Chem Soc 120:13252-13253 (1998).
Koshkin et al., “LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition,” Tetrahedron (1998) 54(14):3607-3630.
Kroschwitz the Concise Encyclopedia of Polymer Science and Engineering. (pp. 858-859) (1990).
Kube et al., “Optimization of laser capture microdissection and RNA amplification for gene expression profiling of prostate cancer”, BMC Mol. Biol., 2007, 8:25.
Kumar, et al., “The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2′-thio-LNA,” Bioorg Med Chem Lett. (Aug. 18, 1998) 8(16):2219-22.
Landers et al,: “Use of multiple biomarkers for a molecular diagnosis of prostate cancer”; Int. J. Cancer, 114, May 10, 2005, pp. 950-956.
Lapointe et al., “Gene expression profiling identifies clinically relevant subtypes of prostate cancer,” Proc Natl Acad Sci USA, 2004, 101:811-816.
Latulippe et al., “Comprehensive Gene Expression Analysis of Prostate Cancer Reveals Distinct Transcriptional Programs Associated with Metastatic Disease,” Cancer Res., 2002, 62:4499-4506.
Lin et al., “Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer”, Cell. Dec. 11, 2009; 139(6):1069-83.
Lockstone, “Exon array data analysis using Affymetrix power tools and R statistical software,” Briefings in bioinformatics (2011) vol. 12 (6), pp. 634-644.
Magee et al., “Expression Profiling Reveals Hepsin Overexpression in Prostate Cancer,” Cancer Res., 2001, 61:5692-5696.
Martens-Uzunova, E. S. et al.: “Diagnostic and prognostic signatures from the small non-codin RNA transcriptome in prostate cancer”, Oncogene, vol. 31, No. 8, Jul. 18, 2011, pp. 978-991.
Martin, “A New Access to 2′-O-Alkylated Ribonucleosides and Properties of 2′-O-Alkylated Oligoribonucleotides,” Helv. Chin Acta. (1995) 78:486-504. (in German with English abstract).
Mazzanti, et al., “Using gene expression profiling to differentiate benign versus malignant thyroid tumors,” Cancer Res, Apr. 15, 2004; 64(8):2898-903.
McCall et al., “Frozen robust multiarray analysis (fRMA)”, Biostatistics, 2010, vol. 11 (2), 242-253.
Mineva et al., “Differential expression of alphaB-crystallin and Hsp27-1 in anaplastic thyroid carcinomas because of tumor-specific alphaB-crystallin gene (CRYAB) silencing,” Cell Stress Chaperones (2005) Autumn;10(3):171-84.
Nakagawa et al., “A Tissue Blomarker Panel Predicting Systemic Progression after PSA Recurrence Post-Definitive Prostate Cancer. Therapy,” PLos ONE, 2008, 3(5):e2318, 14 pages.
Newson, Roger, “Confidence intervals for rank statistics: Somers' D and extensions”, Stata Journal, 6(3):309-334; Sep. 2006.
Nielsen et al., “Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide,” (1991) Science. 254: 1497-1500.
Noordzij et al. “The prognostic value of CD44 isoforms in prostate cancer patients treated by radical prostatectomy”, Clin Cancer Res, May 1997, 3(5): 805-815.
Norman, James, “Thyroid Nodule Ultrasound”, Endocrine website, Updated Oct. 13, 2010, http://www.endocrineweb.com/noduleus.html.
Parker et al., “High expression levels of surviving protein independently predict a poor outcome for patients who undergo surgery for clear cell renal cell carcinoma,” Cancer, 2006, 107:37-45.
Pascal et al., “Correlation of mRNA and protein levels: Cell type-specific gene expression of cluster designation antigens in the prostate,” BMC Genomics, 2008, 9:246 (13 pages).
Patel et al., “Preoperative PSA velocity is an independent prognostic factor for relapse after radical prostatectomy,” J Clin Oncol., 2005, 23:6157-6162.
Pereira et al, “Coagulation factor V and VIIIN ratio as predictors of outcome in paracetamol induced fulminant hepatic failure: relation to other prognostic indicators,” Gut, 1992, 33 :98-102.
Pienta et al. “The current state of preclinical prostate cancer animal models”; Prostate (2008) 69: 629-639.
Pilepich et al., “Phase III radiation therapy oncology group (RTOG) trial 86-10 of androgen deprivation adjuvant to definitive radiotherapy in locally advanced carcinoma of the prostate,” Int. J. Radiation Oncology Biol. Phys. (2001) vol. 50, No. 5, pp. 1243-1252.
Pinover et al., “Validation of a treatment policy for patients with prostate specific antigen failure after three-dimensional conformal prostate radiation therapy,” Cancer (Feb. 15, 2003) vol. 97, No. 4, pp. 1127-1133.
Pittoni et al., “The Dark Side of Mast Cell-Targeted Therapy in Prostate Cancer,” Cancer Res. (2012) 72(4):831-835.
Porkka et al: Molecular mechanisms of prostate cancer; Eur Urol., 2004, 45(6):683-691.
Pound et al., “Natural history of progression after PSA elevation following radical prostatectomy,” JAMA, 1999, 281:1591-1597.
Prasad et al., “Identification of genes differentially expressed in benign versus malignant thyroid tumors,” Clin Cancer Res. (2008) 14(11):3327-37.
Prensner et al., “Transcriptome Sequencing Identifies PCAT-1, a Novel lincRNA Implicated in Prostate Cancer Progression,” (2012) 29 (8): 742-749.
Puskas, et al., “Gene profiling identifies genes specific for well-differentiated epithelial thyroid tumors,” Cell Mol Biol (Noisy-le-grand) (Sep. 5, 2005) 51(2):177-86.
Reis et al., “Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer,” Oncogene (2004) 23(39):6684-6692.
Rhodes et al., “Multiplex biomarker approach for determining risk of prostatespecific antigen-defined recurrence of prostate cancer,” J Nat Cancer Inst. (May 7, 2003) vol. 95, No. 9, pp. 661-668.
Rhodes et al., “Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression,” Proc Nat Acad Sci USA (2004) 101:9309-9314.
Rhodes et al., “ONCOMINE: A Cancer Microarray Database and Integrated Data-Mining Platform,” Neoplasia (2004) 6:1-6.
Rinn et al., “Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs,” Cell (Jun. 29, 2007) 129(7):1311-23.
Robertson et al., “DNA in radical prostatectomy specimens. Prognostic value of tumor ploidy,” Acta Oncologica (1991) 30(2):205-207.
Robinson, et al., “A comparison of Affymetrix gene expression arrays,” BMC Bioinformatios, Nov. 15, 2007;8:449.
Robinson et al., “A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments,” BMC Bioinformatics (2007) 8.1:419.
Rotblat et al., “A Possible Role for Long Non-Coding RNA in Modulating Signaling Pathways,” Med, Hvnotheses (2011), 77:962-965, Elsevier.
Rubin et al., “Molecular genetics of human prostate cancer,” Modern Pathol. (2004) 17(3):380-388.
Sanghvi, “Heterocyclic base modifications in nucleic acids and their applications in antisense oligonucleotides in Antisense Research and Applications,” Crooke, S. T. and Lebleu, B., ed., CRC Press. 1993; Ch 15 274-285.
Saramaki et al., “Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer,” Am J Pathol. (2001) 159:2089-2094.
Sato et al., “Clinical significance of alterations of chromosome 8 in high-grade, advanced, nonmetastatic prostate carcinoma,” J Natl Cancer Inst., 1999, 91:1574-1580.
Savinainen et al., “Expression and copy No. analysis of TRPS 1, EIF3S3 and MYC genes in breast and prostate cancer,” Br J Cancer, 2004, 90: 1041-1046.
Schumacher et al., “A Common 8q24 Variant in Prostate and Breast Cancer from a Large Nested Case-Control Study,” Cancer Res. (2007) 67:2951-2956.
Severi et al., “The Common Variant rs1447295 on Chromosome 8q24 and Prostate Cancer Risk: Results from an Australian Population-based Case-Control Study”, Cancer Epidemiology, Biomarkers & Prevention (2007) 16:610-611.
Shariat et al., “Survivin expression is associated with features of biologically aggressive prostate carcinoma,” Cancer, 2004, 100(4): 751-757.
Shariat et al., “An updated catalog of prostate cancer predictive tools,” Cancer 2008, 113(11):3062-6.
Shen et al., “The SWI/SNF ATPase Brm is a gatekeeper of proliferative control in prostate cancer.” Cancer Res. (Dec. 15, 2008) 68(24):10154-62.
Shibru et al., “Does the 3-gene diagnostic assay accurately distinguish benign from malignant thyroid neoplasms?” Cancer (Sep. 1, 2008) 113(5):930-5. doi: 10.1002/cncr.23703.
Shipley et al., “Radiation therapy for clinically localized prostate cancer: a multi-institutional pooled analysis,” JAMA 1999, 281:1598-1604.
Simmons et al., “Natural history of biochemical recurrence after radical prostatectomy: risk assessment for secondary herapy,” Eur Urol. (May 2007) 51(5):1175-84.
Singh et al., “LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition,” Chem Commun (1998) 4;455-456.
Singh et al., “Synthesis of 2′-amino-LNA: A novel conformationally restricted high-affinity oligonucleotide analogues with a handle,” J Bio Chem (1998) 63:10035-10039.
Singh et al., “Gene expression correlates of clinical prostate cancer behavior,” Cancer Cell (Mar. 2002) vol. 1, pp. 1203-1209.
Srikantan et al., “PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer,” PNAS (Oct. 24, 2000) 97(22): 12216-12221.
Taft et al., “Non-coding RNAs: regulators of disease,” J Pathol, Jan. 2010, 220(2):126-39.
Taylor et al., “Integrative genomic profiling of human prostate cancer”, Cancer Cell, Jul. 13, 2010, vol. 18 (1), pp. 11-22.
Thompson et al., “Adjuvant and Salvage Radiotherapy After Prostatectomy; AUA/ASTRO Guideline,” J Urol., 2013 190(2):441-9.
Thorsen et al., “Alternative Splicing in Colon, Bladder, and Prostate Cancer Identified by Exon Array Analysis,” Molecular & Cellular Proteomics (Mar. 18, 2008) vol. 7, No. 7, pp. 1214-1224.
Tockman et al., “Considerations in bringing a cancer biomarker to clinical application”, Cancer Research, 1992, 52:2711-2718.
Tricoli et al., “Detection of prostate cancer and predicting progression: current and future diagnostic markers,” Clinical Cancer Research (Jun. 15, 2004) 10:3943-3953.
True et al., “A molecular correlate to the Gleason grading system for prostate ladenocarcinoma,” Proc Nati Acad Sci U S A. Jul. 18, 2006;103(29): 10991-6. Epub Jul. 7, 2006 preceding development of malignancy, J Clin Oncol. (Jul. 15, 2004) 22(14):2790-9.
Tsuchiya et al., “Mapping and gene expression profile of the minimally overrepresented 8q24 region in prostate cancer”, Am J Pathol. (May 2002) 160(5):1799-1806.
Varambally et al., “Integrative Genomic and Proteomic Analysis of Prostate Cancer Reveals Signatures of Metastatic Progression,” Cancer Cell (Nov. 2005) 8(5):393-406.
Varela et al., “Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma,” Nature (Jan. 27, 2011) 469(7331):539-42.
Varricchi et al., “Are Mast Cells MASTers in Cancer?” Front Imrnunol. ePub (Apr. 12, 2017) 8:424.
Vickers et al., “Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers,” BMC Medical Informatics and Decision Making, (2008) 8(53)1-17.
Wang et al., “Two common chromosome 8q24 variants are associated with increased risk for prostate cancer,” Cancer Res. (2007) 67:2944-2950.
Watson et al., “Future opportunities for the diagnosis and treatment of prostate cancer,” Prostate Cancer Prostatic Dis. (2004) 7:S8-S13.
Weber et al., “The prognostic value of expression of HIF1 [alpha], EGFR and VEGF-A, in localized prostate cancer for intermediate- and high-risk patients treated with radiation therapy with or without androgen deprivation therapy”; Radiation Oncology (Apr. 30, 2012) vol. 7, No. 66, 8 pages.
Welsh et al., “Analysis of Gene Expression Identifies Candidate Markers and Pharmacological Targets in Prostate Cancer,” Cancer Res. (Aug. 15, 2001) 61:5974-5978.
Wiegand et al., “ARID1A mutations in endometriosis-associated ovarian carcinomas”, N Engl J Med. (Oct. 14, 2010) 363 (16):1532-43.
Yap et al., “Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 n transcriptional silencing of INK4a”, Mol Cell, (Jun. 11, 2010) 38(5):662-74.
Yates et al,, “X:Map: annotation and visualization of genome structure for Affymetrix exon array analysis,” Nucleic Acids Res., (2008) vol. 36:D780-D786.
Yegnasubramanian et al., “DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity”, Cancer Res. Nov. 1, 2008; 68(21): pp. 8954-8967.
Yu et al., “Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy,” J Clin Oncol., (Jul. 15, 2004) 22(14):2790-2799.
Yu et al., “An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression,” Cancer Cell. (May 18, 2010) 17(5):443-54.
Yukinawa et al., “A multi-class predictor based on a probabilistic model: application to gene expression profiling-based diagnosis of thyroid tumors,” BMC Genomics (Jul. 27, 2006) 7:190.
Zhao et al., “Development and validation of a 24-gene predictor of response to postoperative radiotherapy in prostate cancer: a matched, retrospective analysis,” Lancet Oncol (2016) 17, pp. 1612-1620.
GenBank Accession No. AA462934 dated Jun. 10, 1997, 2 pages.
GenBank Accession No. AB028840 dated Jan. 12, 2000, 2 pages.
GenBank Accession No. AB030836 dated Oct. 2, 1999, 2 pages.
GenBank Accession No. AB036741 dated Dec. 22, 2000, 3 pages.
GenBank Accession No. AF077349 dated Dec. 14, 2000, 2 pages.
GenBank Accession No. AF077351 dated Dec. 20, 2000, 3 pages.
GenBank Accession No. AF115517 dated Nov. 23, 2005, 4 pages.
GenBank Accession No. AI413910 dated Feb. 9, 1999, 2 pages.
GenBank Accession No. AI414999 dated Feb. 9, 1999, 2 pages.
GenBank Accession No. A1425960 dated Mar. 9, 1999, 2 pages.
GenBank Accession No. A1851940 dated Jul. 15, 1999, 2 pages.
GenBank Accession No. AK018022 dated Sep. 19, 2008, 4 pages.
GenBank Accession No. AK019341 dated Sep. 19, 2008, 3 pages.
GenBank Accession No. AK019342 dated Sep. 19, 2008, 3 pages.
GenBank Accession No. AK142768 dated Sep. 19, 2008, 3 pages.
GenBank Accession No. AL591433 dated Jan. 15, 2009, 56 pages.
GenBank Accession No. BC004702 dated Jul. 15, 2006, 3 pages.
GenBank Accession No. BC055737 dated Jul. 15, 2006, 2 pages.
GenBank Accession No. BC086799 dated Sep. 21, 2006, 3 pages.
GenBank Accession No. BF449664 dated Dec. 1, 2000, 1 pages.
GenBank Accession No. BG063957 dated Jan. 26, 2001, 2 pages.
GenBank Accession No. 3G077309 dated Dec. 17, 2003, 2 pages.
GenBank Accession No. BM114282 dated Jan. 30, 2002, 2 pages.
GenBank Accession No. BY023910 dated Dec. 6, 2002, 2 pages.
GenBank Accession No. CN724527 dated May 18, 2004, 2 pages.
GenBank Accession No. NM_000130 dated Oct. 18, 2009, 6 pages.
GenBank Accession No. NM_000493 dated Mar. 15, 2009, 4 pages.
GenBank Accession No. NM_000598, GI No. 62243067, dated Jun. 6, 2010, 5 pages.
GenBank Accession No. NM_000688, GI No. 40316942, dated Nov. 4, 2010, 5 pages.
GenBank Accession No. NM_001013398; GI No. 62243247, dated Jun. 6, 2010, 5 pages.
GenBank Accession No. NM_001034 dated Oct. 5, 2009, 5 pages.
GenBank Accession No. NM_001039573, GI No. 221316683, dated Mar. 4, 2010, 5 pages.
GenBank Accession No. NM_001049 dated Jun. 21, 2009, 4 pages.
GenBank Accession No. NM_001067 dated Oct. 18, 2009, 5 pages.
GenBank Accession No. NM_001098533, GI No. 237858579, dated May 7, 2010, 5 pages.
GenBank Accession No. NM_001130851; GI No. 195927024, dated Mar. 5, 2010, 4 pages.
GenBank Accession No. NM_001136154 dated Jan. 8, 2012, 6 pages.
GenBank Accession No. NM_001136155 dated Jan. 8, 2012, 6 pages.
GenBank Accession No. NM_001143998, GI No. 221316675, dated Mar. 4, 2010, 5 pages.
GenBank Accession No. NM_001143999, GI No. 221316679, dated Mar. 5, 2010, 5 pages.
GenBank Accession No. NM_001144001, GI No. 221316686, dated Mar. 4, 2010, 5 pages.
GenBank Accession No, NM_001160367, GI No. 237858581, dated May 7, 2010, 5 pages.
GenBank Accession No. NM_001786 dated Nov. 1, 2009, 4 pages.
GenBank Accession No. NM_001844 dated Sep. 28, 2009, 7 pages.
GenBank Accession No. NM_003003, GI No. 221316681, dated Mar. 4, 2010, 5 pages.
GenBank Accession No. NM_003014; GI No. 170784837, dated Mar. 13, 2010, 5 pages.
GenBank Accession No. NM_003184; GI No. 115527086, dated Mar. 4, 2010, 7 pages.
GenBank Accession No. NM_003873.3 dated Oct. 18, 2009, 4 pages.
GenBank Accession No. NM_004336; GI No. 211938448, dated Mar. 14, 2010, 6 pages.
GenBank Accession No. NM_004449 dated Jan. 8, 2012, 6 pages.
GenBank Accession No. NM_005025.2 dated Jul. 12, 2009, 4 pages.
GenBank Accession No. NM_005192, GI No. 195927023, dated Mar. 4, 2010, 4 pages.
GenBank Accession No. NM_005651.1 dated Oct. 27, 2009, 3 pages.
GenBank Accession No. NM_006265, GI No. 208879448, dated Apr. 11, 2010, 6 pages.
GenBank Accession No. NM_006558 dated Aug. 21, 2009, 3 pages.
GenBank Accession No. NM_006727 dated Oct. 18, 2009, 3 pages.
GenBank Accession No. NM_006819; GI No. 110225356, dated May 17, 2010, 5 pages.
GenBank Accession No. NM_012152; GI No. 183396778, dated Apr. 5, 2010, 5 pages.
GenBank Accession No. NM_014846; GI No. 120952850, dated Mar. 4, 2010, 6 pages.
GenBank Accession No. NM_016623; GI No. 42734437, dated Mar. 29, 2009, 4 pages.
GenBank Accession No. NM_018930 dated Feb. 10, 2008, 4 pages.
GenBank Accession No. NM_031966 GI No. 34304372, dated Jun. 6, 2010, 5 pages.
GenBank Accession No. NM_032334; GI No. 223468686, dated Mar. 5, 2010, 3 pages.
GenBank Accession No. NM_052987, GI No. 237858574, dated May 17, 2010, 5 pages.
GenBank Accession No. NM_052988, GI No. 237858573, dated May 17, 2010, 5 pages.
GenBank Accession No. NM_080546; GI No. 112363101, dated May 17, 2010, 6 pages.
GenBank Accession No. NM_080607 dated Sep. 3, 2009, 2 pages.
GenBank Accession No. NM_133445 dated Sep. 20, 2009, 5 pages.
GenBank Accession No. NM_138455; GI No. 34147546, dated May 7, 2010, 3 pages.
GenBank Accession No. NM_182918 dated Jan. 8, 2012, 6 pages.
GenBank Accession No. NM_199166, GI No. 40316938, dated Apr. 11, 2010, 5 pages.
GenBank Accession No. NP_001058 dated Dec. 25, 2011, 9 pages.
GenBank Accession No. W34764 dated May 13, 1996, 2 pages.
Supplemental Table 1 of U.S. Appl. No. 61/057,698, filed May 30, 2008, 13 pages.
Supplemental Table 2 of U.S. Appl. No. 61/057,698, filed May 30, 2008, 15 pages.
Supplemental Table 3 of U.S. Appl. No. 61/057,698, filed May 30, 2008, 21 pages.
Supplemental Table 4 of U.S. Appl. No. 61/057,698, filed May 30, 12008, 1 page.
Supplemental Table 5 of U.S. Appl. No. 61/057,698, filed May 30, 12008, 2 pages.
Supplemental Table 6 of U.S. Appl. No. 61/057,698, filed May 30, 2008, 1 page.
Affymetrix: Data Sheet, “GeneChip® Exon Array System for Human, Mouse, and Rat,” Internet Citation, [Online] Jan. 25, 2012 [Retrieved from the Internet] Intp://www.biainformatics.atickland.aciaz/workshops/1O_March_2011 1 Exon_EOST_Datash eet.pdf, 8 pages.
Bibikova et al., “Expression signatures that correlated with Gleason score and relapse in prostate cancer,” Genomics (2007) 89(6):666-672.
Chen et al., “Hepsin and maspin are inversely expressed in laser capture microdissectioned prostate cancer,” J Urol. (Apr. 2003) 169(4):1316-1319.
Dahlman et al., “Effect of androgen deprivation therapy on the expression of prostate cancer biomarkets MSMB and MSMB-binding protein CRISP3,” Prostate Cancer and Prostatic Diseases (2010) 13:369-375.
Dechassa et al., “Architecture of the SWI/SNF-nucleosome complex,” Mol Cell Biol. (Oct. 2008) vol. 28, No. 19, pp. 6010-6021.
Edwards et al., “Expression analysis onto microarrays of randomly selected cDNA clones highlights HOXB13 as a marker of human prostate cancer,” Br J Cancer. (Jan. 31, 2005) 92(2):376-381.
Etzioni et al. “The case for early detection”, Nature Reviews | Cancer (Apr. 2003) vol. 3, pp. 1-10.
Fryknas et al., “Molecular markers for discrimination of benign and malignant follicular thyroid tumors,” Tumour Biol. (May 2, 2006) 27(4):211-20.
Galamb et al., “Diagnostic mRNA Expression Patterns of Inflamed, Benign, and Malignant Colorectal Biopsy Specimen and their Correlation with Peripheral Blood Results,” Cancer Epidemiology, Biomarkers & Prevention (Oct. 2008) 17(10):2835-2845.
Giordano et al., “Organ-Specific Molecular Classification of Primary Lung, Colon, and Ovarian Adenocarcinomas Using Gene Expression Profiles,” Am J Pathol (2001) 159(4):1231-1238.
Ida et al., “Topoisomerase II alpha protein expression Is predictive of outcome in Gleason score 7 prostate cancer patients treated surgically and is dependent on ERG status.” Mod Pathol. (Feb. 2010) Abstract 1895, 23 : 424A-425A.
Jenkins et al., “Prognostic significance of ailetic imbalance of chromosome arms 71, 8p, 16q, and 18q in stage T3NOMO prostate cancer,” Genes, Chromosomes & Cancer (1998) 21:131-143.
Karayi et al., “Molecular biology of prostate cancer,” Prostate Cancer Prostatic Dis. (2004) 7(1):6-20.
Karnes et al., “Radical prostatectomy for high-risk prostate cancer,” Jpn. J. Clin. Oneal. (Oct. 19, 2009) 40 (1): 3-9, Epub.
Karnes et al., “The ability of biomarkers to predict systemic progression in men with high-risk prostate cancer treated surgically is dependent on ERG status,” Cancer Res. (Nov. 9, 2010) 70(22):8994-9002, Epub.
Kawamorita et al., “Radical prostatectomy for high-risk prostate cancer: Biochemical outcome,” International Journal of Urology (2009) 16:733-738.
Kishi et al., “Expression of the survivin gene in prostate cancer: correlation with clinicopathological characteristics, proliferative activity and apoptosis,” J Urol. (May 2004) 171(5): 1855-1860.
Klee et al., “Candidate Serum Biomarkers for Prostate Adenocarcinoma identified by mRNA Differences in Prostate Tissue and Verified with Protein Measurements in Tissue and Blood,” Clinical Chemistry (2012) 58(3):599-609.
Kumar-Sinha et al., “Molecular markers to identify patients at risk for recurrence after primary treatment for prostate cancer,” Urology, 62 Suppl 1:19-35, Dec. 29, 2003.
Liong et al., “Blood-Based Biomarkers of Aggressive Prostate Cancer,” PLoS ONE (Sep. 2012) vol. 7, Issue 7, e45802, pp. 1-7.
Lunardi et al., “A co-clinical approach identified mechanisms and potential therapies for androgen deprivation resistance in prostate cancer,” Nature Genetics (Jul. 2013) vol. 45, No. 7, pp. 747-757.
Luo et al., “Human Prostate Cancer and Benign Prostatic Hyperplasia : Molecular Dissection by Gene Expression Profiling,” Cancer Res. (2001) 61:4683-4688.
Mühlenbruch et al., “Multiple imputation was a valid approach to estimate absolute risk from a prediction model based on case—cohort data,” Journal of Clinical Epidemiology (2017) 84:130-141.
Ong et al., “Expression Profiling Identifies a Novel-Methylacyl-CoA Racemase Exon with Fumarate Hydratase Homology,” Cancer Research (Jun. 15, 2003) 63:3296-3301.
Perez et al., “Long, abundantly expressed non-coding transcripts are altered in cancer,” Human Molecular Genetics (2008) vol. 17, No. 5, pp. 642-655. Advanced Access published on Nov. 15, 2007.
Rotunno et al., “A Gene Expression Signature from Peripheral Whole Blood for Stage I Lung Adenocarcinoma,” Cancer Prevention Research (Jul. 8, 2011) 4(10) 1599-1607.
Stanbrough et al., “Increased Expression of Genes Converting Adrenal Androgens to Testosterone in Androgen-Independent Prostate Cancer,” Cancer Res (Mar. 1, 2006) 66(5):2815-2825.
Stephenson et al., “Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy,” Cancer (Jul. 15, 2005) 104(2):290-298.
Subramanian et al., “Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles,” PNAS USA (2005) 102:15545-15550.
Takayama et al., “TACC2 Is an Androgen-Responsive Cell Cycle Regulator Promoting Androgen-Mediatged and Castration-Resistant Growth of Prostate Cancer,” Mol Endocrinol (May 2012) 26(5):748-761.
Tomlins et al., “TMPRSS2:ETV4 Gene Fusions Define a Third Molecular Subtype of Prostate Cancer,” Cancer Res. (2006) 66:3396-3400.
Tomlins et al., “Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer,” Nature (Aug. 2, 2007) 448(7153):595-9.
Vanaja et al., “Transcriptional Silencing of Zinc Finger Protein 185 Identified Profiling Is Associated with Prostate Cancer Progression,” Cancer Research (Jul. 15, 2003) 63:3877-3882.
Vanaja et al., “PDLIM4 Represseion by Hypermethylation as a Potential Biomarker for Prostate Cancer,” Clin. Cancer Res. (2006) 12(4):1128-1136.
GenBank Accession No. AK034387 dated Sep. 19, 2008, 4 pages.
GenBank Accession No. AK038229 dated Sep. 19, 2008, 4 pages.
GenBank Accession No. AK038434 dated Sep. 19, 2008, 4 pages.
GenBank Accession No. AK041534 dated Sep. 19, 2008, 4 pages.
GenBank Accession No. AK042683 dated Sep. 19, 2008, 4 pages.
GenBank Accession No. AK136096 dated Sep. 19, 2008, 4 pages.
GenBank Accession No. AK136101 dated Sep. 19, 2008, 4 pages.
Cho et al., “Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate denocarcinoma and their relationship to clinicopathological features”, J Pathol (Feb. 2007) 211(3):269-77.
Gleave et al., “Randomized comparative study of 3 versus 8-month neoadjuvant hormonal therapy before radical orostatectomy : biochemical and pathological effects,” J Urol. (2001) 166:500-507.
Henrotin et al.: “Type II collagen peptides for measuring cartilage degradation,” Biotheology (2004) 41 (3-4): Abstract.
Lawton et al., “Updated results of the phase III Radiation Therapy Oncology Group (RTOG) trial 85-31 evaluating the potential benefit of androgen suppression following standard radiation therapy for unfavorable prognosis carcinoma of the prostate,” Int J Rad Oncol Biol Phvs. (2001) 49:937-946.
Porkka et al., “RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer,” Genes Chromosomes Cancer (2004) 39:1-10.
Rowley, “A new Consistent Chromosomal Abnormal ity in Chronic Myelogenous Leukaemia Identified by Quinacrine rluorescence and Giemsa Staining,” Nature (Jun. 1, 1973) 243:290-293.
Sandler et al., “Overall survival after prostate-specific-antigen-detected recurrence following conformal radiation therapy,” Int J Rad Oncol Biol Phvs. (2000) 48:629-633.
Sun et al., “Aberrant expression of SWI/SNF catalytic subunits BRG1/BRM is associated with tumor development and ncreased invasiveness in prostate cancers,” Prostate (Feb. 1, 2007) 67(2):203-13.
Zelefsky et al., “Neoadjuvant hormonal therapy improves the therapeutic ratio in patients with bulky prostatic cancer treated with three-dimensional conformal radiation therapy,” Int J Radiat Oncol Biot Phvs. (1994) 29:755-761.
Adamo and Ladomery, “The Oncogene ERG: A Key Factor in Prostate Cancer,” Oncogene(2016), 35:403-414.
Affymetrix GeneChip Human Genome U133 Array Set HG-U133A, Geo, Mar. 11, 2002, retrieved on Mar. 11, 2002.
Alberts et al., “Vesicular traffic in the secretory and endocytic pathways,” Molecular Biology of the Cell (1994) 3rd Ed., p. 465.
Amling et al.: “Long-term hazard of progression after radical prostatectomy for clinically EB localized prostate cancer continued risk of biochemical failure after 5 years,” J Urol. (2000) 164:101-105.
Amundadottir et al., “A common variant associated with prostate cancer in European and African populations,” Nat Genet. (2006) 38:652-658.
Anonymous, UCSC Genome Browser on Human Mar. 2006, NCBI36/hg18) Assembly, Mar. 2006, XP055587638, Retrieved from the Internet: URL:https://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=hg18&lastVirtModeType=default&lastVirtModeExtraState=& virtModeType=default&virtMode=0&nonVirtPosition=&position=chr5%3A 14025126%2D14062770&hgsid=232148223_IYIy9VS0Lh0jhldEBQ3nViBrQuB5 [retrieved on May 10, 2019].
Baggerly et al., “Deriving Chemosensitivity from Cell Lines: Forensic Bioinformatics and Reproducible Research in High-Throughput Biology,” The Annals of Applied Sciences (2009) vol. 3, No. 4, pp. 1309-1334.
Benner et al., “Evolution, language and analogy in functional genomics,” TRENDS in Genetics, (Jul. 2001) vol. 17, pp. 414-418.
Bismar et al., “ERG Protein Expression Reflects Hormonal Treatment Response and is Associated with Gleason Score and Prostate Cancer Specific Mortality,” Eur. J. Cancer (2012), 48:538-546,Elsevier Ltd.
Biton et al., Nov. 20, 2014, Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes, Cell Reports, 9(4):1235-1245.
Blute et al., “Use of Gleason score, prostate specific antigen, seminal vesicle and margin status to predict biochemical failure after radical prostatectomy,” J Urol (2001) 165: 119-125.
Erase et al., “TMPRSS2-ERG-specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-β signaling,” BMC Cancer (2011) 11(507):1-8.
Bueno et al., “A diagnostic test for prostate cancer from gene expression profiling data,” J Urol, Feb. 2004; 171(2 Pt 1):903-6.
Carninci et al., “The transcriptional landscape of the mammalian genome,” Science (Sep. 2, 2005) 09(5740):1559-63.
Cheung et al., “Natural variation in human gene expression assessed in lymphoblastoid cells,” Nature Genetics (2003) vol. 33, pp. 422-425.
Cho et al., “Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features”, J Pathol (Feb. 2007) 211(3):269-77.
Choi et al., Feb. 2014, Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy, Cancer Cell, 25(2):152-165.
Cologne et al., “Optimal Case-Control Matching in Practice,” Epidemiology Resources Inc. (1995) 6(3):271-275.
Cooper et al., “Mechanisms of Disease: biomarkers and molecular targets from microarray gene expression studies in prostate cancer ,” Nat Clin Pract Urol. (2007) Dee:4(12):677-87.
Cordon-Cardo et al., “Improved prediction of prostate cancer recurrence through systems pathology,” the Journal of Clinical Investigation (Jul. 2007) vol. 117, No. 7, pp. 1876-1883.
Couzin-Frankel, Jennifer, “As Questions Grow, Duke Halts Trials, Launches Investigation,” Science (Aug. 6, 2010) vol. 329, pp. 614-615.
D'Amico et al., “Determinants of prostate cancer-specific survival after radiation therapy for patients with clinically localized prostate cancer,” J Clin Oncol. (2002) 20:4567-4573.
De Klein et al., “A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia.” Nature (Dec. 23, 1982) 300(5894):765-7.
De Marzo et al., “Pathological and molecular mechanisms of prostate carcinogenesis: implications for diagnosis, detection, prevention, and treatment,” J Cell Biochem. (Feb. 15, 2004) 91(3):459-477.
Den et al., Mar. 10, 2015, Genomic classifier identifies men with adverse pathology after racial prostatectomy who benefit from adjuvant radiation therapy, Journal of Clinical Oncology, 33(8):944-951.
Epstein et al., “Prognostic factors and reporting of prostate carcinoma in radical AU prostatectomy and pelvic lymphadenectomy specimens,” Scand. J. Urol. Nephrol. Suppl. (2005) 216:34-63.
Feng et al., “Luminal and basal subtyping of prostate cancer,” J Clin Oncol (Feb. 20, 2017) vol. 35, No. 6, p. 3, Abstract.
Feroze-Merzoug et al., “Molecular profiling in prostate cancer,” Cancer Metastasis Rev. 1 (2001) 20(3-4):165-71.
Fine et al., “A Proportional Hazards Model for the Subdistribution of a Competing Risk,” Journal of the American Statistical Association (1999) vol. 94 (446), pp. 496-509.
Fu et al., “Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1.” DNA Cell Biol. (Mar. 2006) 25(3): 135-41.
Galavotti et al., Apr. 2012, the autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells, Oncogene, 32:699-712.
Garber et al., “Diversity of gene expression in adenocarcinoma of the lung,” PNAS (Nov. 20, 2001) vol. 98, No. 24, pp. 13784-13789.
Gleason: “Histologic grading and clinical staging of prostatic carcinoma”, Urologic pathology: the prostate, (Tannenbaum, ed.) (1977) Lea & Febiger, Philadelphia, PA, pp. 171-197.
Gleason: “Histologic grading of prostate cancer: a perspective”; Hum. Pathol. (1992) 23(3):273-279.
Gleave et al., “Randomized comparative study of 3 versus 8-month neoadjuvant hormonal therapy before radical prostatectomy : biochemical and pathological effects,” J Urol. (2001) 166:500-507.
Gonzalgo et al: “Molecular pathways to prostate cancer”; J Urol. (2003) 170(6 Pt 1):2444-2452.
Grambsch et al., “Proportional Hazards Tests and Diagnostics Based on Weighted Residuals,” Biometrika (2013) vol. 81 (3), pp. 515-526.
Heagerty et al., “Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker,” Biometrics (2000) vol. 56 (2), pp. 337-344.
Henrotin et al.: “Type II collagen peptides for measuring cartilage degradation,” Biorheology (2004) 41 (3-4): Abstract.
Humphrey et al: “Histologic grade, DNA ploidy, and intraglandular tumor extent as indicators of tumor progression of clinical Stage B prostatic carcinoma”; Am J Surg Pathol (1991) 15(12):1165-1170.
Ito et al., “Linkage of elevated ets-2 expression to hepatocarcinogenesis,” Anticancer Research (2002) 22(4):2385-2389.
Jemal et al.: “Cancer statistics,” CA Cancer J Clin. (2005) 55:10-30.
Jhavar et al., “Technical Advance: Detection of TMPRSS2-ERG Translocations in Human Prostate Cancer by Expression Profiling Using GeneChip Human Exon 1.0 ST Arrays,” J Mol. Diag (Jan. 2008) vol. 10, No. 1, pp. 50-57.
Jones et al., “Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma” Science (Oct. 8, 2010) 330(6001):228-31.
Karan et al., “Current status of the molecular genetics of human prostatic adenocarcinomas,” Int J Cancer, 2003, 103(3):285-293.
Kestin, “Potential survival advantage with early androgen deprivation for biochemical failure after external beam radiotherapy: the importance of accurately defining biochemical disease status,” Int J Rad Oncol Biol Phys. (2004) 60:453-62.
Kunarso et al., “Transposable elements have rewired the core regulatory network of human embryonic stem cells,” Nat Genet (Jul. 2010) 42(7):631-4.
Lawton et al., “Updated results of the phase III Radiation Therapy Oncology Group (RTOG) trial 8531 evaluating the potential benefit of androgen suppression following standard radiation therapy for unfavorable prognosis carcinoma of the prostate,” Int J Rad Oncol Biol Phys. (2001) 49:937-946.
Leyten et al., “Identification of a Candidate Gene Panel for the Early Diagnosis of Prostate Cancer,” Clinical Cancer Research (2015) 21(13):3061-3070.
Lin et al., “Cox Regression with Incomplete Covariate Measurements,” Journal of the American Statistical Association (1993) vol. 88 (424), pp. 1341-1349.
Liu et al., 2014, Synergistic killing of lung cancer cells by cisplatin and radiation via autophagy and apoptosis, Oncology Letters, 7:1903-1910.
Livingston et al., “Homo sapiens CDC20 Cell Division Cycle 20 Homolog (CDC20),” Gene (Apr. 24, 2006).
McConkey et al., Apr. 2015, Therapeutic opportunities in the intrinsic subtypes of muscle-invasive bladder cancer, Hematology/Oncology Clinics of North America, 29(2):377-394.
McConkey et al., May 2016, A prognostic gene expression signature in the molecular classification of chemotherapy-naïve urothelial cancer is predictive of clinical outcomes from neoadjuvant chemotherapy: a phase 2 trial of dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with bevacizumab in urothelial cancer, European Urology, 69(5):855-862.
Mendiratta et al., “Genomic signatures associated with the development, progression, rand outcome of prostate cancer,” Molecular diagnosis & therapy (2007) 11(6):345-54.
Mercer, DW, “Use of multiple markers to enhance clinical utility”, Immunol Ser. (1990) 53: 39-54.
Mitelman, “Recurrent chromosome aberrations in cancer,” Mutation Research (2000) 462: 247-253.
Montironi et al., “Carcinoma of the prostate: inherited susceptibility, somatic gene defects and androgen receptors,” Virchows Arch. (Jun. 2004) 444(6):503-508.
Moul et al., “Early versus delayed hormonal therapy for prostate specific antigen only recurrence of prostate cancer after radical prostatectomy,” J Urol. (2004) 171:1141- 1147.
Moul, “Prostate specific antigen only progression of prostate cancer,” J Urol. (2000) 163:1632-42.
Nelson, “Predicting prostate cancer behavior using transcript profiles,” J Urol. (Nov. 2004) 172(5 Pt 2):S28-32; discussion S33.
Ohl et al., “Gene expression studies in prostate cancer tissue: which reference gene should be selected for normalization'?,” J. Mol. Med . (2005) 83(12):1014-1024.
Oosumi et al., “Mariner transposons in humans”, Nature (Dec. 14, 1995) 378 (6558): 672.
Ozen et al., Sep. 24, 2007, Widespread deregulation of microRNA expression in human prostate cancer, Oncogene, 27:1788-1793.
Paulo et al., “Molecular Subtyping of Primary Prostate Cancer Reveals Specific and Shared Target Genes of Different ETS Rearrangements,” Neoplasia (Jul. 2012) 14(7):600-611.
Porkka et al., “RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer,” Genes Chromosomes Cancer (2007) 39:1-10.
Probe Set Listing for the Affymetrix Human Genome U133 Plus 2.0 array (Accessed from https://www.affymetrix.com/analysis/index.affx on Jul. 1, 2015) (Year: 2015).
Rabbits, “Chromosomal translocations in human cancer”, Nature (Nov. 10, 1994) 372: 143-149.
Reddy et al., “Clinical utility of microarray-derived genetic signatures in predicting outcomes in prostate cancer,” Clinical Genitourinary Cancer (2006) 5(3):187-189.
Roberts et al., “The SWI/SNF complex-chromatin and cancer.” Nat Rev Cancer (Feb. 2004) 4(2):133-42.
Robertson et al., “Reconstructing the ancient mariners of humans.” Nat Genet. (Apr. 1996) 12(4):360-1.
Ross et al., “Tissue-based Genomics Augments Post-prostatectomy Risk Stratification in a Natural History Cohort of Intermediate- and High-Risk Men,” European Urology 69 (2016) pp. 157-165.
Rowley, “A new Consistent Chromosomal Abnormal ity in Chronic Myelogenous Leukaemia Identified by Quinacrine fluorescence and Giemsa Staining,” Nature (Jun. 1, 1973) 243:290-293.
Rowley, “Chromosome translocations: dangerous liaisons revisited,” Nature Reviews: Cancer (Dec. 2001) 1):245-250.
Saito-Hisaminato et al., “Genome-Wide Profiling of Gene Expression in 29 Normal Human Tissues with a cDNA Microarray,” DNA Research (2002) vol. 9, pp. 35-45.
Saligan et al., “Supervised Classification by Filter Methods and Recursive Feature Elimination Predicts Rick of Radiotherapy-Related Fatigue in Patients with Prostate Cancer,” Cancer Informatics (2014) 13: 141-152.
Sandler et al., “Overall survival after prostate-specific-antigen-detected recurrence following conformal radiation therapy,” Int J Rad Oncol Biol Phys. (2000) 48:629-633.
Savinainen et al., “Over expression of EIF3S3 promotes cancer cell growth,” The Prostate (2006) 66: 1144-1150.
Schlomm et al., “Molecular staging of prostate cancer in the year 2007,” World .J. Urol. (Mar. 2007) 25(1):19-30.
Schmidt et al., “Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias,” Blood (1998) 91:22-29.
Seiler et al., Oct. 2017, Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy, European Urology, 72(4):544-554.
Slotkin et al., “Transposable elements and the epigenetic regulation of the genome.” Nat Rev Genet. (Apr. 2007) 8(4):272-85.
Smit et al., “High-Resolution ERG-Expression Profiling on GeneChip Exon 1.0 ST Arrays in Primary and Castration-Resistant Prostate Cancer,” BJU International (2013), 111(5):836-842, BJU International.
Solo et al., “Prevalence of prostate cancer (PC) clinical states (CS) in the United States: Estimates using a dynamic progression model,” ASCO Annual Meeting, Journal of Clinical Oncology (May 20, 2011) vol. 29, No. 15, Abstract 4637.
Stamey et al., “Molecular genetic profiling of Gleason grade 415 prostate cancers compared to benign prostatic hyperplasia,” J Urol. (2001) 166(6):2171-2177.
Stavenhagen et al., “An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein Jene.” Cell (Oct. 21, 1988) 55(2):247-54.
Stephenson et al., “Postoperative Nomogram Predicting the 10-Year Probability of Prostate Cancer Recurrence After Radical Prostatectomy,” J Clin Oncol (2008) vol. 23 (28), pp. 7005-7012.
Sun et al., “Aberrant expression of SWI/SNF catalytic subunits BRG1/BRM is associated with tumor development and increased invasiveness in prostate cancers,” Prostate (Feb. 1, 2007) 67(2):203-13.
Talantov et al., “Gene Based Prediction of Clinically Localized Prostate Cancer Progression After Radical Prostatectomy,” The Journal of Urology (Oct. 2010) vol. 184, 1521-1528.
Thompson et al., “Is the GPSM scoring algorithm for patients with prostate cancer valid in the contemporary era?” J Urol. (Aug. 2007) vol. 178 (2), 459-463.
Tollefson et al., “Stratification of Patient Risk Based on Prostate-Specific Antigen Doubling Time After Radical Retropubic Prostatectomy,” Mayo Clin Proc. (2007) 82:422-427.
Tsuchiya et al., “Clinical significance in situ hybridization analysis in pathologic of alterations of chromosome 8 detected by fluorescence organ-confined prostate cancer,” Genes Chromosomes Cancer (2002) 34:363-371.
Versteege et al., “Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer.” Nature (Jul. 9, 1998) 394 6689):203-6.
Visakorpi, “The molecular genetics of prostate cancer,” Urology (2003) 62(5 Suppl 1):3-10.
Willman et al., “Immunohistochemical staining for DNA topoisomerase II-alpha in benign, premalignant, and malignant lesions of the prostate,” Prostate (Mar. 1, 2000) 42(4):280-286.
Winkler et al.: “Stage D1 prostatic adenocarcinoma: significance of nuclear DNA ploidy patterns studied by flow cytometry,” Mayo Clin Proc. (1988) 63(2): 103-112.
Wyatt et al., “Heterogeneity in the inter-tumor transcriptome of high risk prostate cancer,” Genome Biology (Aug. 26, 2014) vol. 15, No. 8, pp. 2-14.
Yeager et al., “Genome-wide association study of prostate cancer identifies a second risk locus at 8q24,” Nat Genet (2007) 39:645-649.
Yeliin et al., “Widespread occurrence of antisense transcription in the human genome,” Nat Biotechnol. (2003) 21(4):379-86.
Zanetta et al., “Flow-cytometric analysis of deoxyribonucleic acid content in advanced ovarian carcinoma: its importance in long-term survival,” Am J Obstet Gynecol (1996) 175(5): 1217-1225.
Zelefsky et al., “Neoadjuvant hormonal therapy improves the therapeutic ratio in patients with bulky prostatic cancer treated with three-dimensional conformal radiation therapy,” Int J Radiat Oncol Biot Phys. (1994) 29:755-761.
Choi et al., Jun. 24, 2014, Intrinsic basal and luminal subtypes of muscle-invasive bladder cancer, Nature Reviews Urology, 11(7):400-410.
Dhani et al., 2011, Phase II study of cytarabine in men with docetaxel-refractory, castration-resistnt prostate cancer with evaluation of TMPRSS2-ERG and SPINK1 as serum biomarkers, BJUI, 110:840-845.
Ha et al., Nov. 12, 2009, Comparison of affymetrix gene array with the exon array shows potential application for detection of transcript isoform variation, BMC Genomics, 19(1):519.
Knowles et al., Dec. 23, 2014, Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity, Nature Reviews Cancer, 15(1):25-41.
Warrick et al., 2016, FOXA1, GATA3 and PPARγ cooperate to drive luminal subtype in bladder cancer: a molecular analysis of established human cell lines, Scientific Reports, 6:38531, DOI: 10.1038, 15 pp.
Related Publications (1)
Number Date Country
20140066323 A1 Mar 2014 US
Provisional Applications (3)
Number Date Country
61684066 Aug 2012 US
61764365 Feb 2013 US
61783124 Mar 2013 US