This disclosure relates to replication competent retroviral vectors for treating cell proliferative. The disclosure further relates to the use of such replication competent retroviral vectors and factors for delivery and expression of heterologous nucleic acids.
Effective methods of delivering genes and heterologous nucleic acids to cells and subjects has been a goal researchers for scientific development and for possible treatments of diseases and disorders.
The disclosure provides a therapeutic combination comprising a thymosin-1-alpha polypeptide and a replication retroviral vector for use in the treatment of a subject comprising a cell proliferative disease or disorder, wherein the replication competent retroviral vector comprises a retroviral GAG protein; a retroviral POL protein; a retroviral envelope; a retroviral polynucleotide comprising Long-Terminal Repeat (LTR) sequences at the 3′ end of the retroviral polynucleotide sequence, a promoter sequence at the 5′ end of the retroviral polynucleotide, said promoter being suitable for expression in a mammalian cell, a gag nucleic acid domain, a pol nucleic acid domain and an env nucleic acid domain; a cassette comprising an internal ribosome entry site (IRES) operably linked to a heterologous polynucleotide, wherein the cassette is positioned 5′ to the 3′ LTR and 3′ to the env nucleic acid domain encoding the retroviral envelope; and cis-acting sequences necessary for reverse transcription, packaging and integration in a target cell. In one embodiment, the heterologous polynucleotide comprises a suicide gene that expresses a polypeptide that converts a non-toxic prodrug to a toxic drug. In another embodiment, the target cell is a cancer cell. In yet another embodiment, the target cell comprises a cell proliferative disorder. In a further embodiment, the cell proliferative disorder is selected from the group consisting of lung cancer, colon-rectum cancer, breast cancer, prostate cancer, urinary tract cancer, uterine cancer, brain cancer, head and neck cancer, pancreatic cancer, melanoma, stomach cancer and ovarian cancer, rheumatoid arthritis or other autoimmune disease. In one embodiment, the retroviral vector is administered prior to the thymosin-alpha-1 polypeptide. In another embodiment, the retroviral polynucleotide sequence is derived from murine leukemia virus (MLV), Moloney murine leukemia virus (MoMLV), Feline leukemia virus (FeLV) Baboon endogenous retrovirus (BEV), porcine endogenous virus (PERV), the cat derived retrovirus RD114, squirrel monkey retrovirus, Xenotropic murine leukemia virus-related virus (XMRV), avian reticuloendotheliosis virus (REV), or Gibbon ape leukemia virus (GALV). In yet another embodiment, the retroviral envelope is an amphotropic MLV envelope. In one embodiment, the retrovirus is a gammaretrovirus. In another embodiment, the thymosin-alpha-1 polypeptide comprises at least 85% identity to SEQ ID NO:73 and having a thymosin-alpha-1 activity. In yet another embodiment, the heterologous polynucleotide encodes a polypeptide having cytosine deaminase activity. In one embodiment, the heterologous polynucleotide is selected from the group consisting of a suicide gene and an immunopotentiating gene. In any of the foregoing embodiments, the retrovirus further comprises an miRNA. In a specific embodiment, the replication competent retrovirus comprising a retroviral GAG protein; a retroviral POL protein; a retroviral envelope; a retroviral polynucleotide comprising Long-Terminal Repeat (LTR) sequences at the 3′ end of the retroviral polynucleotide sequence, a promoter sequence at the 5′ end of the retroviral polynucleotide, said promoter being suitable for expression in a mammalian cell, a gag nucleic acid domain, a pol nucleic acid domain and an env nucleic acid domain; a cassette comprising an internal ribosome entry site (IRES) operably linked to a polynucleotide encoding cytosine deaminase, wherein the cassette is positioned 5′ to the 3′ LTR and 3′ to the env nucleic acid domain encoding the retroviral envelope; and cis-acting sequences necessary for reverse transcription, packaging and integration in a target cell. In any of the foregoing embodiments, the thymosin-1-alpha and retroviral vector are formulated for delivery simultaneously.
The disclosure also provides a method of treating a subject with a cell proliferative disorder comprising administering a thymosin-alpha-1 polypeptide to the subject either before, during or after administration of a replication competent retrovirus comprising a retroviral GAG protein; a retroviral POL protein; a retroviral envelope; a retroviral polynucleotide comprising Long-Terminal Repeat (LTR) sequences at the 3′ end of the retroviral polynucleotide sequence, a promoter sequence at the 5′ end of the retroviral polynucleotide, said promoter being suitable for expression in a mammalian cell, a gag nucleic acid domain, a pol nucleic acid domain and an env nucleic acid domain; a cassette comprising an internal ribosome entry site (IRES) operably linked to a heterologous polynucleotide, wherein the cassette is positioned 5′ to the 3′ LTR and 3′ to the env nucleic acid domain encoding the retroviral envelope; and cis-acting sequences necessary for reverse transcription, packaging and integration in a target cell. In one embodiment, the heterologous polynucleotide comprises a suicide gene that expresses a polypeptide that converts a non-toxic prodrug to a toxic drug. In another embodiment, the target cell is a cancer cell. In yet another embodiment, the target cell comprises a cell proliferative disorder. In a further embodiment, the cell proliferative disorder is selected from the group consisting of lung cancer, colon-rectum cancer, breast cancer, prostate cancer, urinary tract cancer, uterine cancer, brain cancer, head and neck cancer, pancreatic cancer, melanoma, stomach cancer and ovarian cancer, rheumatoid arthritis or other autoimmune disease. In one embodiment, the retroviral vector is administered prior to the thymosin-alpha-1 polypeptide. In another embodiment, the retroviral polynucleotide sequence is derived from murine leukemia virus (MLV), Moloney murine leukemia virus (MoMLV), Feline leukemia virus (FeLV) Baboon endogenous retrovirus (BEV), porcine endogenous virus (PERV), the cat derived retrovirus RD114, squirrel monkey retrovirus, Xenotropic murine leukemia virus-related virus (XMRV), avian reticuloendotheliosis virus (REV), or Gibbon ape leukemia virus (GALV). In yet another embodiment, the retroviral envelope is an amphotropic MLV envelope. In one embodiment, the retrovirus is a gammaretrovirus. In another embodiment, the thymosin-alpha-1 polypeptide comprises at least 85% identity to SEQ ID NO:73 and having a thymosin-alpha-1 activity. In yet another embodiment, the heterologous polynucleotide encodes a polypeptide having cytosine deaminase activity. In one embodiment, the heterologous polynucleotide is selected from the group consisting of a suicide gene and an immunopotentiating gene. In any of the foregoing embodiments, the retrovirus further comprises an miRNA. In a specific embodiment, the replication competent retrovirus comprising a retroviral GAG protein; a retroviral POL protein; a retroviral envelope; a retroviral polynucleotide comprising Long-Terminal Repeat (LTR) sequences at the 3′ end of the retroviral polynucleotide sequence, a promoter sequence at the 5′ end of the retroviral polynucleotide, said promoter being suitable for expression in a mammalian cell, a gag nucleic acid domain, a pol nucleic acid domain and an env nucleic acid domain; a cassette comprising an internal ribosome entry site (IRES) operably linked to a polynucleotide encoding cytosine deaminase, wherein the cassette is positioned 5′ to the 3′ LTR and 3′ to the env nucleic acid domain encoding the retroviral envelope; and cis-acting sequences necessary for reverse transcription, packaging and integration in a target cell. In any of the foregoing embodiments, the thymosin-1-alpha and retroviral vector are formulated for delivery simultaneously.
The details of one or more embodiments of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
As used herein and in the appended claims, the singular forms “a,” “and,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a cell” includes a plurality of such cells and reference to “the agent” includes reference to one or more agents known to those skilled in the art, and so forth.
Also, the use of “or” means “and/or” unless stated otherwise. Similarly, “comprise,” “comprises,” “comprising” “include,” “includes,” and “including” are interchangeable and not intended to be limiting.
It is to be further understood that where descriptions of various embodiments use the term “comprising,” those skilled in the art would understand that in some specific instances, an embodiment can be alternatively described using language “consisting essentially of” or “consisting of.”
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice of the disclosed methods and compositions, the exemplary methods, devices and materials are described herein.
General texts that describe molecular biological techniques useful herein, including the use of vectors, promoters and many other relevant topics, include Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology Volume 152, (Academic Press, Inc., San Diego, Calif.) (“Berger”); Sambrook et al., Molecular Cloning—A Laboratory Manual, 2d ed., Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989 (“Sambrook”) and Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 1999) (“Ausubel”). Examples of protocols sufficient to direct persons of skill through in vitro amplification methods, including the polymerase chain reaction (PCR), the ligase chain reaction (LCR), Qβ-replicase amplification and other RNA polymerase mediated techniques (e.g., NASBA), e.g., for the production of the homologous nucleic acids of the disclosure are found in Berger, Sambrook, and Ausubel, as well as in Mullis et al. (1987) U.S. Pat. No. 4,683,202; Innis et al., eds. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press Inc. San Diego, Calif.) (“Innis”); Arnheim & Levinson (Oct. 1, 1990) C&EN 36-47; The Journal Of NIH Research (1991) 3: 81-94; Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86: 1173; Guatelli et al. (1990) Proc. Nat'l. Acad. Sci. USA 87: 1874; Lomell et al. (1989) J. Clin. Chem 35: 1826; Landegren et al. (1988) Science 241: 1077-1080; Van Brunt (1990) Biotechnology 8: 291-294; Wu and Wallace (1989) Gene 4:560; Barringer et al. (1990) Gene 89:117; and Sooknanan and Malek (1995) Biotechnology 13: 563-564. Improved methods for cloning in vitro amplified nucleic acids are described in Wallace et al., U.S. Pat. No. 5,426,039. Improved methods for amplifying large nucleic acids by PCR are summarized in Cheng et al. (1994) Nature 369: 684-685 and the references cited therein, in which PCR amplicons of up to 40 kb are generated. One of skill will appreciate that essentially any RNA can be converted into a double stranded DNA suitable for restriction digestion, PCR expansion and sequencing using reverse transcriptase and a polymerase. See, e.g., Ausubel, Sambrook and Berger, all supra.
The publications discussed throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior disclosure.
The disclosure provides methods and compositions useful for treating cell proliferative diseases and disorders. The disclosure provides replication competent retroviral vectors for gene delivery and combination therapies.
The terms “vector”, “vector construct” and “expression vector” mean the vehicle by which a DNA or RNA sequence (e.g. a foreign gene) can be introduced into a host cell, so as to transform the host and promote expression (e.g. transcription and translation) of the introduced sequence. Vectors typically comprise the DNA of a transmissible agent, into which foreign DNA encoding a protein is inserted by restriction enzyme technology. A common type of vector is a “plasmid”, which generally is a self-contained molecule of double-stranded DNA that can readily accept additional (foreign) DNA and which can readily introduced into a suitable host cell. A large number of vectors, including plasmid and fungal vectors, have been described for replication and/or expression in a variety of eukaryotic and prokaryotic hosts. Non-limiting examples include pKK plasmids (Clonetech), pUC plasmids, pET plasmids (Novagen, Inc., Madison, Wis.), pRSET or pREP plasmids (Invitrogen, San Diego, Calif.), or pMAL plasmids (New England Biolabs, Beverly, Mass.), and many appropriate host cells, using methods disclosed or cited herein or otherwise known to those skilled in the relevant art. Recombinant cloning vectors will often include one or more replication systems for cloning or expression, one or more markers for selection in the host, e.g., antibiotic resistance, and one or more expression cassettes.
The terms “express” and “expression” mean allowing or causing the information in a gene or DNA sequence to become manifest, for example producing a protein by activating the cellular functions involved in transcription and translation of a corresponding gene or DNA sequence. A DNA sequence is expressed in or by a cell to form an “expression product” such as a protein. The expression product itself, e.g. the resulting protein, may also be said to be “expressed” by the cell. A polynucleotide or polypeptide is expressed recombinantly, for example, when it is expressed or produced in a foreign host cell under the control of a foreign or native promoter, or in a native host cell under the control of a foreign promoter.
The disclosure provides replication competent viral vectors that contain a heterologous polynucleotide encoding, for example, a cytosine deaminase or mutant thereof that can be delivered to a cell or subject. The viral vector can be an adenoviral vector, a measles vector, a herpes vector, a retroviral vector (including a lentiviral vector), a rhabdoviral vector such as a Vesicular Stomatitis viral vector, a reovirus vector, a Seneca Valley Virus vector, a poxvirus vector (including animal pox or vaccinia derived vectors), a parvovirus vector (including an AAV vector), an alphavirus vector or other viral vector known to one skilled in the art (see also, e.g., Concepts in Genetic Medicine, ed. Boro Dropulic and Barrie Carter, Wiley, 2008, Hoboken, N.J.; The Development of Human Gene Therapy, ed. Theodore Friedmann, Cold Springs Harbor Laboratory Press, Cold springs Harbor, N.Y., 1999; Gene and Cell Therapy, ed. Nancy Smyth Templeton, Marcel Dekker Inc., New York, N.Y., 2000 and Gene Therapy: Therapeutic Mechanism and Strategies, ed. Nancy Smyth Templetone and Danilo D Lasic, Marcel Dekker, Inc., New York, N.Y., 2000; the disclosures of which are incorporated herein by reference).
In one embodiment, the viral vector can be a replication competent retroviral vector capable of infecting only replicating mammalian cells. In one embodiment, a replication competent retroviral vector comprises an internal ribosomal entry site (IRES) 5′ to the heterologous polynucleotide encoding, e.g., a cytosine deaminase or the like. In one embodiment, the polynucleotide is 3′ to a ENV polynucleotide of a retroviral vector. In one embodiment the viral vector is a retroviral vector capable of infecting target cells multiple times (5 or more per diploid cell).
The disclosure also provides replication competent retroviral vectors having increased stability relative to prior retroviral vectors. Such increased stability during infection and replication is important for the treatment of cell proliferative disorders. The combination of transduction efficiency, transgene stability and target selectivity is provided by the replication competent retrovirus. The compositions and methods provide insert stability and maintain transcription activity of the transgene and the translational viability of the encoded polypeptide.
The disclosure provides modified retroviral vectors. The modified retroviral vectors can be derived from members of the retroviridae family. The Retroviridae family consists of three groups: the spumaviruses-(or foamy viruses) such as the human foamy virus (HFV); the lentiviruses, as well as visna virus of sheep; and the oncoviruses (although not all viruses within this group are oncogenic). The term “lentivirus” is used in its conventional sense to describe a genus of viruses containing reverse transcriptase. The lentiviruses include the “immunodeficiency viruses” which include human immunodeficiency virus (HIV) type 1 and type 2 (HIV-1 and HIV-2) and simian immunodeficiency virus (SIV). The oncoviruses have historically been further subdivided into groups A, B, C and D on the basis of particle morphology, as seen under the electron microscope during viral maturation. A-type particles represent the immature particles of the B- and D-type viruses seen in the cytoplasm of infected cells. These particles are not infectious. B-type particles bud as mature virion from the plasma membrane by the enveloping of intracytoplasmic A-type particles. At the membrane they possess a toroidal core of 75 nm, from which long glycoprotein spikes project. After budding, B-type particles contain an eccentrically located, electron-dense core. The prototype B-type virus is mouse mammary tumor virus (MMTV). No intracytoplasmic particles can be observed in cells infected by C-type viruses. Instead, mature particles bud directly from the cell surface via a crescent ‘C’-shaped condensation which then closes on itself and is enclosed by the plasma membrane. Envelope glycoprotein spikes may be visible, along with a uniformly electron-dense core. Budding may occur from the surface plasma membrane or directly into intracellular vacuoles. The C-type viruses are the most commonly studied and include many of the avian and murine leukemia viruses (MLV). Bovine leukemia virus (BLV), and the human T-cell leukemia viruses types I and II (HTLV-I/II) are similarly classified as C-type particles because of the morphology of their budding from the cell surface. However, they also have a regular hexagonal morphology and more complex genome structures than the prototypic C-type viruses such as the murine leukemia viruses (MLV). D-type particles resemble B-type particles in that they show as ring-like structures in the infected cell cytoplasm, which bud from the cell surface, but the virion incorporate short surface glycoprotein spikes. The electron-dense cores are also eccentrically located within the particles. Mason Pfizer monkey virus (MPMV) is the prototype D-type virus.
Retroviruses have been classified in various ways but the nomenclature has been standardized in the last decade (see ICTVdB—The Universal Virus Database, v 4 on the World Wide Web (www) at ncbi.nlm.nih.gov/ICTVdb/ICTVdB/ and the text book “Retroviruses” Eds Coffin, Hughs and Varmus, Cold Spring Harbor Press 1997; the disclosures of which are incorporated herein by reference). In one embodiment, the replication competent retroviral vector can comprise an Orthoretrovirus or more typically a gamma retrovirus vector.
Retroviruses are defined by the way in which they replicate their genetic material. During replication the RNA is converted into DNA. Following infection of the cell a double-stranded molecule of DNA is generated from the two molecules of RNA which are carried in the viral particle by the molecular process known as reverse transcription. The DNA form becomes covalently integrated in the host cell genome as a provirus, from which viral RNAs are expressed with the aid of cellular and/or viral factors. The expressed viral RNAs are packaged into particles and released as infectious virion.
The retrovirus particle is composed of two identical RNA molecules. Each wild-type genome has a positive sense, single-stranded RNA molecule, which is capped at the 5′ end and polyadenylated at the 3′ tail. The diploid virus particle contains the two RNA strands complexed with gag proteins, viral enzymes (pol gene products) and host tRNA molecules within a ‘core’ structure of gag proteins. Surrounding and protecting this capsid is a lipid bilayer, derived from host cell membranes and containing viral envelope (env) proteins. The env proteins bind to a cellular receptor for the virus and the particle typically enters the host cell via receptor-mediated endocytosis and/or membrane fusion.
After the outer envelope is shed, the viral RNA is copied into DNA by reverse transcription. This is catalyzed by the reverse transcriptase enzyme encoded by the pol region and uses the host cell tRNA packaged into the virion as a primer for DNA synthesis. In this way the RNA genome is converted into the more complex DNA genome.
The double-stranded linear DNA produced by reverse transcription may, or may not, have to be circularized in the nucleus. The provirus now has two identical repeats at either end, known as the long terminal repeats (LTR). The termini of the two LTR sequences produces the site recognized by a pol product—the integrase protein—which catalyzes integration, such that the provirus is always joined to host DNA two base pairs (bp) from the ends of the LTRs. A duplication of cellular sequences is seen at the ends of both LTRs, reminiscent of the integration pattern of transposable genetic elements. Retroviruses can integrate their DNAs at many sites in host DNA, but different retroviruses have different integration site preferences. HIV-1 and simian immunodeficiency virus DNAs preferentially integrate into expressed genes, murine leukemia virus (MLV) DNA preferentially integrates near transcriptional start sites (TSSs), and avian sarcoma leukosis virus (ASLV) and human T cell leukemia virus (HTLV) DNAs integrate nearly randomly, showing a slight preference for genes (Derse D, et al. (2007) Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses. J Virol 81:6731-6741; Lewinski M K, et al. (2006) Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2:e601).
Transcription, RNA splicing and translation of the integrated viral DNA is mediated by host cell proteins. Variously spliced transcripts are generated. In the case of the human retroviruses HIV-1/2 and HTLV-I/II viral proteins are also used to regulate gene expression. The interplay between cellular and viral factors is a factor in the control of virus latency and the temporal sequence in which viral genes are expressed.
Retroviruses can be transmitted horizontally and vertically. Efficient infectious transmission of retroviruses requires the expression on the target cell of receptors which specifically recognize the viral envelope proteins, although viruses may use receptor-independent, nonspecific routes of entry at low efficiency. Normally a viral infection leads to a single or few copies of viral genome per cell because of receptor masking or down-regulation that in turn leads to resistance to superinfection (Ch3 p 104 in “Retroviruses” J M Coffin, S H Hughes, & H E Varmus 1997 Cold Spring Harbor Laboratory Press, Cold Spring Harbor N.Y.; Fan et al. J. Virol 28:802, 1978). By manipulating the situation in tissue culture it is possible to get some level of multiple infection but this is typically less than 5 copies/diploid genome. In addition, the target cell type must be able to support all stages of the replication cycle after virus has bound and penetrated. Vertical transmission occurs when the viral genome becomes integrated in the germ line of the host. The provirus will then be passed from generation to generation as though it were a cellular gene. Hence endogenous proviruses become established which frequently lie latent, but which can become activated when the host is exposed to appropriate agents.
In many situations for using a recombinant replication competent retrovirus therapeutically, it is advantageous to have high levels of expression of the transgene that is encoded by the recombinant replication competent retrovirus. For example, with a prodrug activating gene such as the cytosine deaminase gene it is advantageous to have higher levels of expression of the CD protein in a cell so that the conversion of the prodrug 5-FC to 5-FU is more efficient. The disclosure provides recombinant replication competent retroviruses capable of infecting a target cell or target cell population multiple times resulting in an average number of copies/diploid genome of 5 or greater. Also provided are methods of treating a cell proliferative disorder, using a recombinant replication competent retrovirus capable of infecting a target cell or target cell population multiple times resulting in an average number of copies/diploid genome of 5 or greater. In further embodiments, a combination therapy comprising thymosin-alpha-1 is used to promote apoptosis and therapeutic effects of a RCR of the disclosure.
As mentioned above, the integrated DNA intermediate is referred to as a provirus. Prior gene therapy or gene delivery systems use methods and retroviruses that require transcription of the provirus and assembly into infectious virus while in the presence of an appropriate helper virus or in a cell line containing appropriate sequences enabling encapsidation without coincident production of a contaminating helper virus. As described below, a helper virus is not required for the production of the recombinant retrovirus of the disclosure, since the sequences for encapsidation are provided in the genome thus providing a replication competent retroviral vector for gene delivery or therapy.
Other existing replication competent retroviral vectors also tend to be unstable and lose sequences during horizontal or vertical transmission to an infected cell or host cell and during replication. This may be due in-part from the presence of extra nucleotide sequences that include repeats or which reduce the efficiency of a polymerase.
The retroviral genome and the proviral DNA of the disclosure have at least three genes: the gag, the pol, and the env, these genes may be flanked by one or two long terminal (LTR) repeat, or in the provirus are flanked by two long terminal repeat (LTR) and sequences containing cis-acting sequences such as psi. The gag gene encodes the internal structural (matrix, capsid, and nucleocapsid) proteins; the pol gene encodes the RNA-directed DNA polymerase (reverse transcriptase), protease and integrase; and the env gene encodes viral envelope glycoproteins. The 5′ and/or 3′ LTRs serve to promote transcription and polyadenylation of the virion RNAs. The LTR contains all other cis-acting sequences necessary for viral replication. Lentiviruses have additional genes including vif, vpr, tat, rev, vpu, nef, and vpx (in HIV-1, HIV-2 and/or SIV).
Adjacent to the 5′ LTR are sequences necessary for reverse transcription of the genome (the tRNA primer binding site) and for efficient encapsidation of viral RNA into particles (the Psi site). If the sequences necessary for encapsidation (or packaging of retroviral RNA into infectious virion) are missing from the viral genome, the result is a cis defect which prevents encapsidation of genomic viral RNA. This type of modified vector is what has typically been used in prior gene delivery systems (i.e., systems lacking elements which are required for encapsidation of the virion) as ‘helper’ elements providing viral proteins in trans that package a non-replicating, but packageable, RNA genome.
In a first embodiment, the disclosure provides a recombinant retrovirus capable of infecting a dividing cell or a cell having a cell proliferative disorder. The recombinant replication competent retrovirus of the disclosure comprises a polynucleotide sequence encoding a viral GAG, a viral POL, a viral ENV, a heterologous polynucleotide preceded by an internal ribosome entry site (IRES) encapsulated within a virion. In one embodiment the heterologous polynucleotide encodes a polypeptide having cytosine deaminase activity. In yet another embodiment, a polypeptide having thymosin-alpha-1 activity is administered simultaneously, prior to, or after administration of the retroviral vector.
The phrase “non-dividing” cell refers to a cell that does not go through mitosis. Non-dividing cells may be blocked at any point in the cell cycle, (e.g., G0/G1, G1/S, G2/M), as long as the cell is not actively dividing. For ex vivo infection, a dividing cell can be treated to block cell division by standard techniques used by those of skill in the art, including, irradiation, aphidocolin treatment, serum starvation, and contact inhibition. However, it should be understood that ex vivo infection is often performed without blocking the cells since many cells are already arrested (e.g., stem cells). For example, a recombinant lentivirus vector is capable of infecting non-dividing cells. Examples of pre-existing non-dividing cells in the body include neuronal, muscle, liver, skin, heart, lung, and bone marrow cells, and their derivatives. For dividing cells onco-retroviral vectors can be used.
By “dividing” cell is meant a cell that undergoes active mitosis, or meiosis. Such dividing cells include stem cells, skin cells (e.g., fibroblasts and keratinocytes), gametes, and other dividing cells known in the art. Of particular interest and encompassed by the term dividing cell are cells having cell proliferative disorders, such as neoplastic cells. The term “cell proliferative disorder” refers to a condition characterized by an abnormal number of cells. The condition can include both hypertrophic (the continual multiplication of cells resulting in an overgrowth of a cell population within a tissue) and hypotrophic (a lack or deficiency of cells within a tissue) cell growth or an excessive influx or migration of cells into an area of a body. The cell populations are not necessarily transformed, tumorigenic or malignant cells, but can include normal cells as well. Cell proliferative disorders include disorders associated with an overgrowth of connective tissues, such as various fibrotic conditions, including scleroderma, arthritis and liver cirrhosis. Cell proliferative disorders include neoplastic disorders such as head and neck carcinomas. Head and neck carcinomas would include, for example, carcinoma of the mouth, esophagus, throat, larynx, thyroid gland, tongue, lips, salivary glands, nose, paranasal sinuses, nasopharynx, superior nasal vault and sinus tumors, esthesioneuroblastoma, squamous call cancer, malignant melanoma, sinonasal undifferentiated carcinoma (SNUC), brain (including glioblastomas) or blood neoplasia. Also included are carcinoma's of the regional lymph nodes including cervical lymph nodes, prelaryngeal lymph nodes, pulmonary juxtaesophageal lymph nodes and submandibular lymph nodes (Harrison's Principles of Internal Medicine (eds., Isselbacher, et al., McGraw-Hill, Inc., 13th Edition, pp 1850-1853, 1994). Other cancer types, include, but are not limited to, lung cancer, colon-rectum cancer, breast cancer, prostate cancer, urinary tract cancer, uterine cancer lymphoma, oral cancer, pancreatic cancer, leukemia, melanoma, stomach cancer, skin cancer and ovarian cancer. The cell proliferative disease also includes rheumatoid arthritis (O'Dell NEJM 350:2591 2004) and other auto-immune disorders (Mackay et al NEJM 345:340 2001) that are often characterized by inappropriate proliferation of cells of the immune system.
The heterologous nucleic acid sequence is operably linked to an IRES. As used herein, the term “heterologous” nucleic acid sequence or transgene refers to (i) a sequence that does not normally exist in a wild-type retrovirus, (ii) a sequence that originates from a foreign species, or (iii) if from the same species, it may be substantially modified from its original form. Alternatively, an unchanged nucleic acid sequence that is not normally expressed in a cell is a heterologous nucleic acid sequence.
Depending upon the intended use of the retroviral vector of the disclosure any number of heterologous polynucleotide or nucleic acid sequences may be inserted into the retroviral vector. For example, for in vitro studies commonly used marker genes or reporter genes may be used, including, antibiotic resistance and fluorescent molecules (e.g., GFP). Additional polynucleotide sequences encoding any desired polypeptide sequence may also be inserted into the vector of the disclosure. Where in vivo delivery of a heterologous nucleic acid sequence is sought both therapeutic and non-therapeutic sequences may be used. For example, the heterologous sequence can encode a therapeutic molecule including antisense molecules (miRNA, siRNA) or ribozymes directed to a particular gene associated with a cell proliferative disorder or other gene-associated disease or disorder, the heterologous sequence can be a suicide gene (e.g., HSV-tk or PNP or cytosine deaminase; either modified or unmodified), a growth factor or a therapeutic protein (e.g., Factor IX, IL2, and the like). Other therapeutic proteins applicable to the disclosure are easily identified in the art.
In one embodiment, the heterologous polynucleotide within the vector comprises a cytosine deaminase that has been optimized for expression in a human cell. In a further embodiment, the cytosine deaminase comprises a sequence that has been human codon optimized and comprises mutations that increase the cytosine deaminase's stability (e.g., reduced degradation or increased thermo-stability) compared to a wild-type cytosine deaminase. In yet another embodiment, the heterologous polynucleotide encodes a fusion construct comprising a cytosine deaminase (either human codon optimized or non-optimized, either mutated or non-mutated) operably linked to a polynucleotide encoding a polypeptide having UPRT or OPRT activity. In another embodiment, the heterologous polynucleotide comprises a CD polynucleotide of the disclosure (e.g., SEQ ID NO:3, 5, 11, 13, 15, or 17).
In another embodiment, replication competent retroviral vector can comprise a heterologous polynucleotide encoding a polypeptide comprising a cytosine deaminase (as described herein) and may further comprise a polynucleotide comprising a miRNA or siRNA molecule either as part of the primary transcript from the viral promoter or linked to a promoter, which can be cell-type or tissue specific.
For examples, miRNAs that are down-regulated in cancers could be useful as anticancer agents. Examples include mir-128-1, let-7, miR-26, miR-124, and miR-137 (Esquela-Kerscher et al., 2008 Cell Cycle 7, 759-764; Kumar et al., 2008 Proc Natl Acad Sci USA 105, 3903-3908; Kota et al., 2009 Cell 137, 1005-1017; Silber et al., 2008 BMC Medicine 6:14 1-17). miR-128 expression has reported to be enriched in the central nervous system and has been observed to be down-regulated in glioblastomas (Sempere et al., 2004 Genome Biology 5:R13.5-11; Godlewski et al., 2008 Cancer Res 68: (22) 9125-9130). miR-128 is encoded by two distinct genes, miR-128-1 and miR-128-2. Both are processed into identical mature sequence. Bmi-1 and E2F3a have been reported to be the direct targets of miR-128 (Godlewski et al., 2008 Cancer Res 68: (22) 9125-9130; Zhang et al., 2009 J. Mol Med 87:43-51). In addition, Bmi-1 expression has been observed to be up-regulated in a variety of human cancers, including gliomas, mantle cell lymphomas, non-small cell lung cancer B-cell non-Hodgkin's lymphoma, breast, colorectal and prostate cancer. Furthermore, Bmi-1 has been demonstrated to be required for the self-renewal of stem cells from diverse tissues, including neuronal stem cells as well as “stem-like” cell population in gliomas.
In one embodiment, the disclosure provides a recombinant replication competent retroviral vector that contains a single copy of the miR-142-3p target sequence (142-3pT, SEQ ID NO:35) downstream of the transgene, such as yCD2 or GFP, linked to the IRES. In addition to miR181 and miR-223, the target sequence of other tissue or cell-enriched miRNA can be incorporated into the vector to restrict viral spread in specific tissue or cell type manner. For example, miR-133 and miR206 expressions are highly enriched in muscle cells (Kelly et al., 2008 Nature Medicine 14:11 1278-1283.
In another embodiment, the disclosure provides a recombinant replication competent retroviral vector that contains 4 copies of the 142-3pT (SEQ ID NO: 36) downstream of the transgene, such as yCD2 or GFP, linked to the IRES. In addition to miR181 and miR-223, the target sequence of other tissue or cell-enriched miRNA can be incorporated into the vector to restrict viral spread in specific tissue or cell type manner.
In yet further embodiments, the heterologous polynucleotide may comprise a cytokine such as an interleukin, interferon gamma or the like. Cytokines that may expressed from a retroviral vector of the disclosure include, but are not limited to, IL-1alpha, IL-1beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, and IL-21, anti-CD40, CD40L, IFN-gamma and TNF-alpha, soluble forms of TNF-alpha, lymphotoxin-alpha (LT-alpha, also known as TNF-beta), LT-beta (found in complex heterotrimer LT-alpha2-beta), OPGL, FasL, CD27L, CD30L, CD40L, 4-1BBL, DcR3, OX40L, TNF-gamma (International Publication No. WO 96/14328), AIM-I (International Publication No. WO 97/33899), endokine-alpha (International Publication No. WO 98/07880), OPG, and neutrokine-alpha (International Publication No. WO 98/18921, OX40, and nerve growth factor (NGF), and soluble forms of Fas, CD30, CD27, CD40 and 4-IBB, TR2 (International Publication No. WO 96/34095), DR3 (International Publication No. WO 97/33904), DR4 (International Publication No. WO 98/32856), TR5 (International Publication No. WO 98/30693), TRANK, TR9 (International Publication No. WO 98/56892), TR10 (International Publication No. WO 98/54202), 312C2 (International Publication No. WO 98/06842), and TR12, and soluble forms CD154, CD70, and CD153. Angiogenic proteins may be useful in some embodiments, particularly for protein production from cell lines. Such angiogenic factors include, but are not limited to, Glioma Derived Growth Factor (GDGF), Platelet Derived Growth Factor-A (PDGF-A), Platelet Derived Growth Factor-B (PDGF-B), Placental Growth Factor (PIGF), Placental Growth Factor-2 (PIGF-2), Vascular Endothelial Growth Factor (VEGF), Vascular Endothelial Growth Factor-A (VEGF-A), Vascular Endothelial Growth Factor-2 (VEGF-2), Vascular Endothelial Growth Factor B (VEGF-3), Vascular Endothelial Growth Factor B-1 86 (VEGF-B186), Vascular Endothelial Growth Factor-D (VEGF-D), Vascular Endothelial Growth Factor-D (VEGF-D), and Vascular Endothelial Growth Factor-E (VEGF-E). Fibroblast Growth Factors may be delivered by a vector of the disclosure and include, but are not limited to, FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, FGF-11, FGF-12, FGF-13, FGF-14, and FGF-15. Hematopoietic growth factors may be delivered using vectors of the disclosure, such growth factors include, but are not limited to, granulocyte macrophage colony stimulating factor (GM-CSF) (sargramostim), granulocyte colony stimulating factor (G-CSF) (filgrastim), macrophage colony stimulating factor (M-CSF, CSF-1) erythropoietin (epoetin alfa), stem cell factor (SCF, c-kit ligand, steel factor), megakaryocyte colony stimulating factor, PIXY321 (a GMCSF/IL-3) fusion protein and the like.
The term “regulatory nucleic acid sequence” refers collectively to promoter sequences, polyadenylation signals, transcription termination sequences, upstream regulatory domains, origins of replication, enhancers and the like, which collectively provide for the replication, transcription and translation of a coding sequence in a recipient cell. Not all of these control sequences need always be present so long as the selected coding sequence is capable of being replicated, transcribed and translated in an appropriate host cell. One skilled in the art can readily identify regulatory nucleic acid sequence from public databases and materials. Furthermore, one skilled in the art can identify a regulatory sequence that is applicable for the intended use, for example, in vivo, ex vivo, or in vitro.
An internal ribosome entry sites (“IRES”) refers to a segment of nucleic acid that promotes the entry or retention of a ribosome during translation of a coding sequence usually 3′ to the IRES. In some embodiments the IRES may comprise a splice acceptor/donor site, however, preferred IRESs lack a splice acceptor/donor site. Normally, the entry of ribosomes into messenger RNA takes place via the cap located at the 5′ end of all eukaryotic mRNAs. However, there are exceptions to this universal rule. The absence of a cap in some viral mRNAs suggests the existence of alternative structures permitting the entry of ribosomes at an internal site of these RNAs. To date, a number of these structures, designated IRES on account of their function, have been identified in the 5′ noncoding region of uncapped viral mRNAs, such as that, in particular, of picornaviruses such as the poliomyelitis virus (Pelletier et al., 1988, Mol. Cell. Biol., 8, 1103-1112) and the EMCV virus (encephalo-myocarditis virus (Jang et al., J. Virol., 1988, 62, 2636-2643). The disclosure provides the use of an IRES in the context of a replication-competent retroviral vector.
The term “promoter region” is used herein in its ordinary sense to refer to a nucleotide region comprising a DNA regulatory sequence, wherein the regulatory sequence is derived from a gene which is capable of binding RNA polymerase and initiating transcription of a downstream (3′-direction) coding sequence. The regulatory sequence may be homologous or heterologous to the desired gene sequence. For example, a wide range of promoters may be utilized, including viral or mammalian promoter as described above.
The heterologous nucleic acid sequence is typically under control of either the viral LTR promoter-enhancer signals or an internal promoter, and retained signals within the retroviral LTR can still bring about efficient integration of the vector into the host cell genome. Accordingly, the recombinant retroviral vectors of the disclosure, the desired sequences, genes and/or gene fragments can be inserted at several sites and under different regulatory sequences. For example, a site for insertion can be the viral enhancer/promoter proximal site (i.e., 5′ LTR-driven gene locus). Alternatively, the desired sequences can be inserted into a regulatory sequence distal site (e.g., the IRES sequence 3′ to the env gene) or where two or more heterologous sequences are present one heterologous sequence may be under the control of a first regulatory region and a second heterologous sequence under the control of a second regulatory region. Other distal sites include viral promoter sequences, where the expression of the desired sequence or sequences is through splicing of the promoter proximal cistron, an internal heterologous promoter as SV40 or CMV, or an internal ribosome entry site (IRES) can be used.
In one embodiment, the retroviral genome of the disclosure contains an IRES comprising a cloning site downstream of the IRES for insertion of a desired/heterologous polynucleotide. In one embodiment, the IRES is located 3′ to the env gene in the retroviral vector, but 5′ to the desired heterologous polynucleotide. Accordingly, a heterologous polynucleotide encoding a desired polypeptide may be operably linked to the IRES.
In another embodiment, a targeting polynucleotide sequence is included as part of the recombinant retroviral vector of the disclosure. The targeting polynucleotide sequence is a targeting ligand (e.g., peptide hormones such as heregulin, a single-chain antibodies, a receptor or a ligand for a receptor), a tissue-specific or cell-type specific regulatory element (e.g., a tissue-specific or cell-type specific promoter or enhancer), or a combination of a targeting ligand and a tissue-specific/cell-type specific regulatory element. Preferably, the targeting ligand is operably linked to the env protein of the retrovirus, creating a chimeric retroviral env protein. The viral GAG, viral POL and viral ENV proteins can be derived from any suitable retrovirus (e.g., MLV or lentivirus-derived). In another embodiment, the viral ENV protein is non-retrovirus-derived (e.g., CMV or VSV).
In one embodiment, the recombinant retrovirus of the disclosure is genetically modified in such a way that the virus is targeted to a particular cell type (e.g., smooth muscle cells, hepatic cells, renal cells, fibroblasts, keratinocytes, mesenchymal stem cells, bone marrow cells, chondrocyte, epithelial cells, intestinal cells, mammary cells, neoplastic cells, glioma cells, neuronal cells and others known in the art) such that the recombinant genome of the retroviral vector is delivered to a target non-dividing, a target dividing cell, or a target cell having a cell proliferative disorder.
In one embodiment, the retroviral vector is targeted to the cell by binding to cells having a molecule on the external surface of the cell. This method of targeting the retrovirus utilizes expression of a targeting ligand on the coat of the retrovirus to assist in targeting the virus to cells or tissues that have a receptor or binding molecule which interacts with the targeting ligand on the surface of the retrovirus. After infection of a cell by the virus, the virus injects its nucleic acid into the cell and the retrovirus genetic material can integrate into the host cell genome.
In another embodiment, targeting uses cell- or tissue-specific regulatory elements to promote expression and transcription of the viral genome in a targeted cell which actively utilizes the regulatory elements, as described more fully below. The transferred retrovirus genetic material is then transcribed and translated into proteins within the host cell. The targeting regulatory element is typically linked to the 5′ and/or 3′ LTR, creating a chimeric LTR.
By inserting a heterologous polynucleotide of interest into the viral vector of the disclosure, along with another gene which encodes, for example, the ligand for a receptor on a specific target cell, the vector is now target specific. Viral vectors can be made target specific by attaching, for example, a sugar, a glycolipid, or a protein. Targeting can be accomplished by using an antibody to target the viral vector. Those of skill in the art will know of, or can readily ascertain, specific polynucleotide sequences which can be inserted into the viral genome or proteins which can be attached to a viral envelope to allow target specific delivery of the viral vector containing the nucleic acid sequence of interest.
Thus, the disclosure includes in one embodiment, a chimeric env protein comprising a retroviral ENV protein operably linked to a targeting polypeptide. The targeting polypeptide can be a cell specific receptor molecule, a ligand for a cell specific receptor, an antibody or antibody fragment to a cell specific antigenic epitope or any other ligand easily identified in the art which is capable of binding or interacting with a target cell. Examples of targeting polypeptides or molecules include bivalent antibodies using biotin-streptavidin as linkers (Etienne-Julan et al., J. Of General Virol., 73, 3251-3255 (1992); Roux et al., Proc. Natl. Acad. Sci USA 86, 9079-9083 (1989)), recombinant virus containing in its envelope a sequence encoding a single-chain antibody variable region against a hapten (Russell et al., Nucleic Acids Research, 21, 1081-1085 (1993)), cloning of peptide hormone ligands into the retrovirus envelope (Kasahara et al., Science, 266, 1373-1376 (1994)), chimeric EPO/env constructs (Kasahara et al., 1994), single-chain antibody against the low density lipoprotein (LDL) receptor in the ecotropic MLV envelope, resulting in specific infection of HeLa cells expressing LDL receptor (Somia et al., Proc. Natl. Acad. Sci USA, 92, 7570-7574 (1995)), similarly the host range of ALV can be altered by incorporation of an integrin ligand, enabling the virus to now cross species to specifically infect rat glioblastoma cells (Valsesia-Wittmann et al., J. Virol. 68, 4609-4619 (1994)), and Dornberg and co-workers (Chu and Dornburg, J. Virol 69, 2659-2663 (1995); M. Engelstadter et al. Gene Therapy 8, 1202-1206 (2001)) have reported tissue-specific targeting of spleen necrosis virus (SNV), an avian retrovirus, using envelopes containing single-chain antibodies directed against tumor markers.
The disclosure provides a method of producing a recombinant retrovirus capable of infecting a target cell comprising transfecting a suitable host cell with the following: a vector comprising a polynucleotide sequence encoding a viral gag, a viral pol and a viral env, and a heterologous polynucleotide, operably linked to a regulatory nucleic acid sequence, and recovering the recombinant virus.
The retrovirus and methods of the disclosure provide a replication competent retrovirus that does not require helper virus or additional nucleic acid sequence or proteins in order to propagate and produce virion. For example, the nucleic acid sequences of the retrovirus of the disclosure encode a group specific antigen and reverse transcriptase, (and integrase and protease-enzymes necessary for maturation and reverse transcription), respectively, as discussed above. The viral gag and pol can be derived from a lentivirus, such as HIV or an oncovirus or gammaretrovirus such as MoMLV. In addition, the nucleic acid genome of the retrovirus of the disclosure includes a sequence encoding a viral envelope (ENV) protein. The env gene can be derived from any retroviruses. The env may be an amphotropic envelope protein which allows transduction of cells of human and other species, or may be an ecotropic envelope protein, which is able to transduce only mouse and rat cells. Further, it may be desirable to target the recombinant virus by linkage of the envelope protein with an antibody or a particular ligand for targeting to a receptor of a particular cell-type. As mentioned above, retroviral vectors can be made target specific by inserting, for example, a glycolipid, or a protein. Targeting is often accomplished by using an antibody to target the retroviral vector to an antigen on a particular cell-type (e.g., a cell type found in a certain tissue, or a cancer cell type). Those of skill in the art will know of, or can readily ascertain without undue experimentation, specific methods to achieve delivery of a retroviral vector to a specific target. In one embodiment, the env gene is derived from a non-retrovirus (e.g., CMV or VSV). Examples of retroviral-derived env genes include, but are not limited to: Moloney murine leukemia virus (MoMuLV), Harvey murine sarcoma virus (HaMuSV), murine mammary tumor virus (MuMTV), gibbon ape leukemia virus (GaLV), human immunodeficiency virus (HIV) and Rous Sarcoma Virus (RSV). Other env genes such as Vesicular stomatitis virus (VSV) (Protein G), cytomegalovirus envelope (CMV), or influenza virus hemagglutinin (HA) can also be used.
In one embodiment, the retroviral genome is derived from an onco-retrovirus, and more particularly a mammalian onco-retrovirus. In a further embodiment, the retroviral genome is derived from a gamma retrovirus, and more particularly a mammalian gamma retrovirus. By “derived” is meant that the parent polynucleotide sequence is an wild-type oncovirus which has been modified by insertion or removal of naturally occurring sequences (e.g., insertion of an IRES, insertion of a heterologous polynucleotide encoding a polypeptide or inhibitory nucleic acid of interest, swapping of a more effective promoter from a different retrovirus or virus in place of the wild-type promoter and the like).
In another embodiment, the disclosure provides retroviral vectors that are targeted using regulatory sequences. Cell- or tissue-specific regulatory sequences (e.g., promoters) can be utilized to target expression of gene sequences in specific cell populations. Suitable mammalian and viral promoters for the disclosure are described elsewhere herein. Accordingly, in one embodiment, the disclosure provides a retrovirus having tissue-specific promoter elements at the 5′ end of the retroviral genome. Typically, the tissue-specific regulatory elements/sequences are in the U3 region of the LTR of the retroviral genome, including for example cell- or tissue-specific promoters and enhancers to neoplastic cells (e.g., tumor cell-specific enhancers and promoters), and inducible promoters (e.g., tetracycline).
Transcription control sequences of the disclosure can also include naturally occurring transcription control sequences naturally associated with a gene encoding a superantigen, a cytokine or a chemokine.
In some circumstances, it may be desirable to regulate expression. For example, different viral promoters with varying strengths of activity may be utilized depending on the level of expression desired. In mammalian cells, the CMV immediate early promoter if often used to provide strong transcriptional activation. Modified versions of the CMV promoter that are less potent have also been used when reduced levels of expression of the transgene are desired. When expression of a transgene in hematopoietic cells is desired, retroviral promoters such as the LTRs from MLV or MMTV can be used. Other viral promoters that can be used include SV40, RSV LTR, HIV-1 and HIV-2 LTR, adenovirus promoters such as from the E1A, E2A, or MLP region, AAV LTR, cauliflower mosaic virus, HSV-TK, and avian sarcoma virus.
Similarly tissue specific or selective promoters may be used to effect transcription in specific tissues or cells so as to reduce potential toxicity or undesirable effects to non-targeted tissues. For example, promoters such as the PSA, probasin, prostatic acid phosphatase or prostate-specific glandular kallikrein (hK2) may be used to target gene expression in the prostate. The Whey accessory protein (WAP) may be used for breast tissue expression (Andres et al., PNAS 84:1299-1303, 1987). Other promoters/regulatory domains that can be used are set forth in Table 1.
“Tissue-specific regulatory elements” are regulatory elements (e.g., promoters) that are capable of driving transcription of a gene in one tissue while remaining largely “silent” in other tissue types. It will be understood, however, that tissue-specific promoters may have a detectable amount of “background” or “base” activity in those tissues where they are silent. The degree to which a promoter is selectively activated in a target tissue can be expressed as a selectivity ratio (activity in a target tissue/activity in a control tissue). In this regard, a tissue specific promoter useful in the practice of the disclosure typically has a selectivity ratio of greater than about 5. Preferably, the selectivity ratio is greater than about 15.
In certain indications, it may be desirable to activate transcription at specific times after administration of the recombinant replication competent retrovirus of the disclosure (RRCR). This may be done with promoters that are hormone or cytokine regulatable. For example in therapeutic applications where the indication is a gonadal tissue where specific steroids are produced or routed to, use of androgen or estrogen regulated promoters may be advantageous. Such promoters that are hormone regulatable include MMTV, MT-1, ecdysone and RuBisco. Other hormone regulated promoters such as those responsive to thyroid, pituitary and adrenal hormones may be used. Cytokine and inflammatory protein responsive promoters that could be used include K and T Kininogen (Kageyama et al., 1987), c-fos, TNF-alpha, C-reactive protein (Arcone et al., 1988), haptoglobin (Oliviero et al., 1987), serum amyloid A2, C/EBP alpha, IL-1, IL-6 (Poli and Cortese, 1989), Complement C3 (Wilson et al., 1990), IL-8, alpha-1 acid glycoprotein (Prowse and Baumann, 1988), alpha-1 antitrypsin, lipoprotein lipase (Zechner et al., 1988), angiotensinogen (Ron et al., 1990), fibrinogen, c-jun (inducible by phorbol esters, TNF-alpha, UV radiation, retinoic acid, and hydrogen peroxide), collagenase (induced by phorbol esters and retinoic acid), metallothionein (heavy metal and glucocorticoid inducible), Stromelysin (inducible by phorbol ester, interleukin-1 and EGF), alpha-2 macroglobulin and alpha-1 antichymotrypsin. Tumor specific promoters such as osteocalcin, hypoxia-responsive element (HRE), MAGE-4, CEA, alpha-fetoprotein, GRP78/BiP and tyrosinase may also be used to regulate gene expression in tumor cells.
In addition, this list of promoters should not be construed to be exhaustive or limiting, those of skill in the art will know of other promoters that may be used in conjunction with the promoters and methods disclosed herein.
It will be further understood that certain promoters, while not restricted in activity to a single tissue type, may nevertheless show selectivity in that they may be active in one group of tissues, and less active or silent in another group. Such promoters are also termed “tissue specific”, and are contemplated for use with the disclosure. For example, promoters that are active in a variety of central nervous system (CNS) neurons may be therapeutically useful in protecting against damage due to stroke, which may affect any of a number of different regions of the brain. Accordingly, the tissue-specific regulatory elements used in the disclosure, have applicability to regulation of the heterologous proteins as well as applicability as a targeting polynucleotide sequence in the present retroviral vectors.
In yet another embodiment, the disclosure provides plasmids comprising a recombinant retroviral derived construct. The plasmid can be directly introduced into a target cell or a cell culture such as NIH 3T3 or other tissue culture cells. The resulting cells release the retroviral vector into the culture medium.
The disclosure provides a polynucleotide construct comprising from 5′ to 3′: a promoter or regulatory region useful for initiating transcription; a psi packaging signal; a gag encoding nucleic acid sequence, a pol encoding nucleic acid sequence; an env encoding nucleic acid sequence; an internal ribosome entry site nucleic acid sequence; a heterologous polynucleotide encoding a marker, therapeutic or diagnostic polypeptide; and a LTR nucleic acid sequence. As described elsewhere herein and as follows the various segment of the polynucleotide construct of the disclosure (e.g., a recombinant replication competent retroviral polynucleotide) are engineered depending in part upon the desired host cell, expression timing or amount, and the heterologous polynucleotide. A replication competent retroviral construct of the disclosure (e.g., comprising SEQ ID NO:19, 20 or 22) can be divided up into a number of domains that may be individually modified by those of skill in the art.
For example, the promoter can comprise a CMV promoter having a sequence as set forth in SEQ ID NO:19, 20 or 22 from nucleotide 1 to about nucleotide 582 and may include modification to one or more (e.g., 2-5, 5-10, 10-20, 20-30, 30-50, 50-100 or more nucleic acid bases) so long as the modified promoter is capable of directing and initiating transcription. In one embodiment, the promoter or regulatory region comprises a CMV-R-U5 domain polynucleotide. The CMV-R-U5 domain comprises the immediately early promoter from human cytomegalovirus to the MLV R-U5 region. In one embodiment, the CMV-R-U5 domain polynucleotide comprises a sequence as set forth in SEQ ID NO:19, 20 or 22 from about nucleotide 1 to about nucleotide 1202 or sequences that are at least 95% identical to a sequence as set forth in SEQ ID NO:19, 20, or 22 wherein the polynucleotide promotes transcription of a nucleic acid molecule operably linked thereto. The gag domain of the polynucleotide may be derived from any number of retroviruses, but will typically be derived from an oncoretrovirus and more particularly from a mammalian oncoretrovirus. In one embodiment the gag domain comprises a sequence from about nucleotide number 1203 to about nucleotide 2819 or a sequence having at least 95%, 98%, 99% or 99.8% (rounded to the nearest 10th) identity thereto. The pol domain of the polynucleotide may be derived from any number of retroviruses, but will typically be derived from an oncoretrovirus and more particularly from a mammalian oncoretrovirus. In one embodiment the pol domain comprises a sequence from about nucleotide number 2820 to about nucleotide 6358 or a sequence having at least 95%, 98%, 99% or 99.9% (roundest to the nearest 10th) identity thereto. The env domain of the polynucleotide may be derived from any number of retroviruses, but will typically be derived from an oncoretrovirus or gamma-retrovirus and more particularly from a mammalian oncoretrovirus or gamma-retrovirus. In some embodiments the env coding domain comprises an amphotropic env domain. In one embodiment the env domain comprises a sequence from about nucleotide number 6359 to about nucleotide 8323 or a sequence having at least 95%, 98%, 99% or 99.8% (roundest to the nearest 10th) identity thereto. The IRES domain of the polynucleotide may be obtained from any number of internal ribosome entry sites. In one embodiment, IRES is derived from an encephalomyocarditis virus. In one embodiment the IRES domain comprises a sequence from about nucleotide number 8327 to about nucleotide 8876 or a sequence having at least 95%, 98%, or 99% (roundest to the nearest 10th) identity thereto so long as the domain allows for entry of a ribosome. The heterologous domain can comprise a cytosine deaminase of the disclosure. In one embodiment, the CD polynucleotide comprises a human codon optimized sequence. In yet another embodiment, the CD polynucleotide encodes a mutant polypeptide having cytosine deaminase, wherein the mutations confer increased thermal stabilization that increase the melting temperature (Tm) by 10° C. allowing sustained kinetic activity over a broader temperature range and increased accumulated levels of protein. In one embodiment, the cytosine deaminase comprises a sequence as set forth in SEQ ID NO:19 or 22 from about nucleotide number 8877 to about 9353. The heterologous domain may be followed by a polypurine rich domain. The 3′ LTR can be derived from any number of retroviruses, typically an oncoretrovirus and preferably a mammalian oncoretrovirus. In one embodiment, the 3′ LTR comprises a U3-R-U5 domain. In yet another embodiment the LTR comprises a sequence as set forth in SEQ ID NO:19 or 22 from about nucleotide 9405 to about 9998 or a sequence that is at least 95%, 98% or 99.5% (rounded to the nearest 10th) identical thereto.
The disclosure also provides a recombinant retroviral vector comprising from 5′ to 3′ a CMV-R-U5, fusion of the immediate early promoter from human cytomegalovirus to the MLV R-U5 region; a PBS, primer binding site for reverse transcriptase; a 5′ splice site; a psi (ψ) packaging signal; a gag, ORF for MLV group specific antigen; a pol, ORF for MLV polymerase polyprotein; a 3′ splice site; a 4070A env, ORF for envelope protein of MLV strain 4070A; an IRES, internal ribosome entry site of encephalomyocarditis virus; a modified cytosine deaminase (thermostablized and codon optimized); a PPT, polypurine tract; and a U3-R-U5, MLV long terminal repeat. This structure is further depicted in
The disclosure also provides a retroviral vector comprising a sequence as set forth in SEQ ID NO:19, 20 or 22.
The retroviral vectors can be used to treat a wide range of disease and disorders including a number of cell proliferative diseases and disorders (see, e.g., U.S. Pat. Nos. 4,405,712 and 4,650,764; Friedmann, 1989, Science, 244:1275-1281; Mulligan, 1993, Science, 260:926-932, R. Crystal, 1995, Science 270:404-410, each of which are incorporated herein by reference in their entirety, see also, The Development of Human Gene Therapy, Theodore Friedmann, Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1999. ISBN 0-87969-528-5, which is incorporated herein by reference in its entirety).
The disclosure also provides gene therapy for the treatment of cell proliferative disorders. Such therapy would achieve its therapeutic effect by introduction of an appropriate therapeutic polynucleotide (e.g., antisense, ribozymes, suicide genes, siRNA), into cells of subject having the proliferative disorder. Delivery of polynucleotide constructs can be achieved using the recombinant retroviral vector of the disclosure, particularly if it is based on MLV, which is capable of infecting dividing cells.
In addition, the therapeutic methods (e.g., the gene therapy or gene delivery methods) as described herein can be performed in vivo or ex vivo. It may be preferable to remove the majority of a tumor prior to gene therapy, for example surgically or by radiation. In some aspects, the retroviral therapy may be preceded or followed by surgery, chemotherapy or radiation therapy.
The methods and compositions of the disclosure are useful in combination therapies including therapies with bevacizumab. As described herein a replication competent retrovirus (RCR) of the disclosure comprising a therapeutic (e.g., a cytotoxic gene) is useful in treating cell proliferative disorders. An advantage of the RCR of the disclosure includes its ability to infect replicating cells cancer cells. Where the transgene of the vector comprises a cytotoxic gene (e.g., a gene that encodes a polypeptide that converts a non-cytotoxic agent to a cytotoxic agent) provides the ability to kill cancer cells.
In another embodiment, the methods and composition of the disclosure are useful in combination with agents that promote apoptosis or that modify expression of cytokines or agents that promote apoptosis. For example, a retroviral vector of the disclosure comprising a polynucleotide encoding a polypeptide having cytosine deaminase activity can be administered prior to, simultaneously with, or after administration of a peptide or polypeptide having thymosin-alpha-1 activity. In one embodiment, the thymosin-alpha-1 polypeptide is administered at about 0.1-16 mg/kg.
Thymosin alpha-1 (Zadaxin™) functions by increasing the sensitivity of neoplastic cells to chemotherapeutic agents by upregulating pro-apoptotic proteins. Specifically, Thymosin alpha-1 upregulates pro-apoptotic FasL, FasR and TNFalpha-R1. In combination with a RCR of the disclosure, Thymosin alpha-1 functions as an adjuvant to increase the sensitivity of neoplastic cells to 5-FU thereby increasing the effectiveness of Toca 511 5-FC to 5-FU conversion as a chemotherapeutic agent after administration of RCR derived from T5.0002 and known as Toca 511. Thymosin alpha-1 can also function as an immunomodulatory agent increasing the recruitment and activity of immune components thereby leading to enhancement of vaccine effectiveness of RRV therapy.
A polypeptide having thymosin-alpha-1 activity refers to a polypeptide comprising thymosin-alpha-1 or a variant or homolog thereof. Thymosin-alpha-1 (TA1) is a 28-amino acid peptide and includes synthetic forms of a naturally occurring hormone that circulates in the thymus. TA1 stimulate thymocyte growth and differentiation, production of IL-2, T cell IL-2 receptors, IFN-γ and IFN-α. Dosing regimes for TA1 are well known. In any case doses in humans can be over a wide range such as 1 to 100 mg/dose.
The disclosure thus provides administering alpha thymosin peptides (“thymosin peptides”) to enhance cancer therapy with a replication competent retroviral vector of the disclosure comprising heterologous gene encoding a polypeptide having cytosine deaminase activity. Thymosin peptides include thymosin alpha 1 (“TA1”), and peptides having structural homology to TA1. TA1 is a peptide having the amino acid sequence Ser-Asp-Ala-Ala-Val-Asp-Thr-Ser-Ser-Glu-11e-Thr-Thr-Lys-Asp-Leu-Lys-Glu-Lys-Lys-Glu-Val-Val-Glu-Glu-Ala-Glu-Asn (SEQ ID NO:73) The amino acid sequence of TA1 is disclosed in U.S. Pat. No. 4,079,137, the disclosure of which is hereby incorporated by reference. TA1 is a non-glycosylated 28-amino acid peptide having an acetylated N-terminus, and a molecular weight of about 3108. A synthetic version of TA1 is commercially available in certain countries under the trade name ZADAXIN®.
It is believed that thymosin peptides (e.g., TA1), among other things, activate Toll-like Receptor 9 (TLR), resulting in increases in Th1 cells, B cells, and NK cells, thereby leading to enhancement of vaccine effectiveness. For example, TA1 may increase or enhance lymphocytic infiltration, secretion of chemotactic cytokines, maturation and differentiation of dendritic cells, secretion of thymopoeitic cytokines including IFN-alpha, IL-7, and IL-15, and B cell production of antibodies.
The thymosin peptides that find use with the vectors and methods of the disclosure include naturally occurring TA1 (e.g., TA1 purified or isolated from tissues), as well as synthetic TA1 and recombinant TA1. In some embodiments, the thymosin peptide comprises the amino acid sequence of SEQ ID NO:73 (where an acylated, e.g., acetylated, N-terminus is optional). In some embodiments, the thymosin peptide comprises an amino acid sequence that is substantially similar to TA1, and maintains the immunomodulatory activity of TA1. The substantially similar sequence may have, for example, from about 1 to about 10 amino acid deletions, insertions, and/or substitutions (collectively) with respect to TA1. For example, the thymosin peptide may have from about 1 to about 5 (e.g., 1, 2, or 3) amino acid insertions, deletions, and/or substitutions (collectively) with respect to TA1 so long as the peptide has one or more activities associated with a naturally occurring thymosin.
Thus, a thymosin peptide useful in the methods of the disclosure may comprise an abbreviated TA1 sequence, for example, having deletions of from 1 to about 10 amino acids, or from about 1 to 5 amino acids, or 1, 2 or 3 amino acids with respect to TA1. Such deletions may be at the N- or C-terminus, and/or internal, so long as the activity of the peptide is substantially maintained. Alternatively, or in addition, the substantially similar sequence may have from about 1 to about 5 amino acid insertions (e.g., 1, 2, or 3 amino acid insertions) with respect to TA1, where the immunomodulatory activity of TA1 is substantially maintained. Alternatively, or in addition, the substantially similar sequence may have from 1 to about 10 amino acid substitutions, where the immunomodulatory activity is substantially maintained. For example, the substantially similar sequence may have from 1 to about 5, or 1, 2, or 3 amino acid substitutions, which may include conservative and non-conservative substitutions. In some embodiments, the substitutions are conservative. Generally, conservative substitutions include substitutions of a chemically similar amino acid (e.g., polar, non-polar, or charged). Substituted amino acids may be selected from the standard 20 amino acids or may be a non-standard amino acid (e.g., a conserved non-standard amino acid).
In some embodiments, the thymosin peptide comprises an amino acid sequence having at least 70% sequence identity to SEQ ID NO:73, while maintaining the activity of a naturally occurring TA1. For example, the thymosin peptide may comprise an amino acid sequence having at least 80%, 90%, or 95% sequence identity to SEQ ID NO:73. The thymosin peptide may comprise an amino acid sequence having 100% sequence identity to SEQ ID NO:73. In all cases, the N-terminus may be optionally acylated (e.g., acetylated) or alkylated, for example, with a C1-10 or C1-C7 acyl or alkyl group.
The disclosure provides methods for treating cell proliferative disorders such as cancer and neoplasms comprising administering an RCR vector of the disclosure prior to, simultaneously with or following administration of a thymosin peptide. In another embodiment the combination of RCR and thymosin may also be followed by treatment with a chemotherapeutic agent or anti-cancer agent. In one aspect, the RCR vector is administered to a subject for a period of time prior to administration of the chemotherapeutic or anti-cancer agent that allows the RCR to infect and replicate. The subject is then treated with a chemotherapeutic agent or anti-cancer agent for a period of time and dosage to reduce proliferation or kill the cancer cells. In one aspect, if the treatment with the chemotherapeutic or anti-cancer agent reduces, but does not kill the cancer/tumor (e.g., partial remission or temporary remission), the subject may then be treated with a non-toxic therapeutic agent (e.g., 5-FC) that is converted to a toxic therapeutic agent in cells expression a cytotoxic gene (e.g., cytosine deaminase) from the RCR. The methods and compositions of the disclosure are useful in other combination therapies, for example, therapies with Thymosin alpha-1 (Zadaxin™), trastuzumab (Herceptin), Leucovorin and other folic acid analogues, or other promoters of 5-FU activity (D. Papamichael Stem Cells 18:166-175 2000) such as dihydropyrimidine dehydrogenase [DPD] inhibitors [e.g. 5-Chloro-2,4-Dihydroxypyridine—Cdhp]) whose action is targeted, rather than systemic, when used in conjunction with the tumor targeted 5-FU production from 5-FC administration and CD expression from the vector of disclosure.
Leucovorin or other folic acid analogues promote 5-FU binding to thymidilate synthase, thereby inactivating this key enzyme in nucleic acid biosynthesis, and enhancing the efficacy of 5-FU.
DPD inhibitors block the activity of dihydropyrimdine dehydrogenasean enzyme that normally degrades about 80% of systemically administered 5-FU. DPD inhibition results in increased retention of 5-FU and frequently make 5-FU very much more toxic. In fact this can be life threatening in patients that have DPD deficiency (Ezeldin & Diasio Clinical Colorectal Cancer, Vol. 4, No. 3, 181-189, 2004). However, in the vectors of the disclosure, 5-FU is only produced locally in the tumor, and hence the increased toxicity is confined to the area of the tumor, where it is a benefit.
The disclosure provides a method of treating a subject having a cell proliferative disorder. The subject can be any mammal, and is preferably a human. The subject is contacted with a recombinant replication competent retroviral vector of the disclosure. The contacting can be in vivo or ex vivo. Methods of administering the retroviral vector of the disclosure are known in the art and include, for example, systemic administration, topical administration, intraperitoneal administration, intra-muscular administration, intracranial, cerebrospinal, as well as administration directly at the site of a tumor or cell-proliferative disorder. Other routes of administration are known in the art.
Thus, the disclosure includes various pharmaceutical compositions useful for treating a cell proliferative disorder. The pharmaceutical compositions according to the disclosure are prepared by bringing a retroviral vector containing a heterologous polynucleotide sequence useful in treating or modulating a cell proliferative disorder according to the disclosure into a form suitable for administration to a subject using carriers, excipients and additives or auxiliaries. Frequently used carriers or auxiliaries include magnesium carbonate, titanium dioxide, lactose, mannitol and other sugars, talc, milk protein, gelatin, starch, vitamins, cellulose and its derivatives, animal and vegetable oils, polyethylene glycols and solvents, such as sterile water, alcohols, glycerol and polyhydric alcohols. Intravenous vehicles include fluid and nutrient replenishers. Preservatives include antimicrobial, anti-oxidants, chelating agents and inert gases. Other pharmaceutically acceptable carriers include aqueous solutions, non-toxic excipients, including salts, preservatives, buffers and the like, as described, for instance, in Remington's Pharmaceutical Sciences, 15th ed. Easton: Mack Publishing Co., 1405-1412, 1461-1487 (1975) and The National Formulary XIV., 14th ed. Washington: American Pharmaceutical Association (1975), the contents of which are hereby incorporated by reference. The pH and exact concentration of the various components of the pharmaceutical composition are adjusted according to routine skills in the art. See Goodman and Gilman's The Pharmacological Basis for Therapeutics (7th ed.).
For example, and not by way of limitation, a retroviral vector useful in treating a cell proliferative disorder will include an amphotropic ENV protein, GAG, and POL proteins, a promoter sequence in the U3 region retroviral genome, and all cis-acting sequence necessary for replication, packaging and integration of the retroviral genome into the target cell.
The following Examples are intended to illustrate, but not to limit the disclosure. While such Examples are typical of those that might be used, other procedures known to those skilled in the art may alternatively be utilized.
The previous back bone of the pACE-GFPemd plasmid (U.S. Pat. No. 6,899,871, Wang et al. Hum Gene Ther 14:117 2003) was modified in 3 ways as shown in
See
The vector of the disclosure provides a number of differences compared to the vector of Tai et al., Mol. Ther. 12:842, 2005. The Tai et al. vector has been altered to eliminate about 70 bp of MLV sequence downstream from the 3′LTR. The DNA sequence downstream of the ClaI site in the envelope was changed to an amphotropic envelope sequence. This change does not change the amino acid sequence of the envelope. In addition, small repeats on either side of the IRES-CD cassette have been eliminated to avoid instability due to homologous recombination. These changes also unexpectedly provided increased stability of the vector during replication and passaging in host cells (
It is recognized that after reverse transcription and the first integration event into treated cells, the DNA provirus and any subsequent progeny retrovirus has a conventional LTR structure from MLV on either end. This configuration has been shown to be stable after multiple cycles of infection (See
Two sets of changes have been made: (1) three positional mutations which change three amino acids (A23L, I140L and V108I) to increase thermal stability of the yeast cytosine deaminase protein and (2) additional gene sequence modifications to enhance human codon usage sequences to improve protein translation efficiency in human cells without further changes to the amino acid sequence.
Sequence design for CD included CD-optimized, CD-UPRT (+/− linker) and CD-OPRTase (+/− linker). The final cytosine deaminase coding sequence can comprise at the 5′ end a PSI1 site (full length) and 3′ end NotI site plus poly A tail for PSI1/Not1 cassette based strategy. Sequences cassettes were ordered from, and provided by, a commercial vendor (BioBasic Inc., Ontario, Canada).
The following sequence comprising a yeast cytosine deaminase was used for cloning, optimizing and mutation (the boxed nucleic acids comprise the restriction sites—PsiI and NotI—used in subsequent methods for cloning:
The following Table summarizes the genes and resulting plasmid vectors that were made and their names.
The replication competent retroviral vector described by Kasahara et al. pACE-CD (U.S. Pat. No. 6,899,871, the disclosure of which is incorporated herein) was used as a basis for additional modifications. A vector (pAC3-yCD) was modified to express a modified yeast cytosine deaminase gene as described herein and was used in the constructs. See
After the genes were synthesized at a contractor (Bio Basic Inc., Markham, Ontario, Canada) they were inserted into the Psi1-Not1 site of the pAC3 vector backbone (
A. Humanized Codon Optimized CD Gene (CD-Opt, Aka CD1, T5.0001).
A comparison of a human codon optimized cytosine deaminase of Conrad et al. and PCT WO 99/60008 indicates 91 total codons optimized in both, 36 codons identical, 47 codons had third base pair changes (all encode same amino acid) and 9 codons were different (however they encoded same amino acid). Of the 9 codons that differed:
All have equivalent GC content and encode the same amino acid. The native yeast gene sequence above was separately codon optimized to give the following CD gene (CD1) and was called T5.0001 when inserted into the plasmid vector pAC3 which encodes the replication competent retrovirus (RCR) with IRES.
B. Heat Stabilized CD Gene.
Additional modifications were made to enhance the stability of the cytosine deaminase. Genetic enhancements to the wild type yeast cytosine deaminase gene were made to include three positional mutations which change three amino acids (A23L, I140L and V108I) to increase thermal stability of the yeast cytosine deaminase protein.
The following primer pairs were used in the generation of the gene for the cytosine deaminase polypeptide of the disclosure:
To increase the stability of the native yeast CD protein, three amino acid substitutions were engineered into the protein. These substitutions were alone or in combination with human codon optimization.
The three amino acid substitutions are: A23L, V108I, I140L. A sequence encoding these substitutions is shown below.
TA
TTAGGTTACAAAGAGGGTGGTGTTCCTATTGGCGGATGTCTTATCAATAACAAAGACGGAAGTGT
The encoded polypeptide comprises the following sequence (substituted amino acids in underlined):
Final construct design that integrates 3 amino acid substitutions A23L/V108I/I140L utilizing preferred codons and uses preferred human codon usage for entire sequence (this gene is called CDopt+3pt [aka CD2] and T5.0002 when inserted into the plasmid vector pAC3 which encodes the RCR with IRES.
Underlined codons denote preferred codons for amino acid substitutions.
Protein translation sequence alignment indicates preferred codon changes and amino acid substitutions result in desired protein structure:
CD-optimized sequence design (human codon preference+3 amino acid substitutions)
C. Construction of CD-UPRT Fusion Gene (CDopt+3pt-UPRT, [Aka CDopt-UPRT and CD2-UPRT], T5.0003 in the pAC3 Plasmid RCR Vector).
A fusion construct was also developed comprising a CD polypeptide as described above linked to a UPRT polypeptide to generate a CD-optimized-UPRT. The following primers were used to delete the stop-start between the CD and UPRT.
The resulting fusion polynucleotide comprises 1296 bp and the sequence set forth immediately below:
D. Construction of CD-Linker UPRT Fusion Gene (CDopt+3pt-LINK-UPRT [Aka CDopt-LINKER-UPRT and CD2-L-UPRT].
A fusion construct was also developed by cloning a linker (Ser-Gly-Gly-Gly-Gly)4 (SEQ ID NO:56) domain between and in frame with the CD polypeptide and the UPRT polypeptide to generated a CD-optimized-linker-UPRT sequence. The following primers were used to insert the linker.
The resulting construct has size: 1356 bp and the sequence immediately below:
GCGGCGGCGCCAACCCGTTATTCTTTTTGGCTTCTCCATTCTTGTACCTTACATATCTTATATATTA
E. Construction of CD-OPRT Fusion Gene (CDopt+3pt-OPRT [Aka CDopt-OPRT and CD2-OPRT], T5.0004 when Inserted into the pAC3 Plasmid RCR Vector).
A fusion construct was also developed comprising a CD polypeptide as described above linked to an OPRT polypeptide to generate a CD-optimized-OPRTase (CD humanized+3ptmutation+OPRTase functional domain human).
The resulting construct comprises a size of 1269 bp and the sequence immediately below:
F. Construction of CD-Linker-OPRT Fusion Gene (CDopt+3pt-LINK-OPRT, [Aka CDopt-LINKER-OPRT and CD2-L-OPRT], T5.0005 in the pAC3 plasmid RCR vector).
A fusion construct was also developed by cloning a linker (Ser-Gly-Gly-Gly-Gly)4) (SEQ ID NO:56) domain between and in frame with the CD polypeptide and the OPRT polypeptide to generated a CD-optimized-linker-OPRT sequence.
The resulting construct comprises a size of 1329 bp and the sequence immediately below:
Vector can be produced in a number of ways, but the first step is to introduce the DNA vector into cells to allow production of infectious particles, that can then be harvested from the cell supernatant. Once infectious particles have been generated other methods of production can be implemented by those skilled in the art. Vector particles were generated by transient transfection of 293T cells (Pear et al. Proc Natl Acad Sci USA. 90:8392-8396 1993).
The 293T cells were thawed and put into culture, then passaged twice in T-75 flasks containing 15 mL of the DMEM medium that was prepared by mixing DMEM High Glucose medium (Hyclone#30081, 500 mL) with FBS (Hyclone# SH30070, 50 mL), L-Glutamine (Cellgro#25-005-CI, 5 mL), NEAA (Hyclone #SH30238, 5 mL), and Penicillin-strep (Cellgro#30-002-CI, 5 mL). The flasks were incubated at 37° C. and 5% CO2. After the 3rd passage cells were seeded in 6 T-25's, each containing 5 mL of the medium, at a cell density of 1.8×106 cells/T-25 (or 7.2×104 cells/cm2). One day after seeding the T-25's, the cells were transfected with the T5.0002 plasmid that expressed the viral vector using the Calcium Phosphate Transfection Kit from Promega (Cat# E1200). Eighteen hours following transfection, the media in one set of the flasks (3 flasks each set) were replaced with fresh medium containing 10 mM NaB. The media in the 2nd set of the flasks were not replaced, which served as a control (zero NaB). Eight hours post NaB treatment the media in all flasks were replaced with the fresh medium containing no NaB. The expression was allowed to continue for both sets of flasks until the next day (22 hours duration). The supernatants from both sets of flasks were harvested and assayed for their titers by qPCR expressed in Transducing Units (TU)/ml (see Example 4).
The titer results are shown in the following table.
Subsequent vector preparations were produced in this manner, without sodium butyrate. Other vector plasmids (Table 2) have been used in the same way to generate vector preparations with titers between 1E5 TU/ml and 1E7 TU/ml. Such material can be further purified and concentrated, if desired, as described below see also: U.S. Pat. No. 5,792,643; T. Rodrigues et al. J Gene Med 9:233 2007.
In certain embodiments of the disclosure the dosing was calculated by grams of brain weight. In such embodiments, the dosing of a replication competent retroviral vector of the disclosure useful in the methods for treatment can range from 104 to 106 TU per gram brain weight.
The functional vector concentration, or titer, is determined using a quantitative PCR-based (qPCR) method. In this method, vector is titered by infecting a transducible host cell line (e.g. PC-3 human prostatic carcinoma cells, ATCC Cat# CRL-1435) with a standard volume of vector and measuring the resulting amount of provirus present within the host cells after transduction. The cells and vector are incubated under standard culturing condition (37° C., 5% CO2) for 24 hr to allow for complete infection prior to the addition of the anti-retroviral AZT to stop vector replication. Next, the cells are harvested from the culture dish and the genomic DNA (gDNA) is purified using an Invitrogen Purelink gDNA purification kit and eluted from the purification column with sterile RNase-/DNase-free water. The A260/A280 absorbance ratio is measured on a spectrophotometer to determine the concentration and relative purity of the sample. The gDNA concentrations are normalized with additional RNase-/DNase-free water to the lowest concentration of any given set of gDNA preparations such that the input DNA for the qPCR is constant for all samples analyzed. Genomic DNA purity is further assessed by electrophoresis of an aliquot of each sample on an ethidium bromide stained 0.8% agarose gel. If the sample passes an A260/A280 absorbance range of 1.8-2.0 and shows a single band of gDNA, then the sample is ready for qPCR analysis of provirus copy number of the vector. Using primers that interrogate the LTR region of the provirus (reverse-transcribed vector DNA and vector DNA that is integrated into the host gDNA), qPCR is performed to estimate the total number of transduction events that occurred when the known volume of vector was used to transduce the known number of cells. The number of transduction events per reaction is calculated from a standard curve that utilizes a target-carrying plasmid of known copy-number that is serial diluted from 107 to 10 copies and measured under identical qPCR conditions as the samples. Knowing how many genomic equivalents were used for each qPCR reaction (from the concentration previously determined) and how many transduction events that occurred per reaction, we determine the total number of transduction events that occurred based on the total number of cells that were present at the time of transduction. This value is the titer of the vector after dilution into the medium containing the cells during the initial transduction. To calculate the corrected titer value, the dilution is corrected for by multiplying through by the volume of culture and the volume of titer divided by the volume of titer. These experiments are performed in replicate cultures and analyzed by qPCR using triplicate measurements for each condition to determine an average titer and with its associated standard deviation and coefficient of variance.
In order to be effective vector constructs and their derived infectious particles need to: (1) make good titer of virus by transient transfection (see Examples 3 and 4); (2) be stable upon multiple passages; (3) kill cells efficiently in the presence of 5-FC; and (4) express enzyme activity upon infection of target cells. Example 3 shows that useful titers can be obtained from the vectors.
Genetic Stability of Viral Vectors.
To demonstrate the stability the following experiment was performed. Approximately 106 naïve U-87 cells were initially infected with the viral vector at an MOI of 0.01, and grown until fully infected to complete a single cycle of infection. Supernatant is then repassed onto uninfected cells and the cycle repeated. In this experiment, twelve cycles have been completed in duplicate trials (
Cell Killing Experiments.
The CellTiter 96 Aqueous One Solution Cell Proliferation Assay (MTS) is a colorimetric method for determining the number of viable cells in proliferation assays. We have utilized this assay to determine cell growth kinetics, as well as to determine the dose response of various cell lines to 5-Fluorocytosine (5-FC) and 5-Fluorouracil (5-FU).
Cells 100% infected with vector were seeded at 1000 cells/well in 96-well plates. They were monitored over an eight day period following treatment with various concentrations of 5-FC (5-FU for controls). An analysis of their cell growth was assessed every two days utilizing Promega's Cell Titer 96 AQueous One Solution reagent (MTS). Briefly, 20 μl of MTS was mixed with 100 μl media (as recommended by the manufacturer) and added to the samples in the 96-well plate. The samples were incubated for 60 minutes in a 37° C./5% CO2 incubator. Thereafter, absorbance readings were taken on a plate reader at a 490 nm wavelength.
In similar in-vitro cell culture experiments with RG2 cells (ATCC Cat# CRL-2433), the RG2 cell line was transduced with 5 different vectors (pACE-CD, T5.0001, T5.0002, T5.0004, and T5.0007). It was subsequently subject to increasing concentrations of 5-FC (5-FU for controls) for 8 days and monitored as described above. The results are shown in
CD Expression Assay.
U87 cells were transduced at a multiplicity of infection (MOI) of 0.1, cultivated for 5 days to allow viral spread and cells from day 5 post transduction were harvested. The cells were then collected by centrifugation at 800×g for 5 min. The supernatant was aspirated away from the cell pellet and washed with 5 mL of phosphate buffered saline (PBS) and again centrifuged at 800×g for 5 min. The resulting cell pellet was taken up in 1.5 mL of PBS, resuspended by passage through a pipette tip and placed in a freezer at −20° C. Cells were lysed by a freeze/thaw method. Previously resuspended cells were allowed to thaw at room temperature, passed through a pipette tip, mixed with protease inhibitor cocktail and again refrozen at −20° C. Previous to the enzyme assay, the sample was again thawed at room temperature and passed through a pipette tip. The suspension was then centrifuged at 14,000 rpm in a tabletop centrifuge for 5 min. The supernatant was decanted away from the pellet and placed in a fresh eppendorf tube and placed on ice.
yCD enzyme activity was assessed by using an HPLC assay. The HPLC assay was performed on a Shimadzu LC20AT unit connected in series with a photoarray detector and autoinjector. The solid phase was a Hypersil BDS C18, HPLC column with a 5 μm sphere size and 4.0×250 mm column dimensions. The mobile phase was 50 mM ammonium phosphate, pH 2.1, containing 0.01% tert-butylammonium perchlorate and 5% methanol; the system was equilibrated at 22° C. All reagents were ACS grade and solvents were HPLC grade. A reaction mix was made consisting of 800 μL with a final concentration of 0.125 mg/mL 5-FC (1 mM) in PBS and placed in a 1.5 mL autosampler vial. The reaction was then initiated by adding 200 μL of each cell lysate. The reaction/autosampler vials were placed in the auto sampler and 5 μL of the reaction mixture was injected. Time points were taken periodically by retrieving a 5 μL aliquot from each reaction vial and analyzing on the HPLC column. The conversion rates of 5-FC to 5-FU were calculated by comparing the peak areas with known amounts from a previously generated standard curve of 5-FU. The rate of 5-FC conversion to 5-FU was derived by plotting the amount of 5-FU (in nmol) generated against its corresponding time interval. Protein concentration for the cell sample was derived and the Specific Activity of the cell lysate samples were calculated by dividing the conversion rate (nmol/min) by the amount of protein used in the assay in mg.
A vector of the disclosure is manufactured by transient transfection on 293T cells (Example 3), followed by harvesting of the cell supernatant, filtration, benzonase treatment, diafiltration/concentration and dialysis. A further chromatography column step may be included, known to those skilled in the art (see for example U.S. Pat. No. 5,792,643; T. Rodriguez et al. J Gene Med 9:233 2007; WO2010148203. Vector is also produced from a permanently infected cell line and processed as above (see for example WO2010148203). Clinical material is released based on standard testing such as sterility, mycoplasma and endotoxins, plus product specific potency, strength, and identity testing. Titer is determined as Transducing Units (TU) by PCR quantitation of integrated viral vector DNA in target cells (Example 4). The final product is targeted to have a titer of up to 109 TU/ml formulated in isotonic Tris-buffered sucrose solution, as a sterile injectable.
In general, to accurately and precisely determine the strength of vector lots, a quantitative PCR-based titer assay has been developed (described in general terms in example 4). The details of the assay procedure consist of the following steps:
Transduction.
Transductions are performed in a 12-well plate format using the stable human prostate adenocarcinoma derived PC-3 cell line. For each test sample, three dilutions of un-titered vector preparation are used to transduce PC-3 cells in triplicate wells. Viral replication is stopped 24 hours post-transduction with azidothymidine (AZT). Cells are maintained for an additional 24-64 hours prior to harvesting and genomic DNA purification.
Genomic DNA Preparation.
Qiagen DNeasy DNA Minikits are used to prepare genomic DNA from transduced harvested cells as per the manufacturer's protocol. DNA concentrations and quality are assessed by direct absorbance measurement using UV/vis spectrophotometry to determine the A260 and A260/A280 ratio.
Real-Time Quantitative PCR.
The BioRad CFX96 real-time PCR instrument or equivalent is used for performing quantitative PCR. Provector copy numbers present in each test sample are measured by using specific DNA oligonucleotide primers in conjunction with a TaqMan probe designed to amplify the integrated, or pro-retroviral, U3/Psi packaging versus the CMV/Psi plasmid promoter. Vector titer is expressed relative to a copy number standard curve. To generate the vector copy number standard curve, genomic DNA from PC-3 cells is spiked with a unique plasmid containing the pro-retroviral U3/Psi sequence. Vector test sample titers are obtained by calculating the number of transduced genomes in multiple dilutions using multiple reactions per dilution.
For each titer assessment, a non template control (wells containing all components except plasmid or genomic DNA) and a negative control (all components including equivalent genomic DNA from non-transduced PC-3 cells), is performed in triplicate. The titer values are expressed in transduction units per milliliter (TU/mL).
The potency of the vector of the disclosure is dependent on both the replication of the vector and the resultant cytosine deaminase (CD) activity in target cells. Therefore the potency assay measures the increase in CD activity over time as vector infection spreads in a previously uninfected cell line in tissue culture. The assay measures the enzymatic activity of the transferred yCD2 protein in transduced cells during early, middle and late stages of infection by monitoring the conversion of 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU), using reverse phase HPLC separation with UV detection. The increase of CD activity over the course of the infection is a function of the percent of cells infected over time and indicative of the TOCA 511 vector's ability to replicate. CD activity based on the 5-FC to 5-FU conversion rate is measured for each time point in CD units per mg of protein (the specific activity, SA). The increase in SA is then plotted over time, and reflects both the increase in the percentage of cells transduced as a result of viral replication in the culture, and the resultant transfer of CD activity. Accumulated data from multiple assays and vector lots has been used to determine an appropriate specification for this increase in SA of CD, for product release. The assay has 1, 3 and 5 day timepoints after an initial infection at an MOI of about 0.1 and a non-infected control.
CD activity from late stage infected cells (day 5 time point) was compared between lots to evaluate the use of this activity as an Identity test. The assay includes the following steps:
Transductions.
Transductions are performed in multi-well plate format on U87 cells. For each transduction, three suitable dilutions are used and each performed in triplicate. Cells are harvested at 0, 1, 3 and 5 days post transduction.
Set-Up of CD Reaction.
Cells are lysed and the total protein concentration determined using the BCA protein assay using BSA as a standard. For the yCD2 enzyme assay, an appropriate amount of cell lysate is added to buffer containing 5-FC such that the rate of 5-FU formation remains linear over 1-2 hours at 37° C. The final volume for the reaction mixture is 100 μL. After 2 h, the enzyme reaction is terminated by the addition of trichloroacetic acid, briefly vortexed and prepared for subsequent HPLC analyses. Cell lysates from non-transduced cells are used as a negative control while a similar assay using samples from 100% infected cells is used as a positive control.
HPLC Analysis.
The terminated reaction mixture is centrifuged at 12,000 rpm for 5 minutes at room temperature in a micro-centrifuge. The supernatant is then decanted away from the pellet and passed through a 0.2p filter to further remove particulates before injection onto a reverse phase HPLC column previously equilibrated with an aqueous based mobile phase containing phosphate buffer at a pH around 4.0. The chromatograms are followed at 260 nm and 280 nm to monitor both substrate consumption and product formation. Concentrations of either substrate or product are determined using the graphing and analysis capabilities of GraphPad by comparing them to previously generated standard curves calculated from known substrate or product concentrations. Amounts of 5-FU generated over 1-2 h are used to determine CD units of activity (1 unit of CD activity is defined as the formation 1 nmol of 5-FU per min) and the Specific Activity is calculated dividing this number by the amount of protein (from the cell lysate) used in the assay.
Single chain antibodies are derived from known full antibody sequences that have a desired effect. Such sequences are available (e.g. WO2006048749, US2006165706, U.S. Pat. No. 7,034,121, Genbank Accession Numbers DJ437648, CS441506, CS441500, CS441494, CS441488, the disclosures of which are incorporated herein by reference). Such conventional antibody gene sequences are converted into single chain antibody (scFv) sequences by commonly used methods known to those skilled in the art (see for example Gilliland et al. “Rapid and reliable cloning of antibody variable regions and generation of recombinant single chain antibody fragments.” Tissue Antigens 47, 1-20, 1996). Phage single chain antibodies to CTLA-4 are also available from screening phage-scFv libraries directly (Pistillo et al. Tissue Antigens 55:229 2000), and can be used directly for insertion into the replicating retroviral vectors of the disclosure. Regardless of how the sequence is derived, scFv are typically about 700-900 bp in length and are synthesized by a commercial vendor (BioBasic) with a PsiI site at the 5′ end and compatible NotI site at the 3′ end, as described previously. This sequence is then inserted into the replicating retroviral back bone from pAC3-yCD2 at the PsiI-NotI sites after removal of the yCD2 sequence. Vector is produced and titered as described, and further purified if necessary as described above. Human and Mouse CTLA4 are very homologous in sequence and the replicating retrovirus of the disclosure is first tested in a suitable syngeneic immunocompetent mouse models such as the CT26/BALB/c model and S91 mouse melanoma models, well known to those skilled in the art (see for example Hodge et al J. Immunol. 174:5994 2005). Outcome is measured by one or more of: modulation of tumor growth; lack of toxicity; generation of antitumor responses; shrinkage of remote lesions indicating systemic immunity. Doses are in the range of 103 to 107 TU in mice. In patients the vector is administered by intralesional injection into tumor, or by administration into the circulation that then carries the virus to the tumor. Doses are in the range of 105 to 1011 TU.
Objective.
The objective of this study is to assess the effect of a novel MLV based replication-competent retroviral vector carrying single chain antibody directed against Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) also referred to as Cluster of differentiation 152 (CD152) sequence (pAC3-αCD152) on melanoma growth, when delivered via intratumoral (IT) injection in DBA/2 mice bearing subcutaneous melanoma (Cloudman S91).
Mice.
Female DBA/2 or BALB/c mice (age ˜8 weeks) are purchased from Jackson Laboratories (Bar Harbor, Me.). Mice are acclimated for 7 days after arrival before start of studies.
Cells.
Cloudman S91 cells (ATCC, Manassas Va.) are a spontaneously arising melanoma derived from DBA/2 mice. Cells are cultured in Dulbecco's modified Eagles medium with 10% fetal bovine serum, sodium pyruvate, and Glutamax (Hyclone, Logan Utah, and Invitrogen, San Diego Calif.). Cells are resuspended in PBS (Hyclone, Logan Utah) for implantation. S91 cells (1E6 in 100 μL) are injected into the right flank of DBA/2 mice.
Vector.
Vectors preparations are made by transient transfection (or from a producer cell line in HT1080 cells) with titers of approximately 7E6TU/ml. For initial studies vector is not further purified or concentrated. For follow on experiments to determine full dose response curves, high titer purified material is prepared with a titer expected around 108/ml. Vector is administered IT in a volume of 50-100 μL and IV in 100 μL the total dose/mouse of approximately 7E5 to 7E6 to 7ETU/mouse. Vector expressing αCD152 is identified as Toca αCD152.
Tumor Implantation and Vector Injection.
Five groups of female DBA/2 (55 mice, 9-10 weeks of age) are implanted subcutaneously with S91 melanoma cells (Day 0) and then dosed (day 4-7 depending on growth rate of the S91 tumor; approximately 50-100 mm3) with vehicle (Groups 1), with control vector [AC3-GFP(V), (Group2), intratumor (IT) Toca αCD152 vector injection (Groups 3), or intravenous Toca αCD152 vector injection (group 4). Group 5 mice have no tumor implanted and are intravenously injected with Toca αCD152 only.
Data Analysis.
Tumor growth analysis is carried out to 2000 mm3 or to 60 days based on which ever comes first. 10 mice from each group will be plotted for tumor size over time. Statistical significance will be determined using analysis of variance (ANOVA). P values of <0.05 are considered statistically significant in all analyses, which are performed with Prism 5 statistical software (GraphPad Software) or equivalent. In-life observations are also taken to assess any adverse events to αCD152 expression during treatment.
Results.
Delivery of αCD152 by replicating MLV IT shows a statistically significant retardation of growth compared to the controls. Delivery of αCD152 by replicating MLV intravenously shows a statistically significant retardation of growth compared to the controls abrogates melanoma burden from the DBA/2—Cloudman S91 mouse melanoma model. Further animal studies were performed as described more fully below.
An intracranial xenograft model using the U87 human glioma cell line was established to test RCR vector spread and biodistribution as well as therapeutic efficacy of RCR-vector mediated cytosine deaminase suicide gene therapy in a nude mouse host.
Following acclimation, mice were randomly assigned to one of 8 Treatment groups (see group description below). Seven groups underwent intracranial administration into the right striatum of 1×105 U87 cells administered/mouse on Day 0. Group 8 mice were not implanted with tumor. At Day 5, mice were injected with Formulation Buffer only, or an RCR vector at 9×105/5 μl, 9×104/5 μl, or 9×103/5 μl. Mice receiving no vector, or vector at 9×105/5 μl or 9×103/5 μl were randomized to receive 5-FC (500 mg/kg/day), administered as a single IP injection, beginning on Day 19, or no 5-FC. Mice receiving vector at mid dose all received 5-FC (i.e., No separate control group for this dose). 5-FC administration continued daily for 7 consecutive days followed by 15 days of no treatment. Cycles of drug plus rest were repeated up to 4 cycles. 10 mice from each group except group 8 were randomly assigned to the survival analysis category. The remaining mice were sacrificed according to a predetermined schedule.
Intravenous dosing was done via injection into the tail vein. Intraperitoneal dosing was done via injection into the abdomen with care taken to avoid the bladder. For intracranial injection mice were anesthetized with isoflurane and positioned in a stereotaxic device with blunt ear bars. The skin was shaved and betadine was used to treat the scalp to prepare the surgical site. The animal was placed on a heating pad and a scalpel used under sterile conditions to make a midline incision through the skin. Retraction of the skin and reflection of the fascia at the incision site will allow for visualization of the skull. A guide cannula with a 3 mm projection, fitted with a cap with a 3.5 mm projection, will be inserted through a small burr hole in the skull and attached with dental cement and three small screws to the skull. After hardening of the cement, the skin will be closed with sutures. The projected stereotaxic coordinates are AP=0.5-1.0 mm, ML=1.8-2.0 mm, DV=3.0 mm. Exact stereotaxic coordinates for the cohort of animals received will be determined in a pilot experiment (2-3 animals) by injecting dye and determining its location. The animals will be monitored during anesthesia recovery. Analgesics, buprenorphine, will be administered subcutaneously (SC) before the end of the procedure then buprenorphine will be administered approximately every 12 hrs for up to 3 days. Animals will be monitored on a daily basis. Cells or vector were intracranially infused through an injection cannula with a 3.5 mm projection inserted through the guide cannula. The rate was controlled with a syringe pump fitted with a Hamilton syringe and flexible tubing. For cell injection, 1 microliter of cells was delivered at a flow rate of 0.2 microliters per minute (5 minutes total). For vector injection, 5 microliters of vector was delivered at a flow rate 0f 0.33 microliters per minute (15 minutes total).
Vector was delivered and calculated as transforming units (TU) per gram of brain weight to the mice. Using such calculation the translation of dose can be calculated for other mammals including humans.
An intracranial implant model using the CT26 colorectal cancer cell line in syngeneic BALB/c mice was established to test RCR vector spread and biodistribution as well as therapeutic efficacy of RCR-vector mediated cytosine deaminase suicide gene therapy and its immunological impact.
This study included 129 animals, 0 Male, 119 Female and 10 contingency animals (10 Female). Following acclimation, mice were randomly assigned to one of 8 Treatment groups (see group description below). Seven groups underwent intracranial administration into the right striatum of 1×104 CT26 cells administered/mouse on Day 0. Group 8 mice were not implanted with tumor. At Day 4, mice were injected with Formulation Buffer only, or vector at 9×105/5 μl, 9×104/5 μl, or 9×103/5 μl. Mice receiving no vector, or vector at 9×105/5 μl or 9×103/5 μl were randomized to receive 5-FC (500 mg/kg/BID), administered by IP injection, beginning on Day 13, or no 5-FC. Mice receiving vector at mid dose received 5-FC (ie. No separate control group for this dose). 5-FC administration continued daily for 7 consecutive days followed by 10 days of no treatment. Cycles of drug plus rest were repeated up to 4 cycles. 10 mice from each group except group 8 were randomly assigned to the survival analysis category. The remaining mice were sacrificed according to a predetermined schedule.
Naïve sentinel mice were co-housed with the scheduled sacrifice animals and taken down at the same time points to assess vector transmittal through shedding.
Intravenous dosing was done via injection into the tail vein. Intraperitoneal dosing was done via injection into the abdomen with care taken to avoid the bladder. For intracranial administration, mice with a guide cannula with a 3.2 mm projection implanted into the right striatum, and fitted with a cap with a 3.7 mm projection were used. The projected stereotaxic coordinates are AP=0.5-1.0 mm, ML=1.8-2.0 mm, DV=3.2 mm (from bregma). Cells or vector were intracranially infused through an injection cannula with a 3.7 mm projection inserted through the guide cannula. The rate was controlled with a syringe pump fitted with a Hamilton syringe and flexible tubing.
For cell injection, 1 microliter of cells was delivered at a flow rate of 0.2 microliter per minute (5 minutes total). For vector injection, 5 microliter of vector was delivered at a flow rate of 0.33 microliter per minute (15 minutes total).
Vector was delivered and calculated as transforming units (TU) per gram of brain weight to the mice. Using such calculation the translation of dose can be calculated for other mammals including humans.
Construction of Recombinant Replication Competent Retroviral Vector Containing a Heterologous Polynucleotide Sequence of Human pri-miRNA-128-1.
The replication competent retroviral vector, pAC3-miR-128-1 expressing miR-128-1 was derived from the backbone of pAC3-yCD2 described in one of the embodiments. The pAC3 backbone in the pAC3-miR-128-1 vector was isolated by endonuclease digestion of the pAC3-yCD2 plasmid DNA with Mlu I and Not I to remove the IRES-yCD2 polynucleotide sequence. The polynucleotide DNA sequence of pri-miR-128-1 was obtained from the product sheet of the pEP-mir-128-1 expression vector (Cell BioLabs Inc.) (SEQ ID NO: 31). DNA sequence of pri-miR-128-1 was synthesized with a Mlu I restriction enzyme site at the 5′ end and a Not I restriction enzyme site at the 3′ end of the double-stranded DNA fragment for subsequent insertion at the corresponding site in the Mlu I and Not I digested pAC3-yCD2 plasmid DNA described above. The resulting construct, pAC3-miR-128-1, encodes 3 genes: the gag, the pol, and the env, and the non-coding pri-miR-128-1 sequence.
Testing of Expression of Mature miR-128 from Cells Transduced with miR-128 Containing Recombinant Replication Competent Retroviral Vector.
In order to confirm the expression of miR-128 from cells transduced with miR-128 containing recombinant replication competent retroviral vectors, cells from day 9 post infection at which the maximal infectivity has reached were expanded and harvested to extract total RNA for detection of mature miRNA expression. The results from Taqman microRNA assay showed an over expression of mature miR-128 from both HT1080 and U87-MG cells transduced with pAC3-miR-128-1, pAC3-miR-128-2, and pAC3-H1-shRNAmiR128 vectors, respectively, compared to untransduced cells. In both cell lines, cells transduced with pAC3-miR-128-1 and pAC3-H1-shRNAmiR128 vector expressed higher level of mature miR-128 than cells transduced with pAC3-miR-128-2 vector.
Construction.
The replication competent retroviral vector, pAC3-yCD2-H1-shRNAmiR128 is derived from the backbone of pAC3-yCD2 described in one of the embodiments. The pAC3-yCD2 backbone in the pAC3-yCD2-H1-shRNAmiR128 vector is isolated by endonuclease digestion of the pAC3-yCD2 plasmid DNA with Not I. The polynucleotide DNA sequence of the human H1 promoter is obtained from the product information of pSilencer 3.1 H1 hygro expression vector (Ambion), and the polynucleotide DNA sequence of the short hairpin structured pre-miR-128-1 is obtained from the http:(//)www.mirbase.org/. DNA sequence of pre-miR128-1 linked to the human H1 promoter (SEQ ID NO: 34) is synthesized with a Not I restriction enzyme site at both ends of the double-stranded DNA fragment for subsequent insertion at the corresponding site in Not I digested pAC3-yCD2 plasmid DNA described above. The resulting construct, pAC3-H1-shRNAmiR128, encodes 4 genes: the gag, the pol, and the env, and the yCD2, and the non-coding short hairpin structured pre-miR-128-1 sequence.
Vector stock is produced by transient transfection of the vector-encoding plasmid DNA into 293T cells using calcium phosphate method. Eighteen hours post transfection, the culture is replaced with fresh medium. Twenty-four hours post medium replacement, the supernatant containing the vector is collected and filtered through a 0.45 μm filter and used immediately or stored in aliquots at −80° C. for later use. Twenty micro-liter of the collected vector stocks is used to infect human prostate cancer cells, PC3. Twenty-four hours post infection, AZT is added to the cells to inhibit further viral replication. Forty-eight hours post infection, genomic DNA of infected PC3 cells is extracted for titer assay. The titer of the vector stocks is determined by qPCR with an inclusion of standards of known copy numbers.
Testing of Replication Kinetics of the pAC3-yCD2-H1-shRNAmiR128 Recombinant Replication Competent Retroviral Vectors in Culture.
In order to confirm that the incorporation of H1-pre-miR-128-1 replicates normally, calculated volume of each vector stocks collected from transient transfection mentioned above is used to infect fresh human fibrosarcoma cells, HT1080 and human glioma cells, U87-MG, respectively, at a MOI of 0.1. Transduced cells are passaged at day 3, 6 and 9 post infection. At each time point, a portion of cells are collected for genomic DNA extraction for qPCR. Dilutions of genomic DNA are made to generate aliquots of genomic DNA with same concentration for equal amount of genomic in-put in qPCR. Replication kinetics of each vectors are generated by plotting inversed C(t) values vs. time points. Result show that the vector replicates at similar kinetics compared to control MLV virus.
Testing of Expression of Mature miR-128 from Cells Transduced with the pAC3-yCD2-H1-shRNAmiR128 Recombinant Replication Competent Retroviral Vector.
To confirm the expression of miR-128 from cells transduced with pAC3-yCD2-H1-shRNAmiR128 recombinant replication competent retroviral vector, cells from day 9 post infection, at which the maximal infectivity is reached, are expanded and harvested to extract total RNA for detection of mature miRNA expression. Result from Taqman microRNA assay shows an over expression of mature miR-128 from both HT1080 and U87-MG cells transduced with the pAC3-yCD2-H1-shRNAmiR128compared to untransduced cells.
Testing of Bmi-1 Expression from Cells Transduced with pAC3-yCD2-H1-shRNAmiR128 Recombinant Replication Competent Retroviral Vectors to Demonstrate Target Engagement of miR-128.
Bmi-1 expression has been observed to be up-regulated in a variety of human cancers including glioblastoma, and has been shown to be the target of miR-128. To confirm target engagement of miR-128, Bmi-1 expression from cells transduced with pAC3-yCD2-H1-shRNAmiR128 is detected by qRT-PCR. The result shows that U87-MG cells transduced with pAC3-yCD2-H1-shRNAmiR128 express lower level of Bmi-1 than untransduced cells, whereas in HT1080 cells no significant difference was observed between transduced and untransduced cells. The data support the concept that miR-128 plays an important functional role in the central nervous system.
Testing of yCD2 Expression from Cells Transduced with pAC3-yCD2-H1-shRNAmiR128 by Immune-Blot.
To confirm the expression of yCD2 from cells transduced with pAC3-yCD2-H1-shRNAmiR128 recombinant replication competent retroviral vector, cells from day 9 post infection, at which the maximal infectivity is reached, are expanded and harvested to extract total protein for detection of yCD2 expression. The result from immune-blot shows normal expression yCD2 from both HT1080 and U87-MG cells transduced with the pAC3-yCD2-H1-shRNAmiR128 compared to pAC3-yCD2 transduced cells.
Objective.
The objective of this study is to assess the effect of a novel MLV based replication-competent retroviral vectors carrying the miR128 sequence (AC3-miR128-1(V); AC3-miR128-2(V); AC3-miR128-3(V) on survival, when delivered via intracranial (IC) injection in nude mice bearing a human glioma xenograft, at three Toca 511 dose levels.
Mice.
Female athymic nude-Foxn1̂nu (nude) mice (age ˜8 weeks) are purchased from Harlan (Indianapolis Ind.). Mice are acclimated for 7 days after arrival. Mice undergo surgical placement of an indwelling guide cannula with a 3.0 mm projection implanted into the right striatum, and fitted with a cap containing a 3.5 mm projection. The stereotaxic coordinates are AP=+0.5 mm, ML=−1.8 mm (from bregma).
Cells.
U-87 MG cells (ATCC, Manassas Va.) are derived from a malignant glioma from a 44 year old Caucasian female. Cells are cultured in Dulbecco's modified Eagles medium with 10% fetal bovine serum, sodium pyruvate, and Glutamax (Hyclone, Logan Utah, and Invitrogen, San Diego Calif.). Cells are resuspended in PBS (Hyclone, Logan Utah) for implantation. U-87 MG cells (1E5 in 1 μL) are infused at 0.2 μL per minute (5 minutes, followed by a hold of 5 minutes) IC through an injection cannula with a 3.5 mm projection inserted through the guide cannula.
Vectors preparations are made by transient transfection (or from a producer cell line) and all have titers of approximately 5E6TU/ml. For initial studies vector is not further purified or concentrated. For follow on experiments to determine full dose response curves, high titer purified material is prepared with a titer of around 10E8/ml. Vector is administered IC in a volume of 5 ul or less for a minimum total dose/mouse of approximately 2.5E4 TU/mouse.
Tumor Implantation and Vector Injection.
Six groups of female athymic nude-Foxn1̂nu mice (65 mice, 9-10 weeks of age) are implanted IC with U-87 tumor cells (Day 0) then dosed IC (day 4-7 depending on growth rate of the U87 cells) with vehicle (Groups 1), with control vector (AC3-GFP(V), Group2) or IC with AC3-miR128-1(V); AC3-miR128-2(V); AC3-miR128-3(V) (Groups 3-5). Group 6 mice were not implanted with tumor or vector.
Data Analysis.
Survival analysis to day 60 is performed on 10 mice each from Groups 1-6 and plotted as a Kaplan Meyer plot. Survival curves are compared by the log-rank test. P values of <0.05 are considered statistically significant in all analyses, which are performed with Prism 5 statistical software (GraphPad Software) or equivalent.
Results from treatment with the vectors show a statistically significant survival advantage in this human glioma xenograft model compared to treatment with control vector or vehicle alone.
Experiments using Thymosin Alpha 1 were performed in conjunction with Toca 511 treatment in the Tu2449/B6C3F1 glioma mouse model (U. Pohle et al. Int J Oncol. 15:829-834 (1999); HM. Smilowitz et al. J. Neurosurg 106:652-659 2007). Experiments were conducted in a similar manner to those in the BALB/c-CT26 model (Example 10), except that the initial intracranial cell innoculum was at 104 cells and the 5-FC dosing was twice a day (BID) intra-peritoneally at 500 mg/kg, with 10 days off drug followed by 4 days with 5-FC administration. In addition to the administration of vector and 5-FC some groups were dosed with thymosin alpha 1(TA1). Thymosin Alpha 1 was obtained from Sigma Aldrich cat# T3641 and a stock solution made in sterile water at 400 μg/mL. TA1 (200 μg/kg, ˜40 μg/animal) was given IP starting on day 7 SID for 28 days.
The results are presented in
A number of embodiments of the disclosure have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other embodiments are within the scope of the following claims.
This application claims priority to U.S. Provisional Application Ser. No. 61/318,728, filed Mar. 29, 2010, the disclosure of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/30402 | 3/29/2011 | WO | 00 | 1/16/2013 |
Number | Date | Country | |
---|---|---|---|
61318728 | Mar 2010 | US |