CANCER VACCINE COMPOSITIONS AND METHODS FOR USING SAME TO PREVENT AND/OR TREAT CANCER

Information

  • Patent Application
  • 20220265798
  • Publication Number
    20220265798
  • Date Filed
    July 14, 2020
    4 years ago
  • Date Published
    August 25, 2022
    2 years ago
Abstract
The present invention is based, in part, on cancer vaccine compositions that comprise PTEN- and p53-deficient cancer cells with activated TGFβ-Smad/p63 signaling pathway, and methods for using same to prevent and/or treat cancer.
Description
BACKGROUND OF THE INVENTION

Transforming growth factor beta (TGFβ) is a pluripotent cytokine that plays critical roles in regulating embryo development, cell metabolism, tumor progression, and immune system homeostasis (David and Massagué (2018) Nat. Rev. Mol. Cell. Biol. 19:419-435). TGFβ, upon binding to its receptors located on the cell membrane, regulates the expressions of its downstream genes in manners that can depend on Smads or be independent of Smads. TGFβ regulates cancer development and progression in a stage- and cell context-dependent manner (Morikawa et al. (2016) Cold Spring Harb. Perspect. Biol. 8:a021873; Prunier et al. (2019) Trends Cancer 5:66-78; Seoane and Gomis (2017) Cold Spring Harb. Perspect. Biol. 9: a022277). TGFβ suppresses tumorigenesis through the induction of cell growth arrest and apoptosis in pre-malignant cells. Silencing TGFβ signaling pathway promotes tumor formation in different mouse models (Cammareri et al. (2016) Nat. Commun. 7:12493; Yu et al. (2014) Oncogene 33:1538-1547; Cohen et al. (2009) Cancer Res. 69:3415-3424). Loss-of-function mutations in the TGFβ signaling pathway are also commonly found in various human cancers (Levy and Hill (2006) Cytokine Growth Factor Rev. 17:41-58). However, in the late stage of cancer, TGFβ promotes tumor metastasis and drug resistance. On one hand, due to accumulation of oncogenic mutations, the cancer cell itself overcomes growth arrest and apoptosis induced by TGFβ. TGFβ induces epithelial-to-mesenchymal transition (EMT) in the cancer cell, increases the sternness of the cancer cell, increases angiogenesis, and promotes drug resistance (Ahmadi et al. (2018) J. Cell Physiol. 234:12173-12187). On the other hand, TGFβ promotes CD4+ regulatory T cell (Treg), myleloid cell derived suppressor cell (MDSC), and M2 macrophage differentiation and thereby suppresses the host's anti-tumor immunity, which supports cancer growth and metastasis (Dahmani and Delisle (2018) Cancers (Basel) 10:194).


Since the TGFβ signaling pathway can act as both a tumor suppressor and a cancer promoter, the ability to harness TGFβ signaling pathway for desired therapeutic purposes remains a matter of significant debate. Thus, there is a great need in the art to identify anti-cancer therapies based on a better understanding of the role of TGFβ signaling pathway in cancer.


SUMMARY OF THE INVENTION

The present invention is based, at least in part, on the discovery that PTEN- and p53-deficient tumor cells bearing activated TGFβ-Smad/p63 signaling (e.g., treated with at least one TGFβ superfamily protein) failed to form tumors in immunocompetent hosts in a T cell-dependent manner. Administration of these tumor cells also provides protection to hosts from recurrent and metastatic tumor lesions. The cancer vaccine generated with these tumor cells advantageously overcomes recalcitrant obstacles in the field, such as lack of tumor specific antigen presentation, tumor heterogeneity and low immune infiltration, by eliciting a broad-spectrum immune response. It was demonstrated that these effects are mediated, at least in part, by activation of a Smad/p63 transcriptional complex in tumor cells, which regulates expression of multiple pathways that promote immune response and ultimately activation of cytotoxic T cells and immunological memory.


In one aspect, provided herein is a cancer vaccine comprising cancer cells, wherein the cancer cells are: (1) PTEN-deficient; (2) p53-deficient; and (3) modified to activate the TGFβ-Smad/p63 signaling pathway.


In another aspect, provided herein is a method of preventing occurrence of a cancer, delaying onset of a cancer, preventing reoccurrence of a cancer, and/or treating a cancer in a subject comprising administering to the subject a therapeutically effective amount of a cancer vaccine comprising cancer cells, wherein the cancer cells are: (1) PTEN-deficient; (2) p53-deficient; and (3) modified to activate the TGFβ-Smad/p63 signaling pathway, optionally wherein the subject is afflicted with a cancer. In one embodiment, the cancer cells are derived from a cancer that is the same type as the cancer treated with the cancer vaccine. In another embodiment, the cancer cells are derived from a cancer that is a different type from the cancer treated with the cancer vaccine. In still another embodiment, the cancer treated with the cancer vaccine is characterized by loss of PTEN, p53, and/or p110, optionally wherein the cancer further expresses Myc. In yet another embodiment, the cancer treated with the cancer vaccine has functional PTEN and/or p53, optionally wherein the cancer has a Kras activating mutation G12D. In another embodiment, the cancer vaccine is syngeneic or xenogeneic to the subject. In still another embodiment, the cancer vaccine is autologous, matched allogeneic, mismatched allogeneic, or congenic to the subject. In yet another embodiment, the cancer treated with the cancer vaccine is selected from the group consisting of breast, ovarian or brain cancer, e.g., a breast tumor, an ovarian tumor, or a brain tumor.


Numerous embodiments are further provided that can be applied to any aspect of the present invention described herein. For example, in one embodiment, the TGFβ-Smad/p63 signaling pathway is activated by contacting the cancer cells with at least one TGFβ superfamily protein. In another embodiment, the at least one TGFβ superfamily protein is selected from the group consisting of LAP, TGFβ1, TGFβ2, TGFβ3, TGFβ5, Activin A, Activin AB, Activin AC, Activin B, Activin C, C17ORF99, INHBA, INHBB, Inhibin, Inhibin A, Inhibin B, BMP-1/PCP, BMP-2, BMP-2/BMP-6 Heterodimer, BMP-2/BMP-7 Heterodimer, BMP-2a, BMP-3, BMP-3b/GDF-10, BMP-4, BMP-4/BMP-7 Heterodimer, BMP-5, BMP-6, BMP-7, BMP-8, BMP-8a, BMP-8b, BMP-9, BMP-10, BMP-15/GDF-9B, Decapentaplegic/DPP, Artemin, GDNF, Neurturin, Persephin, Lefty A, Lefty B, MIS/AMH, Nodal, and SCUBE3. In still another embodiment, the at least one TGFβ superfamily protein is selected from the group consisting of TGFβ1, TGFβ2, and TGFβ3. In yet another embodiment, the cancer cells are contacted with the TGFβ superfamily protein in vitro, in vivo, and/or ex vivo. For example, the cancer cells may be contacted with the TGFβ superfamily protein in vitro or ex vivo. In another embodiment, the cancer cells are administered to a subject, and the TGFβ superfamily protein is administered to the subject to thereby contact the cancer cells in vivo. In still another embodiment, the TGFβ superfamily protein is administered before, after, or concurrently with administration of the cancer cells. In yet another embodiment, the TGFβ-Smad/p63 signaling pathway is activated by increasing the copy number, amount, and/or activity of at least one biomarker listed in Table 1, and/or decreasing the copy number, amount, and/or activity of at least one biomarker listed in Table 2 in the cancer cells. For example, the copy number, amount, and/or activity of at least one biomarker listed in Table 1 may be increased by contacting the cancer cells with a nucleic acid molecule encoding at least one biomarker listed in Table 1 or fragment thereof, a polypeptide of at least one biomarker listed in Table 1 or fragment thereof, or a small molecule that binds to at least one biomarker listed in Table 1. In another embodiment, the TGFβ-Smad/p63 signaling pathway is activated by increasing nuclear localization of Smad2. In still another embodiment, the TGFβ-Smad/p63 signaling pathway is activated by increasing association of p63 and Smad2 in the nucleus of the cancer cells. In yet another embodiment, the copy number, amount, and/or activity of at least one biomarker listed in Table 2 is decreased by contacting the cancer cells with a small molecule inhibitor, CRISPR guide RNA (gRNA), RNA interfering agent, antisense oligonucleotide, peptide or peptidomimetic inhibitor, aptamer, antibody, and/or intrabody.


In yet another embodiment, the cancer cells are derived from a solid or hematological cancer. In another embodiment, the cancer cells are derived from a cancer cell line. In still another embodiment, the cancer cells are derived from primary cancer cells. In yet another embodiment, the cancer cells are breast cancer cells. In another embodiment, the cancer cells are derived from a triple-negative breast cancer (TNBC).


In still another embodiment, activation of TGFβ-Smad/p63 signaling pathway induces epithelial-to-mesenchymal (EMT) transition in the cancer cells. In yet another embodiment, activation of TGFβ-Smad/p63 signaling pathway upregulates the expression levels of ICOSL, PYCARD, SFN, PERP, RIPK3, CASP9, and/or SESN1 in the cancer cells. In another embodiment, activation of TGFβ-Smad/p63 signaling pathway downregulates the expression levels of KSR1, KSR1, EIF4EBP1, ITGA5, EMILIN1, CD200, and/or CSF1 in the cancer cells. In still another embodiment, the cancer cells are capable of activating co-cultured dendritic cells (DCs) in in vitro. In yet another embodiment, the cancer cells are capable of upregulating CD40, CD80, CD86, CD103, CD8, HLA-DR, MHC-II, and/or IL1-β in the co-cultured dendritic cells in vitro. In another embodiment, the cancer cells are capable of activating co-cultured T cells in the presence of DCs in vitro. In still another embodiment, the cancer cells are capable of increasing secretion of TNFα and/or IFNγ by the co-cultured T cells in the presence of DCs in vitro. In yet another embodiment, the cancer cells do not form a tumor in an immune-competent subject. In another embodiment, the cancer vaccine triggers cytotoxic T cell-mediated antitumor immunity. In still another embodiment, the cancer vaccine increases CD4+ T cells and CD8+ T cells in blood and/or tumor microenvironment. In yet another embodiment, the cancer vaccine increases TNFα- and INFγ-secreting CD4+ and CD8+ T cells in blood and/or tumor microenvironment. In another embodiment, the cancer vaccine upregulates expression of Icos, Klrc1, Il2rb, Pik3cd, H2-D1, Cc18, Ifng, Icosl, Il2ra, Cxcr3, Ccr7, Cxcl10, Cd74, H2-Ab1, Hspa1b, Cd45, Lifr, and/or Tnf in tumor tissues. In still another embodiment, the cancer vaccine increases the amount of tumor-infiltrating dendritic cells. In yet another embodiment, the cancer vaccine upregulates CD80, CD103, and/or MHC-II in tumor-associated DCs. In another embodiment, the cancer vaccine reduces the number of proliferating cells in a cancer and/or reduces the volume or size of a tumor comprising cancer cells. In still another embodiment, the cancer vaccine reduces the number of proliferating cells in a cancer and/or reduces the volume or size of a tumor comprising cancer cells at the primary site of immunization. In yet another embodiment, the cancer vaccine reduces the number of proliferating cells in a cancer and/or reduces the volume or size of a tumor comprising cancer cells in a tissue that is distal to the site of immunization. In another embodiment, the cancer vaccine induces a tumor-specific memory T cell response. In still another embodiment, the cancer vaccine increases the percentages of CD4+ central memory (TCM) T cells and/or CD4+ effector memory (TEM) T cells in a spleen and/or lymph nodes. In yet another embodiment, cancer vaccine increases the percentage of splenic CD8+ TCM cells. In another embodiment, cancer vaccine increases the percentage of CD8+ TEM cells in a spleen and/or lymph nodes. In still another embodiment, the cancer vaccine increases the amount of tumor infiltrating CD4+ T cells and/or CD8+ T cells. In yet another embodiment, the cancer vaccine increases the amount of tumor infiltrating CD4+ TCM cells and/or CD4+ TEM cells. In another embodiment, the cancer vaccine increases the amount of tumor infiltrating CD8+ TCM cells and/or CD8+ TEM cells. In still another embodiment, the cancer cells are non-replicative. In yet another embodiment, the cancer cells are non-replicative due to irradiation. In another embodiment, the irradiation is at a sub-lethal dose.


In still another embodiment, the cancer vaccine is administered to a subject in combination with an immunotherapy and/or cancer therapy, optionally wherein the immunotherapy and/or cancer therapy is administered before, after, or concurrently with the cancer vaccine. In yet another embodiment, the immunotherapy is cell-based. In another embodiment, the immunotherapy comprises a cancer vaccine and/or virus. In still another embodiment, the immunotherapy inhibits an immune checkpoint. In yet another embodiment, the immune checkpoint is selected from the group consisting of CTLA-4, PD-1, VISTA, B7-H2, B7-H3, PD-L1, B7-H4, B7-H6, ICOS, HVEM, PD-L2, CD160, gp49B, PIR-B, KIR family receptors, TIM-1, TIM-3, TIM-4, LAG-3, GITR, 4-IBB, OX-40, BTLA, SIRPalpha (CD47), CD48, 2B4 (CD244), B7.1, B7.2, ILT-2, ILT-4, TIGIT, HHLA2, butyrophilins, and A2aR. In another embodiment, the immune checkpoint is PD1, PD-L1, or CD47. In still another embodiment, the cancer therapy is selected from the group consisting of radiation, a radiosensitizer, and a chemotherapy.


In still another aspect, provided herein is a method of assessing the efficacy of the cancer vaccine for treating a subject afflicted with a cancer, comprising: a) detecting in a subject sample at a first point in time the number of proliferating cells in the cancer and/or the volume or size of a tumor comprising the cancer cells; b) repeating step a) during at least one subsequent point in time after administration of the cancer vaccine; and c) comparing the number of proliferating cells in the cancer and/or the volume or size of a tumor comprising the cancer cells detected in steps a) and b), wherein the absence of, or a significant decrease in number of proliferating cells in the cancer and/or the volume or size of a tumor comprising the cancer cells in the subsequent sample as compared to the number and/or the volume or size in the sample at the first point in time, indicates that the cancer vaccine treats cancer in the subject. In one embodiment, between the first point in time and the subsequent point in time, the subject has undergone treatment, completed treatment, and/or is in remission for the cancer. In another embodiment, the first and/or at least one subsequent sample is selected from the group consisting of ex vivo and in vivo samples. In still another embodiment, the first and/or at least one subsequent sample is a portion of a single sample or pooled samples obtained from the subject. In yet another embodiment, the sample comprises cells, serum, peripheral lymphoid organs, and/or intratumoral tissue obtained from the subject. In another embodiment, the method described herein further comprises determining responsiveness to the agent by measuring at least one criteria selected from the group consisting of clinical benefit rate, survival until mortality, pathological complete response, semi-quantitative measures of pathologic response, clinical complete remission, clinical partial remission, clinical stable disease, recurrence-free survival, metastasis free survival, disease free survival, circulating tumor cell decrease, circulating marker response, and RECIST criteria. In still another embodiment, the cancer vaccine is administered in a pharmaceutically acceptable formulation. In yet another embodiment, the step of administering occurs in vivo, ex vivo, or in vitro.


As described above, certain embodiments are applicable to any aspect of the present invention described herein. For example, in one embodiment, the cancer vaccine prevents recurrent and metastatic tumor lesions. In another embodiment, the cancer vaccine is administered to the subject intratumorally or subcutaneously. In still another embodiment, the subject is an animal model of the cancer, optionally wherein the animal model is a mouse model. In yet another embodiment, the subject is a mammal, optionally wherein the mammal is in remission for a cancer. In another embodiment, the mammal is a mouse or a human. For example, the mammal is a human.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A-FIG. 1C show that TGFβ-treated PP (PPT) tumor cells do not form tumors in immune competent mice. FIG. 1A shows the workflows for investigating the roles of TGFβ in a mouse model of TNBC derived from concurrent ablation of p53 (encoded by Trp53 in mice) and Pten (termed PP). FIG. 1B shows expression levels of EMT markers detected in PP and TGFβ-treated PP (PPT) cells by real-time PCR. Data are shown as mean±s.e.m. * indicates P<0.05, *** indicates P<0.001, **** indicates P<0.0001; n=4 for each group. FIG. 1C shows in vivo growth of PP and PPT cells (n=10 per group). PP and TGFβ-treated PP (PPT) tumor cells were injected into syngeneic FVB wild type mice.



FIG. 2A-FIG. 2B show that PPT tumor cells formed tumors in immune-compromised mice with a longer latency. The growth rates of PP and PPT tumors in nude (FIG. 2A) and SCID (FIG. 2B) mice; n=10 per group.



FIG. 3A-FIG. 3I show that PPT tumor cells-induced antitumor immunity was T cell-dependent. FIG. 3A shows growth of PP and PPT cells in FVB wild type mice (n=10 per group). FIG. 3B shows growth of PPT tumor cells in FVB wild type mice treated with anti-CD3 or anti-IgG (n=10 per group). FIG. 3C shows a schematic diagram of the work flow for analyzing local and systemic antitumor immune response in syngeneic mice. Splenic, peripheral blood, and tumor infiltrating CD45+CD3+CD4+ T cells (FIGS. 3D-3F) and CD45+CD3+CD8+ T cells (FIGS. 3G-3I) were detected by flow cytometry. The proportions of TNFα- and IFN-γ-secreting CD4+(FIGS. 3E and 3F) and CD8+(FIGS. 3H and 3I) T cells in the spleen, blood, and tumor microenvironment are shown. Data are shown as mean±s.e.m. * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001, **** indicates P<0.0001; n=5 for each group.



FIG. 4A-FIG. 4I show that antitumor immunity induced by activated TGFβ in tumor cells was provoked via enhanced activation of DC and T cells. A customized mouse transcriptome profiling was performed to compare gene expression profiles between PP and PPT 6-day-old tumor tissues (FIGS. 4A-4C). Gene ontology (GO) enrichment and KEGG pathway analyses were performed on up-regulated genes (rpmPPT vs rpmpp>2-fold). FIG. 4A shows relevant GO terms/KEGG pathways. FIG. 4B shows expression of some important targets from transcriptome data as verified by real-time PCR. Data are shown as mean s.e.m. * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001, **** indicates P<0.0001; n=5 for each group. FIG. 4C shows related gene interaction networks that positively regulate antitumor immunity. FIGS. 4D and 4E show the proportions of tumor-infiltrating CD45+CD11C+ DCs in PP and PPT 6-day tumor tissues as analyzed by flow cytometry (FIG. 4D). The expression of MHC-II, CD80, and CD103 were gated in DCs (FIG. 4E); n=5 for each group. FIG. 4F shows a schematic diagram of work flow for analyzing the effect of PP and PPT on DC and T cell activation. FIG. 4G shows detection of DC activation markers by flow cytometry; n=6 for each group, **** indicates P<0.0001. “Matched allogenic” immature DCs harvested from the bone marrow of syngeneic healthy FVB mice were incubated with PP or PPT cells. FIGS. 4H and 4I show determination of activation of CD4+(FIG. 4H) and CD8+(FIG. 4I) T cells by flow cytometry; n=6 per group. **** indicates P<0.0001. T cells and DCs were co-cultured with or without tumor cells overnight.



FIG. 5A-FIG. 5D show that dendritic cells were required for activation of T cells by PPT tumor cells. FIGS. 5A and 5B show expression of MHC-II in CD45+ and CD45-cells in 6-day-old PP and PPT tumor tissues as analyzed by flow cytometry; n=5 for each group. **** indicates P<0.0001. FIGS. 5C and 5D show expression of TNFα and IFN-γ in CD4+(FIG. 5C) and CD8+(FIG. 5D) T cells as detected by flow cytometry; n=3 per group. T cells isolated from naïve mice were incubated with PP or PPT cells overnight.



FIG. 6A-FIG. 6C show Smad2/p63 complex-mediated antitumor immunity induced by TGFβ. FIG. 6A shows the Smad-related transcription factors network in PPT cell as calculated based on a customized mouse transcriptome profiling. The size and color of nodes indicate the value of reads per million (rpm) for indicated genes. “Smads” stands for Smad2, Smad3, and Smad4 complex. FIG. 6B shows growth of PPT-scramble or PPT-shTrp63 tumors in syngeneic mice; n=10 per group. FIG. 6C shows expression of MHC-II, CD80 and CD103 in DCs as detected by flow cytometry; n=4 per group. “Matched allogenic” immature DCs harvested from the bone marrow of syngeneic healthy FVB mice were co-cultured with PPT-scramble or PPT-shTrp63 cells.



FIG. 7A-FIG. 7D show that TGFβ induced Smad2/p63 complex formation in PPT cells. FIG. 7A shows expression of p63 protein in PP and PPT cells. FIGS. 7B and 7C show cellular localization of Smad2 and p63 as analyzed by confocal microscopy (FIG. 7B) and western blotting (FIG. 7C). FIG. 7D shows protein-protein interaction for Smad2 and p63 as analyzed by co-immunoprecipitation assays.



FIG. 8A-FIG. 8D show that TGFβ reprogramed PP cells through the p63/Smad2 signaling pathway. Genes that were co-upregulated (FIG. 8A) and co-downregulated (FIG. 8B) by knocking down of Smad or p63 were determined by comparing transcriptomes in control, p63- and Smad2-knockdown PPT cells. Relevant GO terms and KEGG pathways (lower panels) are also shown. Relevant targets co-upregulated (FIG. 8C) and co-downregulated (FIG. 8D) by p63 or Smad2 knockdown in PPT cells are shown by heat maps.



FIG. 9A-FIG. 9F show that TGFβ activated antitumor immunity in a p63-dependent manner in human breast cancer cells. FIG. 9A shows expression levels of p63 protein in human breast cancer cell lines. FIG. 9B shows that immature human DCs were incubated with human breast cancer cells, MCF7 or HCC1954, as indicated. Both MCF7T and HCC1954T were treated with TGFβ. FIGS. 9C-9E show expression of CD80, CD86 and CD103 in DCs by flow cytometry; n=4 per group; * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001. FIG. 9F shows the relationships between TP63-Smad signature (PYCARD, RIPK3, CASP9, SESN1, and TP63 high; KSR1, EIF4EBP1, ITGA5, and EMILIN1 low) and patient survival according to the Curtis Breast dataset. **** indicates P<0.0001.



FIG. 10A-FIG. 10B show that PP tumor cells failed to grow when co-injected with PPT into syngeneic mice. PP and PPT cell mixtures (1:1) were injected into syngeneic mice. Tumor growth (FIG. 10A; n=10 per group) and long-term survival (FIG. 10B; n=5 per group) are shown.



FIG. 11A-FIG. 11D show that immunization with TGFβ-activated tumor cells induced immune memory response. Spleens and lymph nodes were collected at week one, two, and six after injection of PPT cells. Proportions of CD45+CD3+CD4+FOXP3-CD44+KLRG1-CD62L+ central memory T cells (CD4+ TCM cells) (FIG. 11A), CD45+CD3+CD4+FOXP3-CD44+KLRG1+CD62L− effector memory T cells (CD4+ TEM cells) (FIG. 11B), CD45+CD3+CD8+FOXP3-CD44+KLRG1-CD62L+ central memory T cells (CD8+ TCM cells) (FIG. 11C), and CD45+CD3+CD8+FOXP3-CD44+KLRG1+CD62L− effector memory T cells (CD8+ TEM cells) (FIG. 11D) were analyzed by flow cytometry. * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001, **** indicates P<0.0001; n=5 mice per group.



FIG. 12A-FIG. 12G show that immunization with TGFβ-activated tumor cells induced an immune memory response against parental tumors. FIG. 12A shows a schematic diagram of the work flow for determining the efficacy of PPT immunization on PP tumor rejection. FIGS. 12B-12E show PP cells or PP tumor fragments were transplanted into control and PPT-immunized mice. Tumor growth curves (FIGS. 12B and 12D; n=10 per group) and long-term survival of mice (FIGS. 12C and 12E; n=5 per group) are shown. FIGS. 12F and 12G show that PP tumor cells were injected into PPT-immunized or control mice via tail vein injection. Lung metastatic nodules were examined after 4 weeks; n=5 mice per group, **** indicates P<0.0001.



FIG. 13A-FIG. 13D show that PP tumor challenge induces memory T cell responses in the tumor microenvironment (TME) in PPT immunized mice. FIG. 13A shows workflows for determining the memory in the TME. FIG. 13B shows the proportions of the tumor infiltrating CD4+ and CD8+ T cells in the CD45+ leukocytes of PP tumors transplaned into PPT immunized or control mice. FIG. 13C shows proportions of CD45+CD3+CD4+FOXP3-CD44+KLRG1-CD62L+ central memory T cells (CD4+ TCM cells), CD45+CD3+CD4+FOXP3-CD44+KLRG1+CD62L− effector memory T cells (CD4+ TEM cells). FIG. 13D shows proportions of CD45+CD3+CD8+FOXP3-CD44+KLRG1-CD62L+ central memory T cells (CD8+ TCM cells), and CD45+CD3+CD8+FOXP3-CD44+KLRG1+CD62L− effector memory T cells (CD8+ TEM cells). Analyses were done by flow cytometry. *P<0.05, ***P<0.001, ****P<0.0001; n=6 for each group.



FIG. 14A-FIG. 14C show that the vaccine effects of PPT cells were not dampened by irradiation. Mice were immunized with 100 Gy gamma ray irradiated PBS, PP or PPT cells. 4 weeks after vaccination, PP tumor fragments were transplanted into the third fat pad of indicated mice. The growth of PP tumors (FIG. 14B, n=10 for each group) and survival of mice (FIG. 14C, n=5 per group) are shown.



FIG. 15A-FIG. 1511 show that PPT cells can be used as allogeneic vaccines against different types of cancers. Indicated tumor cell lines were injected into PBS or PPT cells vaccinated mice. The growth of PPA (FIG. 15A; a mouse breast cancer model characterized by triple loss of p53, PTEN, and P110α), C260 (FIG. 15C; a p53/PTEN double loss and Myc high mouse ovarian cancer model), D658 (FIG. 15E; a Kras mutated recurrent breast cancer cell line generated from a PIK3CAH1047A mouse model of breast cancer), and d333 (FIG. 15G; a brain tumor derived from p53 and PTEN double loss mouse) tumors were shown. n=10 for each group. The survival of mice transplanted with indicated tumors were also shown in FIGS. 15B, 15D, 15F, and 15H. n=5 per group.



FIG. 16 shows a schematic diagram of TGFβ-Smad signaling pathway and molecular events adapted from Zhang et al. (2013) J. Cell Sci. 126:4809-4813.



FIG. 17 shows that TGFβ activation in tumor cells induced anti-tumor immune response by engagement of dendritic cells and subsequent T cell activation. In p63-positive tumor cells, TGFβ induces Smad nuclear localization and promote the formation of a p63 and Smad transcriptional complex that upregulates multiple immune regulatory pathways and downregulates several major oncogenic signaling pathways, thereby triggering antitumor immunity through activation of dendritic cells (DCs) and T cells.



FIG. 18 shows a schematic diagram of a representative embodiment of a vaccine platform encompassed by the present invention.



FIG. 19 shows gating strategy for T cell populations. Flow cytometry gating for CD4+, CD8+, and CD4+ regulatory T cell in spleen, lymph node, blood, and tumors was shown. Representative plots from splenocytes were shown.



FIG. 20 shows gating strategy for Memory T cell populations. Flow cytometry gating for CD4+ central memory T cell (CD4+ TCM), CD4+ effector memory T cell (CD4+ TEM), CD8+ central memory T cell (CD8+ TCM), and CD8+ effector memory T cell (CD8+ TEM) in spleen, lymph node, blood, and tumors was shown. Representative plots from splenocytes were shown.



FIG. 21 shows gating strategy for tumor infiltrating dendritic cell. Flow cytometry gating for tumor infiltrating dendritic cell (DC) in order to examine the expressions of MHCII, CD80, and CD103 was shown.





For any figure showing a bar histogram, curve, or other data associated with a legend, the bars, curve, or other data presented from left to right for each indication correspond directly and in order to the boxes from top to bottom of the legend.


DETAILED DESCRIPTION OF THE INVENTION

It has been determined herein that PTEN- and p53-deficient tumor cells bearing activated TGFβ-Smad/p63 signaling (e.g., treated with at least one TGFβ superfamily protein) failed to form tumors in immunocompetent hosts in a T cell-dependent manner. For example, treatment of tumor cells derived from a syngeneic mouse breast tumor model driven by concurrent loss of p53 and Pten with TGFβ in vitro completely abrogated their ability to form tumors in immunocompetent mice in a T cell-dependent manner. It was also demonstrated that these cells triggered robust anti-tumor immunity via engagement and activation of dendritic cells (DCs), which in turn activated T cells to target tumor cells. In addition, it was found that p63 is a key co-factor for TGFβ/Smad-mediated transcription in response to TGFβ stimulation. For example, activation of the TGFβ-Smad/p63 axis upregulated transcriptional outputs that induce activation of multiple immune pathways, and these effects were abolished when either p63 or Smad2 was depleted. Moreover, administration of tumor cells bearing activated TGFβ-Smad/p63 signaling protect hosts from recurrent and metastatic tumor lesions through induction of long-term memory T cell responses. It was also found that the survivals of breast cancer patients were highly correlated with the TGFβ-Smad/p63 signatures. These results uncover a new molecular switch underlying the opposing effects of TGFβ in tumor development and provide a strategy for developing effective tumor vaccines through TGFβ-based reprogramming. Accordingly, compositions and methods for preventing and/or treating cancer using a cancer vaccine that comprises cancer cells that are (1) Pten-deficient, (2) p53-deficient, and (3) modified to active TGFβ-Smad/p63 signaling pathway, are provided. In addition, methods of assessing the efficacy of the cancer vaccine for preventing and/or treating cancer is also provided.


I. Definitions

The articles “a” and “an” are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.


The term “administering” is intended to include routes of administration which allow an agent to perform its intended function. Examples of routes of administration for treatment of a body which can be used include injection (subcutaneous, intravenous, parenteral, intraperitoneal, intrathecal, etc.), oral, inhalation, and transdermal routes. The injection can be bolus injections or can be continuous infusion. Depending on the route of administration, the agent can be coated with or disposed in a selected material to protect it from natural conditions which may detrimentally affect its ability to perform its intended function. The agent may be administered alone, or in conjunction with a pharmaceutically acceptable carrier. The agent also may be administered as a prodrug, which is converted to its active form in vivo.


The term “altered amount” or “altered level” refers to increased or decreased copy number (e.g., germline and/or somatic) of a biomarker nucleic acid, e.g., increased or decreased expression level in a cancer sample, as compared to the expression level or copy number of the biomarker nucleic acid in a control sample. The term “altered amount” of a biomarker also includes an increased or decreased protein level of a biomarker protein in a sample, e.g., a cancer sample, as compared to the corresponding protein level in a normal, control sample. Furthermore, an altered amount of a biomarker protein may be determined by detecting posttranslational modification such as methylation status of the marker, which may affect the expression or activity of the biomarker protein.


The amount of a biomarker in a subject is “significantly” higher or lower than the normal amount of the biomarker, if the amount of the biomarker is greater or less, respectively, than the normal level by an amount greater than the standard error of the assay employed to assess amount, and preferably at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 300%, 350%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or than that amount. Alternately, the amount of the biomarker in the subject can be considered “significantly” higher or lower than the normal amount if the amount is at least about two, and preferably at least about three, four, or five times, higher or lower, respectively, than the normal amount of the biomarker. Such “significance” can also be applied to any other measured parameter described herein, such as for expression, inhibition, cytotoxicity, cell growth, and the like.


The term “altered level of expression” of a biomarker refers to an expression level or copy number of the biomarker in a test sample, e.g., a sample derived from a patient suffering from cancer, that is greater or less than the standard error of the assay employed to assess expression or copy number, and is preferably at least twice, and more preferably three, four, five or ten or more times the expression level or copy number of the biomarker in a control sample (e.g., sample from a healthy subjects not having the associated disease) and preferably, the average expression level or copy number of the biomarker in several control samples. The altered level of expression is greater or less than the standard error of the assay employed to assess expression or copy number, and is preferably at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 300%, 350%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more times the expression level or copy number of the biomarker in a control sample (e.g., sample from a healthy subjects not having the associated disease) and preferably, the average expression level or copy number of the biomarker in several control samples. In some embodiments, the level of the biomarker refers to the level of the biomarker itself, the level of a modified biomarker (e.g., phosphorylated biomarker), or to the level of a biomarker relative to another measured variable, such as a control (e.g., phosphorylated biomarker relative to an unphosphorylated biomarker).


The term “altered activity” of a biomarker refers to an activity of the biomarker which is increased or decreased in a disease state, e.g., in a cancer sample, as compared to the activity of the biomarker in a normal, control sample. Altered activity of the biomarker may be the result of, for example, altered expression of the biomarker, altered protein level of the biomarker, altered structure of the biomarker, or, e.g., an altered interaction with other proteins involved in the same or different pathway as the biomarker or altered interaction with transcriptional activators or inhibitors.


The term “altered structure” of a biomarker refers to the presence of mutations or allelic variants within a biomarker nucleic acid or protein, e.g., mutations which affect expression or activity of the biomarker nucleic acid or protein, as compared to the normal or wild-type gene or protein. For example, mutations include, but are not limited to substitutions, deletions, or addition mutations. Mutations may be present in the coding or non-coding region of the biomarker nucleic acid.


Unless otherwise specified here within, the terms “antibody” and “antibodies” broadly encompass naturally-occurring forms of antibodies (e.g. IgG, IgA, IgM, IgE) and recombinant antibodies, such as single-chain antibodies, chimeric and humanized antibodies and multi-specific antibodies, as well as fragments and derivatives of all of the foregoing, which fragments and derivatives have at least an antigenic binding site. Antibody derivatives may comprise a protein or chemical moiety conjugated to an antibody.


In addition, intrabodies are well-known antigen-binding molecules having the characteristic of antibodies, but that are capable of being expressed within cells in order to bind and/or inhibit intracellular targets of interest (Chen et al. (1994) Human Gene Ther. 5:595-601). Methods are well-known in the art for adapting antibodies to target (e.g., inhibit) intracellular moieties, such as the use of single-chain antibodies (scFvs), modification of immunoglobulin VL domains for hyperstability, modification of antibodies to resist the reducing intracellular environment, generating fusion proteins that increase intracellular stability and/or modulate intracellular localization, and the like. Intracellular antibodies can also be introduced and expressed in one or more cells, tissues or organs of a multicellular organism, for example for prophylactic and/or therapeutic purposes (e.g., as a gene therapy) (see, at least PCT Publs. WO 08/020079, WO 94/02610, WO 95/22618, and WO 03/014960; U.S. Pat. No. 7,004,940; Cattaneo and Biocca (1997) Intracellular Antibodies: Development and Applications (Landes and Springer-Verlag publs.); Kontermann (2004) Methods 34:163-170; Cohen et al. (1998) Oncogene 17:2445-2456; Auf der Maur et al. (2001) FEBS Lett. 508:407-412; Shaki-Loewenstein et al. (2005) J. Immunol. Meth. 303:19-39).


The term “antibody” as used herein also includes an “antigen-binding portion” of an antibody (or simply “antibody portion”). The term “antigen-binding portion”, as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., a biomarker polypeptide or fragment thereof). It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody. Examples of binding fragments encompassed within the term “antigen-binding portion” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent polypeptides (known as single chain Fv (scFv); see e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883; and Osbourn et al. 1998, Nature Biotechnology 16: 778). Such single chain antibodies are also intended to be encompassed within the term “antigen-binding portion” of an antibody. Any VH and VL sequences of specific scFv can be linked to human immunoglobulin constant region cDNA or genomic sequences, in order to generate expression vectors encoding complete IgG polypeptides or other isotypes. VH and VL can also be used in the generation of Fab, Fv or other fragments of immunoglobulins using either protein chemistry or recombinant DNA technology. Other forms of single chain antibodies, such as diabodies are also encompassed. Diabodies are bivalent, bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see e.g., Holliger et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90:6444-6448; Poljak et al. (1994) Structure 2:1121-1123).


Still further, an antibody or antigen-binding portion thereof may be part of larger immunoadhesion polypeptides, formed by covalent or noncovalent association of the antibody or antibody portion with one or more other proteins or peptides. Examples of such immunoadhesion polypeptides include use of the streptavidin core region to make a tetrameric scFv polypeptide (Kipriyanov et al. (1995) Human Antibodies and Hybridomas 6:93-101) and use of a cysteine residue, biomarker peptide and a C-terminal polyhistidine tag to make bivalent and biotinylated scFv polypeptides (Kipriyanov et al. (1994) Mol. Immunol. 31:1047-1058). Antibody portions, such as Fab and F(ab′)2 fragments, can be prepared from whole antibodies using conventional techniques, such as papain or pepsin digestion, respectively, of whole antibodies. Moreover, antibodies, antibody portions and immunoadhesion polypeptides can be obtained using standard recombinant DNA techniques, as described herein.


Antibodies may be polyclonal or monoclonal; xenogeneic, allogeneic, or syngeneic; or modified forms thereof (e.g. humanized, chimeric, etc.). Antibodies may also be fully human. Preferably, antibodies of the invention bind specifically or substantially specifically to a biomarker polypeptide or fragment thereof. The terms “monoclonal antibodies” and “monoclonal antibody composition”, as used herein, refer to a population of antibody polypeptides that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of an antigen, whereas the term “polyclonal antibodies” and “polyclonal antibody composition” refer to a population of antibody polypeptides that contain multiple species of antigen binding sites capable of interacting with a particular antigen. A monoclonal antibody composition typically displays a single binding affinity for a particular antigen with which it immunoreacts.


Antibodies may also be “humanized,” which is intended to include antibodies made by a non-human cell having variable and constant regions which have been altered to more closely resemble antibodies that would be made by a human cell. For example, by altering the non-human antibody amino acid sequence to incorporate amino acids found in human germline immunoglobulin sequences. The humanized antibodies of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs. The term “humanized antibody”, as used herein, also includes antibodies in which CDR sequences derived from the germline of another mammalian species, have been grafted onto human framework sequences.


The term “biomarker” refers to a measurable entity of the present invention that has been determined to be predictive of cancer therapy effects. Biomarkers can include, without limitation, nucleic acids (e.g., genomic nucleic acids and/or transcribed nucleic acids) and proteins. Many biomarkers are also useful as therapeutic targets.


A “blocking” antibody or an antibody “antagonist” is one which inhibits or reduces at least one biological activity of the antigen(s) it binds. In certain embodiments, the blocking antibodies or antagonist antibodies or fragments thereof described herein substantially or completely inhibit a given biological activity of the antigen(s).


The term “body fluid” refers to fluids that are excreted or secreted from the body as well as fluids that are normally not (e.g. amniotic fluid, aqueous humor, bile, blood and blood plasma, cerebrospinal fluid, cerumen and earwax, cowper's fluid or pre-ejaculatory fluid, chyle, chyme, stool, female ejaculate, interstitial fluid, intracellular fluid, lymph, menses, breast milk, mucus, pleural fluid, pus, saliva, sebum, semen, serum, sweat, synovial fluid, tears, urine, vaginal lubrication, vitreous humor, vomit).


The terms “cancer” or “tumor” or “hyperproliferative” refer to the presence of cells possessing characteristics typical of cancer-causing cells, such as uncontrolled proliferation, immortality, metastatic potential, rapid growth and proliferation rate, and certain characteristic morphological features.


Cancer cells are often in the form of a tumor, but such cells may exist alone within an animal, or may be a non-tumorigenic cancer cell, such as a leukemia cell. As used herein, the term “cancer” includes premalignant as well as malignant cancers. Cancers include, but are not limited to, B cell cancer, e.g., multiple myeloma, Waldenström's macroglobulinemia, the heavy chain diseases, such as, for example, alpha chain disease, gamma chain disease, and mu chain disease, benign monoclonal gammopathy, and immunocytic amyloidosis, melanomas, breast cancer, lung cancer, bronchus cancer, colorectal cancer, prostate cancer, pancreatic cancer, stomach cancer, ovarian cancer, urinary bladder cancer, brain or central nervous system cancer, peripheral nervous system cancer, esophageal cancer, cervical cancer, uterine or endometrial cancer, cancer of the oral cavity or pharynx, liver cancer, kidney cancer, testicular cancer, biliary tract cancer, small bowel or appendix cancer, salivary gland cancer, thyroid gland cancer, adrenal gland cancer, osteosarcoma, chondrosarcoma, cancer of hematologic tissues, and the like. Other non-limiting examples of types of cancers applicable to the methods encompassed by the present invention include human sarcomas and carcinomas, e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, colorectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, liver cancer, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, bone cancer, brain tumor, testicular cancer, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma; leukemias, e.g., acute lymphocytic leukemia and acute myelocytic leukemia (myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia); chronic leukemia (chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia); and polycythemia vera, lymphoma (Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, and heavy chain disease. In some embodiments, cancers are epithlelial in nature and include but are not limited to, bladder cancer, breast cancer, cervical cancer, colon cancer, gynecologic cancers, renal cancer, laryngeal cancer, lung cancer, oral cancer, head and neck cancer, ovarian cancer, pancreatic cancer, prostate cancer, or skin cancer. In other embodiments, the cancer is breast cancer, prostate cancer, lung cancer, or colon cancer. In still other embodiments, the epithelial cancer is non-small-cell lung cancer, nonpapillary renal cell carcinoma, cervical carcinoma, ovarian carcinoma (e.g., serous ovarian carcinoma), or breast carcinoma. The epithelial cancers may be characterized in various other ways including, but not limited to, serous, endometrioid, mucinous, clear cell, Brenner, or undifferentiated.


The term “coding region” refers to regions of a nucleotide sequence comprising codons which are translated into amino acid residues, whereas the term “noncoding region” refers to regions of a nucleotide sequence that are not translated into amino acids (e.g., 5′ and 3′ untranslated regions).


The term “complementary” refers to the broad concept of sequence complementarity between regions of two nucleic acid strands or between two regions of the same nucleic acid strand. It is known that an adenine residue of a first nucleic acid region is capable of forming specific hydrogen bonds (“base pairing”) with a residue of a second nucleic acid region which is antiparallel to the first region if the residue is thymine or uracil. Similarly, it is known that a cytosine residue of a first nucleic acid strand is capable of base pairing with a residue of a second nucleic acid strand which is antiparallel to the first strand if the residue is guanine. A first region of a nucleic acid is complementary to a second region of the same or a different nucleic acid if, when the two regions are arranged in an antiparallel fashion, at least one nucleotide residue of the first region is capable of base pairing with a residue of the second region. Preferably, the first region comprises a first portion and the second region comprises a second portion, whereby, when the first and second portions are arranged in an antiparallel fashion, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion. More preferably, all nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion.


The terms “conjoint therapy” and “combination therapy,” as used herein, refer to the administration of two or more therapeutic substances. The different agents comprising the combination therapy may be administered concomitant with, prior to, or following the administration of one or more therapeutic agents.


The term “control” refers to any reference standard suitable to provide a comparison to the expression products in the test sample. In one embodiment, the control comprises obtaining a “control sample” from which expression product levels are detected and compared to the expression product levels from the test sample. Such a control sample may comprise any suitable sample, including but not limited to a sample from a control cancer patient (can be stored sample or previous sample measurement) with a known outcome; normal tissue or cells isolated from a subject, such as a normal patient or the cancer patient, cultured primary cells/tissues isolated from a subject such as a normal subject or the cancer patient, adjacent normal cells/tissues obtained from the same organ or body location of the cancer patient, a tissue or cell sample isolated from a normal subject, or a primary cells/tissues obtained from a depository. In another preferred embodiment, the control may comprise a reference standard expression product level from any suitable source, including but not limited to housekeeping genes, an expression product level range from normal tissue (or other previously analyzed control sample), a previously determined expression product level range within a test sample from a group of patients, or a set of patients with a certain outcome (for example, survival for one, two, three, four years, etc.) or receiving a certain treatment (for example, standard of care cancer therapy). It will be understood by those of skill in the art that such control samples and reference standard expression product levels can be used in combination as controls in the methods of the present invention. In one embodiment, the control may comprise normal or non-cancerous cell/tissue sample. In another preferred embodiment, the control may comprise an expression level for a set of patients, such as a set of cancer patients, or for a set of cancer patients receiving a certain treatment, or for a set of patients with one outcome versus another outcome. In the former case, the specific expression product level of each patient can be assigned to a percentile level of expression, or expressed as either higher or lower than the mean or average of the reference standard expression level. In another preferred embodiment, the control may comprise normal cells, cells from patients treated with combination chemotherapy, and cells from patients having benign cancer. In another embodiment, the control may also comprise a measured value for example, average level of expression of a particular gene in a population compared to the level of expression of a housekeeping gene in the same population. Such a population may comprise normal subjects, cancer patients who have not undergone any treatment (i.e., treatment naive), cancer patients undergoing standard of care therapy, or patients having benign cancer. In another preferred embodiment, the control comprises a ratio transformation of expression product levels, including but not limited to determining a ratio of expression product levels of two genes in the test sample and comparing it to any suitable ratio of the same two genes in a reference standard; determining expression product levels of the two or more genes in the test sample and determining a difference in expression product levels in any suitable control; and determining expression product levels of the two or more genes in the test sample, normalizing their expression to expression of housekeeping genes in the test sample, and comparing to any suitable control. In particularly preferred embodiments, the control comprises a control sample which is of the same lineage and/or type as the test sample. In another embodiment, the control may comprise expression product levels grouped as percentiles within or based on a set of patient samples, such as all patients with cancer. In one embodiment a control expression product level is established wherein higher or lower levels of expression product relative to, for instance, a particular percentile, are used as the basis for predicting outcome. In another preferred embodiment, a control expression product level is established using expression product levels from cancer control patients with a known outcome, and the expression product levels from the test sample are compared to the control expression product level as the basis for predicting outcome. As demonstrated by the data below, the methods of the invention are not limited to use of a specific cut-point in comparing the level of expression product in the test sample to the control.


The “copy number” of a biomarker nucleic acid refers to the number of DNA sequences in a cell (e.g., germline and/or somatic) encoding a particular gene product. Generally, for a given gene, a mammal has two copies of each gene. The copy number can be increased, however, by gene amplification or duplication, or reduced by deletion. For example, germline copy number changes include changes at one or more genomic loci, wherein said one or more genomic loci are not accounted for by the number of copies in the normal complement of germline copies in a control (e.g., the normal copy number in germline DNA for the same species as that from which the specific germline DNA and corresponding copy number were determined). Somatic copy number changes include changes at one or more genomic loci, wherein said one or more genomic loci are not accounted for by the number of copies in germline DNA of a control (e.g., copy number in germline DNA for the same subject as that from which the somatic DNA and corresponding copy number were determined).


The term “immune cell” refers to cells that play a role in the immune response. Immune cells are of hematopoietic origin, and include lymphocytes, such as B cells and T cells; natural killer cells; myeloid cells, such as monocytes, macrophages, eosinophils, mast cells, basophils, and granulocytes.


Macrophages (and their precursors, monocytes) are the ‘big eaters’ of the immune system. These cells reside in every tissue of the body, albeit in different guises, such as microglia, Kupffer cells and osteoclasts, where they engulf apoptotic cells and pathogens and produce immune effector molecules. Upon tissue damage or infection, monocytes are rapidly recruited to the tissue, where they differentiate into tissue macrophages. Macrophages are remarkably plastic and can change their functional phenotype depending on the environmental cues they receive. Through their ability to clear pathogens and instruct other immune cells, these cells have a central role in protecting the host but also contribute to the pathogenesis of inflammatory and degenerative diseases. Macrophages that encourage inflammation are called M1 macrophages, whereas those that decrease inflammation and encourage tissue repair are called M2 macrophages. M1 macrophages are activated by LPS and IFN-gamma, and secrete high levels of IL-12 and low levels of IL-10. M2 is the phenotype of resident tissue macrophages, and can be further elevated by IL-4. M2 macrophages produce high levels of IL-10, TGFβ and low levels of IL-12. Tumor-associated macrophages are mainly of the M2 phenotype, and seem to actively promote tumor growth.


Myeloid derived suppressor cells (MDSCs) are an intrinsic part of the myeloid cell lineage and are a heterogeneous population comprised of myeloid cell progenitors and precursors of granulocytes, macrophages and dendritic cells. MDSCs are defined by their myeloid origin, immature state and ability to potently suppress T cell responses. They regulate immune responses and tissue repair in healthy individuals and the population rapidly expands during inflammation, infection and cancer. MDSC are one of the major components of the tumor microenvironment. The main feature of these cells is their potent immune suppressive activity. MDSC are generated in the bone marrow and, in tumor-bearing hosts, migrate to peripheral lymphoid organs and the tumor to contribute to the formation of the tumor microenvironment. This process is controlled by a set of defined chemokines, many of which are upregulated in cancer. Hypoxia appears to have a critical role in the regulation of MDSC differentiation and function in tumors. Therapeutic strategies are now being developed to target MDSCs to promote antitumour immune responses or to inhibit immune responses in the setting of autoimmune disease or transplant rejection.


Dendritic cells (DCs) are professional antigen-presenting cells located in the skin, mucosa and lymphoid tissues. Their main function is to process antigens and present them to T cells to promote immunity to foreign antigens and tolerance to self antigens. They also secrete cytokines to regulate immune responses.


Conventional T cells, also known as Tconv or Teffs, have effector functions (e.g., cytokine secretion, cytotoxic activity, anti-self-recognization, and the like) to increase immune responses by virtue of their expression of one or more T cell receptors. Tcons or Teffs are generally defined as any T cell population that is not a Treg and include, for example, naïve T cells, activated T cells, memory T cells, resting Tcons, or Tcons that have differentiated toward, for example, the Th1 or Th2 lineages. In some embodiments, Teffs are a subset of non-Treg T cells. In some embodiments, Teffs are CD4+ Teffs or CD8+ Teffs, such as CD4+ helper T lymphocytes (e.g., Th0, Th1, Tfh, or Th17) and CD8+ cytotoxic T lymphocytes. As described further herein, cytotoxic T cells are CD8+ T lymphocytes. “Naïve Tcons” are CD4+ T cells that have differentiated in bone marrow, and successfully underwent a positive and negative processes of central selection in a thymus, but have not yet been activated by exposure to an antigen. Naïve Tcons are commonly characterized by surface expression of L-selectin (CD62L), absence of activation markers such as CD25, CD44 or CD69, and absence of memory markers such as CD45RO. Naïve Tcons are therefore believed to be quiescent and non-dividing, requiring interleukin-7 (IL-7) and interleukin-15 (IL-15) for homeostatic survival (see, at least WO 2010/101870). The presence and activity of such cells are undesired in the context of suppressing immune responses. Unlike Tregs, Tcons are not anergic and can proliferate in response to antigen-based T cell receptor activation (Lechler et al. (2001) Philos. Trans. R. Soc. Lond. Biol. Sci. 356:625-637). In tumors, exhausted cells can present hallmarks of anergy.


The term “immunotherapy” or “immunotherapies” refer to any treatment that uses certain parts of a subject's immune system to fight diseases such as cancer. The subject's own immune system is stimulated (or suppressed), with or without administration of one or more agent for that purpose. Immunotherapies that are designed to elicit or amplify an immune response are referred to as “activation immunotherapies.” Immunotherapies that are designed to reduce or suppress an immune response are referred to as “suppression immunotherapies.” Any agent believed to have an immune system effect on the genetically modified transplanted cancer cells can be assayed to determine whether the agent is an immunotherapy and the effect that a given genetic modification has on the modulation of immune response. In some embodiments, the immunotherapy is cancer cell-specific. In some embodiments, immunotherapy can be “untargeted,” which refers to administration of agents that do not selectively interact with immune system cells, yet modulates immune system function. Representative examples of untargeted therapies include, without limitation, chemotherapy, gene therapy, and radiation therapy.


Immunotherapy is one form of targeted therapy that may comprise, for example, the use of cancer vaccines and/or sensitized antigen presenting cells. For example, an oncolytic virus is a virus that is able to infect and lyse cancer cells, while leaving normal cells unharmed, making them potentially useful in cancer therapy. Replication of oncolytic viruses both facilitates tumor cell destruction and also produces dose amplification at the tumor site. They may also act as vectors for anticancer genes, allowing them to be specifically delivered to the tumor site. The immunotherapy can involve passive immunity for short-term protection of a host, achieved by the administration of pre-formed antibody directed against a cancer antigen or disease antigen (e.g., administration of a monoclonal antibody, optionally linked to a chemotherapeutic agent or toxin, to a tumor antigen). For example, anti-VEGF and mTOR inhibitors are known to be effective in treating renal cell carcinoma. Immunotherapy can also focus on using the cytotoxic lymphocyte-recognized epitopes of cancer cell lines. Alternatively, antisense polynucleotides, ribozymes, RNA interference molecules, triple helix polynucleotides and the like, can be used to selectively modulate biomolecules that are linked to the initiation, progression, and/or pathology of a tumor or cancer.


Immunotherapy can involve passive immunity for short-term protection of a host, achieved by the administration of pre-formed antibody directed against a cancer antigen or disease antigen (e.g., administration of a monoclonal antibody, optionally linked to a chemotherapeutic agent or toxin, to a tumor antigen). Immunotherapy can also focus on using the cytotoxic lymphocyte-recognized epitopes of cancer cell lines. Alternatively, antisense polynucleotides, ribozymes, RNA interference molecules, triple helix polynucleotides and the like, can be used to selectively modulate biomolecules that are linked to the initiation, progression, and/or pathology of a tumor or cancer.


In some embodiments, immunotherapy comprises inhibitors of one or more immune checkpoints. The term “immune checkpoint” refers to a group of molecules on the cell surface of CD4+ and/or CD8+ T cells that fine-tune immune responses by down-modulating or inhibiting an anti-tumor immune response. Immune checkpoint proteins are well-known in the art and include, without limitation, CTLA-4, PD-1, VISTA, B7-H2, B7-H3, PD-L1, B7-H4, B7-H6, ICOS, HVEM, PD-L2, CD160, gp49B, PIR-B, KIR family receptors, TIM-1, TIM-3, TIM-4, LAG-3, GITR, 4-IBB, OX-40, BTLA, SIRPalpha (CD47), CD48, 2B4 (CD244), B7.1, B7.2, ILT-2, ILT-4, TIGIT, HHLA2, butyrophilins, and A2aR (see, for example, WO 2012/177624). The term further encompasses biologically active protein fragment, as well as nucleic acids encoding full-length immune checkpoint proteins and biologically active protein fragments thereof. In some embodiment, the term further encompasses any fragment according to homology descriptions provided herein. In one embodiment, the immune checkpoint is PD-1.


“Anti-immune checkpoint therapy” refers to the use of agents that inhibit immune checkpoint nucleic acids and/or proteins. Inhibition of one or more immune checkpoints can block or otherwise neutralize inhibitory signaling to thereby upregulate an immune response in order to more efficaciously treat cancer. Exemplary agents useful for inhibiting immune checkpoints include antibodies, small molecules, peptides, peptidomimetics, natural ligands, and derivatives of natural ligands, that can either bind and/or inactivate or inhibit immune checkpoint proteins, or fragments thereof; as well as RNA interference, antisense, nucleic acid aptamers, etc. that can downregulate the expression and/or activity of immune checkpoint nucleic acids, or fragments thereof. Exemplary agents for upregulating an immune response include antibodies against one or more immune checkpoint proteins block the interaction between the proteins and its natural receptor(s); a non-activating form of one or more immune checkpoint proteins (e.g., a dominant negative polypeptide); small molecules or peptides that block the interaction between one or more immune checkpoint proteins and its natural receptor(s); fusion proteins (e.g. the extracellular portion of an immune checkpoint inhibition protein fused to the Fc portion of an antibody or immunoglobulin) that bind to its natural receptor(s); nucleic acid molecules that block immune checkpoint nucleic acid transcription or translation; and the like. Such agents can directly block the interaction between the one or more immune checkpoints and its natural receptor(s) (e.g., antibodies) to prevent inhibitory signaling and upregulate an immune response. Alternatively, agents can indirectly block the interaction between one or more immune checkpoint proteins and its natural receptor(s) to prevent inhibitory signaling and upregulate an immune response. For example, a soluble version of an immune checkpoint protein ligand such as a stabilized extracellular domain can binding to its receptor to indirectly reduce the effective concentration of the receptor to bind to an appropriate ligand. In one embodiment, anti-PD-1 antibodies, anti-PD-L1 antibodies, and/or anti-PD-L2 antibodies, either alone or in combination, are used to inhibit immune checkpoints. These embodiments are also applicable to specific therapy against particular immune checkpoints, such as the PD-1 pathway (e.g., anti-PD-1 pathway therapy, otherwise known as PD-1 pathway inhibitor therapy).


The term “immune response” includes T cell mediated and/or B cell mediated immune responses. Exemplary immune responses include T cell responses, e.g., cytokine production and cellular cytotoxicity. In addition, the term immune response includes immune responses that are indirectly effected by T cell activation, e.g., antibody production (humoral responses) and activation of cytokine responsive cells, e.g., macrophages.


The term “immunotherapeutic agent” can include any molecule, peptide, antibody or other agent which can stimulate a host immune system to generate an immune response to a tumor or cancer in the subject. Various immunotherapeutic agents are useful in the compositions and methods described herein.


The term “inhibit” includes decreasing, reducing, limiting, and/or blocking, of, for example a particular action, function, and/or interaction. In some embodiments, the interaction between two molecules is “inhibited” if the interaction is reduced, blocked, disrupted or destabilized.


In some embodiments, cancer is “inhibited” if at least one symptom of the cancer is alleviated, terminated, slowed, or prevented. As used herein, cancer is also “inhibited” if recurrence or metastasis of the cancer is reduced, slowed, delayed, or prevented.


The term “interaction”, when referring to an interaction between two molecules, refers to the physical contact (e.g., binding) of the molecules with one another. Generally, such an interaction results in an activity (which produces a biological effect) of one or both of said molecules.


An “isolated protein” refers to a protein that is substantially free of other proteins, cellular material, separation medium, and culture medium when isolated from cells or produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. An “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the antibody, polypeptide, peptide or fusion protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language “substantially free of cellular material” includes preparations of a biomarker polypeptide or fragment thereof, in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. In one embodiment, the language “substantially free of cellular material” includes preparations of a biomarker protein or fragment thereof, having less than about 30% (by dry weight) of non-biomarker protein (also referred to herein as a “contaminating protein”), more preferably less than about 20% of non-biomarker protein, still more preferably less than about 10% of non-biomarker protein, and most preferably less than about 5% non-biomarker protein. When antibody, polypeptide, peptide or fusion protein or fragment thereof, e.g., a biologically active fragment thereof, is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation.


As used herein, the term “isotype” refers to the antibody class (e.g., IgM, IgG1, IgG2C, and the like) that is encoded by heavy chain constant region genes.


The “normal” level of expression of a biomarker is the level of expression of the biomarker in cells of a subject, e.g., a human patient, not afflicted with a cancer. An “over-expression” or “significantly higher level of expression” of a biomarker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and is preferably at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more higher than the expression activity or level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples. A “significantly lower level of expression” of a biomarker refers to an expression level in a test sample that is at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more lower than the expression level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples.


An “over-expression” or “significantly higher level of expression” of a biomarker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and is preferably at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more higher than the expression activity or level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples. A “significantly lower level of expression” of a biomarker refers to an expression level in a test sample that is at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more lower than the expression level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples.


The term “predictive” includes the use of a biomarker nucleic acid and/or protein status, e.g., over- or under-activity, emergence, expression, growth, remission, recurrence or resistance of tumors before, during or after therapy, for determining the likelihood of response of a cancer to a cancer vaccine alone or in combination with an immunotherapy and/or cancer therapy. Such predictive use of the biomarker may be confirmed by, e.g., (1) increased or decreased copy number (e.g., by FISH, FISH plus SKY, single-molecule sequencing, e.g., as described in the art at least at J. Biotechnol., 86:289-301, or qPCR), overexpression or underexpression of a biomarker nucleic acid (e.g., by ISH, Northern Blot, or qPCR), increased or decreased biomarker protein (e.g., by IHC), or increased or decreased activity, e.g., in more than about 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 100%, or more of assayed human cancers types or cancer samples; (2) its absolute or relatively modulated presence or absence in a biological sample, e.g., a sample containing tissue, whole blood, serum, plasma, buccal scrape, saliva, cerebrospinal fluid, urine, stool, or bone marrow, from a subject, e.g. a human, afflicted with cancer; (3) its absolute or relatively modulated presence or absence in clinical subset of patients with cancer (e.g., those responding to the cancer vaccine alone or in combination with an immunotherapy and/or cancer therapy, or those developing resistance thereto).


The terms “prevent,” “preventing,” “prevention,” “prophylactic treatment,” and the like refer to reducing the probability of developing a disease, disorder, or condition in a subject, who does not have, but is at risk of or susceptible to developing a disease, disorder, or condition.


The term “cancer response,” “response to immunotherapy,” or “response to modulators of T-cell mediated cytotoxicity/immunotherapy combination therapy” relates to any response of the hyperproliferative disorder (e.g., cancer) to a cancer agent, such as a modulator of T-cell mediated cytotoxicity, and an immunotherapy, preferably to a change in tumor mass and/or volume after initiation of neoadjuvant or adjuvant therapy. Hyperproliferative disorder response may be assessed, for example for efficacy or in a neoadjuvant or adjuvant situation, where the size of a tumor after systemic intervention can be compared to the initial size and dimensions as measured by CT, PET, mammogram, ultrasound or palpation. Responses may also be assessed by caliper measurement or pathological examination of the tumor after biopsy or surgical resection. Response may be recorded in a quantitative fashion like percentage change in tumor volume or in a qualitative fashion like “pathological complete response” (pCR), “clinical complete remission” (cCR), “clinical partial remission” (cPR), “clinical stable disease” (cSD), “clinical progressive disease” (cPD) or other qualitative criteria. Assessment of hyperproliferative disorder response may be done early after the onset of neoadjuvant or adjuvant therapy, e.g., after a few hours, days, weeks or preferably after a few months. A typical endpoint for response assessment is upon termination of neoadjuvant chemotherapy or upon surgical removal of residual tumor cells and/or the tumor bed. This is typically three months after initiation of neoadjuvant therapy. In some embodiments, clinical efficacy of the therapeutic treatments described herein may be determined by measuring the clinical benefit rate (CBR). The clinical benefit rate is measured by determining the sum of the percentage of patients who are in complete remission (CR), the number of patients who are in partial remission (PR) and the number of patients having stable disease (SD) at a time point at least 6 months out from the end of therapy. The shorthand for this formula is CBR=CR+PR+SD over 6 months. In some embodiments, the CBR for a particular cancer therapeutic regimen is at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, or more. Additional criteria for evaluating the response to cancer therapies are related to “survival,” which includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related); “recurrence-free survival” (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith). The length of said survival may be calculated by reference to a defined start point (e.g., time of diagnosis or start of treatment) and end point (e.g., death, recurrence or metastasis). In addition, criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence. For example, in order to determine appropriate threshold values, a particular cancer therapeutic regimen can be administered to a population of subjects and the outcome can be correlated to biomarker measurements that were determined prior to administration of any cancer therapy. The outcome measurement may be pathologic response to therapy given in the neoadjuvant setting. Alternatively, outcome measures, such as overall survival and disease-free survival can be monitored over a period of time for subjects following cancer therapy for which biomarker measurement values are known. In certain embodiments, the doses administered are standard doses known in the art for cancer therapeutic agents. The period of time for which subjects are monitored can vary. For example, subjects may be monitored for at least 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 55, or 60 months. Biomarker measurement threshold values that correlate to outcome of a cancer therapy can be determined using well-known methods in the art, such as those described in the Examples section.


The term “resistance” refers to an acquired or natural resistance of a cancer sample or a mammal to a cancer therapy (i.e., being nonresponsive to or having reduced or limited response to the therapeutic treatment), such as having a reduced response to a therapeutic treatment by 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, or more, such 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 15-fold, 20-fold or more, or any range in between, inclusive. The reduction in response can be measured by comparing with the same cancer sample or mammal before the resistance is acquired, or by comparing with a different cancer sample or a mammal that is known to have no resistance to the therapeutic treatment. A typical acquired resistance to chemotherapy is called “multidrug resistance.” The multidrug resistance can be mediated by P-glycoprotein or can be mediated by other mechanisms, or it can occur when a mammal is infected with a multi-drug-resistant microorganism or a combination of microorganisms. The determination of resistance to a therapeutic treatment is routine in the art and within the skill of an ordinarily skilled clinician, for example, can be measured by cell proliferative assays and cell death assays as described herein as “sensitizing.” In some embodiments, the term “reverses resistance” means that the use of a second agent in combination with a primary cancer therapy (e.g., chemotherapeutic or radiation therapy) is able to produce a significant decrease in tumor volume at a level of statistical significance (e.g., p<0.05) when compared to tumor volume of untreated tumor in the circumstance where the primary cancer therapy (e.g., chemotherapeutic or radiation therapy) alone is unable to produce a statistically significant decrease in tumor volume compared to tumor volume of untreated tumor. This generally applies to tumor volume measurements made at a time when the untreated tumor is growing log rhythmically.


The terms “response” or “responsiveness” refers to a cancer response, e.g. in the sense of reduction of tumor size or inhibiting tumor growth. The terms can also refer to an improved prognosis, for example, as reflected by an increased time to recurrence, which is the period to first recurrence censoring for second primary cancer as a first event or death without evidence of recurrence, or an increased overall survival, which is the period from treatment to death from any cause. To respond or to have a response means there is a beneficial endpoint attained when exposed to a stimulus. Alternatively, a negative or detrimental symptom is minimized, mitigated or attenuated on exposure to a stimulus. It will be appreciated that evaluating the likelihood that a tumor or subject will exhibit a favorable response is equivalent to evaluating the likelihood that the tumor or subject will not exhibit favorable response (i.e., will exhibit a lack of response or be non-responsive).


An “RNA interfering agent” as used herein, is defined as any agent which interferes with or inhibits expression of a target biomarker gene by RNA interference (RNAi). Such RNA interfering agents include, but are not limited to, nucleic acid molecules including RNA molecules which are homologous to the target biomarker gene of the present invention, or a fragment thereof, short interfering RNA (siRNA), and small molecules which interfere with or inhibit expression of a target biomarker nucleic acid by RNA interference (RNAi).


“RNA interference (RNAi)” is an evolutionally conserved process whereby the expression or introduction of RNA of a sequence that is identical or highly similar to a target biomarker nucleic acid results in the sequence specific degradation or specific post-transcriptional gene silencing (PTGS) of messenger RNA (mRNA) transcribed from that targeted gene (see Coburn and Cullen (2002) J. Virol. 76:9225), thereby inhibiting expression of the target biomarker nucleic acid. In one embodiment, the RNA is double stranded RNA (dsRNA). This process has been described in plants, invertebrates, and mammalian cells. In nature, RNAi is initiated by the dsRNA-specific endonuclease Dicer, which promotes processive cleavage of long dsRNA into double-stranded fragments termed siRNAs. siRNAs are incorporated into a protein complex that recognizes and cleaves target mRNAs. RNAi can also be initiated by introducing nucleic acid molecules, e.g., synthetic siRNAs or RNA interfering agents, to inhibit or silence the expression of target biomarker nucleic acids. As used herein, “inhibition of target biomarker nucleic acid expression” or “inhibition of marker gene expression” includes any decrease in expression or protein activity or level of the target biomarker nucleic acid or protein encoded by the target biomarker nucleic acid. The decrease may be of at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 99% or more as compared to the expression of a target biomarker nucleic acid or the activity or level of the protein encoded by a target biomarker nucleic acid which has not been targeted by an RNA interfering agent.


In addition to RNAi, genome editing can be used to modulate the copy number or genetic sequence of a biomarker of interest, such as constitutive or induced knockout or mutation of a biomarker of interest. For example, the CRISPR-Cas system can be used for precise editing of genomic nucleic acids (e.g., for creating non-functional or null mutations). In such embodiments, the CRISPR guide RNA and/or the Cas enzyme may be expressed. For example, a vector containing only the guide RNA can be administered to an animal or cells transgenic for the Cas9 enzyme. Similar strategies may be used (e.g., designer zinc finger, transcription activator-like effectors (TALEs) or homing meganucleases). Such systems are well-known in the art (see, for example, U.S. Pat. No. 8,697,359; Sander and Joung (2014) Nat. Biotech. 32:347-355; Hale et al. (2009) Cell 139:945-956; Karginov and Hannon (2010) Mol. Cell 37:7; U.S. Pat. Publ. 2014/0087426 and 2012/0178169; Boch et al. (2011) Nat. Biotech. 29:135-136; Boch et al. (2009) Science 326:1509-1512; Moscou and Bogdanove (2009) Science 326:1501; Weber et al. (2011) PLoS One 6:e19722; Li et al. (2011) Nucl. Acids Res. 39:6315-6325; Zhang et al. (2011) Nat. Biotech. 29:149-153; Miller et al. (2011) Nat. Biotech. 29:143-148; Lin et al. (2014) Nucl. Acids Res. 42:e47). Such genetic strategies can use constitutive expression systems or inducible expression systems according to well-known methods in the art.


“Piwi-interacting RNA (piRNA)” is the largest class of small non-coding RNA molecules. piRNAs form RNA-protein complexes through interactions with piwi proteins. These piRNA complexes have been linked to both epigenetic and post-transcriptional gene silencing of retrotransposons and other genetic elements in germ line cells, particularly those in spermatogenesis. They are distinct from microRNA (miRNA) in size (26-31 nt rather than 21-24 nt), lack of sequence conservation, and increased complexity. However, like other small RNAs, piRNAs are thought to be involved in gene silencing, specifically the silencing of transposons. The majority of piRNAs are antisense to transposon sequences, suggesting that transposons are the piRNA target. In mammals it appears that the activity of piRNAs in transposon silencing is most important during the development of the embryo, and in both C. elegans and humans, piRNAs are necessary for spermatogenesis. piRNA has a role in RNA silencing via the formation of an RNA-induced silencing complex (RISC).


“Aptamers” are oligonucleotide or peptide molecules that bind to a specific target molecule. “Nucleic acid aptamers” are nucleic acid species that have been engineered through repeated rounds of in vitro selection or equivalently, SELEX (systematic evolution of ligands by exponential enrichment) to bind to various molecular targets such as small molecules, proteins, nucleic acids, and even cells, tissues and organisms. “Peptide aptamers” are artificial proteins selected or engineered to bind specific target molecules. These proteins consist of one or more peptide loops of variable sequence displayed by a protein scaffold. They are typically isolated from combinatorial libraries and often subsequently improved by directed mutation or rounds of variable region mutagenesis and selection. The “Affimer protein”, an evolution of peptide aptamers, is a small, highly stable protein engineered to display peptide loops which provides a high affinity binding surface for a specific target protein. It is a protein of low molecular weight, 12-14 kDa, derived from the cysteine protease inhibitor family of cystatins. Aptamers are useful in biotechnological and therapeutic applications as they offer molecular recognition properties that rival that of the commonly used biomolecule, antibodies. In addition to their discriminate recognition, aptamers offer advantages over antibodies as they can be engineered completely in a test tube, are readily produced by chemical synthesis, possess desirable storage properties, and elicit little or no immunogenicity in therapeutic applications.


As used herein, the term “intracellular immunoglobulin molecule” is a complete immunoglobulin which is the same as a naturally-occurring secreted immunoglobulin, but which remains inside of the cell following synthesis. An “intracellular immunoglobulin fragment” refers to any fragment, including single-chain fragments of an intracellular immunoglobulin molecule. Thus, an intracellular immunoglobulin molecule or fragment thereof is not secreted or expressed on the outer surface of the cell. Single-chain intracellular immunoglobulin fragments are referred to herein as “single-chain immunoglobulins.” As used herein, the term “intracellular immunoglobulin molecule or fragment thereof” is understood to encompass an “intracellular immunoglobulin,” a “single-chain intracellular immunoglobulin” (or fragment thereof), an “intracellular immunoglobulin fragment,” an “intracellular antibody” (or fragment thereof), and an “intrabody” (or fragment thereof). As such, the terms “intracellular immunoglobulin,” “intracellular Ig,” “intracellular antibody,” and “intrabody” may be used interchangeably herein, and are all encompassed by the generic definition of an “intracellular immunoglobulin molecule, or fragment thereof.” An intracellular immunoglobulin molecule, or fragment thereof of the present invention may, in some embodiments, comprise two or more subunit polypeptides, e.g., a “first intracellular immunoglobulin subunit polypeptide” and a “second intracellular immunoglobulin subunit polypeptide.” However, in other embodiments, an intracellular immunoglobulin may be a “single-chain intracellular immunoglobulin” including only a single polypeptide. As used herein, a “single-chain intracellular immunoglobulin” is defined as any unitary fragment that has a desired activity, for example, intracellular binding to an antigen. Thus, single-chain intracellular immunoglobulins encompass those which comprise both heavy and light chain variable regions which act together to bind antigen, as well as single-chain intracellular immunoglobulins which only have a single variable region which binds antigen, for example, a “camelized” heavy chain variable region as described herein. An intracellular immunoglobulin or Ig fragment may be expressed anywhere substantially within the cell, such as in the cytoplasm, on the inner surface of the cell membrane, or in a subcellular compartment (also referred to as cell subcompartment or cell compartment) such as the nucleus, Golgi, endoplasmic reticulum, endosome, mitochondria, etc. Additional cell subcompartments include those that are described herein and well known in the art.


The term “sample” used for detecting or determining the presence or level of at least one biomarker is typically whole blood, plasma, serum, saliva, urine, stool (e.g., feces), tears, and any other bodily fluid (e.g., as described above under the definition of “body fluids”), or a tissue sample (e.g., biopsy) such as bone marrow and bone sample, or surgical resection tissue. In certain instances, the method of the present invention further comprises obtaining the sample from the individual prior to detecting or determining the presence or level of at least one marker in the sample.


The term “sensitize” means to alter cancer cells or tumor cells in a way that allows for more effective treatment of the associated cancer with a cancer therapy (e.g., anti-immune checkpoint, chemotherapeutic, and/or radiation therapy). In some embodiments, normal cells are not affected to an extent that causes the normal cells to be unduly injured by the therapies. An increased sensitivity or a reduced sensitivity to a therapeutic treatment is measured according to a known method in the art for the particular treatment and methods described herein below, including, but not limited to, cell proliferative assays (Tanigawa N, Kern D H, Kikasa Y, Morton D L, Cancer Res 1982; 42: 2159-2164), cell death assays (Weisenthal L M, Shoemaker R H, Marsden J A, Dill P L, Baker J A, Moran E M, Cancer Res 1984; 94: 161-173; Weisenthal L M, Lippman M E, Cancer Treat Rep 1985; 69: 615-632; Weisenthal L M, In: Kaspers G J L, Pieters R, Twentyman P R, Weisenthal L M, Veerman A J P, eds. Drug Resistance in Leukemia and Lymphoma. Langhorne, P A: Harwood Academic Publishers, 1993: 415-432; Weisenthal L M, Contrib Gynecol Obstet 1994; 19: 82-90). The sensitivity or resistance may also be measured in animal by measuring the tumor size reduction over a period of time, for example, 6 month for human. A composition or a method sensitizes response to a therapeutic treatment if the increase in treatment sensitivity or the reduction in resistance is 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, or more, such 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 15-fold, 20-fold or more, or any range in between, inclusive, compared to treatment sensitivity or resistance in the absence of such composition or method. The determination of sensitivity or resistance to a therapeutic treatment is routine in the art and within the skill of an ordinarily skilled clinician. It is to be understood that any method described herein for enhancing the efficacy of a cancer therapy can be equally applied to methods for sensitizing hyperproliferative or otherwise cancerous cells (e.g., resistant cells) to the cancer therapy.


“Short interfering RNA” (siRNA), also referred to herein as “small interfering RNA” is defined as an agent which functions to inhibit expression of a target biomarker nucleic acid, e.g., by RNAi. An siRNA may be chemically synthesized, may be produced by in vitro transcription, or may be produced within a host cell. In one embodiment, siRNA is a double stranded RNA (dsRNA) molecule of about 15 to about 40 nucleotides in length, preferably about 15 to about 28 nucleotides, more preferably about 19 to about 25 nucleotides in length, and more preferably about 19, 20, 21, or 22 nucleotides in length, and may contain a 3′ and/or 5′ overhang on each strand having a length of about 0, 1, 2, 3, 4, or 5 nucleotides. The length of the overhang is independent between the two strands, i.e., the length of the overhang on one strand is not dependent on the length of the overhang on the second strand. Preferably the siRNA is capable of promoting RNA interference through degradation or specific post-transcriptional gene silencing (PTGS) of the target messenger RNA (mRNA).


In another embodiment, an siRNA is a small hairpin (also called stem loop) RNA (shRNA). In one embodiment, these shRNAs are composed of a short (e.g., 19-25 nucleotide) antisense strand, followed by a 5-9 nucleotide loop, and the analogous sense strand. Alternatively, the sense strand may precede the nucleotide loop structure and the antisense strand may follow. These shRNAs may be contained in plasmids, retroviruses, and lentiviruses and expressed from, for example, the pol III U6 promoter, or another promoter (see, e.g., Stewart, et al. (2003) RNA April; 9(4):493-501 incorporated by reference herein).


RNA interfering agents, e.g., siRNA molecules, may be administered to a patient having or at risk for having cancer, to inhibit expression of a biomarker gene which is overexpressed in cancer and thereby treat, prevent, or inhibit cancer in the subject.


The term “small molecule” is a term of the art and includes molecules that are less than about 1000 molecular weight or less than about 500 molecular weight. In one embodiment, small molecules do not exclusively comprise peptide bonds. In another embodiment, small molecules are not oligomeric. Exemplary small molecule compounds which can be screened for activity include, but are not limited to, peptides, peptidomimetics, nucleic acids, carbohydrates, small organic molecules (e.g., polyketides) (Cane et al. (1998) Science 282:63), and natural product extract libraries. In another embodiment, the compounds are small, organic non-peptidic compounds. In a further embodiment, a small molecule is not biosynthetic.


The term “specific binding” refers to antibody binding to a predetermined antigen. Typically, the antibody binds with an affinity (KD) of approximately less than 10−7M, such as approximately less than 10−8 M, 10−9M or 10−10 M or even lower when determined by surface plasmon resonance (SPR) technology in a BIACORE® assay instrument using an antigen of interest as the analyte and the antibody as the ligand, and binds to the predetermined antigen with an affinity that is at least 1.1-, 1.2-, 1.3-, 1.4-, 1.5-, 1.6-, 1.7-, 1.8-, 1.9-, 2.0-, 2.5-, 3.0-, 3.5-, 4.0-, 4.5-, 5.0-, 6.0-, 7.0-, 8.0-, 9.0-, or 10.0-fold or greater than its affinity for binding to a non-specific antigen (e.g., BSA, casein) other than the predetermined antigen or a closely-related antigen. The phrases “an antibody recognizing an antigen” and “an antibody specific for an antigen” are used interchangeably herein with the term “an antibody which binds specifically to an antigen.” Selective binding is a relative term referring to the ability of an antibody to discriminate the binding of one antigen over another.


The term “subject” refers to any healthy animal, mammal or human, or any animal, mammal or human afflicted with a cancer, e.g., brain, lung, ovarian, pancreatic, liver, breast, prostate, and/or colorectal cancers, melanoma, multiple myeloma, and the like. The term “subject” is interchangeable with “patient.”


The term “survival” includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related); “recurrence-free survival” (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith). The length of said survival may be calculated by reference to a defined start point (e.g. time of diagnosis or start of treatment) and end point (e.g. death, recurrence or metastasis). In addition, criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence.


The term “synergistic effect” refers to the combined effect of two or more cancer agents (e.g., a cancer vaccine in combination with immunotherapy) can be greater than the sum of the separate effects of the cancer agents/therapies alone.


The term “T cell” includes CD4+ T cells and CD8+ T cells. The term T cell also includes both T helper 1 type T cells and T helper 2 type T cells. The term “antigen presenting cell” includes professional antigen presenting cells (e.g., B lymphocytes, monocytes, dendritic cells, Langerhans cells), as well as other antigen presenting cells (e.g., keratinocytes, endothelial cells, astrocytes, fibroblasts, and oligodendrocytes).


The term “therapeutic effect” refers to a local or systemic effect in animals, particularly mammals, and more particularly humans, caused by a pharmacologically active substance. The term thus means any substance intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease or in the enhancement of desirable physical or mental development and conditions in an animal or human. The phrase “therapeutically-effective amount” means that amount of such a substance that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment. In certain embodiments, a therapeutically effective amount of a compound will depend on its therapeutic index, solubility, and the like. For example, certain compounds discovered by the methods of the present invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.


The terms “therapeutically-effective amount” and “effective amount” as used herein means that amount of a compound, material, or composition comprising a compound of the present invention which is effective for producing some desired therapeutic effect in at least a sub-population of cells in an animal at a reasonable benefit/risk ratio applicable to any medical treatment. Toxicity and therapeutic efficacy of subject compounds may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 and the ED50. Compositions that exhibit large therapeutic indices are preferred. In some embodiments, the LD50 (lethal dosage) can be measured and can be, for example, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more reduced for the agent relative to no administration of the agent. Similarly, the ED50 (i.e., the concentration which achieves a half-maximal inhibition of symptoms) can be measured and can be, for example, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more increased for the agent relative to no administration of the agent. Also, Similarly, the IC50 (i.e., the concentration which achieves half-maximal cytotoxic or cytostatic effect on cancer cells) can be measured and can be, for example, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more increased for the agent relative to no administration of the agent. In some embodiments, cancer cell growth in an assay can be inhibited by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 100%. In another embodiment, at least about a 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 100% decrease in a solid malignancy can be achieved.


The term “substantially free of chemical precursors or other chemicals” includes preparations of antibody, polypeptide, peptide or fusion protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language “substantially free of chemical precursors or other chemicals” includes preparations of antibody, polypeptide, peptide or fusion protein having less than about 30% (by dry weight) of chemical precursors or non-antibody, polypeptide, peptide or fusion protein chemicals, more preferably less than about 20% chemical precursors or non-antibody, polypeptide, peptide or fusion protein chemicals, still more preferably less than about 10% chemical precursors or non-antibody, polypeptide, peptide or fusion protein chemicals, and most preferably less than about 5% chemical precursors or non-antibody, polypeptide, peptide or fusion protein chemicals.


A “transcribed polynucleotide” or “nucleotide transcript” is a polynucleotide (e.g. an mRNA, hnRNA, a cDNA, or an analog of such RNA or cDNA) which is complementary to or homologous with all or a portion of a mature mRNA made by transcription of a biomarker nucleic acid and normal post-transcriptional processing (e.g. splicing), if any, of the RNA transcript, and reverse transcription of the RNA transcript.


The term “host cell” is intended to refer to a cell into which a nucleic acid encompassed by the present invention, such as a recombinant expression vector encompassed by the present invention, has been introduced. The terms “host cell” and “recombinant host cell” are used interchangeably herein. It should be understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


The term “vector” refers to a nucleic acid capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments may be ligated. Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as “recombinant expression vectors” or simply “expression vectors”. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” may be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.


As used herein, the term “unresponsiveness” includes refractivity of cancer cells to therapy or refractivity of therapeutic cells, such as immune cells, to stimulation, e.g., stimulation via an activating receptor or a cytokine. Unresponsiveness can occur, e.g., because of exposure to immunosuppressants or exposure to high doses of antigen. As used herein, the term “allergy” or “tolerance” includes refractivity to activating receptor-mediated stimulation. Such refractivity is generally antigen-specific and persists after exposure to the tolerizing antigen has ceased. For example, anergy in T cells (as opposed to unresponsiveness) is characterized by lack of cytokine production, e.g., IL-2. T cell anergy occurs when T cells are exposed to antigen and receive a first signal (a T cell receptor or CD-3 mediated signal) in the absence of a second signal (a costimulatory signal). Under these conditions, reexposure of the cells to the same antigen (even if reexposure occurs in the presence of a costimulatory polypeptide) results in failure to produce cytokines and, thus, failure to proliferate. Anergic T cells can, however, proliferate if cultured with cytokines (e.g., IL-2). For example, T cell anergy can also be observed by the lack of IL-2 production by T lymphocytes as measured by ELISA or by a proliferation assay using an indicator cell line. Alternatively, a reporter gene construct can be used. For example, anergic T cells fail to initiate IL-2 gene transcription induced by a heterologous promoter under the control of the 5′ IL-2 gene enhancer or by a multimer of the AP1 sequence that can be found within the enhancer (Kang et al. (1992) Science 257:1134).


The term “TGFβ-Smad/p63 signaling pathway” refers to one branch of the TGFβ signaling pathway. The TGFβ signaling pathway is involved in many cellular processes in both the adult organism and the developing embryo including but are not limited to cell growth, cell differentiation, apoptosis, cellular homeostasis and other cellular functions. In some embodiments, TGFβ superfamily ligands (e.g., TGFβ1, TGFβ2, and/or TGFβ3) bind to a type II receptor, which recruits and phosphorylates a type I receptor. The type I receptor then phosphorylates receptor-regulated SMADs (R-SMADs; e.g., SMAD1, SMAD2, SMAD3, SMAD5, or SMAD9) which can now bind the coSMAD (e.g., SMAD4). R-SMAD/coSMAD complexes accumulate in the nucleus where they act as transcription factors and participate in the regulation of target gene expression. In the branch of the “TGFβ-Smad/p63 signaling pathway”, R-SMAD/coSMAD complexes further associate with p63 in the nucleus to regulate target gene expression. In one embodiment, R-SMAD is Smad2. TGFβ-Smad/p63 signaling pathway activation can be assessed by analyzing, for example, Smad2 phosphorylation, Smad2 nuclear translocation, association of Smad2 with p63, and/or the activation of the TGFβ-Smad/p63 signature genes. The TGFβ-Smad/p63 signatures may include, but are not limited to, upregulation of ICOSL, PYCARD, SFN, PERP, RIPK3, and/or SESN1, and/or downregulation of KSR1, EIF4EBP1, ITGA5, EMILIN1, CD200, and/or CSF1.


In some embodiments, upon binding to its receptors, TGFβ promotes the formation of TGFBRII and TGFBR1 heterodimers on cell plasma membrane. The cytoplasmic signaling molecules R-Smads (such as Smad2 and Smad3) are then phosphorylated by the activated TGFBRI. The activated R-Smads form a complex with Co-Smad (such as Smad4) and translocate into the cell nucleus. As demonstrated herein, by partnering with p63 (or other p53 family members such as p53 or p73), the Smads/p63 trancriptional complex upregulates proinflammatory genes (such as Icosl, Nfkbib, Tnfaip3, Pik3r1, and Perp) and dowregulates oncogenic genes (such as Cd200, Cxcl5, Csf1, Pdgfrb, Fgfr1, Vegfa). Therefore tumor cells with activated TGFβ-Smads/p63 signatures display strong “eat me” signals to the immune system and trigger antitumor immune responses by recruiting antigen presenting cells (such dendritic cell). The dendritic cells (DCs) take up tumor specific antigens and promote tumor specific effector and memory T cell responses to provide the host with full protection against tumors. The TGFβ-Smad/p63 signaling pathway can be activated by modulating signaling molecules involved in this pathway. In specific embodiments, Smad superfamilies (including Smad1, Smad2, Smad3, Smad4, Smad5, Smad6, Smad7, and Smad9) and p53 superfamilies (including p53, p63, and p73) are modulated to activate the TGFβ-Smad/p63 signaling pathway in the compositions and methods encompassed by the present invention.


The TGFβ-Smad/p63 signaling pathway can be by activated by providing a TGFβ superfamily ligand or an agonist of the TGFβ signaling pathway. It can also be regulated and/or at the level of Smad and p63. Exemplary agents useful for activating TGFβ-Smad/p63 signaling pathway, or other biomarkers described herein, include small molecules, peptides, and nucleic acids, etc. that can upregulate the expression and/or activity of one or more biomarkers listed in Table 1, or fragments thereof; and/or decrease the copy number, amount, and/or activity of one or more biomarkers listed in Table 2, or fragments thereof. Exemplary agents useful for activating TGFβ-Smad/p63 signaling pathway, or other biomarkers described herein, also include TGFβ superfamily ligands.


In one embodiment, suitable agonists include naturally-occurring agonists of the TGFβ superfamily member, or fragments and variants thereof. For example, agonists of TGFβ signaling may include a soluble form of endoglin, see, for example, U.S. Pat. Nos. 5,719,120, 5,830,847, and 6,015,693, each of which is incorporated herein by reference in its entirety. In another embodiment, suitable agonists may include inhibitors of naturally-occurring TGFβ antagonists. Multiple naturally-occurring modulators have been identified that regulate TGFβ signaling. For example, access of TGFβ ligands to receptors is inhibited by the soluble proteins LAP, decorin and α2-macroglobulin that bind and sequester the ligands (Balemans and Van Hul (2002) Dev. Biol. 250:231-250). TGFβ ligand access to receptors is also controlled by membrane-bound receptors. BAMBI acts as a decoy receptor, competing with the type I receptor (Onichtchouk et al. (1999) Nature 401:480-485); betaglycan (TGFβ type II receptor) enhances TGFβ binding to the type II receptor (Brown et al. (1999) Science 283:2080-2082, Massagué (1998) Annu. Rev. Biochem. 67:753-791, del Re et al. (2004) J. Biol. Chem. 279:22765-22772); and endoglin enhances TGFβ binding to ALK1 in endothelial cells (Marchuk (1998) Curr. Opin. Hematol. 5:332-338; Massagué (2000) Nat. Rev. Mol. Cell. Biol. 1: 169-178; Shi and Massagué (2003) Cell 113:685-700). Cripto, an EGF-CFC GPI-anchored membrane protein, acts as a co-receptor, increasing the binding of the TGFβ ligands, nodal, Vg1, and GDF1 to activin receptors (Cheng et al. (2003) Genes Dev. 17:31-36, Shen and Schier (2000) Trends Genet. 16:303-309) while blocking activin signaling. Suitable agonists also include synthetic or human recombinant compounds. Classes of molecules that can function as agonists include, but are not limited to, small molecules, antibodies (including fragments or variants thereof, such as Fab fragments, Fab′2 fragments and scFvs), and peptidomimetics.


As used herein, the term “TGFβ superfamily” refers to a large family of multifunctional proteins that regulate a variety of cellular functions including cellular proliferation, migration, differentiation and apoptosis. The TGFβ superfamily presently comprises more than 30 members, including, among others, activins, inhibins, Transforming Growth Factors-beta (TGFβs), Growth and Differentiation Factors (GDFs), Bone Morphogenetic Proteins (BMPs), and Müllerian inhibiting Substance (MIS). All of these molecules are peptide growth factors that are structurally related to TGFβ. They all share a common motif called a cysteine knot, which is constituted by seven especially conservative cysteine residues organized in a rigid structure (Massagué (1998) Annu. Rev. Biochem. 67:753-791). Unlike classical hormones, members of the TGFβ superfamily are multifunctional proteins whose effects depend on the type and stage of the target cells as much as the growth factors themselves.


TGFβ superfamily members suitable for use in the practice of the present invention include any member of the TGFβ superfamily that can activate the TGFβ-Smad/p63 signaling pathway. In one embodiment, TGFβ superfamily members are from the TGFβ family, which include but are not limited to, LAP, TGFβ1, TGFβ2, TGFβ3, and TGFβ5. In another embodiment, TGFβ superfamily members are from the Activin family, which include but are not limited to, Activin A, Activin AB, Activin AC, Activin B, Activin C, C17ORF99, INHBA, INHBB, Inhibin, Inhibin A, and Inhibin B. In still another embodiment, TGFβ superfamily members are from the BMP (Bone Morphogenetic Protein) family, which include but are not limited to, BMP-1/PCP, BMP-2, BMP-2/BMP-6 Heterodimer, BMP-2/BMP-7 Heterodimer, BMP-2a, BMP-3, BMP-3b/GDF-10, BMP-4, BMP-4/BMP-7 Heterodimer, BMP-5, BMP-6, BMP-7, BMP-8, BMP-8a, BMP-8b, BMP-9, BMP-10, BMP-15/GDF-9B, and Decapentaplegic/DPP. In yet another embodiment, TGFβ superfamily members are from the GDNF family, which include but are not limited to, Artemin, GDNF, Neurturin, and Persephin. Additional TGFβ superfamily members include Lefty A, Lefty B, MIS/AMH, Nodal, and SCUBE3.


In certain embodiments, TGFβ superfamily members are from the TGFβ family. TGFβ, the founding member of TGFβ family, has been shown to play a variety of roles ranging from embryonic pattern formation to cell growth regulation in adult tissues. Mammalian cells can produce three different isoforms of TGFβ: TGFβ1, TGFβ2, and TGFβ3. These isoforms exhibit the same basic structure (they are homodimers of 112 amino acids that are stabilized by intra- and inter-chain disulfide bonds) and their amino acid sequences present a high degree of homology (>70%). However, each isoform is encoded by a distinct gene, and each is expressed in both a tissue-specific and developmentally regulated fashion (Massagué (1998) Annu. Rev. Biochem. 67:753-791). TGFβ exerts its biological functions by signal transduction cascades that ultimately activate and/or suppress expression of a set of specific genes. Cross-linking studies have shown that TGFβ mainly binds to three high-affinity cell-surface proteins, called TGFβ receptors of type I, type II, and type III (Massagué and Like (1985) J. Biol. Chem. 260:2636-2645, Cheifetz et al. (1986) J. Biol. Chem. 261:9972-9978). In some embodiments, TGFβ triggers its signal by first binding to its type II receptor, then recruiting and activating its type I receptors. The activated type I receptors then phosphorylate its intracellular signal transducer molecules, the Smad proteins (Heldin et al. (1997) Nature 390:465-471; Derynck et al. (1998) Cell 95:737-740).


The term “TGFβ1” or “Transforming Growth Factor Beta 1” refers to a secreted ligand of the TGFβ superfamily of proteins. Ligands of this family bind various TGFβ receptors leading to recruitment and activation of SMAD family transcription factors that regulate gene expression. The encoded preproprotein is proteolytically processed to generate a latency-associated peptide (LAP) and a mature peptide, and is found in either a latent form composed of a mature peptide homodimer, a LAP homodimer, and a latent TGFβ binding protein, or in an active form consisting solely of the mature peptide homodimer. The mature peptide can also form heterodimers with other TGFβ family members. Activation into mature form follows different steps: following cleavage of the proprotein in the Golgi apparatus, LAP and TGFβ1 chains remain non-covalently linked rendering TGFβ1 inactive during storage in extracellular matrix. At the same time, LAP chain interacts with “milieu molecules”, LTBP1, LRRC32/GARP and LRRC33/NRROS, that control activation of TGFβ1 and maintain it in a latent state during storage in extracellular milieus. TGF-beta-1 is released from LAP by integrins. Integrin-binding to LAP stabilizes an alternative conformation of the LAP bowtie tail and results in distortion of the LAP chain and subsequent release of the active TGFβ1. Once activated following release of LAP, TGFβ1 acts by binding to TGFβ receptors, which transduce signal. In preferred embodiment, the term “TGFβ1” refers to the activated TGFβ1.


TGFβ1 regulates cell proliferation, differentiation and growth, and can modulate expression and activation of other growth factors including interferon gamma and tumor necrosis factor alpha. TGFβ1 plays an important role in bone remodeling. It acts as a potent stimulator of osteoblastic bone formation, causing chemotaxis, proliferation and differentiation in committed osteoblasts. It can promote either T-helper 17 cells (Th17) or regulatory T-cells (Treg) lineage differentiation in a concentration-dependent manner. At high concentrations, TGFβ1 leads to FOXP3-mediated suppression of RORC and down-regulation of IL-17 expression, favoring Treg cell development. At low concentrations in concert with IL-6 and IL-21, TGFβ1 leads to expression of the IL-17 and IL-23 receptors, favoring differentiation to Th17 cells. TGFβ1 stimulates sustained production of collagen through the activation of CREB3L1 by regulated intramembrane proteolysis (RIP). TGFβ1 mediates SMAD2/3 activation by inducing its phosphorylation and subsequent translocation to the nucleus (Hwangbo et al. (2016) Oncogene 35:389-401). It can also induce epithelial-to-mesenchymal transition (EMT) and cell migration in various cell types (Hwangbo et al. (2016) Oncogene 35:389-401). TGFβ1 is frequently upregulated in tumor cells, and mutations in this gene result in Camurati-Engelmann disease.


The term “TGFβ1” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. Representative human TGFβ1 cDNA and human TGFβ1 protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, one human TGFβ1 isoform is known. The human TGFβ1 transcript (NM 000660.7) encodes TGFβ1 proprotein preproprotein (NP_000651.3). Nucleic acid and polypeptide sequences of TGFβ1 orthologs in organisms other than humans are well known and include, for example, chimpanzee TGFβ1 (XM_016936045.2 and XP 016791534.1; XM_512687.6 and XP_512687.2; and XM_009435655.3 and XP_009433930.1); dog TGFβ1 (NM_001003309.1 and NP_001003309.1), cattle TGFβ1 (NM_001166068.1 and NP_001159540.1), mouse TGFβ1 (NM_011577.2 and NP_035707.1), and rat TGFβ1 (NM_021578.2 and NP_067589.1).


The term “TGFβ2” or “transforming growth factor-beta 2” refers to a secreted ligand of the TGFβ superfamily of proteins. As described herein, ligands of this family bind various TGFβ receptors leading to recruitment and activation of SMAD family transcription factors that regulate gene expression. The encoded preproprotein is proteolytically processed to generate a latency-associated peptide (LAP) and a mature peptide, and is found in either a latent form composed of a mature peptide homodimer, a LAP homodimer, and a latent TGFβ binding protein, or in an active form consisting solely of the mature peptide homodimer. The mature peptide may also form heterodimers with other TGFβ family members. Activation into mature form follows different steps: following cleavage of the proprotein in the Golgi apparatus, LAP and TGFβ2 chains remain non-covalently linked rendering TGFβ2 inactive during storage in extracellular matrix. At the same time, LAP chain interacts with “milieu molecules”, such as LTBP1 and LRRC32/GARP, that control activation of TGFβ2 and maintain it in a latent state during storage in extracellular milieus. Once activated following release of LAP, TGFβ2 acts by binding to TGFβ receptors, which transduce signal. In preferred embodiment, the term “TGFβ2” refers to the activated TGFβ2. Disruption of the TGFβ/SMAD pathway has been implicated in a variety of human cancers. TGFβ2 regulates various processes such as angiogenesis and heart development (Boileau et al. (2012) Nat. Genet. 44:916-921, Lindsay et al. (2012) Nat. Genet. 44:922-927). A chromosomal translocation that includes TGFβ2 gene is associated with Peters' anomaly, a congenital defect of the anterior chamber of the eye. Mutations in TGFβ2 gene can be associated with Loeys-Dietz syndrome.


The term “TGFβ2” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. Representative human TGFβ2 cDNA and human TGFβ2 protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, two human TGFβ2 isoforms are known. The TGFβ2 transcript variant 1 (NM_001135599.3) represents the longest transcript and encodes the longer isoform 1 (NP_001129071.1). The TGFβ2 transcript variant 2 (NM_003238.5) lacks an in-frame exon in the 5′ coding region compared to variant 1. The resulting isoform 2 (NM_003238.5) is shorter than isoform 1. Both isoforms may undergo similar proteolytic processing. Nucleic acid and polypeptide sequences of TGFβ2 orthologs in organisms other than humans are well known and include, for example, chimpanzee TGFβ2 (XM_001172158.6 and XP_001172158.1, and XM_514203.7 and XP_514203.2); monkey TGFβ2 (NM_001266518.1 and NP_001253447.1); dog TGFβ2 (XM_005640824.2 and XP_005640881.1, XM_545713.6 and XP_545713.2; and XM_853584.5 and XP_858677.1), cattle TGFβ2 (NM_001113252.1 and NP_001106723.1), mouse TGFβ2 (NM_001329107.1 and NP_001316036.1; and NM_009367.4 and NP_033393.2), rat TGFβ2 (NM_031131.1 and NP_112393.1), and chicken TGFβ2 (NM_001031045.3 and NP_001026216.2).


The term “TGFβ3” or “transforming growth factor-beta 3” refers to a secreted ligand of the TGFβ superfamily of proteins. As described herein, ligands of this family bind various TGFβ receptors leading to recruitment and activation of SMAD family transcription factors that regulate gene expression. The encoded preproprotein is proteolytically processed to generate a latency-associated peptide (LAP) and a mature peptide, and is found in either a latent form composed of a mature peptide homodimer, a LAP homodimer, and a latent TGFβ binding protein, or in an active form consisting solely of the mature peptide homodimer. The mature peptide may also form heterodimers with other TGFβ family members. Activation of TGFβ3 into mature form follows different steps. Following cleavage of the proprotein in the Golgi apparatus, LAP and TGFβ3 chains remain non-covalently linked rendering TGFβ3 inactive during storage in extracellular matrix. At the same time, LAP chain interacts with “milieu molecules”, such as LTBP1 and LRRC32/GARP that control activation of TGFβ3 and maintain it in a latent state during storage in extracellular milieus. TGFβ3 is released from LAP by integrins. Integrin-binding results in distortion of the LAP chain and subsequent release of the active TGFβ-3. Once activated following release of LAP, TGFβ-3 acts by binding to TGFβ receptors, which transduce signal. In preferred embodiment, the term “TGFβ3” refers to the activated TGFβ3.


TGFβ3 is involved in embryogenesis and cell differentiation, and can play a role in wound healing. TGFβ3 is required in various processes such as secondary palate development. Mutations in TGFβ3 gene are a cause of aortic aneurysms and dissections, as well as familial arrhythmogenic right ventricular dysplasia 1.


The term “TGFβ3” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. Representative human TGFβ3 cDNA and human TGFβ3 protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, three human TGFβ3 isoforms are known. The TGFβ3 transcript variant 1 (NM_003239.4) represents the longest transcript and encodes the longer isoform 1 (NP_003230.1). The TGFβ3 transcript variant 2 (NM_001329939.1) differs in the 5′ UTR compared to variant 1, and encodes the same isoform (NP_001316868.1) as that of variant 1. The TGFβ3 transcript variant 3 (NM_001329938.2) lacks several exons and its 3′ terminal exon extends past a splice site that is used in variant 1. This results in an early stop codon and a novel 3′ UTR compared to variant 1. The encoded isoform 2 (NP_001316867.1) has a shorter C-terminus than isoform 1. Nucleic acid and polypeptide sequences of TGFβ3 orthologs in organisms other than humans are well known and include, for example, chimpanzee TGFβ3 (XM_016926465.2 and XP_016781954.1, XM_016926464.2 and XP_016781953.1, XM_001161669.5 and XP_001161669.1, and XM_009428178.2 and XP_009426453.1); monkey TGFβ3 (NM_001257475.1 and NP_001244404.1); dog TGFβ3 (XM_849026.5 and XP_854119.2), cattle TGFβ3 (NM_001101183.1 and NP_001094653.1), mouse TGFβ3 (NM_009368.3 and NP_033394.2), rat TGFβ3 (NM_013174.2 and NP_037306.1), and chicken TGFβ3 (NM_205454.1 and NP_990785.1).


The term “Smad” refers to a family of receptor-activated, signal transducing transcription factors that transmit signals from TGFβ family receptors. Members of the Smad family of proteins have been identified based on homology to the Drosophila gene Mothers against dpp (mad), which encodes an essential element in the Drosophila dpp signal transduction pathway (Sekelsky et al. (1995) Genetics 139:1347-1358, Newfeld et al. (1996) Development 122:2099-2108). Smad proteins are generally characterized by highly conserved amino- and carboxy-terminal domains separated by a proline-rich linker. The amino terminal domain (the MH1 domain) mediates DNA binding, and the carboxy terminal domain (the MH2 domain) associates with the receptor.


At least eight Smad proteins have been identified and shown to participate in signal responses induced by TGFβ family members (Kretzschmar and Massagué (1998) Current Opinion in Genetics and Development 8:103-111). These Smads can be divided into three subgroups. One group (Smads1, 2, 3, 5 and 9) includes Smads that are direct substrates of a TGFβ family receptor kinase. Another group (Smad 4) includes Smads that are not direct receptor substrates, but participate in signaling by associating with receptor-activated Smads. The third group of Smads (Smad6 and Smad7) consists of proteins that inhibit activation of Smads in the first two groups.


Smads have specific roles in pathways of different TGFβ family members. Among Smad proteins identified for TGFβ family members, Smad2 and Smad3 are specific for TGFβ signaling (Heldin et al. (1997) Nature 390:465-471). The activated Smad2 and Smad3 interact with common mediator Smad4 and translocate into nuclei, where they activate a set of specific genes (Heldin et al. (1997) Nature 390:465-471). The TGFβ pathway uses the signal inhibitory proteins Smad6 and Smad7 to balance the net output of the signaling, as well as direct activation of Smad2 and/or Smad3.


While Smad2 and Smad3 have intrinsic transactivation activity as transcription factors (Zawel et al. (1998) Mol. Cell. 1:611-617), studies have demonstrated that they activate specific gene expression largely through specifically interacting with other nuclear factors (Derynck et al. (1998) Cell 95:737-740). A specific TGFβ-mediated effect on a given cell type can be achieved by activating a specific Smad protein, resulting in alterations in expression of specific genes. Smad proteins of particular interest include, for example, Smad2 (Nakao et al (1997) J. Biol. Chem. 272:2896-2900).


The term “SMAD2” refers to SMAD family member 2, which belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene “mothers against decapentaplegic” (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. SMAD2 mediates the signal of TGFβ, and thus regulates multiple cellular processes, such as cell proliferation, apoptosis, and differentiation. SMAD2 is recruited to the TGFβ receptors through its interaction with the SMAD anchor for receptor activation (SARA) protein. In response to TGFβ signal, SMAD2 is phosphorylated by the TGFβ receptors. The phosphorylation induces the dissociation of SMAD2 with SARA and the association with the family member SMAD4. The association with SMAD4 is important for the translocation of SMAD2 into the nucleus, where it binds to target promoters and forms a transcription repressor complex with other cofactors (e.g., p63). It binds the TRE element in the promoter region of many genes that are regulated by TGFβ. SMAD2 can also be phosphorylated by activin type 1 receptor kinase, and mediates the signal from the activin. SMAD2 can act as a tumor suppressor in colorectal carcinoma. It positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator. In one embodiment, the human SMAD2 protein has 467 amino acids and a molecular mass of 52306 Da.


The term “SMAD2” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. Representative human SMAD2 cDNA and human SMAD2 protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, three human SMAD2 isoforms are known. The SMAD2 transcript variant 2 (NM_001003652.4) represents the longest transcript and encodes the longer isoform 1 (NP_001003652.1). The SMAD2 transcript variant 1 (NM_005901.6) uses an alternate exon (1b) in the 5′ UTR compared to variant 2, but encodes the same isoform 1 (NP_005892.1). The SMAD2 transcript variant 3 (NM_005901.6) lacks an in-frame exon in the 5′ coding region, compared to variant 2, resulting in an isoform 2 (NP_001129409.1) that is shorter than isoform 1. Nucleic acid and polypeptide sequences of SMAD2 orthologs in organisms other than humans are well known and include, for example, chimpanzee SMAD2 (XM_512121.7 and XP_512121.1; XM_001149646.5 and XP_001149646.1; XM_009433959.2 and XP_009432234.1; XM_016933662.1 and XP_016789151.1; XM_016933657.1 and XP_016789146.1, XM_016933659.1 and XP_016789148.1, XM_016933658.1 and XP_016789147.1, XM_009433960.3 and XP_009432235.1, and XM_016933663.1 and XP_016789152.1); monkey SMAD2 (NM_001266803.1 and NP_001253732.1); dog SMAD2 (XM_005622832.3 and XP_005622889.1, XM_022421406.1 and XP_022277114.1; XM_847706.5 and XP_852799.1; XM_005622830.3 and XP_005622887.1; XM_005622831.3 and XP_005622888.1; XM_861095.5 and XP_866188.1; and XM_022421405.1 and XP_022277113.1), cattle SMAD2 (NM_001046218.1 and NP_001039683.1), mouse SMAD2 (NM_001252481.1 and NP_001239410.1; NM_001311070.1 and NP_001297999.1; and NM_010754.5 and NP_034884.2), rat SMAD2 (NM_001277450.1 and NP_001264379.1; and NM_019191.2 and NP_062064.1), and chicken SMAD2 (NM_204561.1 and NP_989892.1). Representative sequences of SMAD2 orthologs are presented below in Table 1.


Anti-SMAD2 antibodies suitable for detecting SMAD2 protein are well-known in the art and include, for example, antibodies AM06653SU-N and AM31101PU-N(OriGene Technologies, Rockville, Md.), AF3797, NB100-56462, NBP2-67376, and NBP2-44217 (antibodies from Novus Biologicals, Littleton, Colo.), ab40855, ab63576, and ab202445, (antibodies from AbCam, Cambridge, Mass.), etc. In addition, reagents are well-known for detecting SMAD2 expression. Moreover, multiple siRNA, shRNA, CRISPR constructs for reducing SMAD2 Expression can be found in the commercial product lists of the above-referenced companies, such as siRNA products #sc-38374 and #sc-44338 and CRISPR product #sc-400475 from Santa Cruz Biotechnology, RNAi products SR320897, TG309255, TR309255, and TL309255, and CRISPR products KN404604 and KN516271 (Origene), and multiple CRISPR products from GenScript (Piscataway, N.J.). It is to be noted that the term can further be used to refer to any combination of features described herein regarding SMAD2 molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an SMAD2 molecule encompassed by the present invention.


The term “p63” or “TP63” refers to a member of the p53 family of transcription factors. The functional domains of p53 family proteins include an N-terminal transactivation domain, a central DNA-binding domain and an oligomerization domain. Alternative splicing of p63 gene and the use of alternative promoters results in multiple transcript variants encoding different isoforms that vary in their functional properties. These isoforms function during skin development and maintenance, adult stem/progenitor cell regulation, heart development and premature aging. Some isoforms have been found to protect the germline by eliminating oocytes or testicular germ cells that have suffered DNA damage. Mutations in p63 gene are associated with ectodermal dysplasia, and cleft lip/palate syndrome 3 (EEC3); split-hand/foot malformation 4 (SHFM4); ankyloblepharon-ectodermal defects-cleft lip/palate; ADULT syndrome (acro-dermato-ungual-lacrimal-tooth); limb-mammary syndrome; Rap-Hodgkin syndrome (RHS); and orofacial cleft 8. P63 acts as a sequence specific DNA binding transcriptional activator or repressor. The isoforms contain a varying set of transactivation and auto-regulating transactivation inhibiting domains thus showing an isoform specific activity. Isoform 2 activates RIPK4 transcription. P63 can be required in conjunction with TP73/p73 for initiation of p53/TP53 dependent apoptosis in response to genotoxic insults and the presence of activated oncogenes. It is involved in Notch signaling by probably inducing JAG1 and JAG2. P63 plays a role in the regulation of epithelial morphogenesis. The ratio of DeltaN-type and TA*-type isoforms can govern the maintenance of epithelial stem cell compartments and regulate the initiation of epithelial stratification from the undifferentiated embryonal ectoderm. P63 is required for limb formation from the apical ectodermal ridge. P63 activates transcription of the p21 promoter. In one embodiment, the human P63 protein has 680 amino acids and a molecular mass of 76785 Da.


The term “p63” or “TP63” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. Representative human p63 cDNA and human p63 protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, 13 human XBP1 isoforms are known. The p63 transcript variant 1 (NM_003722.5) represents the longest transcript and encodes the longest isoform, p63 isoform 1 (NP_003713.3). The p63 transcript variant 2 (NM_001114978.2) lacks an exon in the 3′ coding region that results in a frameshift, compared to variant 1. The resulting isoform (2, also known as TAp63beta and TA-beta; NP_001108450.1) is shorter and has a distinct C-terminus, compared to isoform 1. The p63 transcript variant 3 (NM_001114979.2) differs in the 3′ UTR and coding region, compared to variant 1. The resulting isoform (3, also known as TAp63gamma, TA-gamma, and p51A; NP_001108451.1) is shorter and has a distinct C-terminus, compared to isoform 1. The p63 transcript variant 4 (NM_001114980.2) differs in the 5′ UTR and coding region, compared to variant 1. The resulting isoform (4, also known as deltaNp63alpha, deltaN-alpha, P51delNalpha, CUSP, and p73H; NP_001108452.1) is shorter and has a distinct N-terminus, compared to isoform 1. The p63 transcript variant 5 (NM_001114981.2) differs in the 5′ UTR and coding region, and also lacks an exon in the 3′ coding region that results in a frameshift, compared to variant 1. The resulting isoform (5, also known as deltaNp63beta, P51delNbeta, and deltaN-beta; NP_001108453.1) is shorter and has distinct N- and C-termini, compared to isoform 1. The p63 transcript variant 6 (NM_001114982.2) differs in the 5′ UTR and coding region, and in the 3′ UTR and coding region, compared to variant 1. The resulting isoform (6, also known as deltaNp63gamma, P51delNgamma, and deltaN-gamma; NP_001108454.1) is shorter and has distinct N- and C-termini, compared to isoform 1. The p63 transcript variant 7 (NM_001329144.2) lacks two exons in the 3′ coding region, which leads to a frameshift compared to variant 1. The encoded isoform (7, also known as TAp63delta, TA-delta, and P51delta; NP_001316073.1) has a shorter and distinct C-terminus, compared to isoform 1. The p63 transcript variant 8 (NM_001329145.2) has multiple differences compared to variant 1. These differences result in the use of an alternate start codon and introduce a frameshift in the 3′ coding region. The encoded isoform (8, also known as deltaN-delta; NP_001316074.1) has shorter and distinct N- and C-termini, compared to isoform 1. The p63 transcript variant 9 (NM_001329146.2) lacks several 5′ exons, and uses an alternate start codon, compared to variant 1. The encoded isoform (9, also known as deltaNp73L; NP_001316075.1) has a shorter and distinct N-terminus, compared to isoform 1. The p63 transcript variant 10 (NM_001329148.2) uses an alternate in-frame splice site in the central coding region, compared to variant 1. The encoded isoform (10, also known as p63-delta; NP_001316077.1) is shorter than isoform 1. The p63 transcript variant 11 (NM_001329149.2) has multiple differences compared to variant 1. These differences result in the use of an alternate start codon and introduce a frameshift in the 3′ coding region. The encoded isoform (11) (NP_001316078.1) is shorter and has distinct N- and C-termini, compared to isoform 1. The p63 transcript variant 12 (NM_001329150.2) has multiple differences compared to variant 1. These differences result in the use of an alternate start codon and introduce a frameshift in the 3′ coding region. The encoded isoform (12) (NP_001316079.1) is shorter and has distinct N- and C-termini, compared to isoform 1. The p63 transcript variant 13 (NM_001329964.1) represents use of an alternate promoter and therefore differs in the 5′ UTR and 5′ coding region, compared to variant 1. The promoter and 5′ terminal exon sequence is from an endogenous retroviral LTR (PMID: 21994760). The resulting isoform (13, also known as GTAp63; NP_001316893.1) is shorter and has a distinct N-terminus, compared to isoform 1. The encoded protein is expressed predominantly in testicular germ cells and eliminates germ cells that have suffered DNA damage. Nucleic acid and polypeptide sequences of p63 orthologs in organisms other than humans are well known and include, for example, chimpanzee p63 (XM_009447014.3 and XP_009445289.1; XM_001160376.5 and XP_001160376.1; XM_009447013.3 and XP_009445288.1; XM_003310173.3 and XP_003310221.1; XM_001160425.5 and XP_001160425.1; X1\4016942495.2 and XP_016797984.1; and XM_001160182.3 and XP_001160182.1); monkey p63 (XM_028843565.1 and XP_028699398.1; XM_015132502.2 and XP_014987988.1; XM_015132501.2 and XP_014987987.1; XM_001092093.3 and XP_001092093.1; XM_028843566.1 and XP_028699399.1; XM_028843567.1 and XP_028699400.1; XM_001091977.4 and XP_001091977.3; XM_015132503.2 and XP_014987989.1; and XM_015132504.2 and XP_014987990.2); dog p63 (XM_022414176.1 and XP_022269884.1; XM_005639826.3 and XP_005639883.1; XM_856247.5 and XP_861340.3; XM_005639828.3 and XP_005639885.1; XM_005639827.2 and XP_005639884.1; XM_856275.3 and XP_861368.1; and XM_022414177.1 and XP_022269885.1), cattle p63 (NM_001191337.1 and NP_001178266.1), mouse p63 (NM_001127259.1 and NP_001120731.1; NM_001127260.1 and NP_001120732.1; NM_001127261.1 and NP_001120733.1; NM_001127262.1 and NP_001120734.1; NM_001127263.1 and NP_001120735.1; NM_001127264.1 and NP_001120736.1; NM_001127265.1 and NP_001120737.1; and NM_011641.2 and NP_035771.1), rat p63 (NM_001127339.1 and NP_001120811.1; NM_001127341.1 and NP_001120813.1; NM_001127342.1 and NP_001120814.1; NM_001127343.1 and NP_001120815.1; NM_001127344.1 and NP_001120816.1; and NM_019221.3 and NP_062094.1), and chicken p63 (NM_204351.1 and NP_989682.1). Representative sequences of p63 orthologs are presented below in Table 1.


Anti-p63 antibodies suitable for detecting p63 protein are well-known in the art and include, for example, antibodies TA323790 and CF811064 (OriGene Technologies, Rockville, Md.), AF1916 (antibody from Novus Biologicals, Littleton, Colo.), ab124762, ab53039, and ab735, ab97865 (antibodies from AbCam, Cambridge, Mass.), etc. In addition, reagents are well-known for detecting p63 expression. Moreover, multiple siRNA, shRNA, CRISPR constructs for reducing p63 Expression can be found in the commercial product lists of the above-referenced companies, such as siRNA products #sc-36620 and #sc-36621 from Santa Cruz Biotechnology, RNAi products TR308688, TG308688, TL308688, and SR322466, and CRISPR products KN208013 and KN208013BN (Origene), and multiple CRISPR products from GenScript (Piscataway, N.J.). It is to be noted that the term can further be used to refer to any combination of features described herein regarding p63 molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an p63 molecule encompassed by the present invention.


The term “TP53” refers to Tumor Protein P53, a tumor suppressor protein containing transcriptional activation, DNA binding, and oligomerization domains. The encoded protein responds to diverse cellular stresses to regulate expression of target genes, thereby inducing cell cycle arrest, apoptosis, senescence, DNA repair, or changes in metabolism. Mutations in this gene are associated with a variety of human cancers, including hereditary cancers such as Li-Fraumeni syndrome. TP53 mutations are universal across cancer types. The loss of a tumor suppressor is most often through large deleterious events, such as frameshift mutations, or premature stop codons. In TP53 however, many of the observed mutations in cancer are found to be single nucleotide missense variants. These variants are broadly distributed throughout the gene, but with the majority localizing in the DNA binding domain. There is no single hotspot in the DNA binding domain, but a majority of mutations occur in amino acid positions 175, 245, 248, 273, and 282 (NM_000546). While a large proportion of cancer genomics research is focused on somatic variants, TP53 is also of note in the germline. Germline TP53 mutations are the hallmark of Li-Fraumeni syndrome, and many (both germline and somatic) variants have been found to have a prognostic impact on patient outcomes. TP53 acts as a tumor suppressor in many tumor types by inducing growth arrest or apoptosis depending on the physiological circumstances and cell type. TP53 is involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. In cooperation with mitochondrial PPIF, TP53 is involved in activating oxidative stress-induced necrosis, and the function is largely independent of transcription. TP53 induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seem to have to effect on cell-cycle regulation. TP53 is implicated in Notch signaling cross-over. TP53 prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 of TP53 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 of TP53 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 of TP53 inhibits isoform 1-mediated apoptosis. TP53 regulates the circadian clock by repressing CLOCK-ARNTL/BMAL1-mediated transcriptional activation of PER2 (Miki et al., (2013) Nat Commun 4:2444). In some embodiments, human TP53 protein has 393 amino acids and a molecular mass of 43653 Da. The known binding partners of TP53 include, e.g., AXIN1, ING4, YWHAZ, HIPK1, HIPK2, WWOX, GRK5, ANKRD2, RFFL, RNF 34, and TP53INP1.


The term “TP53” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. Representative human TP53 cDNA and human TP53 protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, at least 12 different human TP53 isoforms are known. Human TP53 isoform a (NP_000537.3, NP_001119584.1) is encodable by the transcript variant 1 (NM_000546.5) and the transcript variant 2 (NM_001126112.2). Human TP53 isoform b (NP_001119586.1) is encodable by the transcript variant 3 (NM_001126114.2). Human TP53 isoform c (NP_001119585.1) is encodable by the transcript variant 4 (NM_001126113.2). Human TP53 isoform d (NP_001119587.1) is encodable by the transcript variant 5 (NM_001126115.1). Human TP53 isoform e (NP_001119588.1) is encodable by the transcript variant 6 (NM_001126116.1). Human TP53 isoform f (NP_001119589.1) is encodable by the transcript variant 7 (NM_001126117.1). Human TP53 isoform g (NP_001119590.1, NP_001263689.1, and NP_001263690.1) is encodable by the transcript variant 8 (NM_001126118.1), the transcript variant 1 (NM_001276760.1), and the transcript variant 2 (NM_001276761.1). Human TP53 isoform h (NP_001263624.1) is encodable by the transcript variant 4 (NM_001276695.1). Human TP53 isoform i (NP_001263625.1) is encodable by the transcript variant 3 (NM_001276696.1). Human TP53 isoform j (NP_001263626.1) is encodable by the transcript variant 5 (NM_001276697.1). Human TP53 isoform k (NP_001263627.1) is encodable by the transcript variant 6 (NM_001276698.1). Human TP53 isoform 1 (NP_001263628.1) is encodable by the transcript variant 7 (NM_001276699.1). Nucleic acid and polypeptide sequences of TP53 orthologs in organisms other than humans are well known and include, for example, chimpanzee TP53 (XM_001172077.5 and XP_001172077.2, and XM_016931470.2 and XP_016786959.2), monkey TP53 (NM_001047151.2 and NP_001040616.1), dog TP53 (NM_001003210.1 and NP_001003210.1), cattle TP53 (NM_174201.2 and NP_776626.1), mouse TP53 (NM_001127233.1 and NP_001120705.1, and NM_011640.3 and NP_035770.2), rat TP53 (NM_030989.3 and NP_112251.2), tropical clawed frog TP53 (NM_001001903.1 and NP_001001903.1), and zebrafish TP53 (NM_001271820.1 and NP_001258749.1, NM_001328587.1 and NP_001315516.1, NM_001328588.1 and NP_001315517.1, and NM_131327.2 and NP_571402.1). Representative sequences of TP53 orthologs are presented below in Table 1.


Anti-TP53 antibodies suitable for detecting TP53 protein are well-known in the art and include, for example, antibodies TA502925 and CF502924 (Origene), antibodies NB200-103 and NB200-171 (Novus Biologicals, Littleton, Colo.), antibodies ab26 and ab1101 (AbCam, Cambridge, Mass.), antibody 700439 (ThermoFisher Scientific), antibody 33-856 (ProSci), etc. In addition, reagents are well-known for detecting TP53. Multiple clinical tests of TP53 are available in NIH Genetic Testing Registry (GTR®) (e.g., GTR Test ID: GTR000517320.2, offered by Fulgent Clinical Diagnostics Lab (Temple City, Calif.)). Moreover, multiple siRNA, shRNA, CRISPR constructs for reducing TP53 expression can be found in the commercial product lists of the above-referenced companies, such as siRNA products #sc-29435 and sc-44218, and CRISPR product #sc-416469 from Santa Cruz Biotechnology, RNAi products SR322075 and TL320558V, and CRISPR product KN200003 (Origene), and multiple CRISPR products from GenScript (Piscataway, N.J.). Chemical inhibitors of TP53 are also available, including, e.g., Cyclic Pifithrin-α hydrobromide, RITA (TOCRIS, MN). It is to be noted that the term can further be used to refer to any combination of features described herein regarding TP53 molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe a TP53 molecule encompassed by the present invention.


There is a known and definite correspondence between the amino acid sequence of a particular protein and the nucleotide sequences that can code for the protein, as defined by the genetic code (shown below). Likewise, there is a known and definite correspondence between the nucleotide sequence of a particular nucleic acid and the amino acid sequence encoded by that nucleic acid, as defined by the genetic code.












GENETIC CODE


















Alanine (Ala, A)
GCA, GCC, GCG, GCT



Arginine (Arg, R)
AGA, ACG, CGA, CGC, CGG, CGT



Asparagine (Asn, N)
AAC, AAT



Aspartic acid (Asp, D)
GAC, GAT



Cysteine (Cys, C)
TGC, TGT



Glutamic acid (Glu, E)
GAA, GAG



Glutamine (Gln, Q)
CAA, CAG



Glycine (Gly, G)
GGA, GGC, GGG, GGT



Histidine (His, H)
CAC, CAT



Isoleucine (Ile, I)
ATA, ATC, ATT



Leucine (Leu, L)
CTA, CTC, CTG, CTT, TTA, TTG



Lysine (Lys, K)
AAA, AAG



Methionine (Met, M)
ATG



Phenylalanine (Phe, F)
TTC, TTT



Proline (Pro, P)
CCA, CCC, CCG, CCT



Serine (Ser, S)
AGC, AGT, TCA, TCC, TCG, TCT



Threonine (Thr, T)
ACA, ACC, ACG, ACT



Tryptophan (Trp, W)
TGG



Tyrosine (Tyr, Y)
TAC, TAT



Valine (Val, V)
GTA, GTC, GTG, GTT



Termination signal (end)
TAA, TAG, TGA










An important and well-known feature of the genetic code is its redundancy, whereby, for most of the amino acids used to make proteins, more than one coding nucleotide triplet may be employed (illustrated above). Therefore, a number of different nucleotide sequences may code for a given amino acid sequence. Such nucleotide sequences are considered functionally equivalent since they result in the production of the same amino acid sequence in all organisms (although certain organisms may translate some sequences more efficiently than they do others). Moreover, occasionally, a methylated variant of a purine or pyrimidine may be found in a given nucleotide sequence. Such methylations do not affect the coding relationship between the trinucleotide codon and the corresponding amino acid.


In view of the foregoing, the nucleotide sequence of a DNA or RNA encoding a biomarker nucleic acid (or any portion thereof) can be used to derive the polypeptide amino acid sequence, using the genetic code to translate the DNA or RNA into an amino acid sequence. Likewise, for polypeptide amino acid sequences, corresponding nucleotide sequences that can encode the polypeptide can be deduced from the genetic code (which, because of its redundancy, will produce multiple nucleic acid sequences for any given amino acid sequence). Thus, description and/or disclosure herein of a nucleotide sequence which encodes a polypeptide should be considered to also include description and/or disclosure of the amino acid sequence encoded by the nucleotide sequence. Similarly, description and/or disclosure of a polypeptide amino acid sequence herein should be considered to also include description and/or disclosure of all possible nucleotide sequences that can encode the amino acid sequence.


Finally, nucleic acid and amino acid sequence information for the loci and biomarkers encompassed by the present invention and related biomarkers (e.g., biomarkers listed in Tables 1 and 2) are well known in the art and readily available on publicly available databases, such as the National Center for Biotechnology Information (NCBI). For example, exemplary nucleic acid and amino acid sequences derived from publicly available sequence databases are provided below.









TABLE 1







Smad1





Smad2





Smad3





Smad4





Smad5





Smad9





P53





P63





P73





SEQ ID NO: 1 Human Smad2 transcript variant 2 mRNA Sequence


NM_001003652.4; CDS: 127-1530)








1
aggcgggtct acccgcgcgg ccgcggcggc ggagaagcag ctcgccagcc agcagcccgc


61
cagccgccgg gaggttcgat acaagaggct gttttcctag cgtggcttgc tgcctttggt


121
aagaacatgt cgtccatctt gccattcacg ccgccagttg tgaagagact gctgggatgg


181
aagaagtcag ctggtgggtc tggaggagca ggcggaggag agcagaatgg gcaggaagaa


241
aagtggtgtg agaaagcagt gaaaagtctg gtgaagaagc taaagaaaac aggacgatta


301
gatgagcttg agaaagccat caccactcaa aactgtaata ctaaatgtgt taccatacca


361
agcacttgct ctgaaatttg gggactgagt acaccaaata cgatagatca gtgggataca


421
acaggccttt acagcttctc tgaacaaacc aggtctcttg atggtcgtct ccaggtatcc


481
catcgaaaag gattgccaca tgttatatat tgccgattat ggcgctggcc tgatcttcac


541
agtcatcatg aactcaaggc aattgaaaac tgcgaatatg cttttaatct taaaaaggat


601
gaagtatgtg taaaccctta ccactatcag agagttgaga caccagtttt gcctccagta


661
ttagtgcccc gacacaccga gatcctaaca gaacttccgc ctctggatga ctatactcac


721
tccattccag aaaacactaa cttcccagca ggaattgagc cacagagtaa ttatattcca


781
gaaacgccac ctcctggata tatcagtgaa gatggagaaa caagtgacca acagttgaat


841
caaagtatgg acacaggctc tccagcagaa ctatctccta ctactctttc ccctgttaat


901
catagcttgg atttacagcc agttacttac tcagaacctg cattttggtg ttcgatagca


961
tattatgaat taaatcagag ggttggagaa accttccatg catcacagcc ctcactcact


1021
gtagatggct ttacagaccc atcaaattca gagaggttct gcttaggttt actctccaat


1081
gttaaccgaa atgccacggt agaaatgaca agaaggcata taggaagagg agtgcgctta


1141
tactacatag gtggggaagt ttttgctgag tgcctaagtg atagtgcaat ctttgtgcag


1201
agccccaatt gtaatcagag atatggctgg caccctgcaa cagtgtgtaa aattccacca


1261
ggctgtaatc tgaagatctt caacaaccag gaatttgctg ctcttctggc tcagtctgtt


1321
aatcagggtt ttgaagccgt ctatcagcta actagaatgt gcaccataag aatgagtttt


1381
gtgaaagggt ggggagcaga ataccgaagg cagacggtaa caagtactcc ttgctggatt


1441
gaacttcatc tgaatggacc tctacagtgg ttggacaaag tattaactca gatgggatcc


1501
ccttcagtgc gttgctcaag catgtcataa agcttcacca atcaagtccc atgaaaagac


1561
ttaatgtaac aactcttctg tcatagcatt gtgtgtggtc cctatggact gtttactatc


1621
caaaagttca agagagaaaa cagcacttga ggtctcatca attaaagcac cttgtggaat


1681
ctgtttccta tatttgaata ttagatggga aaattagtgt ctagaaatac tctcccatta


1741
aagaggaaga gaagatttta aagacttaat gatgtcttat tgggcataaa actgagtgtc


1801
ccaaaggttt attaataaca gtagtagtta tgtgtacagg taatgtatca tgatccagta


1861
tcacagtatt gtgctgttta tatacatttt tagtttgcat agatgaggtg tgtgtgtgcg


1921
ctgcttcttg atctaggcaa acctttataa agttgcagta cctaatctgt tattcccact


1981
tctctgttat ttttgtgtgt cttttttaat atataatata tatcaagatt ttcaaattat


2041
ttagaagcag attttcctgt agaaaaacta atttttctgc cttttaccaa aaataaactc


2101
ttgggggaag aaaagtggat taacttttga aatccttgac cttaatgtgt tcagtggggc


2161
ttaaacagtc attctttttg tggttttttg tttttttttg tttttttttt taactgctaa


2221
atcttattat aaggaaacca tactgaaaac ctttccaagc ctcttttttc cattcccatt


2281
tttgtcctca taatcaaaac agcataacat gacatcatca ccagtaatag ttgcattgat


2341
actgctggca ccagttaatt ctgggataca gtaagaattc atatggagaa agtccctttg


2401
tcttatgccc aaatttcaac aggaataatt ggcttgtata atctagcagt ctgttgattt


2461
atccttccac ctcataaaaa atgcataggt ggcagtataa ttattttcag ggatatgcta


2521
gaattacttc cacatattta tcccttttta aaaaagctaa tctataaata ccgtttttcc


2581
aaaggtattt tacaatattt caacagcaga ccttctgctc ttcgagtagt ttgatttggt


2641
ttagtaacca gattgcatta tgaaatgggc cttttgtaaa tgtaattgtt tctgcaaaat


2701
acctagaaaa gtgatgctga ggtaggatca gcagatatgg gccatctgtt tttaaagtat


2761
gttgtattca gtttataaat tgattgttat tctacacata attatgaatt cagaatttta


2821
aaaattgggg gaaaagccat ttatttagca agttttttag cttataagtt acctgcagtc


2881
tgagctgttc ttaactgatc ctggttttgt gattgacaat atttcatgct ctgtagtgag


2941
aggagatttc cgaaactctg ttgctagttc attctgcagc aaataattat tatgtctgat


3001
gttgactcat tgcagtttaa acatttcttc ttgtttgcat cttagtagaa atggaaaata


3061
accactcctg gtcgtctttt cataaatttt catatttttg aagctgtctt tggtacttgt


3121
tctttgaaat catatccacc tgtctctata ggtatcattt tcaatacttt caacatttgg


3181
tggttttcta ttgggtactc cccattttcc tatatttgtg tgtatatgta tgtgttcatg


3241
taaatttggt atagtaattt tttattcatt caacaaatat ttattgttca cctgtttgta


3301
ccaggaactt ttcttagtct ttgggtaaag gtgaacaaga caactacagt tcctgccttt


3361
gctgagacag cagttacact aacccttaat tatcttactt gtctatgaag gagataaaca


3421
gggtactgta ctggagaata acagatggga tgcttcaggt aggacatcaa ggaaagcctc


3481
taaggaaagg atgcatgagc taacacctga cattaaagaa gcaagccaag tgaggagcca


3541
ggggagataa gcattcctgg caaagagaat agcatcaaat gcaaaaaggt tcacactaaa


3601
ggaaactcct gattaggtat taatgcttta tacagaaacc tctatacaaa tccaaacttg


3661
aagatcagaa tggttctaca gttcataaca ttttgaaggt ggccttattt tgtgatagtc


3721
tgcttcatgt gattctcact aacatatctc cttcctcaac ctttgctgta aaaatttcat


3781
ttgcaccaca tcagtactac ttaatttaac aagcttttgt tgtgtaagct ctcactgttt


3841
tagtgccctg ctgcttgctt ccagactttg tgctgtccag taattatgtc ttccactacc


3901
catcttgtga gcagagtaaa tgtcctaggt aataccacta tcaggcctgt aggagatact


3961
cagtggagcc tctgcccttc tttttcttac ttgagaactt gtaatggtgt tagggaacag


4021
ttgtaggggc agaaaacaac tctgaaagtg gtagaaggtc ctgatcttgg tggttactct


4081
tgcattactg tgttaggtca agcagtgcct actatgctgt ttcagtagtg gagcgcatct


4141
ctacagttct gatgcgattt ttctgtacag tatgaaattg ggactcaact ctttgaaaac


4201
acctattgag cagttatacc tgttgagcag tttacttcct ggttgtaatt acatttgtgt


4261
gaatgtgttt gatgcttttt aacgagatga tgttttttgt attttatcta ctgtggcctg


4321
attttttttt tgttttctgc ccctcccccc atttataggt gtggttttca tttttctaag


4381
tgatagaatc ccctctttgt tgaatttttg tctttattta aattagcaac attacttagg


4441
atttattctt cacaatactg ttaattttct aggaatgatg acctgagaac cgaatggcca


4501
tgctttctat cacatttcta agatgagtaa tattttttcc agtaggttcc acagagacac


4561
cttgggggct ggcttagggg aggctgttgg agttctcact gacttagtgg catatttatt


4621
ctgtactgaa gaactgcatg gggtttcttt tggaaagagt ttcattgctt taaaaagaag


4681
ctcagaaagt ctttataacc actggtcaac gattagaaaa atataactgg atttaggcct


4741
accttctgga ataccgctga ttgtgctctt tttatcctac tttaaagaag ctttcatgat


4801
tagatttgag ctatatcagt tataccgatt ataccttata atacacattc agttagtaaa


4861
catttattga tgcctgttgt ttgcccagcc actgtgatgg atattgaata ataaaaagat


4921
gactaggacg gggccctgac ccttgagctg tgcttggtct tgtagaggtt gtgttttttt


4981
tcctcaggac ctgtcacttt ggcagaagga aatctgccta atttttcttg aaagctaaat


5041
tttctttgta agtttttaca aattgtttaa tacctagttg tattttttac cttaagccac


5101
attgagtttt gcttgatttg tctgtctttt aaacactgtc aaatgctttc ccttttgtta


5161
aaattatttt aatttcactt tttttgtgcc cttgtcaatt taagactaag actttgaagg


5221
taaaacaaac aaacaaacat cagtcttagt ctcttgctag ttgaaatcaa ataaaagaaa


5281
atatataccc agttggtttc tctacctctt aaaagcttcc catatatacc tttaagatcc


5341
ttctcttttt tctttaacta ctaaataggt tcagcattta ttcagtgtta gataccctct


5401
tcgtctgagg gtggcgtagg tttatgttgg gatataaagt aacacaagac aatcttcact


5461
gtacataaaa tatgtcttca tgtacagtct ttactttaaa agctgaacat tccaatttgc


5521
gccttccctc ccaagcccct gcccaccaag tatctcttta gatatctagt ctgtggacat


5581
gaacaatgaa tacttttttc ttactctgat cgaaggcatt gatacttaga catatcaaac


5641
atttcttcct ttcatatgct ttactttgct aaatctatta tattcattgc ctgaatttta


5701
ttcttccttt ctacctgaca acacacatcc aggtggtact tgctggttat cctctttctt


5761
gttagccttg ttttttgttt tttttttttt tttttgagag ggagtctcgc tctgttgccc


5821
aacctggagt gcagtggtgc gatcttggtt cactgcaagc tccgcctccc gggttcacgc


5881
catgcttctg cctcagcctc ccaagtagct gggactacag gcgcccacca ccacactcgg


5941
ctaatttttt gtatttttag tagagacggg gtttcaccgt gttggccagg atggtctcga


6001
tctcctgacc tcgtgatctg tccacctcgg cttcccaaag tgctgggatt acaggcatga


6061
gccaccgcgc ccagcctagc catattttta tctgcatata tcagaatgtt tctctccttt


6121
gaacttatta acaaaaaagg aacatgcttt tcatacctag agtcctaatt tcttcatcat


6181
gaaggttgct attcaaattg atcaatcatt ttaattttac aaatggctca aaaattctgt


6241
tcagtaaatg tctttgtgac tggcaaatgg cataaattat gtttaagatt atgaactttt


6301
ctgacagttg cagccaatgt tttccctacg ataccagatt tccatcttgg ggcatattgg


6361
attgttgtat ttaagacagt cagaataatg atagtgtgtg gtctccagag gtagtcagaa


6421
tcctgctatt gagttctttt tatatcttcc ttttcaattt tttattacca ttttgtttgt


6481
ttagactaca ctttgtaggg attgaggggc aaattatctc ttggagtgga attcctgtgt


6541
tttgagcctt acaaccagga aatatgagct atactagata gcctcatgat agcatttacg


6601
ataagaactt atctcgtgtg ttcatgtaat tttttgagta ggaactgttt tatcttgaat


6661
attgtagcta actatatata gcagaactgc ctcagtcttt ttaagaagga aataaataat


6721
atatgtgtat gaatttatat atacatatac actcatagac aaacttaaca gttggggtca


6781
ttctaacagt taaaacaatt gttccattgt ttaaatctca gatcctggta aaatgttctt


6841
aatttgtctg tgtacatttt cctttcatgg acagaccatt ggagtacatt aattttctta


6901
atctgccatt tggcagttca tttaatatac cattttttgg caacttggta actaagaatc


6961
acagccaaaa tttgttaaca tcaaagaaag ctctgccata taccccgtta ctaaattatt


7021
atacatccag cagattctgg gatgtactaa cttagggtta actttgttgt tgttgataat


7081
actagattgc tccctcttta attcttcttc tggtgcaagg ttgctgctta agttaccctg


7141
ggaaatacta ctacaaggtc aaattttcta gtatcttaca gcctgattga aggtgattca


7201
gatctttgct caatataaat ggattttcca agattctctg ggccatcctt gacccacagg


7261
tgatctcgct ggagtatatt aacttaactt cagtgccagt tggtttggtg ccatgagatc


7321
cataatgaat ccagaacttc accattgctt agatataaga gtcccttgga agaataatgc


7381
cactgatgat gggggtcaga aggtgtatta actcaacata gagggctttt agatttttct


7441
tcaaaaaaat ttcgagaaaa gtattctttt accctccaaa cagttaacag ctcttagttt


7501
ctccaaatat gctctttgat ttacttattt ttaattaaag atggtaattt attgaacaat


7561
gaaatccgta atatattgat ttaaggacaa aagtgaagtt ttagaattat aaaagtactt


7621
aaatattata tattttccat ttcataattg ttttcctttc tctgtggctt taaagttttt


7681
gactatttta caatgttaat cactaggtaa cttgccatat ttctggttct atattaagtt


7741
ctatccttta taatgctgtt attataaagc tggtttttag catttgtctg tagcaataga


7801
aattttacta agtctctgtt ctcccagtaa gttttttctt ttctcagtaa gtccctaaga


7861
aaacatttgt ttgccactct tactattccc aatcttggat tgttcgagct gaaaaaaaat


7921
ttgatgagaa acaggaggat ccttttctgg tgaatatagg ttcctgcttt aagaatgtgg


7981
aaatccattg ctttatataa ctaatataca cacagattaa ttaaaattgt gagaaataat


8041
tcacacatga caagtaggta acatgcatga gttttgaatt tttttaaaaa cccaactgtt


8101
tgacaaaata tagaacccaa attggtactt tcttagacca gtgtaacctc acacctcagt


8161
tttgcttttc caaccctgac ttgaaaggca tatttgtatc tttttattag tgatagtgaa


8221
gctgtgacac taacctttta tacaaaagag taaagaaaga aaaactacag cgattaagat


8281
gagaacagtt ctgcagttgt tgaactagat cacagcattg taggcagaat aaaaaatgtt


8341
catatctgag aatattcctt tcgccatctt ttcccaaggc cagacctcct ggtggagcac


8401
agttaaaagt aacattctgg gcctttgtaa tcggagggct gtgtctccag ctggcagcct


8461
ttgttttaat atataatgca ggactgtgga aaacagttgg catagaatat tttcacctaa


8521
aaaagaaaga aaagacatac aaaactggat taattgcaaa aagagaatac agtaaaatac


8581
catataactg gacaaagcta gaagaacctt tagaagattt gtctgaaaac agatttcaag


8641
agtgagcttt tatacactgc tcactaattt gcttgattac taccaactct tcttaaagtt


8701
aacacgttta aggtatttct ggacttccta gccttttagc aagcttagag gaactagcca


8761
ttagctagtg atgtaaaaat attttgggga ctgatgccct taaaggttat gcccttgaaa


8821
gttcttacct tttctctagt gatattaagg aacgagtggg tagtgttctc agggtgacca


8881
gctgccctaa agtgcctggg attgagggtt tccctggatg cgggactttc cctggataca


8941
aaacttttag cagagttttg tatatatgtg gatttttctg ataagtagca catcagaggc


9001
cttaaccact gcccaaaagc gattctccat tgagagtaca tatcttgaac ttaagaaatt


9061
catttgctct gatttttaat cttgtaaagt ttttgctaaa ctcaaaacaa gtcccaggca


9121
caccagaagg agctgaccac cttaggtgtt cttgtgattt atccttactt ccctatgttg


9181
tcatagttgc ttctaaactc agctgcacta tggctgtcaa catttctgat acttattggg


9241
atatgtgcca tccagtcatt tagtactttg aatggaacat gagatttata acacaggtaa


9301
tagctgaagg taccagtatg gtggtgagac tcacacttag tgatccagct aaggtaactg


9361
atgttataat ggaacagaga agaggccaac tagatagcta agttcttctg aacctatgtg


9421
tatatgtaag tacaaatcat gcgtccttat ggggttaaac ttaatctgaa atttacattt


9481
ttcatagtaa aaggaaacca attgttgcag atttcttttc ttgtgaggaa atacatggcc


9541
tttgatgctc tggcgtctac tgcatttccc agtctgttct gctcgagaag ccagaatgtg


9601
ttgttaacat ttttccgtga atgttgtgtt aaaatgatta aatgcatcag ccaatggcaa


9661
gtgaaggaat tgggtgtcct gatgcagact gagcagtttc tctcaattgt agcctcatac


9721
tcataaggtg cttaccagct agaacattga gcacgtgagg tgagattttt tttctctgat


9781
ggcattaact ttgtaatgca atatgatgga tgcagaccct gttcttgttt ccctctggaa


9841
gtccttagtg gctgcatcct tggtgcactg tgatggagat attaaatgtg ttctttgtga


9901
gctttcgttc tatgattgtc aaaagtacga tgtggttcct tttttatttt tattaaacaa


9961
tgagctgagg ctttattaca gctggttttc aagttaaaat tgttgaatac tgatgtcttt


10021
ctcccaccta caccaaatat tttagtctat ttaaagtaca aaaaaagttc tgcttaagaa


10081
aacattgctt acatgtcctg tgatttctgg tcaattttta tatatatttg tgtgcatcat


10141
ctgtatgtgc tttcactttt taccttgttt gctcttacct gtgttaacag ccctgtcacc


10201
gttgaaaggt ggacagtttt cctagcatta aaagaaagcc atttgagttg tttaccatgt


10261
tactatggga ctaattttta attgttttaa tttttattta aactgatctt tttttatatg


10321
ggattacatt ttggtgttca ctccctaaat tatatggaaa ccaaaaaaag tgattgtatt


10381
tcacatatgg acatatgatt ttaagagtac atgtttttgt ttttttaatt tggtgttaca


10441
taaaagatta tcctatcccc ccgggagata aatttatact acttaatata accccacaac


10501
aggcgcacac cacacactgc acagtgctat ttatacattt ttatttattt cagagtttgc


10561
ctatgctaca ttagcgctct aatacataag atctatgctg taaacaaaaa catcttcaaa


10621
gttgaaattt gctgaaatat acttttaaca aaataacatt tttaaggctc cattgaaaaa


10681
tactagataa gatataatct catataatca gtatgaataa ttttaaaaat gagaaatatt


10741
taggtcagcc acacttcctt tgtgccttgc aagaattcag ttctgtggat gaatcagtac


10801
tggttagcag actgttttct gcaaaccatt ttaaacatgc tttagtatgc aacaaaaagg


10861
gacctcaaat gctaaaatac actattttac gtggcattga atagccttgg gactggtgta


10921
gttttatcaa cactttttta ttaggaagaa acccaagaaa atttactgta attgctacca


10981
cctgccactg tataaataat ctaaaaggga cttcccaaca ttgaacaaca acattgaggg


11041
ctgactcgag atccttctac attgtcacct cagcctggct ttgcctgtca ctgcttagct


11101
tgaagtagtg acactgttct gtatcaggag atttttataa tggccctagc atccataatt


11161
ccacatgttc atcaaatggc tgaagagtat gagagaagta ttaaggtcta tgtttgggct


11221
gtctccccac ttggcatatt ctgtttttcc ctcttcaaaa tagattgaaa gcctcttagt


11281
gcaggaagca ggcatcagta tcaaactgat gtcatccaat gtaattattt taagctccag


11341
gtttgtctaa gtttgggtga agaatgttca ggaacatgtt tgcaacatac agttatccag


11401
cttacccttt gacagattca cccttctcat caaaatagta agcccaacct aaaaattata


11461
agtttacaaa taaaggaata gaaaaaccca aaaagctaat ttacacataa aaattatctt


11521
ttgctgcaat aaataggtat ggaaatattt gtagaattgg tttaactgat tttgtaaaac


11581
aaatgtcatg ctattttgcc atagtgagac atgcagtaat tcttaaaatc acattaatag


11641
aaggcaagaa cattgaatca gacttagcag ataacagatt cagtgataaa tgaacaatag


11701
actaagcata cttaggaagc tacatgagaa cagaatgtat tactgtgctc ccgtccaaac


11761
tgcatgactt tattggttat agaataaatg gaatttgaga tggggatttg ccagttttta


11821
cagtctgtct tcaatagttt tgttggctgc ctctgcacct ttctaaatgt tatgtgaaaa


11881
taaaattatt taagttctaa agtagtttag gaaagagatg tgatgacagg aaaaagaagt


11941
taacttctga acagtttggt ccaggaagaa gatgggcaga atacagtaag cccagggttg


12001
aagaatacat tcaatttgga gagatggaga agacctttga agaaggtcaa aatgagatct


12061
tggaacagaa ctctcacctg tgtgtctgga tatacatgaa aactggacgg tgttattgag


12121
ctactgctta tatggtgagc agaaaattga taaccacaag cctggtaggt tctgctatga


12181
agcccacata taatcacaag gcctagatag cttggagtta aaagccaagg atagctgtat


12241
agtttgggtt ccatagtttg cagtgagatt gtgcttctga gcagtcattt gggggcagtg


12301
gttctgagat tacaagccat aacccagcca agaacgggct acctgtggaa tgaggatgag


12361
gaagttgcta catataaacc ctagtgtgtg tgtgtgtatt aagtgaaact tagttaactt


12421
ttttgctcac agccaaagat gattcatcta gagaagccat tggaatttta gcagagtttt


12481
gtatatatgt ggatttttct aataagtagc aaatcagagg ccttaaccac tgcccaacag


12541
cgattctcca ttgagagtac gtatcttgaa cttaagaaat tcatttgctc tgattttaaa


12601
tcttgtaaag tttttcttca tgagaggtct tgcctctaaa ctatattgtg gcagtatttg


12661
atcaaactac ataagtacca tgtaaataag attttaatac aaatgatgac tcacttctaa


12721
atggtttgcc atttagaaat gtgctgctgt gagaaaaacg aatttttttt tttttttttt


12781
ggagacagag tcttgctctg ttgcccaggc tggggtgcag tggggcgatc tcggctcact


12841
gcagcctcgc ctcctgggtt caagtgattc tcctgcctta gcctcctgag tagctgggat


12901
tacaggcaca caccaccacg cccaactact ttttgtattt ttagtggaga cagggtttca


12961
ccatgtttgc caggctggtc ttgaactcct gacctcagat gatttgcctg cctcggcctc


13021
ccaaagtgct ggaattacag gcgtgagcca tcatgcctgg ctgaaaagtg aaaatttaag


13081
ccagcttacc acctggaata aaaatgtttt ataggaatgt ctaggttgct cttttatatt


13141
gaaaaaaaac ttattagtgt ctgttttacc caagaaccac aagctacttc atttcaactt


13201
ttaaatcatg aataataacg tgttatcacc acatttaaaa atgtacatcg tcaatcacaa


13261
acacatattc taaggaattg aattttatag agataattga atgctttcat ctgtaaaaga


13321
attagtggcc tgcaaaccac tgtggattct tgctatgctt tgaagttgtc agtgggggaa


13381
tttgctgctg caagttactt agacttgtag gcaaagggaa attcaaattt ttaattctaa


13441
aatgaaaacc actgacaaaa ttttatactc tgaaagtttg gttgttagct tagtcattat


13501
tttcctgttc tttatcattt cggaattcag atgcttaaat ttaacataca aattatttgt


13561
tggtaaaaca taaaacataa aaagctacat ttggtaaact aaattttagg attcaaagtc


13621
tctaacaatt tctatgtgac atgtcatacg gtgcagtttt tatttgccaa agtgtctact


13681
tcatactgcc tatgcactgc ttcccgtttt taatctctct accccaaccc ccctataatt


13741
aaataaaccc ctagaaaact gccttctttt agaataccta attgattact ttaaatattt


13801
tttcagaatc aaaattacaa aagggagaga tacctaagaa tctggcttgt ttatattctt


13861
taaaagatcg catttgattg aaggtgggtg catatttttt atatccactc tttccccatt


13921
tgtatgtgac cattgtaaaa gtggatgtgc tttttttttt ttgctgaggt ctagagacaa


13981
tgttttagag atacagaatg aaacatttat gggtaaaata caatgggtaa gacttgcttc


14041
aaaatagtat gtgacagagg aagtagatgg aggtatgaat gaataggaca ttgatggttg


14101
tttgttggga ttgggtaagg gagctttgtt gtattctatt tccttttaga taagtttgaa


14161
attccttgta gtgaagaaat taaacgtctc catcaggtgc attgccacgt cttctctagg


14221
aagcctcctt aacatcctct ggtggctcct gaactttttc tgttctcatt cacagggaag


14281
ctcatggggc tgcctggaga cttgaggtta catcttgcct agtattacca aaattgtgat


14341
acttttctcc accccataat agcacagtct ttggtctcaa cttgaactaa agtctttttt


14401
tttttttttt tttttttttt tagtatttat tgatcattct tgggtgtttc tcggagaggg


14461
ggatgtggca gggtcatagg acaatagtgg agggaaggtc agcagataaa catgtgaaca


14521
agggtctctg gttttcctag gcagaggacc ctgcggcctt ctgcagtgtt tgtgtccctg


14581
ggtacttgag attaaggagt ggtgatgact cttaacgagc atgctgcctt caagcatctg


14641
tttaacaaag cacatcttgc accgccctta atccatttaa ccctgagtgg acacagcaca


14701
tgtttcagag agcacggggt tgggggtaag gttatagatt aacagcatcc caaggcagaa


14761
gaatttttcc tagtacagaa caaaatggag tctcctatgt ctacttcttt ctacacagac


14821
acagcaacaa tctgatctct ctttcctttc cccacatttc ccccttttct attcgacaaa


14881
accgccatcg tcatcatggc ccgctctcaa tgagctgttg ggtacacctc ccagacaggg


14941
tggcggccgg gcagaggggc tcctcacttc ccagacgggg cggctgggca gaggcgcccc


15001
cccacctccc ggacggggtg gatgctggcc gggggctgcc ccccacctcc cgaacggggc


15061
agctggccgg gcgggggttg ccccccacct cccggacggg gcggctggcc gagcaggggc


15121
tgccccccac ctccctccca gacggggcgg ctgctgggcg gagacgctcc ttacttcccg


15181
gacggggtgg ttgctgggcg gaggggctcc tcacttctca gacggggcgg ccgggcagag


15241
acgctcctca cctcccagac ggggtggcgg tcgggcagag acactcctca catcccagac


15301
ggggcggcgg ggcagaggcg ctccccacat ctcagacgat gggcggccgg gaagaggcgc


15361
tcctcacttc ccagactggg cggccgggct gaggggctcc tcacatccca gacgatgggc


15421
agccaggcag agatgctcct cacttcccag acggggtggc ggccgggcag aggctgcaat


15481
ctccgcactt tgggaggcca aggcaggcgg ctgggaggtg gaggttgtag cgagccgaga


15541
tcgtgccact gcactccagc ctgggcaaca ttgagcactg agtgagcgag actccatctg


15601
caatcccagc acctcgggag gcccaggcgg gcagatcatg cgcggtcagg agctggagac


15661
cagcctggcc aacacggcga aaccccgtct ccaccaaaaa atacaaaaac cagtcaggcg


15721
tggcggcgcg cgtctgcaat cccaggcact cggcaggctg aggcaggaga atcaggcagg


15781
gaggttgcag tgagccgaga tggcggcagt acagtccagc cttggctcgg catcagaggg


15841
agacggtgga aagtgggaga ccgtagaaag tgggagacgg ggggagacgg gagagggaga


15901
gggatgtgct ttttttctaa ccgttattgc caccaagtaa taatgtctta attcacaatt


15961
tacatagtga ttggctggag agaggtattg agcataaatt tttttttaag attcaactgg


16021
gaaatggatg atttacatga ttttagtctc tttagttgtc tgggtatttc ttgactggga


16081
atagcaatat cttaaaggcc atttttaaca agaatgctaa ggatggaaca cttgaaggaa


16141
gcagtcctgt acagtcaaat acttcagtta ccttggataa tagaatgaaa actcaattgc


16201
ctactttgaa caaatttttt ttttggattt taatggctgg acagaataac attctgctaa


16261
ttttaatcct tggtcatttc cgatgtaatg gaaaatgcag tttgactcag aatcggaggc


16321
ctggggtttg gaccctgatt gtgccaattt atgtgacttt agataaatct tttcatcagt


16381
ctaccttaaa gttcttcatt tcctccagtt ccctaaaatg aggaagttag tttttagggt


16441
ggttatgaga actaaatgag agcacttgag agatcattca gcctgaagtg ggtactcagt


16501
attagatggc taaatctgca cagtctagaa taccaggcaa aggttactct gaaggtcttt


16561
gctaataaca aatctttctc taagaaagtt tgtaaatgtg atgttaaact cagaaatgtc


16621
acatagaaca tattggagca attattgccg caaaagtaac tcgtagcaac cacaaaaacc


16681
cagtggtgtg cagcaataaa cagtttatga attagataag tgatttcggc tagatgtctc


16741
tggagcagtt gtagtctttc ctcgttcatg agggagttgg cctcacctgg aaggacttgg


16801
catttttcca catgcctcct atcctccatt aaacaagcat gtttttgtgg aggttgtaga


16861
aggcaacaac agccaagccc aatcccataa ctccctttca tgtctgcatg cttcatgcta


16921
actagcattc accagaaaca agccacatgg ctaaacccag tgtggaaagg cactacagag


16981
ttattagacc aagggagaga acataggagg ggtgaagaat tggagcctta aatgcagtca


17041
atctaccaca cccttgcttt gtatttaaca ggttactgta ctggtttgcc agcaaacaat


17101
ggaaaatgtg gagaagctga agaatgctca agctgggact taatagagtg gcctatttgg


17161
tttgaaatgt tttaacttac agagcattga gtagaagcct aatctaatat acataaggaa


17221
gacaaaagca aaggattgtg ttttctatct aaaggttaat cattgtggtt gctcctggcc


17281
attatcacat gactggaagt taacactctc caaacgctga gcctatcctg tacagcacta


17341
gaaagtagaa agaatcactc aattcaggga aaccgttttc tcttaatgtg aacatttaca


17401
ttaatgccat ttccaaaacc tttctgggac ttcttaaatg caaagatgct atctgcttta


17461
cttcatgctg cctgttttta ggagcttgga gtgctttagg aagcttccca atactggttt


17521
agcagtaatt tggttgactg atcaaggcat gttttaactt tgacactgaa attttaaaaa


17581
gacaacagtt atcttgcccg gagagtcaag tttctgcttc caaggaggtc aggaattgtt


17641
ctctttggtg atgtggctgt gcttggtagc ccttgaaagt ggagtcgaca gcagtcctca


17701
gcttttgtgt gcctgtctta gtctgttttg tgttactata acaggatagc tgaggcaggg


17761
tcacttatga aggatgctca cagttctaca ggctgggaag ttcaagggca tggccctggc


17821
ttttggcaag ggctttgctg ctgcttcata gcttgatgga gaaggtcaga ggggaagcag


17881
acgtgcaaac aacccacttg ttcacaacaa ccaaacaagt ctctttttaa caacccactc


17941
ctggggacta atctagtctt gagagagtga gaactcattg caagagcagc accaagccat


18001
tcatgaagca tctgcctcag tgaaccaaac atctcccact aggccccagc tctcaacacc


18061
accacaatga agataaaatc tcatcataca tttgagggac agtttgggag acagaccata


18121
gcagtgctca gtatttctac ccaaatgttc aggtaactta atatattttt ccttgaatat


18181
atgtttaaat gggcttccct tccccacgct catcttgaat ggtcccacaa caacttttga


18241
ttatcacgtt cctgtaaata cacaaaaata ttttgtggtc ttttactggc agcccagtgg


18301
atgggacttt aaaaaatcac ccagattcca acaaccagag aaaacgactg gtgtatattt


18361
tttccagtct ttatttgtat gtctgtgtat attcaatgga aaatgtttga agcttcactc


18421
acagcacatt ccattagaga aagctactaa aatcataagg aaaatctaaa atgcagtaag


18481
ccagtcagca agccataatg ggcatatgaa aacaaagttt tttgccatga tttgtggacc


18541
acagaagatc tgtgttatta gtctatttaa gtttggtgtt tgaaattaaa aatgttcgac


18601
atacttttta tgtttttttt aaatatactg tctatattta aaattgagta tactgtactt


18661
tagtgtgttt ggaagcagat atccccaaat aaaagtatac agtagaacca aagaatttta


18721
ttgatcagct agaatttagt tttcaggtgt aataactgtc aacctaaata acagaggctt


18781
tctaaaagaa aatgatgttt atttgggaat agggcattgt gaaggcaata tgcatgccat


18841
agtaaactgt gtgtattcag gaaggtaaag gaagacaggt ttttaaagga cagataaaga


18901
ttatataatt gtcttgaaat aattattctt ggctacaagg attaataaca aggatgctgc


18961
cagttcgggt ttggacaatc ggcttctagg cagatgtccc aaaagtattt tctgtgtaag


19021
gttgcgaata gtgtttgtgc aagctggcgt ggtttcttct gggtctttga ggtagtgcgt


19081
aaaatccctc tcttcatgga cttccctggc tccatttgtc agggcttttg gaaacatgac


19141
tcttgattct gacagctttc acctttccct ctcttgatga agatgttttt ccgaaagtat


19201
ctatgatgaa tcatcttgta gttaggcttt gattgtccct tggtgacaga atagaccttt


19261
cccgggttat tggtctggtc ctgcatcctg cattggcagg agtgattggc aactaaaagt


19321
cagtgttaaa acccttttag ccacctttga gggcagggag gctttaaggg agtggcactt


19381
aggctaagtc cacctggagt ctattattaa gtccaatttt ttttccttag tcctttgttg


19441
tcccctcaaa gtgctgggct agcattattc tgttaggaat tgtacttctt tctgcagaaa


19501
atttggcaaa taacagatac aaagtttaaa aaggaaatac acaaaattaa tagtaatgtg


19561
acaatcccag tttgcataat ggttttgagc cctgaaccta ggcttacagg caaccaattg


19621
aataaatcaa attgtaatac aattcttgct ctgatgtctt aggaaaaatg tctacagcct


19681
gaaatcatca actttttgtc ctggtttgca gtttgaatgt ctctagctat ggcattggtt


19741
ggtatggtga acttttgtgt gacccataca tcagcatgag acttgctcct ttaaaaatta


19801
atcacatctt agcttatagg cctcagagca tgggagtagt tttttttctt agagagtcat


19861
agccaaatat tgaaggaaat taggaggatt caggagcaaa tccagtctgc aggtggataa


19921
caggagtttc aaaacggtac agagctgtga tctaataaca ggtacatata gctttcttca


19981
gaaacttaaa gttaccctga tttttaccaa agatgttcag aataaaacag atttgtaaac


20041
tttatcagat tttgtctgca agaatagtag tatggtcaca gtaatctcag atttaaaaac


20101
ctccttgagg ctaagaagct aagtcaaggt agactttaga ttttacctat agttttaagg


20161
ttcctgggcc tgccaggaaa tgataatttt taattcagtg taatgctgag aaccattgaa


20221
gccaggcatt ctacacattc tcaaatatga cattttaatc aaagccttgg taatacaacc


20281
agtgtttcca attgtatcct gttataacga gagccgattt ttattgaact taggcaaatc


20341
atattgcctt aagagtactc acaaataggc tgggcacagt ggctcatgcc tgtaatccca


20401
gctctttggg aggccaagac aggtggaaca cctgaggtca ggagtttgaa accagcctgg


20461
ccaacatagt gaaacctccc cccggccacc gtctctacta aaaaatacaa aaattagctg


20521
ggtgtggtgg tgcatgcctg tagtcccagc tacttgggag gctgagacag aattgcttga


20581
accctggagg cagaagttgc actgaaacaa gatcgtgcca ctgcattcca gctggggcaa


20641
cagagcgaga ctccgtctca aaaacaaaaa caaatgaata ctcaaaatag tttccaaatt


20701
ggagggatca agaagaaagg aaaagcaaat atttctacct ttgttcacaa aagtattcca


20761
aattgctgta aactatagat agcatgagag aatttcttta aatatggaaa acaaaacatt


20821
taagtaaaaa aacaataatg cttcaaataa aagtcacaga cacatcttca gttacttagt


20881
ctcatgtaac tttttttgtt gtggttgatc ttaattagta gttacatgga ctcatcagtt


20941
tcttgaagtt ctgaaaaaat atttagtcca ttggtattaa agtgattagt aacctgtatt


21001
taaaagtgtg ttagcatctt ttccatgaat ctgattgcaa atgcttttag agaaaaagca


21061
ataactggga attacaaaaa cttagaataa ccatgattaa aaatctgatg agagtttacc


21121
ataaccagaa atagacaaag agttttggtt atttttgtgg caaacagcat aatcagaatt


21181
atgactgatg acatatttct aacggcatcg tacaattttg gaacactcat atcaataaca


21241
tactcataaa tgtaactgtg tctagtatta catcattaga caatgctttt catacaattt


21301
aatacatcaa agaagcctaa ttagctaaca tctctaccag atggcataca catgctctga


21361
ggctttccag aggcccaagt ggaaaactca aaggtaattt taagtcaaaa acacttaatt


21421
tagaacttga gcctagagaa gcctgtcaaa gatgtcaaaa gttcgaaaca ggatcacagg


21481
tcactataaa atatttaaca agaatgataa tcaaaagact taagaagcaa tgcagaaagt


21541
tacatacatt taaaaaccat cttttcaaag cttcattttt cccaagcaaa aaaaaaactt


21601
aaacacaaga atttatcttg atagaacata aaatttttct taggccagtt gccaaaatgg


21661
taaagaaaaa tctcttgcag tgtgactgcc tttacttatg ggaagcctat ttggatatac


21721
tgaaagttga atctgatgaa aaggtacttg aatttaatca gacacaggaa gagtatttcc


21781
aaggttatga gtgtacgcct tatagaggaa tgtaaataag aaagctagta tgttgaacag


21841
aatacatggc tcttggaaaa attacgagaa atttcctgct tgcgtggaac aattcaaaca


21901
tgagaagagc caagaattca gaatcaagtt atactggagg aaaacattgc ttttctaggc


21961
cttctacaga acatttcagt atcaagttat aacagcaaga gttagaacca gaggaaaaaa


22021
gttacaggag ctaatgaaaa agttaagagt tatcacccct gccaaacaaa aagatgtacc


22081
ttcttaaggg gagaaagagc taaaggcaat gatgtgtgac ctacaaataa ggtgcagcaa


22141
gatacagcaa aggttgaact tgtgagatat aaatcaggat cttcaagaag aaaactctac


22201
ctcaagaaat gaaatgacca tcttaaatga aaaaagacag cctttctaac ctgaatctag


22261
gggaaattaa acggatctca gaaggaaata tggcagaaat ttaaactgtg gtttagaaga


22321
tggctgattt tagaattaaa aattaaaacc tctttcaatt ttattaagac cagatcctta


22381
aaaagaacct tgttctaaca ttggggacca aattttgtgt gtgtgtgtgt gtgtgtgtgt


22441
gtgtgtgtgt gtgtgtgtgt atagtgcatg tatagcattt acactatcgt gtatatacaa


22501
atatatagca tatgtataga atatactgta ttattgtaca tatacatatg tacaagtata


22561
tatgtaagct caatgtctta tgatttcatt ctgacctatt gccaacttca ttacacacaa


22621
ctcctttcat aaatgtatcc ttcatgaaca tttcatgatc tgcacagacc ttcagtgaca


22681
tgcttaaact ttctgctttg ttttatactt ccccttaaac aactggtcat cctgctttag


22741
gataaaaagt tactatgcaa gactcataca gaattattct gttaattttg taaccttcct


22801
taccaaaggt acattctcac acccattaac ttccttcata tttctctcct cctcctactt


22861
agtggttcct ttctgtcttg tttccatatt tgaaacaacc tctaataaac tctgaattta


22921
aacaactttt ttcccaataa aaagcaattt ttatgcctta taacttttct catcaaaaca


22981
tctttttttg ggtacacttt gtatatggaa ttgtgtattt tcaaatttta acttattaac


23041
cttaattttt agtgaaaacc taggaagcaa aattttgaag tgttatatca gcattttata


23101
aatgagaacc atattataat ttttagaaac atgtttcctt ataactttgt atattaatag


23161
gcccaaatat atttagtctt tctataattt aggaagccaa gaacaaacta atattttcag


23221
cagtttattg tttttttttg gaaatgatcc agacatttac tgaagattaa tttataagat


23281
ttcaaattac atgaaaagtt cattaacatc ctatttttaa aaacattctt ttggtttatt


23341
ttttagagac aatgtcttgc tgtgttaccc aggctggagt tcagtggctg ttcacaggca


23401
caattgtagc acactgcagc ctcaaactcc aactcacaca atcctcctgc ctccgtttcc


23461
tgagtagctg gaactataga tgcatacctg cataccacca tgtctcaccc ttgcttatcc


23521
cgtttataat ccatccaatt cttttttttt tttttttttt tgagacggag tctcgctctg


23581
tcacccaggc tggagtgcag tggcgtgatc tcggctcact gcaagctccg ccttctgggt


23641
tcatgccatt ctcctgcctc agcctcccga gtagctggga ctacaggcgc ccgccaccgc


23701
gcccagccaa ttttttgtat ttttagtaga gacgaggttt caccgtgatc tcgatctcct


23761
gacctcgtga tctgcccgcc ttggcctccc aaagtgctag gattacaggc gtgagccact


23821
gcacctggcc cccaattcat ttttaacaat tattcctaga ttacttataa aaactgagat


23881
attagacata gctagtcatt tcaagttatt ttcctgttaa ccatttttat tacctgtgag


23941
tatcatgtgt tcaattaaga accataaaaa tgaaatatgt aggtattttg ccagtaactc


24001
agaggacaca gctgaagtca ataatacaaa attagttcaa cttacagtta tacaaagatc


24061
attctgtttt taagttgagt ttatagtttt atgaccttaa aaagtctaac agagacaaat


24121
ataaaactga gtagtaaatt caggcaaaaa ttttaaagac acttattttt gatttaccaa


24181
ttattttaaa accagcttat cagatgttta agttatatta actaaaaggc acttgtgtta


24241
attactatat attttgtatt agcactcatt tatttgatga atagaattcc ttaagggatt


24301
tgtggccaac tgccagattt taccacgtag acacaacata caacatatat atacatatgt


24361
gtaaacacac ctaaacatac acatacacaa acatagcttt cattttagaa ttttagtcat


24421
acgatagtaa tacaggcttg ctggtttata aaagacagtt attggattca aattatattt


24481
ctgagaaagt gggacctgct cagctgggta aacatgcaga ataggtaatc ttatgaaagc


24541
tgtgaaccaa aagttttggt aaatagcagt ttggattttt aaaaaacctc ttaccccacc


24601
tccccaaccc cttttttccc ttttttcagt ttcaaatgag tttaatgtta atatttaaat


24661
gcttacattt ttagctagga ctggctgaat tgtataagaa aaaacaatct ccaggtggcc


24721
ttgaattttt agtaacaaat cttttgtttg ccattctggt ttttttgact agtcagtgca


24781
ggcagggaag cattttagca gttgtggatg aggggttttt gttttgttct tttagccttt


24841
gcatagcagg caagcaattt ttatgctata ccagagatac cttatattat tgccctgagc


24901
tcaagatttt gacctgtttg agagcctaat ttttatacgt atttatctag ttcttttagg


24961
ctattaatcc tttaattaac tgttccatca ccctaagcag ttattaggca aacctaaatt


25021
tacattaaaa gggatacttc ttaattctag gtgttggttg ccagggaact attataattt


25081
ataaagccat taatttaagg ccctttaaga cctttttttt tctttttgtt cttggctgga


25141
atgccgtaag gagtgagttt catctcaaca ctggcagaaa cagcagattt aaagtaggca


25201
gaaaaaaaat tagagagctt agaagactct acatatcaac tctatagctg cagtctcttg


25261
gtactaagaa taaaaaagct tggggagttt agacaaagca tagacaatct ctatgatggt


25321
cattgatcca aaaacatgca tgaggaaaag ccacatagct gacctgaagt cccagaaaag


25381
caggcatgcc ttaatgtttg agaatttcca ttttgtttct tctcaatctc ttaagagcaa


25441
agaaaattct gtaaatcctg acagataagt caggtgtttg gaccagtgtt ttaactggtg


25501
gcgattgccc tagtggcttt aaaagagcca tcctgtgccc aaaatttaga atgtttattt


25561
ttgctcttgg gagatgttca gaaacagggg aaaagagcca aatcatttac agatgcatgt


25621
aaccatatcg aaacgaaacc aaaatcagtg ttcccaaaag tgttaaccca gtcatgcaga


25681
ttaaaaaata atataaacac agaagaaccc aaagtaaatt taccagaaaa ggcatgcctc


25741
agaatccaga gtactcagcc aggcgcagtg gcccatgcct gtaatcccag cactttggga


25801
ggccaaggca ggaggatcgc ttgagcccat gagttcaaga ccagcctcag cagtatagtg


25861
agacactgtc tctaaaaaaa aattgttttt aaatccagag tactcaaacc agagggacac


25921
ttgtctttat atcaaaaagg acttgccagg aaagacaaaa agtcttttgt catcccagga


25981
gggatgtaaa gtcctttatt aaagtggtct tagaaccaag acaaatccaa agtcaagtca


26041
aaaagcctct gccaaaagtg ggaggctctg cctgagaaaa gactcactgg ggcagaacag


26101
acaagctatg taagcggaga gcccaaaggg ctcctgtgag tactgcatac tgattctgag


26161
atcaccactt ctctctgaaa tgtgtcctac ttcaggttct actgctgaac accatttatg


26221
tcaacacaga gagaggctct ctaaaagaaa actctatttg ggaatacagc attgctgtag


26281
aaatacgcat gtcatgggcc gtgcgcggtg gcttatgcct gtaatcccag cactttggga


26341
ggctgaggtg ggccgatcac gaggtcagga gtttgagacc agcctggcca acatagtgaa


26401
accccctctc tactaaaaat acaaaaaatt agatgggtgt attggtgggt gcctatgatc


26461
ccgctacttg ggaggctgag gcagaagatt ggcttgaacc tgagaagtgg aggttgcagt


26521
gagcctagat gtgccactgc actccagcct gggcgacagt gcaaaactac gtctccaaaa


26581
aaaaaaaaaa aagacccatg tcatggtaaa ctacgtgtgt attcagggaa gtaaaggaag


26641
acaaagattt taaagaaaaa tgagggttgt ataattgttt tgaaataatt gtcgttggtt


26701
acaaagatca atagcaaggg tggtgccact ctgaagttgg acaggcagtg gctaggcaaa


26761
agtattttgt gggtaacctt tgtgaaaggt tgcagttttt gtaacacaag ctgctttatt


26821
ttcccaaaag ctttcacagt acatagaaaa tatattggac gtgtattaaa tgtgccaaat


26881
tagtcagcaa tattacatta aaatatgtgt tattacttgt taatgttctt aataagttgt


26941
tcaggcagtt ataccagact atcttttctc attttccaat ttataagtgt attatccaaa


27001
aatgttagtt ttagggtgac cactgtatat tttggtattt tttaaagcta cccaattgtg


27061
tataatttat aaaaatcttt ttttcataag acctaaaact tctgaacaat acataggtgc


27121
aaataaataa attccttttt atctcaaact cacttccact gccctccctg aagaaagcct


27181
tttgttattg ttgtcttgac taaatgtggc atgggagcta acattttcaa gggaagctga


27241
tcttatctcc gggctctaga agccaagaca tgaggtatgt gtttaccgtc tcttaggtga


27301
ctctccagaa ctttcattct caacctcctc cctcactgcc agttcctcct cagcttctta


27361
gccaagtggt agaggaaaaa tggtatttta tgtcaggact aagccatgtg ctctgagccc


27421
tgggtaagtc tgcaaggctt ctctagaact catacatagg tcaattattc ctcctctgaa


27481
aacttaaact ctggcaccac tagctttttc ctacagcata catgggctca gtaaatcctc


27541
tgttaagaca acaggaaaat taagacaatg tccttgcaag ccccataact actttctatc


27601
cctgctattc acagccaagt gtgtcgagac cagttcacac aaaccttgtt gattttcggt


27661
ttcaccccct ccttactaaa tcacccctcc atttgctgca gttgcccttg cgtgctgtac


27721
tcagacttgg aggaagtgat gtcttattca aggccagttt ttgtactagt ggttaaataa


27781
atggtttcca aattggagtc agaaggagag cttctaaaat gtaggttccc tggcctcaat


27841
tgtgagattc tgctttagca ggtctggaat tggagcactg ggatctgcat tttcagaaaa


27901
cccaaaatga ttatcagcca ggacttaaac ctctgcttta gaccacattc cctgtgggct


27961
ttcagatttt ctatcaatgt tcttccctct tcccagctcc cacacattaa aactcagatc


28021
atgcagaaaa gaagttacag ttccttcatt tcacatcaat ttctcatgca tcccatctgg


28081
ttttgggaag gtgtgggacg aggtggatgg ccttaaactt gccaatcaaa gataacgttc


28141
tctttcgatt caaatagcct atctcaggct taaaaccatc tctttggata aatgctcagc


28201
ttttcaaagg ttcttcctag cttcttcctc atgatggcat ctagtgggtg agaacagtca


28261
tctccaggtg acacaggaaa gagtttctct aatgtatgtg ctgaggtcct tgacggtcct


28321
gctgctggtg ctcatcctgc catctttgct ggatgtcact gagtctactg ggtaatgtaa


28381
gtgggtccct ggcttttgtt cactgctgtc atgccctgct cctgaccaca actctgtcat


28441
tgcctttggt ctcaaggtct ctaccttaat agcttccatg tcccaactat gggactgtta


28501
atctgctggg ctttggagtg ggtgggaagg gatgatgttg gaactttggg atgtactgaa


28561
catcttgctc aagctttggg aagccaacat tttctcagac tgactagaca cctccttcca


28621
ccaatgctga gctagtgctc ctgtgccata ctgggtaagc ctctaagtca tgagtaggac


28681
ttttttgagt ggcttgcagt cttccccagg ctatgccagg aaagtagttg actaaccctg


28741
ctgctccaag actcgcatac ccatcctgaa gtttccgttt atttcccaac agggcaattg


28801
caatctcaat caatctctcc ctgccctggg agtcattcca ctcctgccta atgaagagac


28861
tcttctcaca tcgtattctc agtttctctt atccatggtt aggagtaaaa ctcatgttca


28921
gttgtccaag ctttgctttt agtatgtgaa tggagctctt agcatgtaga actcccttct


28981
cattctcagt aaagtctgac tttgaagact acttatcatc ttcctagaga tgccaaagaa


29041
taatcaagat aataaaggca ggctctgaga ttcacagctg agtagcaact gtgctgttac


29101
tctagtacac accctctcct ttcctgtgac tgtcaggctt cagggcttac ctttattgga


29161
aagacagcag gggggcatat atgaagaaaa tggaatcttt aatattgtca aagtcttgac


29221
ccaatagaga cattcttgcc ccagactctc ttgcttcagt gcctttgcct gttctggtcc


29281
taagtacctt gaatatcctt ctcttgatgc cctgatataa aactctttat tcctcaaagc


29341
caagttcagg ttatcacctc caccacagac ttttctttcc ctccccaaac ttcattgcct


29401
cttctcatca ctccctttgt aatttgttta tactggtaag agagcattca tcataattag


29461
gcctatctat gcctaccttt cttgttaaat tatgagcttt gttctgcctt ggatatctct


29521
ctggcttgga tatctctctg gcctttgctc tgcacttcca aatgtatcca ttattcaaga


29581
cccaggtttc cagcctgatc aacatagcaa gatcccatct ctccaaaaaa aaaaaaaaaa


29641
aaaaattgtg gggccgggta cagtggctca tgcctgtaat cccagcactt tgggaggccg


29701
aggcaggtgg atcatgaggt cacgagtttg agaccagtct ggccaacata gtgaaacccc


29761
atctgtacta aaaatgcaga aaattagccg ggtgtggtgg tgtgtgcctg taatcccagc


29821
tactcgggag gctgaggcag gagaatcgca tgaacccggg aggcagaggt tgcagtgagc


29881
cgagattgcg ccactgcact ccagcctggg tgacattgca agactccatc tcaaaaaaaa


29941
aaaaaaaaaa aattagctgg gcatggtggc aggcacctgt agtcccagct acttgagagg


30001
ctgaggtggg aggattgctt gagcccagga agtcgaggct tcatgagcca tgtttgtgct


30061
actgcactct agcctggatg acaaagtgag atccttttct aaaaataagg acccagttta


30121
ttttatttag ttatttagtt atttttgaga ccaagtttca tcactcaggc tggagtgcaa


30181
tggcacagtc ttgactcact gcaacctctg cctcctggat tcaagcaatt cttctgcctc


30241
agcctcttga gtagctggga ttgcaggtgc ccgccaccac acctggctaa tttttgtatt


30301
tttggtagag acagggtttc actatgttgg ccaggctggt ctcaaactcc tgacctcagg


30361
tgatccacct gccttggtct cccaaactgc tgggattaca ggtgtgagtc accctgcctg


30421
gccagaaccc agtttaaatt ccatcctctc tgcagagtct tccttaacca cccctattga


30481
aagttacccc tgcttcctac aagaagtggt acttggatgt tcatgagata cctgtgcaag


30541
gctcctgtgg gggtcctggg gagacagtga catggacact catgaaagga accttggaat


30601
agcgagtgtg tgtgctataa aatgtgcttt agatttgatt accaccactt aagttatgag


30661
ctctgatatg gtttgggtct ccatccccac ccaaatctca tcttgaattg taatccctac


30721
atgttgaggg aaggaagtaa ttgtattatg ggggtggttc tcccatgctg ttctcatgat


30781
agtgaattct cacaggatct gatggtttta taaatggtag tttttcctgt actttcacac


30841
actcacactc tcttctgcca ccttgtgaag aaggtgcctg cttccccttc tgccataatt


30901
gtaagtttcc tgaggcctcc ccagctgtat tagtctgatc tcacgcggct aataaagaga


30961
taccggagac tgggtaattt ataaaagagg tttaattgac tcacagtttt acatggctgg


31021
ggaggcctca caattatggc agaaggtgaa gggggagcaa gacacatctt acatggcatc


31081
aggcgagaga gcttgtgtag gggaactccc ctttataaaa ccatcagatc tcgtgagact


31141
tattcactat tacaagagca gcacgggaaa gacccacccc catgattcag ttacctctca


31201
ctgggtccct cacataatat ggggaattat gggagctcca attcaagatg agatttgggt


31261
ggggacacag ccaaactata tcaccagcca tgtggaactg ttgagtcaat taaacctctt


31321
tcctttataa attacccagt ctcaggtatt tctttatagc agtgtgagaa cagactaata


31381
caagcacctt gaggtcagag gctaaaatca ctttttccca aacatttcct ttttatatat


31441
gctacatctt tgtgtctgct tcaacatttc cagcagtgct ttatatatgg taggcatgca


31501
ataaatgctt cttgatcgac tgacaggtgc tcagaagatc taggttggtt gattctcttg


31561
tgatgccatc ttttcctgag agctcattaa tttttaagtt gttttccttg aaatgcatgg


31621
tatgtttcct ccaccctgct ctttgccttt catagggttc cattttgatc agctgctctc


31681
attgtctgtt ttgtgatcaa aggttctgat gaactttgga atatgtgtat gtttggagtg


31741
aggatggggt ctggaggaga tgcatggttg aggaccaatt cacccaaccc agcttacaga


31801
agtaaagcgg ccccttagga gcactgaagc attgctgtgg atttcagaat taccttattt


31861
ctttttcttt tttttttttt tttttttgag acgaggtctc gctctgtcgc ccaggctgga


31921
gtgcagtggc acaatctcag ctcactgcaa gctccgcctc ctgggttcac accattctcc


31981
tccctcagcc tccccagcag ctgggactat aggtgcacgc cgccacgcct ggctaatttt


32041
tgtattttta gtggagacag ggtttcaccg tgttagccag gatggtctca atctcctgac


32101
cttgtgatcc acccgcctca gcctcccaaa gtgctgggat tacaggcgtg agccaccgtg


32161
cccagccagc ttctttcaaa tcagagtagg ccttccagtg tggcaggcca taagatctga


32221
agttttcacc ctgttcctgg aagccaagtg gacagcaact aatttttact ttctttattg


32281
cacatttggg gcttggggga tagagtcaga tgtgtgtcag ttgaaactgt agctactgca


32341
ttccactcct tgggggatcg tagtgctcat gccaacagaa aacttcgagg ctaataatta


32401
ctgtcttcag agtacaagac aggcacggaa gttgttttgg cataagaaaa ccacgatttg


32461
catcccacag tctaaggaag acgatgctga attcagaaga tggtgcaaaa gtgtgacagt


32521
tcagctgtgg cggctgttgc tgatgcatgg gactatttta tttacatttc ctttcttctt


32581
ttttaacaga gacaggatct tgctgtgttg cccagcctgg tcttaaactc ctgggcccaa


32641
gtgatcctcc cacctcagcc tcccaacgtg ttgggattac aggcatgagc caccatgcct


32701
gggctttatt tatatttcca agtcaaatgt tagttggtca atcagtcttt ttaagcacca


32761
attttgtgcc tagccttgtg gaaactgtag gaaaaagata ctttttattt gggaggacct


32821
tgatttgctg tcacaggtgc cactaatgcc aattataagg cagtgtggaa tcaggtgatt


32881
gaaagcccag tctgtagcat aaactgctgc agggttccag tgggggcaat taaggtgggc


32941
agggagggtg gatagcattt gactttgaca gcataacctg agcagaggca cagtggggat


33001
ggtgagtgtg cagtgggagg agggagagag gtaagtggta gggaagaggt gggaaggggg


33061
caaggagaag gctcaggagg tttggggaca gggaaatgac ttggttggcg acctcttact


33121
ttcttctcgt gtgtgcaatt tggaattcac ttggttctta gtatttctgg gtcagatgac


33181
ttctttgcag tatgagaaac catttcccag gctggctacc tgggctgtgg tatcttccag


33241
tgctcctctg tgattgtact cagatcagct cgtctaggca ggcaggatgg cagaagccct


33301
ctgacttcat gtctgaaaga gtatgtgttt caactctgta attacagcat ttaacagacg


33361
atatcagccc tctttgggat ggcttttggc aaatgggcta gaagtctatt gtgcatttaa


33421
atgatactgc atcttctctt taaaaggttt ctcagtgagt ccaccccact ctgtatccaa


33481
gtatgtctca ggccatgagg caaaaggaaa tgagtagttc tttttggttg gagaattaaa


33541
aagaaatctc cacccaagta acaggtacat agtgggaaaa aataacatct gcctgaaagc


33601
ttcatcttca ggcaaagaga gggtcagggg gcgggagctt agtaatgggg aaacctcaga


33661
agatttaaag agaattacag acagacaagg ctgaacattg gctgtcatcc aacaaagctc


33721
ttataagatg ggaatcactg cccggttctt gagctccgac ctggagggaa gaggagtctg


33781
gaagacttgg cacaggcctg agtgcttcat tgtctttctg gttccaagtc ctcctcagct


33841
cactaggaag gaggtggggt gggggcaggt aggccactct gcataagtgc acacatctac


33901
actggctagt ctacttcaca attcccccac aggttatcct tatctctacc tggttccagt


33961
tccagattgg agggatatag aataccatcc ccacccctca ccttgcttgc tctggcctgg


34021
aaaactgtca ttcctttacc accagctggc atctgccata tgcttcaagg aactgaataa


34081
agaggaaggg gaaagaagaa actagagaaa ctggaatgct tcctatctga cccccaagta


34141
cagggactgc ctctttccgt aacggcacag aacgtctcca tccctttgac ctccacctcc


34201
ccagagatgc ccgaggagga cagccttgtt tctgtgatct gttgttgaga actgctgctg


34261
agaattcttc cttcagcacc gccttaggca ccattggttt ttcactaggt ccgctgtaga


34321
aaacagccag gaattactta gttgactacc acctgaggtg ctgtttggtg ttggtaataa


34381
agaataaagg tggaaatgaa










SEQ ID NO: 2 Human SMAD2 Isoform 1 Amino Acid Sequence


(NP_001003652.1)








1
mssilpftpp vvkrllgwkk saggsggagg geqngqeekw cekavkslvk klkktgrlde


61
lekaittqnc ntkcvtipst cseiwglstp ntidqwdttg lysfseqtrs ldgrlqvshr


121
kglphviycr lwrwpdlhsh helkaience yafnlkkdev cvnpyhyqrv etpvlppvlv


181
prhteiltel pplddythsi pentnfpagi epqsnyipet pppgyisedg etsdqqlnqs


241
mdtgspaels pttlspvnhs ldlqpvtyse pafwcsiayy elnqrvgetf hasqpsltvd


301
gftdpsnser fclgllsnvn rnatvemtrr higrgvrlyy iggevfaecl sdsaifvqsp


361
ncnqrygwhp atvckippgc nlkifnnqef aallaqsvnq gfeavyqltr mctirmsfvk


421
gwgaeyrrqt vtstpcwiel hlngplqwld kvltqmgsps vrcssms










SEQ ID NO: 3 Human SMAD2 transcript variant 3 mRNA Sequence


(NM_001135937.2; CDS: 401-1714)








1
cggccgggag gcggggcggg ccgtaggcaa agggaggtgg ggaggcggtg gccggcgact


61
ccccgcgccc cgctcgcccc ccggcccttc ccgcggtgct cggcctcgtt cctttcctcc


121
tccgctccct ccgtcttcca tacccgcccc gcgcggcttt cggccggcgt gcctcgcgcc


181
ctaacgggcg gctggaggcg ccaatcagcg ggcggcaggg tgccagcccc ggggctgcgc


241
cggcgaatcg gcggggcccg cggcccaggg tggcaggcgg gtctacccgc gcggccgcgg


301
cggcggagaa gcagctcgcc agccagcagc ccgccagccg ccgggaggtt cgatacaaga


361
ggctgttttc ctagcgtggc ttgctgcctt tggtaagaac atgtcgtcca tcttgccatt


421
cacgccgcca gttgtgaaga gactgctggg atggaagaag tcagctggtg ggtctggagg


481
agcaggcgga ggagagcaga atgggcagga agaaaagtgg tgtgagaaag cagtgaaaag


541
tctggtgaag aagctaaaga aaacaggacg attagatgag cttgagaaag ccatcaccac


601
tcaaaactgt aatactaaat gtgttaccat accaaggtct cttgatggtc gtctccaggt


661
atcccatcga aaaggattgc cacatgttat atattgccga ttatggcgct ggcctgatct


721
tcacagtcat catgaactca aggcaattga aaactgcgaa tatgctttta atcttaaaaa


781
ggatgaagta tgtgtaaacc cttaccacta tcagagagtt gagacaccag ttttgcctcc


841
agtattagtg ccccgacaca ccgagatcct aacagaactt ccgcctctgg atgactatac


901
tcactccatt ccagaaaaca ctaacttccc agcaggaatt gagccacaga gtaattatat


961
tccagaaacg ccacctcctg gatatatcag tgaagatgga gaaacaagtg accaacagtt


1021
gaatcaaagt atggacacag gctctccagc agaactatct cctactactc tttcccctgt


1081
taatcatagc ttggatttac agccagttac ttactcagaa cctgcatttt ggtgttcgat


1141
agcatattat gaattaaatc agagggttgg agaaaccttc catgcatcac agccctcact


1201
cactgtagat ggctttacag acccatcaaa ttcagagagg ttctgcttag gtttactctc


1261
caatgttaac cgaaatgcca cggtagaaat gacaagaagg catataggaa gaggagtgcg


1321
cttatactac ataggtgggg aagtttttgc tgagtgccta agtgatagtg caatctttgt


1381
gcagagcccc aattgtaatc agagatatgg ctggcaccct gcaacagtgt gtaaaattcc


1441
accaggctgt aatctgaaga tcttcaacaa ccaggaattt gctgctcttc tggctcagtc


1501
tgttaatcag ggttttgaag ccgtctatca gctaactaga atgtgcacca taagaatgag


1561
ttttgtgaaa gggtggggag cagaataccg aaggcagacg gtaacaagta ctccttgctg


1621
gattgaactt catctgaatg gacctctaca gtggttggac aaagtattaa ctcagatggg


1681
atccccttca gtgcgttgct caagcatgtc ataaagcttc accaatcaag tcccatgaaa


1741
agacttaatg taacaactct tctgtcatag cattgtgtgt ggtccctatg gactgtttac


1801
tatccaaaag ttcaagagag aaaacagcac ttgaggtctc atcaattaaa gcaccttgtg


1861
gaatctgttt cctatatttg aatattagat gggaaaatta gtgtctagaa atactctccc


1921
attaaagagg aagagaagat tttaaagact taatgatgtc ttattgggca taaaactgag


1981
tgtcccaaag gtttattaat aacagtagta gttatgtgta caggtaatgt atcatgatcc


2041
agtatcacag tattgtgctg tttatataca tttttagttt gcatagatga ggtgtgtgtg


2101
tgcgctgctt cttgatctag gcaaaccttt ataaagttgc agtacctaat ctgttattcc


2161
cacttctctg ttatttttgt gtgtcttttt taatatataa tatatatcaa gattttcaaa


2221
ttatttagaa gcagattttc ctgtagaaaa actaattttt ctgcctttta ccaaaaataa


2281
actcttgggg gaagaaaagt ggattaactt ttgaaatcct tgaccttaat gtgttcagtg


2341
gggcttaaac agtcattctt tttgtggttt tttgtttttt tttgtttttt tttttaactg


2401
ctaaatctta ttataaggaa accatactga aaacctttcc aagcctcttt tttccattcc


2461
catttttgtc ctcataatca aaacagcata acatgacatc atcaccagta atagttgcat


2521
tgatactgct ggcaccagtt aattctggga tacagtaaga attcatatgg agaaagtccc


2581
tttgtcttat gcccaaattt caacaggaat aattggcttg tataatctag cagtctgttg


2641
atttatcctt ccacctcata aaaaatgcat aggtggcagt ataattattt tcagggatat


2701
gctagaatta cttccacata tttatccctt tttaaaaaag ctaatctata aataccgttt


2761
ttccaaaggt attttacaat atttcaacag cagaccttct gctcttcgag tagtttgatt


2821
tggtttagta accagattgc attatgaaat gggccttttg taaatgtaat tgtttctgca


2881
aaatacctag aaaagtgatg ctgaggtagg atcagcagat atgggccatc tgtttttaaa


2941
gtatgttgta ttcagtttat aaattgattg ttattctaca cataattatg aattcagaat


3001
tttaaaaatt gggggaaaag ccatttattt agcaagtttt ttagcttata agttacctgc


3061
agtctgagct gttcttaact gatcctggtt ttgtgattga caatatttca tgctctgtag


3121
tgagaggaga tttccgaaac tctgttgcta gttcattctg cagcaaataa ttattatgtc


3181
tgatgttgac tcattgcagt ttaaacattt cttcttgttt gcatcttagt agaaatggaa


3241
aataaccact cctggtcgtc ttttcataaa ttttcatatt tttgaagctg tctttggtac


3301
ttgttctttg aaatcatatc cacctgtctc tataggtatc attttcaata ctttcaacat


3361
ttggtggttt tctattgggt actccccatt ttcctatatt tgtgtgtata tgtatgtgtt


3421
catgtaaatt tggtatagta attttttatt cattcaacaa atatttattg ttcacctgtt


3481
tgtaccagga acttttctta gtctttgggt aaaggtgaac aagacaacta cagttcctgc


3541
ctttgctgag acagcagtta cactaaccct taattatctt acttgtctat gaaggagata


3601
aacagggtac tgtactggag aataacagat gggatgcttc aggtaggaca tcaaggaaag


3661
cctctaagga aaggatgcat gagctaacac ctgacattaa agaagcaagc caagtgagga


3721
gccaggggag ataagcattc ctggcaaaga gaatagcatc aaatgcaaaa aggttcacac


3781
taaaggaaac tcctgattag gtattaatgc tttatacaga aacctctata caaatccaaa


3841
cttgaagatc agaatggttc tacagttcat aacattttga aggtggcctt attttgtgat


3901
agtctgcttc atgtgattct cactaacata tctccttcct caacctttgc tgtaaaaatt


3961
tcatttgcac cacatcagta ctacttaatt taacaagctt ttgttgtgta agctctcact


4021
gttttagtgc cctgctgctt gcttccagac tttgtgctgt ccagtaatta tgtcttccac


4081
tacccatctt gtgagcagag taaatgtcct aggtaatacc actatcaggc ctgtaggaga


4141
tactcagtgg agcctctgcc cttctttttc ttacttgaga acttgtaatg gtgttaggga


4201
acagttgtag gggcagaaaa caactctgaa agtggtagaa ggtcctgatc ttggtggtta


4261
ctcttgcatt actgtgttag gtcaagcagt gcctactatg ctgtttcagt agtggagcgc


4321
atctctacag ttctgatgcg atttttctgt acagtatgaa attgggactc aactctttga


4381
aaacacctat tgagcagtta tacctgttga gcagtttact tcctggttgt aattacattt


4441
gtgtgaatgt gtttgatgct ttttaacgag atgatgtttt ttgtatttta tctactgtgg


4501
cctgattttt tttttgtttt ctgcccctcc ccccatttat aggtgtggtt ttcatttttc


4561
taagtgatag aatcccctct ttgttgaatt tttgtcttta tttaaattag caacattact


4621
taggatttat tcttcacaat actgttaatt ttctaggaat gatgacctga gaaccgaatg


4681
gccatgcttt ctatcacatt tctaagatga gtaatatttt ttccagtagg ttccacagag


4741
acaccttggg ggctggctta ggggaggctg ttggagttct cactgactta gtggcatatt


4801
tattctgtac tgaagaactg catggggttt cttttggaaa gagtttcatt gctttaaaaa


4861
gaagctcaga aagtctttat aaccactggt caacgattag aaaaatataa ctggatttag


4921
gcctaccttc tggaataccg ctgattgtgc tctttttatc ctactttaaa gaagctttca


4981
tgattagatt tgagctatat cagttatacc gattatacct tataatacac attcagttag


5041
taaacattta ttgatgcctg ttgtttgccc agccactgtg atggatattg aataataaaa


5101
agatgactag gacggggccc tgacccttga gctgtgcttg gtcttgtaga ggttgtgttt


5161
tttttcctca ggacctgtca ctttggcaga aggaaatctg cctaattttt cttgaaagct


5221
aaattttctt tgtaagtttt tacaaattgt ttaataccta gttgtatttt ttaccttaag


5281
ccacattgag ttttgcttga tttgtctgtc ttttaaacac tgtcaaatgc tttccctttt


5341
gttaaaatta ttttaatttc actttttttg tgcccttgtc aatttaagac taagactttg


5401
aaggtaaaac aaacaaacaa acatcagtct tagtctcttg ctagttgaaa tcaaataaaa


5461
gaaaatatat acccagttgg tttctctacc tcttaaaagc ttcccatata tacctttaag


5521
atccttctct tttttcttta actactaaat aggttcagca tttattcagt gttagatacc


5581
ctcttcgtct gagggtggcg taggtttatg ttgggatata aagtaacaca agacaatctt


5641
cactgtacat aaaatatgtc ttcatgtaca gtctttactt taaaagctga acattccaat


5701
ttgcgccttc cctcccaagc ccctgcccac caagtatctc tttagatatc tagtctgtgg


5761
acatgaacaa tgaatacttt tttcttactc tgatcgaagg cattgatact tagacatatc


5821
aaacatttct tcctttcata tgctttactt tgctaaatct attatattca ttgcctgaat


5881
tttattcttc ctttctacct gacaacacac atccaggtgg tacttgctgg ttatcctctt


5941
tcttgttagc cttgtttttt gttttttttt tttttttttg agagggagtc tcgctctgtt


6001
gcccaacctg gagtgcagtg gtgcgatctt ggttcactgc aagctccgcc tcccgggttc


6061
acgccatgct tctgcctcag cctcccaagt agctgggact acaggcgccc accaccacac


6121
tcggctaatt ttttgtattt ttagtagaga cggggtttca ccgtgttggc caggatggtc


6181
tcgatctcct gacctcgtga tctgtccacc tcggcttccc aaagtgctgg gattacaggc


6241
atgagccacc gcgcccagcc tagccatatt tttatctgca tatatcagaa tgtttctctc


6301
ctttgaactt attaacaaaa aaggaacatg cttttcatac ctagagtcct aatttcttca


6361
tcatgaaggt tgctattcaa attgatcaat cattttaatt ttacaaatgg ctcaaaaatt


6421
ctgttcagta aatgtctttg tgactggcaa atggcataaa ttatgtttaa gattatgaac


6481
ttttctgaca gttgcagcca atgttttccc tacgatacca gatttccatc ttggggcata


6541
ttggattgtt gtatttaaga cagtcagaat aatgatagtg tgtggtctcc agaggtagtc


6601
agaatcctgc tattgagttc tttttatatc ttccttttca attttttatt accattttgt


6661
ttgtttagac tacactttgt agggattgag gggcaaatta tctcttggag tggaattcct


6721
gtgttttgag ccttacaacc aggaaatatg agctatacta gatagcctca tgatagcatt


6781
tacgataaga acttatctcg tgtgttcatg taattttttg agtaggaact gttttatctt


6841
gaatattgta gctaactata tatagcagaa ctgcctcagt ctttttaaga aggaaataaa


6901
taatatatgt gtatgaattt atatatacat atacactcat agacaaactt aacagttggg


6961
gtcattctaa cagttaaaac aattgttcca ttgtttaaat ctcagatcct ggtaaaatgt


7021
tcttaatttg tctgtgtaca ttttcctttc atggacagac cattggagta cattaatttt


7081
cttaatctgc catttggcag ttcatttaat ataccatttt ttggcaactt ggtaactaag


7141
aatcacagcc aaaatttgtt aacatcaaag aaagctctgc catatacccc gttactaaat


7201
tattatacat ccagcagatt ctgggatgta ctaacttagg gttaactttg ttgttgttga


7261
taatactaga ttgctccctc tttaattctt cttctggtgc aaggttgctg cttaagttac


7321
cctgggaaat actactacaa ggtcaaattt tctagtatct tacagcctga ttgaaggtga


7381
ttcagatctt tgctcaatat aaatggattt tccaagattc tctgggccat ccttgaccca


7441
caggtgatct cgctggagta tattaactta acttcagtgc cagttggttt ggtgccatga


7501
gatccataat gaatccagaa cttcaccatt gcttagatat aagagtccct tggaagaata


7561
atgccactga tgatgggggt cagaaggtgt attaactcaa catagagggc ttttagattt


7621
ttcttcaaaa aaatttcgag aaaagtattc ttttaccctc caaacagtta acagctctta


7681
gtttctccaa atatgctctt tgatttactt atttttaatt aaagatggta atttattgaa


7741
caatgaaatc cgtaatatat tgatttaagg acaaaagtga agttttagaa ttataaaagt


7801
acttaaatat tatatatttt ccatttcata attgttttcc tttctctgtg gctttaaagt


7861
ttttgactat tttacaatgt taatcactag gtaacttgcc atatttctgg ttctatatta


7921
agttctatcc tttataatgc tgttattata aagctggttt ttagcatttg tctgtagcaa


7981
tagaaatttt actaagtctc tgttctccca gtaagttttt tcttttctca gtaagtccct


8041
aagaaaacat ttgtttgcca ctcttactat tcccaatctt ggattgttcg agctgaaaaa


8101
aaatttgatg agaaacagga ggatcctttt ctggtgaata taggttcctg ctttaagaat


8161
gtggaaatcc attgctttat ataactaata tacacacaga ttaattaaaa ttgtgagaaa


8221
taattcacac atgacaagta ggtaacatgc atgagttttg aattttttta aaaacccaac


8281
tgtttgacaa aatatagaac ccaaattggt actttcttag accagtgtaa cctcacacct


8341
cagttttgct tttccaaccc tgacttgaaa ggcatatttg tatcttttta ttagtgatag


8401
tgaagctgtg acactaacct tttatacaaa agagtaaaga aagaaaaact acagcgatta


8461
agatgagaac agttctgcag ttgttgaact agatcacagc attgtaggca gaataaaaaa


8521
tgttcatatc tgagaatatt cctttcgcca tcttttccca aggccagacc tcctggtgga


8581
gcacagttaa aagtaacatt ctgggccttt gtaatcggag ggctgtgtct ccagctggca


8641
gcctttgttt taatatataa tgcaggactg tggaaaacag ttggcataga atattttcac


8701
ctaaaaaaga aagaaaagac atacaaaact ggattaattg caaaaagaga atacagtaaa


8761
ataccatata actggacaaa gctagaagaa cctttagaag atttgtctga aaacagattt


8821
caagagtgag cttttataca ctgctcacta atttgcttga ttactaccaa ctcttcttaa


8881
agttaacacg tttaaggtat ttctggactt cctagccttt tagcaagctt agaggaacta


8941
gccattagct agtgatgtaa aaatattttg gggactgatg cccttaaagg ttatgccctt


9001
gaaagttctt accttttctc tagtgatatt aaggaacgag tgggtagtgt tctcagggtg


9061
accagctgcc ctaaagtgcc tgggattgag ggtttccctg gatgcgggac tttccctgga


9121
tacaaaactt ttagcagagt tttgtatata tgtggatttt tctgataagt agcacatcag


9181
aggccttaac cactgcccaa aagcgattct ccattgagag tacatatctt gaacttaaga


9241
aattcatttg ctctgatttt taatcttgta aagtttttgc taaactcaaa acaagtccca


9301
ggcacaccag aaggagctga ccaccttagg tgttcttgtg atttatcctt acttccctat


9361
gttgtcatag ttgcttctaa actcagctgc actatggctg tcaacatttc tgatacttat


9421
tgggatatgt gccatccagt catttagtac tttgaatgga acatgagatt tataacacag


9481
gtaatagctg aaggtaccag tatggtggtg agactcacac ttagtgatcc agctaaggta


9541
actgatgtta taatggaaca gagaagaggc caactagata gctaagttct tctgaaccta


9601
tgtgtatatg taagtacaaa tcatgcgtcc ttatggggtt aaacttaatc tgaaatttac


9661
atttttcata gtaaaaggaa accaattgtt gcagatttct tttcttgtga ggaaatacat


9721
ggcctttgat gctctggcgt ctactgcatt tcccagtctg ttctgctcga gaagccagaa


9781
tgtgttgtta acatttttcc gtgaatgttg tgttaaaatg attaaatgca tcagccaatg


9841
gcaagtgaag gaattgggtg tcctgatgca gactgagcag tttctctcaa ttgtagcctc


9901
atactcataa ggtgcttacc agctagaaca ttgagcacgt gaggtgagat tttttttctc


9961
tgatggcatt aactttgtaa tgcaatatga tggatgcaga ccctgttctt gtttccctct


10021
ggaagtcctt agtggctgca tccttggtgc actgtgatgg agatattaaa tgtgttcttt


10081
gtgagctttc gttctatgat tgtcaaaagt acgatgtggt tcctttttta tttttattaa


10141
acaatgagct gaggctttat tacagctggt tttcaagtta aaattgttga atactgatgt


10201
ctttctccca cctacaccaa atattttagt ctatttaaag tacaaaaaaa gttctgctta


10261
agaaaacatt gcttacatgt cctgtgattt ctggtcaatt tttatatata tttgtgtgca


10321
tcatctgtat gtgctttcac tttttacctt gtttgctctt acctgtgtta acagccctgt


10381
caccgttgaa aggtggacag ttttcctagc attaaaagaa agccatttga gttgtttacc


10441
atgttaaaaa aaaaaaaaaa a










SEQ ID NO: 4 Human SMARD2 Isoform 2 Amino Acid Sequence


NP_001129409.1)








1
mssilpftpp vvkrllgwkk saggsggagg geqngqeekw cekavkslvk klkktgrlde


61
lekaittqnc ntkcvtiprs ldgrlqvshr kglphviycr lwrwpdlhsh helkaience


121
yafnlkkdev cvnpyhyqrv etpvlppvlv prhteiltel pplddythsi pentnfpagi


181
epqsnyipet pppgyisedg etsdqqlnqs mdtgspaels pttlspvnhs ldlqpvtyse


241
pafwcsiayy elnqrvgetf hasqpsltvd gftdpsnser fclgllsnvn rnatvemtrr


301
higrgvrlyy iggevfaecl sdsaifvqsp ncnqrygwhp atvckippgc nlkifnnqef


361
aallaqsvnq gfeavyqltr mctirmsfvk gwgaeyrrqt vtstpcwiel hlngplqwld


421
kvltqmgsps vrcssms










SEQ ID NO: 5 Human SMARD2 transcript variant 1 mRNA Sequence


(NM_005901.6; CDS: 353-1756)








1
gcgcgcgtcc tcaccccctc cttccccgcg ggcggcggcc aggctccctc ccctcccctt


61
ccctctcctc ccctcccctc ccctctcttc ccctaccctc ccgcgcgccc gggccgccgg


121
ccgggcccgg gcctgggggc ggggcgggaa gacggcggcc gggagtgttt tcagttccgc


181
ctccaatcgc ccattcccct cttcccctcc cagccccctc catcccatcg gaagaggaag


241
gaacaaaagg tcccggaccc cccggatctg acggggcggg acctggcgcc accttgcagg


301
ttcgatacaa gaggctgttt tcctagcgtg gcttgctgcc tttggtaaga acatgtcgtc


361
catcttgcca ttcacgccgc cagttgtgaa gagactgctg ggatggaaga agtcagctgg


421
tgggtctgga ggagcaggcg gaggagagca gaatgggcag gaagaaaagt ggtgtgagaa


481
agcagtgaaa agtctggtga agaagctaaa gaaaacagga cgattagatg agcttgagaa


541
agccatcacc actcaaaact gtaatactaa atgtgttacc ataccaagca cttgctctga


601
aatttgggga ctgagtacac caaatacgat agatcagtgg gatacaacag gcctttacag


661
cttctctgaa caaaccaggt ctcttgatgg tcgtctccag gtatcccatc gaaaaggatt


721
gccacatgtt atatattgcc gattatggcg ctggcctgat cttcacagtc atcatgaact


781
caaggcaatt gaaaactgcg aatatgcttt taatcttaaa aaggatgaag tatgtgtaaa


841
cccttaccac tatcagagag ttgagacacc agttttgcct ccagtattag tgccccgaca


901
caccgagatc ctaacagaac ttccgcctct ggatgactat actcactcca ttccagaaaa


961
cactaacttc ccagcaggaa ttgagccaca gagtaattat attccagaaa cgccacctcc


1021
tggatatatc agtgaagatg gagaaacaag tgaccaacag ttgaatcaaa gtatggacac


1081
aggctctcca gcagaactat ctcctactac tctttcccct gttaatcata gcttggattt


1141
acagccagtt acttactcag aacctgcatt ttggtgttcg atagcatatt atgaattaaa


1201
tcagagggtt ggagaaacct tccatgcatc acagccctca ctcactgtag atggctttac


1261
agacccatca aattcagaga ggttctgctt aggtttactc tccaatgtta accgaaatgc


1321
cacggtagaa atgacaagaa ggcatatagg aagaggagtg cgcttatact acataggtgg


1381
ggaagttttt gctgagtgcc taagtgatag tgcaatcttt gtgcagagcc ccaattgtaa


1441
tcagagatat ggctggcacc ctgcaacagt gtgtaaaatt ccaccaggct gtaatctgaa


1501
gatcttcaac aaccaggaat ttgctgctct tctggctcag tctgttaatc agggttttga


1561
agccgtctat cagctaacta gaatgtgcac cataagaatg agttttgtga aagggtgggg


1621
agcagaatac cgaaggcaga cggtaacaag tactccttgc tggattgaac ttcatctgaa


1681
tggacctcta cagtggttgg acaaagtatt aactcagatg ggatcccctt cagtgcgttg


1741
ctcaagcatg tcataaagct tcaccaatca agtcccatga aaagacttaa tgtaacaact


1801
cttctgtcat agcattgtgt gtggtcccta tggactgttt actatccaaa agttcaagag


1861
agaaaacagc acttgaggtc tcatcaatta aagcaccttg tggaatctgt ttcctatatt


1921
tgaatattag atgggaaaat tagtgtctag aaatactctc ccattaaaga ggaagagaag


1981
attttaaaga cttaatgatg tcttattggg cataaaactg agtgtcccaa aggtttatta


2041
ataacagtag tagttatgtg tacaggtaat gtatcatgat ccagtatcac agtattgtgc


2101
tgtttatata catttttagt ttgcatagat gaggtgtgtg tgtgcgctgc ttcttgatct


2161
aggcaaacct ttataaagtt gcagtaccta atctgttatt cccacttctc tgttattttt


2221
gtgtgtcttt tttaatatat aatatatatc aagattttca aattatttag aagcagattt


2281
tcctgtagaa aaactaattt ttctgccttt taccaaaaat aaactcttgg gggaagaaaa


2341
gtggattaac ttttgaaatc cttgacctta atgtgttcag tggggcttaa acagtcattc


2401
tttttgtggt tttttgtttt tttttgtttt tttttttaac tgctaaatct tattataagg


2461
aaaccatact gaaaaccttt ccaagcctct tttttccatt cccatttttg tcctcataat


2521
caaaacagca taacatgaca tcatcaccag taatagttgc attgatactg ctggcaccag


2581
ttaattctgg gatacagtaa gaattcatat ggagaaagtc cctttgtctt atgcccaaat


2641
ttcaacagga ataattggct tgtataatct agcagtctgt tgatttatcc ttccacctca


2701
taaaaaatgc ataggtggca gtataattat tttcagggat atgctagaat tacttccaca


2761
tatttatccc tttttaaaaa agctaatcta taaataccgt ttttccaaag gtattttaca


2821
atatttcaac agcagacctt ctgctcttcg agtagtttga tttggtttag taaccagatt


2881
gcattatgaa atgggccttt tgtaaatgta attgtttctg caaaatacct agaaaagtga


2941
tgctgaggta ggatcagcag atatgggcca tctgttttta aagtatgttg tattcagttt


3001
ataaattgat tgttattcta cacataatta tgaattcaga attttaaaaa ttgggggaaa


3061
agccatttat ttagcaagtt ttttagctta taagttacct gcagtctgag ctgttcttaa


3121
ctgatcctgg ttttgtgatt gacaatattt catgctctgt agtgagagga gatttccgaa


3181
actctgttgc tagttcattc tgcagcaaat aattattatg tctgatgttg actcattgca


3241
gtttaaacat ttcttcttgt ttgcatctta gtagaaatgg aaaataacca ctcctggtcg


3301
tcttttcata aattttcata tttttgaagc tgtctttggt acttgttctt tgaaatcata


3361
tccacctgtc tctataggta tcattttcaa tactttcaac atttggtggt tttctattgg


3421
gtactcccca ttttcctata tttgtgtgta tatgtatgtg ttcatgtaaa tttggtatag


3481
taatttttta ttcattcaac aaatatttat tgttcacctg tttgtaccag gaacttttct


3541
tagtctttgg gtaaaggtga acaagacaac tacagttcct gcctttgctg agacagcagt


3601
tacactaacc cttaattatc ttacttgtct atgaaggaga taaacagggt actgtactgg


3661
agaataacag atgggatgct tcaggtagga catcaaggaa agcctctaag gaaaggatgc


3721
atgagctaac acctgacatt aaagaagcaa gccaagtgag gagccagggg agataagcat


3781
tcctggcaaa gagaatagca tcaaatgcaa aaaggttcac actaaaggaa actcctgatt


3841
aggtattaat gctttataca gaaacctcta tacaaatcca aacttgaaga tcagaatggt


3901
tctacagttc ataacatttt gaaggtggcc ttattttgtg atagtctgct tcatgtgatt


3961
ctcactaaca tatctccttc ctcaaccttt gctgtaaaaa tttcatttgc accacatcag


4021
tactacttaa tttaacaagc ttttgttgtg taagctctca ctgttttagt gccctgctgc


4081
ttgcttccag actttgtgct gtccagtaat tatgtcttcc actacccatc ttgtgagcag


4141
agtaaatgtc ctaggtaata ccactatcag gcctgtagga gatactcagt ggagcctctg


4201
cccttctttt tcttacttga gaacttgtaa tggtgttagg gaacagttgt aggggcagaa


4261
aacaactctg aaagtggtag aaggtcctga tcttggtggt tactcttgca ttactgtgtt


4321
aggtcaagca gtgcctacta tgctgtttca gtagtggagc gcatctctac agttctgatg


4381
cgatttttct gtacagtatg aaattgggac tcaactcttt gaaaacacct attgagcagt


4441
tatacctgtt gagcagttta cttcctggtt gtaattacat ttgtgtgaat gtgtttgatg


4501
ctttttaacg agatgatgtt ttttgtattt tatctactgt ggcctgattt tttttttgtt


4561
ttctgcccct ccccccattt ataggtgtgg ttttcatttt tctaagtgat agaatcccct


4621
ctttgttgaa tttttgtctt tatttaaatt agcaacatta cttaggattt attcttcaca


4681
atactgttaa ttttctagga atgatgacct gagaaccgaa tggccatgct ttctatcaca


4741
tttctaagat gagtaatatt ttttccagta ggttccacag agacaccttg ggggctggct


4801
taggggaggc tgttggagtt ctcactgact tagtggcata tttattctgt actgaagaac


4861
tgcatggggt ttcttttgga aagagtttca ttgctttaaa aagaagctca gaaagtcttt


4921
ataaccactg gtcaacgatt agaaaaatat aactggattt aggcctacct tctggaatac


4981
cgctgattgt gctcttttta tcctacttta aagaagcttt catgattaga tttgagctat


5041
atcagttata ccgattatac cttataatac acattcagtt agtaaacatt tattgatgcc


5101
tgttgtttgc ccagccactg tgatggatat tgaataataa aaagatgact aggacggggc


5161
cctgaccctt gagctgtgct tggtcttgta gaggttgtgt tttttttcct caggacctgt


5221
cactttggca gaaggaaatc tgcctaattt ttcttgaaag ctaaattttc tttgtaagtt


5281
tttacaaatt gtttaatacc tagttgtatt ttttacctta agccacattg agttttgctt


5341
gatttgtctg tcttttaaac actgtcaaat gctttccctt ttgttaaaat tattttaatt


5401
tcactttttt tgtgcccttg tcaatttaag actaagactt tgaaggtaaa acaaacaaac


5461
aaacatcagt cttagtctct tgctagttga aatcaaataa aagaaaatat atacccagtt


5521
ggtttctcta cctcttaaaa gcttcccata tataccttta agatccttct cttttttctt


5581
taactactaa ataggttcag catttattca gtgttagata ccctcttcgt ctgagggtgg


5641
cgtaggttta tgttgggata taaagtaaca caagacaatc ttcactgtac ataaaatatg


5701
tcttcatgta cagtctttac tttaaaagct gaacattcca atttgcgcct tccctcccaa


5761
gcccctgccc accaagtatc tctttagata tctagtctgt ggacatgaac aatgaatact


5821
tttttcttac tctgatcgaa ggcattgata cttagacata tcaaacattt cttcctttca


5881
tatgctttac tttgctaaat ctattatatt cattgcctga attttattct tcctttctac


5941
ctgacaacac acatccaggt ggtacttgct ggttatcctc tttcttgtta gccttgtttt


6001
ttgttttttt tttttttttt tgagagggag tctcgctctg ttgcccaacc tggagtgcag


6061
tggtgcgatc ttggttcact gcaagctccg cctcccgggt tcacgccatg cttctgcctc


6121
agcctcccaa gtagctggga ctacaggcgc ccaccaccac actcggctaa ttttttgtat


6181
ttttagtaga gacggggttt caccgtgttg gccaggatgg tctcgatctc ctgacctcgt


6241
gatctgtcca cctcggcttc ccaaagtgct gggattacag gcatgagcca ccgcgcccag


6301
cctagccata tttttatctg catatatcag aatgtttctc tcctttgaac ttattaacaa


6361
aaaaggaaca tgcttttcat acctagagtc ctaatttctt catcatgaag gttgctattc


6421
aaattgatca atcattttaa ttttacaaat ggctcaaaaa ttctgttcag taaatgtctt


6481
tgtgactggc aaatggcata aattatgttt aagattatga acttttctga cagttgcagc


6541
caatgttttc cctacgatac cagatttcca tcttggggca tattggattg ttgtatttaa


6601
gacagtcaga ataatgatag tgtgtggtct ccagaggtag tcagaatcct gctattgagt


6661
tctttttata tcttcctttt caatttttta ttaccatttt gtttgtttag actacacttt


6721
gtagggattg aggggcaaat tatctcttgg agtggaattc ctgtgttttg agccttacaa


6781
ccaggaaata tgagctatac tagatagcct catgatagca tttacgataa gaacttatct


6841
cgtgtgttca tgtaattttt tgagtaggaa ctgttttatc ttgaatattg tagctaacta


6901
tatatagcag aactgcctca gtctttttaa gaaggaaata aataatatat gtgtatgaat


6961
ttatatatac atatacactc atagacaaac ttaacagttg gggtcattct aacagttaaa


7021
acaattgttc cattgtttaa atctcagatc ctggtaaaat gttcttaatt tgtctgtgta


7081
cattttcctt tcatggacag accattggag tacattaatt ttcttaatct gccatttggc


7141
agttcattta atataccatt ttttggcaac ttggtaacta agaatcacag ccaaaatttg


7201
ttaacatcaa agaaagctct gccatatacc ccgttactaa attattatac atccagcaga


7261
ttctgggatg tactaactta gggttaactt tgttgttgtt gataatacta gattgctccc


7321
tctttaattc ttcttctggt gcaaggttgc tgcttaagtt accctgggaa atactactac


7381
aaggtcaaat tttctagtat cttacagcct gattgaaggt gattcagatc tttgctcaat


7441
ataaatggat tttccaagat tctctgggcc atccttgacc cacaggtgat ctcgctggag


7501
tatattaact taacttcagt gccagttggt ttggtgccat gagatccata atgaatccag


7561
aacttcacca ttgcttagat ataagagtcc cttggaagaa taatgccact gatgatgggg


7621
gtcagaaggt gtattaactc aacatagagg gcttttagat ttttcttcaa aaaaatttcg


7681
agaaaagtat tcttttaccc tccaaacagt taacagctct tagtttctcc aaatatgctc


7741
tttgatttac ttatttttaa ttaaagatgg taatttattg aacaatgaaa tccgtaatat


7801
attgatttaa ggacaaaagt gaagttttag aattataaaa gtacttaaat attatatatt


7861
ttccatttca taattgtttt cctttctctg tggctttaaa gtttttgact attttacaat


7921
gttaatcact aggtaacttg ccatatttct ggttctatat taagttctat cctttataat


7981
gctgttatta taaagctggt ttttagcatt tgtctgtagc aatagaaatt ttactaagtc


8041
tctgttctcc cagtaagttt tttcttttct cagtaagtcc ctaagaaaac atttgtttgc


8101
cactcttact attcccaatc ttggattgtt cgagctgaaa aaaaatttga tgagaaacag


8161
gaggatcctt ttctggtgaa tataggttcc tgctttaaga atgtggaaat ccattgcttt


8221
atataactaa tatacacaca gattaattaa aattgtgaga aataattcac acatgacaag


8281
taggtaacat gcatgagttt tgaatttttt taaaaaccca actgtttgac aaaatataga


8341
acccaaattg gtactttctt agaccagtgt aacctcacac ctcagttttg cttttccaac


8401
cctgacttga aaggcatatt tgtatctttt tattagtgat agtgaagctg tgacactaac


8461
cttttataca aaagagtaaa gaaagaaaaa ctacagcgat taagatgaga acagttctgc


8521
agttgttgaa ctagatcaca gcattgtagg cagaataaaa aatgttcata tctgagaata


8581
ttcctttcgc catcttttcc caaggccaga cctcctggtg gagcacagtt aaaagtaaca


8641
ttctgggcct ttgtaatcgg agggctgtgt ctccagctgg cagcctttgt tttaatatat


8701
aatgcaggac tgtggaaaac agttggcata gaatattttc acctaaaaaa gaaagaaaag


8761
acatacaaaa ctggattaat tgcaaaaaga gaatacagta aaataccata taactggaca


8821
aagctagaag aacctttaga agatttgtct gaaaacagat ttcaagagtg agcttttata


8881
cactgctcac taatttgctt gattactacc aactcttctt aaagttaaca cgtttaaggt


8941
atttctggac ttcctagcct tttagcaagc ttagaggaac tagccattag ctagtgatgt


9001
aaaaatattt tggggactga tgcccttaaa ggttatgccc ttgaaagttc ttaccttttc


9061
tctagtgata ttaaggaacg agtgggtagt gttctcaggg tgaccagctg ccctaaagtg


9121
cctgggattg agggtttccc tggatgcggg actttccctg gatacaaaac ttttagcaga


9181
gttttgtata tatgtggatt tttctgataa gtagcacatc agaggcctta accactgccc


9241
aaaagcgatt ctccattgag agtacatatc ttgaacttaa gaaattcatt tgctctgatt


9301
tttaatcttg taaagttttt gctaaactca aaacaagtcc caggcacacc agaaggagct


9361
gaccacctta ggtgttcttg tgatttatcc ttacttccct atgttgtcat agttgcttct


9421
aaactcagct gcactatggc tgtcaacatt tctgatactt attgggatat gtgccatcca


9481
gtcatttagt actttgaatg gaacatgaga tttataacac aggtaatagc tgaaggtacc


9541
agtatggtgg tgagactcac acttagtgat ccagctaagg taactgatgt tataatggaa


9601
cagagaagag gccaactaga tagctaagtt cttctgaacc tatgtgtata tgtaagtaca


9661
aatcatgcgt ccttatgggg ttaaacttaa tctgaaattt acatttttca tagtaaaagg


9721
aaaccaattg ttgcagattt cttttcttgt gaggaaatac atggcctttg atgctctggc


9781
gtctactgca tttcccagtc tgttctgctc gagaagccag aatgtgttgt taacattttt


9841
ccgtgaatgt tgtgttaaaa tgattaaatg catcagccaa tggcaagtga aggaattggg


9901
tgtcctgatg cagactgagc agtttctctc aattgtagcc tcatactcat aaggtgctta


9961
ccagctagaa cattgagcac gtgaggtgag attttttttc tctgatggca ttaactttgt


10021
aatgcaatat gatggatgca gaccctgttc ttgtttccct ctggaagtcc ttagtggctg


10081
catccttggt gcactgtgat ggagatatta aatgtgttct ttgtgagctt tcgttctatg


10141
attgtcaaaa gtacgatgtg gttccttttt tatttttatt aaacaatgag ctgaggcttt


10201
attacagctg gttttcaagt taaaattgtt gaatactgat gtctttctcc cacctacacc


10261
aaatatttta gtctatttaa agtacaaaaa aagttctgct taagaaaaca ttgcttacat


10321
gtcctgtgat ttctggtcaa tttttatata tatttgtgtg catcatctgt atgtgctttc


10381
actttttacc ttgtttgctc ttacctgtgt taacagccct gtcaccgttg aaaggtggac


10441
agttttccta gcattaaaag aaagccattt gagttgttta ccatgttact atgggactaa


10501
tttttaattg ttttaatttt tatttaaact gatctttttt tatatgggat tacattttgg


10561
tgttcactcc ctaaattata tggaaaccaa aaaaagtgat tgtatttcac atatggacat


10621
atgattttaa gagtacatgt ttttgttttt ttaatttggt gttacataaa agattatcct


10681
atccccccgg gagataaatt tatactactt aatataaccc cacaacaggc gcacaccaca


10741
cactgcacag tgctatttat acatttttat ttatttcaga gtttgcctat gctacattag


10801
cgctctaata cataagatct atgctgtaaa caaaaacatc ttcaaagttg aaatttgctg


10861
aaatatactt ttaacaaaat aacattttta aggctccatt gaaaaatact agataagata


10921
taatctcata taatcagtat gaataatttt aaaaatgaga aatatttagg tcagccacac


10981
ttcctttgtg ccttgcaaga attcagttct gtggatgaat cagtactggt tagcagactg


11041
ttttctgcaa accattttaa acatgcttta gtatgcaaca aaaagggacc tcaaatgcta


11101
aaatacacta ttttacgtgg cattgaatag ccttgggact ggtgtagttt tatcaacact


11161
tttttattag gaagaaaccc aagaaaattt actgtaattg ctaccacctg ccactgtata


11221
aataatctaa aagggacttc ccaacattga acaacaacat tgagggctga ctcgagatcc


11281
ttctacattg tcacctcagc ctggctttgc ctgtcactgc ttagcttgaa gtagtgacac


11341
tgttctgtat caggagattt ttataatggc cctagcatcc ataattccac atgttcatca


11401
aatggctgaa gagtatgaga gaagtattaa ggtctatgtt tgggctgtct ccccacttgg


11461
catattctgt ttttccctct tcaaaataga ttgaaagcct cttagtgcag gaagcaggca


11521
tcagtatcaa actgatgtca tccaatgtaa ttattttaag ctccaggttt gtctaagttt


11581
gggtgaagaa tgttcaggaa catgtttgca acatacagtt atccagctta ccctttgaca


11641
gattcaccct tctcatcaaa atagtaagcc caacctaaaa attataagtt tacaaataaa


11701
ggaatagaaa aacccaaaaa gctaatttac acataaaaat tatcttttgc tgcaataaat


11761
aggtatggaa atatttgtag aattggttta actgattttg taaaacaaat gtcatgctat


11821
tttgccatag tgagacatgc agtaattctt aaaatcacat taatagaagg caagaacatt


11881
gaatcagact tagcagataa cagattcagt gataaatgaa caatagacta agcatactta


11941
ggaagctaca tgagaacaga atgtattact gtgctcccgt ccaaactgca tgactttatt


12001
ggttatagaa taaatggaat ttgagatggg gatttgccag tttttacagt ctgtcttcaa


12061
tagttttgtt ggctgcctct gcacctttct aaatgttatg tgaaaataaa attatttaag


12121
ttctaaagta gtttaggaaa gagatgtgat gacaggaaaa agaagttaac ttctgaacag


12181
tttggtccag gaagaagatg ggcagaatac agtaagccca gggttgaaga atacattcaa


12241
tttggagaga tggagaagac ctttgaagaa ggtcaaaatg agatcttgga acagaactct


12301
cacctgtgtg tctggatata catgaaaact ggacggtgtt attgagctac tgcttatatg


12361
gtgagcagaa aattgataac cacaagcctg gtaggttctg ctatgaagcc cacatataat


12421
cacaaggcct agatagcttg gagttaaaag ccaaggatag ctgtatagtt tgggttccat


12481
agtttgcagt gagattgtgc ttctgagcag tcatttgggg gcagtggttc tgagattaca


12541
agccataacc cagccaagaa cgggctacct gtggaatgag gatgaggaag ttgctacata


12601
taaaccctag tgtgtgtgtg tgtattaagt gaaacttagt taactttttt gctcacagcc


12661
aaagatgatt catctagaga agccattgga attttagcag agttttgtat atatgtggat


12721
ttttctaata agtagcaaat cagaggcctt aaccactgcc caacagcgat tctccattga


12781
gagtacgtat cttgaactta agaaattcat ttgctctgat tttaaatctt gtaaagtttt


12841
tcttcatgag aggtcttgcc tctaaactat attgtggcag tatttgatca aactacataa


12901
gtaccatgta aataagattt taatacaaat gatgactcac ttctaaatgg tttgccattt


12961
agaaatgtgc tgctgtgaga aaaacgaatt tttttttttt ttttttggag acagagtctt


13021
gctctgttgc ccaggctggg gtgcagtggg gcgatctcgg ctcactgcag cctcgcctcc


13081
tgggttcaag tgattctcct gccttagcct cctgagtagc tgggattaca ggcacacacc


13141
accacgccca actacttttt gtatttttag tggagacagg gtttcaccat gtttgccagg


13201
ctggtcttga actcctgacc tcagatgatt tgcctgcctc ggcctcccaa agtgctggaa


13261
ttacaggcgt gagccatcat gcctggctga aaagtgaaaa tttaagccag cttaccacct


13321
ggaataaaaa tgttttatag gaatgtctag gttgctcttt tatattgaaa aaaaacttat


13381
tagtgtctgt tttacccaag aaccacaagc tacttcattt caacttttaa atcatgaata


13441
ataacgtgtt atcaccacat ttaaaaatgt acatcgtcaa tcacaaacac atattctaag


13501
gaattgaatt ttatagagat aattgaatgc tttcatctgt aaaagaatta gtggcctgca


13561
aaccactgtg gattcttgct atgctttgaa gttgtcagtg ggggaatttg ctgctgcaag


13621
ttacttagac ttgtaggcaa agggaaattc aaatttttaa ttctaaaatg aaaaccactg


13681
acaaaatttt atactctgaa agtttggttg ttagcttagt cattattttc ctgttcttta


13741
tcatttcgga attcagatgc ttaaatttaa catacaaatt atttgttggt aaaacataaa


13801
acataaaaag ctacatttgg taaactaaat tttaggattc aaagtctcta acaatttcta


13861
tgtgacatgt catacggtgc agtttttatt tgccaaagtg tctacttcat actgcctatg


13921
cactgcttcc cgtttttaat ctctctaccc caacccccct ataattaaat aaacccctag


13981
aaaactgcct tcttttagaa tacctaattg attactttaa atattttttc agaatcaaaa


14041
ttacaaaagg gagagatacc taagaatctg gcttgtttat attctttaaa agatcgcatt


14101
tgattgaagg tgggtgcata ttttttatat ccactctttc cccatttgta tgtgaccatt


14161
gtaaaagtgg atgtgctttt ttttttttgc tgaggtctag agacaatgtt ttagagatac


14221
agaatgaaac atttatgggt aaaatacaat gggtaagact tgcttcaaaa tagtatgtga


14281
cagaggaagt agatggaggt atgaatgaat aggacattga tggttgtttg ttgggattgg


14341
gtaagggagc tttgttgtat tctatttcct tttagataag tttgaaattc cttgtagtga


14401
agaaattaaa cgtctccatc aggtgcattg ccacgtcttc tctaggaagc ctccttaaca


14461
tcctctggtg gctcctgaac tttttctgtt ctcattcaca gggaagctca tggggctgcc


14521
tggagacttg aggttacatc ttgcctagta ttaccaaaat tgtgatactt ttctccaccc


14581
cataatagca cagtctttgg tctcaacttg aactaaagtc tttttttttt tttttttttt


14641
tttttttagt atttattgat cattcttggg tgtttctcgg agagggggat gtggcagggt


14701
cataggacaa tagtggaggg aaggtcagca gataaacatg tgaacaaggg tctctggttt


14761
tcctaggcag aggaccctgc ggccttctgc agtgtttgtg tccctgggta cttgagatta


14821
aggagtggtg atgactctta acgagcatgc tgccttcaag catctgttta acaaagcaca


14881
tcttgcaccg cccttaatcc atttaaccct gagtggacac agcacatgtt tcagagagca


14941
cggggttggg ggtaaggtta tagattaaca gcatcccaag gcagaagaat ttttcctagt


15001
acagaacaaa atggagtctc ctatgtctac ttctttctac acagacacag caacaatctg


15061
atctctcttt cctttcccca catttccccc ttttctattc gacaaaaccg ccatcgtcat


15121
catggcccgc tctcaatgag ctgttgggta cacctcccag acagggtggc ggccgggcag


15181
aggggctcct cacttcccag acggggcggc tgggcagagg cgccccccca cctcccggac


15241
ggggtggatg ctggccgggg gctgcccccc acctcccgaa cggggcagct ggccgggcgg


15301
gggttgcccc ccacctcccg gacggggcgg ctggccgagc aggggctgcc ccccacctcc


15361
ctcccagacg gggcggctgc tgggcggaga cgctccttac ttcccggacg gggtggttgc


15421
tgggcggagg ggctcctcac ttctcagacg gggcggccgg gcagagacgc tcctcacctc


15481
ccagacgggg tggcggtcgg gcagagacac tcctcacatc ccagacgggg cggcggggca


15541
gaggcgctcc ccacatctca gacgatgggc ggccgggaag aggcgctcct cacttcccag


15601
actgggcggc cgggctgagg ggctcctcac atcccagacg atgggcagcc aggcagagat


15661
gctcctcact tcccagacgg ggtggcggcc gggcagaggc tgcaatctcc gcactttggg


15721
aggccaaggc aggcggctgg gaggtggagg ttgtagcgag ccgagatcgt gccactgcac


15781
tccagcctgg gcaacattga gcactgagtg agcgagactc catctgcaat cccagcacct


15841
cgggaggccc aggcgggcag atcatgcgcg gtcaggagct ggagaccagc ctggccaaca


15901
cggcgaaacc ccgtctccac caaaaaatac aaaaaccagt caggcgtggc ggcgcgcgtc


15961
tgcaatccca ggcactcggc aggctgaggc aggagaatca ggcagggagg ttgcagtgag


16021
ccgagatggc ggcagtacag tccagccttg gctcggcatc agagggagac ggtggaaagt


16081
gggagaccgt agaaagtggg agacgggggg agacgggaga gggagaggga tgtgcttttt


16141
ttctaaccgt tattgccacc aagtaataat gtcttaattc acaatttaca tagtgattgg


16201
ctggagagag gtattgagca taaatttttt tttaagattc aactgggaaa tggatgattt


16261
acatgatttt agtctcttta gttgtctggg tatttcttga ctgggaatag caatatctta


16321
aaggccattt ttaacaagaa tgctaaggat ggaacacttg aaggaagcag tcctgtacag


16381
tcaaatactt cagttacctt ggataataga atgaaaactc aattgcctac tttgaacaaa


16441
tttttttttt ggattttaat ggctggacag aataacattc tgctaatttt aatccttggt


16501
catttccgat gtaatggaaa atgcagtttg actcagaatc ggaggcctgg ggtttggacc


16561
ctgattgtgc caatttatgt gactttagat aaatcttttc atcagtctac cttaaagttc


16621
ttcatttcct ccagttccct aaaatgagga agttagtttt tagggtggtt atgagaacta


16681
aatgagagca cttgagagat cattcagcct gaagtgggta ctcagtatta gatggctaaa


16741
tctgcacagt ctagaatacc aggcaaaggt tactctgaag gtctttgcta ataacaaatc


16801
tttctctaag aaagtttgta aatgtgatgt taaactcaga aatgtcacat agaacatatt


16861
ggagcaatta ttgccgcaaa agtaactcgt agcaaccaca aaaacccagt ggtgtgcagc


16921
aataaacagt ttatgaatta gataagtgat ttcggctaga tgtctctgga gcagttgtag


16981
tctttcctcg ttcatgaggg agttggcctc acctggaagg acttggcatt tttccacatg


17041
cctcctatcc tccattaaac aagcatgttt ttgtggaggt tgtagaaggc aacaacagcc


17101
aagcccaatc ccataactcc ctttcatgtc tgcatgcttc atgctaacta gcattcacca


17161
gaaacaagcc acatggctaa acccagtgtg gaaaggcact acagagttat tagaccaagg


17221
gagagaacat aggaggggtg aagaattgga gccttaaatg cagtcaatct accacaccct


17281
tgctttgtat ttaacaggtt actgtactgg tttgccagca aacaatggaa aatgtggaga


17341
agctgaagaa tgctcaagct gggacttaat agagtggcct atttggtttg aaatgtttta


17401
acttacagag cattgagtag aagcctaatc taatatacat aaggaagaca aaagcaaagg


17461
attgtgtttt ctatctaaag gttaatcatt gtggttgctc ctggccatta tcacatgact


17521
ggaagttaac actctccaaa cgctgagcct atcctgtaca gcactagaaa gtagaaagaa


17581
tcactcaatt cagggaaacc gttttctctt aatgtgaaca tttacattaa tgccatttcc


17641
aaaacctttc tgggacttct taaatgcaaa gatgctatct gctttacttc atgctgcctg


17701
tttttaggag cttggagtgc tttaggaagc ttcccaatac tggtttagca gtaatttggt


17761
tgactgatca aggcatgttt taactttgac actgaaattt taaaaagaca acagttatct


17821
tgcccggaga gtcaagtttc tgcttccaag gaggtcagga attgttctct ttggtgatgt


17881
ggctgtgctt ggtagccctt gaaagtggag tcgacagcag tcctcagctt ttgtgtgcct


17941
gtcttagtct gttttgtgtt actataacag gatagctgag gcagggtcac ttatgaagga


18001
tgctcacagt tctacaggct gggaagttca agggcatggc cctggctttt ggcaagggct


18061
ttgctgctgc ttcatagctt gatggagaag gtcagagggg aagcagacgt gcaaacaacc


18121
cacttgttca caacaaccaa acaagtctct ttttaacaac ccactcctgg ggactaatct


18181
agtcttgaga gagtgagaac tcattgcaag agcagcacca agccattcat gaagcatctg


18241
cctcagtgaa ccaaacatct cccactaggc cccagctctc aacaccacca caatgaagat


18301
aaaatctcat catacatttg agggacagtt tgggagacag accatagcag tgctcagtat


18361
ttctacccaa atgttcaggt aacttaatat atttttcctt gaatatatgt ttaaatgggc


18421
ttcccttccc cacgctcatc ttgaatggtc ccacaacaac ttttgattat cacgttcctg


18481
taaatacaca aaaatatttt gtggtctttt actggcagcc cagtggatgg gactttaaaa


18541
aatcacccag attccaacaa ccagagaaaa cgactggtgt atattttttc cagtctttat


18601
ttgtatgtct gtgtatattc aatggaaaat gtttgaagct tcactcacag cacattccat


18661
tagagaaagc tactaaaatc ataaggaaaa tctaaaatgc agtaagccag tcagcaagcc


18721
ataatgggca tatgaaaaca aagttttttg ccatgatttg tggaccacag aagatctgtg


18781
ttattagtct atttaagttt ggtgtttgaa attaaaaatg ttcgacatac tttttatgtt


18841
ttttttaaat atactgtcta tatttaaaat tgagtatact gtactttagt gtgtttggaa


18901
gcagatatcc ccaaataaaa gtatacagta gaaccaaaga attttattga tcagctagaa


18961
tttagttttc aggtgtaata actgtcaacc taaataacag aggctttcta aaagaaaatg


19021
atgtttattt gggaataggg cattgtgaag gcaatatgca tgccatagta aactgtgtgt


19081
attcaggaag gtaaaggaag acaggttttt aaaggacaga taaagattat ataattgtct


19141
tgaaataatt attcttggct acaaggatta ataacaagga tgctgccagt tcgggtttgg


19201
acaatcggct tctaggcaga tgtcccaaaa gtattttctg tgtaaggttg cgaatagtgt


19261
ttgtgcaagc tggcgtggtt tcttctgggt ctttgaggta gtgcgtaaaa tccctctctt


19321
catggacttc cctggctcca tttgtcaggg cttttggaaa catgactctt gattctgaca


19381
gctttcacct ttccctctct tgatgaagat gtttttccga aagtatctat gatgaatcat


19441
cttgtagtta ggctttgatt gtcccttggt gacagaatag acctttcccg ggttattggt


19501
ctggtcctgc atcctgcatt ggcaggagtg attggcaact aaaagtcagt gttaaaaccc


19561
ttttagccac ctttgagggc agggaggctt taagggagtg gcacttaggc taagtccacc


19621
tggagtctat tattaagtcc aatttttttt ccttagtcct ttgttgtccc ctcaaagtgc


19681
tgggctagca ttattctgtt aggaattgta cttctttctg cagaaaattt ggcaaataac


19741
agatacaaag tttaaaaagg aaatacacaa aattaatagt aatgtgacaa tcccagtttg


19801
cataatggtt ttgagccctg aacctaggct tacaggcaac caattgaata aatcaaattg


19861
taatacaatt cttgctctga tgtcttagga aaaatgtcta cagcctgaaa tcatcaactt


19921
tttgtcctgg tttgcagttt gaatgtctct agctatggca ttggttggta tggtgaactt


19981
ttgtgtgacc catacatcag catgagactt gctcctttaa aaattaatca catcttagct


20041
tataggcctc agagcatggg agtagttttt tttcttagag agtcatagcc aaatattgaa


20101
ggaaattagg aggattcagg agcaaatcca gtctgcaggt ggataacagg agtttcaaaa


20161
cggtacagag ctgtgatcta ataacaggta catatagctt tcttcagaaa cttaaagtta


20221
ccctgatttt taccaaagat gttcagaata aaacagattt gtaaacttta tcagattttg


20281
tctgcaagaa tagtagtatg gtcacagtaa tctcagattt aaaaacctcc ttgaggctaa


20341
gaagctaagt caaggtagac tttagatttt acctatagtt ttaaggttcc tgggcctgcc


20401
aggaaatgat aatttttaat tcagtgtaat gctgagaacc attgaagcca ggcattctac


20461
acattctcaa atatgacatt ttaatcaaag ccttggtaat acaaccagtg tttccaattg


20521
tatcctgtta taacgagagc cgatttttat tgaacttagg caaatcatat tgccttaaga


20581
gtactcacaa ataggctggg cacagtggct catgcctgta atcccagctc tttgggaggc


20641
caagacaggt ggaacacctg aggtcaggag tttgaaacca gcctggccaa catagtgaaa


20701
cctccccccg gccaccgtct ctactaaaaa atacaaaaat tagctgggtg tggtggtgca


20761
tgcctgtagt cccagctact tgggaggctg agacagaatt gcttgaaccc tggaggcaga


20821
agttgcactg aaacaagatc gtgccactgc attccagctg gggcaacaga gcgagactcc


20881
gtctcaaaaa caaaaacaaa tgaatactca aaatagtttc caaattggag ggatcaagaa


20941
gaaaggaaaa gcaaatattt ctacctttgt tcacaaaagt attccaaatt gctgtaaact


21001
atagatagca tgagagaatt tctttaaata tggaaaacaa aacatttaag taaaaaaaca


21061
ataatgcttc aaataaaagt cacagacaca tcttcagtta cttagtctca tgtaactttt


21121
tttgttgtgg ttgatcttaa ttagtagtta catggactca tcagtttctt gaagttctga


21181
aaaaatattt agtccattgg tattaaagtg attagtaacc tgtatttaaa agtgtgttag


21241
catcttttcc atgaatctga ttgcaaatgc ttttagagaa aaagcaataa ctgggaatta


21301
caaaaactta gaataaccat gattaaaaat ctgatgagag tttaccataa ccagaaatag


21361
acaaagagtt ttggttattt ttgtggcaaa cagcataatc agaattatga ctgatgacat


21421
atttctaacg gcatcgtaca attttggaac actcatatca ataacatact cataaatgta


21481
actgtgtcta gtattacatc attagacaat gcttttcata caatttaata catcaaagaa


21541
gcctaattag ctaacatctc taccagatgg catacacatg ctctgaggct ttccagaggc


21601
ccaagtggaa aactcaaagg taattttaag tcaaaaacac ttaatttaga acttgagcct


21661
agagaagcct gtcaaagatg tcaaaagttc gaaacaggat cacaggtcac tataaaatat


21721
ttaacaagaa tgataatcaa aagacttaag aagcaatgca gaaagttaca tacatttaaa


21781
aaccatcttt tcaaagcttc atttttccca agcaaaaaaa aaacttaaac acaagaattt


21841
atcttgatag aacataaaat ttttcttagg ccagttgcca aaatggtaaa gaaaaatctc


21901
ttgcagtgtg actgccttta cttatgggaa gcctatttgg atatactgaa agttgaatct


21961
gatgaaaagg tacttgaatt taatcagaca caggaagagt atttccaagg ttatgagtgt


22021
acgccttata gaggaatgta aataagaaag ctagtatgtt gaacagaata catggctctt


22081
ggaaaaatta cgagaaattt cctgcttgcg tggaacaatt caaacatgag aagagccaag


22141
aattcagaat caagttatac tggaggaaaa cattgctttt ctaggccttc tacagaacat


22201
ttcagtatca agttataaca gcaagagtta gaaccagagg aaaaaagtta caggagctaa


22261
tgaaaaagtt aagagttatc acccctgcca aacaaaaaga tgtaccttct taaggggaga


22321
aagagctaaa ggcaatgatg tgtgacctac aaataaggtg cagcaagata cagcaaaggt


22381
tgaacttgtg agatataaat caggatcttc aagaagaaaa ctctacctca agaaatgaaa


22441
tgaccatctt aaatgaaaaa agacagcctt tctaacctga atctagggga aattaaacgg


22501
atctcagaag gaaatatggc agaaatttaa actgtggttt agaagatggc tgattttaga


22561
attaaaaatt aaaacctctt tcaattttat taagaccaga tccttaaaaa gaaccttgtt


22621
ctaacattgg ggaccaaatt ttgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt


22681
gtgtgtatag tgcatgtata gcatttacac tatcgtgtat atacaaatat atagcatatg


22741
tatagaatat actgtattat tgtacatata catatgtaca agtatatatg taagctcaat


22801
gtcttatgat ttcattctga cctattgcca acttcattac acacaactcc tttcataaat


22861
gtatccttca tgaacatttc atgatctgca cagaccttca gtgacatgct taaactttct


22921
gctttgtttt atacttcccc ttaaacaact ggtcatcctg ctttaggata aaaagttact


22981
atgcaagact catacagaat tattctgtta attttgtaac cttccttacc aaaggtacat


23041
tctcacaccc attaacttcc ttcatatttc tctcctcctc ctacttagtg gttcctttct


23101
gtcttgtttc catatttgaa acaacctcta ataaactctg aatttaaaca acttttttcc


23161
caataaaaag caatttttat gccttataac ttttctcatc aaaacatctt tttttgggta


23221
cactttgtat atggaattgt gtattttcaa attttaactt attaacctta atttttagtg


23281
aaaacctagg aagcaaaatt ttgaagtgtt atatcagcat tttataaatg agaaccatat


23341
tataattttt agaaacatgt ttccttataa ctttgtatat taataggccc aaatatattt


23401
agtctttcta taatttagga agccaagaac aaactaatat tttcagcagt ttattgtttt


23461
tttttggaaa tgatccagac atttactgaa gattaattta taagatttca aattacatga


23521
aaagttcatt aacatcctat ttttaaaaac attcttttgg tttatttttt agagacaatg


23581
tcttgctgtg ttacccaggc tggagttcag tggctgttca caggcacaat tgtagcacac


23641
tgcagcctca aactccaact cacacaatcc tcctgcctcc gtttcctgag tagctggaac


23701
tatagatgca tacctgcata ccaccatgtc tcacccttgc ttatcccgtt tataatccat


23761
ccaattcttt tttttttttt tttttttgag acggagtctc gctctgtcac ccaggctgga


23821
gtgcagtggc gtgatctcgg ctcactgcaa gctccgcctt ctgggttcat gccattctcc


23881
tgcctcagcc tcccgagtag ctgggactac aggcgcccgc caccgcgccc agccaatttt


23941
ttgtattttt agtagagacg aggtttcacc gtgatctcga tctcctgacc tcgtgatctg


24001
cccgccttgg cctcccaaag tgctaggatt acaggcgtga gccactgcac ctggccccca


24061
attcattttt aacaattatt cctagattac ttataaaaac tgagatatta gacatagcta


24121
gtcatttcaa gttattttcc tgttaaccat ttttattacc tgtgagtatc atgtgttcaa


24181
ttaagaacca taaaaatgaa atatgtaggt attttgccag taactcagag gacacagctg


24241
aagtcaataa tacaaaatta gttcaactta cagttataca aagatcattc tgtttttaag


24301
ttgagtttat agttttatga ccttaaaaag tctaacagag acaaatataa aactgagtag


24361
taaattcagg caaaaatttt aaagacactt atttttgatt taccaattat tttaaaacca


24421
gcttatcaga tgtttaagtt atattaacta aaaggcactt gtgttaatta ctatatattt


24481
tgtattagca ctcatttatt tgatgaatag aattccttaa gggatttgtg gccaactgcc


24541
agattttacc acgtagacac aacatacaac atatatatac atatgtgtaa acacacctaa


24601
acatacacat acacaaacat agctttcatt ttagaatttt agtcatacga tagtaataca


24661
ggcttgctgg tttataaaag acagttattg gattcaaatt atatttctga gaaagtggga


24721
cctgctcagc tgggtaaaca tgcagaatag gtaatcttat gaaagctgtg aaccaaaagt


24781
tttggtaaat agcagtttgg atttttaaaa aacctcttac cccacctccc caaccccttt


24841
tttccctttt ttcagtttca aatgagttta atgttaatat ttaaatgctt acatttttag


24901
ctaggactgg ctgaattgta taagaaaaaa caatctccag gtggccttga atttttagta


24961
acaaatcttt tgtttgccat tctggttttt ttgactagtc agtgcaggca gggaagcatt


25021
ttagcagttg tggatgaggg gtttttgttt tgttctttta gcctttgcat agcaggcaag


25081
caatttttat gctataccag agatacctta tattattgcc ctgagctcaa gattttgacc


25141
tgtttgagag cctaattttt atacgtattt atctagttct tttaggctat taatccttta


25201
attaactgtt ccatcaccct aagcagttat taggcaaacc taaatttaca ttaaaaggga


25261
tacttcttaa ttctaggtgt tggttgccag ggaactatta taatttataa agccattaat


25321
ttaaggccct ttaagacctt tttttttctt tttgttcttg gctggaatgc cgtaaggagt


25381
gagtttcatc tcaacactgg cagaaacagc agatttaaag taggcagaaa aaaaattaga


25441
gagcttagaa gactctacat atcaactcta tagctgcagt ctcttggtac taagaataaa


25501
aaagcttggg gagtttagac aaagcataga caatctctat gatggtcatt gatccaaaaa


25561
catgcatgag gaaaagccac atagctgacc tgaagtccca gaaaagcagg catgccttaa


25621
tgtttgagaa tttccatttt gtttcttctc aatctcttaa gagcaaagaa aattctgtaa


25681
atcctgacag ataagtcagg tgtttggacc agtgttttaa ctggtggcga ttgccctagt


25741
ggctttaaaa gagccatcct gtgcccaaaa tttagaatgt ttatttttgc tcttgggaga


25801
tgttcagaaa caggggaaaa gagccaaatc atttacagat gcatgtaacc atatcgaaac


25861
gaaaccaaaa tcagtgttcc caaaagtgtt aacccagtca tgcagattaa aaaataatat


25921
aaacacagaa gaacccaaag taaatttacc agaaaaggca tgcctcagaa tccagagtac


25981
tcagccaggc gcagtggccc atgcctgtaa tcccagcact ttgggaggcc aaggcaggag


26041
gatcgcttga gcccatgagt tcaagaccag cctcagcagt atagtgagac actgtctcta


26101
aaaaaaaatt gtttttaaat ccagagtact caaaccagag ggacacttgt ctttatatca


26161
aaaaggactt gccaggaaag acaaaaagtc ttttgtcatc ccaggaggga tgtaaagtcc


26221
tttattaaag tggtcttaga accaagacaa atccaaagtc aagtcaaaaa gcctctgcca


26281
aaagtgggag gctctgcctg agaaaagact cactggggca gaacagacaa gctatgtaag


26341
cggagagccc aaagggctcc tgtgagtact gcatactgat tctgagatca ccacttctct


26401
ctgaaatgtg tcctacttca ggttctactg ctgaacacca tttatgtcaa cacagagaga


26461
ggctctctaa aagaaaactc tatttgggaa tacagcattg ctgtagaaat acgcatgtca


26521
tgggccgtgc gcggtggctt atgcctgtaa tcccagcact ttgggaggct gaggtgggcc


26581
gatcacgagg tcaggagttt gagaccagcc tggccaacat agtgaaaccc cctctctact


26641
aaaaatacaa aaaattagat gggtgtattg gtgggtgcct atgatcccgc tacttgggag


26701
gctgaggcag aagattggct tgaacctgag aagtggaggt tgcagtgagc ctagatgtgc


26761
cactgcactc cagcctgggc gacagtgcaa aactacgtct ccaaaaaaaa aaaaaaaaga


26821
cccatgtcat ggtaaactac gtgtgtattc agggaagtaa aggaagacaa agattttaaa


26881
gaaaaatgag ggttgtataa ttgttttgaa ataattgtcg ttggttacaa agatcaatag


26941
caagggtggt gccactctga agttggacag gcagtggcta ggcaaaagta ttttgtgggt


27001
aacctttgtg aaaggttgca gtttttgtaa cacaagctgc tttattttcc caaaagcttt


27061
cacagtacat agaaaatata ttggacgtgt attaaatgtg ccaaattagt cagcaatatt


27121
acattaaaat atgtgttatt acttgttaat gttcttaata agttgttcag gcagttatac


27181
cagactatct tttctcattt tccaatttat aagtgtatta tccaaaaatg ttagttttag


27241
ggtgaccact gtatattttg gtatttttta aagctaccca attgtgtata atttataaaa


27301
atcttttttt cataagacct aaaacttctg aacaatacat aggtgcaaat aaataaattc


27361
ctttttatct caaactcact tccactgccc tccctgaaga aagccttttg ttattgttgt


27421
cttgactaaa tgtggcatgg gagctaacat tttcaaggga agctgatctt atctccgggc


27481
tctagaagcc aagacatgag gtatgtgttt accgtctctt aggtgactct ccagaacttt


27541
cattctcaac ctcctccctc actgccagtt cctcctcagc ttcttagcca agtggtagag


27601
gaaaaatggt attttatgtc aggactaagc catgtgctct gagccctggg taagtctgca


27661
aggcttctct agaactcata cataggtcaa ttattcctcc tctgaaaact taaactctgg


27721
caccactagc tttttcctac agcatacatg ggctcagtaa atcctctgtt aagacaacag


27781
gaaaattaag acaatgtcct tgcaagcccc ataactactt tctatccctg ctattcacag


27841
ccaagtgtgt cgagaccagt tcacacaaac cttgttgatt ttcggtttca ccccctcctt


27901
actaaatcac ccctccattt gctgcagttg cccttgcgtg ctgtactcag acttggagga


27961
agtgatgtct tattcaaggc cagtttttgt actagtggtt aaataaatgg tttccaaatt


28021
ggagtcagaa ggagagcttc taaaatgtag gttccctggc ctcaattgtg agattctgct


28081
ttagcaggtc tggaattgga gcactgggat ctgcattttc agaaaaccca aaatgattat


28141
cagccaggac ttaaacctct gctttagacc acattccctg tgggctttca gattttctat


28201
caatgttctt ccctcttccc agctcccaca cattaaaact cagatcatgc agaaaagaag


28261
ttacagttcc ttcatttcac atcaatttct catgcatccc atctggtttt gggaaggtgt


28321
gggacgaggt ggatggcctt aaacttgcca atcaaagata acgttctctt tcgattcaaa


28381
tagcctatct caggcttaaa accatctctt tggataaatg ctcagctttt caaaggttct


28441
tcctagcttc ttcctcatga tggcatctag tgggtgagaa cagtcatctc caggtgacac


28501
aggaaagagt ttctctaatg tatgtgctga ggtccttgac ggtcctgctg ctggtgctca


28561
tcctgccatc tttgctggat gtcactgagt ctactgggta atgtaagtgg gtccctggct


28621
tttgttcact gctgtcatgc cctgctcctg accacaactc tgtcattgcc tttggtctca


28681
aggtctctac cttaatagct tccatgtccc aactatggga ctgttaatct gctgggcttt


28741
ggagtgggtg ggaagggatg atgttggaac tttgggatgt actgaacatc ttgctcaagc


28801
tttgggaagc caacattttc tcagactgac tagacacctc cttccaccaa tgctgagcta


28861
gtgctcctgt gccatactgg gtaagcctct aagtcatgag taggactttt ttgagtggct


28921
tgcagtcttc cccaggctat gccaggaaag tagttgacta accctgctgc tccaagactc


28981
gcatacccat cctgaagttt ccgtttattt cccaacaggg caattgcaat ctcaatcaat


29041
ctctccctgc cctgggagtc attccactcc tgcctaatga agagactctt ctcacatcgt


29101
attctcagtt tctcttatcc atggttagga gtaaaactca tgttcagttg tccaagcttt


29161
gcttttagta tgtgaatgga gctcttagca tgtagaactc ccttctcatt ctcagtaaag


29221
tctgactttg aagactactt atcatcttcc tagagatgcc aaagaataat caagataata


29281
aaggcaggct ctgagattca cagctgagta gcaactgtgc tgttactcta gtacacaccc


29341
tctcctttcc tgtgactgtc aggcttcagg gcttaccttt attggaaaga cagcaggggg


29401
gcatatatga agaaaatgga atctttaata ttgtcaaagt cttgacccaa tagagacatt


29461
cttgccccag actctcttgc ttcagtgcct ttgcctgttc tggtcctaag taccttgaat


29521
atccttctct tgatgccctg atataaaact ctttattcct caaagccaag ttcaggttat


29581
cacctccacc acagactttt ctttccctcc ccaaacttca ttgcctcttc tcatcactcc


29641
ctttgtaatt tgtttatact ggtaagagag cattcatcat aattaggcct atctatgcct


29701
acctttcttg ttaaattatg agctttgttc tgccttggat atctctctgg cttggatatc


29761
tctctggcct ttgctctgca cttccaaatg tatccattat tcaagaccca ggtttccagc


29821
ctgatcaaca tagcaagatc ccatctctcc aaaaaaaaaa aaaaaaaaaa attgtggggc


29881
cgggtacagt ggctcatgcc tgtaatccca gcactttggg aggccgaggc aggtggatca


29941
tgaggtcacg agtttgagac cagtctggcc aacatagtga aaccccatct gtactaaaaa


30001
tgcagaaaat tagccgggtg tggtggtgtg tgcctgtaat cccagctact cgggaggctg


30061
aggcaggaga atcgcatgaa cccgggaggc agaggttgca gtgagccgag attgcgccac


30121
tgcactccag cctgggtgac attgcaagac tccatctcaa aaaaaaaaaa aaaaaaaatt


30181
agctgggcat ggtggcaggc acctgtagtc ccagctactt gagaggctga ggtgggagga


30241
ttgcttgagc ccaggaagtc gaggcttcat gagccatgtt tgtgctactg cactctagcc


30301
tggatgacaa agtgagatcc ttttctaaaa ataaggaccc agtttatttt atttagttat


30361
ttagttattt ttgagaccaa gtttcatcac tcaggctgga gtgcaatggc acagtcttga


30421
ctcactgcaa cctctgcctc ctggattcaa gcaattcttc tgcctcagcc tcttgagtag


30481
ctgggattgc aggtgcccgc caccacacct ggctaatttt tgtatttttg gtagagacag


30541
ggtttcacta tgttggccag gctggtctca aactcctgac ctcaggtgat ccacctgcct


30601
tggtctccca aactgctggg attacaggtg tgagtcaccc tgcctggcca gaacccagtt


30661
taaattccat cctctctgca gagtcttcct taaccacccc tattgaaagt tacccctgct


30721
tcctacaaga agtggtactt ggatgttcat gagatacctg tgcaaggctc ctgtgggggt


30781
cctggggaga cagtgacatg gacactcatg aaaggaacct tggaatagcg agtgtgtgtg


30841
ctataaaatg tgctttagat ttgattacca ccacttaagt tatgagctct gatatggttt


30901
gggtctccat ccccacccaa atctcatctt gaattgtaat ccctacatgt tgagggaagg


30961
aagtaattgt attatggggg tggttctccc atgctgttct catgatagtg aattctcaca


31021
ggatctgatg gttttataaa tggtagtttt tcctgtactt tcacacactc acactctctt


31081
ctgccacctt gtgaagaagg tgcctgcttc cccttctgcc ataattgtaa gtttcctgag


31141
gcctccccag ctgtattagt ctgatctcac gcggctaata aagagatacc ggagactggg


31201
taatttataa aagaggttta attgactcac agttttacat ggctggggag gcctcacaat


31261
tatggcagaa ggtgaagggg gagcaagaca catcttacat ggcatcaggc gagagagctt


31321
gtgtagggga actccccttt ataaaaccat cagatctcgt gagacttatt cactattaca


31381
agagcagcac gggaaagacc cacccccatg attcagttac ctctcactgg gtccctcaca


31441
taatatgggg aattatggga gctccaattc aagatgagat ttgggtgggg acacagccaa


31501
actatatcac cagccatgtg gaactgttga gtcaattaaa cctctttcct ttataaatta


31561
cccagtctca ggtatttctt tatagcagtg tgagaacaga ctaatacaag caccttgagg


31621
tcagaggcta aaatcacttt ttcccaaaca tttccttttt atatatgcta catctttgtg


31681
tctgcttcaa catttccagc agtgctttat atatggtagg catgcaataa atgcttcttg


31741
atcgactgac aggtgctcag aagatctagg ttggttgatt ctcttgtgat gccatctttt


31801
cctgagagct cattaatttt taagttgttt tccttgaaat gcatggtatg tttcctccac


31861
cctgctcttt gcctttcata gggttccatt ttgatcagct gctctcattg tctgttttgt


31921
gatcaaaggt tctgatgaac tttggaatat gtgtatgttt ggagtgagga tggggtctgg


31981
aggagatgca tggttgagga ccaattcacc caacccagct tacagaagta aagcggcccc


32041
ttaggagcac tgaagcattg ctgtggattt cagaattacc ttatttcttt ttcttttttt


32101
tttttttttt tttgagacga ggtctcgctc tgtcgcccag gctggagtgc agtggcacaa


32161
tctcagctca ctgcaagctc cgcctcctgg gttcacacca ttctcctccc tcagcctccc


32221
cagcagctgg gactataggt gcacgccgcc acgcctggct aatttttgta tttttagtgg


32281
agacagggtt tcaccgtgtt agccaggatg gtctcaatct cctgaccttg tgatccaccc


32341
gcctcagcct cccaaagtgc tgggattaca ggcgtgagcc accgtgccca gccagcttct


32401
ttcaaatcag agtaggcctt ccagtgtggc aggccataag atctgaagtt ttcaccctgt


32461
tcctggaagc caagtggaca gcaactaatt tttactttct ttattgcaca tttggggctt


32521
gggggataga gtcagatgtg tgtcagttga aactgtagct actgcattcc actccttggg


32581
ggatcgtagt gctcatgcca acagaaaact tcgaggctaa taattactgt cttcagagta


32641
caagacaggc acggaagttg ttttggcata agaaaaccac gatttgcatc ccacagtcta


32701
aggaagacga tgctgaattc agaagatggt gcaaaagtgt gacagttcag ctgtggcggc


32761
tgttgctgat gcatgggact attttattta catttccttt cttctttttt aacagagaca


32821
ggatcttgct gtgttgccca gcctggtctt aaactcctgg gcccaagtga tcctcccacc


32881
tcagcctccc aacgtgttgg gattacaggc atgagccacc atgcctgggc tttatttata


32941
tttccaagtc aaatgttagt tggtcaatca gtctttttaa gcaccaattt tgtgcctagc


33001
cttgtggaaa ctgtaggaaa aagatacttt ttatttggga ggaccttgat ttgctgtcac


33061
aggtgccact aatgccaatt ataaggcagt gtggaatcag gtgattgaaa gcccagtctg


33121
tagcataaac tgctgcaggg ttccagtggg ggcaattaag gtgggcaggg agggtggata


33181
gcatttgact ttgacagcat aacctgagca gaggcacagt ggggatggtg agtgtgcagt


33241
gggaggaggg agagaggtaa gtggtaggga agaggtggga agggggcaag gagaaggctc


33301
aggaggtttg gggacaggga aatgacttgg ttggcgacct cttactttct tctcgtgtgt


33361
gcaatttgga attcacttgg ttcttagtat ttctgggtca gatgacttct ttgcagtatg


33421
agaaaccatt tcccaggctg gctacctggg ctgtggtatc ttccagtgct cctctgtgat


33481
tgtactcaga tcagctcgtc taggcaggca ggatggcaga agccctctga cttcatgtct


33541
gaaagagtat gtgtttcaac tctgtaatta cagcatttaa cagacgatat cagccctctt


33601
tgggatggct tttggcaaat gggctagaag tctattgtgc atttaaatga tactgcatct


33661
tctctttaaa aggtttctca gtgagtccac cccactctgt atccaagtat gtctcaggcc


33721
atgaggcaaa aggaaatgag tagttctttt tggttggaga attaaaaaga aatctccacc


33781
caagtaacag gtacatagtg ggaaaaaata acatctgcct gaaagcttca tcttcaggca


33841
aagagagggt cagggggcgg gagcttagta atggggaaac ctcagaagat ttaaagagaa


33901
ttacagacag acaaggctga acattggctg tcatccaaca aagctcttat aagatgggaa


33961
tcactgcccg gttcttgagc tccgacctgg agggaagagg agtctggaag acttggcaca


34021
ggcctgagtg cttcattgtc tttctggttc caagtcctcc tcagctcact aggaaggagg


34081
tggggtgggg gcaggtaggc cactctgcat aagtgcacac atctacactg gctagtctac


34141
ttcacaattc ccccacaggt tatccttatc tctacctggt tccagttcca gattggaggg


34201
atatagaata ccatccccac ccctcacctt gcttgctctg gcctggaaaa ctgtcattcc


34261
tttaccacca gctggcatct gccatatgct tcaaggaact gaataaagag gaaggggaaa


34321
gaagaaacta gagaaactgg aatgcttcct atctgacccc caagtacagg gactgcctct


34381
ttccgtaacg gcacagaacg tctccatccc tttgacctcc acctccccag agatgcccga


34441
ggaggacagc cttgtttctg tgatctgttg ttgagaactg ctgctgagaa ttcttccttc


34501
agcaccgcct taggcaccat tggtttttca ctaggtccgc tgtagaaaac agccaggaat


34561
tacttagttg actaccacct gaggtgctgt ttggtgttgg taataaagaa taaaggtgga


34621
aatgaa










SEQ ID NO: 6 Fkanan SMARD2 Isoform 1 Amino Acid Sequence (NP_005892.1)








1
mssilpftpp vvkrllgwkk saggsggagg geqngqeekw cekavkslvk klkktgrlde


61
lekaittqnc ntkcvtipst cseiwglstp ntidqwdttg lysfseqtrs ldgrlqvshr


121
kglphviycr lwrwpdlhsh helkaience yafnlkkdev cvnpyhyqrv etpvlppvlv


181
prhteiltel pplddythsi pentnfpagi epqsnyipet pppgyisedg etsdqqlnqs


241
mdtgspaels pttlspvnhs ldlqpvtyse pafwcsiayy elnqrvgetf hasqpsltvd


301
gftdpsnser fclgllsnvn rnatvemtrr higrgvrlyy iggevfaecl sdsaifvqsp


361
ncnqrygwhp atvckippgc nlkifnnqef aallaqsvnq gfeavyqltr mctirmsfvk


421
gwgaeyrrqt vtstpcwiel hlngplqwld kvltqmgsps vrcssms










SEQ ID NO: 7 Mouse Smad2 transcript variant 2 mRNA Sequence


NM_001252481.1; (CDS: 443-1846)








1
ggttaaaata actatctgag atttgttttg ctgttgttgt tgtttaagga aaattaaggt


61
agtaccatat cttaaatcat tgcaacaaga ggcagtattg ctacttataa aagtaaataa


121
tagtgtataa aattgtgttt caaccgaatc ttactggcat ctttctctct ttcttggaaa


181
cactccatga aacaatagat gcagtagatc aggatgatgg ggacgggaat gggggcacta


241
ctacactact atactactac actctaggat gcgaggctgc atgcagagtt aacaacagtc


301
agctgactgt ttacctgaaa gactggcata gaataggaaa atttggtgcc aagtgcataa


361
aaataagcaa atgaaaagac attaattctg ggtagattta ccgggctttt tctgagtgtg


421
gattgttacc tttggtaaga aaatgtcgtc catcttgcca ttcactccgc cagtggtgaa


481
gagacttctg ggatggaaaa aatcagccgg tgggtctgga ggagcaggtg gtggagagca


541
gaatggacag gaagaaaagt ggtgtgaaaa agcagtgaaa agtctggtga aaaagctaaa


601
gaaaacagga cggttagatg agcttgagaa agccatcacc actcagaatt gcaatactaa


661
atgtgtcacc ataccaagca cttgctctga aatttgggga ctgagtacag caaatacggt


721
agatcagtgg gacacaacag gcctttacag cttctctgaa caaaccaggt ctcttgatgg


781
ccgtcttcag gtttcacacc ggaaagggtt gccacatgtt atatattgcc ggctctggcg


841
ctggccggac cttcacagtc atcatgagct caaggcaatc gaaaactgcg aatatgcttt


901
taatctgaaa aaagatgaag tgtgtgtaaa tccgtaccac taccagagag ttgagacccc


961
agtcttgcct ccagtcttag tgcctcggca cacggagatt ctaacagaac tgccgcccct


1021
ggatgactac acccactcca ttccagaaaa cacaaatttc ccagcaggaa ttgagccaca


1081
gagtaattac atcccagaaa caccaccacc tggatatatc agtgaagatg gagaaacaag


1141
tgaccaacag ttgaaccaaa gtatggacac aggctctccg gctgaactgt ctcctactac


1201
tctctctcct gttaatcaca gcttggattt gcagccagtt acttactcgg aacctgcatt


1261
ctggtgttca atcgcatact atgaactaaa ccagagggtt ggagagacct tccatgcgtc


1321
acagccctcg ctcactgtag acggcttcac agacccatca aactcggaga ggttctgctt


1381
aggcttgctc tccaacgtta accgaaatgc cactgtagaa atgacaagaa gacatatagg


1441
aaggggagtg cgcttgtatt acataggtgg ggaagtgttt gctgagtgcc taagtgatag


1501
tgcaatcttt gtgcagagcc ccaactgtaa ccagagatac ggctggcacc ctgcaacagt


1561
gtgtaagatc ccaccaggct gtaacctgaa gatcttcaac aaccaagaat ttgctgctct


1621
tctggctcag tctgtcaacc agggttttga agccgtttat cagctaaccc gaatgtgcac


1681
cataagaatg agttttgtga agggctgggg agcagaatat cggaggcaga cagtaacaag


1741
tactccttgc tggattgaac ttcatctgaa tggccctctg cagtggctgg acaaagtatt


1801
aactcagatg ggatcccctt cagtgcgatg ctcaagcatg tcgtaaaccc atcaaagact


1861
cgctgtaaca gctcctccgt cgtagtattc atgtatgatc ccgtggactg tttgctatcc


1921
aaaaattcca gagcaaaaac agcacttgag gtctcatcag ttaaagcacc ttgtggaatc


1981
tgtttcctat atttgaatat tagatgggaa aattagtgtc tagaaatgcc ctccccagcg


2041
gggaaaaaga agacttaaag acttaatgat gtcttgttgg gcataagaca gtatcccaaa


2101
ggttattaat aacagtagta gttgtgtaca ggtaatgtgt ccagacccag tattgcagta


2161
ctatgctgtt tgtatacatt cttagtttgc ataaatgagg tgtgtgtgct gcttcttggt


2221
ctaggcaagc ctttataaaa ttacagtatc taatctgtta ttcccacttc tccgttattt


2281
ttgtgtcttt tttaatatat aatatatata tatcaagatt ttcaaattat catttagaag


2341
cagattttcc ttgtagaaac taatttttct gccttttacc aaaaataaac aaactcttgg


2401
gggaagacaa gtggattaac ttggaagtcc ttgaccttca tgtgtccagt ggatcttagc


2461
agtcgttctt ttgtgagcct tttctcctga gttgcattag aaggaaacct tactggaacc


2521
gtccaggctc ctcatcccat tcctgttctg gttcagagca gtacagcaga atgacgtcgt


2581
gctaaacagt tgcactgctg gcttctgggt tagttgtttc tgagtccagg aaaggtttgt


2641
gtgggcagta agtccttttg tctaataacc agacttcagc agatgataac tgatgtgtat


2701
aaccagttgt tctgttgatt aacttttgtc tcaaacatgc acaggtggca gtataattat


2761
tttcagggct attctagaat catctcagtc tgtttccttc ttccaaagcc agtctaataa


2821
taaagtacct ttctgtaaag gcagccgacc ttttgcctca ttttactttt actaccaggt


2881
tgtattacag aacagacctt ttgtaaatgt gttagagtga cgctgaggtc ttgtcagcag


2941
atagggccat ctgtttttaa agtgtattgt atgtaattta taagtagaat gttattttac


3001
ctagcttcaa aggtttaaat attgtgagct aagccattta gcaagatttc tagcccgcag


3061
ttagctgtgg acttagctct tcctgactta ccctgggtgt gtggtttgct gacctttcag


3121
ctctgcagga aggagatccc agctgtcctt tggtcctccc ttctgcagca cacgacagtc


3181
atgtccagtg ttgactcctt tctcgtttgc aactccgtac aaatgcctgg tctccttttt


3241
gtaaactttc atatttttgc agacaaatac ttttggtact tactctttga gaccattctc


3301
acatgtatgt acagtaatca tttttgatgc ttttcaacat tggttgtttt ctatttgata


3361
tttctcattt tcctatattt gtgtttgtat gttatgtgtt catgtaaatt tggtatagta


3421
atttttattc aaatatttat tgttcacctg ttaatgtgcc atgaacttcc ttaacttttg


3481
ggtgaaggtg aacaagatag ctatagttcc tgcctttgct aagagcagtt ggtttaaccc


3541
atactcaagt gtctgcatag gaggtaaaca gggtatactt tgagaatggc agagacgatg


3601
cttttggtag gatattagga aggcatctgg agagtgatgt gtaagctaac ccctgaccta


3661
ggaagagaaa gccatgtgaa gagccaaggg caatttaaca ctgctggaac attatcagca


3721
tccaaaggct caggctcata gagactcact gtcaggtatc atgattgtgc acacacctgc


3781
acacacccac acgtggtgat gaaaatgctt gttcagttta gaatttgttg aaggtgggac


3841
tgctttgtga caggctgctt ctgtcatctc actgtaatct attcctcaga ccttgtacag


3901
ctttcttaca ccaggtcagt gccacttaat ttaacaactc ccgttacgta aatgctcacc


3961
agtctggagc ctccctgctt gcttctggac gtgttgctgc atatcggcta tcactgcttc


4021
ccttccgctg cccatcttgt gatagagcaa ttgtcctgtg cattattgct gttgagccta


4081
ctggagatcc ttgtacataa actgcccctt ctctggaagt ttccacagac tagaaaactt


4141
gagctgttgg gacagttctg gggcagagga cagctttgaa agtggtagga ggttatcaga


4201
catgttaaag tgttgccaac agtgagacac agctccatgg ttggggttca ggaataggtt


4261
ttctatacca ccgagcgtga acaagtcacc gtgtaaactc atgtgaaaag aattcagtgc


4321
ttatctttgc ttttcaccgg aatgctgtgg gcatgcgcta ctgtcaccta gattttgttg


4381
atttcacctc ttttgcaaga ctgatttttg ttccagatga ttcctacggc ctctcttggt


4441
tgatttatat tgatttaatt tctccacatt atttagcatc atgtctcagc agtaatttga


4501
aagcctttct accagattca aacatttggt tgtattaggc cagtcttttg gaatgccact


4561
aaactgggct gtgacttaag gaccctttcc tgctagggtc tgagccacac cagttagact


4621
tactatccat cgttatatac atttagtcag catagttcct gcctattgtt tacccagcca


4681
atgtgattct gggaccatgt cctggctctg gagttgggct tagtcctgtg agagttcctg


4741
ttgttttcag ggcctatgac tttgccagaa ggaatttgca tatgttttct tgagagctga


4801
atcttctaat tgtgtacata tatgtatgta tatgtacaga gttccttctt tgtttcttta


4861
atttcacctt catcacgcct tggttgtcag ttcatcccga ctaagagtcc aagtcagtca


4921
ggttagtagg cttttgctgg ttgaagtcaa agaaagcaga tgcccagttg ccttccctac


4981
ctctgccaag agctgcccgt atgtgttttt aagccctccc ccttttttta agattaacta


5041
cttggaacag ttgttctctt aggtgtcctc tttgctggag agtagttgat ttggtggtga


5101
ggtataaagt aaggagacaa tctaagttga cccttccagc ttgcctgtgt gttgcacctc


5161
tctgtgcaac tatctcaggt atgtcttcac agggcagcca agggcctttc cccatactgt


5221
ggcttaaggc tttggtgtcc tgatagatca gacttattac ttgtcatgct tttgcctgag


5281
cactttgcta aacccaggct tccttgcacc ttaccctccc cagtcaatca gctctatttt


5341
tttttctgaa tgcattctgt attcttccct tagtgcgatg catttccctg caggcaagct


5401
agtattgttc attcctggac cgttgttgga gtctttcaaa tgactctgga atttttgccc


5461
agttaaaatg tccctgtgac tgacaagtag caaactcaac attatttatc atagtttaga


5521
tggtaacagc atctccatca cagtttgggg acagtctaga tcagcggtgt gaccctttag


5581
tgcagttcct catgttgtgg tgacccccag ccataaaatt attttattgc tacttcatta


5641
ctgtaatttt gctactgtta tgaatcataa tgtaaatatc tttgattttt gatggtctta


5701
ggtgacccct gtgaaaaggt tgtttgacca cccctccccc aaggggttgc aacccacagg


5761
ttgagaaacc actgttgtaa agtgtccgat ttattccagt gatggtggtc tgtggtctgc


5821
agaggtagac ctctgccatt ggctcctctt ctgttttcca gcttgcttga ttattttact


5881
tgttcagact accttttgtc cagggagatt gagggacaag ttatttcttg gattatagtt


5941
tatgtgttta aatacttgga gccagaaaat gctgagttaa tctcatgagt gcttttgcga


6001
taagaattgg cctcatgtgt tatatcttga atagagactt ttaccttggc cattataggt


6061
agcttatata catgagagtt gcctcaaaca ttttagtttt agtgtatatg tgtgtgtgtg


6121
ttcaagtgta cacacatgta ccctcagaaa acaaacggtg gggttatctt aacaatgatg


6181
aaagatacat tgtttaaatc tcagatctca gtaaagagat cccatttgct tgtagactca


6241
tgacacaatc agtgtattta aaatgaaatt accagtcctt atttgacagt gcagctggta


6301
tgctggtgtt cgggcactgg tgaaaatcat aagaaatcaa ttaccgccaa taaagctttc


6361
catatacctc atccctaaac tacacccagc actgagggtt aacttgaaaa tctgtctctt


6421
cttcatttgg gtctccccat gaaattccag agacccggga agtacctcca tgaagtcaga


6481
gtcccacacc taatgctact ctaaaggaag gtagttcagg cctgtcttgg cagtgaacta


6541
ccaagaaatg attttccaag acttcttaga acctctgtat actaaccacc tatgtgttca


6601
ttggctagct tctgagtctt agagtggacc ccaggtttca caaatgctag agatgtagga


6661
tcccttggga aaaggggtgt tttttggttt gctattttgg gatggaaggt aaggatttgt


6721
accttttttc tgtcttgaag taatttttaa acaaccaaat acgcaacata agaacagata


6781
caaagcttta gcgtgttgga aaacgctctg attagtgtac aacttccaaa ccagctgtta


6841
cccttcctct ctctggcttt aaggttcctg gctggttgca gtggtaaaca ctaagtaact


6901
ttatgtttct aaggctgtat taaattgtgc ccttcacagt gttgtgtcat agggggttgg


6961
ctttggggag ctgagaagaa acctgccttg aagggccagt gcctagctgg ttgcacattt


7021
gtccttgcct ctgtagggtg gtggattatt ggcttataga ggtagtttac agagactggt


7081
ttaaatcacg agaataacta accaacccct ggcctctgaa ccatgtatgt acatataccg


7141
atccagccta tttcttggta aaatgcagaa ttcaaattgg gcacacatta gaccagcttt


7201
accttcgact tcatttacgc ttttattgac tctgacataa ggtgtgagta tttgactttc


7261
tttgttggtg gcagtgatct gtaacactca gcactttcta ggtgagctaa accaagaaaa


7321
tccacagtga ctggctaagg ctgcaacttc attggaaggc aagtgaaaaa gcatcagagg


7381
cctcctgcct caaggctggc ctcctgggag ctcagtacac agtagtgtgg ctctgggcct


7441
ctgcaagggc cttcaagctt ggctgtcctc atacacgaaa ttagaatgtg ggagtagttg


7501
gcgttgaagg tcttcacatt taaagggata taaaacgata catgaaacta gaatattcat


7561
ttagctcaga aaatctcaac acgtggtagg taagatgcta tgtaacttac gggaacagga


7621
gactcgggac gtcttgtctg aaagtgggtt tcaagagtga agtctgatac actaccacta


7681
aatgtacttg gtctgagtta aataacctta aggtatttcc cagcttccag ctggttagcc


7741
tttagcaaga gagctacaag tgcattgtcc ttaaggagcc ttatgtacac agacgttctt


7801
ttctctgcac gtgtcaaggg aaggtgacca gtcccagcca tgcctgggac aagggtccca


7861
gatatgcaat gctaagtgcc aaccaaagtg agtcctaggg gtcctgggag gagttgtccc


7921
cttaggtgtc ctcaggactt attctcatac tgatgtcatc ctagctgata actgtgttgg


7981
gttatgccat ggctgtcaat atttttagga ctcaacccct gtattctgta ttcattactg


8041
tggatgcaac ctaagattta caataaataa cacaaagaac aatggagttg agtatggaat


8101
gaaaagaggc aacgagctag ggatgatctg tgtaggtgta agtacacttt gtgtccttag


8161
gagttcttgt aacagaaacc gtgtgaaact atagatgtct tctcctataa gggaaaacat


8221
ggtgtttgat gctttggtct ctatttccca gtctgtcctg cttaagaagc cagaatgtgg


8281
tttctatttg gtggatgctg tcttaaaatt actaaatgtg tcatccggaa gcaggtaaag


8341
gagtcagtat ccctgtggag ttctgtccta ctctcacggt gcttaccagc taagctgagc


8401
tcaggagcca agggaaaccc tgctcctgct ctctggtggt cctcagtggc tgatgcagtg


8461
cactgtgatg gagatactaa aacaagtgtg ttatttgtaa gtcttctctc agtgattgtc


8521
agacaactgt ggtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgagaaacag


8581
tgagctgagg ctttattata gctgatttcc agttaaaatt gtgaaatacg tatttcttgt


8641
ccacaccaaa tatttcagtc tatttaatgt attaaagaaa tagttctgct taagaaaatg


8701
ttgcttaaat gttctgtgat ttctggtgca tttttataca gatctgtgtg tgtctgtgca


8761
ttcactttct gcctttgctc tctgtgttaa ctgtcctgtt gccctcggaa ggtggacact


8821
attcgtagca ttaaaaagaa atatttgagt tatttaccat gtc










SEQ ID NO: 8 Mouse Smad2 Isoform 1 Amino Acid Sequence (NP_001239410.1)








1
mssilpftpp vvkrllgwkk saggsggagg geqngqeekw cekavkslvk klkktgrlde


61
lekaittqnc ntkavtipst cseiwglsta ntvdqwdttg lysfseqtrs ldgrlqvshr


121
kglphviycr lwrwpdlhsh helkaience yafnlkkdev cvnpyhyqrv etpvlppvlv


181
prhteiltel pplddythsi pentnfpagi epqsnyipet pppgyisedg etsdqqlnqs


241
mdtgspaels pttlspvnhs ldlqpvtyse pafwcsiayy elnqrvgetf hasqpsltvd


301
gftdpsnser fclgllsnvn rnatvemtrr higrgvrlyy iggevfaecl sdsaifvqsp


361
ncnqrygwhp atvckippgc nlkifnnqef aallaqsvnq gfeavyqltr mctirmsfvk


421
gwgaeyrrqt vtstpcwiel hlngplqwld kvltqmgsps vrcssms










SEQ ID NO: 9 Mouse Smad2 transcript variant 3 mRNA Sequence


(NM_001311070.1; CDS: 48-1361)








1
atttaccggg ctttttctga gtgtggattg ttacctttgg taagaaaatg tcgtccatct


61
tgccattcac tccgccagtg gtgaagagac ttctgggatg gaaaaaatca gccggtgggt


121
ctggaggagc aggtggtgga gagcagaatg gacaggaaga aaagtggtgt gaaaaagcag


181
tgaaaagtct ggtgaaaaag ctaaagaaaa caggacggtt agatgagctt gagaaagcca


241
tcaccactca gaattgcaat actaaatgtg tcaccatacc aaggtctctt gatggccgtc


301
ttcaggtttc acaccggaaa gggttgccac atgttatata ttgccggctc tggcgctggc


361
cggaccttca cagtcatcat gagctcaagg caatcgaaaa ctgcgaatat gcttttaatc


421
tgaaaaaaga tgaagtgtgt gtaaatccgt accactacca gagagttgag accccagtct


481
tgcctccagt cttagtgcct cggcacacgg agattctaac agaactgccg cccctggatg


541
actacaccca ctccattcca gaaaacacaa atttcccagc aggaattgag ccacagagta


601
attacatccc agaaacacca ccacctggat atatcagtga agatggagaa acaagtgacc


661
aacagttgaa ccaaagtatg gacacaggct ctccggctga actgtctcct actactctct


721
ctcctgttaa tcacagcttg gatttgcagc cagttactta ctcggaacct gcattctggt


781
gttcaatcgc atactatgaa ctaaaccaga gggttggaga gaccttccat gcgtcacagc


841
cctcgctcac tgtagacggc ttcacagacc catcaaactc ggagaggttc tgcttaggct


901
tgctctccaa cgttaaccga aatgccactg tagaaatgac aagaagacat ataggaaggg


961
gagtgcgctt gtattacata ggtggggaag tgtttgctga gtgcctaagt gatagtgcaa


1021
tctttgtgca gagccccaac tgtaaccaga gatacggctg gcaccctgca acagtgtgta


1081
agatcccacc aggctgtaac ctgaagatct tcaacaacca agaatttgct gctcttctgg


1141
ctcagtctgt caaccagggt tttgaagccg tttatcagct aacccgaatg tgcaccataa


1201
gaatgagttt tgtgaagggc tggggagcag aatatcggag gcagacagta acaagtactc


1261
cttgctggat tgaacttcat ctgaatggcc ctctgcagtg gctggacaaa gtattaactc


1321
agatgggatc cccttcagtg cgatgctcaa gcatgtcgta aacccatcaa agactcgctg


1381
taacagctcc tccgtcgtag tattcatgta tgatcccgtg gactgtttgc tatccaaaaa


1441
ttccagagca aaaacagcac ttgaggtctc atcagttaaa gcaccttgtg gaatctgttt


1501
cctatatttg aatattagat gggaaaatta gtgtctagaa atgccctccc cagcggggaa


1561
aaagaagact taaagactta atgatgtctt gttgggcata agacagtatc ccaaaggtta


1621
ttaataacag tagtagttgt gtacaggtaa tgtgtccaga cccagtattg cagtactatg


1681
ctgtttgtat acattcttag tttgcataaa tgaggtgtgt gtgctgcttc ttggtctagg


1741
caagccttta taaaattaca gtatctaatc tgttattccc acttctccgt tatttttgtg


1801
tcttttttaa tatataatat atatatatca agattttcaa attatcattt agaagcagat


1861
tttccttgta gaaactaatt tttctgcctt ttaccaaaaa taaacaaact cttgggggaa


1921
gacaagtgga ttaacttgga agtccttgac cttcatgtgt ccagtggatc ttagcagtcg


1981
ttcttttgtg agccttttct cctgagttgc attagaagga aaccttactg gaaccgtcca


2041
ggctcctcat cccattcctg ttctggttca gagcagtaca gcagaatgac gtcgtgctaa


2101
acagttgcac tgctggcttc tgggttagtt gtttctgagt ccaggaaagg tttgtgtggg


2161
cagtaagtcc ttttgtctaa taaccagact tcagcagatg ataactgatg tgtataacca


2221
gttgttctgt tgattaactt ttgtctcaaa catgcacagg tggcagtata attattttca


2281
gggctattct agaatcatct cagtctgttt ccttcttcca aagccagtct aataataaag


2341
tacctttctg taaaggcagc cgaccttttg cctcatttta cttttactac caggttgtat


2401
tacagaacag accttttgta aatgtgttag agtgacgctg aggtcttgtc agcagatagg


2461
gccatctgtt tttaaagtgt attgtatgta atttataagt agaatgttat tttacctagc


2521
ttcaaaggtt taaatattgt gagctaagcc atttagcaag atttctagcc cgcagttagc


2581
tgtggactta gctcttcctg acttaccctg ggtgtgtggt ttgctgacct ttcagctctg


2641
caggaaggag atcccagctg tcctttggtc ctcccttctg cagcacacga cagtcatgtc


2701
cagtgttgac tcctttctcg tttgcaactc cgtacaaatg cctggtctcc tttttgtaaa


2761
ctttcatatt tttgcagaca aatacttttg gtacttactc tttgagacca ttctcacatg


2821
tatgtacagt aatcattttt gatgcttttc aacattggtt gttttctatt tgatatttct


2881
cattttccta tatttgtgtt tgtatgttat gtgttcatgt aaatttggta tagtaatttt


2941
tattcaaata tttattgttc acctgttaat gtgccatgaa cttccttaac ttttgggtga


3001
aggtgaacaa gatagctata gttcctgcct ttgctaagag cagttggttt aacccatact


3061
caagtgtctg cataggaggt aaacagggta tactttgaga atggcagaga cgatgctttt


3121
ggtaggatat taggaaggca tctggagagt gatgtgtaag ctaacccctg acctaggaag


3181
agaaagccat gtgaagagcc aagggcaatt taacactgct ggaacattat cagcatccaa


3241
aggctcaggc tcatagagac tcactgtcag gtatcatgat tgtgcacaca cctgcacaca


3301
cccacacgtg gtgatgaaaa tgcttgttca gtttagaatt tgttgaaggt gggactgctt


3361
tgtgacaggc tgcttctgtc atctcactgt aatctattcc tcagaccttg tacagctttc


3421
ttacaccagg tcagtgccac ttaatttaac aactcccgtt acgtaaatgc tcaccagtct


3481
ggagcctccc tgcttgcttc tggacgtgtt gctgcatatc ggctatcact gcttcccttc


3541
cgctgcccat cttgtgatag agcaattgtc ctgtgcatta ttgctgttga gcctactgga


3601
gatccttgta cataaactgc cccttctctg gaagtttcca cagactagaa aacttgagct


3661
gttgggacag ttctggggca gaggacagct ttgaaagtgg taggaggtta tcagacatgt


3721
taaagtgttg ccaacagtga gacacagctc catggttggg gttcaggaat aggttttcta


3781
taccaccgag cgtgaacaag tcaccgtgta aactcatgtg aaaagaattc agtgcttatc


3841
tttgcttttc accggaatgc tgtgggcatg cgctactgtc acctagattt tgttgatttc


3901
acctcttttg caagactgat ttttgttcca gatgattcct acggcctctc ttggttgatt


3961
tatattgatt taatttctcc acattattta gcatcatgtc tcagcagtaa tttgaaagcc


4021
tttctaccag attcaaacat ttggttgtat taggccagtc ttttggaatg ccactaaact


4081
gggctgtgac ttaaggaccc tttcctgcta gggtctgagc cacaccagtt agacttacta


4141
tccatcgtta tatacattta gtcagcatag ttcctgccta ttgtttaccc agccaatgtg


4201
attctgggac catgtcctgg ctctggagtt gggcttagtc ctgtgagagt tcctgttgtt


4261
ttcagggcct atgactttgc cagaaggaat ttgcatatgt tttcttgaga gctgaatctt


4321
ctaattgtgt acatatatgt atgtatatgt acagagttcc ttctttgttt ctttaatttc


4381
accttcatca cgccttggtt gtcagttcat cccgactaag agtccaagtc agtcaggtta


4441
gtaggctttt gctggttgaa gtcaaagaaa gcagatgccc agttgccttc cctacctctg


4501
ccaagagctg cccgtatgtg tttttaagcc ctcccccttt ttttaagatt aactacttgg


4561
aacagttgtt ctcttaggtg tcctctttgc tggagagtag ttgatttggt ggtgaggtat


4621
aaagtaagga gacaatctaa gttgaccctt ccagcttgcc tgtgtgttgc acctctctgt


4681
gcaactatct caggtatgtc ttcacagggc agccaagggc ctttccccat actgtggctt


4741
aaggctttgg tgtcctgata gatcagactt attacttgtc atgcttttgc ctgagcactt


4801
tgctaaaccc aggcttcctt gcaccttacc ctccccagtc aatcagctct attttttttt


4861
ctgaatgcat tctgtattct tcccttagtg cgatgcattt ccctgcaggc aagctagtat


4921
tgttcattcc tggaccgttg ttggagtctt tcaaatgact ctggaatttt tgcccagtta


4981
aaatgtccct gtgactgaca agtagcaaac tcaacattat ttatcatagt ttagatggta


5041
acagcatctc catcacagtt tggggacagt ctagatcagc ggtgtgaccc tttagtgcag


5101
ttcctcatgt tgtggtgacc cccagccata aaattatttt attgctactt cattactgta


5161
attttgctac tgttatgaat cataatgtaa atatctttga tttttgatgg tcttaggtga


5221
cccctgtgaa aaggttgttt gaccacccct cccccaaggg gttgcaaccc acaggttgag


5281
aaaccactgt tgtaaagtgt ccgatttatt ccagtgatgg tggtctgtgg tctgcagagg


5341
tagacctctg ccattggctc ctcttctgtt ttccagcttg cttgattatt ttacttgttc


5401
agactacctt ttgtccaggg agattgaggg acaagttatt tcttggatta tagtttatgt


5461
gtttaaatac ttggagccag aaaatgctga gttaatctca tgagtgcttt tgcgataaga


5521
attggcctca tgtgttatat cttgaataga gacttttacc ttggccatta taggtagctt


5581
atatacatga gagttgcctc aaacatttta gttttagtgt atatgtgtgt gtgtgttcaa


5641
gtgtacacac atgtaccctc agaaaacaaa cggtggggtt atcttaacaa tgatgaaaga


5701
tacattgttt aaatctcaga tctcagtaaa gagatcccat ttgcttgtag actcatgaca


5761
caatcagtgt atttaaaatg aaattaccag tccttatttg acagtgcagc tggtatgctg


5821
gtgttcgggc actggtgaaa atcataagaa atcaattacc gccaataaag ctttccatat


5881
acctcatccc taaactacac ccagcactga gggttaactt gaaaatctgt ctcttcttca


5941
tttgggtctc cccatgaaat tccagagacc cgggaagtac ctccatgaag tcagagtccc


6001
acacctaatg ctactctaaa ggaaggtagt tcaggcctgt cttggcagtg aactaccaag


6061
aaatgatttt ccaagacttc ttagaacctc tgtatactaa ccacctatgt gttcattggc


6121
tagcttctga gtcttagagt ggaccccagg tttcacaaat gctagagatg taggatccct


6181
tgggaaaagg ggtgtttttt ggtttgctat tttgggatgg aaggtaagga tttgtacctt


6241
ttttctgtct tgaagtaatt tttaaacaac caaatacgca acataagaac agatacaaag


6301
ctttagcgtg ttggaaaacg ctctgattag tgtacaactt ccaaaccagc tgttaccctt


6361
cctctctctg gctttaaggt tcctggctgg ttgcagtggt aaacactaag taactttatg


6421
tttctaaggc tgtattaaat tgtgcccttc acagtgttgt gtcatagggg gttggctttg


6481
gggagctgag aagaaacctg ccttgaaggg ccagtgccta gctggttgca catttgtcct


6541
tgcctctgta gggtggtgga ttattggctt atagaggtag tttacagaga ctggtttaaa


6601
tcacgagaat aactaaccaa cccctggcct ctgaaccatg tatgtacata taccgatcca


6661
gcctatttct tggtaaaatg cagaattcaa attgggcaca cattagacca gctttacctt


6721
cgacttcatt tacgctttta ttgactctga cataaggtgt gagtatttga ctttctttgt


6781
tggtggcagt gatctgtaac actcagcact ttctaggtga gctaaaccaa gaaaatccac


6841
agtgactggc taaggctgca acttcattgg aaggcaagtg aaaaagcatc agaggcctcc


6901
tgcctcaagg ctggcctcct gggagctcag tacacagtag tgtggctctg ggcctctgca


6961
agggccttca agcttggctg tcctcataca cgaaattaga atgtgggagt agttggcgtt


7021
gaaggtcttc acatttaaag ggatataaaa cgatacatga aactagaata ttcatttagc


7081
tcagaaaatc tcaacacgtg gtaggtaaga tgctatgtaa cttacgggaa caggagactc


7141
gggacgtctt gtctgaaagt gggtttcaag agtgaagtct gatacactac cactaaatgt


7201
acttggtctg agttaaataa ccttaaggta tttcccagct tccagctggt tagcctttag


7261
caagagagct acaagtgcat tgtccttaag gagccttatg tacacagacg ttcttttctc


7321
tgcacgtgtc aagggaaggt gaccagtccc agccatgcct gggacaaggg tcccagatat


7381
gcaatgctaa gtgccaacca aagtgagtcc taggggtcct gggaggagtt gtccccttag


7441
gtgtcctcag gacttattct catactgatg tcatcctagc tgataactgt gttgggttat


7501
gccatggctg tcaatatttt taggactcaa cccctgtatt ctgtattcat tactgtggat


7561
gcaacctaag atttacaata aataacacaa agaacaatgg agttgagtat ggaatgaaaa


7621
gaggcaacga gctagggatg atctgtgtag gtgtaagtac actttgtgtc cttaggagtt


7681
cttgtaacag aaaccgtgtg aaactataga tgtcttctcc tataagggaa aacatggtgt


7741
ttgatgcttt ggtctctatt tcccagtctg tcctgcttaa gaagccagaa tgtggtttct


7801
atttggtgga tgctgtctta aaattactaa atgtgtcatc cggaagcagg taaaggagtc


7861
agtatccctg tggagttctg tcctactctc acggtgctta ccagctaagc tgagctcagg


7921
agccaaggga aaccctgctc ctgctctctg gtggtcctca gtggctgatg cagtgcactg


7981
tgatggagat actaaaacaa gtgtgttatt tgtaagtctt ctctcagtga ttgtcagaca


8041
actgtggtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgaga aacagtgagc


8101
tgaggcttta ttatagctga tttccagtta aaattgtgaa atacgtattt cttgtccaca


8161
ccaaatattt cagtctattt aatgtattaa agaaatagtt ctgcttaaga aaatgttgct


8221
taaatgttct gtgatttctg gtgcattttt atacagatct gtgtgtgtct gtgcattcac


8281
tttctgcctt tgctctctgt gttaactgtc ctgttgccct cggaaggtgg acactattcg


8341
tagcattaaa aagaaatatt tgagttattt accatgtc










SEQ ID NO: 10 Mouse Smad2 Isoform 2 Amino Acid Sequence (NP_001297999.1)








1
mssilpftpp vvkrllgwkk saggsggagg geqngqeekw cekavkslvk klkktgrlde


61
lekaittqnc ntkcvtiprs ldgrlqvshr kglphviycr lwrwpdlhsh helkaience


121
yafnlkkdev cvnpyhyqrv etpvlppvlv prhteiltel pplddythsi pentnfpagi


181
epqsnyipet pppgyisedg etsdqqlnqs mdtgspaels pttlspvnhs ldlqpvtyse


241
pafwcsiayy elnqrvgetf hasqpsltvd gftdpsnser fclgllsnvn rnatvemtrr


301
higrgvrlyy iggevfaecl sdsaifvqsp ncnqrygwhp atvckippgc nlkifnnqef


361
aallaqsvnq gfeavyqltr mctirmsfvk gwgaeyrrqt vtstpcwiel hlngplqwld


421
kvltqmgsps vrcssms










SEQ ID NO: 11 Mouse Smad2 transcript variant 1 Sequence (NM_010754.5; CDS:


332-1735)








1
cgccccgctc ggcccccggc cctgcccgcg gcgcccggcc tccttccgtc cctgccgtgc


61
tccctccgtc ttccgtgcgc gcccgctcgg ccggcgtgcc tcacgcctaa cgggcggccg


121
cgggcgccaa tcagcgggcg gcagggtgcc agcccggggc tgcgccggcg aatcggcggg


181
gtccgcggct cggggaggga ggcggggcta ccgcgcgcgg cggtggagga gcagctcgcc


241
aagcctgcag ctcgcgagcg ccgagcgagc ctcccggagg gtagatttac cgggcttttt


301
ctgagtgtgg attgttacct ttggtaagaa aatgtcgtcc atcttgccat tcactccgcc


361
agtggtgaag agacttctgg gatggaaaaa atcagccggt gggtctggag gagcaggtgg


421
tggagagcag aatggacagg aagaaaagtg gtgtgaaaaa gcagtgaaaa gtctggtgaa


481
aaagctaaag aaaacaggac ggttagatga gcttgagaaa gccatcacca ctcagaattg


541
caatactaaa tgtgtcacca taccaagcac ttgctctgaa atttggggac tgagtacagc


601
aaatacggta gatcagtggg acacaacagg cctttacagc ttctctgaac aaaccaggtc


661
tcttgatggc cgtcttcagg tttcacaccg gaaagggttg ccacatgtta tatattgccg


721
gctctggcgc tggccggacc ttcacagtca tcatgagctc aaggcaatcg aaaactgcga


781
atatgctttt aatctgaaaa aagatgaagt gtgtgtaaat ccgtaccact accagagagt


841
tgagacccca gtcttgcctc cagtcttagt gcctcggcac acggagattc taacagaact


901
gccgcccctg gatgactaca cccactccat tccagaaaac acaaatttcc cagcaggaat


961
tgagccacag agtaattaca tcccagaaac accaccacct ggatatatca gtgaagatgg


1021
agaaacaagt gaccaacagt tgaaccaaag tatggacaca ggctctccgg ctgaactgtc


1081
tcctactact ctctctcctg ttaatcacag cttggatttg cagccagtta cttactcgga


1141
acctgcattc tggtgttcaa tcgcatacta tgaactaaac cagagggttg gagagacctt


1201
ccatgcgtca cagccctcgc tcactgtaga cggcttcaca gacccatcaa actcggagag


1261
gttctgctta ggcttgctct ccaacgttaa ccgaaatgcc actgtagaaa tgacaagaag


1321
acatatagga aggggagtgc gcttgtatta cataggtggg gaagtgtttg ctgagtgcct


1381
aagtgatagt gcaatctttg tgcagagccc caactgtaac cagagatacg gctggcaccc


1441
tgcaacagtg tgtaagatcc caccaggctg taacctgaag atcttcaaca accaagaatt


1501
tgctgctctt ctggctcagt ctgtcaacca gggttttgaa gccgtttatc agctaacccg


1561
aatgtgcacc ataagaatga gttttgtgaa gggctgggga gcagaatatc ggaggcagac


1621
agtaacaagt actccttgct ggattgaact tcatctgaat ggccctctgc agtggctgga


1681
caaagtatta actcagatgg gatccccttc agtgcgatgc tcaagcatgt cgtaaaccca


1741
tcaaagactc gctgtaacag ctcctccgtc gtagtattca tgtatgatcc cgtggactgt


1801
ttgctatcca aaaattccag agcaaaaaca gcacttgagg tctcatcagt taaagcacct


1861
tgtggaatct gtttcctata tttgaatatt agatgggaaa attagtgtct agaaatgccc


1921
tccccagcgg ggaaaaagaa gacttaaaga cttaatgatg tcttgttggg cataagacag


1981
tatcccaaag gttattaata acagtagtag ttgtgtacag gtaatgtgtc cagacccagt


2041
attgcagtac tatgctgttt gtatacattc ttagtttgca taaatgaggt gtgtgtgctg


2101
cttcttggtc taggcaagcc tttataaaat tacagtatct aatctgttat tcccacttct


2161
ccgttatttt tgtgtctttt ttaatatata atatatatat atcaagattt tcaaattatc


2221
atttagaagc agattttcct tgtagaaact aatttttctg ccttttacca aaaataaaca


2281
aactcttggg ggaagacaag tggattaact tggaagtcct tgaccttcat gtgtccagtg


2341
gatcttagca gtcgttcttt tgtgagcctt ttctcctgag ttgcattaga aggaaacctt


2401
actggaaccg tccaggctcc tcatcccatt cctgttctgg ttcagagcag tacagcagaa


2461
tgacgtcgtg ctaaacagtt gcactgctgg cttctgggtt agttgtttct gagtccagga


2521
aaggtttgtg tgggcagtaa gtccttttgt ctaataacca gacttcagca gatgataact


2581
gatgtgtata accagttgtt ctgttgatta acttttgtct caaacatgca caggtggcag


2641
tataattatt ttcagggcta ttctagaatc atctcagtct gtttccttct tccaaagcca


2701
gtctaataat aaagtacctt tctgtaaagg cagccgacct tttgcctcat tttactttta


2761
ctaccaggtt gtattacaga acagaccttt tgtaaatgtg ttagagtgac gctgaggtct


2821
tgtcagcaga tagggccatc tgtttttaaa gtgtattgta tgtaatttat aagtagaatg


2881
ttattttacc tagcttcaaa ggtttaaata ttgtgagcta agccatttag caagatttct


2941
agcccgcagt tagctgtgga cttagctctt cctgacttac cctgggtgtg tggtttgctg


3001
acctttcagc tctgcaggaa ggagatccca gctgtccttt ggtcctccct tctgcagcac


3061
acgacagtca tgtccagtgt tgactccttt ctcgtttgca actccgtaca aatgcctggt


3121
ctcctttttg taaactttca tatttttgca gacaaatact tttggtactt actctttgag


3181
accattctca catgtatgta cagtaatcat ttttgatgct tttcaacatt ggttgttttc


3241
tatttgatat ttctcatttt cctatatttg tgtttgtatg ttatgtgttc atgtaaattt


3301
ggtatagtaa tttttattca aatatttatt gttcacctgt taatgtgcca tgaacttcct


3361
taacttttgg gtgaaggtga acaagatagc tatagttcct gcctttgcta agagcagttg


3421
gtttaaccca tactcaagtg tctgcatagg aggtaaacag ggtatacttt gagaatggca


3481
gagacgatgc ttttggtagg atattaggaa ggcatctgga gagtgatgtg taagctaacc


3541
cctgacctag gaagagaaag ccatgtgaag agccaagggc aatttaacac tgctggaaca


3601
ttatcagcat ccaaaggctc aggctcatag agactcactg tcaggtatca tgattgtgca


3661
cacacctgca cacacccaca cgtggtgatg aaaatgcttg ttcagtttag aatttgttga


3721
aggtgggact gctttgtgac aggctgcttc tgtcatctca ctgtaatcta ttcctcagac


3781
cttgtacagc tttcttacac caggtcagtg ccacttaatt taacaactcc cgttacgtaa


3841
atgctcacca gtctggagcc tccctgcttg cttctggacg tgttgctgca tatcggctat


3901
cactgcttcc cttccgctgc ccatcttgtg atagagcaat tgtcctgtgc attattgctg


3961
ttgagcctac tggagatcct tgtacataaa ctgccccttc tctggaagtt tccacagact


4021
agaaaacttg agctgttggg acagttctgg ggcagaggac agctttgaaa gtggtaggag


4081
gttatcagac atgttaaagt gttgccaaca gtgagacaca gctccatggt tggggttcag


4141
gaataggttt tctataccac cgagcgtgaa caagtcaccg tgtaaactca tgtgaaaaga


4201
attcagtgct tatctttgct tttcaccgga atgctgtggg catgcgctac tgtcacctag


4261
attttgttga tttcacctct tttgcaagac tgatttttgt tccagatgat tcctacggcc


4321
tctcttggtt gatttatatt gatttaattt ctccacatta tttagcatca tgtctcagca


4381
gtaatttgaa agcctttcta ccagattcaa acatttggtt gtattaggcc agtcttttgg


4441
aatgccacta aactgggctg tgacttaagg accctttcct gctagggtct gagccacacc


4501
agttagactt actatccatc gttatataca tttagtcagc atagttcctg cctattgttt


4561
acccagccaa tgtgattctg ggaccatgtc ctggctctgg agttgggctt agtcctgtga


4621
gagttcctgt tgttttcagg gcctatgact ttgccagaag gaatttgcat atgttttctt


4681
gagagctgaa tcttctaatt gtgtacatat atgtatgtat atgtacagag ttccttcttt


4741
gtttctttaa tttcaccttc atcacgcctt ggttgtcagt tcatcccgac taagagtcca


4801
agtcagtcag gttagtaggc ttttgctggt tgaagtcaaa gaaagcagat gcccagttgc


4861
cttccctacc tctgccaaga gctgcccgta tgtgttttta agccctcccc ctttttttaa


4921
gattaactac ttggaacagt tgttctctta ggtgtcctct ttgctggaga gtagttgatt


4981
tggtggtgag gtataaagta aggagacaat ctaagttgac ccttccagct tgcctgtgtg


5041
ttgcacctct ctgtgcaact atctcaggta tgtcttcaca gggcagccaa gggcctttcc


5101
ccatactgtg gcttaaggct ttggtgtcct gatagatcag acttattact tgtcatgctt


5161
ttgcctgagc actttgctaa acccaggctt ccttgcacct taccctcccc agtcaatcag


5221
ctctattttt ttttctgaat gcattctgta ttcttccctt agtgcgatgc atttccctgc


5281
aggcaagcta gtattgttca ttcctggacc gttgttggag tctttcaaat gactctggaa


5341
tttttgccca gttaaaatgt ccctgtgact gacaagtagc aaactcaaca ttatttatca


5401
tagtttagat ggtaacagca tctccatcac agtttgggga cagtctagat cagcggtgtg


5461
accctttagt gcagttcctc atgttgtggt gacccccagc cataaaatta ttttattgct


5521
acttcattac tgtaattttg ctactgttat gaatcataat gtaaatatct ttgatttttg


5581
atggtcttag gtgacccctg tgaaaaggtt gtttgaccac ccctccccca aggggttgca


5641
acccacaggt tgagaaacca ctgttgtaaa gtgtccgatt tattccagtg atggtggtct


5701
gtggtctgca gaggtagacc tctgccattg gctcctcttc tgttttccag cttgcttgat


5761
tattttactt gttcagacta ccttttgtcc agggagattg agggacaagt tatttcttgg


5821
attatagttt atgtgtttaa atacttggag ccagaaaatg ctgagttaat ctcatgagtg


5881
cttttgcgat aagaattggc ctcatgtgtt atatcttgaa tagagacttt taccttggcc


5941
attataggta gcttatatac atgagagttg cctcaaacat tttagtttta gtgtatatgt


6001
gtgtgtgtgt tcaagtgtac acacatgtac cctcagaaaa caaacggtgg ggttatctta


6061
acaatgatga aagatacatt gtttaaatct cagatctcag taaagagatc ccatttgctt


6121
gtagactcat gacacaatca gtgtatttaa aatgaaatta ccagtcctta tttgacagtg


6181
cagctggtat gctggtgttc gggcactggt gaaaatcata agaaatcaat taccgccaat


6241
aaagctttcc atatacctca tccctaaact acacccagca ctgagggtta acttgaaaat


6301
ctgtctcttc ttcatttggg tctccccatg aaattccaga gacccgggaa gtacctccat


6361
gaagtcagag tcccacacct aatgctactc taaaggaagg tagttcaggc ctgtcttggc


6421
agtgaactac caagaaatga ttttccaaga cttcttagaa cctctgtata ctaaccacct


6481
atgtgttcat tggctagctt ctgagtctta gagtggaccc caggtttcac aaatgctaga


6541
gatgtaggat cccttgggaa aaggggtgtt ttttggtttg ctattttggg atggaaggta


6601
aggatttgta ccttttttct gtcttgaagt aatttttaaa caaccaaata cgcaacataa


6661
gaacagatac aaagctttag cgtgttggaa aacgctctga ttagtgtaca acttccaaac


6721
cagctgttac ccttcctctc tctggcttta aggttcctgg ctggttgcag tggtaaacac


6781
taagtaactt tatgtttcta aggctgtatt aaattgtgcc cttcacagtg ttgtgtcata


6841
gggggttggc tttggggagc tgagaagaaa cctgccttga agggccagtg cctagctggt


6901
tgcacatttg tccttgcctc tgtagggtgg tggattattg gcttatagag gtagtttaca


6961
gagactggtt taaatcacga gaataactaa ccaacccctg gcctctgaac catgtatgta


7021
catataccga tccagcctat ttcttggtaa aatgcagaat tcaaattggg cacacattag


7081
accagcttta ccttcgactt catttacgct tttattgact ctgacataag gtgtgagtat


7141
ttgactttct ttgttggtgg cagtgatctg taacactcag cactttctag gtgagctaaa


7201
ccaagaaaat ccacagtgac tggctaaggc tgcaacttca ttggaaggca agtgaaaaag


7261
catcagaggc ctcctgcctc aaggctggcc tcctgggagc tcagtacaca gtagtgtggc


7321
tctgggcctc tgcaagggcc ttcaagcttg gctgtcctca tacacgaaat tagaatgtgg


7381
gagtagttgg cgttgaaggt cttcacattt aaagggatat aaaacgatac atgaaactag


7441
aatattcatt tagctcagaa aatctcaaca cgtggtaggt aagatgctat gtaacttacg


7501
ggaacaggag actcgggacg tcttgtctga aagtgggttt caagagtgaa gtctgataca


7561
ctaccactaa atgtacttgg tctgagttaa ataaccttaa ggtatttccc agcttccagc


7621
tggttagcct ttagcaagag agctacaagt gcattgtcct taaggagcct tatgtacaca


7681
gacgttcttt tctctgcacg tgtcaaggga aggtgaccag tcccagccat gcctgggaca


7741
agggtcccag atatgcaatg ctaagtgcca accaaagtga gtcctagggg tcctgggagg


7801
agttgtcccc ttaggtgtcc tcaggactta ttctcatact gatgtcatcc tagctgataa


7861
ctgtgttggg ttatgccatg gctgtcaata tttttaggac tcaacccctg tattctgtat


7921
tcattactgt ggatgcaacc taagatttac aataaataac acaaagaaca atggagttga


7981
gtatggaatg aaaagaggca acgagctagg gatgatctgt gtaggtgtaa gtacactttg


8041
tgtccttagg agttcttgta acagaaaccg tgtgaaacta tagatgtctt ctcctataag


8101
ggaaaacatg gtgtttgatg ctttggtctc tatttcccag tctgtcctgc ttaagaagcc


8161
agaatgtggt ttctatttgg tggatgctgt cttaaaatta ctaaatgtgt catccggaag


8221
caggtaaagg agtcagtatc cctgtggagt tctgtcctac tctcacggtg cttaccagct


8281
aagctgagct caggagccaa gggaaaccct gctcctgctc tctggtggtc ctcagtggct


8341
gatgcagtgc actgtgatgg agatactaaa acaagtgtgt tatttgtaag tcttctctca


8401
gtgattgtca gacaactgtg gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt


8461
gagaaacagt gagctgaggc tttattatag ctgatttcca gttaaaattg tgaaatacgt


8521
atttcttgtc cacaccaaat atttcagtct atttaatgta ttaaagaaat agttctgctt


8581
aagaaaatgt tgcttaaatg ttctgtgatt tctggtgcat ttttatacag atctgtgtgt


8641
gtctgtgcat tcactttctg cctttgctct ctgtgttaac tgtcctgttg ccctcggaag


8701
gtggacacta ttcgtagcat taaaaagaaa tatttgagtt atttaccatg tc










SEQ ID NO: 12 Mouse Smad2 Isoform 1 Amino Acid Sequence (NP_034884.2)








1
mssilpftpp vvkrllgwkk saggsggagg geqngqeekw cekavkslvk klkktgrlde


61
lekaittqnc ntkcvtipst cseiwglsta ntvdqwdttg lysfseqtrs ldgrlqvshr


121
kglphviycr lwrwpdlhsh helkaience yafnlkkdev cvnpyhyqrv etpvlppvlv


181
prhteiltel pplddythsi pentnfpagi epqsnyipet pppgyisedg etsdqqlnqs


241
mdtgspaels pttlspvnhs ldlqpvtyse pafwcsiayy elnqrvgetf hasqpsltvd


301
gftdpsnser fclgllsnvn rnatvemtrr higrgvrlyy iggevfaecl sdsaifvqsp


361
ncnqrygwhp atvckippgc nlkifnnqef aallaqsvnq gfeavyqltr mctirmsfvk


421
gwgaeyrrqt vtstpcwiel hlngplqwld kvltqmgsps vrcssms










SEQ ID NO: 13 Rat Smad2 transcript variant 2 Sequence (NM_001277450.1; CDS:


210-1613)








1
gggcgccaat cagcgggcgg cagggtgcca gcccggggct gcgccggcga atcggcgggg


61
cccgcggctc ggggagggag gcggggctac cgcgcgcggc ggtggaggag cagctcgctc


121
gcctgcagct cgcgagcgct gagcgagccg cccgaagggt agatttacca ggctgtttct


181
gagtgtggat tgttaccctt ggtaagaaaa tgtcgtccat cttgccattc actccgccag


241
tggtgaagag acttctggga tggaaaaaat cagccggtgg gtctggagga gcaggtggtg


301
gagaacagaa tggacaggaa gaaaagtggt gtgaaaaagc agtgaaaagt ctggtgaaaa


361
agctaaagaa aacaggacga ttagatgagc ttgagaaagc catcaccact cagaattgca


421
atactaagtg tgtcaccata ccaagcactt gctctgaaat ttggggactg agtacagcaa


481
atacggtaga tcagtgggac acaacaggcc tttacagctt ctctgaacaa accaggtctc


541
ttgatggtcg tcttcaggtg tctcatcgga aagggctgcc acatgttata tattgccggc


601
tgtggcgctg gccagacctt cacagccatc atgagctcaa ggcgatcgag aactgcgaat


661
acgctttcag tctgaaaaaa gatgaagtgt gtgtgaaccc ttaccactac cagagggtgg


721
agacaccagt cttgcctcca gtcttggtgc ctcggcacac agagattcta acagaactgc


781
cgcctctgga tgactatacc cactccattc cagaaaacac aaatttccca gcaggaattg


841
agccacagag taattacatc ccagaaacac caccacctgg atatatcagt gaagatggag


901
aaactagtga ccaacagttg aaccaaagta tggacacagg ctctccggct gaactgtctc


961
ctaccactct ctcccctgtc aatcacagct tggatttgca gccagttact tattcagaac


1021
ctgcattttg gtgttcaatc gcatattatg aactaaacca gagggttgga gagaccttcc


1081
atgcgtcaca gccctcactc actgtagacg gctttacaga tccatcgaac tcggagaggt


1141
tctgcttagg tttgctctcc aacgttaaca gaaacgctac tgtagaaatg accagaaggc


1201
atataggaag gggagtgcgc ttgtattaca taggtgggga agtgtttgcc gagtgcctaa


1261
gtgatagtgc gatctttgtg cagagcccca actgtaacca gagatacggc tggcaccccg


1321
cgacagtgtg caaaatccca ccaggctgta acctgaagat cttcaacaac caagaatttg


1381
ctgctcttct ggctcagtct gttaaccagg gttttgaggc cgtttatcag ctgactcgaa


1441
tgtgcaccat aagaatgagc ttcgtgaagg ggtggggagc agaataccgg aggcagacag


1501
taacaagtac tccttgctgg attgaacttc atctgaatgg ccccctgcag tggttggaca


1561
aagtattaac tcagatggga tccccgtcag tgcgatgctc aagcatgtcc taaagtccgt


1621
cagcagtgga gctcattgga agacttaacg taccaactcc tccgccacag tactcgtgtg


1681
tgatcccgtg gactgtgcta gtcaaaaccc agagcgaaaa cagcacttga ggtctcatca


1741
gttaaagcac cttgtggagt ctgtttccta catttgaatt ttagatggga aattagtgtc


1801
tagaaatgcc ctccccagag gggacaaaga agacttaaag acttaatgat gtctcgttgg


1861
gcataagaca gtgtcccaaa ggttattaat accagtagta gttgtgtaca gtaatgtgtc


1921
cagacccagt attgcagtgc tctgctgttt gtataccttc ttagtgtgca taaatgaggt


1981
gtgtgctgct gcttggtcta ggcaagcctt tataaaatta cagtacctaa tctgttattc


2041
ccacttctcc gttatttttg tgtctttttt aatatataat atatatatcg agattttcaa


2101
attatcattt agaagcagat tttccttgta gaaactaatt tttctgcctt ttaccaaaaa


2161
taaactcgtg ggggaagaaa agtggattaa cttggaagtc cttgacctta atgtgtccag


2221
tgggtcttag cattctttct gtgatcattt tctgctgaat tgcattagaa ggaaaccttg


2281
ttggaaactt ccaggctctt tgtgccattt ctgttctgat tcaaagcagt gcagcatgat


2341
gtcattgtgg taaatagttg cactgatggc ttctgggtta gttacttctg agtccagtaa


2401
aggattgtgt gagcagtaag tccttttgtc ttctaaccag acttcagcag atgataacca


2461
gttgttccat tgattaactt ttgtctcaaa cgtgcacagg tgacagtata attattttca


2521
gggctattct agaatcatct cagtatgttt ccttcttcca acgccagtct gataataaag


2581
tatctttctg taaaggca










SEQ ID NO: 14 Rat Smad2 Amino Acid Sequence (NP_001264379.1)








1
mssilpftpp vvkrllgwkk saggsggagg geqngqeekw cekavkslvk klkktgrlde


61
lekaittqnc ntkcvtipst cseiwglsta ntvdqwdttg lysfseqtrs ldgrlqvshr


121
kglphviycr lwrwpdlhsh helkaience yafslkkdev cvnpyhyqrv etpvlppvlv


181
prhteiltel pplddythsi pentnfpagi epqsnyipet pppgyisedg etsdqqlnqs


241
mdtgspaels pttlspvnhs ldlqpvtyse pafwcsiayy elnqrvgetf hasqpsltvd


301
gftdpsnser fclgllsnvn rnatvemtrr higrgvrlyy iggevfaecl sdsaifvqsp


361
ncnqrygwhp atvckippgc nlkifnnqef aallaqsvnq gfeavyqltr mctirmsfvk


421
gwgaeyrrqt vtstpcwiel hlngplqwld kvltqmgsps vrcssms










SEQ ID NO: 15 Rat Smad2 transcript variant 1 Sequence (NM_019191.2; CDS: 238-


1641)








1
tggagcaggc ggctccctcc ccagccggcc gcggtgagcg cgggcctggg ggcggggcgg


61
gggcccgcgg cgcagttccg cctgcgcgcg cccactcctc cggcagcgcg gagcccgtcg


121
gaagaggaag gaacaaaagg tccggggccc ggctcggacg ggccgggacc aggcgctggg


181
tgcagggtag atttaccagg ctgtttctga gtgtggattg ttacccttgg taagaaaatg


241
tcgtccatct tgccattcac tccgccagtg gtgaagagac ttctgggatg gaaaaaatca


301
gccggtgggt ctggaggagc aggtggtgga gaacagaatg gacaggaaga aaagtggtgt


361
gaaaaagcag tgaaaagtct ggtgaaaaag ctaaagaaaa caggacgatt agatgagctt


421
gagaaagcca tcaccactca gaattgcaat actaagtgtg tcaccatacc aagcacttgc


481
tctgaaattt ggggactgag tacagcaaat acggtagatc agtgggacac aacaggcctt


541
tacagcttct ctgaacaaac caggtctctt gatggtcgtc ttcaggtgtc tcatcggaaa


601
gggctgccac atgttatata ttgccggctg tggcgctggc cagaccttca cagccatcat


661
gagctcaagg cgatcgagaa ctgcgaatac gctttcagtc tgaaaaaaga tgaagtgtgt


721
gtgaaccctt accactacca gagggtggag acaccagtct tgcctccagt cttggtgcct


781
cggcacacag agattctaac agaactgccg cctctggatg actataccca ctccattcca


841
gaaaacacaa atttcccagc aggaattgag ccacagagta attacatccc agaaacacca


901
ccacctggat atatcagtga agatggagaa actagtgacc aacagttgaa ccaaagtatg


961
gacacaggct ctccggctga actgtctcct accactctct cccctgtcaa tcacagcttg


1021
gatttgcagc cagttactta ttcagaacct gcattttggt gttcaatcgc atattatgaa


1081
ctaaaccaga gggttggaga gaccttccat gcgtcacagc cctcactcac tgtagacggc


1141
tttacagatc catcgaactc ggagaggttc tgcttaggtt tgctctccaa cgttaacaga


1201
aacgctactg tagaaatgac cagaaggcat ataggaaggg gagtgcgctt gtattacata


1261
ggtggggaag tgtttgccga gtgcctaagt gatagtgcga tctttgtgca gagccccaac


1321
tgtaaccaga gatacggctg gcaccccgcg acagtgtgca aaatcccacc aggctgtaac


1381
ctgaagatct tcaacaacca agaatttgct gctcttctgg ctcagtctgt taaccagggt


1441
tttgaggccg tttatcagct gactcgaatg tgcaccataa gaatgagctt cgtgaagggg


1501
tggggagcag aataccggag gcagacagta acaagtactc cttgctggat tgaacttcat


1561
ctgaatggcc ccctgcagtg gttggacaaa gtattaactc agatgggatc cccgtcagtg


1621
cgatgctcaa gcatgtccta aagtccgtca gcagtggagc tcattggaag acttaacgta


1681
ccaactcctc cgccacagta ctcgtgtgtg atcccgtgga ctgtgctagt caaaacccag


1741
agcgaaaaca gcacttgagg tctcatcagt taaagcacct tgtggagtct gtttcctaca


1801
tttgaatttt agatgggaaa ttagtgtcta gaaatgccct ccccagaggg gacaaagaag


1861
acttaaagac ttaatgatgt ctcgttgggc ataagacagt gtcccaaagg ttattaatac


1921
cagtagtagt tgtgtacagt aatgtgtcca gacccagtat tgcagtgctc tgctgtttgt


1981
ataccttctt agtgtgcata aatgaggtgt gtgctgctgc ttggtctagg caagccttta


2041
taaaattaca gtacctaatc tgttattccc acttctccgt tatttttgtg tcttttttaa


2101
tatataatat atatatcgag attttcaaat tatcatttag aagcagattt tccttgtaga


2161
aactaatttt tctgcctttt accaaaaata aactcgtggg ggaagaaaag tggattaact


2221
tggaagtcct tgaccttaat gtgtccagtg ggtcttagca ttctttctgt gatcattttc


2281
tgctgaattg cattagaagg aaaccttgtt ggaaacttcc aggctctttg tgccatttct


2341
gttctgattc aaagcagtgc agcatgatgt cattgtggta aatagttgca ctgatggctt


2401
ctgggttagt tacttctgag tccagtaaag gattgtgtga gcagtaagtc cttttgtctt


2461
ctaaccagac ttcagcagat gataaccagt tgttccattg attaactttt gtctcaaacg


2521
tgcacaggtg acagtataat tattttcagg gctattctag aatcatctca gtatgtttcc


2581
ttcttccaac gccagtctga taataaagta tctttctgta aaggca










SEQ ID NO: 16 Rat Smad2 Amino Acid Sequence (NP_062064.1)








1
mssilpftpp vvkrllgwkk saggsggagg geqngqeekw cekavkslvk klkktgrlde


61
lekaittqnc ntkcvtipst cseiwglsta ntvdqwdttg lysfseqtrs ldgrlqvshr


121
kglphviycr lwrwpdlhsh helkaience yafslkkdev cvnpyhyqrv etpvlppvlv


181
prhteiltel pplddythsi pentnfpagi epqsnyipet pppgyisedg etsdqqlnqs


241
mdtgspaels pttlspvnhs ldlqpvtyse pafwcsiayy elnqrvgetf hasqpsltvd


301
gftdpsnser fclgllsnvn rnatvemtrr higrgvrlyy iggevfaecl sdsaifvqsp


361
ncnqrygwhp atvckippgc nlkifnnqef aallaqsvnq gfeavyqltr mctirmsfvk


421
gwgaeyrrqt vtstpcwiel hlngplqwld kvltqmgsps vrcssms










SEQ ID NO: 17 Human p63 transcript variant 1 mRNA Sequence (NM_003722.5;


CDS: 128-2170)








1
ctatgtctga tagcatttga ccctattgct tttagcctcc cggctttata tctatatata


61
cacaggtata tgtgtatatt ttatataatt gttctccgtt cgttgatatc aaagacagtt


121
gaaggaaatg aattttgaaa cttcacggtg tgccacccta cagtactgcc ctgaccctta


181
catccagcgt ttcgtagaaa ccccagctca tttctcttgg aaagaaagtt attaccgatc


241
caccatgtcc cagagcacac agacaaatga attcctcagt ccagaggttt tccagcatat


301
ctgggatttt ctggaacagc ctatatgttc agttcagccc attgacttga actttgtgga


361
tgaaccatca gaagatggtg cgacaaacaa gattgagatt agcatggact gtatccgcat


421
gcaggactcg gacctgagtg accccatgtg gccacagtac acgaacctgg ggctcctgaa


481
cagcatggac cagcagattc agaacggctc ctcgtccacc agtccctata acacagacca


541
cgcgcagaac agcgtcacgg cgccctcgcc ctacgcacag cccagctcca ccttcgatgc


601
tctctctcca tcacccgcca tcccctccaa caccgactac ccaggcccgc acagtttcga


661
cgtgtccttc cagcagtcga gcaccgccaa gtcggccacc tggacgtatt ccactgaact


721
gaagaaactc tactgccaaa ttgcaaagac atgccccatc cagatcaagg tgatgacccc


781
acctcctcag ggagctgtta tccgcgccat gcctgtctac aaaaaagctg agcacgtcac


841
ggaggtggtg aagcggtgcc ccaaccatga gctgagccgt gaattcaacg agggacagat


901
tgcccctcct agtcatttga ttcgagtaga ggggaacagc catgcccagt atgtagaaga


961
tcccatcaca ggaagacaga gtgtgctggt accttatgag ccaccccagg ttggcactga


1021
attcacgaca gtcttgtaca atttcatgtg taacagcagt tgtgttggag ggatgaaccg


1081
ccgtccaatt ttaatcattg ttactctgga aaccagagat gggcaagtcc tgggccgacg


1141
ctgctttgag gcccggatct gtgcttgccc aggaagagac aggaaggcgg atgaagatag


1201
catcagaaag cagcaagttt cggacagtac aaagaacggt gatggtacga agcgcccgtt


1261
tcgtcagaac acacatggta tccagatgac atccatcaag aaacgaagat ccccagatga


1321
tgaactgtta tacttaccag tgaggggccg tgagacttat gaaatgctgt tgaagatcaa


1381
agagtccctg gaactcatgc agtaccttcc tcagcacaca attgaaacgt acaggcaaca


1441
gcaacagcag cagcaccagc acttacttca gaaacagacc tcaatacagt ctccatcttc


1501
atatggtaac agctccccac ctctgaacaa aatgaacagc atgaacaagc tgccttctgt


1561
gagccagctt atcaaccctc agcagcgcaa cgccctcact cctacaacca ttcctgatgg


1621
catgggagcc aacattccca tgatgggcac ccacatgcca atggctggag acatgaatgg


1681
actcagcccc acccaggcac tccctccccc actctccatg ccatccacct cccactgcac


1741
acccccacct ccgtatccca cagattgcag cattgtcagt ttcttagcga ggttgggctg


1801
ttcatcatgt ctggactatt tcacgaccca ggggctgacc accatctatc agattgagca


1861
ttactccatg gatgatctgg caagtctgaa aatccctgag caatttcgac atgcgatctg


1921
gaagggcatc ctggaccacc ggcagctcca cgaattctcc tccccttctc atctcctgcg


1981
gaccccaagc agtgcctcta cagtcagtgt gggctccagt gagacccggg gtgagcgtgt


2041
tattgatgct gtgcgattca ccctccgcca gaccatctct ttcccacccc gagatgagtg


2101
gaatgacttc aactttgaca tggatgctcg ccgcaataag caacagcgca tcaaagagga


2161
gggggagtga gcctcaccat gtgagctctt cctatccctc tcctaactgc cagcccccta


2221
aaagcactcc tgcttaatct tcaaagcctt ctccctagct cctccccttc ctcttgtctg


2281
atttcttagg ggaaggagaa gtaagaggct acctcttacc taacatctga cctggcatct


2341
aattctgatt ctggctttaa gccttcaaaa ctatagcttg cagaactgta gctgccatgg


2401
ctaggtagaa gtgagcaaaa aagagttggg tgtctcctta agctgcagag atttctcatt


2461
gacttttata aagcatgttc acccttatag tctaagacta tatatataaa tgtataaata


2521
tacagtatag atttttgggt ggggggcatt gagtattgtt taaaatgtaa tttaaatgaa


2581
agaaaattga gttgcactta ttgaccattt tttaatttac ttgttttgga tggcttgtct


2641
atactccttc ccttaagggg tatcatgtat ggtgataggt atctagagct taatgctaca


2701
tgtgagtgac gatgatgtac agattctttc agttctttgg attctaaata catgccacat


2761
caaacctttg agtagatcca tttccattgc ttattatgta ggtaagactg tagatatgta


2821
ttcttttctc agtgttggta tattttatat tactgacatt tcttctagtg atgatggttc


2881
acgttggggt gatttaatcc agttataaga agaagttcat gtccaaacgt cctctttagt


2941
ttttggttgg gaatgaggaa aattcttaaa aggcccatag cagccagttc aaaaacaccc


3001
gacgtcatgt atttgagcat atcagtaacc cccttaaatt taataccaga taccttatct


3061
tacaatattg attgggaaaa catttgctgc cattacagag gtattaaaac taaatttcac


3121
tactagattg actaactcaa atacacattt gctactgttg taagaattct gattgatttg


3181
attgggatga atgccatcta tctagttcta acagtgaagt tttactgtct attaatattc


3241
agggtaaata ggaatcattc agaaatgttg agtctgtact aaacagtaag atatctcaat


3301
gaaccataaa ttcaactttg taaaaatctt ttgaagcata gataatattg tttggtaaat


3361
gtttcttttg tttggtaaat gtttctttta aagaccctcc tattctataa aactctgcat


3421
gtagaggctt gtttaccttt ctctctctaa ggtttacaat aggagtggtg atttgaaaaa


3481
tataaaatta tgagattggt tttcctgtgg cataaattgc atcactgtat cattttcttt


3541
tttaaccggt aagagtttca gtttgttgga aagtaactgt gagaacccag tttcccgtcc


3601
atctccctta gggactaccc atagacatga aaggtcccca cagagcaaga gataagtctt


3661
tcatggctgc tgttgcttaa accacttaaa cgaagagttc ccttgaaact ttgggaaaac


3721
atgttaatga caatattcca gatctttcag aaatataaca catttttttg catgcatgca


3781
aatgagctct gaaatcttcc catgcattct ggtcaagggc tgtcattgca cataagcttc


3841
cattttaatt ttaaagtgca aaagggccag cgtggctcta aaaggtaatg tgtggattgc


3901
ctctgaaaag tgtgtatata ttttgtgtga aattgcatac tttgtatttt gattattttt


3961
tttttcttct tgggatagtg ggatttccag aaccacactt gaaacctttt tttatcgttt


4021
ttgtattttc atgaaaatac catttagtaa gaataccaca tcaaataaga aataatgcta


4081
caattttaag aggggaggga agggaaagtt tttttttatt atttttttaa aattttgtat


4141
gttaaagaga atgagtcctt gatttcaaag ttttgttgta cttaaatggt aataagcact


4201
gtaaacttct gcaacaagca tgcagctttg caaacccatt aaggggaaga atgaaagctg


4261
ttccttggtc ctagtaagaa gacaaactgc ttcccttact ttgctgaggg tttgaataaa


4321
cctaggactt ccgagctatg tcagtactat tcaggtaaca ctagggcctt ggaaattcct


4381
gtactgtgtc tcatggattt ggcactagcc aaagcgaggc acccttactg gcttacctcc


4441
tcatggcagc ctactctcct tgagtgtatg agtagccagg gtaaggggta aaaggatagt


4501
aagcatagaa accactagaa agtgggctta atggagttct tgtggcctca gctcaatgca


4561
gttagctgaa gaattgaaaa gtttttgttt ggagacgttt ataaacagaa atggaaagca


4621
gagttttcat taaatccttt tacctttttt ttttcttggt aatcccctaa aataacagta


4681
tgtgggatat tgaatgttaa agggatattt ttttctatta tttttataat tgtacaaaat


4741
taagcaaatg ttaaaagttt tatatgcttt attaatgttt tcaaaaggta ttatacatgt


4801
gatacatttt ttaagcttca gttgcttgtc ttctggtact ttctgttatg ggcttttggg


4861
gagccagaag ccaatctaca atctcttttt gtttgccagg acatgcaata aaatttaaaa


4921
aataaataaa aactaattaa gaaa










SEQ ID NO: 18 Human p63 Isoform 1  Amino Acid Sequence (NP_003713.3)








1
mnfetsrcat lqycpdpyiq rfvetpahfs wkesyyrstm sqstqtnefl spevfqhiwd


61
fleqpicsvq pidlnfvdep sedgatnkie ismdcirmqd sdlsdpmwpq ytnlgllnsm


121
dqqiqngsss tspyntdhaq nsvtapspya qpsstfdals pspaipsntd ypgphsfdvs


181
fqqsstaksa twtystelkk lycqiaktcp iqikvmtppp qgavirampv ykkaehvtev


241
vkrcpnhels refnegqiap pshlirvegn shaqyvedpi tgrqsvlvpy eppqvgteft


301
tvlynfmcns scvggmnrrp iliivtletr dgqvlgrrcf earicacpgr drkadedsir


361
kqqvsdstkn gdgtkrpfrq nthgiqmtsi kkrrspddel lylpvrgret yemllkikes


421
lelmqylpqh tietyrqqqq qqhqhllqkq tsiqspssyg nsspplnkmn smnklpsvsq


481
linpqqrnal tpttipdgmg anipmmgthm pmagdmngls ptqalpppls mpstshctpp


541
ppyptdcsiv sflarlgcss cldyfttqgl ttiyqiehys mddlaslkip eqfrhaiwkg


601
ildhrqlhef sspshllrtp ssastvsvgs setrgervid avrftlrqti sfpprdewnd


661
fnfdmdarrn kqqrikeege










SEQ ID NO: 19 Human p63 transcript variant 2 mRNA Sequence


NM_001114978.2; CDS: 128-1795)








1
ctatgtctga tagcatttga ccctattgct tttagcctcc cggctttata tctatatata


61
cacaggtata tgtgtatatt ttatataatt gttctccgtt cgttgatatc aaagacagtt


121
gaaggaaatg aattttgaaa cttcacggtg tgccacccta cagtactgcc ctgaccctta


181
catccagcgt ttcgtagaaa ccccagctca tttctcttgg aaagaaagtt attaccgatc


241
caccatgtcc cagagcacac agacaaatga attcctcagt ccagaggttt tccagcatat


301
ctgggatttt ctggaacagc ctatatgttc agttcagccc attgacttga actttgtgga


361
tgaaccatca gaagatggtg cgacaaacaa gattgagatt agcatggact gtatccgcat


421
gcaggactcg gacctgagtg accccatgtg gccacagtac acgaacctgg ggctcctgaa


481
cagcatggac cagcagattc agaacggctc ctcgtccacc agtccctata acacagacca


541
cgcgcagaac agcgtcacgg cgccctcgcc ctacgcacag cccagctcca ccttcgatgc


601
tctctctcca tcacccgcca tcccctccaa caccgactac ccaggcccgc acagtttcga


661
cgtgtccttc cagcagtcga gcaccgccaa gtcggccacc tggacgtatt ccactgaact


721
gaagaaactc tactgccaaa ttgcaaagac atgccccatc cagatcaagg tgatgacccc


781
acctcctcag ggagctgtta tccgcgccat gcctgtctac aaaaaagctg agcacgtcac


841
ggaggtggtg aagcggtgcc ccaaccatga gctgagccgt gaattcaacg agggacagat


901
tgcccctcct agtcatttga ttcgagtaga ggggaacagc catgcccagt atgtagaaga


961
tcccatcaca ggaagacaga gtgtgctggt accttatgag ccaccccagg ttggcactga


1021
attcacgaca gtcttgtaca atttcatgtg taacagcagt tgtgttggag ggatgaaccg


1081
ccgtccaatt ttaatcattg ttactctgga aaccagagat gggcaagtcc tgggccgacg


1141
ctgctttgag gcccggatct gtgcttgccc aggaagagac aggaaggcgg atgaagatag


1201
catcagaaag cagcaagttt cggacagtac aaagaacggt gatggtacga agcgcccgtt


1261
tcgtcagaac acacatggta tccagatgac atccatcaag aaacgaagat ccccagatga


1321
tgaactgtta tacttaccag tgaggggccg tgagacttat gaaatgctgt tgaagatcaa


1381
agagtccctg gaactcatgc agtaccttcc tcagcacaca attgaaacgt acaggcaaca


1441
gcaacagcag cagcaccagc acttacttca gaaacagacc tcaatacagt ctccatcttc


1501
atatggtaac agctccccac ctctgaacaa aatgaacagc atgaacaagc tgccttctgt


1561
gagccagctt atcaaccctc agcagcgcaa cgccctcact cctacaacca ttcctgatgg


1621
catgggagcc aacattccca tgatgggcac ccacatgcca atggctggag acatgaatgg


1681
actcagcccc acccaggcac tccctccccc actctccatg ccatccacct cccactgcac


1741
acccccacct ccgtatccca cagattgcag cattgtcagg atctggcaag tctgaaaatc


1801
cctgagcaat ttcgacatgc gatctggaag ggcatcctgg accaccggca gctccacgaa


1861
ttctcctccc cttctcatct cctgcggacc ccaagcagtg cctctacagt cagtgtgggc


1921
tccagtgaga cccggggtga gcgtgttatt gatgctgtgc gattcaccct ccgccagacc


1981
atctctttcc caccccgaga tgagtggaat gacttcaact ttgacatgga tgctcgccgc


2041
aataagcaac agcgcatcaa agaggagggg gagtgagcct caccatgtga gctcttccta


2101
tccctctcct aactgccagc cccctaaaag cactcctgct taatcttcaa agccttctcc


2161
ctagctcctc cccttcctct tgtctgattt cttaggggaa ggagaagtaa gaggctacct


2221
cttacctaac atctgacctg gcatctaatt ctgattctgg ctttaagcct tcaaaactat


2281
agcttgcaga actgtagctg ccatggctag gtagaagtga gcaaaaaaga gttgggtgtc


2341
tccttaagct gcagagattt ctcattgact tttataaagc atgttcaccc ttatagtcta


2401
agactatata tataaatgta taaatataca gtatagattt ttgggtgggg ggcattgagt


2461
attgtttaaa atgtaattta aatgaaagaa aattgagttg cacttattga ccatttttta


2521
atttacttgt tttggatggc ttgtctatac tccttccctt aaggggtatc atgtatggtg


2581
ataggtatct agagcttaat gctacatgtg agtgacgatg atgtacagat tctttcagtt


2641
ctttggattc taaatacatg ccacatcaaa cctttgagta gatccatttc cattgcttat


2701
tatgtaggta agactgtaga tatgtattct tttctcagtg ttggtatatt ttatattact


2761
gacatttctt ctagtgatga tggttcacgt tggggtgatt taatccagtt ataagaagaa


2821
gttcatgtcc aaacgtcctc tttagttttt ggttgggaat gaggaaaatt cttaaaaggc


2881
ccatagcagc cagttcaaaa acacccgacg tcatgtattt gagcatatca gtaaccccct


2941
taaatttaat accagatacc ttatcttaca atattgattg ggaaaacatt tgctgccatt


3001
acagaggtat taaaactaaa tttcactact agattgacta actcaaatac acatttgcta


3061
ctgttgtaag aattctgatt gatttgattg ggatgaatgc catctatcta gttctaacag


3121
tgaagtttta ctgtctatta atattcaggg taaataggaa tcattcagaa atgttgagtc


3181
tgtactaaac agtaagatat ctcaatgaac cataaattca actttgtaaa aatcttttga


3241
agcatagata atattgtttg gtaaatgttt cttttgtttg gtaaatgttt cttttaaaga


3301
ccctcctatt ctataaaact ctgcatgtag aggcttgttt acctttctct ctctaaggtt


3361
tacaatagga gtggtgattt gaaaaatata aaattatgag attggttttc ctgtggcata


3421
aattgcatca ctgtatcatt ttctttttta accggtaaga gtttcagttt gttggaaagt


3481
aactgtgaga acccagtttc ccgtccatct cccttaggga ctacccatag acatgaaagg


3541
tccccacaga gcaagagata agtctttcat ggctgctgtt gcttaaacca cttaaacgaa


3601
gagttccctt gaaactttgg gaaaacatgt taatgacaat attccagatc tttcagaaat


3661
ataacacatt tttttgcatg catgcaaatg agctctgaaa tcttcccatg cattctggtc


3721
aagggctgtc attgcacata agcttccatt ttaattttaa agtgcaaaag ggccagcgtg


3781
gctctaaaag gtaatgtgtg gattgcctct gaaaagtgtg tatatatttt gtgtgaaatt


3841
gcatactttg tattttgatt attttttttt tcttcttggg atagtgggat ttccagaacc


3901
acacttgaaa ccttttttta tcgtttttgt attttcatga aaataccatt tagtaagaat


3961
accacatcaa ataagaaata atgctacaat tttaagaggg gagggaaggg aaagtttttt


4021
tttattattt ttttaaaatt ttgtatgtta aagagaatga gtccttgatt tcaaagtttt


4081
gttgtactta aatggtaata agcactgtaa acttctgcaa caagcatgca gctttgcaaa


4141
cccattaagg ggaagaatga aagctgttcc ttggtcctag taagaagaca aactgcttcc


4201
cttactttgc tgagggtttg aataaaccta ggacttccga gctatgtcag tactattcag


4261
gtaacactag ggccttggaa attcctgtac tgtgtctcat ggatttggca ctagccaaag


4321
cgaggcaccc ttactggctt acctcctcat ggcagcctac tctccttgag tgtatgagta


4381
gccagggtaa ggggtaaaag gatagtaagc atagaaacca ctagaaagtg ggcttaatgg


4441
agttcttgtg gcctcagctc aatgcagtta gctgaagaat tgaaaagttt ttgtttggag


4501
acgtttataa acagaaatgg aaagcagagt tttcattaaa tccttttacc tttttttttt


4561
cttggtaatc ccctaaaata acagtatgtg ggatattgaa tgttaaaggg atattttttt


4621
ctattatttt tataattgta caaaattaag caaatgttaa aagttttata tgctttatta


4681
atgttttcaa aaggtattat acatgtgata cattttttaa gcttcagttg cttgtcttct


4741
ggtactttct gttatgggct tttggggagc cagaagccaa tctacaatct ctttttgttt


4801
gccaggacat gcaataaaat ttaaaaaata aataaaaact aattaagaaa










SEQ ID NO: 20 Human p63 Isoform 2 Amino Acid Sequence (NP_001108450.1)








1
mnfetsrcat lqycpdpyiq rfvetpahfs wkesyyrstm sqstqtnefl spevfqhiwd


61
fleqpicsvq pidlnfvdep sedgatnkie ismdcirmqd sdlsdpmwpq ytnlgllnsm


121
dqqiqngsss tspyntdhaq nsvtapspya qpsstfdals pspaipsntd ypgphsfdvs


181
fqqsstaksa twtystelkk lycqiaktcp iqikvmtppp qgavirampv ykkaehvtev


241
vkrcpnhels refnegqiap pshlirvegn shaqyvedpi tgrqsvlvpy eppqvgteft


301
tvlynfmcns scvggmnrrp iliivtletr dgqvlgrrcf earicacpgr drkadedsir


361
kqqvsdstkn gdgtkrpfrq nthgiqmtsi kkrrspddel lylpvrgret yemllkikes


421
lelmqylpqh tietyrqqqq qqhqhliqkq tsiqspssyg nsspplnkmn smnklpsvsq


481
linpqqrnal tpttipdgmg anipmmgthm pmagdmngls ptqalpppls mpstshctpp


541
ppyptdcsiv riwqv










SEQ ID NO: 21 Human p63 transcript variant 3 mRNA Sequence


(NM_001114979.2; CDS: 128-1591)








1
ctatgtctga tagcatttga ccctattgct tttagcctcc cggctttata tctatatata


61
cacaggtata tgtgtatatt ttatataatt gttctccgtt cgttgatatc aaagacagtt


121
gaaggaaatg aattttgaaa cttcacggtg tgccacccta cagtactgcc ctgaccctta


181
catccagcgt ttcgtagaaa ccccagctca tttctcttgg aaagaaagtt attaccgatc


241
caccatgtcc cagagcacac agacaaatga attcctcagt ccagaggttt tccagcatat


301
ctgggatttt ctggaacagc ctatatgttc agttcagccc attgacttga actttgtgga


361
tgaaccatca gaagatggtg cgacaaacaa gattgagatt agcatggact gtatccgcat


421
gcaggactcg gacctgagtg accccatgtg gccacagtac acgaacctgg ggctcctgaa


481
cagcatggac cagcagattc agaacggctc ctcgtccacc agtccctata acacagacca


541
cgcgcagaac agcgtcacgg cgccctcgcc ctacgcacag cccagctcca ccttcgatgc


601
tctctctcca tcacccgcca tcccctccaa caccgactac ccaggcccgc acagtttcga


661
cgtgtccttc cagcagtcga gcaccgccaa gtcggccacc tggacgtatt ccactgaact


721
gaagaaactc tactgccaaa ttgcaaagac atgccccatc cagatcaagg tgatgacccc


781
acctcctcag ggagctgtta tccgcgccat gcctgtctac aaaaaagctg agcacgtcac


841
ggaggtggtg aagcggtgcc ccaaccatga gctgagccgt gaattcaacg agggacagat


901
tgcccctcct agtcatttga ttcgagtaga ggggaacagc catgcccagt atgtagaaga


961
tcccatcaca ggaagacaga gtgtgctggt accttatgag ccaccccagg ttggcactga


1021
attcacgaca gtcttgtaca atttcatgtg taacagcagt tgtgttggag ggatgaaccg


1081
ccgtccaatt ttaatcattg ttactctgga aaccagagat gggcaagtcc tgggccgacg


1141
ctgctttgag gcccggatct gtgcttgccc aggaagagac aggaaggcgg atgaagatag


1201
catcagaaag cagcaagttt cggacagtac aaagaacggt gatggtacga agcgcccgtt


1261
tcgtcagaac acacatggta tccagatgac atccatcaag aaacgaagat ccccagatga


1321
tgaactgtta tacttaccag tgaggggccg tgagacttat gaaatgctgt tgaagatcaa


1381
agagtccctg gaactcatgc agtaccttcc tcagcacaca attgaaacgt acaggcaaca


1441
gcaacagcag cagcaccagc acttacttca gaaacatctc ctttcagcct gcttcaggaa


1501
tgagcttgtg gagccccgga gagaaactcc aaaacaatct gacgtcttct ttagacattc


1561
caagccccca aaccgatcag tgtacccata gagccctatc tctatatttt aagtgtgtgt


1621
gttgtatttc catgtgtata tgtgagtgtg tgtgtgtgta tgtgtgtgcg tgtgtatcta


1681
gccctcataa acaggacttg aagacacttt ggctcagaga cccaactgct caaaggcaca


1741
aagccactag tgagagaatc ttttgaaggg actcaaacct ttacaagaaa ggatgttttc


1801
tgcagatttt gtatccttag accggccatt ggtgggtgag gaaccactgt gtttgtctgt


1861
gagctttctg ttgtttcctg ggagggaggg gtcaggtggg gaaaggggca ttaagatgtt


1921
tattggaacc cttttctgtc ttcttctgtt gtttttctaa aattcacagg gaagcttttg


1981
agcaggtctc aaacttaaga tgtcttttta agaaaaggag aaaaaagttg ttattgtctg


2041
tgcataagta agttgtaggt gactgagaga ctcagtcaga cccttttaat gctggtcatg


2101
taataatatt gcaagtagta agaaacgaag gtgtcaagtg tactgctggg cagcgaggtg


2161
atcattacca aaagtaatca actttgtggg tggagagttc tttgtgagaa cttgcattat


2221
ttgtgtcctc ccctcatgtg taggtagaac atttcttaat gctgtgtacc tgcctctgcc


2281
actgtatgtt ggcatctgtt atgctaaagt ttttcttgta catgaaaccc tggaagacct


2341
actacaaaaa aactgttgtt tggcccccat agcaggtgaa ctcattttgt gcttttaata


2401
gaaagacaaa tccaccccag taatattgcc cttacgtagt tgtttaccat tattcaaagc


2461
tcaaaataga atttgaagcc ctctcacaaa atctgtgatt aatttgctta attagagctt


2521
ctatccctca agcctaccta ccataaaacc agccatatta ctgatactgt tcagtgcatt


2581
tagccaggag acttacgttt tgagtaagtg agatccaagc agacgtgtta aaatcagcac


2641
tcctggactg gaaattaaag attgaaaggg tagactactt ttcttttttt tactcaaaag


2701
tttagagaat ctctgtttct ttccatttta aaaacatatt ttaagataat agcataaaga


2761
ctttaaaaat gttcctcccc tccatcttcc cacacccagt caccagcact gtattttctg


2821
tcaccaagac aatgatttct tgttattgag gctgttgctt ttgtggatgt gtgattttaa


2881
ttttcaataa acttttgcat cttggtttat cttgca










SEQ ID NO: 22 Human p63 Isoform 3 Amino Acid Sequence (NP_001108451.1)








1
mnfetsrcat lqycpdpyiq rfvetpahfs wkesyyrstm sqstqtnefl spevfqhiwd


61
fleqpicsvq pidlnfvdep sedgatnkie ismdcirmqd sdlsdpmwpq ytnlgllnsm


121
dqqiqngsss tspyntdhaq nsvtapspya qpsstfdals pspaipsntd ypgphsfdvs


181
fqqsstaksa twtystelkk lycqiaktcp iqikvmtppp qgavirampv ykkaehvtev


241
vkrcpnhels refnegqiap pshlirvegn shaqyvedpi tgrqsvlvpy eppqvgteft


301
tvlynfmcns scvggmnrrp iliivtletr dgqvlgrrcf earicacpgr drkadedsir


361
kqqvsdstkn gdgtkrpfrq nthgiqmtsi kkrrspddel lylpvrgret yemllkikes


421
lelmqylpqh tietyrqqqq qqhqhllqkh llsacfrnel veprretpkq sdvffrhskp


481
pnrsvyp










SEQ ID NO: 23 Human p63 transcript variant 4 mRNA Sequence


(NM_001114980.2; CDS: 143-1903)








1
cagagagaga aagagagaga gggacttgag ttctgttatc ttcttaagta gattcatatt


61
gtaagggtct cggggtgggg gggttggcaa aatcctggag ccagaagaaa ggacagcagc


121
attgatcaat cttacagcta acatgttgta cctggaaaac aatgcccaga ctcaatttag


181
tgagccacag tacacgaacc tggggctcct gaacagcatg gaccagcaga ttcagaacgg


241
ctcctcgtcc accagtccct ataacacaga ccacgcgcag aacagcgtca cggcgccctc


301
gccctacgca cagcccagct ccaccttcga tgctctctct ccatcacccg ccatcccctc


361
caacaccgac tacccaggcc cgcacagttt cgacgtgtcc ttccagcagt cgagcaccgc


421
caagtcggcc acctggacgt attccactga actgaagaaa ctctactgcc aaattgcaaa


481
gacatgcccc atccagatca aggtgatgac cccacctcct cagggagctg ttatccgcgc


541
catgcctgtc tacaaaaaag ctgagcacgt cacggaggtg gtgaagcggt gccccaacca


601
tgagctgagc cgtgaattca acgagggaca gattgcccct cctagtcatt tgattcgagt


661
agaggggaac agccatgccc agtatgtaga agatcccatc acaggaagac agagtgtgct


721
ggtaccttat gagccacccc aggttggcac tgaattcacg acagtcttgt acaatttcat


781
gtgtaacagc agttgtgttg gagggatgaa ccgccgtcca attttaatca ttgttactct


841
ggaaaccaga gatgggcaag tcctgggccg acgctgcttt gaggcccgga tctgtgcttg


901
cccaggaaga gacaggaagg cggatgaaga tagcatcaga aagcagcaag tttcggacag


961
tacaaagaac ggtgatggta cgaagcgccc gtttcgtcag aacacacatg gtatccagat


1021
gacatccatc aagaaacgaa gatccccaga tgatgaactg ttatacttac cagtgagggg


1081
ccgtgagact tatgaaatgc tgttgaagat caaagagtcc ctggaactca tgcagtacct


1141
tcctcagcac acaattgaaa cgtacaggca acagcaacag cagcagcacc agcacttact


1201
tcagaaacag acctcaatac agtctccatc ttcatatggt aacagctccc cacctctgaa


1261
caaaatgaac agcatgaaca agctgccttc tgtgagccag cttatcaacc ctcagcagcg


1321
caacgccctc actcctacaa ccattcctga tggcatggga gccaacattc ccatgatggg


1381
cacccacatg ccaatggctg gagacatgaa tggactcagc cccacccagg cactccctcc


1441
cccactctcc atgccatcca cctcccactg cacaccccca cctccgtatc ccacagattg


1501
cagcattgtc agtttcttag cgaggttggg ctgttcatca tgtctggact atttcacgac


1561
ccaggggctg accaccatct atcagattga gcattactcc atggatgatc tggcaagtct


1621
gaaaatccct gagcaatttc gacatgcgat ctggaagggc atcctggacc accggcagct


1681
ccacgaattc tcctcccctt ctcatctcct gcggacccca agcagtgcct ctacagtcag


1741
tgtgggctcc agtgagaccc ggggtgagcg tgttattgat gctgtgcgat tcaccctccg


1801
ccagaccatc tctttcccac cccgagatga gtggaatgac ttcaactttg acatggatgc


1861
tcgccgcaat aagcaacagc gcatcaaaga ggagggggag tgagcctcac catgtgagct


1921
cttcctatcc ctctcctaac tgccagcccc ctaaaagcac tcctgcttaa tcttcaaagc


1981
cttctcccta gctcctcccc ttcctcttgt ctgatttctt aggggaagga gaagtaagag


2041
gctacctctt acctaacatc tgacctggca tctaattctg attctggctt taagccttca


2101
aaactatagc ttgcagaact gtagctgcca tggctaggta gaagtgagca aaaaagagtt


2161
gggtgtctcc ttaagctgca gagatttctc attgactttt ataaagcatg ttcaccctta


2221
tagtctaaga ctatatatat aaatgtataa atatacagta tagatttttg ggtggggggc


2281
attgagtatt gtttaaaatg taatttaaat gaaagaaaat tgagttgcac ttattgacca


2341
ttttttaatt tacttgtttt ggatggcttg tctatactcc ttcccttaag gggtatcatg


2401
tatggtgata ggtatctaga gcttaatgct acatgtgagt gacgatgatg tacagattct


2461
ttcagttctt tggattctaa atacatgcca catcaaacct ttgagtagat ccatttccat


2521
tgcttattat gtaggtaaga ctgtagatat gtattctttt ctcagtgttg gtatatttta


2581
tattactgac atttcttcta gtgatgatgg ttcacgttgg ggtgatttaa tccagttata


2641
agaagaagtt catgtccaaa cgtcctcttt agtttttggt tgggaatgag gaaaattctt


2701
aaaaggccca tagcagccag ttcaaaaaca cccgacgtca tgtatttgag catatcagta


2761
acccccttaa atttaatacc agatacctta tcttacaata ttgattggga aaacatttgc


2821
tgccattaca gaggtattaa aactaaattt cactactaga ttgactaact caaatacaca


2881
tttgctactg ttgtaagaat tctgattgat ttgattggga tgaatgccat ctatctagtt


2941
ctaacagtga agttttactg tctattaata ttcagggtaa ataggaatca ttcagaaatg


3001
ttgagtctgt actaaacagt aagatatctc aatgaaccat aaattcaact ttgtaaaaat


3061
cttttgaagc atagataata ttgtttggta aatgtttctt ttgtttggta aatgtttctt


3121
ttaaagaccc tcctattcta taaaactctg catgtagagg cttgtttacc tttctctctc


3181
taaggtttac aataggagtg gtgatttgaa aaatataaaa ttatgagatt ggttttcctg


3241
tggcataaat tgcatcactg tatcattttc ttttttaacc ggtaagagtt tcagtttgtt


3301
ggaaagtaac tgtgagaacc cagtttcccg tccatctccc ttagggacta cccatagaca


3361
tgaaaggtcc ccacagagca agagataagt ctttcatggc tgctgttgct taaaccactt


3421
aaacgaagag ttcccttgaa actttgggaa aacatgttaa tgacaatatt ccagatcttt


3481
cagaaatata acacattttt ttgcatgcat gcaaatgagc tctgaaatct tcccatgcat


3541
tctggtcaag ggctgtcatt gcacataagc ttccatttta attttaaagt gcaaaagggc


3601
cagcgtggct ctaaaaggta atgtgtggat tgcctctgaa aagtgtgtat atattttgtg


3661
tgaaattgca tactttgtat tttgattatt ttttttttct tcttgggata gtgggatttc


3721
cagaaccaca cttgaaacct ttttttatcg tttttgtatt ttcatgaaaa taccatttag


3781
taagaatacc acatcaaata agaaataatg ctacaatttt aagaggggag ggaagggaaa


3841
gttttttttt attatttttt taaaattttg tatgttaaag agaatgagtc cttgatttca


3901
aagttttgtt gtacttaaat ggtaataagc actgtaaact tctgcaacaa gcatgcagct


3961
ttgcaaaccc attaagggga agaatgaaag ctgttccttg gtcctagtaa gaagacaaac


4021
tgcttccctt actttgctga gggtttgaat aaacctagga cttccgagct atgtcagtac


4081
tattcaggta acactagggc cttggaaatt cctgtactgt gtctcatgga tttggcacta


4141
gccaaagcga ggcaccctta ctggcttacc tcctcatggc agcctactct ccttgagtgt


4201
atgagtagcc agggtaaggg gtaaaaggat agtaagcata gaaaccacta gaaagtgggc


4261
ttaatggagt tcttgtggcc tcagctcaat gcagttagct gaagaattga aaagtttttg


4321
tttggagacg tttataaaca gaaatggaaa gcagagtttt cattaaatcc ttttaccttt


4381
tttttttctt ggtaatcccc taaaataaca gtatgtggga tattgaatgt taaagggata


4441
tttttttcta ttatttttat aattgtacaa aattaagcaa atgttaaaag ttttatatgc


4501
tttattaatg ttttcaaaag gtattataca tgtgatacat tttttaagct tcagttgctt


4561
gtcttctggt actttctgtt atgggctttt ggggagccag aagccaatct acaatctctt


4621
tttgtttgcc aggacatgca ataaaattta aaaaataaat aaaaactaat taagaaa










SEQ ID NO: 24 Human p63 Isoform 4 Amino Acid Sequence (NP_001108452.1)








1
mlylennaqt qfsepqytnl gllnsmdqqi qngssstspy ntdhaqnsvt apspyaqpss


61
tfdalspspa ipsntdypgp hsfdvsfqqs staksatwty stelkklycq iaktcpiqik


121
vmtpppqgav irampvykka ehvtevvkrc pnhelsrefn egqiappshl irvegnshaq


181
yvedpitgrq svlvpyeppq vgtefttvly nfmcnsscvg gmnrrpilii vtletrdgqv


241
lgrrcfeari cacpgrdrka dedsirkqqv sdstkngdgt krpfrqnthg iqmtsikkrr


301
spddellylp vrgretyeml lkikeslelm qylpqhtiet yrqqqqqqhq hllqkqtsiq


361
spssygnssp plnkmnsmnk lpsysqlinp qqrnaltptt ipdgmganip mmgthmpmag


421
dmnglsptqa lppplsmpst shctppppyp tdcsivsfla rlgcsscldy fttqglttiy


481
qiehysmddl aslkipeqfr haiwkgildh rqlhefssps hllrtpssas tvsvgssetr


541
gervidavrf tlrqtisfpp rdewndfnfd mdarrnkqqr ikeege










SEQ ID NO: 25 Human p63 transcript variant 5 mRNA Sequence


(NM_001114981.2; CDS: 143-1528)








1
cagagagaga aagagagaga gggacttgag ttctgttatc ttcttaagta gattcatatt


61
gtaagggtct cggggtgggg gggttggcaa aatcctggag ccagaagaaa ggacagcagc


121
attgatcaat cttacagcta acatgttgta cctggaaaac aatgcccaga ctcaatttag


181
tgagccacag tacacgaacc tggggctcct gaacagcatg gaccagcaga ttcagaacgg


241
ctcctcgtcc accagtccct ataacacaga ccacgcgcag aacagcgtca cggcgccctc


301
gccctacgca cagcccagct ccaccttcga tgctctctct ccatcacccg ccatcccctc


361
caacaccgac tacccaggcc cgcacagttt cgacgtgtcc ttccagcagt cgagcaccgc


421
caagtcggcc acctggacgt attccactga actgaagaaa ctctactgcc aaattgcaaa


481
gacatgcccc atccagatca aggtgatgac cccacctcct cagggagctg ttatccgcgc


541
catgcctgtc tacaaaaaag ctgagcacgt cacggaggtg gtgaagcggt gccccaacca


601
tgagctgagc cgtgaattca acgagggaca gattgcccct cctagtcatt tgattcgagt


661
agaggggaac agccatgccc agtatgtaga agatcccatc acaggaagac agagtgtgct


721
ggtaccttat gagccacccc aggttggcac tgaattcacg acagtcttgt acaatttcat


781
gtgtaacagc agttgtgttg gagggatgaa ccgccgtcca attttaatca ttgttactct


841
ggaaaccaga gatgggcaag tcctgggccg acgctgcttt gaggcccgga tctgtgcttg


901
cccaggaaga gacaggaagg cggatgaaga tagcatcaga aagcagcaag tttcggacag


961
tacaaagaac ggtgatggta cgaagcgccc gtttcgtcag aacacacatg gtatccagat


1021
gacatccatc aagaaacgaa gatccccaga tgatgaactg ttatacttac cagtgagggg


1081
ccgtgagact tatgaaatgc tgttgaagat caaagagtcc ctggaactca tgcagtacct


1141
tcctcagcac acaattgaaa cgtacaggca acagcaacag cagcagcacc agcacttact


1201
tcagaaacag acctcaatac agtctccatc ttcatatggt aacagctccc cacctctgaa


1261
caaaatgaac agcatgaaca agctgccttc tgtgagccag cttatcaacc ctcagcagcg


1321
caacgccctc actcctacaa ccattcctga tggcatggga gccaacattc ccatgatggg


1381
cacccacatg ccaatggctg gagacatgaa tggactcagc cccacccagg cactccctcc


1441
cccactctcc atgccatcca cctcccactg cacaccccca cctccgtatc ccacagattg


1501
cagcattgtc aggatctggc aagtctgaaa atccctgagc aatttcgaca tgcgatctgg


1561
aagggcatcc tggaccaccg gcagctccac gaattctcct ccccttctca tctcctgcgg


1621
accccaagca gtgcctctac agtcagtgtg ggctccagtg agacccgggg tgagcgtgtt


1681
attgatgctg tgcgattcac cctccgccag accatctctt tcccaccccg agatgagtgg


1741
aatgacttca actttgacat ggatgctcgc cgcaataagc aacagcgcat caaagaggag


1801
ggggagtgag cctcaccatg tgagctcttc ctatccctct cctaactgcc agccccctaa


1861
aagcactcct gcttaatctt caaagccttc tccctagctc ctccccttcc tcttgtctga


1921
tttcttaggg gaaggagaag taagaggcta cctcttacct aacatctgac ctggcatcta


1981
attctgattc tggctttaag ccttcaaaac tatagcttgc agaactgtag ctgccatggc


2041
taggtagaag tgagcaaaaa agagttgggt gtctccttaa gctgcagaga tttctcattg


2101
acttttataa agcatgttca cccttatagt ctaagactat atatataaat gtataaatat


2161
acagtataga tttttgggtg gggggcattg agtattgttt aaaatgtaat ttaaatgaaa


2221
gaaaattgag ttgcacttat tgaccatttt ttaatttact tgttttggat ggcttgtcta


2281
tactccttcc cttaaggggt atcatgtatg gtgataggta tctagagctt aatgctacat


2341
gtgagtgacg atgatgtaca gattctttca gttctttgga ttctaaatac atgccacatc


2401
aaacctttga gtagatccat ttccattgct tattatgtag gtaagactgt agatatgtat


2461
tcttttctca gtgttggtat attttatatt actgacattt cttctagtga tgatggttca


2521
cgttggggtg atttaatcca gttataagaa gaagttcatg tccaaacgtc ctctttagtt


2581
tttggttggg aatgaggaaa attcttaaaa ggcccatagc agccagttca aaaacacccg


2641
acgtcatgta tttgagcata tcagtaaccc ccttaaattt aataccagat accttatctt


2701
acaatattga ttgggaaaac atttgctgcc attacagagg tattaaaact aaatttcact


2761
actagattga ctaactcaaa tacacatttg ctactgttgt aagaattctg attgatttga


2821
ttgggatgaa tgccatctat ctagttctaa cagtgaagtt ttactgtcta ttaatattca


2881
gggtaaatag gaatcattca gaaatgttga gtctgtacta aacagtaaga tatctcaatg


2941
aaccataaat tcaactttgt aaaaatcttt tgaagcatag ataatattgt ttggtaaatg


3001
tttcttttgt ttggtaaatg tttcttttaa agaccctcct attctataaa actctgcatg


3061
tagaggcttg tttacctttc tctctctaag gtttacaata ggagtggtga tttgaaaaat


3121
ataaaattat gagattggtt ttcctgtggc ataaattgca tcactgtatc attttctttt


3181
ttaaccggta agagtttcag tttgttggaa agtaactgtg agaacccagt ttcccgtcca


3241
tctcccttag ggactaccca tagacatgaa aggtccccac agagcaagag ataagtcttt


3301
catggctgct gttgcttaaa ccacttaaac gaagagttcc cttgaaactt tgggaaaaca


3361
tgttaatgac aatattccag atctttcaga aatataacac atttttttgc atgcatgcaa


3421
atgagctctg aaatcttccc atgcattctg gtcaagggct gtcattgcac ataagcttcc


3481
attttaattt taaagtgcaa aagggccagc gtggctctaa aaggtaatgt gtggattgcc


3541
tctgaaaagt gtgtatatat tttgtgtgaa attgcatact ttgtattttg attatttttt


3601
ttttcttctt gggatagtgg gatttccaga accacacttg aaaccttttt ttatcgtttt


3661
tgtattttca tgaaaatacc atttagtaag aataccacat caaataagaa ataatgctac


3721
aattttaaga ggggagggaa gggaaagttt ttttttatta tttttttaaa attttgtatg


3781
ttaaagagaa tgagtccttg atttcaaagt tttgttgtac ttaaatggta ataagcactg


3841
taaacttctg caacaagcat gcagctttgc aaacccatta aggggaagaa tgaaagctgt


3901
tccttggtcc tagtaagaag acaaactgct tcccttactt tgctgagggt ttgaataaac


3961
ctaggacttc cgagctatgt cagtactatt caggtaacac tagggccttg gaaattcctg


4021
tactgtgtct catggatttg gcactagcca aagcgaggca cccttactgg cttacctcct


4081
catggcagcc tactctcctt gagtgtatga gtagccaggg taaggggtaa aaggatagta


4141
agcatagaaa ccactagaaa gtgggcttaa tggagttctt gtggcctcag ctcaatgcag


4201
ttagctgaag aattgaaaag tttttgtttg gagacgttta taaacagaaa tggaaagcag


4261
agttttcatt aaatcctttt accttttttt tttcttggta atcccctaaa ataacagtat


4321
gtgggatatt gaatgttaaa gggatatttt tttctattat ttttataatt gtacaaaatt


4381
aagcaaatgt taaaagtttt atatgcttta ttaatgtttt caaaaggtat tatacatgtg


4441
atacattttt taagcttcag ttgcttgtct tctggtactt tctgttatgg gcttttgggg


4501
agccagaagc caatctacaa tctctttttg tttgccagga catgcaataa aatttaaaaa


4561
ataaataaaa actaattaag aaa










SEQ ID NO: 26 Human p63 Isoform 5 Amino Acid Sequence (NP_001108453.1)








1
mlylennaqt qfsepqytnl gllnsmdqqi qngssstspy ntdhaqnsvt apspyaqpss


61
tfdalspspa ipsntdypgp hsfdvsfqqs staksatwty stelkklycq iaktcpiqik


121
vmtpppqgav irampvykka ehvtevvkrc pnhelsrefn egqiappshl irvegnshaq


181
yvedpitgrq svlvpyeppq vgtefttvly nfmcnsscvg gmnrrpilii vtletrdgqv


241
lgrrcfeari cacpgrdrka dedsirkqqv sdstkngdgt krpfrqnthg iqmtsikkrr


301
spddellylp vrgretyeml lkikeslelm qylpqhtiet yrqqqqqqhq hllqkqtsiq


361
spssygnssp plnkmnsmnk lpsysqlinp qqrnaltptt ipdgmganip mmgthmpmag


421
dmnglsptqa lppplsmpst shctppppyp tdcsivriwq v










SEQ ID NO: 27 Human p63 transcript variant 6 mRNA Sequence


(NM_001114982.2; CDS: 143-1324)








1
cagagagaga aagagagaga gggacttgag ttctgttatc ttcttaagta gattcatatt


61
gtaagggtct cggggtgggg gggttggcaa aatcctggag ccagaagaaa ggacagcagc


121
attgatcaat cttacagcta acatgttgta cctggaaaac aatgcccaga ctcaatttag


181
tgagccacag tacacgaacc tggggctcct gaacagcatg gaccagcaga ttcagaacgg


241
ctcctcgtcc accagtccct ataacacaga ccacgcgcag aacagcgtca cggcgccctc


301
gccctacgca cagcccagct ccaccttcga tgctctctct ccatcacccg ccatcccctc


361
caacaccgac tacccaggcc cgcacagttt cgacgtgtcc ttccagcagt cgagcaccgc


421
caagtcggcc acctggacgt attccactga actgaagaaa ctctactgcc aaattgcaaa


481
gacatgcccc atccagatca aggtgatgac cccacctcct cagggagctg ttatccgcgc


541
catgcctgtc tacaaaaaag ctgagcacgt cacggaggtg gtgaagcggt gccccaacca


601
tgagctgagc cgtgaattca acgagggaca gattgcccct cctagtcatt tgattcgagt


661
agaggggaac agccatgccc agtatgtaga agatcccatc acaggaagac agagtgtgct


721
ggtaccttat gagccacccc aggttggcac tgaattcacg acagtcttgt acaatttcat


781
gtgtaacagc agttgtgttg gagggatgaa ccgccgtcca attttaatca ttgttactct


841
ggaaaccaga gatgggcaag tcctgggccg acgctgcttt gaggcccgga tctgtgcttg


901
cccaggaaga gacaggaagg cggatgaaga tagcatcaga aagcagcaag tttcggacag


961
tacaaagaac ggtgatggta cgaagcgccc gtttcgtcag aacacacatg gtatccagat


1021
gacatccatc aagaaacgaa gatccccaga tgatgaactg ttatacttac cagtgagggg


1081
ccgtgagact tatgaaatgc tgttgaagat caaagagtcc ctggaactca tgcagtacct


1141
tcctcagcac acaattgaaa cgtacaggca acagcaacag cagcagcacc agcacttact


1201
tcagaaacat ctcctttcag cctgcttcag gaatgagctt gtggagcccc ggagagaaac


1261
tccaaaacaa tctgacgtct tctttagaca ttccaagccc ccaaaccgat cagtgtaccc


1321
atagagccct atctctatat tttaagtgtg tgtgttgtat ttccatgtgt atatgtgagt


1381
gtgtgtgtgt gtatgtgtgt gcgtgtgtat ctagccctca taaacaggac ttgaagacac


1441
tttggctcag agacccaact gctcaaaggc acaaagccac tagtgagaga atcttttgaa


1501
gggactcaaa cctttacaag aaaggatgtt ttctgcagat tttgtatcct tagaccggcc


1561
attggtgggt gaggaaccac tgtgtttgtc tgtgagcttt ctgttgtttc ctgggaggga


1621
ggggtcaggt ggggaaaggg gcattaagat gtttattgga acccttttct gtcttcttct


1681
gttgtttttc taaaattcac agggaagctt ttgagcaggt ctcaaactta agatgtcttt


1741
ttaagaaaag gagaaaaaag ttgttattgt ctgtgcataa gtaagttgta ggtgactgag


1801
agactcagtc agaccctttt aatgctggtc atgtaataat attgcaagta gtaagaaacg


1861
aaggtgtcaa gtgtactgct gggcagcgag gtgatcatta ccaaaagtaa tcaactttgt


1921
gggtggagag ttctttgtga gaacttgcat tatttgtgtc ctcccctcat gtgtaggtag


1981
aacatttctt aatgctgtgt acctgcctct gccactgtat gttggcatct gttatgctaa


2041
agtttttctt gtacatgaaa ccctggaaga cctactacaa aaaaactgtt gtttggcccc


2101
catagcaggt gaactcattt tgtgctttta atagaaagac aaatccaccc cagtaatatt


2161
gcccttacgt agttgtttac cattattcaa agctcaaaat agaatttgaa gccctctcac


2221
aaaatctgtg attaatttgc ttaattagag cttctatccc tcaagcctac ctaccataaa


2281
accagccata ttactgatac tgttcagtgc atttagccag gagacttacg ttttgagtaa


2341
gtgagatcca agcagacgtg ttaaaatcag cactcctgga ctggaaatta aagattgaaa


2401
gggtagacta cttttctttt ttttactcaa aagtttagag aatctctgtt tctttccatt


2461
ttaaaaacat attttaagat aatagcataa agactttaaa aatgttcctc ccctccatct


2521
tcccacaccc agtcaccagc actgtatttt ctgtcaccaa gacaatgatt tcttgttatt


2581
gaggctgttg cttttgtgga tgtgtgattt taattttcaa taaacttttg catcttggtt


2641
tatcttgca










SEQ ID NO: 28 Human p63 Isoform 6 Sequence (NP_001108454.1)








1
mlylennaqt qfsepqytnl gllnsmdqql qngssstspy ntdhaqnsvt apspyaqpss


61
tfdalspspa ipsntdypgp hsfdvsfqqs staksatwty stelkklycq iaktcpiqik


121
vmtpppqgav irampvykka ehvtevvkrc pnhelsrefn egqiappshl irvegnshaq


181
yvedpitgrq svlvpyeppq vgtefttvly nfmcnsscvg gmnrrpilii vtletrdgqv


241
lgrrcfeari cacpgrdrka dedsirkqqv sdstkngdgt krpfrqnthg iqmtsikkrr


301
spddellylp vrgretyeml lkikeslelm qylpqhtiet yrqqqqqqhq hllqkhllsa


361
cfrnelvepr retpkqsdvf frhskppnrs vyp










SEQ ID NO: 29 Human p63 transcript variant 7 mRNA Sequence


(NM_001329144.2; CDS: 128-1660)








1
ctatgtctga tagcatttga ccctattgct tttagcctcc cggctttata tctatatata


61
cacaggtata tgtgtatatt ttatataatt gttctccgtt cgttgatatc aaagacagtt


121
gaaggaaatg aattttgaaa cttcacggtg tgccacccta cagtactgcc ctgaccctta


181
catccagcgt ttcgtagaaa ccccagctca tttctcttgg aaagaaagtt attaccgatc


241
caccatgtcc cagagcacac agacaaatga attcctcagt ccagaggttt tccagcatat


301
ctgggatttt ctggaacagc ctatatgttc agttcagccc attgacttga actttgtgga


361
tgaaccatca gaagatggtg cgacaaacaa gattgagatt agcatggact gtatccgcat


421
gcaggactcg gacctgagtg accccatgtg gccacagtac acgaacctgg ggctcctgaa


481
cagcatggac cagcagattc agaacggctc ctcgtccacc agtccctata acacagacca


541
cgcgcagaac agcgtcacgg cgccctcgcc ctacgcacag cccagctcca ccttcgatgc


601
tctctctcca tcacccgcca tcccctccaa caccgactac ccaggcccgc acagtttcga


661
cgtgtccttc cagcagtcga gcaccgccaa gtcggccacc tggacgtatt ccactgaact


721
gaagaaactc tactgccaaa ttgcaaagac atgccccatc cagatcaagg tgatgacccc


781
acctcctcag ggagctgtta tccgcgccat gcctgtctac aaaaaagctg agcacgtcac


841
ggaggtggtg aagcggtgcc ccaaccatga gctgagccgt gaattcaacg agggacagat


901
tgcccctcct agtcatttga ttcgagtaga ggggaacagc catgcccagt atgtagaaga


961
tcccatcaca ggaagacaga gtgtgctggt accttatgag ccaccccagg ttggcactga


1021
attcacgaca gtcttgtaca atttcatgtg taacagcagt tgtgttggag ggatgaaccg


1081
ccgtccaatt ttaatcattg ttactctgga aaccagagat gggcaagtcc tgggccgacg


1141
ctgctttgag gcccggatct gtgcttgccc aggaagagac aggaaggcgg atgaagatag


1201
catcagaaag cagcaagttt cggacagtac aaagaacggt gatggtacga agcgcccgtt


1261
tcgtcagaac acacatggta tccagatgac atccatcaag aaacgaagat ccccagatga


1321
tgaactgtta tacttaccag tgaggggccg tgagacttat gaaatgctgt tgaagatcaa


1381
agagtccctg gaactcatgc agtaccttcc tcagcacaca attgaaacgt acaggcaaca


1441
gcaacagcag cagcaccagc acttacttca gaaacagacc tcaatacagt ctccatcttc


1501
atatggtaac agctccccac ctctgaacaa aatgaacagc atgaacaagc tgccttctgt


1561
gagccagctt atcaaccctc agcagcgcaa cgccctcact cctacaacca ttcctgatgg


1621
catgggagcc aacagatctg gcaagtctga aaatccctga gcaatttcga catgcgatct


1681
ggaagggcat cctggaccac cggcagctcc acgaattctc ctccccttct catctcctgc


1741
ggaccccaag cagtgcctct acagtcagtg tgggctccag tgagacccgg ggtgagcgtg


1801
ttattgatgc tgtgcgattc accctccgcc agaccatctc tttcccaccc cgagatgagt


1861
ggaatgactt caactttgac atggatgctc gccgcaataa gcaacagcgc atcaaagagg


1921
agggggagtg agcctcacca tgtgagctct tcctatccct ctcctaactg ccagccccct


1981
aaaagcactc ctgcttaatc ttcaaagcct tctccctagc tcctcccctt cctcttgtct


2041
gatttcttag gggaaggaga agtaagaggc tacctcttac ctaacatctg acctggcatc


2101
taattctgat tctggcttta agccttcaaa actatagctt gcagaactgt agctgccatg


2161
gctaggtaga agtgagcaaa aaagagttgg gtgtctcctt aagctgcaga gatttctcat


2221
tgacttttat aaagcatgtt cacccttata gtctaagact atatatataa atgtataaat


2281
atacagtata gatttttggg tggggggcat tgagtattgt ttaaaatgta atttaaatga


2341
aagaaaattg agttgcactt attgaccatt ttttaattta cttgttttgg atggcttgtc


2401
tatactcctt cccttaaggg gtatcatgta tggtgatagg tatctagagc ttaatgctac


2461
atgtgagtga cgatgatgta cagattcttt cagttctttg gattctaaat acatgccaca


2521
tcaaaccttt gagtagatcc atttccattg cttattatgt aggtaagact gtagatatgt


2581
attcttttct cagtgttggt atattttata ttactgacat ttcttctagt gatgatggtt


2641
cacgttgggg tgatttaatc cagttataag aagaagttca tgtccaaacg tcctctttag


2701
tttttggttg ggaatgagga aaattcttaa aaggcccata gcagccagtt caaaaacacc


2761
cgacgtcatg tatttgagca tatcagtaac ccccttaaat ttaataccag ataccttatc


2821
ttacaatatt gattgggaaa acatttgctg ccattacaga ggtattaaaa ctaaatttca


2881
ctactagatt gactaactca aatacacatt tgctactgtt gtaagaattc tgattgattt


2941
gattgggatg aatgccatct atctagttct aacagtgaag ttttactgtc tattaatatt


3001
cagggtaaat aggaatcatt cagaaatgtt gagtctgtac taaacagtaa gatatctcaa


3061
tgaaccataa attcaacttt gtaaaaatct tttgaagcat agataatatt gtttggtaaa


3121
tgtttctttt gtttggtaaa tgtttctttt aaagaccctc ctattctata aaactctgca


3181
tgtagaggct tgtttacctt tctctctcta aggtttacaa taggagtggt gatttgaaaa


3241
atataaaatt atgagattgg ttttcctgtg gcataaattg catcactgta tcattttctt


3301
ttttaaccgg taagagtttc agtttgttgg aaagtaactg tgagaaccca gtttcccgtc


3361
catctccctt agggactacc catagacatg aaaggtcccc acagagcaag agataagtct


3421
ttcatggctg ctgttgctta aaccacttaa acgaagagtt cccttgaaac tttgggaaaa


3481
catgttaatg acaatattcc agatctttca gaaatataac acattttttt gcatgcatgc


3541
aaatgagctc tgaaatcttc ccatgcattc tggtcaaggg ctgtcattgc acataagctt


3601
ccattttaat tttaaagtgc aaaagggcca gcgtggctct aaaaggtaat gtgtggattg


3661
cctctgaaaa gtgtgtatat attttgtgtg aaattgcata ctttgtattt tgattatttt


3721
ttttttcttc ttgggatagt gggatttcca gaaccacact tgaaaccttt ttttatcgtt


3781
tttgtatttt catgaaaata ccatttagta agaataccac atcaaataag aaataatgct


3841
acaattttaa gaggggaggg aagggaaagt ttttttttat tattttttta aaattttgta


3901
tgttaaagag aatgagtcct tgatttcaaa gttttgttgt acttaaatgg taataagcac


3961
tgtaaacttc tgcaacaagc atgcagcttt gcaaacccat taaggggaag aatgaaagct


4021
gttccttggt cctagtaaga agacaaactg cttcccttac tttgctgagg gtttgaataa


4081
acctaggact tccgagctat gtcagtacta ttcaggtaac actagggcct tggaaattcc


4141
tgtactgtgt ctcatggatt tggcactagc caaagcgagg cacccttact ggcttacctc


4201
ctcatggcag cctactctcc ttgagtgtat gagtagccag ggtaaggggt aaaaggatag


4261
taagcataga aaccactaga aagtgggctt aatggagttc ttgtggcctc agctcaatgc


4321
agttagctga agaattgaaa agtttttgtt tggagacgtt tataaacaga aatggaaagc


4381
agagttttca ttaaatcctt ttaccttttt tttttcttgg taatccccta aaataacagt


4441
atgtgggata ttgaatgtta aagggatatt tttttctatt atttttataa ttgtacaaaa


4501
ttaagcaaat gttaaaagtt ttatatgctt tattaatgtt ttcaaaaggt attatacatg


4561
tgatacattt tttaagcttc agttgcttgt cttctggtac tttctgttat gggcttttgg


4621
ggagccagaa gccaatctac aatctctttt tgtttgccag gacatgcaat aaaatttaaa


4681
aaataaataa aaactaatta agaaa










SEQ ID NO: 30 Human p63 Isoform 7 Amino Acid Sequence (NP_001316073.1)








1
mnfetsrcat lqycpdpyiq rfvetpahfs wkesyyrstm sqstqtnefl spevfqhiwd


61
fleqpicsvq pidlnfvdep sedgatnkie ismdcirmqd sdlsdpmwpq ytnlgllnsm


121
dqqiqngsss tspyntdhaq nsvtapspya qpsstfdals pspaipsntd ypgphsfdvs


181
fqqsstaksa twtystelkk lycqiaktcp iqikvmtppp qgavirampv ykkaehvtev


241
vkrcpnhels refnegqiap pshlirvegn shaqyvedpi tgrqsvlvpy eppqvgteft


301
tvlynfmcns scvggmnrrp iliivtletr dgqvlgrrcf earicacpgr drkadedsir


361
kqqvsdstkn gdgtkrpfrq nthgiqmtsi kkrrspddel lylpvrgret yemllkikes


421
lelmqylpqh tietyrqqqq qqhqhllqkq tsiqspssyg nssppinkmn smnklpsvsq


481
linpqqrnal tpttipdgmg anrsgksenp










SEQ ID NO: 31 Human p63 transcript variant 8 mRNA Sequence


(NM_001329145.2; CDS: 143-1393)








1
cagagagaga aagagagaga gggacttgag ttctgttatc ttcttaagta gattcatatt


61
gtaagggtct cggggtgggg gggttggcaa aatcctggag ccagaagaaa ggacagcagc


121
attgatcaat cttacagcta acatgttgta cctggaaaac aatgcccaga ctcaatttag


181
tgagccacag tacacgaacc tggggctcct gaacagcatg gaccagcaga ttcagaacgg


241
ctcctcgtcc accagtccct ataacacaga ccacgcgcag aacagcgtca cggcgccctc


301
gccctacgca cagcccagct ccaccttcga tgctctctct ccatcacccg ccatcccctc


361
caacaccgac tacccaggcc cgcacagttt cgacgtgtcc ttccagcagt cgagcaccgc


421
caagtcggcc acctggacgt attccactga actgaagaaa ctctactgcc aaattgcaaa


481
gacatgcccc atccagatca aggtgatgac cccacctcct cagggagctg ttatccgcgc


541
catgcctgtc tacaaaaaag ctgagcacgt cacggaggtg gtgaagcggt gccccaacca


601
tgagctgagc cgtgaattca acgagggaca gattgcccct cctagtcatt tgattcgagt


661
agaggggaac agccatgccc agtatgtaga agatcccatc acaggaagac agagtgtgct


721
ggtaccttat gagccacccc aggttggcac tgaattcacg acagtcttgt acaatttcat


781
gtgtaacagc agttgtgttg gagggatgaa ccgccgtcca attttaatca ttgttactct


841
ggaaaccaga gatgggcaag tcctgggccg acgctgcttt gaggcccgga tctgtgcttg


901
cccaggaaga gacaggaagg cggatgaaga tagcatcaga aagcagcaag tttcggacag


961
tacaaagaac ggtgatggta cgaagcgccc gtttcgtcag aacacacatg gtatccagat


1021
gacatccatc aagaaacgaa gatccccaga tgatgaactg ttatacttac cagtgagggg


1081
ccgtgagact tatgaaatgc tgttgaagat caaagagtcc ctggaactca tgcagtacct


1141
tcctcagcac acaattgaaa cgtacaggca acagcaacag cagcagcacc agcacttact


1201
tcagaaacag acctcaatac agtctccatc ttcatatggt aacagctccc cacctctgaa


1261
caaaatgaac agcatgaaca agctgccttc tgtgagccag cttatcaacc ctcagcagcg


1321
caacgccctc actcctacaa ccattcctga tggcatggga gccaacagat ctggcaagtc


1381
tgaaaatccc tgagcaattt cgacatgcga tctggaaggg catcctggac caccggcagc


1441
tccacgaatt ctcctcccct tctcatctcc tgcggacccc aagcagtgcc tctacagtca


1501
gtgtgggctc cagtgagacc cggggtgagc gtgttattga tgctgtgcga ttcaccctcc


1561
gccagaccat ctctttccca ccccgagatg agtggaatga cttcaacttt gacatggatg


1621
ctcgccgcaa taagcaacag cgcatcaaag aggaggggga gtgagcctca ccatgtgagc


1681
tcttcctatc cctctcctaa ctgccagccc cctaaaagca ctcctgctta atcttcaaag


1741
ccttctccct agctcctccc cttcctcttg tctgatttct taggggaagg agaagtaaga


1801
ggctacctct tacctaacat ctgacctggc atctaattct gattctggct ttaagccttc


1861
aaaactatag cttgcagaac tgtagctgcc atggctaggt agaagtgagc aaaaaagagt


1921
tgggtgtctc cttaagctgc agagatttct cattgacttt tataaagcat gttcaccctt


1981
atagtctaag actatatata taaatgtata aatatacagt atagattttt gggtgggggg


2041
cattgagtat tgtttaaaat gtaatttaaa tgaaagaaaa ttgagttgca cttattgacc


2101
attttttaat ttacttgttt tggatggctt gtctatactc cttcccttaa ggggtatcat


2161
gtatggtgat aggtatctag agcttaatgc tacatgtgag tgacgatgat gtacagattc


2221
tttcagttct ttggattcta aatacatgcc acatcaaacc tttgagtaga tccatttcca


2281
ttgcttatta tgtaggtaag actgtagata tgtattcttt tctcagtgtt ggtatatttt


2341
atattactga catttcttct agtgatgatg gttcacgttg gggtgattta atccagttat


2401
aagaagaagt tcatgtccaa acgtcctctt tagtttttgg ttgggaatga ggaaaattct


2461
taaaaggccc atagcagcca gttcaaaaac acccgacgtc atgtatttga gcatatcagt


2521
aaccccctta aatttaatac cagatacctt atcttacaat attgattggg aaaacatttg


2581
ctgccattac agaggtatta aaactaaatt tcactactag attgactaac tcaaatacac


2641
atttgctact gttgtaagaa ttctgattga tttgattggg atgaatgcca tctatctagt


2701
tctaacagtg aagttttact gtctattaat attcagggta aataggaatc attcagaaat


2761
gttgagtctg tactaaacag taagatatct caatgaacca taaattcaac tttgtaaaaa


2821
tcttttgaag catagataat attgtttggt aaatgtttct tttgtttggt aaatgtttct


2881
tttaaagacc ctcctattct ataaaactct gcatgtagag gcttgtttac ctttctctct


2941
ctaaggttta caataggagt ggtgatttga aaaatataaa attatgagat tggttttcct


3001
gtggcataaa ttgcatcact gtatcatttt cttttttaac cggtaagagt ttcagtttgt


3061
tggaaagtaa ctgtgagaac ccagtttccc gtccatctcc cttagggact acccatagac


3121
atgaaaggtc cccacagagc aagagataag tctttcatgg ctgctgttgc ttaaaccact


3181
taaacgaaga gttcccttga aactttggga aaacatgtta atgacaatat tccagatctt


3241
tcagaaatat aacacatttt tttgcatgca tgcaaatgag ctctgaaatc ttcccatgca


3301
ttctggtcaa gggctgtcat tgcacataag cttccatttt aattttaaag tgcaaaaggg


3361
ccagcgtggc tctaaaaggt aatgtgtgga ttgcctctga aaagtgtgta tatattttgt


3421
gtgaaattgc atactttgta ttttgattat tttttttttc ttcttgggat agtgggattt


3481
ccagaaccac acttgaaacc tttttttatc gtttttgtat tttcatgaaa ataccattta


3541
gtaagaatac cacatcaaat aagaaataat gctacaattt taagagggga gggaagggaa


3601
agtttttttt tattattttt ttaaaatttt gtatgttaaa gagaatgagt ccttgatttc


3661
aaagttttgt tgtacttaaa tggtaataag cactgtaaac ttctgcaaca agcatgcagc


3721
tttgcaaacc cattaagggg aagaatgaaa gctgttcctt ggtcctagta agaagacaaa


3781
ctgcttccct tactttgctg agggtttgaa taaacctagg acttccgagc tatgtcagta


3841
ctattcaggt aacactaggg ccttggaaat tcctgtactg tgtctcatgg atttggcact


3901
agccaaagcg aggcaccctt actggcttac ctcctcatgg cagcctactc tccttgagtg


3961
tatgagtagc cagggtaagg ggtaaaagga tagtaagcat agaaaccact agaaagtggg


4021
cttaatggag ttcttgtggc ctcagctcaa tgcagttagc tgaagaattg aaaagttttt


4081
gtttggagac gtttataaac agaaatggaa agcagagttt tcattaaatc cttttacctt


4141
ttttttttct tggtaatccc ctaaaataac agtatgtggg atattgaatg ttaaagggat


4201
atttttttct attattttta taattgtaca aaattaagca aatgttaaaa gttttatatg


4261
ctttattaat gttttcaaaa ggtattatac atgtgataca ttttttaagc ttcagttgct


4321
tgtcttctgg tactttctgt tatgggcttt tggggagcca gaagccaatc tacaatctct


4381
ttttgtttgc caggacatgc aataaaattt aaaaaataaa taaaaactaa ttaagaaa










SEQ ID NO: 32 Human p63 Isoform 8 Amino Acid Sequence (NP_001316074.1)








1
mlylennaqt qfsepqytnl gllnsmdqqi qngssstspy ntdhaqnsvt apspyaqpss


61
tfdalspspa ipsntdypgp hsfdvsfqqs staksatwty stelkklycq iaktcpiqik


121
vmtpppqgav irampvykka ehvtevvkrc pnhelsrefn egqiappshl irvegnshaq


181
yvedpitgrq svlvpyeppq vgtefttvly nfmcnsscvg gmnrrpilii vtletrdgqv


241
lgrrcfeari cacpgrdrka dedsirkqqv sdstkngdgt krpfrqnthg iqmtsikkrr


301
spddellylp vrgretyeml lkikeslelm qylpqhtiet yrqqqqqqhq hllqkqtsiq


361
spssygnssp pinkmnsmnk lpsvsqlinp qqrnaltptt ipdgmganrs gksenp










SEQ ID NO: 33 Human p63 transcript variant 9 mRNA Sequence


NM_001329146.2; CDS: 143-1648)








1
cagagagaga aagagagaga gggacttgag ttctgttatc ttcttaagta gattcatatt


61
gtaagggtct cggggtgggg gggttggcaa aatcctggag ccagaagaaa ggacagcagc


121
attgatcaat cttacagcta acatgttgta cctggaaaac aatgcccaga ctcaatttag


181
tgagtattcc actgaactga agaaactcta ctgccaaatt gcaaagacat gccccatcca


241
gatcaaggtg atgaccccac ctcctcaggg agctgttatc cgcgccatgc ctgtctacaa


301
aaaagctgag cacgtcacgg aggtggtgaa gcggtgcccc aaccatgagc tgagccgtga


361
attcaacgag ggacagattg cccctcctag tcatttgatt cgagtagagg ggaacagcca


421
tgcccagtat gtagaagatc ccatcacagg aagacagagt gtgctggtac cttatgagcc


481
accccaggtt ggcactgaat tcacgacagt cttgtacaat ttcatgtgta acagcagttg


541
tgttggaggg atgaaccgcc gtccaatttt aatcattgtt actctggaaa ccagagatgg


601
gcaagtcctg ggccgacgct gctttgaggc ccggatctgt gcttgcccag gaagagacag


661
gaaggcggat gaagatagca tcagaaagca gcaagtttcg gacagtacaa agaacggtga


721
tggtacgaag cgcccgtttc gtcagaacac acatggtatc cagatgacat ccatcaagaa


781
acgaagatcc ccagatgatg aactgttata cttaccagtg aggggccgtg agacttatga


841
aatgctgttg aagatcaaag agtccctgga actcatgcag taccttcctc agcacacaat


901
tgaaacgtac aggcaacagc aacagcagca gcaccagcac ttacttcaga aacagacctc


961
aatacagtct ccatcttcat atggtaacag ctccccacct ctgaacaaaa tgaacagcat


1021
gaacaagctg ccttctgtga gccagcttat caaccctcag cagcgcaacg ccctcactcc


1081
tacaaccatt cctgatggca tgggagccaa cattcccatg atgggcaccc acatgccaat


1141
ggctggagac atgaatggac tcagccccac ccaggcactc cctcccccac tctccatgcc


1201
atccacctcc cactgcacac ccccacctcc gtatcccaca gattgcagca ttgtcagttt


1261
cttagcgagg ttgggctgtt catcatgtct ggactatttc acgacccagg ggctgaccac


1321
catctatcag attgagcatt actccatgga tgatctggca agtctgaaaa tccctgagca


1381
atttcgacat gcgatctgga agggcatcct ggaccaccgg cagctccacg aattctcctc


1441
cccttctcat ctcctgcgga ccccaagcag tgcctctaca gtcagtgtgg gctccagtga


1501
gacccggggt gagcgtgtta ttgatgctgt gcgattcacc ctccgccaga ccatctcttt


1561
cccaccccga gatgagtgga atgacttcaa ctttgacatg gatgctcgcc gcaataagca


1621
acagcgcatc aaagaggagg gggagtgagc ctcaccatgt gagctcttcc tatccctctc


1681
ctaactgcca gccccctaaa agcactcctg cttaatcttc aaagccttct ccctagctcc


1741
tccccttcct cttgtctgat ttcttagggg aaggagaagt aagaggctac ctcttaccta


1801
acatctgacc tggcatctaa ttctgattct ggctttaagc cttcaaaact atagcttgca


1861
gaactgtagc tgccatggct aggtagaagt gagcaaaaaa gagttgggtg tctccttaag


1921
ctgcagagat ttctcattga cttttataaa gcatgttcac ccttatagtc taagactata


1981
tatataaatg tataaatata cagtatagat ttttgggtgg ggggcattga gtattgttta


2041
aaatgtaatt taaatgaaag aaaattgagt tgcacttatt gaccattttt taatttactt


2101
gttttggatg gcttgtctat actccttccc ttaaggggta tcatgtatgg tgataggtat


2161
ctagagctta atgctacatg tgagtgacga tgatgtacag attctttcag ttctttggat


2221
tctaaataca tgccacatca aacctttgag tagatccatt tccattgctt attatgtagg


2281
taagactgta gatatgtatt cttttctcag tgttggtata ttttatatta ctgacatttc


2341
ttctagtgat gatggttcac gttggggtga tttaatccag ttataagaag aagttcatgt


2401
ccaaacgtcc tctttagttt ttggttggga atgaggaaaa ttcttaaaag gcccatagca


2461
gccagttcaa aaacacccga cgtcatgtat ttgagcatat cagtaacccc cttaaattta


2521
ataccagata ccttatctta caatattgat tgggaaaaca tttgctgcca ttacagaggt


2581
attaaaacta aatttcacta ctagattgac taactcaaat acacatttgc tactgttgta


2641
agaattctga ttgatttgat tgggatgaat gccatctatc tagttctaac agtgaagttt


2701
tactgtctat taatattcag ggtaaatagg aatcattcag aaatgttgag tctgtactaa


2761
acagtaagat atctcaatga accataaatt caactttgta aaaatctttt gaagcataga


2821
taatattgtt tggtaaatgt ttcttttgtt tggtaaatgt ttcttttaaa gaccctccta


2881
ttctataaaa ctctgcatgt agaggcttgt ttacctttct ctctctaagg tttacaatag


2941
gagtggtgat ttgaaaaata taaaattatg agattggttt tcctgtggca taaattgcat


3001
cactgtatca ttttcttttt taaccggtaa gagtttcagt ttgttggaaa gtaactgtga


3061
gaacccagtt tcccgtccat ctcccttagg gactacccat agacatgaaa ggtccccaca


3121
gagcaagaga taagtctttc atggctgctg ttgcttaaac cacttaaacg aagagttccc


3181
ttgaaacttt gggaaaacat gttaatgaca atattccaga tctttcagaa atataacaca


3241
tttttttgca tgcatgcaaa tgagctctga aatcttccca tgcattctgg tcaagggctg


3301
tcattgcaca taagcttcca ttttaatttt aaagtgcaaa agggccagcg tggctctaaa


3361
aggtaatgtg tggattgcct ctgaaaagtg tgtatatatt ttgtgtgaaa ttgcatactt


3421
tgtattttga ttattttttt tttcttcttg ggatagtggg atttccagaa ccacacttga


3481
aacctttttt tatcgttttt gtattttcat gaaaatacca tttagtaaga ataccacatc


3541
aaataagaaa taatgctaca attttaagag gggagggaag ggaaagtttt tttttattat


3601
ttttttaaaa ttttgtatgt taaagagaat gagtccttga tttcaaagtt ttgttgtact


3661
taaatggtaa taagcactgt aaacttctgc aacaagcatg cagctttgca aacccattaa


3721
ggggaagaat gaaagctgtt ccttggtcct agtaagaaga caaactgctt cccttacttt


3781
gctgagggtt tgaataaacc taggacttcc gagctatgtc agtactattc aggtaacact


3841
agggccttgg aaattcctgt actgtgtctc atggatttgg cactagccaa agcgaggcac


3901
ccttactggc ttacctcctc atggcagcct actctccttg agtgtatgag tagccagggt


3961
aaggggtaaa aggatagtaa gcatagaaac cactagaaag tgggcttaat ggagttcttg


4021
tggcctcagc tcaatgcagt tagctgaaga attgaaaagt ttttgtttgg agacgtttat


4081
aaacagaaat ggaaagcaga gttttcatta aatcctttta cctttttttt ttcttggtaa


4141
tcccctaaaa taacagtatg tgggatattg aatgttaaag ggatattttt ttctattatt


4201
tttataattg tacaaaatta agcaaatgtt aaaagtttta tatgctttat taatgttttc


4261
aaaaggtatt atacatgtga tacatttttt aagcttcagt tgcttgtctt ctggtacttt


4321
ctgttatggg cttttgggga gccagaagcc aatctacaat ctctttttgt ttgccaggac


4381
atgcaataaa atttaaaaaa taaataaaaa ctaattaaga aa










SEQ ID NO: 34 Human p63 Isoform 9 Amino Acid Sequence (NP_001316075.1)








1
mlylennaqt qfseystelk klycqiaktc piqikvmtpp pqgaviramp vykkaehvte


61
vvkrcpnhel srefnegqia ppshlirveg nshaqyvedp itgrqsvlvp yeppqvgtef


121
ttvlynfmcn sscvggmnrr piliivtlet rdgqvlgrrc fearicacpg rdrkadedsi


181
rkqqvsdstk ngdgtkrpfr qnthgiqmts ikkrrspdde llylpvrgre tyemllkike


241
slelmqylpq htietyrqqq qqqhqhllqk qtsiqspssy gnsspplnkm nsmnklpsvs


301
qlinpqqrna ltpttipdgm ganipmmgth mpmagdmngl sptqalpppl smpstshctp


361
pppyptdcsi vsflarlgcs scldyfttqg lttiyqiehy smddlaslki peqfrhaiwk


421
gildhrqlhe fsspshllrt pssastvsvg ssetrgervi davrftlrqt isfpprdewn


481
dfnfdmdarr nkqqrikeeg e










SEQ ID NO: 35 Human p63 transcript variant 10 mRNA Sequence


NM_001329148.2; CDS: 128-2158)








1
ctatgtctga tagcatttga ccctattgct tttagcctcc cggctttata tctatatata


61
cacaggtata tgtgtatatt ttatataatt gttctccgtt cgttgatatc aaagacagtt


121
gaaggaaatg aattttgaaa cttcacggtg tgccacccta cagtactgcc ctgaccctta


181
catccagcgt ttcgtagaaa ccccagctca tttctcttgg aaagaaagtt attaccgatc


241
caccatgtcc cagagcacac agacaaatga attcctcagt ccagaggttt tccagcatat


301
ctgggatttt ctggaacagc ctatatgttc agttcagccc attgacttga actttgtgga


361
tgaaccatca gaagatggtg cgacaaacaa gattgagatt agcatggact gtatccgcat


421
gcaggactcg gacctgagtg accccatgtg gccacagtac acgaacctgg ggctcctgaa


481
cagcatggac cagcagattc agaacggctc ctcgtccacc agtccctata acacagacca


541
cgcgcagaac agcgtcacgg cgccctcgcc ctacgcacag cccagctcca ccttcgatgc


601
tctctctcca tcacccgcca tcccctccaa caccgactac ccaggcccgc acagtttcga


661
cgtgtccttc cagcagtcga gcaccgccaa gtcggccacc tggacgtatt ccactgaact


721
gaagaaactc tactgccaaa ttgcaaagac atgccccatc cagatcaagg tgatgacccc


781
acctcctcag ggagctgtta tccgcgccat gcctgtctac aaaaaagctg agcacgtcac


841
ggaggtggtg aagcggtgcc ccaaccatga gctgagccgt gaattcaacg agggacagat


901
tgcccctcct agtcatttga ttcgagtaga ggggaacagc catgcccagt atgtagaaga


961
tcccatcaca ggaagacaga gtgtgctggt accttatgag ccaccccagg ttggcactga


1021
attcacgaca gtcttgtaca atttcatgtg taacagcagt tgtgttggag ggatgaaccg


1081
ccgtccaatt ttaatcattg ttactctgga aaccagagat gggcaagtcc tgggccgacg


1141
ctgctttgag gcccggatct gtgcttgccc aggaagagac aggaaggcgg atgaagatag


1201
catcagaaag cagcaagttt cggacagtac aaagaacggt gatgcgtttc gtcagaacac


1261
acatggtatc cagatgacat ccatcaagaa acgaagatcc ccagatgatg aactgttata


1321
cttaccagtg aggggccgtg agacttatga aatgctgttg aagatcaaag agtccctgga


1381
actcatgcag taccttcctc agcacacaat tgaaacgtac aggcaacagc aacagcagca


1441
gcaccagcac ttacttcaga aacagacctc aatacagtct ccatcttcat atggtaacag


1501
ctccccacct ctgaacaaaa tgaacagcat gaacaagctg ccttctgtga gccagcttat


1561
caaccctcag cagcgcaacg ccctcactcc tacaaccatt cctgatggca tgggagccaa


1621
cattcccatg atgggcaccc acatgccaat ggctggagac atgaatggac tcagccccac


1681
ccaggcactc cctcccccac tctccatgcc atccacctcc cactgcacac ccccacctcc


1741
gtatcccaca gattgcagca ttgtcagttt cttagcgagg ttgggctgtt catcatgtct


1801
ggactatttc acgacccagg ggctgaccac catctatcag attgagcatt actccatgga


1861
tgatctggca agtctgaaaa tccctgagca atttcgacat gcgatctgga agggcatcct


1921
ggaccaccgg cagctccacg aattctcctc cccttctcat ctcctgcgga ccccaagcag


1981
tgcctctaca gtcagtgtgg gctccagtga gacccggggt gagcgtgtta ttgatgctgt


2041
gcgattcacc ctccgccaga ccatctcttt cccaccccga gatgagtgga atgacttcaa


2101
ctttgacatg gatgctcgcc gcaataagca acagcgcatc aaagaggagg gggagtgagc


2161
ctcaccatgt gagctcttcc tatccctctc ctaactgcca gccccctaaa agcactcctg


2221
cttaatcttc aaagccttct ccctagctcc tccccttcct cttgtctgat ttcttagggg


2281
aaggagaagt aagaggctac ctcttaccta acatctgacc tggcatctaa ttctgattct


2341
ggctttaagc cttcaaaact atagcttgca gaactgtagc tgccatggct aggtagaagt


2401
gagcaaaaaa gagttgggtg tctccttaag ctgcagagat ttctcattga cttttataaa


2461
gcatgttcac ccttatagtc taagactata tatataaatg tataaatata cagtatagat


2521
ttttgggtgg ggggcattga gtattgttta aaatgtaatt taaatgaaag aaaattgagt


2581
tgcacttatt gaccattttt taatttactt gttttggatg gcttgtctat actccttccc


2641
ttaaggggta tcatgtatgg tgataggtat ctagagctta atgctacatg tgagtgacga


2701
tgatgtacag attctttcag ttctttggat tctaaataca tgccacatca aacctttgag


2761
tagatccatt tccattgctt attatgtagg taagactgta gatatgtatt cttttctcag


2821
tgttggtata ttttatatta ctgacatttc ttctagtgat gatggttcac gttggggtga


2881
tttaatccag ttataagaag aagttcatgt ccaaacgtcc tctttagttt ttggttggga


2941
atgaggaaaa ttcttaaaag gcccatagca gccagttcaa aaacacccga cgtcatgtat


3001
ttgagcatat cagtaacccc cttaaattta ataccagata ccttatctta caatattgat


3061
tgggaaaaca tttgctgcca ttacagaggt attaaaacta aatttcacta ctagattgac


3121
taactcaaat acacatttgc tactgttgta agaattctga ttgatttgat tgggatgaat


3181
gccatctatc tagttctaac agtgaagttt tactgtctat taatattcag ggtaaatagg


3241
aatcattcag aaatgttgag tctgtactaa acagtaagat atctcaatga accataaatt


3301
caactttgta aaaatctttt gaagcataga taatattgtt tggtaaatgt ttcttttgtt


3361
tggtaaatgt ttcttttaaa gaccctccta ttctataaaa ctctgcatgt agaggcttgt


3421
ttacctttct ctctctaagg tttacaatag gagtggtgat ttgaaaaata taaaattatg


3481
agattggttt tcctgtggca taaattgcat cactgtatca ttttcttttt taaccggtaa


3541
gagtttcagt ttgttggaaa gtaactgtga gaacccagtt tcccgtccat ctcccttagg


3601
gactacccat agacatgaaa ggtccccaca gagcaagaga taagtctttc atggctgctg


3661
ttgcttaaac cacttaaacg aagagttccc ttgaaacttt gggaaaacat gttaatgaca


3721
atattccaga tctttcagaa atataacaca tttttttgca tgcatgcaaa tgagctctga


3781
aatcttccca tgcattctgg tcaagggctg tcattgcaca taagcttcca ttttaatttt


3841
aaagtgcaaa agggccagcg tggctctaaa aggtaatgtg tggattgcct ctgaaaagtg


3901
tgtatatatt ttgtgtgaaa ttgcatactt tgtattttga ttattttttt tttcttcttg


3961
ggatagtggg atttccagaa ccacacttga aacctttttt tatcgttttt gtattttcat


4021
gaaaatacca tttagtaaga ataccacatc aaataagaaa taatgctaca attttaagag


4081
gggagggaag ggaaagtttt tttttattat ttttttaaaa ttttgtatgt taaagagaat


4141
gagtccttga tttcaaagtt ttgttgtact taaatggtaa taagcactgt aaacttctgc


4201
aacaagcatg cagctttgca aacccattaa ggggaagaat gaaagctgtt ccttggtcct


4261
agtaagaaga caaactgctt cccttacttt gctgagggtt tgaataaacc taggacttcc


4321
gagctatgtc agtactattc aggtaacact agggccttgg aaattcctgt actgtgtctc


4381
atggatttgg cactagccaa agcgaggcac ccttactggc ttacctcctc atggcagcct


4441
actctccttg agtgtatgag tagccagggt aaggggtaaa aggatagtaa gcatagaaac


4501
cactagaaag tgggcttaat ggagttcttg tggcctcagc tcaatgcagt tagctgaaga


4561
attgaaaagt ttttgtttgg agacgtttat aaacagaaat ggaaagcaga gttttcatta


4621
aatcctttta cctttttttt ttcttggtaa tcccctaaaa taacagtatg tgggatattg


4681
aatgttaaag ggatattttt ttctattatt tttataattg tacaaaatta agcaaatgtt


4741
aaaagtttta tatgctttat taatgttttc aaaaggtatt atacatgtga tacatttttt


4801
aagcttcagt tgcttgtctt ctggtacttt ctgttatggg cttttgggga gccagaagcc


4861
aatctacaat ctctttttgt ttgccaggac atgcaataaa atttaaaaaa taaataaaaa


4921
ctaattaaga aa










SEQ ID NO: 36 Human p63 Isoform 10 Amino Acid Sequence (NP_001316077.1)








1
mnfetsrcat lqycpdpyiq rfvetpahfs wkesyyrstm sqstqtnefl spevfqhiwd


61
fleqpicsvq pidlnfvdep sedgatnkie ismdcirmqd sdlsdpmwpq ytnlgllnsm


121
dqqiqngsss tspyntdhaq nsvtapspya qpsstfdals pspaipsntd ypgphsfdvs


181
fqqsstaksa twtystelkk lycqiaktcp iqikvmtppp qgavirampv ykkaehvtev


241
vkrcpnhels refnegqiap pshlirvegn shaqyvedpi tgrqsvlvpy eppqvgteft


301
tvlynfmcns scvggmnrrp iliivtletr dgqvlgrrcf earicacpgr drkadedsir


361
kqqvsdstkn gdafrqnthg iqmtsikkrr spddellylp vrgretyeml lkikeslelm


421
qylpqhtiet yrqqqqqqhq hllqkqtsiq spssygnssp plnkmnsmnk lpsvsqlinp


481
qqrnaltptt ipdgmganip mmgthmpmag dmnglsptqa lppplsmpst shctppppyp


541
tdcsivsfla rlgcsscldy fttqglttiy qiehysmddl aslkipeqfr haiwkgildh


601
rqlhefssps hllrtpssas tvsvgssetr gervidavrf tlrqtisfpp rdewndfnfd


661
mdarrnkqqr ikeege










SEQ ID NO: 37 Human p63 transcript variant 11 


(NM_001329149.2; CDS: 143-1381) mRNA Sequence








1
cagagagaga aagagagaga gggacttgag ttctgttatc ttcttaagta gattcatatt


61
gtaagggtct cggggtgggg gggttggcaa aatcctggag ccagaagaaa ggacagcagc


121
attgatcaat cttacagcta acatgttgta cctggaaaac aatgcccaga ctcaatttag


181
tgagccacag tacacgaacc tggggctcct gaacagcatg gaccagcaga ttcagaacgg


241
ctcctcgtcc accagtccct ataacacaga ccacgcgcag aacagcgtca cggcgccctc


301
gccctacgca cagcccagct ccaccttcga tgctctctct ccatcacccg ccatcccctc


361
caacaccgac tacccaggcc cgcacagttt cgacgtgtcc ttccagcagt cgagcaccgc


421
caagtcggcc acctggacgt attccactga actgaagaaa ctctactgcc aaattgcaaa


481
gacatgcccc atccagatca aggtgatgac cccacctcct cagggagctg ttatccgcgc


541
catgcctgtc tacaaaaaag ctgagcacgt cacggaggtg gtgaagcggt gccccaacca


601
tgagctgagc cgtgaattca acgagggaca gattgcccct cctagtcatt tgattcgagt


661
agaggggaac agccatgccc agtatgtaga agatcccatc acaggaagac agagtgtgct


721
ggtaccttat gagccacccc aggttggcac tgaattcacg acagtcttgt acaatttcat


781
gtgtaacagc agttgtgttg gagggatgaa ccgccgtcca attttaatca ttgttactct


841
ggaaaccaga gatgggcaag tcctgggccg acgctgcttt gaggcccgga tctgtgcttg


901
cccaggaaga gacaggaagg cggatgaaga tagcatcaga aagcagcaag tttcggacag


961
tacaaagaac ggtgatgcgt ttcgtcagaa cacacatggt atccagatga catccatcaa


1021
gaaacgaaga tccccagatg atgaactgtt atacttacca gtgaggggcc gtgagactta


1081
tgaaatgctg ttgaagatca aagagtccct ggaactcatg cagtaccttc ctcagcacac


1141
aattgaaacg tacaggcaac agcaacagca gcagcaccag cacttacttc agaaacagac


1201
ctcaatacag tctccatctt catatggtaa cagctcccca cctctgaaca aaatgaacag


1261
catgaacaag ctgccttctg tgagccagct tatcaaccct cagcagcgca acgccctcac


1321
tcctacaacc attcctgatg gcatgggagc caacagatct ggcaagtctg aaaatccctg


1381
agcaatttcg acatgcgatc tggaagggca tcctggacca ccggcagctc cacgaattct


1441
cctccccttc tcatctcctg cggaccccaa gcagtgcctc tacagtcagt gtgggctcca


1501
gtgagacccg gggtgagcgt gttattgatg ctgtgcgatt caccctccgc cagaccatct


1561
ctttcccacc ccgagatgag tggaatgact tcaactttga catggatgct cgccgcaata


1621
agcaacagcg catcaaagag gagggggagt gagcctcacc atgtgagctc ttcctatccc


1681
tctcctaact gccagccccc taaaagcact cctgcttaat cttcaaagcc ttctccctag


1741
ctcctcccct tcctcttgtc tgatttctta ggggaaggag aagtaagagg ctacctctta


1801
cctaacatct gacctggcat ctaattctga ttctggcttt aagccttcaa aactatagct


1861
tgcagaactg tagctgccat ggctaggtag aagtgagcaa aaaagagttg ggtgtctcct


1921
taagctgcag agatttctca ttgactttta taaagcatgt tcacccttat agtctaagac


1981
tatatatata aatgtataaa tatacagtat agatttttgg gtggggggca ttgagtattg


2041
tttaaaatgt aatttaaatg aaagaaaatt gagttgcact tattgaccat tttttaattt


2101
acttgttttg gatggcttgt ctatactcct tcccttaagg ggtatcatgt atggtgatag


2161
gtatctagag cttaatgcta catgtgagtg acgatgatgt acagattctt tcagttcttt


2221
ggattctaaa tacatgccac atcaaacctt tgagtagatc catttccatt gcttattatg


2281
taggtaagac tgtagatatg tattcttttc tcagtgttgg tatattttat attactgaca


2341
tttcttctag tgatgatggt tcacgttggg gtgatttaat ccagttataa gaagaagttc


2401
atgtccaaac gtcctcttta gtttttggtt gggaatgagg aaaattctta aaaggcccat


2461
agcagccagt tcaaaaacac ccgacgtcat gtatttgagc atatcagtaa cccccttaaa


2521
tttaatacca gataccttat cttacaatat tgattgggaa aacatttgct gccattacag


2581
aggtattaaa actaaatttc actactagat tgactaactc aaatacacat ttgctactgt


2641
tgtaagaatt ctgattgatt tgattgggat gaatgccatc tatctagttc taacagtgaa


2701
gttttactgt ctattaatat tcagggtaaa taggaatcat tcagaaatgt tgagtctgta


2761
ctaaacagta agatatctca atgaaccata aattcaactt tgtaaaaatc ttttgaagca


2821
tagataatat tgtttggtaa atgtttcttt tgtttggtaa atgtttcttt taaagaccct


2881
cctattctat aaaactctgc atgtagaggc ttgtttacct ttctctctct aaggtttaca


2941
ataggagtgg tgatttgaaa aatataaaat tatgagattg gttttcctgt ggcataaatt


3001
gcatcactgt atcattttct tttttaaccg gtaagagttt cagtttgttg gaaagtaact


3061
gtgagaaccc agtttcccgt ccatctccct tagggactac ccatagacat gaaaggtccc


3121
cacagagcaa gagataagtc tttcatggct gctgttgctt aaaccactta aacgaagagt


3181
tcccttgaaa ctttgggaaa acatgttaat gacaatattc cagatctttc agaaatataa


3241
cacatttttt tgcatgcatg caaatgagct ctgaaatctt cccatgcatt ctggtcaagg


3301
gctgtcattg cacataagct tccattttaa ttttaaagtg caaaagggcc agcgtggctc


3361
taaaaggtaa tgtgtggatt gcctctgaaa agtgtgtata tattttgtgt gaaattgcat


3421
actttgtatt ttgattattt tttttttctt cttgggatag tgggatttcc agaaccacac


3481
ttgaaacctt tttttatcgt ttttgtattt tcatgaaaat accatttagt aagaatacca


3541
catcaaataa gaaataatgc tacaatttta agaggggagg gaagggaaag ttttttttta


3601
ttattttttt aaaattttgt atgttaaaga gaatgagtcc ttgatttcaa agttttgttg


3661
tacttaaatg gtaataagca ctgtaaactt ctgcaacaag catgcagctt tgcaaaccca


3721
ttaaggggaa gaatgaaagc tgttccttgg tcctagtaag aagacaaact gcttccctta


3781
ctttgctgag ggtttgaata aacctaggac ttccgagcta tgtcagtact attcaggtaa


3841
cactagggcc ttggaaattc ctgtactgtg tctcatggat ttggcactag ccaaagcgag


3901
gcacccttac tggcttacct cctcatggca gcctactctc cttgagtgta tgagtagcca


3961
gggtaagggg taaaaggata gtaagcatag aaaccactag aaagtgggct taatggagtt


4021
cttgtggcct cagctcaatg cagttagctg aagaattgaa aagtttttgt ttggagacgt


4081
ttataaacag aaatggaaag cagagttttc attaaatcct tttacctttt ttttttcttg


4141
gtaatcccct aaaataacag tatgtgggat attgaatgtt aaagggatat ttttttctat


4201
tatttttata attgtacaaa attaagcaaa tgttaaaagt tttatatgct ttattaatgt


4261
tttcaaaagg tattatacat gtgatacatt ttttaagctt cagttgcttg tcttctggta


4321
ctttctgtta tgggcttttg gggagccaga agccaatcta caatctcttt ttgtttgcca


4381
ggacatgcaa taaaatttaa aaaataaata aaaactaatt aagaaa










SEQ ID NO: 38 Human p63 Isoform 11 Amino Acid Sequence (NP_001316078.1)








1
mlylennaqt qfsepqytnl gllnsmdqqi qngssstspy ntdhaqnsvt apspyaqpss


61
tfdalspspa ipsntdypgp hsfdvsfqqs staksatwty stelkklycq iaktcpiqik


121
vmtpppqgav irampvykka ehvtevvkrc pnhelsrefn egqiappshl irvegnshaq


181
yvedpitgrq svlvpyeppq vgtefttvly nfmcnsscvg gmnrrpilii vtletrdgqv


241
lgrrcfeari cacpgrdrka dedsirkqqv sdstkngdaf rqnthgiqmt sikkrrspdd


301
ellylpvrgr etyemllkik eslelmqylp qhtietyrqq qqqqhqhllq kqtsiqspss


361
ygnsspplnk mnsmnklpsv sqlinpqqrn altpttipdg mganrsgkse np










SEQ ID NO: 39 Human p63 transcript variant 12 mRNA Sequence


(NM_001329150.2; CDS: 143-1126)








1
cagagagaga aagagagaga gggacttgag ttctgttatc ttcttaagta gattcatatt


61
gtaagggtct cggggtgggg gggttggcaa aatcctggag ccagaagaaa ggacagcagc


121
attgatcaat cttacagcta acatgttgta cctggaaaac aatgcccaga ctcaatttag


181
tgagtattcc actgaactga agaaactcta ctgccaaatt gcaaagacat gccccatcca


241
gatcaaggtg atgaccccac ctcctcaggg agctgttatc cgcgccatgc ctgtctacaa


301
aaaagctgag cacgtcacgg aggtggtgaa gcggtgcccc aaccatgagc tgagccgtga


361
attcaacgag ggacagattg cccctcctag tcatttgatt cgagtagagg ggaacagcca


421
tgcccagtat gtagaagatc ccatcacagg aagacagagt gtgctggtac cttatgagcc


481
accccaggtt ggcactgaat tcacgacagt cttgtacaat ttcatgtgta acagcagttg


541
tgttggaggg atgaaccgcc gtccaatttt aatcattgtt actctggaaa ccagagatgg


601
gcaagtcctg ggccgacgct gctttgaggc ccggatctgt gcttgcccag gaagagacag


661
gaaggcggat gaagatagca tcagaaagca gcaagtttcg gacagtacaa agaacggtga


721
tgcgtttcgt cagaacacac atggtatcca gatgacatcc atcaagaaac gaagatcccc


781
agatgatgaa ctgttatact taccagtgag gggccgtgag acttatgaaa tgctgttgaa


841
gatcaaagag tccctggaac tcatgcagta ccttcctcag cacacaattg aaacgtacag


901
gcaacagcaa cagcagcagc accagcactt acttcagaaa cagacctcaa tacagtctcc


961
atcttcatat ggtaacagct ccccacctct gaacaaaatg aacagcatga acaagctgcc


1021
ttctgtgagc cagcttatca accctcagca gcgcaacgcc ctcactccta caaccattcc


1081
tgatggcatg ggagccaaca gatctggcaa gtctgaaaat ccctgagcaa tttcgacatg


1141
cgatctggaa gggcatcctg gaccaccggc agctccacga attctcctcc ccttctcatc


1201
tcctgcggac cccaagcagt gcctctacag tcagtgtggg ctccagtgag acccggggtg


1261
agcgtgttat tgatgctgtg cgattcaccc tccgccagac catctctttc ccaccccgag


1321
atgagtggaa tgacttcaac tttgacatgg atgctcgccg caataagcaa cagcgcatca


1381
aagaggaggg ggagtgagcc tcaccatgtg agctcttcct atccctctcc taactgccag


1441
ccccctaaaa gcactcctgc ttaatcttca aagccttctc cctagctcct ccccttcctc


1501
ttgtctgatt tcttagggga aggagaagta agaggctacc tcttacctaa catctgacct


1561
ggcatctaat tctgattctg gctttaagcc ttcaaaacta tagcttgcag aactgtagct


1621
gccatggcta ggtagaagtg agcaaaaaag agttgggtgt ctccttaagc tgcagagatt


1681
tctcattgac ttttataaag catgttcacc cttatagtct aagactatat atataaatgt


1741
ataaatatac agtatagatt tttgggtggg gggcattgag tattgtttaa aatgtaattt


1801
aaatgaaaga aaattgagtt gcacttattg accatttttt aatttacttg ttttggatgg


1861
cttgtctata ctccttccct taaggggtat catgtatggt gataggtatc tagagcttaa


1921
tgctacatgt gagtgacgat gatgtacaga ttctttcagt tctttggatt ctaaatacat


1981
gccacatcaa acctttgagt agatccattt ccattgctta ttatgtaggt aagactgtag


2041
atatgtattc ttttctcagt gttggtatat tttatattac tgacatttct tctagtgatg


2101
atggttcacg ttggggtgat ttaatccagt tataagaaga agttcatgtc caaacgtcct


2161
ctttagtttt tggttgggaa tgaggaaaat tcttaaaagg cccatagcag ccagttcaaa


2221
aacacccgac gtcatgtatt tgagcatatc agtaaccccc ttaaatttaa taccagatac


2281
cttatcttac aatattgatt gggaaaacat ttgctgccat tacagaggta ttaaaactaa


2341
atttcactac tagattgact aactcaaata cacatttgct actgttgtaa gaattctgat


2401
tgatttgatt gggatgaatg ccatctatct agttctaaca gtgaagtttt actgtctatt


2461
aatattcagg gtaaatagga atcattcaga aatgttgagt ctgtactaaa cagtaagata


2521
tctcaatgaa ccataaattc aactttgtaa aaatcttttg aagcatagat aatattgttt


2581
ggtaaatgtt tcttttgttt ggtaaatgtt tcttttaaag accctcctat tctataaaac


2641
tctgcatgta gaggcttgtt tacctttctc tctctaaggt ttacaatagg agtggtgatt


2701
tgaaaaatat aaaattatga gattggtttt cctgtggcat aaattgcatc actgtatcat


2761
tttctttttt aaccggtaag agtttcagtt tgttggaaag taactgtgag aacccagttt


2821
cccgtccatc tcccttaggg actacccata gacatgaaag gtccccacag agcaagagat


2881
aagtctttca tggctgctgt tgcttaaacc acttaaacga agagttccct tgaaactttg


2941
ggaaaacatg ttaatgacaa tattccagat ctttcagaaa tataacacat ttttttgcat


3001
gcatgcaaat gagctctgaa atcttcccat gcattctggt caagggctgt cattgcacat


3061
aagcttccat tttaatttta aagtgcaaaa gggccagcgt ggctctaaaa ggtaatgtgt


3121
ggattgcctc tgaaaagtgt gtatatattt tgtgtgaaat tgcatacttt gtattttgat


3181
tatttttttt ttcttcttgg gatagtggga tttccagaac cacacttgaa accttttttt


3241
atcgtttttg tattttcatg aaaataccat ttagtaagaa taccacatca aataagaaat


3301
aatgctacaa ttttaagagg ggagggaagg gaaagttttt ttttattatt tttttaaaat


3361
tttgtatgtt aaagagaatg agtccttgat ttcaaagttt tgttgtactt aaatggtaat


3421
aagcactgta aacttctgca acaagcatgc agctttgcaa acccattaag gggaagaatg


3481
aaagctgttc cttggtccta gtaagaagac aaactgcttc ccttactttg ctgagggttt


3541
gaataaacct aggacttccg agctatgtca gtactattca ggtaacacta gggccttgga


3601
aattcctgta ctgtgtctca tggatttggc actagccaaa gcgaggcacc cttactggct


3661
tacctcctca tggcagccta ctctccttga gtgtatgagt agccagggta aggggtaaaa


3721
ggatagtaag catagaaacc actagaaagt gggcttaatg gagttcttgt ggcctcagct


3781
caatgcagtt agctgaagaa ttgaaaagtt tttgtttgga gacgtttata aacagaaatg


3841
gaaagcagag ttttcattaa atccttttac cttttttttt tcttggtaat cccctaaaat


3901
aacagtatgt gggatattga atgttaaagg gatatttttt tctattattt ttataattgt


3961
acaaaattaa gcaaatgtta aaagttttat atgctttatt aatgttttca aaaggtatta


4021
tacatgtgat acatttttta agcttcagtt gcttgtcttc tggtactttc tgttatgggc


4081
ttttggggag ccagaagcca atctacaatc tctttttgtt tgccaggaca tgcaataaaa


4141
tttaaaaaat aaataaaaac taattaagaa a










SEQ ID NO: 40 Human p63 Isoform 12 Amino Acid Sequence (NP_001316079.1)








1
mlylennaqt qfseystelk klycqiaktc piqikvmtpp pqgaviramp vykkaehvte


61
vvkrcpnhel srefnegqia ppshlirveg nshaqyvedp itgrqsvlvp yeppqvgtef


121
ttvlynfmcn sscvggmnrr piliivtlet rdgqvlgrrc fearicacpg rdrkadedsi


181
rkqqvsdstk ngdafrqnth giqmtsikkr rspddellyl pvrgretyem llkikeslel


241
mqylpqhtie tyrqqqqqqh qhllqkqtsi qspssygnss pplnkmnsmn klpsvsqlin


301
pqqrnaltpt tipdgmganr sgksenp










SEQ ID NO: 41 Human p63 transcript variant 13 mRNA Sequence


(NM_001329964.1; CDS: 438-2474)








1
ggcaacccgc tggggtcacc ttccacactg tggaagcttt gttcttttgc tctttgcagt


61
aaatcttgct actgctcact ctttgggtgc acactgcttt tatgagctgt aacactcacc


121
gtgaaggtct gcagcttcac tcctgaagcc agcgagacca ggagtccact gggaggaacg


181
aacaactcca gacgcaccgc cttaagaact tcaacactca ctgcgaaggt ctgcagcttc


241
actcctgagc cagcgagacc acgaacccac cgtaaggaag aaactccgaa cacatccgaa


301
catcagaagg aacaaactcc agacgcgcca ccttaagagc tgtaacactc accgccaggg


361
tccgcggctt cattcttgaa gtcagagaga ccaagaaccc accaattccg gacaccctat


421
cagagatttt gaaaactatg aagtgctggg aacagagaga ctggacagcc ttcacaaagg


481
tggggaaacc ttgtttcgta gaaaccccag ctcatttctc ttggaaagaa agttattacc


541
gatccaccat gtcccagagc acacagacaa atgaattcct cagtccagag gttttccagc


601
atatctggga ttttctggaa cagcctatat gttcagttca gcccattgac ttgaactttg


661
tggatgaacc atcagaagat ggtgcgacaa acaagattga gattagcatg gactgtatcc


721
gcatgcagga ctcggacctg agtgacccca tgtggccaca gtacacgaac ctggggctcc


781
tgaacagcat ggaccagcag attcagaacg gctcctcgtc caccagtccc tataacacag


841
accacgcgca gaacagcgtc acggcgccct cgccctacgc acagcccagc tccaccttcg


901
atgctctctc tccatcaccc gccatcccct ccaacaccga ctacccaggc ccgcacagtt


961
tcgacgtgtc cttccagcag tcgagcaccg ccaagtcggc cacctggacg tattccactg


1021
aactgaagaa actctactgc caaattgcaa agacatgccc catccagatc aaggtgatga


1081
ccccacctcc tcagggagct gttatccgcg ccatgcctgt ctacaaaaaa gctgagcacg


1141
tcacggaggt ggtgaagcgg tgccccaacc atgagctgag ccgtgaattc aacgagggac


1201
agattgcccc tcctagtcat ttgattcgag tagaggggaa cagccatgcc cagtatgtag


1261
aagatcccat cacaggaaga cagagtgtgc tggtacctta tgagccaccc caggttggca


1321
ctgaattcac gacagtcttg tacaatttca tgtgtaacag cagttgtgtt ggagggatga


1381
accgccgtcc aattttaatc attgttactc tggaaaccag agatgggcaa gtcctgggcc


1441
gacgctgctt tgaggcccgg atctgtgctt gcccaggaag agacaggaag gcggatgaag


1501
atagcatcag aaagcagcaa gtttcggaca gtacaaagaa cggtgatggt acgaagcgcc


1561
cgtttcgtca gaacacacat ggtatccaga tgacatccat caagaaacga agatccccag


1621
atgatgaact gttatactta ccagtgaggg gccgtgagac ttatgaaatg ctgttgaaga


1681
tcaaagagtc cctggaactc atgcagtacc ttcctcagca cacaattgaa acgtacaggc


1741
aacagcaaca gcagcagcac cagcacttac ttcagaaaca gacctcaata cagtctccat


1801
cttcatatgg taacagctcc ccacctctga acaaaatgaa cagcatgaac aagctgcctt


1861
ctgtgagcca gcttatcaac cctcagcagc gcaacgccct cactcctaca accattcctg


1921
atggcatggg agccaacatt cccatgatgg gcacccacat gccaatggct ggagacatga


1981
atggactcag ccccacccag gcactccctc ccccactctc catgccatcc acctcccact


2041
gcacaccccc acctccgtat cccacagatt gcagcattgt cagtttctta gcgaggttgg


2101
gctgttcatc atgtctggac tatttcacga cccaggggct gaccaccatc tatcagattg


2161
agcattactc catggatgat ctggcaagtc tgaaaatccc tgagcaattt cgacatgcga


2221
tctggaaggg catcctggac caccggcagc tccacgaatt ctcctcccct tctcatctcc


2281
tgcggacccc aagcagtgcc tctacagtca gtgtgggctc cagtgagacc cggggtgagc


2341
gtgttattga tgctgtgcga ttcaccctcc gccagaccat ctctttccca ccccgagatg


2401
agtggaatga cttcaacttt gacatggatg ctcgccgcaa taagcaacag cgcatcaaag


2461
aggaggggga gtgagcctca ccatgtgagc tcttcctatc cctctcctaa ctgccagccc


2521
cctaaaagca ctcctgctta atcttcaaag ccttctccct agctcctccc cttcctcttg


2581
tctgatttct taggggaagg agaagtaaga ggctacctct tacctaacat ctgacctggc


2641
atctaattct gattctggct ttaagccttc aaaactatag cttgcagaac tgtagctgcc


2701
atggctaggt agaagtgagc aaaaaagagt tgggtgtctc cttaagctgc agagatttct


2761
cattgacttt tataaagcat gttcaccctt atagtctaag actatatata taaatgtata


2821
aatatacagt atagattttt gggtgggggg cattgagtat tgtttaaaat gtaatttaaa


2881
tgaaagaaaa ttgagttgca cttattgacc attttttaat ttacttgttt tggatggctt


2941
gtctatactc cttcccttaa ggggtatcat gtatggtgat aggtatctag agcttaatgc


3001
tacatgtgag tgacgatgat gtacagattc tttcagttct ttggattcta aatacatgcc


3061
acatcaaacc tttgagtaga tccatttcca ttgcttatta tgtaggtaag actgtagata


3121
tgtattcttt tctcagtgtt ggtatatttt atattactga catttcttct agtgatgatg


3181
gttcacgttg gggtgattta atccagttat aagaagaagt tcatgtccaa acgtcctctt


3241
tagtttttgg ttgggaatga ggaaaattct taaaaggccc atagcagcca gttcaaaaac


3301
acccgacgtc atgtatttga gcatatcagt aaccccctta aatttaatac cagatacctt


3361
atcttacaat attgattggg aaaacatttg ctgccattac agaggtatta aaactaaatt


3421
tcactactag attgactaac tcaaatacac atttgctact gttgtaagaa ttctgattga


3481
tttgattggg atgaatgcca tctatctagt tctaacagtg aagttttact gtctattaat


3541
attcagggta aataggaatc attcagaaat gttgagtctg tactaaacag taagatatct


3601
caatgaacca taaattcaac tttgtaaaaa tcttttgaag catagataat attgtttggt


3661
aaatgtttct tttgtttggt aaatgtttct tttaaagacc ctcctattct ataaaactct


3721
gcatgtagag gcttgtttac ctttctctct ctaaggttta caataggagt ggtgatttga


3781
aaaatataaa attatgagat tggttttcct gtggcataaa ttgcatcact gtatcatttt


3841
cttttttaac cggtaagagt ttcagtttgt tggaaagtaa ctgtgagaac ccagtttccc


3901
gtccatctcc cttagggact acccatagac atgaaaggtc cccacagagc aagagataag


3961
tctttcatgg ctgctgttgc ttaaaccact taaacgaaga gttcccttga aactttggga


4021
aaacatgtta atgacaatat tccagatctt tcagaaatat aacacatttt tttgcatgca


4081
tgcaaatgag ctctgaaatc ttcccatgca ttctggtcaa gggctgtcat tgcacataag


4141
cttccatttt aattttaaag tgcaaaaggg ccagcgtggc tctaaaaggt aatgtgtgga


4201
ttgcctctga aaagtgtgta tatattttgt gtgaaattgc atactttgta ttttgattat


4261
tttttttttc ttcttgggat agtgggattt ccagaaccac acttgaaacc tttttttatc


4321
gtttttgtat tttcatgaaa ataccattta gtaagaatac cacatcaaat aagaaataat


4381
gctacaattt taagagggga gggaagggaa agtttttttt tattattttt ttaaaatttt


4441
gtatgttaaa gagaatgagt ccttgatttc aaagttttgt tgtacttaaa tggtaataag


4501
cactgtaaac ttctgcaaca agcatgcagc tttgcaaacc cattaagggg aagaatgaaa


4561
gctgttcctt ggtcctagta agaagacaaa ctgcttccct tactttgctg agggtttgaa


4621
taaacctagg acttccgagc tatgtcagta ctattcaggt aacactaggg ccttggaaat


4681
tcctgtactg tgtctcatgg atttggcact agccaaagcg aggcaccctt actggcttac


4741
ctcctcatgg cagcctactc tccttgagtg tatgagtagc cagggtaagg ggtaaaagga


4801
tagtaagcat agaaaccact agaaagtggg cttaatggag ttcttgtggc ctcagctcaa


4861
tgcagttagc tgaagaattg aaaagttttt gtttggagac gtttataaac agaaatggaa


4921
agcagagttt tcattaaatc cttttacctt ttttttttct tggtaatccc ctaaaataac


4981
agtatgtggg atattgaatg ttaaagggat atttttttct attattttta taattgtaca


5041
aaattaagca aatgttaaaa gttttatatg ctttattaat gttttcaaaa ggtattatac


5101
atgtgataca ttttttaagc ttcagttgct tgtcttctgg tactttctgt tatgggcttt


5161
tggggagcca gaagccaatc tacaatctct ttttgtttgc caggacatgc aataaaattt


5221
aaaaaataaa taaaaactaa ttaagaaatt gaaaaaaaaa aaaaaaaaa










SEQ ID NO: 42 Human p63 Isoform 13 Amino Acid Sequence (NP_001316893.1)








1
mkcweqrdwt aftkvgkpcf vetpahfswk esyyrstmsq stqtneflsp evfqhiwdfl


61
eqpicsvqpi dlnfvdepse dgatnkieis mdcirmqdsd lsdpmwpqyt nlgllnsmdq


121
qiqngsssts pyntdhaqns vtapspyaqp sstfdalsps paipsntdyp gphsfdvsfq


181
qsstaksatw tystelkkly cqiaktcpiq ikvmtpppqg avirampvyk kaehvtevvk


241
rcpnhelsre fnegqiapps hlirvegnsh aqyvedpitg rqsvlvpyep pqvgtefttv


301
lynfmcnssc vggmnrrpil iivtletrdg qvlgrrcfea ricacpgrdr kadedsirkq


361
qvsdstkngd gtkrpfrqnt hgiqmtsikk rrspddelly lpvrgretye mllkikesle


421
lmqylpqhti etyrqqqqqq hqhllqkqts iqspssygns spplnkmnsm nklpsvsqli


481
npqqrnaltp ttipdgmgan ipmmgthmpm agdmnglspt qalppplsmp stshctpppp


541
yptdcsivsf larlgcsscl dyfttqgltt iyqiehysmd dlaslkipeq frhaiwkgil


601
dhrqlhefss pshllrtpss astvsvgsse trgervidav rftlrqtisf pprdewndfn


661
fdmdarrnkq qrikeege










SEQ ID NO: 43 Mouse p63 transcript variant 1 mRNA Sequence (NM_001127259.1;


CDS: 526-2568)








1
aaaacattgt agccacagca gaactgacag gagctctcaa atcaagtcag aatacagata


61
caaggagatg ttattcagtt ggagcaaggg ggacatttat tagctcagtg acaagtcctg


121
gcttctgtga ttaaactctg atgccattca taccagcacc caatcccaag caagatcaga


181
agttcagaga tgcctacaaa ttgccaacaa gtgtggccac tctacgtcaa gggctctaaa


241
actgtggcag agaggaagaa cagctttaca gggggtgccc agctggtaag aattgacggt


301
ttatgatgct ctggttactt gaagactctc attggctgaa aggaagaaac gccccgcctc


361
tttgcaaatc tgagtaaagg ggggaagtgt ctaaacttct atgtctgatg gcatttgacc


421
ctattgcttt cagcctcctg gctacatacc tagatattct caggtgtata tgtatatttt


481
atagaattgc ttcccatctg ttggtatcaa agagagttga aggaaatgaa ttttgaaact


541
tcacggtgtg ccaccctaca gtactgcccc gacccttaca tccagcgttt catagaaacc


601
ccagctcatt tctcgtggaa agaaagttat tacagatctg ccatgtcgca gagcacccag


661
acaagcgagt tcctcagccc agaggtcttc cagcatatct gggattttct ggaacagcct


721
atatgctcag tacagcccat cgagttgaac tttgtggatg aaccttccga aaatggtgca


781
acaaacaaga ttgagattag catggattgt atccgcatgc aagactcaga cctcagtgac


841
cccatgtggc cacagtacac gaacctgggg ctcctgaaca gcatggacca gcagattcag


901
aacggctcct cgtccaccag cccctacaac acagaccacg cacagaatag cgtgacggcg


961
ccctcgccct atgcacagcc cagctccacc tttgatgccc tctctccatc ccctgccatt


1021
ccctccaaca cagattaccc gggcccacac agcttcgatg tgtccttcca gcagtcaagc


1081
actgccaagt cagccacctg gacgtattcc accgaactga agaagctgta ctgccagatt


1141
gcgaagacat gccccatcca gatcaaggtg atgaccccac ccccacaggg cgctgttatc


1201
cgtgccatgc ctgtctacaa gaaagctgag catgtcaccg aggttgtgaa acgatgccct


1261
aaccatgagc tgagccgtga gttcaatgag ggacagattg cccctcccag tcatctgatt


1321
cgagtagaag ggaacagcca tgcccagtat gtagaagatc ctatcacggg aaggcagagc


1381
gtgctggtcc cttatgagcc accacaggtt ggcactgaat tcacaacagt cctgtacaat


1441
ttcatgtgta acagcagctg cgtcggagga atgaacagac gtccaatttt aatcatcgtt


1501
actctggaaa ccagagatgg gcaagtcctg ggccgacggt gctttgaggc ccggatctgt


1561
gcttgcccag gaagagaccg gaaggcagat gaagacagca tcagaaagca gcaagtatcg


1621
gacagcgcaa agaacggcga tggtacgaag cgccctttcc gtcagaatac acacggaatc


1681
cagatgactt ccatcaagaa acggagatcc ccagatgatg agctgctgta cctaccagtg


1741
agaggtcgtg agacgtacga gatgttgctg aagatcaaag agtcactgga gctcatgcag


1801
tacctccctc agcacacgat cgaaacgtac aggcagcagc agcagcagca gcaccagcac


1861
ctacttcaga aacagacctc gatgcagtct cagtcttcat atggcaacag ttccccacct


1921
ctgaacaaaa tgaacagcat gaacaagctg ccttccgtga gccagcttat caacccacag


1981
cagcgcaatg ccctcactcc caccaccatg cctgagggca tgggagccaa cattcctatg


2041
atgggcactc acatgccaat ggctggagac atgaatggac tcagccctac ccaagctctc


2101
cctcctccac tctccatgcc ctccacctcc cactgcaccc caccaccgcc ctaccccaca


2161
gactgcagca ttgtcagttt cttagcaagg ttgggctgct catcatgcct ggactatttc


2221
acgacccagg ggctgaccac catctatcag attgagcatt actccatgga tgatttggca


2281
agtctgaaga tccctgaaca gttccgacat gccatctgga agggcatcct ggaccacagg


2341
cagctgcacg acttctcctc acctcctcat ctcctgagga ccccaagtgg tgcctctacc


2401
gtcagtgtgg gctccagtga gacccgtggt gaacgtgtga tcgatgccgt gcgctttacc


2461
ctccgccaga ccatctcttt tccaccccgt gacgagtgga atgatttcaa ctttgacatg


2521
gattctcgtc gcaacaagca gcagcgtatc aaagaggaag gagaatgagc gcccattgcg


2581
gggttcttcc tgtcttcttc cacctcccag cccctacagg gcacgcctgc ttgatcctca


2641
gagccttctc gttagctctt ctccttctcc ttctcagtct ggtttctaaa gggacggaga


2701
attaggaggc tgcctgttac ctaaagtctg acctgtcacc tgattctgat tctggcttta


2761
agccttcaat actcttgctt gcaagatgca ttgacattgc tagatagaag ttagcaaaga


2821
agcagtaggt ctctttaagc agtggagatc tctcattgac ttttataaag cattttcagc


2881
cttatagtct aagactatat atataaatat ataaatatcc gatatatatt ttgggtgtgg


2941
ggggtattga gtattgttta aatgtaattt aatggaaatt gagttgcact tatcatcctt


3001
ctttggaatt tgcttgtttc ggatggctga gctgtactcc tttctcaggg gtatcatgta


3061
tggtgacaga tatctagagt tgaatggtct atgtgagtaa caatgacgta taggacctct


3121
cctcatcctt tggatggtta ttgtttagca catcaaacct gtggatgcat ccagtgtgtt


3181
taccattgct tcctatgagg taaaactgta tatatgtaca cagttttctc tgtcagtata


3241
ttttatgtta ctggtgtcca ttccagttag gctggttcac tctgtggcta ttacaagcca


3301
cattttaggt ttgctttgtc acacactata agacagggca ttgtctcttg cttttgtttg


3361
agaatgagga atgcagttgt gttgtggttt gttttgtttt attttgtttt gttttctgga


3421
aactcttaaa tggttcaagt cagccattcc aaatatctga tgaaatttag cccaatatag


3481
cagtagctct ttgaaattta aggcccaaca ccctagtatt tattagaaaa ataaacattt


3541
gctgttgtta gaatagtctt aaaaataaat ttctctgcta gattgactaa gtaaaataga


3601
cattctctgc tgttgtgaga atttgggcca attagaatga atgaaattcg tctagttttc


3661
atggggagtt gtaatgtcta ttagaaagat tcaggaaaaa taagaatgat tcagaaatac


3721
tgaatttcca tgaaaaggaa aacagaaagc gattcatccc accaaactct gaattgaagt


3781
tccttttgaa gggtggagtg atgcttggga agtggacctt ttaaagactt tcctatctat


3841
gagacactgc atgcacaggc aagtttctct ctccccaagg gctaaaataa gaataatggc


3901
ttggaaaata caaacttcgt agtgtagttt tcacatagca tgagctgaac cactgttatc


3961
ttcctcttga tcatcaaagc ttcattgttt tagaaagcag aggtgaagac ccagttttcc


4021
gcctgacact ttccaagcta gtgtagacca agacctgtct acaaacccac gacaaacctt


4081
ttcacctgtt taatccatat ccagaaagac ttgtttcata ccttgggaaa gcatgcaaca


4141
gtattcccct tagatatttt ggaaacattt tgagacaagt atattttttt tcctgcctaa


4201
accaagtgtt gtttgtatgc taatgagctc tacaatcttc ccacacattt tgttaaatga


4261
ctttcattgc acatgagctc ccatttttta ttttaaagtg caaatgggct aataggcctt


4321
tgacgtgtaa tgtatgagtt ttgccagaaa atcatatctt gtgtatatgc gtgtgtgtga


4381
aattgcttac tatgctggtt ttgtttgtta tggctttctc tttgggatag ttgggttttc


4441
cagaaccaca gatgaaactt tttttgttgc tatttttata tttttgcaga aacaccgttt


4501
agtgagaatt caatgtcaaa tatgacatga taccttaatt gtaagaagaa ggtgggaagg


4561
gaaagttggt ttattaattt ttttaaattt tgtatgcaaa agcaaatgag tccttaattt


4621
caacattttg ttgtgtttaa ataatgataa gcatcattaa cttctgtaac aaactcacag


4681
ctttacaaat tcaatgggtg gagaagaaag ctgtgtctta gccatgttag gaagacaaat


4741
ggcttcctgt gtgttgtaag tatttgggct gtttcagcag tgttggtgtg gcacagggga


4801
ctctgtggca tttcagcact atttaggtgg cactagggac tctgaaattc ctgtactgta


4861
tctgatgatt ttggcattag ccataggtag gcacagtttg tctcctcaca ccagtgttta


4921
gtgtgtgaat agccagagct gtggggaaga acacagagaa cagacatctg ctggatgcct


4981
ctcagtggag aatgggattc cttcacttgg tggtgaagca gataggatag aaagcaggat


5041
tctctttgtt aatccagtta gcttttgttt tcttgatatc ccccctgaat acgttgagta


5101
tgagagatat gtgggttttt tttattttta taattgtaca aaattaagca aatatcaaat


5161
gttttatata ctttattaat gttttttttc aaaaggtact ttcttataga catgatactt


5221
ttttacagct tcagttgctt gtcttctggt atttttgtgt tatgggctat ggtgagccag


5281
aggcaaatct ataagccatt tttgtttgcc aggacatgca ataaaattta aaaataaatg


5341
aaaatacact gaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa










SEQ ID NO: 44 Mouse p63 Isoform A Amino Acid Sequence (NP_001120731.1)








1
mnfetsrcat lqycpdpyiq rfietpahfs wkesyyrsam sqstqtsefl spevfqhiwd


61
fleqpicsvq pielnfvdep sengatnkie ismdcirmqd sdlsdpmwpq ytnlgllnsm


121
dqqiqngsss tspyntdhaq nsvtapspya qpsstfdals pspaipsntd ypgphsfdvs


181
fqqsstaksa twtystelkk lycqiaktcp iqikvmtppp qgavirampv ykkaehvtev


241
vkrcpnhels refnegqiap pshlirvegn shaqyvedpi tgrqsvlvpy eppqvgteft


301
tvlynfmcns scvggmnrrp iliivtletr dgqvlgrrcf earicacpgr drkadedsir


361
kqqvsdsakn gdgtkrpfrq nthgiqmtsi kkrrspddel 1ylpvrgret yemllkikes


421
lelmqylpqh tietyrqqqq qqhqhllqkq tsmqsqssyg nsspplnkmn smnklpsvsq


481
linpqqrnal tpttmpegmg anipmmgthm pmagdmngls ptqalpppls mpstshctpp


541
ppyptdcsiv sflarlgcss cldyfttqgl ttiyqiehys mddlaslkip eqfrhaiwkg


601
ildhrqlhdf sspphllrtp sgastvsvgs setrgervid avrftlrqti sfpprdewnd


661
fnfdmdsrrn kqqrikeege










SEQ ID NO: 45 Mouse p63 transcript variant 2 mRNA Sequence (NM_001127260.1;


CDS: 526-2193)








1
aaaacattgt agccacagca gaactgacag gagctctcaa atcaagtcag aatacagata


61
caaggagatg ttattcagtt ggagcaaggg ggacatttat tagctcagtg acaagtcctg


121
gcttctgtga ttaaactctg atgccattca taccagcacc caatcccaag caagatcaga


181
agttcagaga tgcctacaaa ttgccaacaa gtgtggccac tctacgtcaa gggctctaaa


241
actgtggcag agaggaagaa cagctttaca gggggtgccc agctggtaag aattgacggt


301
ttatgatgct ctggttactt gaagactctc attggctgaa aggaagaaac gccccgcctc


361
tttgcaaatc tgagtaaagg ggggaagtgt ctaaacttct atgtctgatg gcatttgacc


421
ctattgcttt cagcctcctg gctacatacc tagatattct caggtgtata tgtatatttt


481
atagaattgc ttcccatctg ttggtatcaa agagagttga aggaaatgaa ttttgaaact


541
tcacggtgtg ccaccctaca gtactgcccc gacccttaca tccagcgttt catagaaacc


601
ccagctcatt tctcgtggaa agaaagttat tacagatctg ccatgtcgca gagcacccag


661
acaagcgagt tcctcagccc agaggtcttc cagcatatct gggattttct ggaacagcct


721
atatgctcag tacagcccat cgagttgaac tttgtggatg aaccttccga aaatggtgca


781
acaaacaaga ttgagattag catggattgt atccgcatgc aagactcaga cctcagtgac


841
cccatgtggc cacagtacac gaacctgggg ctcctgaaca gcatggacca gcagattcag


901
aacggctcct cgtccaccag cccctacaac acagaccacg cacagaatag cgtgacggcg


961
ccctcgccct atgcacagcc cagctccacc tttgatgccc tctctccatc ccctgccatt


1021
ccctccaaca cagattaccc gggcccacac agcttcgatg tgtccttcca gcagtcaagc


1081
actgccaagt cagccacctg gacgtattcc accgaactga agaagctgta ctgccagatt


1141
gcgaagacat gccccatcca gatcaaggtg atgaccccac ccccacaggg cgctgttatc


1201
cgtgccatgc ctgtctacaa gaaagctgag catgtcaccg aggttgtgaa acgatgccct


1261
aaccatgagc tgagccgtga gttcaatgag ggacagattg cccctcccag tcatctgatt


1321
cgagtagaag ggaacagcca tgcccagtat gtagaagatc ctatcacggg aaggcagagc


1381
gtgctggtcc cttatgagcc accacaggtt ggcactgaat tcacaacagt cctgtacaat


1441
ttcatgtgta acagcagctg cgtcggagga atgaacagac gtccaatttt aatcatcgtt


1501
actctggaaa ccagagatgg gcaagtcctg ggccgacggt gctttgaggc ccggatctgt


1561
gcttgcccag gaagagaccg gaaggcagat gaagacagca tcagaaagca gcaagtatcg


1621
gacagcgcaa agaacggcga tggtacgaag cgccctttcc gtcagaatac acacggaatc


1681
cagatgactt ccatcaagaa acggagatcc ccagatgatg agctgctgta cctaccagtg


1741
agaggtcgtg agacgtacga gatgttgctg aagatcaaag agtcactgga gctcatgcag


1801
tacctccctc agcacacgat cgaaacgtac aggcagcagc agcagcagca gcaccagcac


1861
ctacttcaga aacagacctc gatgcagtct cagtcttcat atggcaacag ttccccacct


1921
ctgaacaaaa tgaacagcat gaacaagctg ccttccgtga gccagcttat caacccacag


1981
cagcgcaatg ccctcactcc caccaccatg cctgagggca tgggagccaa cattcctatg


2041
atgggcactc acatgccaat ggctggagac atgaatggac tcagccctac ccaagctctc


2101
cctcctccac tctccatgcc ctccacctcc cactgcaccc caccaccgcc ctaccccaca


2161
gactgcagca ttgtcaggat ttggcaagtc tgaagatccc tgaacagttc cgacatgcca


2221
tctggaaggg catcctggac cacaggcagc tgcacgactt ctcctcacct cctcatctcc


2281
tgaggacccc aagtggtgcc tctaccgtca gtgtgggctc cagtgagacc cgtggtgaac


2341
gtgtgatcga tgccgtgcgc tttaccctcc gccagaccat ctcttttcca ccccgtgacg


2401
agtggaatga tttcaacttt gacatggatt ctcgtcgcaa caagcagcag cgtatcaaag


2461
aggaaggaga atgagcgccc attgcggggt tcttcctgtc ttcttccacc tcccagcccc


2521
tacagggcac gcctgcttga tcctcagagc cttctcgtta gctcttctcc ttctccttct


2581
cagtctggtt tctaaaggga cggagaatta ggaggctgcc tgttacctaa agtctgacct


2641
gtcacctgat tctgattctg gctttaagcc ttcaatactc ttgcttgcaa gatgcattga


2701
cattgctaga tagaagttag caaagaagca gtaggtctct ttaagcagtg gagatctctc


2761
attgactttt ataaagcatt ttcagcctta tagtctaaga ctatatatat aaatatataa


2821
atatccgata tatattttgg gtgtgggggg tattgagtat tgtttaaatg taatttaatg


2881
gaaattgagt tgcacttatc atccttcttt ggaatttgct tgtttcggat ggctgagctg


2941
tactcctttc tcaggggtat catgtatggt gacagatatc tagagttgaa tggtctatgt


3001
gagtaacaat gacgtatagg acctctcctc atcctttgga tggttattgt ttagcacatc


3061
aaacctgtgg atgcatccag tgtgtttacc attgcttcct atgaggtaaa actgtatata


3121
tgtacacagt tttctctgtc agtatatttt atgttactgg tgtccattcc agttaggctg


3181
gttcactctg tggctattac aagccacatt ttaggtttgc tttgtcacac actataagac


3241
agggcattgt ctcttgcttt tgtttgagaa tgaggaatgc agttgtgttg tggtttgttt


3301
tgttttattt tgttttgttt tctggaaact cttaaatggt tcaagtcagc cattccaaat


3361
atctgatgaa atttagccca atatagcagt agctctttga aatttaaggc ccaacaccct


3421
agtatttatt agaaaaataa acatttgctg ttgttagaat agtcttaaaa ataaatttct


3481
ctgctagatt gactaagtaa aatagacatt ctctgctgtt gtgagaattt gggccaatta


3541
gaatgaatga aattcgtcta gttttcatgg ggagttgtaa tgtctattag aaagattcag


3601
gaaaaataag aatgattcag aaatactgaa tttccatgaa aaggaaaaca gaaagcgatt


3661
catcccacca aactctgaat tgaagttcct tttgaagggt ggagtgatgc ttgggaagtg


3721
gaccttttaa agactttcct atctatgaga cactgcatgc acaggcaagt ttctctctcc


3781
ccaagggcta aaataagaat aatggcttgg aaaatacaaa cttcgtagtg tagttttcac


3841
atagcatgag ctgaaccact gttatcttcc tcttgatcat caaagcttca ttgttttaga


3901
aagcagaggt gaagacccag ttttccgcct gacactttcc aagctagtgt agaccaagac


3961
ctgtctacaa acccacgaca aaccttttca cctgtttaat ccatatccag aaagacttgt


4021
ttcatacctt gggaaagcat gcaacagtat tccccttaga tattttggaa acattttgag


4081
acaagtatat tttttttcct gcctaaacca agtgttgttt gtatgctaat gagctctaca


4141
atcttcccac acattttgtt aaatgacttt cattgcacat gagctcccat tttttatttt


4201
aaagtgcaaa tgggctaata ggcctttgac gtgtaatgta tgagttttgc cagaaaatca


4261
tatcttgtgt atatgcgtgt gtgtgaaatt gcttactatg ctggttttgt ttgttatggc


4321
tttctctttg ggatagttgg gttttccaga accacagatg aaactttttt tgttgctatt


4381
tttatatttt tgcagaaaca ccgtttagtg agaattcaat gtcaaatatg acatgatacc


4441
ttaattgtaa gaagaaggtg ggaagggaaa gttggtttat taattttttt aaattttgta


4501
tgcaaaagca aatgagtcct taatttcaac attttgttgt gtttaaataa tgataagcat


4561
cattaacttc tgtaacaaac tcacagcttt acaaattcaa tgggtggaga agaaagctgt


4621
gtcttagcca tgttaggaag acaaatggct tcctgtgtgt tgtaagtatt tgggctgttt


4681
cagcagtgtt ggtgtggcac aggggactct gtggcatttc agcactattt aggtggcact


4741
agggactctg aaattcctgt actgtatctg atgattttgg cattagccat aggtaggcac


4801
agtttgtctc ctcacaccag tgtttagtgt gtgaatagcc agagctgtgg ggaagaacac


4861
agagaacaga catctgctgg atgcctctca gtggagaatg ggattccttc acttggtggt


4921
gaagcagata ggatagaaag caggattctc tttgttaatc cagttagctt ttgttttctt


4981
gatatccccc ctgaatacgt tgagtatgag agatatgtgg gtttttttta tttttataat


5041
tgtacaaaat taagcaaata tcaaatgttt tatatacttt attaatgttt tttttcaaaa


5101
ggtactttct tatagacatg atactttttt acagcttcag ttgcttgtct tctggtattt


5161
ttgtgttatg ggctatggtg agccagaggc aaatctataa gccatttttg tttgccagga


5221
catgcaataa aatttaaaaa taaatgaaaa tacactgaaa aaaaaaaaaa aaaaaaaaaa


5281
aaaaaaaa










SEQ ID NO: 46 Mouse p63 Isoform B Amino Acid Sequence (NP_001120732.1)








1
mnfetsrcat lqycpdpyiq rfietpahfs wkesyyrsam sqstqtsefl spevfqhiwd


61
fleqpicsvq pielnfvdep sengatnkie ismdcirmqd sdlsdpmwpq ytnlgllnsm


121
dqqiqngsss tspyntdhaq nsvtapspya qpsstfdals pspaipsntd ypgphsfdvs


181
fqqsstaksa twtystelkk lycqiaktcp iqikvmtppp qgavirampv ykkaehvtev


241
vkrcpnhels refnegqiap pshlirvegn shaqyvedpi tgrqsvlvpy eppqvgteft


301
tvlynfmcns scvggmnrrp iliivtletr dgqvlgrrcf earicacpgr drkadedsir


361
kqqvsdsakn gdgtkrpfrq nthgiqmtsi kkrrspddel lylpvrgret yemllkikes


421
lelmqylpqh tietyrqqqq qqhqhllqkq tsmqsqssyg nsspplnkmn smnklpsvsq


481
linpqqrnal tpttmpegmg anipmmgthm pmagdmngls ptqalpppls mpstshctpp


541
ppyptdcsiv riwqv










SEQ ID NO: 47 Mouse p63 transcript variant 3 mRNA Sequence (NM_001127261.1;


CDS: 526-1977)








1
aaaacattgt agccacagca gaactgacag gagctctcaa atcaagtcag aatacagata


61
caaggagatg ttattcagtt ggagcaaggg ggacatttat tagctcagtg acaagtcctg


121
gcttctgtga ttaaactctg atgccattca taccagcacc caatcccaag caagatcaga


181
agttcagaga tgcctacaaa ttgccaacaa gtgtggccac tctacgtcaa gggctctaaa


241
actgtggcag agaggaagaa cagctttaca gggggtgccc agctggtaag aattgacggt


301
ttatgatgct ctggttactt gaagactctc attggctgaa aggaagaaac gccccgcctc


361
tttgcaaatc tgagtaaagg ggggaagtgt ctaaacttct atgtctgatg gcatttgacc


421
ctattgcttt cagcctcctg gctacatacc tagatattct caggtgtata tgtatatttt


481
atagaattgc ttcccatctg ttggtatcaa agagagttga aggaaatgaa ttttgaaact


541
tcacggtgtg ccaccctaca gtactgcccc gacccttaca tccagcgttt catagaaacc


601
ccagctcatt tctcgtggaa agaaagttat tacagatctg ccatgtcgca gagcacccag


661
acaagcgagt tcctcagccc agaggtcttc cagcatatct gggattttct ggaacagcct


721
atatgctcag tacagcccat cgagttgaac tttgtggatg aaccttccga aaatggtgca


781
acaaacaaga ttgagattag catggattgt atccgcatgc aagactcaga cctcagtgac


841
cccatgtggc cacagtacac gaacctgggg ctcctgaaca gcatggacca gcagattcag


901
aacggctcct cgtccaccag cccctacaac acagaccacg cacagaatag cgtgacggcg


961
ccctcgccct atgcacagcc cagctccacc tttgatgccc tctctccatc ccctgccatt


1021
ccctccaaca cagattaccc gggcccacac agcttcgatg tgtccttcca gcagtcaagc


1081
actgccaagt cagccacctg gacgtattcc accgaactga agaagctgta ctgccagatt


1141
gcgaagacat gccccatcca gatcaaggtg atgaccccac ccccacaggg cgctgttatc


1201
cgtgccatgc ctgtctacaa gaaagctgag catgtcaccg aggttgtgaa acgatgccct


1261
aaccatgagc tgagccgtga gttcaatgag ggacagattg cccctcccag tcatctgatt


1321
cgagtagaag ggaacagcca tgcccagtat gtagaagatc ctatcacggg aaggcagagc


1381
gtgctggtcc cttatgagcc accacaggtt ggcactgaat tcacaacagt cctgtacaat


1441
ttcatgtgta acagcagctg cgtcggagga atgaacagac gtccaatttt aatcatcgtt


1501
actctggaaa ccagagatgg gcaagtcctg ggccgacggt gctttgaggc ccggatctgt


1561
gcttgcccag gaagagaccg gaaggcagat gaagacagca tcagaaagca gcaagtatcg


1621
gacagcgcaa agaacggcga tgctttccgt cagaatacac acggaatcca gatgacttcc


1681
atcaagaaac ggagatcccc agatgatgag ctgctgtacc taccagtgag aggtcgtgag


1741
acgtacgaga tgttgctgaa gatcaaagag tcactggagc tcatgcagta cctccctcag


1801
cacacgatcg aaacgtacag gcagcagcag cagcagcagc accagcacct acttcagaaa


1861
catctccttt cagcctgctt caggaatgag cttgtggagc cccggggaga agctccgaca


1921
cagtctgacg tcttctttag acattccaac cccccaaacc actccgtgta cccataggtc


1981
cccagctatg tgtttgagtt catgtgcttg ttgtgtttct gtgtgcgttt gtgtatatgc


2041
acatgcgtgt tagtgtttcc agccctcaca aacaggactt gaagacattt tggctcagag


2101
acccagctgc tcaaaggcac acatccacta gtgagagaat ctttgaaggg actcaaaatt


2161
ttacaaagca gagatgcttt ctgcacattt tgtatcttta gatcctgcct tggttggacg


2221
ggagccgcga ctgtgcttgt ctgtgagctt tctattgttt tcccaggagg gagggggaat


2281
ccattgggaa agaggcattg caaagtttat tggaaacctt ttctgttacc tcctgttgtg


2341
tttctaaaac tcataataaa gcttttgagc aggtctcaaa










SEQ ID NO: 48 Mouse p63 Isoform C Amino Acid Sequence (NP_001120733.1)








1
mnfetsrcat lqycpdpyiq rfietpahfs wkesyyrsam sqstqtsefl spevfqhiwd


61
fleqpicsvq pielnfvdep sengatnkie ismdcirmqd sdlsdpmwpq ytnlgllnsm


121
dqqiqngsss tspyntdhaq nsvtapspya qpsstfdals pspaipsntd ypgphsfdvs


181
fqqsstaksa twtystelkk lycqiaktcp iqikvmtppp qgavirampv ykkaehvtev


241
vkrcpnhels refnegqiap pshlirvegn shaqyvedpi tgrqsvlvpy eppqvgteft


301
tvlynfmcns scvggmnrrp iliivtletr dgqvlgrrcf earicacpgr drkadedsir


361
kqqvsdsakn gdafrqnthg iqmtsikkrr spddellylp vrgretyeml lkikeslelm


421
qylpqhtiet yrqqqqqqhq hllqkhllsa cfrnelvepr geaptqsdvf frhsnppnhs


481
vyp










SEQ ID NO: 49 Mouse p63 transcript variant 6 mRNA Sequence (NM_001127262.1;


CDS: 145-1530)








1
agagagagag agagagagag gcacctgaat tctgttatct tcttagaaga ttcgcagcgc


61
aaggctctca gagggggtgg gggggctggc aaaaccctgg aagcagaaaa gaggagagca


121
gccttgacca gtctcactgc taacatgttg tacctggaaa acaatgccca gactcaattt


181
agtgagccac agtacacgaa cctggggctc ctgaacagca tggaccagca gattcagaac


241
ggctcctcgt ccaccagccc ctacaacaca gaccacgcac agaatagcgt gacggcgccc


301
tcgccctatg cacagcccag ctccaccttt gatgccctct ctccatcccc tgccattccc


361
tccaacacag attacccggg cccacacagc ttcgatgtgt ccttccagca gtcaagcact


421
gccaagtcag ccacctggac gtattccacc gaactgaaga agctgtactg ccagattgcg


481
aagacatgcc ccatccagat caaggtgatg accccacccc cacagggcgc tgttatccgt


541
gccatgcctg tctacaagaa agctgagcat gtcaccgagg ttgtgaaacg atgccctaac


601
catgagctga gccgtgagtt caatgaggga cagattgccc ctcccagtca tctgattcga


661
gtagaaggga acagccatgc ccagtatgta gaagatccta tcacgggaag gcagagcgtg


721
ctggtccctt atgagccacc acaggttggc actgaattca caacagtcct gtacaatttc


781
atgtgtaaca gcagctgcgt cggaggaatg aacagacgtc caattttaat catcgttact


841
ctggaaacca gagatgggca agtcctgggc cgacggtgct ttgaggcccg gatctgtgct


901
tgcccaggaa gagaccggaa ggcagatgaa gacagcatca gaaagcagca agtatcggac


961
agcgcaaaga acggcgatgg tacgaagcgc cctttccgtc agaatacaca cggaatccag


1021
atgacttcca tcaagaaacg gagatcccca gatgatgagc tgctgtacct accagtgaga


1081
ggtcgtgaga cgtacgagat gttgctgaag atcaaagagt cactggagct catgcagtac


1141
ctccctcagc acacgatcga aacgtacagg cagcagcagc agcagcagca ccagcaccta


1201
cttcagaaac agacctcgat gcagtctcag tcttcatatg gcaacagttc cccacctctg


1261
aacaaaatga acagcatgaa caagctgcct tccgtgagcc agcttatcaa cccacagcag


1321
cgcaatgccc tcactcccac caccatgcct gagggcatgg gagccaacat tcctatgatg


1381
ggcactcaca tgccaatggc tggagacatg aatggactca gccctaccca agctctccct


1441
cctccactct ccatgccctc cacctcccac tgcaccccac caccgcccta ccccacagac


1501
tgcagcattg tcaggatttg gcaagtctga agatccctga acagttccga catgccatct


1561
ggaagggcat cctggaccac aggcagctgc acgacttctc ctcacctcct catctcctga


1621
ggaccccaag tggtgcctct accgtcagtg tgggctccag tgagacccgt ggtgaacgtg


1681
tgatcgatgc cgtgcgcttt accctccgcc agaccatctc ttttccaccc cgtgacgagt


1741
ggaatgattt caactttgac atggattctc gtcgcaacaa gcagcagcgt atcaaagagg


1801
aaggagaatg agcgcccatt gcggggttct tcctgtcttc ttccacctcc cagcccctac


1861
agggcacgcc tgcttgatcc tcagagcctt ctcgttagct cttctccttc tccttctcag


1921
tctggtttct aaagggacgg agaattagga ggctgcctgt tacctaaagt ctgacctgtc


1981
acctgattct gattctggct ttaagccttc aatactcttg cttgcaagat gcattgacat


2041
tgctagatag aagttagcaa agaagcagta ggtctcttta agcagtggag atctctcatt


2101
gacttttata aagcattttc agccttatag tctaagacta tatatataaa tatataaata


2161
tccgatatat attttgggtg tggggggtat tgagtattgt ttaaatgtaa tttaatggaa


2221
attgagttgc acttatcatc cttctttgga atttgcttgt ttcggatggc tgagctgtac


2281
tcctttctca ggggtatcat gtatggtgac agatatctag agttgaatgg tctatgtgag


2341
taacaatgac gtataggacc tctcctcatc ctttggatgg ttattgttta gcacatcaaa


2401
cctgtggatg catccagtgt gtttaccatt gcttcctatg aggtaaaact gtatatatgt


2461
acacagtttt ctctgtcagt atattttatg ttactggtgt ccattccagt taggctggtt


2521
cactctgtgg ctattacaag ccacatttta ggtttgcttt gtcacacact ataagacagg


2581
gcattgtctc ttgcttttgt ttgagaatga ggaatgcagt tgtgttgtgg tttgttttgt


2641
tttattttgt tttgttttct ggaaactctt aaatggttca agtcagccat tccaaatatc


2701
tgatgaaatt tagcccaata tagcagtagc tctttgaaat ttaaggccca acaccctagt


2761
atttattaga aaaataaaca tttgctgttg ttagaatagt cttaaaaata aatttctctg


2821
ctagattgac taagtaaaat agacattctc tgctgttgtg agaatttggg ccaattagaa


2881
tgaatgaaat tcgtctagtt ttcatgggga gttgtaatgt ctattagaaa gattcaggaa


2941
aaataagaat gattcagaaa tactgaattt ccatgaaaag gaaaacagaa agcgattcat


3001
cccaccaaac tctgaattga agttcctttt gaagggtgga gtgatgcttg ggaagtggac


3061
cttttaaaga ctttcctatc tatgagacac tgcatgcaca ggcaagtttc tctctcccca


3121
agggctaaaa taagaataat ggcttggaaa atacaaactt cgtagtgtag ttttcacata


3181
gcatgagctg aaccactgtt atcttcctct tgatcatcaa agcttcattg ttttagaaag


3241
cagaggtgaa gacccagttt tccgcctgac actttccaag ctagtgtaga ccaagacctg


3301
tctacaaacc cacgacaaac cttttcacct gtttaatcca tatccagaaa gacttgtttc


3361
ataccttggg aaagcatgca acagtattcc ccttagatat tttggaaaca ttttgagaca


3421
agtatatttt ttttcctgcc taaaccaagt gttgtttgta tgctaatgag ctctacaatc


3481
ttcccacaca ttttgttaaa tgactttcat tgcacatgag ctcccatttt ttattttaaa


3541
gtgcaaatgg gctaataggc ctttgacgtg taatgtatga gttttgccag aaaatcatat


3601
cttgtgtata tgcgtgtgtg tgaaattgct tactatgctg gttttgtttg ttatggcttt


3661
ctctttggga tagttgggtt ttccagaacc acagatgaaa ctttttttgt tgctattttt


3721
atatttttgc agaaacaccg tttagtgaga attcaatgtc aaatatgaca tgatacctta


3781
attgtaagaa gaaggtggga agggaaagtt ggtttattaa tttttttaaa ttttgtatgc


3841
aaaagcaaat gagtccttaa tttcaacatt ttgttgtgtt taaataatga taagcatcat


3901
taacttctgt aacaaactca cagctttaca aattcaatgg gtggagaaga aagctgtgtc


3961
ttagccatgt taggaagaca aatggcttcc tgtgtgttgt aagtatttgg gctgtttcag


4021
cagtgttggt gtggcacagg ggactctgtg gcatttcagc actatttagg tggcactagg


4081
gactctgaaa ttcctgtact gtatctgatg attttggcat tagccatagg taggcacagt


4141
ttgtctcctc acaccagtgt ttagtgtgtg aatagccaga gctgtgggga agaacacaga


4201
gaacagacat ctgctggatg cctctcagtg gagaatggga ttccttcact tggtggtgaa


4261
gcagatagga tagaaagcag gattctcttt gttaatccag ttagcttttg ttttcttgat


4321
atcccccctg aatacgttga gtatgagaga tatgtgggtt ttttttattt ttataattgt


4381
acaaaattaa gcaaatatca aatgttttat atactttatt aatgtttttt ttcaaaaggt


4441
actttcttat agacatgata cttttttaca gcttcagttg cttgtcttct ggtatttttg


4501
tgttatgggc tatggtgagc cagaggcaaa tctataagcc atttttgttt gccaggacat


4561
gcaataaaat ttaaaaataa atgaaaatac actgaaaaaa aaaaaaaaaa aaaaaaaaaa


4621
aaaaa










SEQ ID NO: 50 Mouse p63 Isoform F Amino Acid Sequence (NP_001120734.1)








1
mlylennaqt qfsepqytnl gllnsmdqqi qngssstspy ntdhaqnsvt apspyaqpss


61
tfdalspspa ipsntdypgp hsfdvsfqqs staksatwty stelkklycq iaktcpiqik


121
vmtpppqgav irampvykka ehvtevvkrc pnhelsrefn egqiappshl irvegnshaq


181
yvedpitgrq svlvpyeppq vgtefttvly nfmcnsscvg gmnrrpilii vtletrdgqv


241
lgrrcfeari cacpgrdrka dedsirkqqv sdsakngdgt krpfrqnthg iqmtsikkrr


301
spddellylp vrgretyeml lkikeslelm qylpqhtiet yrqqqqqqhq hllqkqtsmq


361
sqssygnssp plnkmnsmnk lpsysqlinp qqrnaltptt mpegmganip mmgthmpmag


421
dmnglsptqa lppplsmpst shctppppyp tdcsivriwq v










SEQ ID NO: 51 Mouse p63 transcript variant 7 mRNA Sequence (NM_001127263.1;


CDS: 145-1326)








1
agagagagag agagagagag gcacctgaat tctgttatct tcttagaaga ttcgcagcgc


61
aaggctctca gagggggtgg gggggctggc aaaaccctgg aagcagaaaa gaggagagca


121
gccttgacca gtctcactgc taacatgttg tacctggaaa acaatgccca gactcaattt


181
agtgagccac agtacacgaa cctggggctc ctgaacagca tggaccagca gattcagaac


241
ggctcctcgt ccaccagccc ctacaacaca gaccacgcac agaatagcgt gacggcgccc


301
tcgccctatg cacagcccag ctccaccttt gatgccctct ctccatcccc tgccattccc


361
tccaacacag attacccggg cccacacagc ttcgatgtgt ccttccagca gtcaagcact


421
gccaagtcag ccacctggac gtattccacc gaactgaaga agctgtactg ccagattgcg


481
aagacatgcc ccatccagat caaggtgatg accccacccc cacagggcgc tgttatccgt


541
gccatgcctg tctacaagaa agctgagcat gtcaccgagg ttgtgaaacg atgccctaac


601
catgagctga gccgtgagtt caatgaggga cagattgccc ctcccagtca tctgattcga


661
gtagaaggga acagccatgc ccagtatgta gaagatccta tcacgggaag gcagagcgtg


721
ctggtccctt atgagccacc acaggttggc actgaattca caacagtcct gtacaatttc


781
atgtgtaaca gcagctgcgt cggaggaatg aacagacgtc caattttaat catcgttact


841
ctggaaacca gagatgggca agtcctgggc cgacggtgct ttgaggcccg gatctgtgct


901
tgcccaggaa gagaccggaa ggcagatgaa gacagcatca gaaagcagca agtatcggac


961
agcgcaaaga acggcgatgg tacgaagcgc cctttccgtc agaatacaca cggaatccag


1021
atgacttcca tcaagaaacg gagatcccca gatgatgagc tgctgtacct accagtgaga


1081
ggtcgtgaga cgtacgagat gttgctgaag atcaaagagt cactggagct catgcagtac


1141
ctccctcagc acacgatcga aacgtacagg cagcagcagc agcagcagca ccagcaccta


1201
cttcagaaac atctcctttc agcctgcttc aggaatgagc ttgtggagcc ccggggagaa


1261
gctccgacac agtctgacgt cttctttaga cattccaacc ccccaaacca ctccgtgtac


1321
ccataggtcc ccagctatgt gtttgagttc atgtgcttgt tgtgtttctg tgtgcgtttg


1381
tgtatatgca catgcgtgtt agtgtttcca gccctcacaa acaggacttg aagacatttt


1441
ggctcagaga cccagctgct caaaggcaca catccactag tgagagaatc tttgaaggga


1501
ctcaaaattt tacaaagcag agatgctttc tgcacatttt gtatctttag atcctgcctt


1561
ggttggacgg gagccgcgac tgtgcttgtc tgtgagcttt ctattgtttt cccaggaggg


1621
agggggaatc cattgggaaa gaggcattgc aaagtttatt ggaaaccttt tctgttacct


1681
cctgttgtgt ttctaaaact cataataaag cttttgagca ggtctcaaa










SEQ ID NO: 52 Mouse p63 Isoform G Amino Acid Sequence (NP_001120735.1)








1
mlylennaqt qfsepqytnl gllnsmdqqi qngssstspy ntdhaqnsvt apspyaqpss


61
tfdalspspa ipsntdypgp hsfdvsfqqs staksatwty stelkklycq iaktcpiqik


121
vmtpppqgav irampvykka ehvtevvkrc pnhelsrefn egqiappshl irvegnshaq


181
yvedpitgrq svlvpyeppq vgtefttvly nfmcnsscvg gmnrrpilii vtletrdgqv


241
lgrrcfeari cacpgrdrka dedsirkqqv sdsakngdgt krpfrqnthg iqmtsikkrr


301
spddellylp vrgretyeml lkikeslelm qylpqhtiet yrqqqqqqhq hllqkhllsa


361
cfrnelvepr geaptqsdvf frhsnppnhs vyp










SEQ ID NO: 53 Mouse p63 transcript variant 5 mRNA Sequence (NM_001127264.1;


CDS: 145-1893)








1
agagagagag agagagagag gcacctgaat tctgttatct tcttagaaga ttcgcagcgc


61
aaggctctca gagggggtgg gggggctggc aaaaccctgg aagcagaaaa gaggagagca


121
gccttgacca gtctcactgc taacatgttg tacctggaaa acaatgccca gactcaattt


181
agtgagccac agtacacgaa cctggggctc ctgaacagca tggaccagca gattcagaac


241
ggctcctcgt ccaccagccc ctacaacaca gaccacgcac agaatagcgt gacggcgccc


301
tcgccctatg cacagcccag ctccaccttt gatgccctct ctccatcccc tgccattccc


361
tccaacacag attacccggg cccacacagc ttcgatgtgt ccttccagca gtcaagcact


421
gccaagtcag ccacctggac gtattccacc gaactgaaga agctgtactg ccagattgcg


481
aagacatgcc ccatccagat caaggtgatg accccacccc cacagggcgc tgttatccgt


541
gccatgcctg tctacaagaa agctgagcat gtcaccgagg ttgtgaaacg atgccctaac


601
catgagctga gccgtgagtt caatgaggga cagattgccc ctcccagtca tctgattcga


661
gtagaaggga acagccatgc ccagtatgta gaagatccta tcacgggaag gcagagcgtg


721
ctggtccctt atgagccacc acaggttggc actgaattca caacagtcct gtacaatttc


781
atgtgtaaca gcagctgcgt cggaggaatg aacagacgtc caattttaat catcgttact


841
ctggaaacca gagatgggca agtcctgggc cgacggtgct ttgaggcccg gatctgtgct


901
tgcccaggaa gagaccggaa ggcagatgaa gacagcatca gaaagcagca agtatcggac


961
agcgcaaaga acggcgatgc tttccgtcag aatacacacg gaatccagat gacttccatc


1021
aagaaacgga gatccccaga tgatgagctg ctgtacctac cagtgagagg tcgtgagacg


1081
tacgagatgt tgctgaagat caaagagtca ctggagctca tgcagtacct ccctcagcac


1141
acgatcgaaa cgtacaggca gcagcagcag cagcagcacc agcacctact tcagaaacag


1201
acctcgatgc agtctcagtc ttcatatggc aacagttccc cacctctgaa caaaatgaac


1261
agcatgaaca agctgccttc cgtgagccag cttatcaacc cacagcagcg caatgccctc


1321
actcccacca ccatgcctga gggcatggga gccaacattc ctatgatggg cactcacatg


1381
ccaatggctg gagacatgaa tggactcagc cctacccaag ctctccctcc tccactctcc


1441
atgccctcca cctcccactg caccccacca ccgccctacc ccacagactg cagcattgtc


1501
agtttcttag caaggttggg ctgctcatca tgcctggact atttcacgac ccaggggctg


1561
accaccatct atcagattga gcattactcc atggatgatt tggcaagtct gaagatccct


1621
gaacagttcc gacatgccat ctggaagggc atcctggacc acaggcagct gcacgacttc


1681
tcctcacctc ctcatctcct gaggacccca agtggtgcct ctaccgtcag tgtgggctcc


1741
agtgagaccc gtggtgaacg tgtgatcgat gccgtgcgct ttaccctccg ccagaccatc


1801
tcttttccac cccgtgacga gtggaatgat ttcaactttg acatggattc tcgtcgcaac


1861
aagcagcagc gtatcaaaga ggaaggagaa tgagcgccca ttgcggggtt cttcctgtct


1921
tcttccacct cccagcccct acagggcacg cctgcttgat cctcagagcc ttctcgttag


1981
ctcttctcct tctccttctc agtctggttt ctaaagggac ggagaattag gaggctgcct


2041
gttacctaaa gtctgacctg tcacctgatt ctgattctgg ctttaagcct tcaatactct


2101
tgcttgcaag atgcattgac attgctagat agaagttagc aaagaagcag taggtctctt


2161
taagcagtgg agatctctca ttgactttta taaagcattt tcagccttat agtctaagac


2221
tatatatata aatatataaa tatccgatat atattttggg tgtggggggt attgagtatt


2281
gtttaaatgt aatttaatgg aaattgagtt gcacttatca tccttctttg gaatttgctt


2341
gtttcggatg gctgagctgt actcctttct caggggtatc atgtatggtg acagatatct


2401
agagttgaat ggtctatgtg agtaacaatg acgtatagga cctctcctca tcctttggat


2461
ggttattgtt tagcacatca aacctgtgga tgcatccagt gtgtttacca ttgcttccta


2521
tgaggtaaaa ctgtatatat gtacacagtt ttctctgtca gtatatttta tgttactggt


2581
gtccattcca gttaggctgg ttcactctgt ggctattaca agccacattt taggtttgct


2641
ttgtcacaca ctataagaca gggcattgtc tcttgctttt gtttgagaat gaggaatgca


2701
gttgtgttgt ggtttgtttt gttttatttt gttttgtttt ctggaaactc ttaaatggtt


2761
caagtcagcc attccaaata tctgatgaaa tttagcccaa tatagcagta gctctttgaa


2821
atttaaggcc caacacccta gtatttatta gaaaaataaa catttgctgt tgttagaata


2881
gtcttaaaaa taaatttctc tgctagattg actaagtaaa atagacattc tctgctgttg


2941
tgagaatttg ggccaattag aatgaatgaa attcgtctag ttttcatggg gagttgtaat


3001
gtctattaga aagattcagg aaaaataaga atgattcaga aatactgaat ttccatgaaa


3061
aggaaaacag aaagcgattc atcccaccaa actctgaatt gaagttcctt ttgaagggtg


3121
gagtgatgct tgggaagtgg accttttaaa gactttccta tctatgagac actgcatgca


3181
caggcaagtt tctctctccc caagggctaa aataagaata atggcttgga aaatacaaac


3241
ttcgtagtgt agttttcaca tagcatgagc tgaaccactg ttatcttcct cttgatcatc


3301
aaagcttcat tgttttagaa agcagaggtg aagacccagt tttccgcctg acactttcca


3361
agctagtgta gaccaagacc tgtctacaaa cccacgacaa accttttcac ctgtttaatc


3421
catatccaga aagacttgtt tcataccttg ggaaagcatg caacagtatt ccccttagat


3481
attttggaaa cattttgaga caagtatatt ttttttcctg cctaaaccaa gtgttgtttg


3541
tatgctaatg agctctacaa tcttcccaca cattttgtta aatgactttc attgcacatg


3601
agctcccatt ttttatttta aagtgcaaat gggctaatag gcctttgacg tgtaatgtat


3661
gagttttgcc agaaaatcat atcttgtgta tatgcgtgtg tgtgaaattg cttactatgc


3721
tggttttgtt tgttatggct ttctctttgg gatagttggg ttttccagaa ccacagatga


3781
aacttttttt gttgctattt ttatattttt gcagaaacac cgtttagtga gaattcaatg


3841
tcaaatatga catgatacct taattgtaag aagaaggtgg gaagggaaag ttggtttatt


3901
aattttttta aattttgtat gcaaaagcaa atgagtcctt aatttcaaca ttttgttgtg


3961
tttaaataat gataagcatc attaacttct gtaacaaact cacagcttta caaattcaat


4021
gggtggagaa gaaagctgtg tcttagccat gttaggaaga caaatggctt cctgtgtgtt


4081
gtaagtattt gggctgtttc agcagtgttg gtgtggcaca ggggactctg tggcatttca


4141
gcactattta ggtggcacta gggactctga aattcctgta ctgtatctga tgattttggc


4201
attagccata ggtaggcaca gtttgtctcc tcacaccagt gtttagtgtg tgaatagcca


4261
gagctgtggg gaagaacaca gagaacagac atctgctgga tgcctctcag tggagaatgg


4321
gattccttca cttggtggtg aagcagatag gatagaaagc aggattctct ttgttaatcc


4381
agttagcttt tgttttcttg atatcccccc tgaatacgtt gagtatgaga gatatgtggg


4441
ttttttttat ttttataatt gtacaaaatt aagcaaatat caaatgtttt atatacttta


4501
ttaatgtttt ttttcaaaag gtactttctt atagacatga tactttttta cagcttcagt


4561
tgcttgtctt ctggtatttt tgtgttatgg gctatggtga gccagaggca aatctataag


4621
ccatttttgt ttgccaggac atgcaataaa atttaaaaat aaatgaaaat acactgaaaa


4681
aaaaaaaaaa aaaaaaaaaa aaaaaaa










SEQ ID NO: 54 Mouse p63 Isoform E Sequence (NP_001120736.1)








1
mlylennaqt qfsepqytnl gllnsmdqqi qngssstspy ntdhaqnsvt apspyaqpss


61
tfdalspspa ipsntdypgp hsfdvsfqqs staksatwty stelkklycq iaktcpiqik


121
vmtpppqgav irampvykka ehvtevvkrc pnhelsrefn egqiappshl irvegnshaq


181
yvedpitgrq svlvpyeppq vgtefttvly nfmcnsscvg gmnrrpilii vtletrdgqv


241
lgrrcfeari cacpgrdrka dedsirkqqv sdsakngdaf rqnthgiqmt sikkrrspdd


301
ellylpvrgr etyemllkik eslelmqylp qhtietyrqq qqqqhqhllq kqtsmqsqss


361
ygnsspplnk mnsmnklpsv sqlinpqqrn altpttmpeg mganipmmgt hmpmagdmng


421
lsptqalppp lsmpstshct ppppyptdcs ivsflarlgc sscldyfttq glttiyqieh


481
ysmddlaslk ipeqfrhaiw kgildhrqlh dfsspphllr tpsgastvsv gssetrgerv


541
idavrftlrq tisfpprdew ndfnfdmdsr rnkqqrikee ge










SEQ ID NO: 55 Mouse p63 transcript variant 8 mRNA Sequence (NM_001127265.1;


CDS: 145-1314)








1
agagagagag agagagagag gcacctgaat tctgttatct tcttagaaga ttcgcagcgc


61
aaggctctca gagggggtgg gggggctggc aaaaccctgg aagcagaaaa gaggagagca


121
gccttgacca gtctcactgc taacatgttg tacctggaaa acaatgccca gactcaattt


181
agtgagccac agtacacgaa cctggggctc ctgaacagca tggaccagca gattcagaac


241
ggctcctcgt ccaccagccc ctacaacaca gaccacgcac agaatagcgt gacggcgccc


301
tcgccctatg cacagcccag ctccaccttt gatgccctct ctccatcccc tgccattccc


361
tccaacacag attacccggg cccacacagc ttcgatgtgt ccttccagca gtcaagcact


421
gccaagtcag ccacctggac gtattccacc gaactgaaga agctgtactg ccagattgcg


481
aagacatgcc ccatccagat caaggtgatg accccacccc cacagggcgc tgttatccgt


541
gccatgcctg tctacaagaa agctgagcat gtcaccgagg ttgtgaaacg atgccctaac


601
catgagctga gccgtgagtt caatgaggga cagattgccc ctcccagtca tctgattcga


661
gtagaaggga acagccatgc ccagtatgta gaagatccta tcacgggaag gcagagcgtg


721
ctggtccctt atgagccacc acaggttggc actgaattca caacagtcct gtacaatttc


781
atgtgtaaca gcagctgcgt cggaggaatg aacagacgtc caattttaat catcgttact


841
ctggaaacca gagatgggca agtcctgggc cgacggtgct ttgaggcccg gatctgtgct


901
tgcccaggaa gagaccggaa ggcagatgaa gacagcatca gaaagcagca agtatcggac


961
agcgcaaaga acggcgatgc tttccgtcag aatacacacg gaatccagat gacttccatc


1021
aagaaacgga gatccccaga tgatgagctg ctgtacctac cagtgagagg tcgtgagacg


1081
tacgagatgt tgctgaagat caaagagtca ctggagctca tgcagtacct ccctcagcac


1141
acgatcgaaa cgtacaggca gcagcagcag cagcagcacc agcacctact tcagaaacat


1201
ctcctttcag cctgcttcag gaatgagctt gtggagcccc ggggagaagc tccgacacag


1261
tctgacgtct tctttagaca ttccaacccc ccaaaccact ccgtgtaccc ataggtcccc


1321
agctatgtgt ttgagttcat gtgcttgttg tgtttctgtg tgcgtttgtg tatatgcaca


1381
tgcgtgttag tgtttccagc cctcacaaac aggacttgaa gacattttgg ctcagagacc


1441
cagctgctca aaggcacaca tccactagtg agagaatctt tgaagggact caaaatttta


1501
caaagcagag atgctttctg cacattttgt atctttagat cctgccttgg ttggacggga


1561
gccgcgactg tgcttgtctg tgagctttct attgttttcc caggagggag ggggaatcca


1621
ttgggaaaga ggcattgcaa agtttattgg aaaccttttc tgttacctcc tgttgtgttt


1681
ctaaaactca taataaagct tttgagcagg tctcaaa










SEQ ID NO: 56 Mouse p63 Isoform H Amino Acid Sequence (NP_001120737.1)








1
mlylennaqt qfsepqytnl gllnsmdqqi qngssstspy ntdhaqnsvt apspyaqpss


61
tfdalspspa ipsntdypgp hsfdvsfqqs staksatwty stelkklycq iaktcpiqik


121
vmtpppqgav irampvykka ehvtevvkrc pnhelsrefn egqiappshl irvegnshaq


181
yvedpitgrq svlvpyeppq vgtefttvly nfmcnsscvg gmnrrpilii vtletrdgqv


241
lgrrcfeari cacpgrdrka dedsirkqqv sdsakngdaf rqnthgiqmt sikkrrspdd


301
ellylpvrgr etyemllkik eslelmqylp qhtietyrqq qqqqhqhllq khllsacfrn


361
elveprgeap tqsdvffrhs nppnhsvyp










SEQ ID NO: 57 Mouse p63 transcript variant 4 mRNA Sequence (NM_011641.2;


CDS: 145-1905)








1
agagagagag agagagagag gcacctgaat tctgttatct tcttagaaga ttcgcagcgc


61
aaggctctca gagggggtgg gggggctggc aaaaccctgg aagcagaaaa gaggagagca


121
gccttgacca gtctcactgc taacatgttg tacctggaaa acaatgccca gactcaattt


181
agtgagccac agtacacgaa cctggggctc ctgaacagca tggaccagca gattcagaac


241
ggctcctcgt ccaccagccc ctacaacaca gaccacgcac agaatagcgt gacggcgccc


301
tcgccctatg cacagcccag ctccaccttt gatgccctct ctccatcccc tgccattccc


361
tccaacacag attacccggg cccacacagc ttcgatgtgt ccttccagca gtcaagcact


421
gccaagtcag ccacctggac gtattccacc gaactgaaga agctgtactg ccagattgcg


481
aagacatgcc ccatccagat caaggtgatg accccacccc cacagggcgc tgttatccgt


541
gccatgcctg tctacaagaa agctgagcat gtcaccgagg ttgtgaaacg atgccctaac


601
catgagctga gccgtgagtt caatgaggga cagattgccc ctcccagtca tctgattcga


661
gtagaaggga acagccatgc ccagtatgta gaagatccta tcacgggaag gcagagcgtg


721
ctggtccctt atgagccacc acaggttggc actgaattca caacagtcct gtacaatttc


781
atgtgtaaca gcagctgcgt cggaggaatg aacagacgtc caattttaat catcgttact


841
ctggaaacca gagatgggca agtcctgggc cgacggtgct ttgaggcccg gatctgtgct


901
tgcccaggaa gagaccggaa ggcagatgaa gacagcatca gaaagcagca agtatcggac


961
agcgcaaaga acggcgatgg tacgaagcgc cctttccgtc agaatacaca cggaatccag


1021
atgacttcca tcaagaaacg gagatcccca gatgatgagc tgctgtacct accagtgaga


1081
ggtcgtgaga cgtacgagat gttgctgaag atcaaagagt cactggagct catgcagtac


1141
ctccctcagc acacgatcga aacgtacagg cagcagcagc agcagcagca ccagcaccta


1201
cttcagaaac agacctcgat gcagtctcag tcttcatatg gcaacagttc cccacctctg


1261
aacaaaatga acagcatgaa caagctgcct tccgtgagcc agcttatcaa cccacagcag


1321
cgcaatgccc tcactcccac caccatgcct gagggcatgg gagccaacat tcctatgatg


1381
ggcactcaca tgccaatggc tggagacatg aatggactca gccctaccca agctctccct


1441
cctccactct ccatgccctc cacctcccac tgcaccccac caccgcccta ccccacagac


1501
tgcagcattg tcagtttctt agcaaggttg ggctgctcat catgcctgga ctatttcacg


1561
acccaggggc tgaccaccat ctatcagatt gagcattact ccatggatga tttggcaagt


1621
ctgaagatcc ctgaacagtt ccgacatgcc atctggaagg gcatcctgga ccacaggcag


1681
ctgcacgact tctcctcacc tcctcatctc ctgaggaccc caagtggtgc ctctaccgtc


1741
agtgtgggct ccagtgagac ccgtggtgaa cgtgtgatcg atgccgtgcg ctttaccctc


1801
cgccagacca tctcttttcc accccgtgac gagtggaatg atttcaactt tgacatggat


1861
tctcgtcgca acaagcagca gcgtatcaaa gaggaaggag aatgagcgcc cattgcgggg


1921
ttcttcctgt cttcttccac ctcccagccc ctacagggca cgcctgcttg atcctcagag


1981
ccttctcgtt agctcttctc cttctccttc tcagtctggt ttctaaaggg acggagaatt


2041
aggaggctgc ctgttaccta aagtctgacc tgtcacctga ttctgattct ggctttaagc


2101
cttcaatact cttgcttgca agatgcattg acattgctag atagaagtta gcaaagaagc


2161
agtaggtctc tttaagcagt ggagatctct cattgacttt tataaagcat tttcagcctt


2221
atagtctaag actatatata taaatatata aatatccgat atatattttg ggtgtggggg


2281
gtattgagta ttgtttaaat gtaatttaat ggaaattgag ttgcacttat catccttctt


2341
tggaatttgc ttgtttcgga tggctgagct gtactccttt ctcaggggta tcatgtatgg


2401
tgacagatat ctagagttga atggtctatg tgagtaacaa tgacgtatag gacctctcct


2461
catcctttgg atggttattg tttagcacat caaacctgtg gatgcatcca gtgtgtttac


2521
cattgcttcc tatgaggtaa aactgtatat atgtacacag ttttctctgt cagtatattt


2581
tatgttactg gtgtccattc cagttaggct ggttcactct gtggctatta caagccacat


2641
tttaggtttg ctttgtcaca cactataaga cagggcattg tctcttgctt ttgtttgaga


2701
atgaggaatg cagttgtgtt gtggtttgtt ttgttttatt ttgttttgtt ttctggaaac


2761
tcttaaatgg ttcaagtcag ccattccaaa tatctgatga aatttagccc aatatagcag


2821
tagctctttg aaatttaagg cccaacaccc tagtatttat tagaaaaata aacatttgct


2881
gttgttagaa tagtcttaaa aataaatttc tctgctagat tgactaagta aaatagacat


2941
tctctgctgt tgtgagaatt tgggccaatt agaatgaatg aaattcgtct agttttcatg


3001
gggagttgta atgtctatta gaaagattca ggaaaaataa gaatgattca gaaatactga


3061
atttccatga aaaggaaaac agaaagcgat tcatcccacc aaactctgaa ttgaagttcc


3121
ttttgaaggg tggagtgatg cttgggaagt ggacctttta aagactttcc tatctatgag


3181
acactgcatg cacaggcaag tttctctctc cccaagggct aaaataagaa taatggcttg


3241
gaaaatacaa acttcgtagt gtagttttca catagcatga gctgaaccac tgttatcttc


3301
ctcttgatca tcaaagcttc attgttttag aaagcagagg tgaagaccca gttttccgcc


3361
tgacactttc caagctagtg tagaccaaga cctgtctaca aacccacgac aaaccttttc


3421
acctgtttaa tccatatcca gaaagacttg tttcatacct tgggaaagca tgcaacagta


3481
ttccccttag atattttgga aacattttga gacaagtata ttttttttcc tgcctaaacc


3541
aagtgttgtt tgtatgctaa tgagctctac aatcttccca cacattttgt taaatgactt


3601
tcattgcaca tgagctccca ttttttattt taaagtgcaa atgggctaat aggcctttga


3661
cgtgtaatgt atgagttttg ccagaaaatc atatcttgtg tatatgcgtg tgtgtgaaat


3721
tgcttactat gctggttttg tttgttatgg ctttctcttt gggatagttg ggttttccag


3781
aaccacagat gaaacttttt ttgttgctat ttttatattt ttgcagaaac accgtttagt


3841
gagaattcaa tgtcaaatat gacatgatac cttaattgta agaagaaggt gggaagggaa


3901
agttggttta ttaatttttt taaattttgt atgcaaaagc aaatgagtcc ttaatttcaa


3961
cattttgttg tgtttaaata atgataagca tcattaactt ctgtaacaaa ctcacagctt


4021
tacaaattca atgggtggag aagaaagctg tgtcttagcc atgttaggaa gacaaatggc


4081
ttcctgtgtg ttgtaagtat ttgggctgtt tcagcagtgt tggtgtggca caggggactc


4141
tgtggcattt cagcactatt taggtggcac tagggactct gaaattcctg tactgtatct


4201
gatgattttg gcattagcca taggtaggca cagtttgtct cctcacacca gtgtttagtg


4261
tgtgaatagc cagagctgtg gggaagaaca cagagaacag acatctgctg gatgcctctc


4321
agtggagaat gggattcctt cacttggtgg tgaagcagat aggatagaaa gcaggattct


4381
ctttgttaat ccagttagct tttgttttct tgatatcccc cctgaatacg ttgagtatga


4441
gagatatgtg ggtttttttt atttttataa ttgtacaaaa ttaagcaaat atcaaatgtt


4501
ttatatactt tattaatgtt ttttttcaaa aggtactttc ttatagacat gatacttttt


4561
tacagcttca gttgcttgtc ttctggtatt tttgtgttat gggctatggt gagccagagg


4621
caaatctata agccattttt gtttgccagg acatgcaata aaatttaaaa ataaatgaaa


4681
atacactgaa aaaaaaaaaa aaaaaaaaaa










SEQ ID NO: 58 Mouse p63 Isoform D Amino Acid Sequence (NP_035771.1)








1
mlylennaqt qfsepqytnl gllnsmdqqi qngssstspy ntdhaqnsvt apspyaqpss


61
tfdalspspa ipsntdypgp hsfdvsfqqs staksatwty stelkklycq iaktcpiqik


121
vmtpppqgav irampvykka ehvtevvkrc pnhelsrefn egqiappshl irvegnshaq


181
yvedpitgrq svlvpyeppq vgtefttvly nfmcnsscvg gmnrrpilii vtletrdgqv


241
lgrrcfeari cacpgrdrka dedsirkqqv sdsakngdgt krpfrqnthg iqmtsikkrr


301
spddellylp vrgretyeml lkikeslelm qylpqhtiet yrqqqqqqhq hllqkqtsmq


361
sqssygnssp plnkmnsmnk lpsysqlinp qqrnaltptt mpegmganip mmgthmpmag


421
dmnglsptqa lppplsmpst shctppppyp tdcsivsfla rlgcsscldy fttqglttiy


481
qiehysmddl aslkipeqfr haiwkgildh rqlhdfsspp hllrtpsgas tvsvgssetr


541
gervidavrf tlrqtisfpp rdewndfnfd mdsrrnkqqr ikeege










SEQ ID NO: 59 Rat p63 transcript variant 1 Sequence (NM_019221.3; CDS: 148-


2190)








1
ggggggaagt gtctaaactt ctatgtctga tggcatttga ccctattgct ttcagcctcc


61
tggctatata cctagatatt ctcaggtgta tatgtatatt ttatagaatt gttccccatc


121
tgttggtatc aaagagagtt gaaggaaatg aattttgaaa cttcacggtg tgctacccta


181
cagtactgcc ctgaccctta catccagcgt ttcatagaaa ccccatctca tttctcctgg


241
aaagaaagtt attaccggtc cgccatgtcg cagagcaccc agacaagtga gttcctcagc


301
ccagaggtgt tccagcatat ctgggatttt ctggaacagc ctatatgctc agtacagccc


361
atcgacttga actttgtgga cgaaccatca gaaaatggtg caacaaacaa gattgagatt


421
agcatggatt gtatccgcat gcaagactca gacctcagtg accccatgtg gccacagtac


481
acgaacctgg ggctcctgaa cggcatggac cagcagattc agaacggctc ctcatctacc


541
agcccctata acacagacca tgcacagaac agcgtgacgg caccctcgcc ctatgcacag


601
cccagctcaa ccttcgatgc cctttctcca tcccctgcca ttccctccaa cacagattac


661
ccaggcccac acagcttcga tgtgtccttc cagcagtcaa gcaccgccaa gtcagctacc


721
tggacgtatt ccaccgaact gaagaaactc tactgccaga ttgcaaagac ctgccccatc


781
cagatcaagg tgatgacccc acccccacag ggcgccgtca ttcgtgccat gcctgtctac


841
aagaaagccg agcatgtcac cgaggttgtg aaacgatgtc ctaaccacga gctgagccgc


901
gagttcaatg agggacagat tgcccctccc agtcatctga ttcgagtaga agggaacagc


961
catgcccagt atgtagaaga tcctatcaca ggaaggcaga gcgtgctggt cccttatgag


1021
ccaccacagg ttggcactga attcacaaca gtcctgtaca atttcatgtg caacagcagc


1081
tgtgtcggag gaatgaaccg ccgtccaatt ttaatcatcg ttactctgga aaccagagat


1141
gggcaagtcc tgggccgacg ttgctttgag gcccggatct gcgcttgccc aggaagagac


1201
cggaaggccg atgaagacag catcagaaag cagcaagtat cagacagcgc aaagaacggc


1261
gatggtacga agcgcccttt ccgtcagaat acccacggaa tccagatgac ttccatcaag


1321
aaacggagat ccccagatga tgagctgctg tacctaccag tgagaggccg tgagacttat


1381
gaaatgctgc tcaagatcaa ggagtcgctc gagctcatgc agtatctccc tcagcacacg


1441
atcgagacgt acaggcagca gcagcagcag cagcaccaac acctacttca gaaacagacc


1501
tcgatgcagt ctcagtcttc atacggtaac agctcaccac ctctgaacaa aatgaacagc


1561
atgaacaagc tgccgtctgt gagccagctt atcaacccac agcagcgcaa cgccctgact


1621
cccaccacca tgcctgaggg catgggagcc aacattccta tgatgggcac tcacatgcca


1681
atggctggag acatgaatgg actcagcccc acccaagctc ttcctcctcc actctccatg


1741
ccctccacct cccactgcac ccccccacct ccgtacccaa cagactgcag cattgtcagt


1801
ttcttagcaa ggttgggctg ttcatcatgt ctggactatt tcacgaccca ggggctgacc


1861
accatctatc agattgagca ttactccatg gatgatttgg caagtctgaa gatccctgag


1921
cagttccgac atgccatctg gaaggggatc ctggaccaca ggcagctgca tgacttctcc


1981
tcacctccgc atctcctgag aacccccagt ggtgcctcta cagtcagtgt gggctccagt


2041
gagacccgtg gagaacgtgt gattgatgcc gtgcgcttta ctctccgcca gaccatctct


2101
ttcccacccc gtgatgagtg gaacgatttc aactttgaca tggattcccg tcgcaacaag


2161
cagcagcgca tcaaagagga aggagaatga acgtccgtcg ccgggttctt cctgttttct


2221
tcctcctccc agctcccaca gggcacgcct gcttgatcct caaagccttc tcgctagctc


2281
tcctcctcct ccttctcagt ctggtttcta aagggacgga gaattaagag gctacctgtt


2341
acctaaagtc tgacctgtca cctgattctg atcctggctt taagccttca atactcttgc


2401
ttgcaagatg cgttgacatt gctagataga cgttagcaga gaagcagtgg gtctctctaa


2461
gcactggaga tcgctcattg acttttataa agcattttca gccttatagt ctaagactat


2521
atatataaat atataaatat acaatatata tttcgggtgg gggtattgag tattgtttaa


2581
atgtaattta atggaaatcg agttgcactt atcaaccttc tttggaattt gcttgttttg


2641
gttggctgat ctgtacccct ttctcagggg tatcatgtat ggtgacagat atttagagtt


2701
gaatggtcta tgtgagtaac agtgatatat aggtcctctc ctttctttgg atgattgccg


2761
tttagcacat caaacctgtg gatgcgtcca gtctgtttac cattgctcct tatgaggtaa


2821
aactgcatat actgtcagtc tattttatgt tactggtgtc cattccagtt aggctggttc


2881
actctgtggc cattccaagc aaaattttat gtttgctttg tcacacacta gaagacaggg


2941
catcatctct tgcttttgtt tgagaatgag gagtactttt ttttttttct ggaaaatctt


3001
aaatggtcca aatcagccat tccaaatggc tgatgaaatg tagccaatat agcagttagc


3061
tctctaaaat ttaagaccca acaccctcgt atttattagt aaaacaaaaa tgaaacattt


3121
gctgtcatta gagtagcctt aaaattaaat ttcaatacca gattgactga gtaaactatg


3181
cattcaatgt tgttgtgaga attggggcta attagtcagg atgattggaa tttgtgtagt


3241
tttttatggt gagttgcaat atctatttag gaaggttcag gaataataag aatgactcag


3301
aaatactcaa tctccgtgac aacagaaagc aatctcacca aactctgaat ttaaacccct


3361
tttgaaacat ggagtgaggc ttgggaaatg taccttttaa agactttcct atctataaga


3421
cactgcatgc aggggcaagt ttaatctctc atcaaggtgg aaaataagaa tagtagctcg


3481
gaaactacaa acttgctagt gtagctttca catggcatga gctcaactat tgttattttc


3541
ctctttatca tcaaagctcc attgctgtag aaagcagagg tgaagaccca gttttccacc


3601
tgacactttc cgggcaaggc atagaccaag aactgtctac aaaaccaggg caaagctctt


3661
cagtgaagct gtttaattca catggagaaa cacttgtttc ccactttggg aaagcatgca


3721
acagtgttcc ccctagatgt tttggaaaca ttttgagtca aatatatttt tcccagacta


3781
aaccaggcta atgagctcta caatcctcct gcacattttg gtaaagggct gtcattgcac


3841
aggagctccc atttttatct taaagtgcaa atgggctaat acgcctacga aatgtaatgt


3901
atgggttttg ccagaaaata gtatattgtg tacacgtgtc tgtgtgtgag tgtgagagtg


3961
tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg aaattgcata ctatgctggt tttgtttgtt


4021
actctttctc ttggggatag ttgggttttc cagaaccaca gacgaaactt ttttttgttg


4081
ctgtttttat atttttgcag aaacaccatt tagtgagaat tcaatgtcaa attagacatg


4141
acaccttaat tgtaagaagg ggggagaggg aaagttggtt ttttttaatt ttttaaaatt


4201
ttgtatacta aagagaatga gtccttaatt tcaacattct gttgcattta aataatgata


4261
agcatcatta acttctgtaa caacttccca gcttggcaaa ttcaatgcat ggagaacaaa


4321
gctgggcctt agccatgtta gggagaaaaa tggcttcttg ggggttgtga gcatttgggt


4381
tgctttagca ccgttgaggt ggcacagggg actcctgagg catttcagca ctacttacgt


4441
agcactaggg actcggaaat tcctgtactg tagctaatga ttttggcgtt caccattagc


4501
agtagatagg ccgtttctct cctcacacca gtgttaagcg tgtgagtagc cagagctgtg


4561
gggaagagca tggagaacag acgtctgctg gatgcctctc accggagaat gagattcctt


4621
cgcgtggtgg tgaagtagga taggaagcag gagtctcctt gttagtccag ttagctattg


4681
ttttcttgat attccccccc aaaacattga ctatgagaga tatgtggggc ttttttattt


4741
ttataattgt acaaaattaa acaaatatga aatgttttat atactttatt aatgtttttt


4801
ttcaaaaggt actttcttat agacatgatc ctttttttac aggttcagtt gcttgtccct


4861
tggtattttt gtgttatggg ctatggtgag cctgaggcaa atctataagc catttttgtt


4921
tgccaggaca tgcaataaaa tttaaaaata aatgaaaata cactgaaaaa aaaaaaaaaa


4981
aaaaaaaaaa a










SEQ ID NO: 60 Rat p63 Isoform A Amino Acid Sequence (NP_062094.1)








1
mnfetsrcat lqycpdpyiq rfietpshfs wkesyyrsam sqstqtsefl spevfqhiwd


61
fleqpicsvq pidlnfvdep sengatnkie ismdcirmqd sdlsdpmwpq ytnlgllngm


121
dqqiqngsss tspyntdhaq nsvtapspya qpsstfdals pspaipsntd ypgphsfdvs


181
fqqsstaksa twtystelkk lycqiaktcp iqikvmtppp qgavirampv ykkaehvtev


241
vkrcpnhels refnegqiap pshlirvegn shaqyvedpi tgrqsvlvpy eppqvgteft


301
tvlynfmcns scvggmnrrp iliivtletr dgqvlgrrcf earicacpgr drkadedsir


361
kqqvsdsakn gdgtkrpfrq nthgiqmtsi kkrrspddel lylpvrgret yemllkikes


421
lelmqylpqh tietyrqqqq qqhqhllqkq tsmqsqssyg nsspplnkmn smnklpsvsq


481
linpqqrnal tpttmpegmg anipmmgthm pmagdmngls ptqalpppls mpstshctpp


541
ppyptdcsiv sflarlgcss cldyfttqgl ttiyqiehys mddlaslkip eqfrhaiwkg


601
ildhrqlhdf sspphllrtp sgastvsvgs setrgervid avrftlrqti sfpprdewnd


661
fnfdmdsrrn kqqrikeege










SEQ ID NO: 61 Rat p63 transcript variant 2 Sequence (NM_0011273391; (CDS: 148-


1815)








1
ggggggaagt gtctaaactt ctatgtctga tggcatttga ccctattgct ttcagcctcc


61
tggctatata cctagatatt ctcaggtgta tatgtatatt ttatagaatt gttccccatc


121
tgttggtatc aaagagagtt gaaggaaatg aattttgaaa cttcacggtg tgctacccta


181
cagtactgcc ctgaccctta catccagcgt ttcatagaaa ccccatctca tttctcctgg


241
aaagaaagtt attaccggtc cgccatgtcg cagagcaccc agacaagtga gttcctcagc


301
ccagaggtgt tccagcatat ctgggatttt ctggaacagc ctatatgctc agtacagccc


361
atcgacttga actttgtgga cgaaccatca gaaaatggtg caacaaacaa gattgagatt


421
agcatggatt gtatccgcat gcaagactca gacctcagtg accccatgtg gccacagtac


481
acgaacctgg ggctcctgaa cggcatggac cagcagattc agaacggctc ctcatctacc


541
agcccctata acacagacca tgcacagaac agcgtgacgg caccctcgcc ctatgcacag


601
cccagctcaa ccttcgatgc cctttctcca tcccctgcca ttccctccaa cacagattac


661
ccaggcccac acagcttcga tgtgtccttc cagcagtcaa gcaccgccaa gtcagctacc


721
tggacgtatt ccaccgaact gaagaaactc tactgccaga ttgcaaagac ctgccccatc


781
cagatcaagg tgatgacccc acccccacag ggcgccgtca ttcgtgccat gcctgtctac


841
aagaaagccg agcatgtcac cgaggttgtg aaacgatgtc ctaaccacga gctgagccgc


901
gagttcaatg agggacagat tgcccctccc agtcatctga ttcgagtaga agggaacagc


961
catgcccagt atgtagaaga tcctatcaca ggaaggcaga gcgtgctggt cccttatgag


1021
ccaccacagg ttggcactga attcacaaca gtcctgtaca atttcatgtg caacagcagc


1081
tgtgtcggag gaatgaaccg ccgtccaatt ttaatcatcg ttactctgga aaccagagat


1141
gggcaagtcc tgggccgacg ttgctttgag gcccggatct gcgcttgccc aggaagagac


1201
cggaaggccg atgaagacag catcagaaag cagcaagtat cagacagcgc aaagaacggc


1261
gatggtacga agcgcccttt ccgtcagaat acccacggaa tccagatgac ttccatcaag


1321
aaacggagat ccccagatga tgagctgctg tacctaccag tgagaggccg tgagacttat


1381
gaaatgctgc tcaagatcaa ggagtcgctc gagctcatgc agtatctccc tcagcacacg


1441
atcgagacgt acaggcagca gcagcagcag cagcaccaac acctacttca gaaacagacc


1501
tcgatgcagt ctcagtcttc atacggtaac agctcaccac ctctgaacaa aatgaacagc


1561
atgaacaagc tgccgtctgt gagccagctt atcaacccac agcagcgcaa cgccctgact


1621
cccaccacca tgcctgaggg catgggagcc aacattccta tgatgggcac tcacatgcca


1681
atggctggag acatgaatgg actcagcccc acccaagctc ttcctcctcc actctccatg


1741
ccctccacct cccactgcac ccccccacct ccgtacccaa cagactgcag cattgtcagg


1801
atttggcaag tctgaagatc cctgagcagt tccgacatgc catctggaag gggatcctgg


1861
accacaggca gctgcatgac ttctcctcac ctccgcatct cctgagaacc cccagtggtg


1921
cctctacagt cagtgtgggc tccagtgaga cccgtggaga acgtgtgatt gatgccgtgc


1981
gctttactct ccgccagacc atctctttcc caccccgtga tgagtggaac gatttcaact


2041
ttgacatgga ttcccgtcgc aacaagcagc agcgcatcaa agaggaagga gaatgaacgt


2101
ccgtcgccgg gttcttcctg ttttcttcct cctcccagct cccacagggc acgcctgctt


2161
gatcctcaaa gccttctcgc tagctctcct cctcctcctt ctcagtctgg tttctaaagg


2221
gacggagaat taagaggcta cctgttacct aaagtctgac ctgtcacctg attctgatcc


2281
tggctttaag ccttcaatac tcttgcttgc aagatgcgtt gacattgcta gatagacgtt


2341
agcagagaag cagtgggtct ctctaagcac tggagatcgc tcattgactt ttataaagca


2401
ttttcagcct tatagtctaa gactatatat ataaatatat aaatatacaa tatatatttc


2461
gggtgggggt attgagtatt gtttaaatgt aatttaatgg aaatcgagtt gcacttatca


2521
accttctttg gaatttgctt gttttggttg gctgatctgt acccctttct caggggtatc


2581
atgtatggtg acagatattt agagttgaat ggtctatgtg agtaacagtg atatataggt


2641
cctctccttt ctttggatga ttgccgttta gcacatcaaa cctgtggatg cgtccagtct


2701
gtttaccatt gctccttatg aggtaaaact gcatatactg tcagtctatt ttatgttact


2761
ggtgtccatt ccagttaggc tggttcactc tgtggccatt ccaagcaaaa ttttatgttt


2821
gctttgtcac acactagaag acagggcatc atctcttgct tttgtttgag aatgaggagt


2881
actttttttt ttttctggaa aatcttaaat ggtccaaatc agccattcca aatggctgat


2941
gaaatgtagc caatatagca gttagctctc taaaatttaa gacccaacac cctcgtattt


3001
attagtaaaa caaaaatgaa acatttgctg tcattagagt agccttaaaa ttaaatttca


3061
ataccagatt gactgagtaa actatgcatt caatgttgtt gtgagaattg gggctaatta


3121
gtcaggatga ttggaatttg tgtagttttt tatggtgagt tgcaatatct atttaggaag


3181
gttcaggaat aataagaatg actcagaaat actcaatctc cgtgacaaca gaaagcaatc


3241
tcaccaaact ctgaatttaa accccttttg aaacatggag tgaggcttgg gaaatgtacc


3301
ttttaaagac tttcctatct ataagacact gcatgcaggg gcaagtttaa tctctcatca


3361
aggtggaaaa taagaatagt agctcggaaa ctacaaactt gctagtgtag ctttcacatg


3421
gcatgagctc aactattgtt attttcctct ttatcatcaa agctccattg ctgtagaaag


3481
cagaggtgaa gacccagttt tccacctgac actttccggg caaggcatag accaagaact


3541
gtctacaaaa ccagggcaaa gctcttcagt gaagctgttt aattcacatg gagaaacact


3601
tgtttcccac tttgggaaag catgcaacag tgttccccct agatgttttg gaaacatttt


3661
gagtcaaata tatttttccc agactaaacc aggctaatga gctctacaat cctcctgcac


3721
attttggtaa agggctgtca ttgcacagga gctcccattt ttatcttaaa gtgcaaatgg


3781
gctaatacgc ctacgaaatg taatgtatgg gttttgccag aaaatagtat attgtgtaca


3841
cgtgtctgtg tgtgagtgtg agagtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgaaat


3901
tgcatactat gctggttttg tttgttactc tttctcttgg ggatagttgg gttttccaga


3961
accacagacg aaactttttt ttgttgctgt ttttatattt ttgcagaaac accatttagt


4021
gagaattcaa tgtcaaatta gacatgacac cttaattgta agaagggggg agagggaaag


4081
ttggtttttt ttaatttttt aaaattttgt atactaaaga gaatgagtcc ttaatttcaa


4141
cattctgttg catttaaata atgataagca tcattaactt ctgtaacaac ttcccagctt


4201
ggcaaattca atgcatggag aacaaagctg ggccttagcc atgttaggga gaaaaatggc


4261
ttcttggggg ttgtgagcat ttgggttgct ttagcaccgt tgaggtggca caggggactc


4321
ctgaggcatt tcagcactac ttacgtagca ctagggactc ggaaattcct gtactgtagc


4381
taatgatttt ggcgttcacc attagcagta gataggccgt ttctctcctc acaccagtgt


4441
taagcgtgtg agtagccaga gctgtgggga agagcatgga gaacagacgt ctgctggatg


4501
cctctcaccg gagaatgaga ttccttcgcg tggtggtgaa gtaggatagg aagcaggagt


4561
ctccttgtta gtccagttag ctattgtttt cttgatattc ccccccaaaa cattgactat


4621
gagagatatg tggggctttt ttatttttat aattgtacaa aattaaacaa atatgaaatg


4681
ttttatatac tttattaatg ttttttttca aaaggtactt tcttatagac atgatccttt


4741
ttttacaggt tcagttgctt gtcccttggt atttttgtgt tatgggctat ggtgagcctg


4801
aggcaaatct ataagccatt tttgtttgcc aggacatgca ataaaattta aaaataaatg


4861
aaaatacact gaaaaaaaaa aaaaaaaaaa aaaaaaa










SEQ ID NO: 62 Rat p63 Isoform B Amino Acid Sequence (NP_001120811.1)








1
mnfetsrcat lqycpdpyiq rfietpshfs wkesyyrsam sqstqtsefl spevfqhiwd


61
fleqpicsvq pidlnfvdep sengatnkie ismdcirmqd sdlsdpmwpq ytnlgllngm


121
dqqiqngsss tspyntdhaq nsvtapspya qpsstfdals pspaipsntd ypgphsfdvs


181
fqqsstaksa twtystelkk lycqiaktcp iqikvmtppp qgavirampv ykkaehvtev


241
vkrcpnhels refnegqiap pshlirvegn shaqyvedpi tgrqsvlvpy eppqvgteft


301
tvlynfmcns scvggmnrrp iliivtletr dgqvlgrrcf earicacpgr drkadedsir


361
kqqvsdsakn gdgtkrpfrq nthgiqmtsi kkrrspddel lylpvrgret yemllkikes


421
lelmqylpqh tietyrqqqq qqhqhllqkq tsmqsqssyg nsspplnkmn smnklpsysq


481
linpqqrnal tpttmpegmg anipmmgthm pmagdmngls ptqalpppls mpstshctpp


541
ppyptdcsiv riwqv










SEQ ID NO: 63 Rat p63 transcript variant 3 Sequence (NM_001127341.1; CDS: 148


1611)








1
ggggggaagt gtctaaactt ctatgtctga tggcatttga ccctattgct ttcagcctcc


61
tggctatata cctagatatt ctcaggtgta tatgtatatt ttatagaatt gttccccatc


121
tgttggtatc aaagagagtt gaaggaaatg aattttgaaa cttcacggtg tgctacccta


181
cagtactgcc ctgaccctta catccagcgt ttcatagaaa ccccatctca tttctcctgg


241
aaagaaagtt attaccggtc cgccatgtcg cagagcaccc agacaagtga gttcctcagc


301
ccagaggtgt tccagcatat ctgggatttt ctggaacagc ctatatgctc agtacagccc


361
atcgacttga actttgtgga cgaaccatca gaaaatggtg caacaaacaa gattgagatt


421
agcatggatt gtatccgcat gcaagactca gacctcagtg accccatgtg gccacagtac


481
acgaacctgg ggctcctgaa cggcatggac cagcagattc agaacggctc ctcatctacc


541
agcccctata acacagacca tgcacagaac agcgtgacgg caccctcgcc ctatgcacag


601
cccagctcaa ccttcgatgc cctttctcca tcccctgcca ttccctccaa cacagattac


661
ccaggcccac acagcttcga tgtgtccttc cagcagtcaa gcaccgccaa gtcagctacc


721
tggacgtatt ccaccgaact gaagaaactc tactgccaga ttgcaaagac ctgccccatc


781
cagatcaagg tgatgacccc acccccacag ggcgccgtca ttcgtgccat gcctgtctac


841
aagaaagccg agcatgtcac cgaggttgtg aaacgatgtc ctaaccacga gctgagccgc


901
gagttcaatg agggacagat tgcccctccc agtcatctga ttcgagtaga agggaacagc


961
catgcccagt atgtagaaga tcctatcaca ggaaggcaga gcgtgctggt cccttatgag


1021
ccaccacagg ttggcactga attcacaaca gtcctgtaca atttcatgtg caacagcagc


1081
tgtgtcggag gaatgaaccg ccgtccaatt ttaatcatcg ttactctgga aaccagagat


1141
gggcaagtcc tgggccgacg ttgctttgag gcccggatct gcgcttgccc aggaagagac


1201
cggaaggccg atgaagacag catcagaaag cagcaagtat cagacagcgc aaagaacggc


1261
gatggtacga agcgcccttt ccgtcagaat acccacggaa tccagatgac ttccatcaag


1321
aaacggagat ccccagatga tgagctgctg tacctaccag tgagaggccg tgagacttat


1381
gaaatgctgc tcaagatcaa ggagtcgctc gagctcatgc agtatctccc tcagcacacg


1441
atcgagacgt acaggcagca gcagcagcag cagcaccaac acctacttca gaaacatctc


1501
ctttcagcct gcttcaggaa tgagcttgtg gagtcccgga gagaagctcc gacacagtct


1561
gacgtcttct ttagacattc caacccccca aaccactcag tgtacccata g










SEQ ID NO: 64 Rat p63 Isoform C Amino Acid Sequence (NP_001120813.1)








1
mnfetsrcat lqycpdpyiq rfietpshfs wkesyyrsam sqstqtsefl spevfqhiwd


61
fleqpicsvq pidlnfvdep sengatnkie ismdcirmqd sdlsdpmwpq ytnlgllngm


121
dqqiqngsss tspyntdhaq nsvtapspya qpsstfdals pspaipsntd ypgphsfdvs


181
fqqsstaksa twtystelkk lycqiaktcp iqikvmtppp qgavirampv ykkaehvtev


241
vkrcpnhels refnegqiap pshlirvegn shaqyvedpi tgrqsvlvpy eppqvgteft


301
tvlynfmcns scvggmnrrp iliivtletr dgqvlgrrcf earicacpgr drkadedsir


361
kqqvsdsakn gdgtkrpfrq nthgiqmtsi kkrrspddel lylpvrgret yemllkikes


421
lelmqylpqh tietyrqqqq qqhqhllqkh llsacfrnel vesrreaptq sdvffrhsnp


481
pnhsvyp










SEQ ID NO: 65 Rat p63 transcript variant 4 Sequence (NM_001127342.1; CDS: 1-


1761)








1
atgttgtacc tggaaagcaa tgcccagact caatttagtg agccacagta cacgaacctg


61
gggctcctga acggcatgga ccagcagatt cagaacggct cctcatctac cagcccctat


121
aacacagacc atgcacagaa cagcgtgacg gcaccctcgc cctatgcaca gcccagctca


181
accttcgatg ccctttctcc atcccctgcc attccctcca acacagatta cccaggccca


241
cacagcttcg atgtgtcctt ccagcagtca agcaccgcca agtcagctac ctggacgtat


301
tccaccgaac tgaagaaact ctactgccag attgcaaaga cctgccccat ccagatcaag


361
gtgatgaccc cacccccaca gggcgccgtc attcgtgcca tgcctgtcta caagaaagcc


421
gagcatgtca ccgaggttgt gaaacgatgt cctaaccacg agctgagccg cgagttcaat


481
gagggacaga ttgcccctcc cagtcatctg attcgagtag aagggaacag ccatgcccag


541
tatgtagaag atcctatcac aggaaggcag agcgtgctgg tcccttatga gccaccacag


601
gttggcactg aattcacaac agtcctgtac aatttcatgt gcaacagcag ctgtgtcgga


661
ggaatgaacc gccgtccaat tttaatcatc gttactctgg aaaccagaga tgggcaagtc


721
ctgggccgac gttgctttga ggcccggatc tgcgcttgcc caggaagaga ccggaaggcc


781
gatgaagaca gcatcagaaa gcagcaagta tcagacagcg caaagaacgg cgatggtacg


841
aagcgccctt tccgtcagaa tacccacgga atccagatga cttccatcaa gaaacggaga


901
tccccagatg atgagctgct gtacctacca gtgagaggcc gtgagactta tgaaatgctg


961
ctcaagatca aggagtcgct cgagctcatg cagtatctcc ctcagcacac gatcgagacg


1021
tacaggcagc agcagcagca gcagcaccaa cacctacttc agaaacagac ctcgatgcag


1081
tctcagtctt catacggtaa cagctcacca cctctgaaca aaatgaacag catgaacaag


1141
ctgccgtctg tgagccagct tatcaaccca cagcagcgca acgccctgac tcccaccacc


1201
atgcctgagg gcatgggagc caacattcct atgatgggca ctcacatgcc aatggctgga


1261
gacatgaatg gactcagccc cacccaagct cttcctcctc cactctccat gccctccacc


1321
tcccactgca cccccccacc tccgtaccca acagactgca gcattgtcag tttcttagca


1381
aggttgggct gttcatcatg tctggactat ttcacgaccc aggggctgac caccatctat


1441
cagattgagc attactccat ggatgatttg gcaagtctga agatccctga gcagttccga


1501
catgccatct ggaaggggat cctggaccac aggcagctgc atgacttctc ctcacctccg


1561
catctcctga gaacccccag tggtgcctct acagtcagtg tgggctccag tgagacccgt


1621
ggagaacgtg tgattgatgc cgtgcgcttt actctccgcc agaccatctc tttcccaccc


1681
cgtgatgagt ggaacgattt caactttgac atggattccc gtcgcaacaa gcagcagcgc


1741
atcaaagagg aaggagaatg aacgtccgtc gccgggttct tcctgttttc ttcctcctcc


1801
cagctcccac agggcacgcc tgcttgatcc tcaaagcctt ctcgctagct ctcctcctcc


1861
tccttctcag tctggtttct aaagggacgg agaattaaga ggctacctgt tacctaaagt


1921
ctgacctgtc acctgattct gatcctggct ttaagccttc aatactcttg cttgcaagat


1981
gcgttgacat tgctagatag acgttagcag agaagcagtg ggtctctcta agcactggag


2041
atcgctcatt gacttttata aagcattttc agccttatag tctaagacta tatatataaa


2101
tatataaata tacaatatat atttcgggtg ggggtattga gtattgttta aatgtaattt


2161
aatggaaatc gagttgcact tatcaacctt ctttggaatt tgcttgtttt ggttggctga


2221
tctgtacccc tttctcaggg gtatcatgta tggtgacaga tatttagagt tgaatggtct


2281
atgtgagtaa cagtgatata taggtcctct cctttctttg gatgattgcc gtttagcaca


2341
tcaaacctgt ggatgcgtcc agtctgttta ccattgctcc ttatgaggta aaactgcata


2401
tactgtcagt ctattttatg ttactggtgt ccattccagt taggctggtt cactctgtgg


2461
ccattccaag caaaatttta tgtttgcttt gtcacacact agaagacagg gcatcatctc


2521
ttgcttttgt ttgagaatga ggagtacttt tttttttttc tggaaaatct taaatggtcc


2581
aaatcagcca ttccaaatgg ctgatgaaat gtagccaata tagcagttag ctctctaaaa


2641
tttaagaccc aacaccctcg tatttattag taaaacaaaa atgaaacatt tgctgtcatt


2701
agagtagcct taaaattaaa tttcaatacc agattgactg agtaaactat gcattcaatg


2761
ttgttgtgag aattggggct aattagtcag gatgattgga atttgtgtag ttttttatgg


2821
tgagttgcaa tatctattta ggaaggttca ggaataataa gaatgactca gaaatactca


2881
atctccgtga caacagaaag caatctcacc aaactctgaa tttaaacccc ttttgaaaca


2941
tggagtgagg cttgggaaat gtacctttta aagactttcc tatctataag acactgcatg


3001
caggggcaag tttaatctct catcaaggtg gaaaataaga atagtagctc ggaaactaca


3061
aacttgctag tgtagctttc acatggcatg agctcaacta ttgttatttt cctctttatc


3121
atcaaagctc cattgctgta gaaagcagag gtgaagaccc agttttccac ctgacacttt


3181
ccgggcaagg catagaccaa gaactgtcta caaaaccagg gcaaagctct tcagtgaagc


3241
tgtttaattc acatggagaa acacttgttt cccactttgg gaaagcatgc aacagtgttc


3301
cccctagatg ttttggaaac attttgagtc aaatatattt ttcccagact aaaccaggct


3361
aatgagctct acaatcctcc tgcacatttt ggtaaagggc tgtcattgca caggagctcc


3421
catttttatc ttaaagtgca aatgggctaa tacgcctacg aaatgtaatg tatgggtttt


3481
gccagaaaat agtatattgt gtacacgtgt ctgtgtgtga gtgtgagagt gtgtgtgtgt


3541
gtgtgtgtgt gtgtgtgtgt gaaattgcat actatgctgg ttttgtttgt tactctttct


3601
cttggggata gttgggtttt ccagaaccac agacgaaact tttttttgtt gctgttttta


3661
tatttttgca gaaacaccat ttagtgagaa ttcaatgtca aattagacat gacaccttaa


3721
ttgtaagaag gggggagagg gaaagttggt tttttttaat tttttaaaat tttgtatact


3781
aaagagaatg agtccttaat ttcaacattc tgttgcattt aaataatgat aagcatcatt


3841
aacttctgta acaacttccc agcttggcaa attcaatgca tggagaacaa agctgggcct


3901
tagccatgtt agggagaaaa atggcttctt gggggttgtg agcatttggg ttgctttagc


3961
accgttgagg tggcacaggg gactcctgag gcatttcagc actacttacg tagcactagg


4021
gactcggaaa ttcctgtact gtagctaatg attttggcgt tcaccattag cagtagatag


4081
gccgtttctc tcctcacacc agtgttaagc gtgtgagtag ccagagctgt ggggaagagc


4141
atggagaaca gacgtctgct ggatgcctct caccggagaa tgagattcct tcgcgtggtg


4201
gtgaagtagg ataggaagca ggagtctcct tgttagtcca gttagctatt gttttcttga


4261
tattcccccc caaaacattg actatgagag atatgtgggg cttttttatt tttataattg


4321
tacaaaatta aacaaatatg aaatgtttta tatactttat taatgttttt tttcaaaagg


4381
tactttctta tagacatgat ccttttttta caggttcagt tgcttgtccc ttggtatttt


4441
tgtgttatgg gctatggtga gcctgaggca aatctataag ccatttttgt ttgccaggac


4501
atgcaataaa atttaaaaat aaatgaaaat acactgaaaa aaaaaaaaaa aaaaaaaaaa


4561
aa










SEQ ID NO: 66 Rat p63 Isoform D Amino Acid Sequence (NP_001120814.1)








1
mlylesnaqt qfsepqytnl gllngmdqqi qngssstspy ntdhaqnsvt apspyaqpss


61
tfdalspspa ipsntdypgp hsfdvsfqqs staksatwty stelkklycq iaktcpiqik


121
vmtpppqgav irampvykka ehvtevvkrc pnhelsrefn egqiappshl irvegnshaq


181
yvedpitgrq svlvpyeppq vgtefttvly nfmcnsscvg gmnrrpilii vtletrdgqv


241
lgrrcfeari cacpgrdrka dedsirkqqv sdsakngdgt krpfrqnthg iqmtsikkrr


301
spddellylp vrgretyeml lkikeslelm qylpqhtiet yrqqqqqqhq hllqkqtsmq


361
sqssygnssp plnkmnsmnk lpsysqlinp qqrnaltptt mpegmganip mmgthmpmag


421
dmnglsptqa lppplsmpst shctppppyp tdcsivsfla rlgcsscldy fttqglttiy


481
qiehysmddl aslkipeqfr haiwkgildh rqlhdfsspp hllrtpsgas tvsvgssetr


541
gervidavrf tlrqtisfpp rdewndfnfd mdsrrnkqqr ikeege










SEQ ID NO: 67 Rat p63 transcript variant 5 Sequence (NM_001127343.1; CDS: 1-


1386)








1
atgttgtacc tggaaagcaa tgcccagact caatttagtg agccacagta cacgaacctg


61
gggctcctga acggcatgga ccagcagatt cagaacggct cctcatctac cagcccctat


121
aacacagacc atgcacagaa cagcgtgacg gcaccctcgc cctatgcaca gcccagctca


181
accttcgatg ccctttctcc atcccctgcc attccctcca acacagatta cccaggccca


241
cacagcttcg atgtgtcctt ccagcagtca agcaccgcca agtcagctac ctggacgtat


301
tccaccgaac tgaagaaact ctactgccag attgcaaaga cctgccccat ccagatcaag


361
gtgatgaccc cacccccaca gggcgccgtc attcgtgcca tgcctgtcta caagaaagcc


421
gagcatgtca ccgaggttgt gaaacgatgt cctaaccacg agctgagccg cgagttcaat


481
gagggacaga ttgcccctcc cagtcatctg attcgagtag aagggaacag ccatgcccag


541
tatgtagaag atcctatcac aggaaggcag agcgtgctgg tcccttatga gccaccacag


601
gttggcactg aattcacaac agtcctgtac aatttcatgt gcaacagcag ctgtgtcgga


661
ggaatgaacc gccgtccaat tttaatcatc gttactctgg aaaccagaga tgggcaagtc


721
ctgggccgac gttgctttga ggcccggatc tgcgcttgcc caggaagaga ccggaaggcc


781
gatgaagaca gcatcagaaa gcagcaagta tcagacagcg caaagaacgg cgatggtacg


841
aagcgccctt tccgtcagaa tacccacgga atccagatga cttccatcaa gaaacggaga


901
tccccagatg atgagctgct gtacctacca gtgagaggcc gtgagactta tgaaatgctg


961
ctcaagatca aggagtcgct cgagctcatg cagtatctcc ctcagcacac gatcgagacg


1021
tacaggcagc agcagcagca gcagcaccaa cacctacttc agaaacagac ctcgatgcag


1081
tctcagtctt catacggtaa cagctcacca cctctgaaca aaatgaacag catgaacaag


1141
ctgccgtctg tgagccagct tatcaaccca cagcagcgca acgccctgac tcccaccacc


1201
atgcctgagg gcatgggagc caacattcct atgatgggca ctcacatgcc aatggctgga


1261
gacatgaatg gactcagccc cacccaagct cttcctcctc cactctccat gccctccacc


1321
tcccactgca cccccccacc tccgtaccca acagactgca gcattgtcag gatttggcaa


1381
gtctgaagat ccctgagcag ttccgacatg ccatctggaa ggggatcctg gaccacaggc


1441
agctgcatga cttctcctca cctccgcatc tcctgagaac ccccagtggt gcctctacag


1501
tcagtgtggg ctccagtgag acccgtggag aacgtgtgat tgatgccgtg cgctttactc


1561
tccgccagac catctctttc ccaccccgtg atgagtggaa cgatttcaac tttgacatgg


1621
attcccgtcg caacaagcag cagcgcatca aagaggaagg agaatgaacg tccgtcgccg


1681
ggttcttcct gttttcttcc tcctcccagc tcccacaggg cacgcctgct tgatcctcaa


1741
agccttctcg ctagctctcc tcctcctcct tctcagtctg gtttctaaag ggacggagaa


1801
ttaagaggct acctgttacc taaagtctga cctgtcacct gattctgatc ctggctttaa


1861
gccttcaata ctcttgcttg caagatgcgt tgacattgct agatagacgt tagcagagaa


1921
gcagtgggtc tctctaagca ctggagatcg ctcattgact tttataaagc attttcagcc


1981
ttatagtcta agactatata tataaatata taaatataca atatatattt cgggtggggg


2041
tattgagtat tgtttaaatg taatttaatg gaaatcgagt tgcacttatc aaccttcttt


2101
ggaatttgct tgttttggtt ggctgatctg tacccctttc tcaggggtat catgtatggt


2161
gacagatatt tagagttgaa tggtctatgt gagtaacagt gatatatagg tcctctcctt


2221
tctttggatg attgccgttt agcacatcaa acctgtggat gcgtccagtc tgtttaccat


2281
tgctccttat gaggtaaaac tgcatatact gtcagtctat tttatgttac tggtgtccat


2341
tccagttagg ctggttcact ctgtggccat tccaagcaaa attttatgtt tgctttgtca


2401
cacactagaa gacagggcat catctcttgc ttttgtttga gaatgaggag tacttttttt


2461
tttttctgga aaatcttaaa tggtccaaat cagccattcc aaatggctga tgaaatgtag


2521
ccaatatagc agttagctct ctaaaattta agacccaaca ccctcgtatt tattagtaaa


2581
acaaaaatga aacatttgct gtcattagag tagccttaaa attaaatttc aataccagat


2641
tgactgagta aactatgcat tcaatgttgt tgtgagaatt ggggctaatt agtcaggatg


2701
attggaattt gtgtagtttt ttatggtgag ttgcaatatc tatttaggaa ggttcaggaa


2761
taataagaat gactcagaaa tactcaatct ccgtgacaac agaaagcaat ctcaccaaac


2821
tctgaattta aacccctttt gaaacatgga gtgaggcttg ggaaatgtac cttttaaaga


2881
ctttcctatc tataagacac tgcatgcagg ggcaagttta atctctcatc aaggtggaaa


2941
ataagaatag tagctcggaa actacaaact tgctagtgta gctttcacat ggcatgagct


3001
caactattgt tattttcctc tttatcatca aagctccatt gctgtagaaa gcagaggtga


3061
agacccagtt ttccacctga cactttccgg gcaaggcata gaccaagaac tgtctacaaa


3121
accagggcaa agctcttcag tgaagctgtt taattcacat ggagaaacac ttgtttccca


3181
ctttgggaaa gcatgcaaca gtgttccccc tagatgtttt ggaaacattt tgagtcaaat


3241
atatttttcc cagactaaac caggctaatg agctctacaa tcctcctgca cattttggta


3301
aagggctgtc attgcacagg agctcccatt tttatcttaa agtgcaaatg ggctaatacg


3361
cctacgaaat gtaatgtatg ggttttgcca gaaaatagta tattgtgtac acgtgtctgt


3421
gtgtgagtgt gagagtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgaaa ttgcatacta


3481
tgctggtttt gtttgttact ctttctcttg gggatagttg ggttttccag aaccacagac


3541
gaaacttttt tttgttgctg tttttatatt tttgcagaaa caccatttag tgagaattca


3601
atgtcaaatt agacatgaca ccttaattgt aagaaggggg gagagggaaa gttggttttt


3661
tttaattttt taaaattttg tatactaaag agaatgagtc cttaatttca acattctgtt


3721
gcatttaaat aatgataagc atcattaact tctgtaacaa cttcccagct tggcaaattc


3781
aatgcatgga gaacaaagct gggccttagc catgttaggg agaaaaatgg cttcttgggg


3841
gttgtgagca tttgggttgc tttagcaccg ttgaggtggc acaggggact cctgaggcat


3901
ttcagcacta cttacgtagc actagggact cggaaattcc tgtactgtag ctaatgattt


3961
tggcgttcac cattagcagt agataggccg tttctctcct cacaccagtg ttaagcgtgt


4021
gagtagccag agctgtgggg aagagcatgg agaacagacg tctgctggat gcctctcacc


4081
ggagaatgag attccttcgc gtggtggtga agtaggatag gaagcaggag tctccttgtt


4141
agtccagtta gctattgttt tcttgatatt cccccccaaa acattgacta tgagagatat


4201
gtggggcttt tttattttta taattgtaca aaattaaaca aatatgaaat gttttatata


4261
ctttattaat gttttttttc aaaaggtact ttcttataga catgatcctt tttttacagg


4321
ttcagttgct tgtcccttgg tatttttgtg ttatgggcta tggtgagcct gaggcaaatc


4381
tataagccat ttttgtttgc caggacatgc aataaaattt aaaaataaat gaaaatacac


4441
tgaaaaaaaa aaaaaaaaaa aaaaaaaa










SEQ ID NO: 68 Rat p63 Isoform 5 Amino Acid Sequence (NP_001120815.1)








1
mlylesnaqt qfsepqytnl gllngmdqqi qngssstspy ntdhaqnsvt apspyaqpss


61
tfdalspspa ipsntdypgp hsfdvsfqqs staksatwty stelkklycq iaktcpiqik


121
vmtpppqgav irampvykka ehvtevvkrc pnhelsrefn egqiappshl irvegnshaq


181
yvedpitgrq svlvpyeppq vgtefttvly nfmcnsscvg gmnrrpilii vtletrdgqv


241
lgrrcfeari cacpgrdrka dedsirkqqv sdsakngdgt krpfrqnthg iqmtsikkrr


301
spddellylp vrgretyeml lkikeslelm qylpqhtiet yrqqqqqqhq hllqkqtsmq


361
sqssygnssp plnkmnsmnk lpsysqlinp qqrnaltptt mpegmganip mmgthmpmag


421
dmnglsptqa lppplsmpst shctppppyp tdcsivriwq v










SEQ ID NO: 69 Rat p63 transcript variant 6 Sequence (NM_001127344.1; CDS: 1-


1182)








1
atgttgtacc tggaaagcaa tgcccagact caatttagtg agccacagta cacgaacctg


61
gggctcctga acggcatgga ccagcagatt cagaacggct cctcatctac cagcccctat


121
aacacagacc atgcacagaa cagcgtgacg gcaccctcgc cctatgcaca gcccagctca


181
accttcgatg ccctttctcc atcccctgcc attccctcca acacagatta cccaggccca


241
cacagcttcg atgtgtcctt ccagcagtca agcaccgcca agtcagctac ctggacgtat


301
tccaccgaac tgaagaaact ctactgccag attgcaaaga cctgccccat ccagatcaag


361
gtgatgaccc cacccccaca gggcgccgtc attcgtgcca tgcctgtcta caagaaagcc


421
gagcatgtca ccgaggttgt gaaacgatgt cctaaccacg agctgagccg cgagttcaat


481
gagggacaga ttgcccctcc cagtcatctg attcgagtag aagggaacag ccatgcccag


541
tatgtagaag atcctatcac aggaaggcag agcgtgctgg tcccttatga gccaccacag


601
gttggcactg aattcacaac agtcctgtac aatttcatgt gcaacagcag ctgtgtcgga


661
ggaatgaacc gccgtccaat tttaatcatc gttactctgg aaaccagaga tgggcaagtc


721
ctgggccgac gttgctttga ggcccggatc tgcgcttgcc caggaagaga ccggaaggcc


781
gatgaagaca gcatcagaaa gcagcaagta tcagacagcg caaagaacgg cgatggtacg


841
aagcgccctt tccgtcagaa tacccacgga atccagatga cttccatcaa gaaacggaga


901
tccccagatg atgagctgct gtacctacca gtgagaggcc gtgagactta tgaaatgctg


961
ctcaagatca aggagtcgct cgagctcatg cagtatctcc ctcagcacac gatcgagacg


1021
tacaggcagc agcagcagca gcagcaccaa cacctacttc agaaacatct cctttcagcc


1081
tgcttcagga atgagcttgt ggagtcccgg agagaagctc cgacacagtc tgacgtcttc


1141
tttagacatt ccaacccccc aaaccactca gtgtacccat ag










SEQ ID NO: 70 Rat p63 Isoform 6 Amino Acid Sequence (NP_001120816.1)








1
mlylesnaqt qfsepqytnl gllngmdqqi qngssstspy ntdhaqnsvt apspyaqpss


61
tfdalspspa ipsntdypgp hsfdvsfqqs staksatwty stelkklycq iaktcpiqik


121
vmtpppqgav irampvykka ehvtevvkrc pnhelsrefn egqiappshl irvegnshaq


181
yvedpitgrq svlvpyeppq vgtefttvly nfmcnsscvg gmnrrpilii vtletrdgqv


241
lgrrcfeari cacpgrdrka dedsirkqqv sdsakngdgt krpfrqnthg iqmtsikkrr


301
spddellylp vrgretyeml lkikeslelm qylpqhtiet yrqqqqqqhq hllqkhilsa


361
cfrnelvesr reaptqsdvf frhsnppnhs vyp










SEQ ID NO: 71 Human TP53 Isoform a Amino Acid Sequence (NP_000537.3;


NP_001119584.1)








1
meepqsdpsv epplsqetfs dlwkllpenn vlsplpsqam ddlmlspddi eqwftedpgp


61
deaprmpeaa ppvapapaap tpaapapaps wplsssvpsq ktyqgsygfr lgflhsgtak


121
svtctyspal nkmfcqlakt cpvqlwvdst pppgtrvram aiykqsqhmt evvrrcphhe


181
rcsdsdglap pqhlirvegn lrveylddrn tfrhsvvvpy eppevgsdct tihynymcns


241
scmggmnrrp iltiitleds sgnllgrnsf evrvcacpgr drrteeenlr kkgephhelp


301
pgstkralpn ntssspqpkk kpldgeyftl qirgrerfem frelnealel kdaqagkepg


361
gsrahsshlk skkgqstsrh kklmfktegp dsd










SEQ ID NO: 72 Human TP53 transcript variant 1 cDNA sequence (NM_000546.5;


CDS: 203-1384)








1
gatgggattg gggttttccc ctcccatgtg ctcaagactg gcgctaaaag ttttgagctt


61
ctcaaaagtc tagagccacc gtccagggag caggtagctg ctgggctccg gggacacttt


121
gcgttcgggc tgggagcgtg ctttccacga cggtgacacg cttccctgga ttggcagcca


181
gactgccttc cgggtcactg ccatggagga gccgcagtca gatcctagcg tcgagccccc


241
tctgagtcag gaaacatttt cagacctatg gaaactactt cctgaaaaca acgttctgtc


301
ccccttgccg tcccaagcaa tggatgattt gatgctgtcc ccggacgata ttgaacaatg


361
gttcactgaa gacccaggtc cagatgaagc tcccagaatg ccagaggctg ctccccccgt


421
ggcccctgca ccagcagctc ctacaccggc ggcccctgca ccagccccct cctggcccct


481
gtcatcttct gtcccttccc agaaaaccta ccagggcagc tacggtttcc gtctgggctt


541
cttgcattct gggacagcca agtctgtgac ttgcacgtac tcccctgccc tcaacaagat


601
gttttgccaa ctggccaaga cctgccctgt gcagctgtgg gttgattcca cacccccgcc


661
cggcacccgc gtccgcgcca tggccatcta caagcagtca cagcacatga cggaggttgt


721
gaggcgctgc ccccaccatg agcgctgctc agatagcgat ggtctggccc ctcctcagca


781
tcttatccga gtggaaggaa atttgcgtgt ggagtatttg gatgacagaa acacttttcg


841
acatagtgtg gtggtgccct atgagccgcc tgaggttggc tctgactgta ccaccatcca


901
ctacaactac atgtgtaaca gttcctgcat gggcggcatg aaccggaggc ccatcctcac


961
catcatcaca ctggaagact ccagtggtaa tctactggga cggaacagct ttgaggtgcg


1021
tgtttgtgcc tgtcctggga gagaccggcg cacagaggaa gagaatctcc gcaagaaagg


1081
ggagcctcac cacgagctgc ccccagggag cactaagcga gcactgccca acaacaccag


1141
ctcctctccc cagccaaaga agaaaccact ggatggagaa tatttcaccc ttcagatccg


1201
tgggcgtgag cgcttcgaga tgttccgaga gctgaatgag gccttggaac tcaaggatgc


1261
ccaggctggg aaggagccag gggggagcag ggctcactcc agccacctga agtccaaaaa


1321
gggtcagtct acctcccgcc ataaaaaact catgttcaag acagaagggc ctgactcaga


1381
ctgacattct ccacttcttg ttccccactg acagcctccc acccccatct ctccctcccc


1441
tgccattttg ggttttgggt ctttgaaccc ttgcttgcaa taggtgtgcg tcagaagcac


1501
ccaggacttc catttgcttt gtcccggggc tccactgaac aagttggcct gcactggtgt


1561
tttgttgtgg ggaggaggat ggggagtagg acataccagc ttagatttta aggtttttac


1621
tgtgagggat gtttgggaga tgtaagaaat gttcttgcag ttaagggtta gtttacaatc


1681
agccacattc taggtagggg cccacttcac cgtactaacc agggaagctg tccctcactg


1741
ttgaattttc tctaacttca aggcccatat ctgtgaaatg ctggcatttg cacctacctc


1801
acagagtgca ttgtgagggt taatgaaata atgtacatct ggccttgaaa ccacctttta


1861
ttacatgggg tctagaactt gacccccttg agggtgcttg ttccctctcc ctgttggtcg


1921
gtgggttggt agtttctaca gttgggcagc tggttaggta gagggagttg tcaagtctct


1981
gctggcccag ccaaaccctg tctgacaacc tcttggtgaa ccttagtacc taaaaggaaa


2041
tctcacccca tcccacaccc tggaggattt catctcttgt atatgatgat ctggatccac


2101
caagacttgt tttatgctca gggtcaattt cttttttctt tttttttttt ttttttcttt


2161
ttctttgaga ctgggtctcg ctttgttgcc caggctggag tggagtggcg tgatcttggc


2221
ttactgcagc ctttgcctcc ccggctcgag cagtcctgcc tcagcctccg gagtagctgg


2281
gaccacaggt tcatgccacc atggccagcc aacttttgca tgttttgtag agatggggtc


2341
tcacagtgtt gcccaggctg gtctcaaact cctgggctca ggcgatccac ctgtctcagc


2401
ctcccagagt gctgggatta caattgtgag ccaccacgtc cagctggaag ggtcaacatc


2461
ttttacattc tgcaagcaca tctgcatttt caccccaccc ttcccctcct tctccctttt


2521
tatatcccat ttttatatcg atctcttatt ttacaataaa actttgctgc cacctgtgtg


2581
tctgaggggt g










SEQ ID NO: 73 Human TP53 transcript variant 2 cDNA sequence


(NM_001126112.2; CDS: 200-1381)








1
gatgggattg gggttttccc ctcccatgtg ctcaagactg gcgctaaaag ttttgagctt


61
ctcaaaagtc tagagccacc gtccagggag caggtagctg ctgggctccg gggacacttt


121
gcgttcgggc tgggagcgtg ctttccacga cggtgacacg cttccctgga ttggccagac


181
tgccttccgg gtcactgcca tggaggagcc gcagtcagat cctagcgtcg agccccctct


241
gagtcaggaa acattttcag acctatggaa actacttcct gaaaacaacg ttctgtcccc


301
cttgccgtcc caagcaatgg atgatttgat gctgtccccg gacgatattg aacaatggtt


361
cactgaagac ccaggtccag atgaagctcc cagaatgcca gaggctgctc cccccgtggc


421
ccctgcacca gcagctccta caccggcggc ccctgcacca gccccctcct ggcccctgtc


481
atcttctgtc ccttcccaga aaacctacca gggcagctac ggtttccgtc tgggcttctt


541
gcattctggg acagccaagt ctgtgacttg cacgtactcc cctgccctca acaagatgtt


601
ttgccaactg gccaagacct gccctgtgca gctgtgggtt gattccacac ccccgcccgg


661
cacccgcgtc cgcgccatgg ccatctacaa gcagtcacag cacatgacgg aggttgtgag


721
gcgctgcccc caccatgagc gctgctcaga tagcgatggt ctggcccctc ctcagcatct


781
tatccgagtg gaaggaaatt tgcgtgtgga gtatttggat gacagaaaca cttttcgaca


841
tagtgtggtg gtgccctatg agccgcctga ggttggctct gactgtacca ccatccacta


901
caactacatg tgtaacagtt cctgcatggg cggcatgaac cggaggccca tcctcaccat


961
catcacactg gaagactcca gtggtaatct actgggacgg aacagctttg aggtgcgtgt


1021
ttgtgcctgt cctgggagag accggcgcac agaggaagag aatctccgca agaaagggga


1081
gcctcaccac gagctgcccc cagggagcac taagcgagca ctgcccaaca acaccagctc


1141
ctctccccag ccaaagaaga aaccactgga tggagaatat ttcacccttc agatccgtgg


1201
gcgtgagcgc ttcgagatgt tccgagagct gaatgaggcc ttggaactca aggatgccca


1261
ggctgggaag gagccagggg ggagcagggc tcactccagc cacctgaagt ccaaaaaggg


1321
tcagtctacc tcccgccata aaaaactcat gttcaagaca gaagggcctg actcagactg


1381
acattctcca cttcttgttc cccactgaca gcctcccacc cccatctctc cctcccctgc


1441
cattttgggt tttgggtctt tgaacccttg cttgcaatag gtgtgcgtca gaagcaccca


1501
ggacttccat ttgctttgtc ccggggctcc actgaacaag ttggcctgca ctggtgtttt


1561
gttgtgggga ggaggatggg gagtaggaca taccagctta gattttaagg tttttactgt


1621
gagggatgtt tgggagatgt aagaaatgtt cttgcagtta agggttagtt tacaatcagc


1681
cacattctag gtaggggccc acttcaccgt actaaccagg gaagctgtcc ctcactgttg


1741
aattttctct aacttcaagg cccatatctg tgaaatgctg gcatttgcac ctacctcaca


1801
gagtgcattg tgagggttaa tgaaataatg tacatctggc cttgaaacca ccttttatta


1861
catggggtct agaacttgac ccccttgagg gtgcttgttc cctctccctg ttggtcggtg


1921
ggttggtagt ttctacagtt gggcagctgg ttaggtagag ggagttgtca agtctctgct


1981
ggcccagcca aaccctgtct gacaacctct tggtgaacct tagtacctaa aaggaaatct


2041
caccccatcc cacaccctgg aggatttcat ctcttgtata tgatgatctg gatccaccaa


2101
gacttgtttt atgctcaggg tcaatttctt ttttcttttt tttttttttt tttctttttc


2161
tttgagactg ggtctcgctt tgttgcccag gctggagtgg agtggcgtga tcttggctta


2221
ctgcagcctt tgcctccccg gctcgagcag tcctgcctca gcctccggag tagctgggac


2281
cacaggttca tgccaccatg gccagccaac ttttgcatgt tttgtagaga tggggtctca


2341
cagtgttgcc caggctggtc tcaaactcct gggctcaggc gatccacctg tctcagcctc


2401
ccagagtgct gggattacaa ttgtgagcca ccacgtccag ctggaagggt caacatcttt


2461
tacattctgc aagcacatct gcattttcac cccacccttc ccctccttct ccctttttat


2521
atcccatttt tatatcgatc tcttatttta caataaaact ttgctgccac ctgtgtgtct


2581
gaggggtg










SEQ ID NO: 74 Human TP53 isoform b Amino Acid Sequence (NP_001119586.1)








1
meepqsdpsv epplsqetfs dlwkllpenn vlsplpsqam ddlmlspddi eqwftedpgp


61
deaprmpeaa ppvapapaap tpaapapaps wplsssvpsq ktyqgsygfr lgflhsgtak


121
svtctyspal nkmfcqlakt cpvqlwvdst pppgtrvram aiykqsqhmt evvrrcphhe


181
rcsdsdglap pqhlirvegn lrveylddrn tfrhsvvvpy eppevgsdct tihynymcns


241
scmggmnrrp iltiitleds sgnllgrnsf evrvcacpgr drrteeenlr kkgephhelp


301
pgstkralpn ntssspqpkk kpldgeyftl qdqtsfqken c










SEQ ID NO: 75 Human TP53 transcript variant 3 cDNA sequence


(NM_001126114.2; CDS: 203-1228)








1
gatgggattg gggttttccc ctcccatgtg ctcaagactg gcgctaaaag ttttgagctt


61
ctcaaaagtc tagagccacc gtccagggag caggtagctg ctgggctccg gggacacttt


121
gcgttcgggc tgggagcgtg ctttccacga cggtgacacg cttccctgga ttggcagcca


181
gactgccttc cgggtcactg ccatggagga gccgcagtca gatcctagcg tcgagccccc


241
tctgagtcag gaaacatttt cagacctatg gaaactactt cctgaaaaca acgttctgtc


301
ccccttgccg tcccaagcaa tggatgattt gatgctgtcc ccggacgata ttgaacaatg


361
gttcactgaa gacccaggtc cagatgaagc tcccagaatg ccagaggctg ctccccccgt


421
ggcccctgca ccagcagctc ctacaccggc ggcccctgca ccagccccct cctggcccct


481
gtcatcttct gtcccttccc agaaaaccta ccagggcagc tacggtttcc gtctgggctt


541
cttgcattct gggacagcca agtctgtgac ttgcacgtac tcccctgccc tcaacaagat


601
gttttgccaa ctggccaaga cctgccctgt gcagctgtgg gttgattcca cacccccgcc


661
cggcacccgc gtccgcgcca tggccatcta caagcagtca cagcacatga cggaggttgt


721
gaggcgctgc ccccaccatg agcgctgctc agatagcgat ggtctggccc ctcctcagca


781
tcttatccga gtggaaggaa atttgcgtgt ggagtatttg gatgacagaa acacttttcg


841
acatagtgtg gtggtgccct atgagccgcc tgaggttggc tctgactgta ccaccatcca


901
ctacaactac atgtgtaaca gttcctgcat gggcggcatg aaccggaggc ccatcctcac


961
catcatcaca ctggaagact ccagtggtaa tctactggga cggaacagct ttgaggtgcg


1021
tgtttgtgcc tgtcctggga gagaccggcg cacagaggaa gagaatctcc gcaagaaagg


1081
ggagcctcac cacgagctgc ccccagggag cactaagcga gcactgccca acaacaccag


1141
ctcctctccc cagccaaaga agaaaccact ggatggagaa tatttcaccc ttcaggacca


1201
gaccagcttt caaaaagaaa attgttaaag agagcatgaa aatggttcta tgactttgcc


1261
tgatacagat gctacttgac ttacgatggt gttacttcct gataaactcg tcgtaagttg


1321
aaaatattat ccgtgggcgt gagcgcttcg agatgttccg agagctgaat gaggccttgg


1381
aactcaagga tgcccaggct gggaaggagc caggggggag cagggctcac tccagccacc


1441
tgaagtccaa aaagggtcag tctacctccc gccataaaaa actcatgttc aagacagaag


1501
ggcctgactc agactgacat tctccacttc ttgttcccca ctgacagcct cccaccccca


1561
tctctccctc ccctgccatt ttgggttttg ggtctttgaa cccttgcttg caataggtgt


1621
gcgtcagaag cacccaggac ttccatttgc tttgtcccgg ggctccactg aacaagttgg


1681
cctgcactgg tgttttgttg tggggaggag gatggggagt aggacatacc agcttagatt


1741
ttaaggtttt tactgtgagg gatgtttggg agatgtaaga aatgttcttg cagttaaggg


1801
ttagtttaca atcagccaca ttctaggtag gggcccactt caccgtacta accagggaag


1861
ctgtccctca ctgttgaatt ttctctaact tcaaggccca tatctgtgaa atgctggcat


1921
ttgcacctac ctcacagagt gcattgtgag ggttaatgaa ataatgtaca tctggccttg


1981
aaaccacctt ttattacatg gggtctagaa cttgaccccc ttgagggtgc ttgttccctc


2041
tccctgttgg tcggtgggtt ggtagtttct acagttgggc agctggttag gtagagggag


2101
ttgtcaagtc tctgctggcc cagccaaacc ctgtctgaca acctcttggt gaaccttagt


2161
acctaaaagg aaatctcacc ccatcccaca ccctggagga tttcatctct tgtatatgat


2221
gatctggatc caccaagact tgttttatgc tcagggtcaa tttctttttt cttttttttt


2281
tttttttttc tttttctttg agactgggtc tcgctttgtt gcccaggctg gagtggagtg


2341
gcgtgatctt ggcttactgc agcctttgcc tccccggctc gagcagtcct gcctcagcct


2401
ccggagtagc tgggaccaca ggttcatgcc accatggcca gccaactttt gcatgttttg


2461
tagagatggg gtctcacagt gttgcccagg ctggtctcaa actcctgggc tcaggcgatc


2521
cacctgtctc agcctcccag agtgctggga ttacaattgt gagccaccac gtccagctgg


2581
aagggtcaac atcttttaca ttctgcaagc acatctgcat tttcacccca cccttcccct


2641
ccttctccct ttttatatcc catttttata tcgatctctt attttacaat aaaactttgc


2701
tgccacctgt gtgtctgagg ggtg










SEQ ID NO: 76 Human TP53 isoform c Amino Acid Sequence (NP_001119585.1)








1
meepqsdpsv epplsqetfs dlwkllpenn vlsplpsqam ddlmlspddi eqwftedpgp


61
deaprmpeaa ppvapapaap tpaapapaps wplsssvpsq ktyqgsygfr lgflhsgtak


121
svtctyspal nkmfcqlakt cpvqlwvdst pppgtrvram aiykqsqhmt evvrrcphhe


181
rcsdsdglap pqhlirvegn lrveylddrn tfrhsvvvpy eppevgsdct tihynymcns


241
scmggmnrrp iltiitleds sgnllgrnsf evrvcacpgr drrteeenlr kkgephhelp


301
pgstkralpn ntssspqpkk kpldgeyftl qmlldlrwcy flinss










SEQ ID NO: 77 Human TP53 transcript variant 4 cDNA sequence


(NM_001126113.2; CDS: 203-1243)








1
gatgggattg gggttttccc ctcccatgtg ctcaagactg gcgctaaaag ttttgagctt


61
ctcaaaagtc tagagccacc gtccagggag caggtagctg ctgggctccg gggacacttt


121
gcgttcgggc tgggagcgtg ctttccacga cggtgacacg cttccctgga ttggcagcca


181
gactgccttc cgggtcactg ccatggagga gccgcagtca gatcctagcg tcgagccccc


241
tctgagtcag gaaacatttt cagacctatg gaaactactt cctgaaaaca acgttctgtc


301
ccccttgccg tcccaagcaa tggatgattt gatgctgtcc ccggacgata ttgaacaatg


361
gttcactgaa gacccaggtc cagatgaagc tcccagaatg ccagaggctg ctccccccgt


421
ggcccctgca ccagcagctc ctacaccggc ggcccctgca ccagccccct cctggcccct


481
gtcatcttct gtcccttccc agaaaaccta ccagggcagc tacggtttcc gtctgggctt


541
cttgcattct gggacagcca agtctgtgac ttgcacgtac tcccctgccc tcaacaagat


601
gttttgccaa ctggccaaga cctgccctgt gcagctgtgg gttgattcca cacccccgcc


661
cggcacccgc gtccgcgcca tggccatcta caagcagtca cagcacatga cggaggttgt


721
gaggcgctgc ccccaccatg agcgctgctc agatagcgat ggtctggccc ctcctcagca


781
tcttatccga gtggaaggaa atttgcgtgt ggagtatttg gatgacagaa acacttttcg


841
acatagtgtg gtggtgccct atgagccgcc tgaggttggc tctgactgta ccaccatcca


901
ctacaactac atgtgtaaca gttcctgcat gggcggcatg aaccggaggc ccatcctcac


961
catcatcaca ctggaagact ccagtggtaa tctactggga cggaacagct ttgaggtgcg


1021
tgtttgtgcc tgtcctggga gagaccggcg cacagaggaa gagaatctcc gcaagaaagg


1081
ggagcctcac cacgagctgc ccccagggag cactaagcga gcactgccca acaacaccag


1141
ctcctctccc cagccaaaga agaaaccact ggatggagaa tatttcaccc ttcagatgct


1201
acttgactta cgatggtgtt acttcctgat aaactcgtcg taagttgaaa atattatccg


1261
tgggcgtgag cgcttcgaga tgttccgaga gctgaatgag gccttggaac tcaaggatgc


1321
ccaggctggg aaggagccag gggggagcag ggctcactcc agccacctga agtccaaaaa


1381
gggtcagtct acctcccgcc ataaaaaact catgttcaag acagaagggc ctgactcaga


1441
ctgacattct ccacttcttg ttccccactg acagcctccc acccccatct ctccctcccc


1501
tgccattttg ggttttgggt ctttgaaccc ttgcttgcaa taggtgtgcg tcagaagcac


1561
ccaggacttc catttgcttt gtcccggggc tccactgaac aagttggcct gcactggtgt


1621
tttgttgtgg ggaggaggat ggggagtagg acataccagc ttagatttta aggtttttac


1681
tgtgagggat gtttgggaga tgtaagaaat gttcttgcag ttaagggtta gtttacaatc


1741
agccacattc taggtagggg cccacttcac cgtactaacc agggaagctg tccctcactg


1801
ttgaattttc tctaacttca aggcccatat ctgtgaaatg ctggcatttg cacctacctc


1861
acagagtgca ttgtgagggt taatgaaata atgtacatct ggccttgaaa ccacctttta


1921
ttacatgggg tctagaactt gacccccttg agggtgcttg ttccctctcc ctgttggtcg


1981
gtgggttggt agtttctaca gttgggcagc tggttaggta gagggagttg tcaagtctct


2041
gctggcccag ccaaaccctg tctgacaacc tcttggtgaa ccttagtacc taaaaggaaa


2101
tctcacccca tcccacaccc tggaggattt catctcttgt atatgatgat ctggatccac


2161
caagacttgt tttatgctca gggtcaattt cttttttctt tttttttttt ttttttcttt


2221
ttctttgaga ctgggtctcg ctttgttgcc caggctggag tggagtggcg tgatcttggc


2281
ttactgcagc ctttgcctcc ccggctcgag cagtcctgcc tcagcctccg gagtagctgg


2341
gaccacaggt tcatgccacc atggccagcc aacttttgca tgttttgtag agatggggtc


2401
tcacagtgtt gcccaggctg gtctcaaact cctgggctca ggcgatccac ctgtctcagc


2461
ctcccagagt gctgggatta caattgtgag ccaccacgtc cagctggaag ggtcaacatc


2521
ttttacattc tgcaagcaca tctgcatttt caccccaccc ttcccctcct tctccctttt


2581
tatatcccat ttttatatcg atctcttatt ttacaataaa actttgctgc cacctgtgtg


2641
tctgaggggt g










SEQ ID NO: 78 Human TP53 isoform d Amino Acid Sequence (NP_001119587.1)








1
mfcqlaktcp vqlwvdstpp pgtrvramai ykqsqhmtev vrrcphherc sdsdglappq


61
hlirvegnlr veylddrntf rhsvvvpyep pevgsdctti hynymcnssc mggmnrrpil


121
tiitledssg nllgrnsfev rvcacpgrdr rteeenlrkk gephhelppg stkralpnnt


181
ssspqpkkkp ldgeyftlqi rgrerfemfr elnealelkd aqagkepggs rahsshlksk


241
kgqstsrhkk lmfktegpds d










SEQ ID NO: 79 Human TP53 transcript variant 5 cDNA sequence


(NM_001126115.1 CDS: 279-1064)








1
tgaggccagg agatggaggc tgcagtgagc tgtgatcaca ccactgtgct ccagcctgag


61
tgacagagca agaccctatc tcaaaaaaaa aaaaaaaaaa gaaaagctcc tgaggtgtag


121
acgccaactc tctctagctc gctagtgggt tgcaggaggt gcttacgcat gtttgtttct


181
ttgctgccgt cttccagttg ctttatctgt tcacttgtgc cctgactttc aactctgtct


241
ccttcctctt cctacagtac tcccctgccc tcaacaagat gttttgccaa ctggccaaga


301
cctgccctgt gcagctgtgg gttgattcca cacccccgcc cggcacccgc gtccgcgcca


361
tggccatcta caagcagtca cagcacatga cggaggttgt gaggcgctgc ccccaccatg


421
agcgctgctc agatagcgat ggtctggccc ctcctcagca tcttatccga gtggaaggaa


481
atttgcgtgt ggagtatttg gatgacagaa acacttttcg acatagtgtg gtggtgccct


541
atgagccgcc tgaggttggc tctgactgta ccaccatcca ctacaactac atgtgtaaca


601
gttcctgcat gggcggcatg aaccggaggc ccatcctcac catcatcaca ctggaagact


661
ccagtggtaa tctactggga cggaacagct ttgaggtgcg tgtttgtgcc tgtcctggga


721
gagaccggcg cacagaggaa gagaatctcc gcaagaaagg ggagcctcac cacgagctgc


781
ccccagggag cactaagcga gcactgccca acaacaccag ctcctctccc cagccaaaga


841
agaaaccact ggatggagaa tatttcaccc ttcagatccg tgggcgtgag cgcttcgaga


901
tgttccgaga gctgaatgag gccttggaac tcaaggatgc ccaggctggg aaggagccag


961
gggggagcag ggctcactcc agccacctga agtccaaaaa gggtcagtct acctcccgcc


1021
ataaaaaact catgttcaag acagaagggc ctgactcaga ctgacattct ccacttcttg


1081
ttccccactg acagcctccc acccccatct ctccctcccc tgccattttg ggttttgggt


1141
ctttgaaccc ttgcttgcaa taggtgtgcg tcagaagcac ccaggacttc catttgcttt


1201
gtcccggggc tccactgaac aagttggcct gcactggtgt tttgttgtgg ggaggaggat


1261
ggggagtagg acataccagc ttagatttta aggtttttac tgtgagggat gtttgggaga


1321
tgtaagaaat gttcttgcag ttaagggtta gtttacaatc agccacattc taggtagggg


1381
cccacttcac cgtactaacc agggaagctg tccctcactg ttgaattttc tctaacttca


1441
aggcccatat ctgtgaaatg ctggcatttg cacctacctc acagagtgca ttgtgagggt


1501
taatgaaata atgtacatct ggccttgaaa ccacctttta ttacatgggg tctagaactt


1561
gacccccttg agggtgcttg ttccctctcc ctgttggtcg gtgggttggt agtttctaca


1621
gttgggcagc tggttaggta gagggagttg tcaagtctct gctggcccag ccaaaccctg


1681
tctgacaacc tcttggtgaa ccttagtacc taaaaggaaa tctcacccca tcccacaccc


1741
tggaggattt catctcttgt atatgatgat ctggatccac caagacttgt tttatgctca


1801
gggtcaattt cttttttctt tttttttttt ttttttcttt ttctttgaga ctgggtctcg


1861
ctttgttgcc caggctggag tggagtggcg tgatcttggc ttactgcagc ctttgcctcc


1921
ccggctcgag cagtcctgcc tcagcctccg gagtagctgg gaccacaggt tcatgccacc


1981
atggccagcc aacttttgca tgttttgtag agatggggtc tcacagtgtt gcccaggctg


2041
gtctcaaact cctgggctca ggcgatccac ctgtctcagc ctcccagagt gctgggatta


2101
caattgtgag ccaccacgtc cagctggaag ggtcaacatc ttttacattc tgcaagcaca


2161
tctgcatttt caccccaccc ttcccctcct tctccctttt tatatcccat ttttatatcg


2221
atctcttatt ttacaataaa actttgctgc cacctgtgtg tctgaggggt g










SEQ ID NO: 80 Human TP53 isoform e Amino Acid Sequence (NP_001119588.1)








1
mfcqlaktcp vqlwvdstpp pgtrvramai ykqsqhmtev vrrcphherc sdsdglappq


61
hlirvegnlr veylddrntf rhsvvvpyep pevgsdctti hynymcnssc mggmnrrpil


121
tiitledssg nllgrnsfev rvcacpgrdr rteeenlrkk gephhelppg stkralpnnt


181
ssspqpkkkp ldgeyftlqd qtsfqkenc










SEQ ID NO: 81 Human TP53 transcript variant 6 cDNA sequence


(NM_001126116.1; CDS: 279-908)








1
tgaggccagg agatggaggc tgcagtgagc tgtgatcaca ccactgtgct ccagcctgag


61
tgacagagca agaccctatc tcaaaaaaaa aaaaaaaaaa gaaaagctcc tgaggtgtag


121
acgccaactc tctctagctc gctagtgggt tgcaggaggt gcttacgcat gtttgtttct


181
ttgctgccgt cttccagttg ctttatctgt tcacttgtgc cctgactttc aactctgtct


241
ccttcctctt cctacagtac tcccctgccc tcaacaagat gttttgccaa ctggccaaga


301
cctgccctgt gcagctgtgg gttgattcca cacccccgcc cggcacccgc gtccgcgcca


361
tggccatcta caagcagtca cagcacatga cggaggttgt gaggcgctgc ccccaccatg


421
agcgctgctc agatagcgat ggtctggccc ctcctcagca tcttatccga gtggaaggaa


481
atttgcgtgt ggagtatttg gatgacagaa acacttttcg acatagtgtg gtggtgccct


541
atgagccgcc tgaggttggc tctgactgta ccaccatcca ctacaactac atgtgtaaca


601
gttcctgcat gggcggcatg aaccggaggc ccatcctcac catcatcaca ctggaagact


661
ccagtggtaa tctactggga cggaacagct ttgaggtgcg tgtttgtgcc tgtcctggga


721
gagaccggcg cacagaggaa gagaatctcc gcaagaaagg ggagcctcac cacgagctgc


781
ccccagggag cactaagcga gcactgccca acaacaccag ctcctctccc cagccaaaga


841
agaaaccact ggatggagaa tatttcaccc ttcaggacca gaccagcttt caaaaagaaa


901
attgttaaag agagcatgaa aatggttcta tgactttgcc tgatacagat gctacttgac


961
ttacgatggt gttacttcct gataaactcg tcgtaagttg aaaatattat ccgtgggcgt


1021
gagcgcttcg agatgttccg agagctgaat gaggccttgg aactcaagga tgcccaggct


1081
gggaaggagc caggggggag cagggctcac tccagccacc tgaagtccaa aaagggtcag


1141
tctacctccc gccataaaaa actcatgttc aagacagaag ggcctgactc agactgacat


1201
tctccacttc ttgttcccca ctgacagcct cccaccccca tctctccctc ccctgccatt


1261
ttgggttttg ggtctttgaa cccttgcttg caataggtgt gcgtcagaag cacccaggac


1321
ttccatttgc tttgtcccgg ggctccactg aacaagttgg cctgcactgg tgttttgttg


1381
tggggaggag gatggggagt aggacatacc agcttagatt ttaaggtttt tactgtgagg


1441
gatgtttggg agatgtaaga aatgttcttg cagttaaggg ttagtttaca atcagccaca


1501
ttctaggtag gggcccactt caccgtacta accagggaag ctgtccctca ctgttgaatt


1561
ttctctaact tcaaggccca tatctgtgaa atgctggcat ttgcacctac ctcacagagt


1621
gcattgtgag ggttaatgaa ataatgtaca tctggccttg aaaccacctt ttattacatg


1681
gggtctagaa cttgaccccc ttgagggtgc ttgttccctc tccctgttgg tcggtgggtt


1741
ggtagtttct acagttgggc agctggttag gtagagggag ttgtcaagtc tctgctggcc


1801
cagccaaacc ctgtctgaca acctcttggt gaaccttagt acctaaaagg aaatctcacc


1861
ccatcccaca ccctggagga tttcatctct tgtatatgat gatctggatc caccaagact


1921
tgttttatgc tcagggtcaa tttctttttt cttttttttt tttttttttc tttttctttg


1981
agactgggtc tcgctttgtt gcccaggctg gagtggagtg gcgtgatctt ggcttactgc


2041
agcctttgcc tccccggctc gagcagtcct gcctcagcct ccggagtagc tgggaccaca


2101
ggttcatgcc accatggcca gccaactttt gcatgttttg tagagatggg gtctcacagt


2161
gttgcccagg ctggtctcaa actcctgggc tcaggcgatc cacctgtctc agcctcccag


2221
agtgctggga ttacaattgt gagccaccac gtccagctgg aagggtcaac atcttttaca


2281
ttctgcaagc acatctgcat tttcacccca cccttcccct ccttctccct ttttatatcc


2341
catttttata tcgatctctt attttacaat aaaactttgc tgccacctgt gtgtctgagg


2401
ggtg










SEQ ID NO: 82 Human TP53 isoform f Amino Acid Sequence (NP_001119589.1)








1
mfcqlaktcp vqlwvdstpp pgtrvramai ykqsqhmtev vrrcphherc sdsdglappq


61
hlirvegnlr veylddrntf rhsvvvpyep pevgsdctti hynymcnssc mggmnrrpil


121
tiitledssg nllgrnsfev rvcacpgrdr rteeenlrkk gephhelppg stkralpnnt


181
ssspqpkkkp ldgeyftlqm lldlrwcyfl inss










SEQ ID NO: 83 Human TP53 transcript variant 7 cDNA sequence


(NM_001126117.1; CDS: 279-923)








1
tgaggccagg agatggaggc tgcagtgagc tgtgatcaca ccactgtgct ccagcctgag


61
tgacagagca agaccctatc tcaaaaaaaa aaaaaaaaaa gaaaagctcc tgaggtgtag


121
acgccaactc tctctagctc gctagtgggt tgcaggaggt gcttacgcat gtttgtttct


181
ttgctgccgt cttccagttg ctttatctgt tcacttgtgc cctgactttc aactctgtct


241
ccttcctctt cctacagtac tcccctgccc tcaacaagat gttttgccaa ctggccaaga


301
cctgccctgt gcagctgtgg gttgattcca cacccccgcc cggcacccgc gtccgcgcca


361
tggccatcta caagcagtca cagcacatga cggaggttgt gaggcgctgc ccccaccatg


421
agcgctgctc agatagcgat ggtctggccc ctcctcagca tcttatccga gtggaaggaa


481
atttgcgtgt ggagtatttg gatgacagaa acacttttcg acatagtgtg gtggtgccct


541
atgagccgcc tgaggttggc tctgactgta ccaccatcca ctacaactac atgtgtaaca


601
gttcctgcat gggcggcatg aaccggaggc ccatcctcac catcatcaca ctggaagact


661
ccagtggtaa tctactggga cggaacagct ttgaggtgcg tgtttgtgcc tgtcctggga


721
gagaccggcg cacagaggaa gagaatctcc gcaagaaagg ggagcctcac cacgagctgc


781
ccccagggag cactaagcga gcactgccca acaacaccag ctcctctccc cagccaaaga


841
agaaaccact ggatggagaa tatttcaccc ttcagatgct acttgactta cgatggtgtt


901
acttcctgat aaactcgtcg taagttgaaa atattatccg tgggcgtgag cgcttcgaga


961
tgttccgaga gctgaatgag gccttggaac tcaaggatgc ccaggctggg aaggagccag


1021
gggggagcag ggctcactcc agccacctga agtccaaaaa gggtcagtct acctcccgcc


1081
ataaaaaact catgttcaag acagaagggc ctgactcaga ctgacattct ccacttcttg


1141
ttccccactg acagcctccc acccccatct ctccctcccc tgccattttg ggttttgggt


1201
ctttgaaccc ttgcttgcaa taggtgtgcg tcagaagcac ccaggacttc catttgcttt


1261
gtcccggggc tccactgaac aagttggcct gcactggtgt tttgttgtgg ggaggaggat


1321
ggggagtagg acataccagc ttagatttta aggtttttac tgtgagggat gtttgggaga


1381
tgtaagaaat gttcttgcag ttaagggtta gtttacaatc agccacattc taggtagggg


1441
cccacttcac cgtactaacc agggaagctg tccctcactg ttgaattttc tctaacttca


1501
aggcccatat ctgtgaaatg ctggcatttg cacctacctc acagagtgca ttgtgagggt


1561
taatgaaata atgtacatct ggccttgaaa ccacctttta ttacatgggg tctagaactt


1621
gacccccttg agggtgcttg ttccctctcc ctgttggtcg gtgggttggt agtttctaca


1681
gttgggcagc tggttaggta gagggagttg tcaagtctct gctggcccag ccaaaccctg


1741
tctgacaacc tcttggtgaa ccttagtacc taaaaggaaa tctcacccca tcccacaccc


1801
tggaggattt catctcttgt atatgatgat ctggatccac caagacttgt tttatgctca


1861
gggtcaattt cttttttctt tttttttttt ttttttcttt ttctttgaga ctgggtctcg


1921
ctttgttgcc caggctggag tggagtggcg tgatcttggc ttactgcagc ctttgcctcc


1981
ccggctcgag cagtcctgcc tcagcctccg gagtagctgg gaccacaggt tcatgccacc


2041
atggccagcc aacttttgca tgttttgtag agatggggtc tcacagtgtt gcccaggctg


2101
gtctcaaact cctgggctca ggcgatccac ctgtctcagc ctcccagagt gctgggatta


2161
caattgtgag ccaccacgtc cagctggaag ggtcaacatc ttttacattc tgcaagcaca


2221
tctgcatttt caccccaccc ttcccctcct tctccctttt tatatcccat ttttatatcg


2281
atctcttatt ttacaataaa actttgctgc cacctgtgtg tctgaggggt g










SEQ ID NO: 84 Human TP53 isoform g Amino Acid Sequence (NP_001119590.1,


NP_001263689.1, and NP_001263690.1)








1
mddlmlspdd ieqwftedpg pdeaprmpea appvapapaa ptpaapapap swplsssvps


61
qktyqgsygf rlgflhsgta ksvtctyspa lnkmfcqlak tcpvqlwvds tpppgtrvra


121
maiykqsqhm tevvrrcphh ercsdsdgla ppqhlirveg nlrveylddr ntfrhsvvvp


181
yeppevgsdc ttihynymcn sscmggmnrr piltiitled ssgnllgrns fevrvcacpg


241
rdrrteeenl rkkgephhel ppgstkralp nntssspqpk kkpldgeyft lqirgrerfe


301
mfrelneale lkdaqagkep ggsrahsshl kskkgqstsr hkklmfkteg pdsd










SEQ ID NO: 85 Human TP53 transcript variant 8 cDNA sequence


(NM_001126118.1; CDS: 437-1501)








1
gatgggattg gggttttccc ctcccatgtg ctcaagactg gcgctaaaag ttttgagctt


61
ctcaaaagtc tagagccacc gtccagggag caggtagctg ctgggctccg gggacacttt


121
gcgttcgggc tgggagcgtg ctttccacga cggtgacacg cttccctgga ttggcagcca


181
gactgccttc cgggtcactg ccatggagga gccgcagtca gatcctagcg tcgagccccc


241
tctgagtcag gaaacatttt cagacctatg gaaactgtga gtggatccat tggaagggca


301
ggcccaccac ccccacccca accccagccc cctagcagag acctgtggga agcgaaaatt


361
ccatgggact gactttctgc tcttgtcttt cagacttcct gaaaacaacg ttctgtcccc


421
cttgccgtcc caagcaatgg atgatttgat gctgtccccg gacgatattg aacaatggtt


481
cactgaagac ccaggtccag atgaagctcc cagaatgcca gaggctgctc cccccgtggc


541
ccctgcacca gcagctccta caccggcggc ccctgcacca gccccctcct ggcccctgtc


601
atcttctgtc ccttcccaga aaacctacca gggcagctac ggtttccgtc tgggcttctt


661
gcattctggg acagccaagt ctgtgacttg cacgtactcc cctgccctca acaagatgtt


721
ttgccaactg gccaagacct gccctgtgca gctgtgggtt gattccacac ccccgcccgg


781
cacccgcgtc cgcgccatgg ccatctacaa gcagtcacag cacatgacgg aggttgtgag


841
gcgctgcccc caccatgagc gctgctcaga tagcgatggt ctggcccctc ctcagcatct


901
tatccgagtg gaaggaaatt tgcgtgtgga gtatttggat gacagaaaca cttttcgaca


961
tagtgtggtg gtgccctatg agccgcctga ggttggctct gactgtacca ccatccacta


1021
caactacatg tgtaacagtt cctgcatggg cggcatgaac cggaggccca tcctcaccat


1081
catcacactg gaagactcca gtggtaatct actgggacgg aacagctttg aggtgcgtgt


1141
ttgtgcctgt cctgggagag accggcgcac agaggaagag aatctccgca agaaagggga


1201
gcctcaccac gagctgcccc cagggagcac taagcgagca ctgcccaaca acaccagctc


1261
ctctccccag ccaaagaaga aaccactgga tggagaatat ttcacccttc agatccgtgg


1321
gcgtgagcgc ttcgagatgt tccgagagct gaatgaggcc ttggaactca aggatgccca


1381
ggctgggaag gagccagggg ggagcagggc tcactccagc cacctgaagt ccaaaaaggg


1441
tcagtctacc tcccgccata aaaaactcat gttcaagaca gaagggcctg actcagactg


1501
acattctcca cttcttgttc cccactgaca gcctcccacc cccatctctc cctcccctgc


1561
cattttgggt tttgggtctt tgaacccttg cttgcaatag gtgtgcgtca gaagcaccca


1621
ggacttccat ttgctttgtc ccggggctcc actgaacaag ttggcctgca ctggtgtttt


1681
gttgtgggga ggaggatggg gagtaggaca taccagctta gattttaagg tttttactgt


1741
gagggatgtt tgggagatgt aagaaatgtt cttgcagtta agggttagtt tacaatcagc


1801
cacattctag gtaggggccc acttcaccgt actaaccagg gaagctgtcc ctcactgttg


1861
aattttctct aacttcaagg cccatatctg tgaaatgctg gcatttgcac ctacctcaca


1921
gagtgcattg tgagggttaa tgaaataatg tacatctggc cttgaaacca ccttttatta


1981
catggggtct agaacttgac ccccttgagg gtgcttgttc cctctccctg ttggtcggtg


2041
ggttggtagt ttctacagtt gggcagctgg ttaggtagag ggagttgtca agtctctgct


2101
ggcccagcca aaccctgtct gacaacctct tggtgaacct tagtacctaa aaggaaatct


2161
caccccatcc cacaccctgg aggatttcat ctcttgtata tgatgatctg gatccaccaa


2221
gacttgtttt atgctcaggg tcaatttctt ttttcttttt tttttttttt tttctttttc


2281
tttgagactg ggtctcgctt tgttgcccag gctggagtgg agtggcgtga tcttggctta


2341
ctgcagcctt tgcctccccg gctcgagcag tcctgcctca gcctccggag tagctgggac


2401
cacaggttca tgccaccatg gccagccaac ttttgcatgt tttgtagaga tggggtctca


2461
cagtgttgcc caggctggtc tcaaactcct gggctcaggc gatccacctg tctcagcctc


2521
ccagagtgct gggattacaa ttgtgagcca ccacgtccag ctggaagggt caacatcttt


2581
tacattctgc aagcacatct gcattttcac cccacccttc ccctccttct ccctttttat


2641
atcccatttt tatatcgatc tcttatttta caataaaact ttgctgccac ctgtgtgtct


2701
gaggggtg










SEQ ID NO: 86 Human TP53 transcript variant 1 cDNA Sequence


(NM_001276760.1; CDS: 320-1384)








1
gatgggattg gggttttccc ctcccatgtg ctcaagactg gcgctaaaag ttttgagctt


61
ctcaaaagtc tagagccacc gtccagggag caggtagctg ctgggctccg gggacacttt


121
gcgttcgggc tgggagcgtg ctttccacga cggtgacacg cttccctgga ttggcagcca


181
gactgccttc cgggtcactg ccatggagga gccgcagtca gatcctagcg tcgagccccc


241
tctgagtcag gaaacatttt cagacctatg gaaactactt cctgaaaaca acgttctgtc


301
ccccttgccg tcccaagcaa tggatgattt gatgctgtcc ccggacgata ttgaacaatg


361
gttcactgaa gacccaggtc cagatgaagc tcccagaatg ccagaggctg ctccccccgt


421
ggcccctgca ccagcagctc ctacaccggc ggcccctgca ccagccccct cctggcccct


481
gtcatcttct gtcccttccc agaaaaccta ccagggcagc tacggtttcc gtctgggctt


541
cttgcattct gggacagcca agtctgtgac ttgcacgtac tcccctgccc tcaacaagat


601
gttttgccaa ctggccaaga cctgccctgt gcagctgtgg gttgattcca cacccccgcc


661
cggcacccgc gtccgcgcca tggccatcta caagcagtca cagcacatga cggaggttgt


721
gaggcgctgc ccccaccatg agcgctgctc agatagcgat ggtctggccc ctcctcagca


781
tcttatccga gtggaaggaa atttgcgtgt ggagtatttg gatgacagaa acacttttcg


841
acatagtgtg gtggtgccct atgagccgcc tgaggttggc tctgactgta ccaccatcca


901
ctacaactac atgtgtaaca gttcctgcat gggcggcatg aaccggaggc ccatcctcac


961
catcatcaca ctggaagact ccagtggtaa tctactggga cggaacagct ttgaggtgcg


1021
tgtttgtgcc tgtcctggga gagaccggcg cacagaggaa gagaatctcc gcaagaaagg


1081
ggagcctcac cacgagctgc ccccagggag cactaagcga gcactgccca acaacaccag


1141
ctcctctccc cagccaaaga agaaaccact ggatggagaa tatttcaccc ttcagatccg


1201
tgggcgtgag cgcttcgaga tgttccgaga gctgaatgag gccttggaac tcaaggatgc


1261
ccaggctggg aaggagccag gggggagcag ggctcactcc agccacctga agtccaaaaa


1321
gggtcagtct acctcccgcc ataaaaaact catgttcaag acagaagggc ctgactcaga


1381
ctgacattct ccacttcttg ttccccactg acagcctccc acccccatct ctccctcccc


1441
tgccattttg ggttttgggt ctttgaaccc ttgcttgcaa taggtgtgcg tcagaagcac


1501
ccaggacttc catttgcttt gtcccggggc tccactgaac aagttggcct gcactggtgt


1561
tttgttgtgg ggaggaggat ggggagtagg acataccagc ttagatttta aggtttttac


1621
tgtgagggat gtttgggaga tgtaagaaat gttcttgcag ttaagggtta gtttacaatc


1681
agccacattc taggtagggg cccacttcac cgtactaacc agggaagctg tccctcactg


1741
ttgaattttc tctaacttca aggcccatat ctgtgaaatg ctggcatttg cacctacctc


1801
acagagtgca ttgtgagggt taatgaaata atgtacatct ggccttgaaa ccacctttta


1861
ttacatgggg tctagaactt gacccccttg agggtgcttg ttccctctcc ctgttggtcg


1921
gtgggttggt agtttctaca gttgggcagc tggttaggta gagggagttg tcaagtctct


1981
gctggcccag ccaaaccctg tctgacaacc tcttggtgaa ccttagtacc taaaaggaaa


2041
tctcacccca tcccacaccc tggaggattt catctcttgt atatgatgat ctggatccac


2101
caagacttgt tttatgctca gggtcaattt cttttttctt tttttttttt ttttttcttt


2161
ttctttgaga ctgggtctcg ctttgttgcc caggctggag tggagtggcg tgatcttggc


2221
ttactgcagc ctttgcctcc ccggctcgag cagtcctgcc tcagcctccg gagtagctgg


2281
gaccacaggt tcatgccacc atggccagcc aacttttgca tgttttgtag agatggggtc


2341
tcacagtgtt gcccaggctg gtctcaaact cctgggctca ggcgatccac ctgtctcagc


2401
ctcccagagt gctgggatta caattgtgag ccaccacgtc cagctggaag ggtcaacatc


2461
ttttacattc tgcaagcaca tctgcatttt caccccaccc ttcccctcct tctccctttt


2521
tatatcccat ttttatatcg atctcttatt ttacaataaa actttgctgc cacctgtgtg


2581
tctgaggggt g










SEQ ID NO: 87 Human TP53 transcript variant 2 cDNA Sequence


(NM_001276761.1; CDS: 317-1381)








1
gatgggattg gggttttccc ctcccatgtg ctcaagactg gcgctaaaag ttttgagctt


61
ctcaaaagtc tagagccacc gtccagggag caggtagctg ctgggctccg gggacacttt


121
gcgttcgggc tgggagcgtg ctttccacga cggtgacacg cttccctgga ttggccagac


181
tgccttccgg gtcactgcca tggaggagcc gcagtcagat cctagcgtcg agccccctct


241
gagtcaggaa acattttcag acctatggaa actacttcct gaaaacaacg ttctgtcccc


301
cttgccgtcc caagcaatgg atgatttgat gctgtccccg gacgatattg aacaatggtt


361
cactgaagac ccaggtccag atgaagctcc cagaatgcca gaggctgctc cccccgtggc


421
ccctgcacca gcagctccta caccggcggc ccctgcacca gccccctcct ggcccctgtc


481
atcttctgtc ccttcccaga aaacctacca gggcagctac ggtttccgtc tgggcttctt


541
gcattctggg acagccaagt ctgtgacttg cacgtactcc cctgccctca acaagatgtt


601
ttgccaactg gccaagacct gccctgtgca gctgtgggtt gattccacac ccccgcccgg


661
cacccgcgtc cgcgccatgg ccatctacaa gcagtcacag cacatgacgg aggttgtgag


721
gcgctgcccc caccatgagc gctgctcaga tagcgatggt ctggcccctc ctcagcatct


781
tatccgagtg gaaggaaatt tgcgtgtgga gtatttggat gacagaaaca cttttcgaca


841
tagtgtggtg gtgccctatg agccgcctga ggttggctct gactgtacca ccatccacta


901
caactacatg tgtaacagtt cctgcatggg cggcatgaac cggaggccca tcctcaccat


961
catcacactg gaagactcca gtggtaatct actgggacgg aacagctttg aggtgcgtgt


1021
ttgtgcctgt cctgggagag accggcgcac agaggaagag aatctccgca agaaagggga


1081
gcctcaccac gagctgcccc cagggagcac taagcgagca ctgcccaaca acaccagctc


1141
ctctccccag ccaaagaaga aaccactgga tggagaatat ttcacccttc agatccgtgg


1201
gcgtgagcgc ttcgagatgt tccgagagct gaatgaggcc ttggaactca aggatgccca


1261
ggctgggaag gagccagggg ggagcagggc tcactccagc cacctgaagt ccaaaaaggg


1321
tcagtctacc tcccgccata aaaaactcat gttcaagaca gaagggcctg actcagactg


1381
acattctcca cttcttgttc cccactgaca gcctcccacc cccatctctc cctcccctgc


1441
cattttgggt tttgggtctt tgaacccttg cttgcaatag gtgtgcgtca gaagcaccca


1501
ggacttccat ttgctttgtc ccggggctcc actgaacaag ttggcctgca ctggtgtttt


1561
gttgtgggga ggaggatggg gagtaggaca taccagctta gattttaagg tttttactgt


1621
gagggatgtt tgggagatgt aagaaatgtt cttgcagtta agggttagtt tacaatcagc


1681
cacattctag gtaggggccc acttcaccgt actaaccagg gaagctgtcc ctcactgttg


1741
aattttctct aacttcaagg cccatatctg tgaaatgctg gcatttgcac ctacctcaca


1801
gagtgcattg tgagggttaa tgaaataatg tacatctggc cttgaaacca ccttttatta


1861
catggggtct agaacttgac ccccttgagg gtgcttgttc cctctccctg ttggtcggtg


1921
ggttggtagt ttctacagtt gggcagctgg ttaggtagag ggagttgtca agtctctgct


1981
ggcccagcca aaccctgtct gacaacctct tggtgaacct tagtacctaa aaggaaatct


2041
caccccatcc cacaccctgg aggatttcat ctcttgtata tgatgatctg gatccaccaa


2101
gacttgtttt atgctcaggg tcaatttctt ttttcttttt tttttttttt tttctttttc


2161
tttgagactg ggtctcgctt tgttgcccag gctggagtgg agtggcgtga tcttggctta


2221
ctgcagcctt tgcctccccg gctcgagcag tcctgcctca gcctccggag tagctgggac


2281
cacaggttca tgccaccatg gccagccaac ttttgcatgt tttgtagaga tggggtctca


2341
cagtgttgcc caggctggtc tcaaactcct gggctcaggc gatccacctg tctcagcctc


2401
ccagagtgct gggattacaa ttgtgagcca ccacgtccag ctggaagggt caacatcttt


2461
tacattctgc aagcacatct gcattttcac cccacccttc ccctccttct ccctttttat


2521
atcccatttt tatatcgatc tcttatttta caataaaact ttgctgccac ctgtgtgtct


2581
gaggggtg










SEQ ID NO: 88 Human TP53 isoform h Amino Acid Sequence (NP_001263624.1)








1
mddlmlspdd ieqwftedpg pdeaprmpea appvapapaa ptpaapapap swplsssvps


61
qktyqgsygf rlgflhsgta ksvtctyspa lnkmfcqlak tcpvqlwvds tpppgtrvra


121
maiykqsqhm tevvrrcphh ercsdsdgla ppqhlirveg nlrveylddr ntfrhsvvvp


181
yeppevgsdc ttihynymcn sscmggmnrr piltiitled ssgnllgrns fevrvcacpg


241
rdrrteeenl rkkgephhel ppgstkralp nntssspqpk kkpldgeyft lqmlldlrwc


301
yflinss










SEQ ID NO: 89 Human TP53 transcript variant 4 cDNA Sequence


(NM_001276695.1; CDS: 320-1243)








1
gatgggattg gggttttccc ctcccatgtg ctcaagactg gcgctaaaag ttttgagctt


61
ctcaaaagtc tagagccacc gtccagggag caggtagctg ctgggctccg gggacacttt


121
gcgttcgggc tgggagcgtg ctttccacga cggtgacacg cttccctgga ttggcagcca


181
gactgccttc cgggtcactg ccatggagga gccgcagtca gatcctagcg tcgagccccc


241
tctgagtcag gaaacatttt cagacctatg gaaactactt cctgaaaaca acgttctgtc


301
ccccttgccg tcccaagcaa tggatgattt gatgctgtcc ccggacgata ttgaacaatg


361
gttcactgaa gacccaggtc cagatgaagc tcccagaatg ccagaggctg ctccccccgt


421
ggcccctgca ccagcagctc ctacaccggc ggcccctgca ccagccccct cctggcccct


481
gtcatcttct gtcccttccc agaaaaccta ccagggcagc tacggtttcc gtctgggctt


541
cttgcattct gggacagcca agtctgtgac ttgcacgtac tcccctgccc tcaacaagat


601
gttttgccaa ctggccaaga cctgccctgt gcagctgtgg gttgattcca cacccccgcc


661
cggcacccgc gtccgcgcca tggccatcta caagcagtca cagcacatga cggaggttgt


721
gaggcgctgc ccccaccatg agcgctgctc agatagcgat ggtctggccc ctcctcagca


781
tcttatccga gtggaaggaa atttgcgtgt ggagtatttg gatgacagaa acacttttcg


841
acatagtgtg gtggtgccct atgagccgcc tgaggttggc tctgactgta ccaccatcca


901
ctacaactac atgtgtaaca gttcctgcat gggcggcatg aaccggaggc ccatcctcac


961
catcatcaca ctggaagact ccagtggtaa tctactggga cggaacagct ttgaggtgcg


1021
tgtttgtgcc tgtcctggga gagaccggcg cacagaggaa gagaatctcc gcaagaaagg


1081
ggagcctcac cacgagctgc ccccagggag cactaagcga gcactgccca acaacaccag


1141
ctcctctccc cagccaaaga agaaaccact ggatggagaa tatttcaccc ttcagatgct


1201
acttgactta cgatggtgtt acttcctgat aaactcgtcg taagttgaaa atattatccg


1261
tgggcgtgag cgcttcgaga tgttccgaga gctgaatgag gccttggaac tcaaggatgc


1321
ccaggctggg aaggagccag gggggagcag ggctcactcc agccacctga agtccaaaaa


1381
gggtcagtct acctcccgcc ataaaaaact catgttcaag acagaagggc ctgactcaga


1441
ctgacattct ccacttcttg ttccccactg acagcctccc acccccatct ctccctcccc


1501
tgccattttg ggttttgggt ctttgaaccc ttgcttgcaa taggtgtgcg tcagaagcac


1561
ccaggacttc catttgcttt gtcccggggc tccactgaac aagttggcct gcactggtgt


1621
tttgttgtgg ggaggaggat ggggagtagg acataccagc ttagatttta aggtttttac


1681
tgtgagggat gtttgggaga tgtaagaaat gttcttgcag ttaagggtta gtttacaatc


1741
agccacattc taggtagggg cccacttcac cgtactaacc agggaagctg tccctcactg


1801
ttgaattttc tctaacttca aggcccatat ctgtgaaatg ctggcatttg cacctacctc


1861
acagagtgca ttgtgagggt taatgaaata atgtacatct ggccttgaaa ccacctttta


1921
ttacatgggg tctagaactt gacccccttg agggtgcttg ttccctctcc ctgttggtcg


1981
gtgggttggt agtttctaca gttgggcagc tggttaggta gagggagttg tcaagtctct


2041
gctggcccag ccaaaccctg tctgacaacc tcttggtgaa ccttagtacc taaaaggaaa


2101
tctcacccca tcccacaccc tggaggattt catctcttgt atatgatgat ctggatccac


2161
caagacttgt tttatgctca gggtcaattt cttttttctt tttttttttt ttttttcttt


2221
ttctttgaga ctgggtctcg ctttgttgcc caggctggag tggagtggcg tgatcttggc


2281
ttactgcagc ctttgcctcc ccggctcgag cagtcctgcc tcagcctccg gagtagctgg


2341
gaccacaggt tcatgccacc atggccagcc aacttttgca tgttttgtag agatggggtc


2401
tcacagtgtt gcccaggctg gtctcaaact cctgggctca ggcgatccac ctgtctcagc


2461
ctcccagagt gctgggatta caattgtgag ccaccacgtc cagctggaag ggtcaacatc


2521
ttttacattc tgcaagcaca tctgcatttt caccccaccc ttcccctcct tctccctttt


2581
tatatcccat ttttatatcg atctcttatt ttacaataaa actttgctgc cacctgtgtg


2641
tctgaggggt g










SEQ ID NO: 90 Human TP53 isoform i Amino Acid Sequence (NP_001263625.1)








1
mddlmlspdd ieqwftedpg pdeaprmpea appvapapaa ptpaapapap swplsssvps


61
qktyqgsygf rlgflhsgta ksvtctyspa lnkmfcqlak tcpvqlwvds tpppgtrvra


121
maiykqsqhm tevvrrcphh ercsdsdgla ppqhlirveg nlrveylddr ntfrhsvvvp


181
yeppevgsdc ttihynymcn sscmggmnrr piltiitled ssgnllgrns fevrvcacpg


241
rdrrteeenl rkkgephhel ppgstkralp nntssspqpk kkpldgeyft lqdqtsfqke


301
nc










SEQ ID NO: 91 Human TP53 transcript variant 3 cDNA sequence


(NM_001276696.1 CDS: 320-1228)








1
gatgggattg gggttttccc ctcccatgtg ctcaagactg gcgctaaaag ttttgagctt


61
ctcaaaagtc tagagccacc gtccagggag caggtagctg ctgggctccg gggacacttt


121
gcgttcgggc tgggagcgtg ctttccacga cggtgacacg cttccctgga ttggcagcca


181
gactgccttc cgggtcactg ccatggagga gccgcagtca gatcctagcg tcgagccccc


241
tctgagtcag gaaacatttt cagacctatg gaaactactt cctgaaaaca acgttctgtc


301
ccccttgccg tcccaagcaa tggatgattt gatgctgtcc ccggacgata ttgaacaatg


361
gttcactgaa gacccaggtc cagatgaagc tcccagaatg ccagaggctg ctccccccgt


421
ggcccctgca ccagcagctc ctacaccggc ggcccctgca ccagccccct cctggcccct


481
gtcatcttct gtcccttccc agaaaaccta ccagggcagc tacggtttcc gtctgggctt


541
cttgcattct gggacagcca agtctgtgac ttgcacgtac tcccctgccc tcaacaagat


601
gttttgccaa ctggccaaga cctgccctgt gcagctgtgg gttgattcca cacccccgcc


661
cggcacccgc gtccgcgcca tggccatcta caagcagtca cagcacatga cggaggttgt


721
gaggcgctgc ccccaccatg agcgctgctc agatagcgat ggtctggccc ctcctcagca


781
tcttatccga gtggaaggaa atttgcgtgt ggagtatttg gatgacagaa acacttttcg


841
acatagtgtg gtggtgccct atgagccgcc tgaggttggc tctgactgta ccaccatcca


901
ctacaactac atgtgtaaca gttcctgcat gggcggcatg aaccggaggc ccatcctcac


961
catcatcaca ctggaagact ccagtggtaa tctactggga cggaacagct ttgaggtgcg


1021
tgtttgtgcc tgtcctggga gagaccggcg cacagaggaa gagaatctcc gcaagaaagg


1081
ggagcctcac cacgagctgc ccccagggag cactaagcga gcactgccca acaacaccag


1141
ctcctctccc cagccaaaga agaaaccact ggatggagaa tatttcaccc ttcaggacca


1201
gaccagcttt caaaaagaaa attgttaaag agagcatgaa aatggttcta tgactttgcc


1261
tgatacagat gctacttgac ttacgatggt gttacttcct gataaactcg tcgtaagttg


1321
aaaatattat ccgtgggcgt gagcgcttcg agatgttccg agagctgaat gaggccttgg


1381
aactcaagga tgcccaggct gggaaggagc caggggggag cagggctcac tccagccacc


1441
tgaagtccaa aaagggtcag tctacctccc gccataaaaa actcatgttc aagacagaag


1501
ggcctgactc agactgacat tctccacttc ttgttcccca ctgacagcct cccaccccca


1561
tctctccctc ccctgccatt ttgggttttg ggtctttgaa cccttgcttg caataggtgt


1621
gcgtcagaag cacccaggac ttccatttgc tttgtcccgg ggctccactg aacaagttgg


1681
cctgcactgg tgttttgttg tggggaggag gatggggagt aggacatacc agcttagatt


1741
ttaaggtttt tactgtgagg gatgtttggg agatgtaaga aatgttcttg cagttaaggg


1801
ttagtttaca atcagccaca ttctaggtag gggcccactt caccgtacta accagggaag


1861
ctgtccctca ctgttgaatt ttctctaact tcaaggccca tatctgtgaa atgctggcat


1921
ttgcacctac ctcacagagt gcattgtgag ggttaatgaa ataatgtaca tctggccttg


1981
aaaccacctt ttattacatg gggtctagaa cttgaccccc ttgagggtgc ttgttccctc


2041
tccctgttgg tcggtgggtt ggtagtttct acagttgggc agctggttag gtagagggag


2101
ttgtcaagtc tctgctggcc cagccaaacc ctgtctgaca acctcttggt gaaccttagt


2161
acctaaaagg aaatctcacc ccatcccaca ccctggagga tttcatctct tgtatatgat


2221
gatctggatc caccaagact tgttttatgc tcagggtcaa tttctttttt cttttttttt


2281
tttttttttc tttttctttg agactgggtc tcgctttgtt gcccaggctg gagtggagtg


2341
gcgtgatctt ggcttactgc agcctttgcc tccccggctc gagcagtcct gcctcagcct


2401
ccggagtagc tgggaccaca ggttcatgcc accatggcca gccaactttt gcatgttttg


2461
tagagatggg gtctcacagt gttgcccagg ctggtctcaa actcctgggc tcaggcgatc


2521
cacctgtctc agcctcccag agtgctggga ttacaattgt gagccaccac gtccagctgg


2581
aagggtcaac atcttttaca ttctgcaagc acatctgcat tttcacccca cccttcccct


2641
ccttctccct ttttatatcc catttttata tcgatctctt attttacaat aaaactttgc


2701
tgccacctgt gtgtctgagg ggtg










SEQ ID NO: 92 Human TP53 isoform j Amino Acid Sequence (NP_001263626.1)








1
maiykqsqhm tevvrrcphh ercsdsdgla ppqhlirveg nlrveylddr ntfrhsvvvp


61
yeppevgsdc ttihynymcn sscmggmnrr piltiitled ssgnllgrns fevrvcacpg


121
rdrrteeenl rkkgephhel ppgstkralp nntssspqpk kkpldgeyft lqirgrerfe


181
mfrelneale lkdaqagkep ggsrahsshl kskkgqstsr hkklmfkteg pdsd










SEQ ID NO: 93 Human TP53 transcript variant 5 cDNA sequence


(NM_001276697.1; CDS: 360-1064)








1
tgaggccagg agatggaggc tgcagtgagc tgtgatcaca ccactgtgct ccagcctgag


61
tgacagagca agaccctatc tcaaaaaaaa aaaaaaaaaa gaaaagctcc tgaggtgtag


121
acgccaactc tctctagctc gctagtgggt tgcaggaggt gcttacgcat gtttgtttct


181
ttgctgccgt cttccagttg ctttatctgt tcacttgtgc cctgactttc aactctgtct


241
ccttcctctt cctacagtac tcccctgccc tcaacaagat gttttgccaa ctggccaaga


301
cctgccctgt gcagctgtgg gttgattcca cacccccgcc cggcacccgc gtccgcgcca


361
tggccatcta caagcagtca cagcacatga cggaggttgt gaggcgctgc ccccaccatg


421
agcgctgctc agatagcgat ggtctggccc ctcctcagca tcttatccga gtggaaggaa


481
atttgcgtgt ggagtatttg gatgacagaa acacttttcg acatagtgtg gtggtgccct


541
atgagccgcc tgaggttggc tctgactgta ccaccatcca ctacaactac atgtgtaaca


601
gttcctgcat gggcggcatg aaccggaggc ccatcctcac catcatcaca ctggaagact


661
ccagtggtaa tctactggga cggaacagct ttgaggtgcg tgtttgtgcc tgtcctggga


721
gagaccggcg cacagaggaa gagaatctcc gcaagaaagg ggagcctcac cacgagctgc


781
ccccagggag cactaagcga gcactgccca acaacaccag ctcctctccc cagccaaaga


841
agaaaccact ggatggagaa tatttcaccc ttcagatccg tgggcgtgag cgcttcgaga


901
tgttccgaga gctgaatgag gccttggaac tcaaggatgc ccaggctggg aaggagccag


961
gggggagcag ggctcactcc agccacctga agtccaaaaa gggtcagtct acctcccgcc


1021
ataaaaaact catgttcaag acagaagggc ctgactcaga ctgacattct ccacttcttg


1081
ttccccactg acagcctccc acccccatct ctccctcccc tgccattttg ggttttgggt


1141
ctttgaaccc ttgcttgcaa taggtgtgcg tcagaagcac ccaggacttc catttgcttt


1201
gtcccggggc tccactgaac aagttggcct gcactggtgt tttgttgtgg ggaggaggat


1261
ggggagtagg acataccagc ttagatttta aggtttttac tgtgagggat gtttgggaga


1321
tgtaagaaat gttcttgcag ttaagggtta gtttacaatc agccacattc taggtagggg


1381
cccacttcac cgtactaacc agggaagctg tccctcactg ttgaattttc tctaacttca


1441
aggcccatat ctgtgaaatg ctggcatttg cacctacctc acagagtgca ttgtgagggt


1501
taatgaaata atgtacatct ggccttgaaa ccacctttta ttacatgggg tctagaactt


1561
gacccccttg agggtgcttg ttccctctcc ctgttggtcg gtgggttggt agtttctaca


1621
gttgggcagc tggttaggta gagggagttg tcaagtctct gctggcccag ccaaaccctg


1681
tctgacaacc tcttggtgaa ccttagtacc taaaaggaaa tctcacccca tcccacaccc


1741
tggaggattt catctcttgt atatgatgat ctggatccac caagacttgt tttatgctca


1801
gggtcaattt cttttttctt tttttttttt ttttttcttt ttctttgaga ctgggtctcg


1861
ctttgttgcc caggctggag tggagtggcg tgatcttggc ttactgcagc ctttgcctcc


1921
ccggctcgag cagtcctgcc tcagcctccg gagtagctgg gaccacaggt tcatgccacc


1981
atggccagcc aacttttgca tgttttgtag agatggggtc tcacagtgtt gcccaggctg


2041
gtctcaaact cctgggctca ggcgatccac ctgtctcagc ctcccagagt gctgggatta


2101
caattgtgag ccaccacgtc cagctggaag ggtcaacatc ttttacattc tgcaagcaca


2161
tctgcatttt caccccaccc ttcccctcct tctccctttt tatatcccat ttttatatcg


2221
atctcttatt ttacaataaa actttgctgc cacctgtgtg tctgaggggt g










SEQ ID NO: 94 Human TP53 isoform k Amino Acid Sequence (NP_001263627.1)








1
maiykqsqhm tevvrrcphh ercsdsdgla ppqhlirveg nlrveylddr ntfrhsvvvp


61
yeppevgsdc ttihynymcn sscmggmnrr piltiitled ssgnllgrns fevrvcacpg


121
rdrrteeenl rkkgephhel ppgstkralp nntssspqpk kkpldgeyft lqdqtsfqke


181
nc










SEQ ID NO: 95 Human TP53 transcript variant 6 cDNA sequence


(NM_001276698.1; CDS: 360-908)








1
tgaggccagg agatggaggc tgcagtgagc tgtgatcaca ccactgtgct ccagcctgag


61
tgacagagca agaccctatc tcaaaaaaaa aaaaaaaaaa gaaaagctcc tgaggtgtag


121
acgccaactc tctctagctc gctagtgggt tgcaggaggt gcttacgcat gtttgtttct


181
ttgctgccgt cttccagttg ctttatctgt tcacttgtgc cctgactttc aactctgtct


241
ccttcctctt cctacagtac tcccctgccc tcaacaagat gttttgccaa ctggccaaga


301
cctgccctgt gcagctgtgg gttgattcca cacccccgcc cggcacccgc gtccgcgcca


361
tggccatcta caagcagtca cagcacatga cggaggttgt gaggcgctgc ccccaccatg


421
agcgctgctc agatagcgat ggtctggccc ctcctcagca tcttatccga gtggaaggaa


481
atttgcgtgt ggagtatttg gatgacagaa acacttttcg acatagtgtg gtggtgccct


541
atgagccgcc tgaggttggc tctgactgta ccaccatcca ctacaactac atgtgtaaca


601
gttcctgcat gggcggcatg aaccggaggc ccatcctcac catcatcaca ctggaagact


661
ccagtggtaa tctactggga cggaacagct ttgaggtgcg tgtttgtgcc tgtcctggga


721
gagaccggcg cacagaggaa gagaatctcc gcaagaaagg ggagcctcac cacgagctgc


781
ccccagggag cactaagcga gcactgccca acaacaccag ctcctctccc cagccaaaga


841
agaaaccact ggatggagaa tatttcaccc ttcaggacca gaccagcttt caaaaagaaa


901
attgttaaag agagcatgaa aatggttcta tgactttgcc tgatacagat gctacttgac


961
ttacgatggt gttacttcct gataaactcg tcgtaagttg aaaatattat ccgtgggcgt


1021
gagcgcttcg agatgttccg agagctgaat gaggccttgg aactcaagga tgcccaggct


1081
gggaaggagc caggggggag cagggctcac tccagccacc tgaagtccaa aaagggtcag


1141
tctacctccc gccataaaaa actcatgttc aagacagaag ggcctgactc agactgacat


1201
tctccacttc ttgttcccca ctgacagcct cccaccccca tctctccctc ccctgccatt


1261
ttgggttttg ggtctttgaa cccttgcttg caataggtgt gcgtcagaag cacccaggac


1321
ttccatttgc tttgtcccgg ggctccactg aacaagttgg cctgcactgg tgttttgttg


1381
tggggaggag gatggggagt aggacatacc agcttagatt ttaaggtttt tactgtgagg


1441
gatgtttggg agatgtaaga aatgttcttg cagttaaggg ttagtttaca atcagccaca


1501
ttctaggtag gggcccactt caccgtacta accagggaag ctgtccctca ctgttgaatt


1561
ttctctaact tcaaggccca tatctgtgaa atgctggcat ttgcacctac ctcacagagt


1621
gcattgtgag ggttaatgaa ataatgtaca tctggccttg aaaccacctt ttattacatg


1681
gggtctagaa cttgaccccc ttgagggtgc ttgttccctc tccctgttgg tcggtgggtt


1741
ggtagtttct acagttgggc agctggttag gtagagggag ttgtcaagtc tctgctggcc


1801
cagccaaacc ctgtctgaca acctcttggt gaaccttagt acctaaaagg aaatctcacc


1861
ccatcccaca ccctggagga tttcatctct tgtatatgat gatctggatc caccaagact


1921
tgttttatgc tcagggtcaa tttctttttt cttttttttt tttttttttc tttttctttg


1981
agactgggtc tcgctttgtt gcccaggctg gagtggagtg gcgtgatctt ggcttactgc


2041
agcctttgcc tccccggctc gagcagtcct gcctcagcct ccggagtagc tgggaccaca


2101
ggttcatgcc accatggcca gccaactttt gcatgttttg tagagatggg gtctcacagt


2161
gttgcccagg ctggtctcaa actcctgggc tcaggcgatc cacctgtctc agcctcccag


2221
agtgctggga ttacaattgt gagccaccac gtccagctgg aagggtcaac atcttttaca


2281
ttctgcaagc acatctgcat tttcacccca cccttcccct ccttctccct ttttatatcc


2341
catttttata tcgatctctt attttacaat aaaactttgc tgccacctgt gtgtctgagg


2401
ggtg










SEQ ID NO: 96 Human TP53 isoform1 Amino Acid Sequence (NP_0012636281)








1
maiykqsqhm tevvrrcphh ercsdsdgla ppqhlirveg nlrveylddr ntfrhsvvvp


61
yeppevgsdc ttihynymcn sscmggmnrr piltiitled ssgnllgrns fevrvcacpg


121
rdrrteeenl rkkgephhel ppgstkralp nntssspqpk kkpldgeyft lqmlldlrwc


181
yflinss










SEQ ID NO: 97 Human TP53 transcript variant 7 cDNA sequence


(NM_001276699.1; CDS: 360-923)








1
tgaggccagg agatggaggc tgcagtgagc tgtgatcaca ccactgtgct ccagcctgag


61
tgacagagca agaccctatc tcaaaaaaaa aaaaaaaaaa gaaaagctcc tgaggtgtag


121
acgccaactc tctctagctc gctagtgggt tgcaggaggt gcttacgcat gtttgtttct


181
ttgctgccgt cttccagttg ctttatctgt tcacttgtgc cctgactttc aactctgtct


241
ccttcctctt cctacagtac tcccctgccc tcaacaagat gttttgccaa ctggccaaga


301
cctgccctgt gcagctgtgg gttgattcca cacccccgcc cggcacccgc gtccgcgcca


361
tggccatcta caagcagtca cagcacatga cggaggttgt gaggcgctgc ccccaccatg


421
agcgctgctc agatagcgat ggtctggccc ctcctcagca tcttatccga gtggaaggaa


481
atttgcgtgt ggagtatttg gatgacagaa acacttttcg acatagtgtg gtggtgccct


541
atgagccgcc tgaggttggc tctgactgta ccaccatcca ctacaactac atgtgtaaca


601
gttcctgcat gggcggcatg aaccggaggc ccatcctcac catcatcaca ctggaagact


661
ccagtggtaa tctactggga cggaacagct ttgaggtgcg tgtttgtgcc tgtcctggga


721
gagaccggcg cacagaggaa gagaatctcc gcaagaaagg ggagcctcac cacgagctgc


781
ccccagggag cactaagcga gcactgccca acaacaccag ctcctctccc cagccaaaga


841
agaaaccact ggatggagaa tatttcaccc ttcagatgct acttgactta cgatggtgtt


901
acttcctgat aaactcgtcg taagttgaaa atattatccg tgggcgtgag cgcttcgaga


961
tgttccgaga gctgaatgag gccttggaac tcaaggatgc ccaggctggg aaggagccag


1021
gggggagcag ggctcactcc agccacctga agtccaaaaa gggtcagtct acctcccgcc


1081
ataaaaaact catgttcaag acagaagggc ctgactcaga ctgacattct ccacttcttg


1141
ttccccactg acagcctccc acccccatct ctccctcccc tgccattttg ggttttgggt


1201
ctttgaaccc ttgcttgcaa taggtgtgcg tcagaagcac ccaggacttc catttgcttt


1261
gtcccggggc tccactgaac aagttggcct gcactggtgt tttgttgtgg ggaggaggat


1321
ggggagtagg acataccagc ttagatttta aggtttttac tgtgagggat gtttgggaga


1381
tgtaagaaat gttcttgcag ttaagggtta gtttacaatc agccacattc taggtagggg


1441
cccacttcac cgtactaacc agggaagctg tccctcactg ttgaattttc tctaacttca


1501
aggcccatat ctgtgaaatg ctggcatttg cacctacctc acagagtgca ttgtgagggt


1561
taatgaaata atgtacatct ggccttgaaa ccacctttta ttacatgggg tctagaactt


1621
gacccccttg agggtgcttg ttccctctcc ctgttggtcg gtgggttggt agtttctaca


1681
gttgggcagc tggttaggta gagggagttg tcaagtctct gctggcccag ccaaaccctg


1741
tctgacaacc tcttggtgaa ccttagtacc taaaaggaaa tctcacccca tcccacaccc


1801
tggaggattt catctcttgt atatgatgat ctggatccac caagacttgt tttatgctca


1861
gggtcaattt cttttttctt tttttttttt ttttttcttt ttctttgaga ctgggtctcg


1921
ctttgttgcc caggctggag tggagtggcg tgatcttggc ttactgcagc ctttgcctcc


1981
ccggctcgag cagtcctgcc tcagcctccg gagtagctgg gaccacaggt tcatgccacc


2041
atggccagcc aacttttgca tgttttgtag agatggggtc tcacagtgtt gcccaggctg


2101
gtctcaaact cctgggctca ggcgatccac ctgtctcagc ctcccagagt gctgggatta


2161
caattgtgag ccaccacgtc cagctggaag ggtcaacatc ttttacattc tgcaagcaca


2221
tctgcatttt caccccaccc ttcccctcct tctccctttt tatatcccat ttttatatcg


2281
atctcttatt ttacaataaa actttgctgc cacctgtgtg tctgaggggt g










SEQ ID NO: 98 Mouse TP53 isoform b Amino Acid Sequence (NP_001120705.1)








1
mtameesqsd islelplsqe tfsglwkllp pedilpsphc mddlllpqdv eeffegpsea


61
lrvsgapaaq dpvtetpgpv apapatpwpl ssfvpsqkty qgnygfhlgf lqsgtaksvm


121
ctyspplnkl fcqlaktcpv qlwvsatppa gsrvramaiy kksqhmtevv rrcphhercs


181
dgdglappqh lirvegnlyp eyledrqtfr hsvvvpyepp eagseyttih ykymcnsscm


241
ggmnrrpilt iitledssgn llgrdsfevr vcacpgrdrr teeenfrkke vlcpelppgs


301
akralptcts asppqkkkpl dgeyftlkir grkrfemfre lnealelkda hateesgdsr


361
ahsslqpraf qalikeespn c










SEQ ID NO: 99 Mouse TP53 transcript variant 2 cDNA sequence


(NM_001127233.1; CDS: 158-1303)








1
tttcccctcc cacgtgctca ccctggctaa agttctgtag cttcagttca ttgggaccat


61
cctggctgta ggtagcgact acagttaggg ggcacctagc attcaggccc tcatcctcct


121
ccttcccagc agggtgtcac gcttctccga agactggatg actgccatgg aggagtcaca


181
gtcggatatc agcctcgagc tccctctgag ccaggagaca ttttcaggct tatggaaact


241
acttcctcca gaagatatcc tgccatcacc tcactgcatg gacgatctgt tgctgcccca


301
ggatgttgag gagttttttg aaggcccaag tgaagccctc cgagtgtcag gagctcctgc


361
agcacaggac cctgtcaccg agacccctgg gccagtggcc cctgccccag ccactccatg


421
gcccctgtca tcttttgtcc cttctcaaaa aacttaccag ggcaactatg gcttccacct


481
gggcttcctg cagtctggga cagccaagtc tgttatgtgc acgtactctc ctcccctcaa


541
taagctattc tgccagctgg cgaagacgtg ccctgtgcag ttgtgggtca gcgccacacc


601
tccagctggg agccgtgtcc gcgccatggc catctacaag aagtcacagc acatgacgga


661
ggtcgtgaga cgctgccccc accatgagcg ctgctccgat ggtgatggcc tggctcctcc


721
ccagcatctt atccgggtgg aaggaaattt gtatcccgag tatctggaag acaggcagac


781
ttttcgccac agcgtggtgg taccttatga gccacccgag gccggctctg agtataccac


841
catccactac aagtacatgt gtaatagctc ctgcatgggg ggcatgaacc gccgacctat


901
ccttaccatc atcacactgg aagactccag tgggaacctt ctgggacggg acagctttga


961
ggttcgtgtt tgtgcctgcc ctgggagaga ccgccgtaca gaagaagaaa atttccgcaa


1021
aaaggaagtc ctttgccctg aactgccccc agggagcgca aagagagcgc tgcccacctg


1081
cacaagcgcc tctcccccgc aaaagaaaaa accacttgat ggagagtatt tcaccctcaa


1141
gatccgcggg cgtaaacgct tcgagatgtt ccgggagctg aatgaggcct tagagttaaa


1201
ggatgcccat gctacagagg agtctggaga cagcagggct cactccagcc tccagcctag


1261
agccttccaa gccttgatca aggaggaaag cccaaactgc tagctcccat cacttcatcc


1321
ctcccctttt ctgtcttcct atagctacct gaagaccaag aagggccagt ctacttcccg


1381
ccataaaaaa acaatggtca agaaagtggg gcctgactca gactgactgc ctctgcatcc


1441
cgtccccatc accagcctcc ccctctcctt gctgtcttat gacttcaggg ctgagacaca


1501
atcctcccgg tcccttctgc tgcctttttt accttgtagc tagggctcag ccccctctct


1561
gagtagtggt tcctggccca agttggggaa taggttgata gttgtcaggt ctctgctggc


1621
ccagcgaaat tctatccagc cagttgttgg accctggcac ctacaatgaa atctcaccct


1681
accccacacc ctgtaagatt ctatcttggg ccctcatagg gtccatatcc tccagggcct


1741
actttccttc cattctgcaa agcctgtctg catttatcca ccccccaccc tgtctccctc


1801
tttttttttt ttttacccct ttttatatat caatttccta ttttacaata aaattttgtt


1861
atcacttaaa aaaaaaa










SEQ ID NO: 100 Mouse TP53 isoform a Amino Acid Sequence (NP_035770.2)








1
mtameesqsd islelplsqe tfsglwkllp pedilpsphc mddlllpqdv eeffegpsea


61
lrvsgapaaq dpvtetpgpv apapatpwpl ssfvpsqkty qgnygfhlgf lqsgtaksvm


121
ctyspplnkl fcqlaktcpv qlwvsatppa gsrvramaiy kksqhmtevv rrcphhercs


181
dgdglappqh lirvegnlyp eyledrqtfr hsvvvpyepp eagseyttih ykymcnsscm


241
ggmnrrpilt iitledssgn llgrdsfevr vcacpgrdrr teeenfrkke vlcpelppgs


301
akralptcts asppqkkkpl dgeyftlkir grkrfemfre lnealelkda hateesgdsr


361
ahssylktkk gqstsrhkkt mvkkvgpdsd










SEQ ID NO: 101 Mouse TP53 transcript variant 1 cDNA sequence (NM_0116403;


CDS: 158-1330)








1
tttcccctcc cacgtgctca ccctggctaa agttctgtag cttcagttca ttgggaccat


61
cctggctgta ggtagcgact acagttaggg ggcacctagc attcaggccc tcatcctcct


121
ccttcccagc agggtgtcac gcttctccga agactggatg actgccatgg aggagtcaca


181
gtcggatatc agcctcgagc tccctctgag ccaggagaca ttttcaggct tatggaaact


241
acttcctcca gaagatatcc tgccatcacc tcactgcatg gacgatctgt tgctgcccca


301
ggatgttgag gagttttttg aaggcccaag tgaagccctc cgagtgtcag gagctcctgc


361
agcacaggac cctgtcaccg agacccctgg gccagtggcc cctgccccag ccactccatg


421
gcccctgtca tcttttgtcc cttctcaaaa aacttaccag ggcaactatg gcttccacct


481
gggcttcctg cagtctggga cagccaagtc tgttatgtgc acgtactctc ctcccctcaa


541
taagctattc tgccagctgg cgaagacgtg ccctgtgcag ttgtgggtca gcgccacacc


601
tccagctggg agccgtgtcc gcgccatggc catctacaag aagtcacagc acatgacgga


661
ggtcgtgaga cgctgccccc accatgagcg ctgctccgat ggtgatggcc tggctcctcc


721
ccagcatctt atccgggtgg aaggaaattt gtatcccgag tatctggaag acaggcagac


781
ttttcgccac agcgtggtgg taccttatga gccacccgag gccggctctg agtataccac


841
catccactac aagtacatgt gtaatagctc ctgcatgggg ggcatgaacc gccgacctat


901
ccttaccatc atcacactgg aagactccag tgggaacctt ctgggacggg acagctttga


961
ggttcgtgtt tgtgcctgcc ctgggagaga ccgccgtaca gaagaagaaa atttccgcaa


1021
aaaggaagtc ctttgccctg aactgccccc agggagcgca aagagagcgc tgcccacctg


1081
cacaagcgcc tctcccccgc aaaagaaaaa accacttgat ggagagtatt tcaccctcaa


1141
gatccgcggg cgtaaacgct tcgagatgtt ccgggagctg aatgaggcct tagagttaaa


1201
ggatgcccat gctacagagg agtctggaga cagcagggct cactccagct acctgaagac


1261
caagaagggc cagtctactt cccgccataa aaaaacaatg gtcaagaaag tggggcctga


1321
ctcagactga ctgcctctgc atcccgtccc catcaccagc ctccccctct ccttgctgtc


1381
ttatgacttc agggctgaga cacaatcctc ccggtccctt ctgctgcctt ttttaccttg


1441
tagctagggc tcagccccct ctctgagtag tggttcctgg cccaagttgg ggaataggtt


1501
gatagttgtc aggtctctgc tggcccagcg aaattctatc cagccagttg ttggaccctg


1561
gcacctacaa tgaaatctca ccctacccca caccctgtaa gattctatct tgggccctca


1621
tagggtccat atcctccagg gcctactttc cttccattct gcaaagcctg tctgcattta


1681
tccacccccc accctgtctc cctctttttt ttttttttac ccctttttat atatcaattt


1741
cctattttac aataaaattt tgttatcact taaaaaaaaa a










SEQ ID NO: 102 Human TP73 transcript variant 1 cDNA sequence (NM_005427.4;


CDS: 160-2070)








1
gccctgcctc cccgcccgcg cacccgcccg gaggctcgcg cgcccgcgaa ggggacgcag


61
cgaaaccggg gcccgcgcca ggccagccgg gacggacgcc gatgcccggg gctgcgacgg


121
ctgcagagcg agctgccctc ggaggccggc gtggggaaga tggcccagtc caccgccacc


181
tcccctgatg ggggcaccac gtttgagcac ctctggagct ctctggaacc agacagcacc


241
tacttcgacc ttccccagtc aagccggggg aataatgagg tggtgggcgg aacggattcc


301
agcatggacg tcttccacct ggagggcatg actacatctg tcatggccca gttcaatctg


361
ctgagcagca ccatggacca gatgagcagc cgcgcggcct cggccagccc ctacacccca


421
gagcacgccg ccagcgtgcc cacccactcg ccctacgcac aacccagctc caccttcgac


481
accatgtcgc cggcgcctgt catcccctcc aacaccgact accccggacc ccaccacttt


541
gaggtcactt tccagcagtc cagcacggcc aagtcagcca cctggacgta ctccccgctc


601
ttgaagaaac tctactgcca gatcgccaag acatgcccca tccagatcaa ggtgtccacc


661
ccgccacccc caggcaccgc catccgggcc atgcctgttt acaagaaagc ggagcacgtg


721
accgacgtcg tgaaacgctg ccccaaccac gagctcggga gggacttcaa cgaaggacag


781
tctgctccag ccagccacct catccgcgtg gaaggcaata atctctcgca gtatgtggat


841
gaccctgtca ccggcaggca gagcgtcgtg gtgccctatg agccaccaca ggtggggacg


901
gaattcacca ccatcctgta caacttcatg tgtaacagca gctgtgtagg gggcatgaac


961
cggcggccca tcctcatcat catcaccctg gagatgcggg atgggcaggt gctgggccgc


1021
cggtcctttg agggccgcat ctgcgcctgt cctggccgcg accgaaaagc tgatgaggac


1081
cactaccggg agcagcaggc cctgaacgag agctccgcca agaacggggc cgccagcaag


1141
cgtgccttca agcagagccc ccctgccgtc cccgcccttg gtgccggtgt gaagaagcgg


1201
cggcatggag acgaggacac gtactacctt caggtgcgag gccgggagaa ctttgagatc


1261
ctgatgaagc tgaaagagag cctggagctg atggagttgg tgccgcagcc actggtggac


1321
tcctatcggc agcagcagca gctcctacag aggccgagtc acctacagcc cccgtcctac


1381
gggccggtcc tctcgcccat gaacaaggtg cacgggggca tgaacaagct gccctccgtc


1441
aaccagctgg tgggccagcc tcccccgcac agttcggcag ctacacccaa cctggggccc


1501
gtgggccccg ggatgctcaa caaccatggc cacgcagtgc cagccaacgg cgagatgagc


1561
agcagccaca gcgcccagtc catggtctcg gggtcccact gcactccgcc acccccctac


1621
cacgccgacc ccagcctcgt cagtttttta acaggattgg ggtgtccaaa ctgcatcgag


1681
tatttcacct cccaagggtt acagagcatt taccacctgc agaacctgac cattgaggac


1741
ctgggggccc tgaagatccc cgagcagtac cgcatgacca tctggcgggg cctgcaggac


1801
ctgaagcagg gccacgacta cagcaccgcg cagcagctgc tccgctctag caacgcggcc


1861
accatctcca tcggcggctc aggggaactg cagcgccagc gggtcatgga ggccgtgcac


1921
ttccgcgtgc gccacaccat caccatcccc aaccgcggcg gcccaggcgg cggccctgac


1981
gagtgggcgg acttcggctt cgacctgccc gactgcaagg cccgcaagca gcccatcaag


2041
gaggagttca cggaggccga gatccactga gggcctcgcc tggctgcagc ctgcgccacc


2101
gcccagagac ccaagctgcc tcccctctcc ttcctgtgtg tccaaaactg cctcaggagg


2161
caggaccttc gggctgtgcc cggggaaagg caaggtccgg cccatcccca ggcacctcac


2221
aggccccagg aaaggcccag ccaccgaagc cgcctgtgga cagcctgagt cacctgcaga


2281
accttctgga gctgccctag tgctgggctt gtggggcggg ggctggccca ctctcagccc


2341
tgccactgcc ccggcgtgct ccatggcagg cgtgggtggg gaccgcagcg tcggctccga


2401
cttccaggct tcatcctaga gactgtcatc tcccaaccag gcgaggtcct tccaaaggaa


2461
aggatcctct ttgctgatgg actgccaaaa agtattttgc gacatctttt ggttctggat


2521
agtagtgagc agccaagtga ctgtgtctga aacaccagtg tattttcagg gaatgtccct


2581
aactgcgtct tgcccgcgcc gggggctggg gactctctct gctggacttg ggactggcct


2641
ctgcccccag cacgctgtat tctgcaggac cgcctccttc ctgcccctaa caacaaccac


2701
agtgttgctg aaattggaga aaactgggga gggcgcaacc ccccccaggc gcggggaagc


2761
atgtggtacc gcctcagcca gtgcccctca gcctggccac agtcgcctct cctcggggac


2821
ccctcagcag aaagggacag cctgtcctta gaggactgga aattgtcaat atttgataaa


2881
atgataccct tttctacatg gtgggtcagc tttttttttt ttttttttaa ctttctttct


2941
cagcattctc tttggagttc aacctagcgc ccatgagcca ggctgaggaa gctgagtgag


3001
aagccaggtg ggcgggactt gttcccagga aggccgggtg gggaggaagc ctagagggaa


3061
ccccaggaag ggcaaatcca ggcaaatctg caggaatgct ctgccatggg agcagctcct


3121
cccttgccac ggccaccttc tctagcactg caaggtccac agggcattgc tttcctttct


3181
aggcggtggc agtcagggaa cagactgagg taggtgtagg ggggtctagg ccttcgtgga


3241
gcaccccagg gagttagtag gccccgggga gacagagtct gcacaggccc tttctggggc


3301
cacctccatc cacgaggagc agcctgagcc ttggtggccg aaccttgacc gtcccggagc


3361
acagcttcag ggcagggaac cggagcccct ggggggcctc acgggtgtga cgaggccctt


3421
cattgcaggc aggtgggcca atgggagccc tcacccacgc aagccgagac accacccaga


3481
gtgcaggctg cctggcccct tctggcacgg ccagctccac accccctgcc tagggtatgt


3541
gtggtcctaa gggctaggag cttcccctac taacatctcc cagaaaaagc agttaagccc


3601
ctcagggcac agcaaggtta gacacagccc ccatccccag atcaggactc catcttgcta


3661
agtggcatca ccgtcaccag cctcccctta tttaaaagca gcgactggtg ttgccgcagg


3721
tacctggtct acgaagacgc aggcatccct ctcccaccgt ccacctcccc gggggccgct


3781
gacagcacag tcgcctgggt gcacgcttgt gggggcagca ggaacggggc tgtcggctct


3841
caggggatct ggctgcagcc agggcgaggg cctggccctt ccttccagct ccttccggct


3901
ccttccagct gaagggcagg aagctctggc cgcttagctt ctagggttcc atctccctag


3961
aaaggtgccc acgcccaggg catcagtcag tagcggcagc agcagcagac tcggggcttt


4021
cccagggtgg cgcagccacc ccagctgcat gtcacctcag ctctccatct tattgccatt


4081
ttgtagatga ggaagctgag accagaaagg ctaagaccca tgccccaggc accacaccca


4141
tctcttgggg gctgggcacc tgctacccga ggccacctcc tgaagccccc actcttcccc


4201
catgttccac ttcaggagcc gcgggggccc atcctgacac ccggggttcc tcagcccagc


4261
gcagatgtgc ttcagttcca gagggcttgt tgatttgttt cttaggtacg ttacctgtcc


4321
accctgagtc cagtgaggct gtcccaagag cccctgtagt gtgctcctgg gaagggctgg


4381
gggggctggg ggggctggga gaggcccagg ggcagctgtc actggaaccc cagccagatg


4441
tccaaggaag ccggccagaa cacggagcag ccagatggcc ccagctgcac ctgtctaggg


4501
agcccatgca gcctccttgc actggagaag cagctgtgaa agtagacaga gttgagactt


4561
cgccgtggtc aggagaaaat gcaaattccc aggaacaaga atcctttaag tgatatgttt


4621
ttataaaact aaacaaatca acaaataaat cttgaaggcg gatggttttc ccagcagtgc


4681
aggggttgga gggaggctgc tggcactcct ggggccaagg gggacaggca gtggtcctga


4741
gtctgctcag agaggcaagg cagaaggagc tcgccaggca ggtcagctca catctgtcca


4801
agtcgctctg gtcagaaaca gcgactctcc cccattcccc cagcgttccc accaggcctg


4861
ggctgctggg aagcccttgc tgtacccagg agcccgaccc gcagtatcct ggcacagagc


4921
cacttgtcac tcagaacagt cagtgtctcc aacgcacaaa catccactcc tctgttacca


4981
gttaaagcac tttaatgctt taaggtgaaa acgaaatccc atccgtgttt ttcgtgtaag


5041
atcgtgcttc tccgagcagt attaatggac gccctccaat gacataacaa ctgtttttgg


5101
taatgtaatc ttgggaaaat gtgttatttt tttagctgtg tttcagtggg gatttttgtt


5161
tttgtaacat aataaagtgt atgttccaat ga










SEQ ID NO: 103 Human TP73 isoform 1 amino acid sequence (NP_005418.1)








1
maqstatspd ggttfehlws slepdstyfd lpqssrgnne vvggtdssmd vfhlegmtts


61
vmaqfnllss tmdqmssraa saspytpeha asvpthspya qpsstfdtms papvipsntd


121
ypgphhfevt fqqsstaksa twtyspllkk lycqiaktcp iqikvstppp pgtairampv


181
ykkaehvtdv vkrcpnhelg rdfnegqsap ashlirvegn nlsqyvddpv tgrqsvvvpy


241
eppqvgteft tilynfmcns scvggmnrrp iliiitlemr dgqvlgrrsf egricacpgr


301
drkadedhyr eqqalnessa kngaaskraf kqsppavpal gagvkkrrhg dedtyylqvr


361
grenfeilmk lkeslelmel vpqplvdsyr qqqqllqrps hlqppsygpv lspmnkvhgg


421
mnklpsvnql vgqppphssa atpnlgpvgp gmlnnhghav pangemsssh saqsmvsgsh


481
ctppppyhad pslvsfltgl gcpncieyft sqglqsiyhl qnltiedlga lkipeqyrmt


541
iwrglqdlkq ghdystaqql lrssnaatis iggsgelqrq rvmeavhfrv rhtitipnrg


601
gpgggpdewa dfgfdlpdck arkqpikeef teaeih










SEQ ID NO: 104 Human TP73 transcript variant 2 cDNA sequence


(NM_001126240.3; CDS: 235-1998)








1
ggattcagcc agttgacaga actaagggag atgggaaaag cgaaaatgcc aacaaacggc


61
ccgcatgttc cccagcatcc tcggctcctg cctcactagc tgcggagcct ctcccgctcg


121
gtccacgctg ccgggcggcc acgaccgtga cccttcccct cgggccgccc agatccatgc


181
ctcgtcccac gggacaccag ttccctggcg tgtgcagacc ccccggcgcc taccatgctg


241
tacgtcggtg accccgcacg gcacctcgcc acggcccagt tcaatctgct gagcagcacc


301
atggaccaga tgagcagccg cgcggcctcg gccagcccct acaccccaga gcacgccgcc


361
agcgtgccca cccactcgcc ctacgcacaa cccagctcca ccttcgacac catgtcgccg


421
gcgcctgtca tcccctccaa caccgactac cccggacccc accactttga ggtcactttc


481
cagcagtcca gcacggccaa gtcagccacc tggacgtact ccccgctctt gaagaaactc


541
tactgccaga tcgccaagac atgccccatc cagatcaagg tgtccacccc gccaccccca


601
ggcaccgcca tccgggccat gcctgtttac aagaaagcgg agcacgtgac cgacgtcgtg


661
aaacgctgcc ccaaccacga gctcgggagg gacttcaacg aaggacagtc tgctccagcc


721
agccacctca tccgcgtgga aggcaataat ctctcgcagt atgtggatga ccctgtcacc


781
ggcaggcaga gcgtcgtggt gccctatgag ccaccacagg tggggacgga attcaccacc


841
atcctgtaca acttcatgtg taacagcagc tgtgtagggg gcatgaaccg gcggcccatc


901
ctcatcatca tcaccctgga gatgcgggat gggcaggtgc tgggccgccg gtcctttgag


961
ggccgcatct gcgcctgtcc tggccgcgac cgaaaagctg atgaggacca ctaccgggag


1021
cagcaggccc tgaacgagag ctccgccaag aacggggccg ccagcaagcg tgccttcaag


1081
cagagccccc ctgccgtccc cgcccttggt gccggtgtga agaagcggcg gcatggagac


1141
gaggacacgt actaccttca ggtgcgaggc cgggagaact ttgagatcct gatgaagctg


1201
aaagagagcc tggagctgat ggagttggtg ccgcagccac tggtggactc ctatcggcag


1261
cagcagcagc tcctacagag gccgagtcac ctacagcccc cgtcctacgg gccggtcctc


1321
tcgcccatga acaaggtgca cgggggcatg aacaagctgc cctccgtcaa ccagctggtg


1381
ggccagcctc ccccgcacag ttcggcagct acacccaacc tggggcccgt gggccccggg


1441
atgctcaaca accatggcca cgcagtgcca gccaacggcg agatgagcag cagccacagc


1501
gcccagtcca tggtctcggg gtcccactgc actccgccac ccccctacca cgccgacccc


1561
agcctcgtca gttttttaac aggattgggg tgtccaaact gcatcgagta tttcacctcc


1621
caagggttac agagcattta ccacctgcag aacctgacca ttgaggacct gggggccctg


1681
aagatccccg agcagtaccg catgaccatc tggcggggcc tgcaggacct gaagcagggc


1741
cacgactaca gcaccgcgca gcagctgctc cgctctagca acgcggccac catctccatc


1801
ggcggctcag gggaactgca gcgccagcgg gtcatggagg ccgtgcactt ccgcgtgcgc


1861
cacaccatca ccatccccaa ccgcggcggc ccaggcggcg gccctgacga gtgggcggac


1921
ttcggcttcg acctgcccga ctgcaaggcc cgcaagcagc ccatcaagga ggagttcacg


1981
gaggccgaga tccactgagg gcctcgcctg gctgcagcct gcgccaccgc ccagagaccc


2041
aagctgcctc ccctctcctt cctgtgtgtc caaaactgcc tcaggaggca ggaccttcgg


2101
gctgtgcccg gggaaaggca aggtccggcc catccccagg cacctcacag gccccaggaa


2161
aggcccagcc accgaagccg cctgtggaca gcctgagtca cctgcagaac cttctggagc


2221
tgccctagtg ctgggcttgt ggggcggggg ctggcccact ctcagccctg ccactgcccc


2281
ggcgtgctcc atggcaggcg tgggtgggga ccgcagcgtc ggctccgact tccaggcttc


2341
atcctagaga ctgtcatctc ccaaccaggc gaggtccttc caaaggaaag gatcctcttt


2401
gctgatggac tgccaaaaag tattttgcga catcttttgg ttctggatag tagtgagcag


2461
ccaagtgact gtgtctgaaa caccagtgta ttttcaggga atgtccctaa ctgcgtcttg


2521
cccgcgccgg gggctgggga ctctctctgc tggacttggg actggcctct gcccccagca


2581
cgctgtattc tgcaggaccg cctccttcct gcccctaaca acaaccacag tgttgctgaa


2641
attggagaaa actggggagg gcgcaacccc ccccaggcgc ggggaagcat gtggtaccgc


2701
ctcagccagt gcccctcagc ctggccacag tcgcctctcc tcggggaccc ctcagcagaa


2761
agggacagcc tgtccttaga ggactggaaa ttgtcaatat ttgataaaat gatacccttt


2821
tctacatggt gggtcagctt tttttttttt ttttttaact ttctttctca gcattctctt


2881
tggagttcaa cctagcgccc atgagccagg ctgaggaagc tgagtgagaa gccaggtggg


2941
cgggacttgt tcccaggaag gccgggtggg gaggaagcct agagggaacc ccaggaaggg


3001
caaatccagg caaatctgca ggaatgctct gccatgggag cagctcctcc cttgccacgg


3061
ccaccttctc tagcactgca aggtccacag ggcattgctt tcctttctag gcggtggcag


3121
tcagggaaca gactgaggta ggtgtagggg ggtctaggcc ttcgtggagc accccaggga


3181
gttagtaggc cccggggaga cagagtctgc acaggccctt tctggggcca cctccatcca


3241
cgaggagcag cctgagcctt ggtggccgaa ccttgaccgt cccggagcac agcttcaggg


3301
cagggaaccg gagcccctgg ggggcctcac gggtgtgacg aggcccttca ttgcaggcag


3361
gtgggccaat gggagccctc acccacgcaa gccgagacac cacccagagt gcaggctgcc


3421
tggccccttc tggcacggcc agctccacac cccctgccta gggtatgtgt ggtcctaagg


3481
gctaggagct tcccctacta acatctccca gaaaaagcag ttaagcccct cagggcacag


3541
caaggttaga cacagccccc atccccagat caggactcca tcttgctaag tggcatcacc


3601
gtcaccagcc tccccttatt taaaagcagc gactggtgtt gccgcaggta cctggtctac


3661
gaagacgcag gcatccctct cccaccgtcc acctccccgg gggccgctga cagcacagtc


3721
gcctgggtgc acgcttgtgg gggcagcagg aacggggctg tcggctctca ggggatctgg


3781
ctgcagccag ggcgagggcc tggcccttcc ttccagctcc ttccggctcc ttccagctga


3841
agggcaggaa gctctggccg cttagcttct agggttccat ctccctagaa aggtgcccac


3901
gcccagggca tcagtcagta gcggcagcag cagcagactc ggggctttcc cagggtggcg


3961
cagccacccc agctgcatgt cacctcagct ctccatctta ttgccatttt gtagatgagg


4021
aagctgagac cagaaaggct aagacccatg ccccaggcac cacacccatc tcttgggggc


4081
tgggcacctg ctacccgagg ccacctcctg aagcccccac tcttccccca tgttccactt


4141
caggagccgc gggggcccat cctgacaccc ggggttcctc agcccagcgc agatgtgctt


4201
cagttccaga gggcttgttg atttgtttct taggtacgtt acctgtccac cctgagtcca


4261
gtgaggctgt cccaagagcc cctgtagtgt gctcctggga agggctgggg gggctggggg


4321
ggctgggaga ggcccagggg cagctgtcac tggaacccca gccagatgtc caaggaagcc


4381
ggccagaaca cggagcagcc agatggcccc agctgcacct gtctagggag cccatgcagc


4441
ctccttgcac tggagaagca gctgtgaaag tagacagagt tgagacttcg ccgtggtcag


4501
gagaaaatgc aaattcccag gaacaagaat cctttaagtg atatgttttt ataaaactaa


4561
acaaatcaac aaataaatct tgaaggcgga tggttttccc agcagtgcag gggttggagg


4621
gaggctgctg gcactcctgg ggccaagggg gacaggcagt ggtcctgagt ctgctcagag


4681
aggcaaggca gaaggagctc gccaggcagg tcagctcaca tctgtccaag tcgctctggt


4741
cagaaacagc gactctcccc cattccccca gcgttcccac caggcctggg ctgctgggaa


4801
gcccttgctg tacccaggag cccgacccgc agtatcctgg cacagagcca cttgtcactc


4861
agaacagtca gtgtctccaa cgcacaaaca tccactcctc tgttaccagt taaagcactt


4921
taatgcttta aggtgaaaac gaaatcccat ccgtgttttt cgtgtaagat cgtgcttctc


4981
cgagcagtat taatggacgc cctccaatga cataacaact gtttttggta atgtaatctt


5041
gggaaaatgt gttatttttt tagctgtgtt tcagtgggga tttttgtttt tgtaacataa


5101
taaagtgtat gttccaatga










SEQ ID NO: 105 Human TP73 isoform 2 amino acid sequence (NP_001119712.1)








1
mlyvgdparh lataqfnils stmdqmssra asaspytpeh aasvpthspy aqpsstfdtm


61
spapvipsnt dypgphhfev tfqqsstaks atwtyspllk klycqiaktc piqikvstpp


121
ppgtairamp vykkaehvtd vvkrcpnhel grdfnegqsa pashlirveg nnlsqyvddp


181
vtgrqsvvvp yeppqvgtef ttilynfmcn sscvggmnrr piliiitlem rdgqvlgrrs


241
fegricacpg rdrkadedhy reqqalness akngaaskra fkqsppavpa lgagvkkrrh


301
gdedtyylqv rgrenfeilm klkeslelme lvpqplvdsy rqqqqllqrp shlqppsygp


361
vlspmnkvhg gmnklpsvnq lvgqppphss aatpnlgpvg pgmlnnhgha vpangemsss


421
hsaqsmvsgs hctppppyha dpslvsfltg lgcpncieyf tsqglqsiyh lqnitiedlg


481
alkipeqyrm tiwrglqdlk qghdystaqq llrssnaati siggsgelqr qrvmeavhfr


541
vrhtitipnr ggpgggpdew adfgfdlpdc karkqpikee fteaeih










SEQ ID NO: 106 Human TP73 transcript variant 3 cDNA sequence


(NM_001126241.3; CDS: 235-1587)








1
ggattcagcc agttgacaga actaagggag atgggaaaag cgaaaatgcc aacaaacggc


61
ccgcatgttc cccagcatcc tcggctcctg cctcactagc tgcggagcct ctcccgctcg


121
gtccacgctg ccgggcggcc acgaccgtga cccttcccct cgggccgccc agatccatgc


181
ctcgtcccac gggacaccag ttccctggcg tgtgcagacc ccccggcgcc taccatgctg


241
tacgtcggtg accccgcacg gcacctcgcc acggcccagt tcaatctgct gagcagcacc


301
atggaccaga tgagcagccg cgcggcctcg gccagcccct acaccccaga gcacgccgcc


361
agcgtgccca cccactcgcc ctacgcacaa cccagctcca ccttcgacac catgtcgccg


421
gcgcctgtca tcccctccaa caccgactac cccggacccc accactttga ggtcactttc


481
cagcagtcca gcacggccaa gtcagccacc tggacgtact ccccgctctt gaagaaactc


541
tactgccaga tcgccaagac atgccccatc cagatcaagg tgtccacccc gccaccccca


601
ggcaccgcca tccgggccat gcctgtttac aagaaagcgg agcacgtgac cgacgtcgtg


661
aaacgctgcc ccaaccacga gctcgggagg gacttcaacg aaggacagtc tgctccagcc


721
agccacctca tccgcgtgga aggcaataat ctctcgcagt atgtggatga ccctgtcacc


781
ggcaggcaga gcgtcgtggt gccctatgag ccaccacagg tggggacgga attcaccacc


841
atcctgtaca acttcatgtg taacagcagc tgtgtagggg gcatgaaccg gcggcccatc


901
ctcatcatca tcaccctgga gatgcgggat gggcaggtgc tgggccgccg gtcctttgag


961
ggccgcatct gcgcctgtcc tggccgcgac cgaaaagctg atgaggacca ctaccgggag


1021
cagcaggccc tgaacgagag ctccgccaag aacggggccg ccagcaagcg tgccttcaag


1081
cagagccccc ctgccgtccc cgcccttggt gccggtgtga agaagcggcg gcatggagac


1141
gaggacacgt actaccttca ggtgcgaggc cgggagaact ttgagatcct gatgaagctg


1201
aaagagagcc tggagctgat ggagttggtg ccgcagccac tggtggactc ctatcggcag


1261
cagcagcagc tcctacagag gccgagtcac ctacagcccc cgtcctacgg gccggtcctc


1321
tcgcccatga acaaggtgca cgggggcatg aacaagctgc cctccgtcaa ccagctggtg


1381
ggccagcctc ccccgcacag ttcggcagct acacccaacc tggggcccgt gggccccggg


1441
atgctcaaca accatggcca cgcagtgcca gccaacggcg agatgagcag cagccacagc


1501
gcccagtcca tggtctcggg gtcccactgc actccgccac ccccctacca cgccgacccc


1561
agcctcgtca ggacctgggg gccctgaaga tccccgagca gtaccgcatg accatctggc


1621
ggggcctgca ggacctgaag cagggccacg actacagcac cgcgcagcag ctgctccgct


1681
ctagcaacgc ggccaccatc tccatcggcg gctcagggga actgcagcgc cagcgggtca


1741
tggaggccgt gcacttccgc gtgcgccaca ccatcaccat ccccaaccgc ggcggcccag


1801
gcggcggccc tgacgagtgg gcggacttcg gcttcgacct gcccgactgc aaggcccgca


1861
agcagcccat caaggaggag ttcacggagg ccgagatcca ctgagggcct cgcctggctg


1921
cagcctgcgc caccgcccag agacccaagc tgcctcccct ctccttcctg tgtgtccaaa


1981
actgcctcag gaggcaggac cttcgggctg tgcccgggga aaggcaaggt ccggcccatc


2041
cccaggcacc tcacaggccc caggaaaggc ccagccaccg aagccgcctg tggacagcct


2101
gagtcacctg cagaaccttc tggagctgcc ctagtgctgg gcttgtgggg cgggggctgg


2161
cccactctca gccctgccac tgccccggcg tgctccatgg caggcgtggg tggggaccgc


2221
agcgtcggct ccgacttcca ggcttcatcc tagagactgt catctcccaa ccaggcgagg


2281
tccttccaaa ggaaaggatc ctctttgctg atggactgcc aaaaagtatt ttgcgacatc


2341
ttttggttct ggatagtagt gagcagccaa gtgactgtgt ctgaaacacc agtgtatttt


2401
cagggaatgt ccctaactgc gtcttgcccg cgccgggggc tggggactct ctctgctgga


2461
cttgggactg gcctctgccc ccagcacgct gtattctgca ggaccgcctc cttcctgccc


2521
ctaacaacaa ccacagtgtt gctgaaattg gagaaaactg gggagggcgc aacccccccc


2581
aggcgcgggg aagcatgtgg taccgcctca gccagtgccc ctcagcctgg ccacagtcgc


2641
ctctcctcgg ggacccctca gcagaaaggg acagcctgtc cttagaggac tggaaattgt


2701
caatatttga taaaatgata cccttttcta catggtgggt cagctttttt tttttttttt


2761
ttaactttct ttctcagcat tctctttgga gttcaaccta gcgcccatga gccaggctga


2821
ggaagctgag tgagaagcca ggtgggcggg acttgttccc aggaaggccg ggtggggagg


2881
aagcctagag ggaaccccag gaagggcaaa tccaggcaaa tctgcaggaa tgctctgcca


2941
tgggagcagc tcctcccttg ccacggccac cttctctagc actgcaaggt ccacagggca


3001
ttgctttcct ttctaggcgg tggcagtcag ggaacagact gaggtaggtg taggggggtc


3061
taggccttcg tggagcaccc cagggagtta gtaggccccg gggagacaga gtctgcacag


3121
gccctttctg gggccacctc catccacgag gagcagcctg agccttggtg gccgaacctt


3181
gaccgtcccg gagcacagct tcagggcagg gaaccggagc ccctgggggg cctcacgggt


3241
gtgacgaggc ccttcattgc aggcaggtgg gccaatggga gccctcaccc acgcaagccg


3301
agacaccacc cagagtgcag gctgcctggc cccttctggc acggccagct ccacaccccc


3361
tgcctagggt atgtgtggtc ctaagggcta ggagcttccc ctactaacat ctcccagaaa


3421
aagcagttaa gcccctcagg gcacagcaag gttagacaca gcccccatcc ccagatcagg


3481
actccatctt gctaagtggc atcaccgtca ccagcctccc cttatttaaa agcagcgact


3541
ggtgttgccg caggtacctg gtctacgaag acgcaggcat ccctctccca ccgtccacct


3601
ccccgggggc cgctgacagc acagtcgcct gggtgcacgc ttgtgggggc agcaggaacg


3661
gggctgtcgg ctctcagggg atctggctgc agccagggcg agggcctggc ccttccttcc


3721
agctccttcc ggctccttcc agctgaaggg caggaagctc tggccgctta gcttctaggg


3781
ttccatctcc ctagaaaggt gcccacgccc agggcatcag tcagtagcgg cagcagcagc


3841
agactcgggg ctttcccagg gtggcgcagc caccccagct gcatgtcacc tcagctctcc


3901
atcttattgc cattttgtag atgaggaagc tgagaccaga aaggctaaga cccatgcccc


3961
aggcaccaca cccatctctt gggggctggg cacctgctac ccgaggccac ctcctgaagc


4021
ccccactctt cccccatgtt ccacttcagg agccgcgggg gcccatcctg acacccgggg


4081
ttcctcagcc cagcgcagat gtgcttcagt tccagagggc ttgttgattt gtttcttagg


4141
tacgttacct gtccaccctg agtccagtga ggctgtccca agagcccctg tagtgtgctc


4201
ctgggaaggg ctgggggggc tgggggggct gggagaggcc caggggcagc tgtcactgga


4261
accccagcca gatgtccaag gaagccggcc agaacacgga gcagccagat ggccccagct


4321
gcacctgtct agggagccca tgcagcctcc ttgcactgga gaagcagctg tgaaagtaga


4381
cagagttgag acttcgccgt ggtcaggaga aaatgcaaat tcccaggaac aagaatcctt


4441
taagtgatat gtttttataa aactaaacaa atcaacaaat aaatcttgaa ggcggatggt


4501
tttcccagca gtgcaggggt tggagggagg ctgctggcac tcctggggcc aagggggaca


4561
ggcagtggtc ctgagtctgc tcagagaggc aaggcagaag gagctcgcca ggcaggtcag


4621
ctcacatctg tccaagtcgc tctggtcaga aacagcgact ctcccccatt cccccagcgt


4681
tcccaccagg cctgggctgc tgggaagccc ttgctgtacc caggagcccg acccgcagta


4741
tcctggcaca gagccacttg tcactcagaa cagtcagtgt ctccaacgca caaacatcca


4801
ctcctctgtt accagttaaa gcactttaat gctttaaggt gaaaacgaaa tcccatccgt


4861
gtttttcgtg taagatcgtg cttctccgag cagtattaat ggacgccctc caatgacata


4921
acaactgttt ttggtaatgt aatcttggga aaatgtgtta tttttttagc tgtgtttcag


4981
tggggatttt tgtttttgta acataataaa gtgtatgttc caatga










SEQ ID NO: 107 Human TP73 isoform 3 amino acid sequence (NP_001119713.1)








1
mlyvgdparh lataqfnlls stmdqmssra asaspytpeh aasvpthspy aqpsstfdtm


61
spapvipsnt dypgphhfev tfqqsstaks atwtyspllk klycqiaktc piqikvstpp


121
ppgtairamp vykkaehvtd vvkrcpnhel grdfnegqsa pashlirveg nnlsqyvddp


181
vtgrqsvvvp yeppqvgtef ttilynfmcn sscvggmnrr piliiitlem rdgqvlgrrs


241
fegricacpg rdrkadedhy reqqalness akngaaskra fkqsppavpa lgagvkkrrh


301
gdedtyylqv rgrenfeilm klkeslelme lvpqplvdsy rqqqqllqrp shlqppsygp


361
vlspmnkvhg gmnklpsvnq lvgqppphss aatpnlgpvg pgmlnnhgha vpangemsss


421
hsaqsmvsgs hctppppyha dpslvrtwgp










SEQ ID NO: 108 Human TP73 transcript variant 4 cDNA sequence


(NM_001126242.3; CDS: 235-1515)








1
ggattcagcc agttgacaga actaagggag atgggaaaag cgaaaatgcc aacaaacggc


61
ccgcatgttc cccagcatcc tcggctcctg cctcactagc tgcggagcct ctcccgctcg


121
gtccacgctg ccgggcggcc acgaccgtga cccttcccct cgggccgccc agatccatgc


181
ctcgtcccac gggacaccag ttccctggcg tgtgcagacc ccccggcgcc taccatgctg


241
tacgtcggtg accccgcacg gcacctcgcc acggcccagt tcaatctgct gagcagcacc


301
atggaccaga tgagcagccg cgcggcctcg gccagcccct acaccccaga gcacgccgcc


361
agcgtgccca cccactcgcc ctacgcacaa cccagctcca ccttcgacac catgtcgccg


421
gcgcctgtca tcccctccaa caccgactac cccggacccc accactttga ggtcactttc


481
cagcagtcca gcacggccaa gtcagccacc tggacgtact ccccgctctt gaagaaactc


541
tactgccaga tcgccaagac atgccccatc cagatcaagg tgtccacccc gccaccccca


601
ggcaccgcca tccgggccat gcctgtttac aagaaagcgg agcacgtgac cgacgtcgtg


661
aaacgctgcc ccaaccacga gctcgggagg gacttcaacg aaggacagtc tgctccagcc


721
agccacctca tccgcgtgga aggcaataat ctctcgcagt atgtggatga ccctgtcacc


781
ggcaggcaga gcgtcgtggt gccctatgag ccaccacagg tggggacgga attcaccacc


841
atcctgtaca acttcatgtg taacagcagc tgtgtagggg gcatgaaccg gcggcccatc


901
ctcatcatca tcaccctgga gatgcgggat gggcaggtgc tgggccgccg gtcctttgag


961
ggccgcatct gcgcctgtcc tggccgcgac cgaaaagctg atgaggacca ctaccgggag


1021
cagcaggccc tgaacgagag ctccgccaag aacggggccg ccagcaagcg tgccttcaag


1081
cagagccccc ctgccgtccc cgcccttggt gccggtgtga agaagcggcg gcatggagac


1141
gaggacacgt actaccttca ggtgcgaggc cgggagaact ttgagatcct gatgaagctg


1201
aaagagagcc tggagctgat ggagttggtg ccgcagccac tggtggactc ctatcggcag


1261
cagcagcagc tcctacagag gccgccccgg gatgctcaac aaccatggcc acgcagtgcc


1321
agccaacggc gagatgagca gcagccacag cgcccagtcc atggtctcgg ggtcccactg


1381
cactccgcca cccccctacc acgccgaccc cagcctcgtc agttttttaa caggattggg


1441
gtgtccaaac tgcatcgagt atttcacctc ccaagggtta cagagcattt accacctgca


1501
gaacctgacc attgaggacc tgggggccct gaagatcccc gagcagtacc gcatgaccat


1561
ctggcggggc ctgcaggacc tgaagcaggg ccacgactac agcaccgcgc agcagctgct


1621
ccgctctagc aacgcggcca ccatctccat cggcggctca ggggaactgc agcgccagcg


1681
ggtcatggag gccgtgcact tccgcgtgcg ccacaccatc accatcccca accgcggcgg


1741
cccaggcggc ggccctgacg agtgggcgga cttcggcttc gacctgcccg actgcaaggc


1801
ccgcaagcag cccatcaagg aggagttcac ggaggccgag atccactgag ggcctcgcct


1861
ggctgcagcc tgcgccaccg cccagagacc caagctgcct cccctctcct tcctgtgtgt


1921
ccaaaactgc ctcaggaggc aggaccttcg ggctgtgccc ggggaaaggc aaggtccggc


1981
ccatccccag gcacctcaca ggccccagga aaggcccagc caccgaagcc gcctgtggac


2041
agcctgagtc acctgcagaa ccttctggag ctgccctagt gctgggcttg tggggcgggg


2101
gctggcccac tctcagccct gccactgccc cggcgtgctc catggcaggc gtgggtgggg


2161
accgcagcgt cggctccgac ttccaggctt catcctagag actgtcatct cccaaccagg


2221
cgaggtcctt ccaaaggaaa ggatcctctt tgctgatgga ctgccaaaaa gtattttgcg


2281
acatcttttg gttctggata gtagtgagca gccaagtgac tgtgtctgaa acaccagtgt


2341
attttcaggg aatgtcccta actgcgtctt gcccgcgccg ggggctgggg actctctctg


2401
ctggacttgg gactggcctc tgcccccagc acgctgtatt ctgcaggacc gcctccttcc


2461
tgcccctaac aacaaccaca gtgttgctga aattggagaa aactggggag ggcgcaaccc


2521
cccccaggcg cggggaagca tgtggtaccg cctcagccag tgcccctcag cctggccaca


2581
gtcgcctctc ctcggggacc cctcagcaga aagggacagc ctgtccttag aggactggaa


2641
attgtcaata tttgataaaa tgataccctt ttctacatgg tgggtcagct tttttttttt


2701
tttttttaac tttctttctc agcattctct ttggagttca acctagcgcc catgagccag


2761
gctgaggaag ctgagtgaga agccaggtgg gcgggacttg ttcccaggaa ggccgggtgg


2821
ggaggaagcc tagagggaac cccaggaagg gcaaatccag gcaaatctgc aggaatgctc


2881
tgccatggga gcagctcctc ccttgccacg gccaccttct ctagcactgc aaggtccaca


2941
gggcattgct ttcctttcta ggcggtggca gtcagggaac agactgaggt aggtgtaggg


3001
gggtctaggc cttcgtggag caccccaggg agttagtagg ccccggggag acagagtctg


3061
cacaggccct ttctggggcc acctccatcc acgaggagca gcctgagcct tggtggccga


3121
accttgaccg tcccggagca cagcttcagg gcagggaacc ggagcccctg gggggcctca


3181
cgggtgtgac gaggcccttc attgcaggca ggtgggccaa tgggagccct cacccacgca


3241
agccgagaca ccacccagag tgcaggctgc ctggcccctt ctggcacggc cagctccaca


3301
ccccctgcct agggtatgtg tggtcctaag ggctaggagc ttcccctact aacatctccc


3361
agaaaaagca gttaagcccc tcagggcaca gcaaggttag acacagcccc catccccaga


3421
tcaggactcc atcttgctaa gtggcatcac cgtcaccagc ctccccttat ttaaaagcag


3481
cgactggtgt tgccgcaggt acctggtcta cgaagacgca ggcatccctc tcccaccgtc


3541
cacctccccg ggggccgctg acagcacagt cgcctgggtg cacgcttgtg ggggcagcag


3601
gaacggggct gtcggctctc aggggatctg gctgcagcca gggcgagggc ctggcccttc


3661
cttccagctc cttccggctc cttccagctg aagggcagga agctctggcc gcttagcttc


3721
tagggttcca tctccctaga aaggtgccca cgcccagggc atcagtcagt agcggcagca


3781
gcagcagact cggggctttc ccagggtggc gcagccaccc cagctgcatg tcacctcagc


3841
tctccatctt attgccattt tgtagatgag gaagctgaga ccagaaaggc taagacccat


3901
gccccaggca ccacacccat ctcttggggg ctgggcacct gctacccgag gccacctcct


3961
gaagccccca ctcttccccc atgttccact tcaggagccg cgggggccca tcctgacacc


4021
cggggttcct cagcccagcg cagatgtgct tcagttccag agggcttgtt gatttgtttc


4081
ttaggtacgt tacctgtcca ccctgagtcc agtgaggctg tcccaagagc ccctgtagtg


4141
tgctcctggg aagggctggg ggggctgggg gggctgggag aggcccaggg gcagctgtca


4201
ctggaacccc agccagatgt ccaaggaagc cggccagaac acggagcagc cagatggccc


4261
cagctgcacc tgtctaggga gcccatgcag cctccttgca ctggagaagc agctgtgaaa


4321
gtagacagag ttgagacttc gccgtggtca ggagaaaatg caaattccca ggaacaagaa


4381
tcctttaagt gatatgtttt tataaaacta aacaaatcaa caaataaatc ttgaaggcgg


4441
atggttttcc cagcagtgca ggggttggag ggaggctgct ggcactcctg gggccaaggg


4501
ggacaggcag tggtcctgag tctgctcaga gaggcaaggc agaaggagct cgccaggcag


4561
gtcagctcac atctgtccaa gtcgctctgg tcagaaacag cgactctccc ccattccccc


4621
agcgttccca ccaggcctgg gctgctggga agcccttgct gtacccagga gcccgacccg


4681
cagtatcctg gcacagagcc acttgtcact cagaacagtc agtgtctcca acgcacaaac


4741
atccactcct ctgttaccag ttaaagcact ttaatgcttt aaggtgaaaa cgaaatccca


4801
tccgtgtttt tcgtgtaaga tcgtgcttct ccgagcagta ttaatggacg ccctccaatg


4861
acataacaac tgtttttggt aatgtaatct tgggaaaatg tgttattttt ttagctgtgt


4921
ttcagtgggg atttttgttt ttgtaacata ataaagtgta tgttccaatg a










SEQ ID NO: 109 Human TP73 isoform 4 amino acid sequence (NP_001119714.1)








1
mlyvgdparh lataqfnlls stmdqmssra asaspytpeh aasvpthspy aqpsstfdtm


61
spapvipsnt dypgphhfev tfqqsstaks atwtyspllk klycqiaktc piqikvstpp


121
ppgtairamp vykkaehvtd vvkrcpnhel grdfnegqsa pashlirveg nnlsqyvddp


181
vtgrqsvvvp yeppqvgtef ttilynfmcn sscvggmnrr piliiitlem rdgqvlgrrs


241
fegricacpg rdrkadedhy reqqalness akngaaskra fkqsppavpa lgagvkkrrh


301
gdedtyylqv rgrenfeilm klkesleime ivpqpivdsy rqqqqllqrp prdaqqpwpr


361
sasqrrdeqq pqrpvhglgv plhsatplpr rpqprqffnr igvsklhrvf hlprvtehlp


421
paepdh










SEQ ID NO: 110 Human TP73 transcript variant 5 cDNA sequence


(NM_001204189.2; CDS: 235-1299)








1
ggattcagcc agttgacaga actaagggag atgggaaaag cgaaaatgcc aacaaacggc


61
ccgcatgttc cccagcatcc tcggctcctg cctcactagc tgcggagcct ctcccgctcg


121
gtccacgctg ccgggcggcc acgaccgtga cccttcccct cgggccgccc agatccatgc


181
ctcgtcccac gggacaccag ttccctggcg tgtgcagacc ccccggcgcc taccatgctg


241
tacgtcggtg accccgcacg gcacctcgcc acggcccagt tcaatctgct gagcagcacc


301
atggaccaga tgagcagccg cgcggcctcg gccagcccct acaccccaga gcacgccgcc


361
agcgtgccca cccactcgcc ctacgcacaa cccagctcca ccttcgacac catgtcgccg


421
gcgcctgtca tcccctccaa caccgactac cccggacccc accactttga ggtcactttc


481
cagcagtcca gcacggccaa gtcagccacc tggacgtact ccccgctctt gaagaaactc


541
tactgccaga tcgccaagac atgccccatc cagatcaagg tgtccacccc gccaccccca


601
ggcaccgcca tccgggccat gcctgtttac aagaaagcgg agcacgtgac cgacgtcgtg


661
aaacgctgcc ccaaccacga gctcgggagg gacttcaacg aaggacagtc tgctccagcc


721
agccacctca tccgcgtgga aggcaataat ctctcgcagt atgtggatga ccctgtcacc


781
ggcaggcaga gcgtcgtggt gccctatgag ccaccacagg tggggacgga attcaccacc


841
atcctgtaca acttcatgtg taacagcagc tgtgtagggg gcatgaaccg gcggcccatc


901
ctcatcatca tcaccctgga gatgcgggat gggcaggtgc tgggccgccg gtcctttgag


961
ggccgcatct gcgcctgtcc tggccgcgac cgaaaagctg atgaggacca ctaccgggag


1021
cagcaggccc tgaacgagag ctccgccaag aacggggccg ccagcaagcg tgccttcaag


1081
cagagccccc ctgccgtccc cgcccttggt gccggtgtga agaagcggcg gcatggagac


1141
gaggacacgt actaccttca ggtgcgaggc cgggagaact ttgagatcct gatgaagctg


1201
aaagagagcc tggagctgat ggagttggtg ccgcagccac tggtggactc ctatcggcag


1261
cagcagcagc tcctacagag gccgacctgg gggccctgaa gatccccgag cagtaccgca


1321
tgaccatctg gcggggcctg caggacctga agcagggcca cgactacagc accgcgcagc


1381
agctgctccg ctctagcaac gcggccacca tctccatcgg cggctcaggg gaactgcagc


1441
gccagcgggt catggaggcc gtgcacttcc gcgtgcgcca caccatcacc atccccaacc


1501
gcggcggccc aggcggcggc cctgacgagt gggcggactt cggcttcgac ctgcccgact


1561
gcaaggcccg caagcagccc atcaaggagg agttcacgga ggccgagatc cactgagggc


1621
ctcgcctggc tgcagcctgc gccaccgccc agagacccaa gctgcctccc ctctccttcc


1681
tgtgtgtcca aaactgcctc aggaggcagg accttcgggc tgtgcccggg gaaaggcaag


1741
gtccggccca tccccaggca cctcacaggc cccaggaaag gcccagccac cgaagccgcc


1801
tgtggacagc ctgagtcacc tgcagaacct tctggagctg ccctagtgct gggcttgtgg


1861
ggcgggggct ggcccactct cagccctgcc actgccccgg cgtgctccat ggcaggcgtg


1921
ggtggggacc gcagcgtcgg ctccgacttc caggcttcat cctagagact gtcatctccc


1981
aaccaggcga ggtccttcca aaggaaagga tcctctttgc tgatggactg ccaaaaagta


2041
ttttgcgaca tcttttggtt ctggatagta gtgagcagcc aagtgactgt gtctgaaaca


2101
ccagtgtatt ttcagggaat gtccctaact gcgtcttgcc cgcgccgggg gctggggact


2161
ctctctgctg gacttgggac tggcctctgc ccccagcacg ctgtattctg caggaccgcc


2221
tccttcctgc ccctaacaac aaccacagtg ttgctgaaat tggagaaaac tggggagggc


2281
gcaacccccc ccaggcgcgg ggaagcatgt ggtaccgcct cagccagtgc ccctcagcct


2341
ggccacagtc gcctctcctc ggggacccct cagcagaaag ggacagcctg tccttagagg


2401
actggaaatt gtcaatattt gataaaatga tacccttttc tacatggtgg gtcagctttt


2461
tttttttttt ttttaacttt ctttctcagc attctctttg gagttcaacc tagcgcccat


2521
gagccaggct gaggaagctg agtgagaagc caggtgggcg ggacttgttc ccaggaaggc


2581
cgggtgggga ggaagcctag agggaacccc aggaagggca aatccaggca aatctgcagg


2641
aatgctctgc catgggagca gctcctccct tgccacggcc accttctcta gcactgcaag


2701
gtccacaggg cattgctttc ctttctaggc ggtggcagtc agggaacaga ctgaggtagg


2761
tgtagggggg tctaggcctt cgtggagcac cccagggagt tagtaggccc cggggagaca


2821
gagtctgcac aggccctttc tggggccacc tccatccacg aggagcagcc tgagccttgg


2881
tggccgaacc ttgaccgtcc cggagcacag cttcagggca gggaaccgga gcccctgggg


2941
ggcctcacgg gtgtgacgag gcccttcatt gcaggcaggt gggccaatgg gagccctcac


3001
ccacgcaagc cgagacacca cccagagtgc aggctgcctg gccccttctg gcacggccag


3061
ctccacaccc cctgcctagg gtatgtgtgg tcctaagggc taggagcttc ccctactaac


3121
atctcccaga aaaagcagtt aagcccctca gggcacagca aggttagaca cagcccccat


3181
ccccagatca ggactccatc ttgctaagtg gcatcaccgt caccagcctc cccttattta


3241
aaagcagcga ctggtgttgc cgcaggtacc tggtctacga agacgcaggc atccctctcc


3301
caccgtccac ctccccgggg gccgctgaca gcacagtcgc ctgggtgcac gcttgtgggg


3361
gcagcaggaa cggggctgtc ggctctcagg ggatctggct gcagccaggg cgagggcctg


3421
gcccttcctt ccagctcctt ccggctcctt ccagctgaag ggcaggaagc tctggccgct


3481
tagcttctag ggttccatct ccctagaaag gtgcccacgc ccagggcatc agtcagtagc


3541
ggcagcagca gcagactcgg ggctttccca gggtggcgca gccaccccag ctgcatgtca


3601
cctcagctct ccatcttatt gccattttgt agatgaggaa gctgagacca gaaaggctaa


3661
gacccatgcc ccaggcacca cacccatctc ttgggggctg ggcacctgct acccgaggcc


3721
acctcctgaa gcccccactc ttcccccatg ttccacttca ggagccgcgg gggcccatcc


3781
tgacacccgg ggttcctcag cccagcgcag atgtgcttca gttccagagg gcttgttgat


3841
ttgtttctta ggtacgttac ctgtccaccc tgagtccagt gaggctgtcc caagagcccc


3901
tgtagtgtgc tcctgggaag ggctgggggg gctggggggg ctgggagagg cccaggggca


3961
gctgtcactg gaaccccagc cagatgtcca aggaagccgg ccagaacacg gagcagccag


4021
atggccccag ctgcacctgt ctagggagcc catgcagcct ccttgcactg gagaagcagc


4081
tgtgaaagta gacagagttg agacttcgcc gtggtcagga gaaaatgcaa attcccagga


4141
acaagaatcc tttaagtgat atgtttttat aaaactaaac aaatcaacaa ataaatcttg


4201
aaggcggatg gttttcccag cagtgcaggg gttggaggga ggctgctggc actcctgggg


4261
ccaaggggga caggcagtgg tcctgagtct gctcagagag gcaaggcaga aggagctcgc


4321
caggcaggtc agctcacatc tgtccaagtc gctctggtca gaaacagcga ctctccccca


4381
ttcccccagc gttcccacca ggcctgggct gctgggaagc ccttgctgta cccaggagcc


4441
cgacccgcag tatcctggca cagagccact tgtcactcag aacagtcagt gtctccaacg


4501
cacaaacatc cactcctctg ttaccagtta aagcacttta atgctttaag gtgaaaacga


4561
aatcccatcc gtgtttttcg tgtaagatcg tgcttctccg agcagtatta atggacgccc


4621
tccaatgaca taacaactgt ttttggtaat gtaatcttgg gaaaatgtgt tattttttta


4681
gctgtgtttc agtggggatt tttgtttttg taacataata aagtgtatgt tccaatga










SEQ ID NO: 111 Human TP73 isoform 5 amino acid sequence (NP_001191118.1)








1
mlyvgdparh lataqfnlls stmdqmssra asaspytpeh aasvpthspy aqpsstfdtm


61
spapvipsnt dypgphhfev tfqqsstaks atwtyspllk klycqiaktc piqikvstpp


121
ppgtairamp vykkaehvtd vvkrcpnhel grdfnegqsa pashlirveg nnlsqyvddp


181
vtgrqsvvvp yeppqvgtef ttilynfmcn sscvggmnrr piliiitlem rdgqvlgrrs


241
fegricacpg rdrkadedhy reqqalness akngaaskra fkqsppavpa lgagvkkrrh


301
gdedtyylqv rgrenfeilm klkeslelme lvpqplvdsy rqqqqllqrp twgp










SEQ ID NO: 112 Human TP73 transcript variant 6 cDNA sequence


(NM_001204190.2; CDS: 235-1755)








1
ggattcagcc agttgacaga actaagggag atgggaaaag cgaaaatgcc aacaaacggc


61
ccgcatgttc cccagcatcc tcggctcctg cctcactagc tgcggagcct ctcccgctcg


121
gtccacgctg ccgggcggcc acgaccgtga cccttcccct cgggccgccc agatccatgc


181
ctcgtcccac gggacaccag ttccctggcg tgtgcagacc ccccggcgcc taccatgctg


241
tacgtcggtg accccgcacg gcacctcgcc acggcccagt tcaatctgct gagcagcacc


301
atggaccaga tgagcagccg cgcggcctcg gccagcccct acaccccaga gcacgccgcc


361
agcgtgccca cccactcgcc ctacgcacaa cccagctcca ccttcgacac catgtcgccg


421
gcgcctgtca tcccctccaa caccgactac cccggacccc accactttga ggtcactttc


481
cagcagtcca gcacggccaa gtcagccacc tggacgtact ccccgctctt gaagaaactc


541
tactgccaga tcgccaagac atgccccatc cagatcaagg tgtccacccc gccaccccca


601
ggcaccgcca tccgggccat gcctgtttac aagaaagcgg agcacgtgac cgacgtcgtg


661
aaacgctgcc ccaaccacga gctcgggagg gacttcaacg aaggacagtc tgctccagcc


721
agccacctca tccgcgtgga aggcaataat ctctcgcagt atgtggatga ccctgtcacc


781
ggcaggcaga gcgtcgtggt gccctatgag ccaccacagg tggggacgga attcaccacc


841
atcctgtaca acttcatgtg taacagcagc tgtgtagggg gcatgaaccg gcggcccatc


901
ctcatcatca tcaccctgga gatgcgggat gggcaggtgc tgggccgccg gtcctttgag


961
ggccgcatct gcgcctgtcc tggccgcgac cgaaaagctg atgaggacca ctaccgggag


1021
cagcaggccc tgaacgagag ctccgccaag aacggggccg ccagcaagcg tgccttcaag


1081
cagagccccc ctgccgtccc cgcccttggt gccggtgtga agaagcggcg gcatggagac


1141
gaggacacgt actaccttca ggtgcgaggc cgggagaact ttgagatcct gatgaagctg


1201
aaagagagcc tggagctgat ggagttggtg ccgcagccac tggtggactc ctatcggcag


1261
cagcagcagc tcctacagag gccgccccgg gatgctcaac aaccatggcc acgcagtgcc


1321
agccaacggc gagatgagca gcagccacag cgcccagtcc atggtctcgg ggtcccactg


1381
cactccgcca cccccctacc acgccgaccc cagcctcgtc aggacctggg ggccctgaag


1441
atccccgagc agtaccgcat gaccatctgg cggggcctgc aggacctgaa gcagggccac


1501
gactacagca ccgcgcagca gctgctccgc tctagcaacg cggccaccat ctccatcggc


1561
ggctcagggg aactgcagcg ccagcgggtc atggaggccg tgcacttccg cgtgcgccac


1621
accatcacca tccccaaccg cggcggccca ggcggcggcc ctgacgagtg ggcggacttc


1681
ggcttcgacc tgcccgactg caaggcccgc aagcagccca tcaaggagga gttcacggag


1741
gccgagatcc actgagggcc tcgcctggct gcagcctgcg ccaccgccca gagacccaag


1801
ctgcctcccc tctccttcct gtgtgtccaa aactgcctca ggaggcagga ccttcgggct


1861
gtgcccgggg aaaggcaagg tccggcccat ccccaggcac ctcacaggcc ccaggaaagg


1921
cccagccacc gaagccgcct gtggacagcc tgagtcacct gcagaacctt ctggagctgc


1981
cctagtgctg ggcttgtggg gcgggggctg gcccactctc agccctgcca ctgccccggc


2041
gtgctccatg gcaggcgtgg gtggggaccg cagcgtcggc tccgacttcc aggcttcatc


2101
ctagagactg tcatctccca accaggcgag gtccttccaa aggaaaggat cctctttgct


2161
gatggactgc caaaaagtat tttgcgacat cttttggttc tggatagtag tgagcagcca


2221
agtgactgtg tctgaaacac cagtgtattt tcagggaatg tccctaactg cgtcttgccc


2281
gcgccggggg ctggggactc tctctgctgg acttgggact ggcctctgcc cccagcacgc


2341
tgtattctgc aggaccgcct ccttcctgcc cctaacaaca accacagtgt tgctgaaatt


2401
ggagaaaact ggggagggcg caaccccccc caggcgcggg gaagcatgtg gtaccgcctc


2461
agccagtgcc cctcagcctg gccacagtcg cctctcctcg gggacccctc agcagaaagg


2521
gacagcctgt ccttagagga ctggaaattg tcaatatttg ataaaatgat acccttttct


2581
acatggtggg tcagcttttt tttttttttt tttaactttc tttctcagca ttctctttgg


2641
agttcaacct agcgcccatg agccaggctg aggaagctga gtgagaagcc aggtgggcgg


2701
gacttgttcc caggaaggcc gggtggggag gaagcctaga gggaacccca ggaagggcaa


2761
atccaggcaa atctgcagga atgctctgcc atgggagcag ctcctccctt gccacggcca


2821
ccttctctag cactgcaagg tccacagggc attgctttcc tttctaggcg gtggcagtca


2881
gggaacagac tgaggtaggt gtaggggggt ctaggccttc gtggagcacc ccagggagtt


2941
agtaggcccc ggggagacag agtctgcaca ggccctttct ggggccacct ccatccacga


3001
ggagcagcct gagccttggt ggccgaacct tgaccgtccc ggagcacagc ttcagggcag


3061
ggaaccggag cccctggggg gcctcacggg tgtgacgagg cccttcattg caggcaggtg


3121
ggccaatggg agccctcacc cacgcaagcc gagacaccac ccagagtgca ggctgcctgg


3181
ccccttctgg cacggccagc tccacacccc ctgcctaggg tatgtgtggt cctaagggct


3241
aggagcttcc cctactaaca tctcccagaa aaagcagtta agcccctcag ggcacagcaa


3301
ggttagacac agcccccatc cccagatcag gactccatct tgctaagtgg catcaccgtc


3361
accagcctcc ccttatttaa aagcagcgac tggtgttgcc gcaggtacct ggtctacgaa


3421
gacgcaggca tccctctccc accgtccacc tccccggggg ccgctgacag cacagtcgcc


3481
tgggtgcacg cttgtggggg cagcaggaac ggggctgtcg gctctcaggg gatctggctg


3541
cagccagggc gagggcctgg cccttccttc cagctccttc cggctccttc cagctgaagg


3601
gcaggaagct ctggccgctt agcttctagg gttccatctc cctagaaagg tgcccacgcc


3661
cagggcatca gtcagtagcg gcagcagcag cagactcggg gctttcccag ggtggcgcag


3721
ccaccccagc tgcatgtcac ctcagctctc catcttattg ccattttgta gatgaggaag


3781
ctgagaccag aaaggctaag acccatgccc caggcaccac acccatctct tgggggctgg


3841
gcacctgcta cccgaggcca cctcctgaag cccccactct tcccccatgt tccacttcag


3901
gagccgcggg ggcccatcct gacacccggg gttcctcagc ccagcgcaga tgtgcttcag


3961
ttccagaggg cttgttgatt tgtttcttag gtacgttacc tgtccaccct gagtccagtg


4021
aggctgtccc aagagcccct gtagtgtgct cctgggaagg gctggggggg ctgggggggc


4081
tgggagaggc ccaggggcag ctgtcactgg aaccccagcc agatgtccaa ggaagccggc


4141
cagaacacgg agcagccaga tggccccagc tgcacctgtc tagggagccc atgcagcctc


4201
cttgcactgg agaagcagct gtgaaagtag acagagttga gacttcgccg tggtcaggag


4261
aaaatgcaaa ttcccaggaa caagaatcct ttaagtgata tgtttttata aaactaaaca


4321
aatcaacaaa taaatcttga aggcggatgg ttttcccagc agtgcagggg ttggagggag


4381
gctgctggca ctcctggggc caagggggac aggcagtggt cctgagtctg ctcagagagg


4441
caaggcagaa ggagctcgcc aggcaggtca gctcacatct gtccaagtcg ctctggtcag


4501
aaacagcgac tctcccccat tcccccagcg ttcccaccag gcctgggctg ctgggaagcc


4561
cttgctgtac ccaggagccc gacccgcagt atcctggcac agagccactt gtcactcaga


4621
acagtcagtg tctccaacgc acaaacatcc actcctctgt taccagttaa agcactttaa


4681
tgctttaagg tgaaaacgaa atcccatccg tgtttttcgt gtaagatcgt gcttctccga


4741
gcagtattaa tggacgccct ccaatgacat aacaactgtt tttggtaatg taatcttggg


4801
aaaatgtgtt atttttttag ctgtgtttca gtggggattt ttgtttttgt aacataataa


4861
agtgtatgtt ccaatga










SEQ ID NO: 113 Human TP73 isoform 6 amino acid sequence (NP_001191119.1)








1
mlyvgdparh lataqfnlls stmdqmssra asaspytpeh aasvpthspy aqpsstfdtm


61
spapvipsnt dypgphhfev tfqqsstaks atwtyspllk klycqiaktc piqikvstpp


121
ppgtairamp vykkaehvtd vvkrcpnhel grdfnegqsa pashlirveg nnlsqyvddp


181
vtgrqsvvvp yeppqvgtef ttilynfmcn sscvggmnrr piliiitlem rdgqvlgrrs


241
fegricacpg rdrkadedhy reqqalness akngaaskra fkqsppavpa lgagvkkrrh


301
gdedtyylqv rgrenfeilm klkesleime lvpqplvdsy rqqqqllqrp prdaqqpwpr


361
sasqrrdeqq pqrpvhglgv plhsatplpr rpqprqdlga lkipeqyrmt iwrglqdlkq


421
ghdystaqql lrssnaatis iggsgelqrq rvmeavhfrv rhtitipnrg gpgggpdewa


481
dfgfdlpdck arkqpikeef teaeih










SEQ ID NO: 114 Human TP73 transcript variant 7 cDNA sequence


(NM_001204191.2; CDS: 235-1710)








1
ggattcagcc agttgacaga actaagggag atgggaaaag cgaaaatgcc aacaaacggc


61
ccgcatgttc cccagcatcc tcggctcctg cctcactagc tgcggagcct ctcccgctcg


121
gtccacgctg ccgggcggcc acgaccgtga cccttcccct cgggccgccc agatccatgc


181
ctcgtcccac gggacaccag ttccctggcg tgtgcagacc ccccggcgcc taccatgctg


241
tacgtcggtg accccgcacg gcacctcgcc acggcccagt tcaatctgct gagcagcacc


301
atggaccaga tgagcagccg cgcggcctcg gccagcccct acaccccaga gcacgccgcc


361
agcgtgccca cccactcgcc ctacgcacaa cccagctcca ccttcgacac catgtcgccg


421
gcgcctgtca tcccctccaa caccgactac cccggacccc accactttga ggtcactttc


481
cagcagtcca gcacggccaa gtcagccacc tggacgtact ccccgctctt gaagaaactc


541
tactgccaga tcgccaagac atgccccatc cagatcaagg tgtccacccc gccaccccca


601
ggcaccgcca tccgggccat gcctgtttac aagaaagcgg agcacgtgac cgacgtcgtg


661
aaacgctgcc ccaaccacga gctcgggagg gacttcaacg aaggacagtc tgctccagcc


721
agccacctca tccgcgtgga aggcaataat ctctcgcagt atgtggatga ccctgtcacc


781
ggcaggcaga gcgtcgtggt gccctatgag ccaccacagg tggggacgga attcaccacc


841
atcctgtaca acttcatgtg taacagcagc tgtgtagggg gcatgaaccg gcggcccatc


901
ctcatcatca tcaccctgga gatgcgggat gggcaggtgc tgggccgccg gtcctttgag


961
ggccgcatct gcgcctgtcc tggccgcgac cgaaaagctg atgaggacca ctaccgggag


1021
cagcaggccc tgaacgagag ctccgccaag aacggggccg ccagcaagcg tgccttcaag


1081
cagagccccc ctgccgtccc cgcccttggt gccggtgtga agaagcggcg gcatggagac


1141
gaggacacgt actaccttca ggtgcgaggc cgggagaact ttgagatcct gatgaagctg


1201
aaagagagcc tggagctgat ggagttggtg ccgcagccac tggtggactc ctatcggcag


1261
cagcagcagc tcctacagag gcctttttta acaggattgg ggtgtccaaa ctgcatcgag


1321
tatttcacct cccaagggtt acagagcatt taccacctgc agaacctgac cattgaggac


1381
ctgggggccc tgaagatccc cgagcagtac cgcatgacca tctggcgggg cctgcaggac


1441
ctgaagcagg gccacgacta cagcaccgcg cagcagctgc tccgctctag caacgcggcc


1501
accatctcca tcggcggctc aggggaactg cagcgccagc gggtcatgga ggccgtgcac


1561
ttccgcgtgc gccacaccat caccatcccc aaccgcggcg gcccaggcgg cggccctgac


1621
gagtgggcgg acttcggctt cgacctgccc gactgcaagg cccgcaagca gcccatcaag


1681
gaggagttca cggaggccga gatccactga gggcctcgcc tggctgcagc ctgcgccacc


1741
gcccagagac ccaagctgcc tcccctctcc ttcctgtgtg tccaaaactg cctcaggagg


1801
caggaccttc gggctgtgcc cggggaaagg caaggtccgg cccatcccca ggcacctcac


1861
aggccccagg aaaggcccag ccaccgaagc cgcctgtgga cagcctgagt cacctgcaga


1921
accttctgga gctgccctag tgctgggctt gtggggcggg ggctggccca ctctcagccc


1981
tgccactgcc ccggcgtgct ccatggcagg cgtgggtggg gaccgcagcg tcggctccga


2041
cttccaggct tcatcctaga gactgtcatc tcccaaccag gcgaggtcct tccaaaggaa


2101
aggatcctct ttgctgatgg actgccaaaa agtattttgc gacatctttt ggttctggat


2161
agtagtgagc agccaagtga ctgtgtctga aacaccagtg tattttcagg gaatgtccct


2221
aactgcgtct tgcccgcgcc gggggctggg gactctctct gctggacttg ggactggcct


2281
ctgcccccag cacgctgtat tctgcaggac cgcctccttc ctgcccctaa caacaaccac


2341
agtgttgctg aaattggaga aaactgggga gggcgcaacc ccccccaggc gcggggaagc


2401
atgtggtacc gcctcagcca gtgcccctca gcctggccac agtcgcctct cctcggggac


2461
ccctcagcag aaagggacag cctgtcctta gaggactgga aattgtcaat atttgataaa


2521
atgataccct tttctacatg gtgggtcagc tttttttttt ttttttttaa ctttctttct


2581
cagcattctc tttggagttc aacctagcgc ccatgagcca ggctgaggaa gctgagtgag


2641
aagccaggtg ggcgggactt gttcccagga aggccgggtg gggaggaagc ctagagggaa


2701
ccccaggaag ggcaaatcca ggcaaatctg caggaatgct ctgccatggg agcagctcct


2761
cccttgccac ggccaccttc tctagcactg caaggtccac agggcattgc tttcctttct


2821
aggcggtggc agtcagggaa cagactgagg taggtgtagg ggggtctagg ccttcgtgga


2881
gcaccccagg gagttagtag gccccgggga gacagagtct gcacaggccc tttctggggc


2941
cacctccatc cacgaggagc agcctgagcc ttggtggccg aaccttgacc gtcccggagc


3001
acagcttcag ggcagggaac cggagcccct ggggggcctc acgggtgtga cgaggccctt


3061
cattgcaggc aggtgggcca atgggagccc tcacccacgc aagccgagac accacccaga


3121
gtgcaggctg cctggcccct tctggcacgg ccagctccac accccctgcc tagggtatgt


3181
gtggtcctaa gggctaggag cttcccctac taacatctcc cagaaaaagc agttaagccc


3241
ctcagggcac agcaaggtta gacacagccc ccatccccag atcaggactc catcttgcta


3301
agtggcatca ccgtcaccag cctcccctta tttaaaagca gcgactggtg ttgccgcagg


3361
tacctggtct acgaagacgc aggcatccct ctcccaccgt ccacctcccc gggggccgct


3421
gacagcacag tcgcctgggt gcacgcttgt gggggcagca ggaacggggc tgtcggctct


3481
caggggatct ggctgcagcc agggcgaggg cctggccctt ccttccagct ccttccggct


3541
ccttccagct gaagggcagg aagctctggc cgcttagctt ctagggttcc atctccctag


3601
aaaggtgccc acgcccaggg catcagtcag tagcggcagc agcagcagac tcggggcttt


3661
cccagggtgg cgcagccacc ccagctgcat gtcacctcag ctctccatct tattgccatt


3721
ttgtagatga ggaagctgag accagaaagg ctaagaccca tgccccaggc accacaccca


3781
tctcttgggg gctgggcacc tgctacccga ggccacctcc tgaagccccc actcttcccc


3841
catgttccac ttcaggagcc gcgggggccc atcctgacac ccggggttcc tcagcccagc


3901
gcagatgtgc ttcagttcca gagggcttgt tgatttgttt cttaggtacg ttacctgtcc


3961
accctgagtc cagtgaggct gtcccaagag cccctgtagt gtgctcctgg gaagggctgg


4021
gggggctggg ggggctggga gaggcccagg ggcagctgtc actggaaccc cagccagatg


4081
tccaaggaag ccggccagaa cacggagcag ccagatggcc ccagctgcac ctgtctaggg


4141
agcccatgca gcctccttgc actggagaag cagctgtgaa agtagacaga gttgagactt


4201
cgccgtggtc aggagaaaat gcaaattccc aggaacaaga atcctttaag tgatatgttt


4261
ttataaaact aaacaaatca acaaataaat cttgaaggcg gatggttttc ccagcagtgc


4321
aggggttgga gggaggctgc tggcactcct ggggccaagg gggacaggca gtggtcctga


4381
gtctgctcag agaggcaagg cagaaggagc tcgccaggca ggtcagctca catctgtcca


4441
agtcgctctg gtcagaaaca gcgactctcc cccattcccc cagcgttccc accaggcctg


4501
ggctgctggg aagcccttgc tgtacccagg agcccgaccc gcagtatcct ggcacagagc


4561
cacttgtcac tcagaacagt cagtgtctcc aacgcacaaa catccactcc tctgttacca


4621
gttaaagcac tttaatgctt taaggtgaaa acgaaatccc atccgtgttt ttcgtgtaag


4681
atcgtgcttc tccgagcagt attaatggac gccctccaat gacataacaa ctgtttttgg


4741
taatgtaatc ttgggaaaat gtgttatttt tttagctgtg tttcagtggg gatttttgtt


4801
tttgtaacat aataaagtgt atgttccaat ga










SEQ ID NO: 115 Human TP73 isoform 7 amino acid sequence (NP_001191120.1)








1
mlyvgdparh lataqfnlls stmdqmssra asaspytpeh aasvpthspy aqpsstfdtm


61
spapvipsnt dypgphhfev tfqqsstaks atwtyspllk klycqiaktc piqikvstpp


121
ppgtairamp vykkaehvtd vvkrcpnhel grdfnegqsa pashlirveg nnlsqyvddp


181
vtgrqsvvvp yeppqvgtef ttilynfmcn sscvggmnrr piliiitlem rdgqvlgrrs


241
fegricacpg rdrkadedhy reqqalness akngaaskra fkqsppavpa lgagvkkrrh


301
gdedtyylqv rgrenfeilm klkesleime lvpqplvdsy rqqqqllqrp fltglgcpnc


361
ieyftsqglq siyhlqnlti edlgalkipe qyrmtiwrgl qdlkqghdys taqqllrssn


421
aatisiggsg elqrqrvmea vhfrvrhtit ipnrggpggg pdewadfgfd lpdckarkqp


481
ikeefteaei h










SEQ ID NO: 116 Human TP73 transcript variant 8 cDNA sequence


(NM_001204184.2; CDS: 160-1659)








1
gccctgcctc cccgcccgcg cacccgcccg gaggctcgcg cgcccgcgaa ggggacgcag


61
cgaaaccggg gcccgcgcca ggccagccgg gacggacgcc gatgcccggg gctgcgacgg


121
ctgcagagcg agctgccctc ggaggccggc gtggggaaga tggcccagtc caccgccacc


181
tcccctgatg ggggcaccac gtttgagcac ctctggagct ctctggaacc agacagcacc


241
tacttcgacc ttccccagtc aagccggggg aataatgagg tggtgggcgg aacggattcc


301
agcatggacg tcttccacct ggagggcatg actacatctg tcatggccca gttcaatctg


361
ctgagcagca ccatggacca gatgagcagc cgcgcggcct cggccagccc ctacacccca


421
gagcacgccg ccagcgtgcc cacccactcg ccctacgcac aacccagctc caccttcgac


481
accatgtcgc cggcgcctgt catcccctcc aacaccgact accccggacc ccaccacttt


541
gaggtcactt tccagcagtc cagcacggcc aagtcagcca cctggacgta ctccccgctc


601
ttgaagaaac tctactgcca gatcgccaag acatgcccca tccagatcaa ggtgtccacc


661
ccgccacccc caggcaccgc catccgggcc atgcctgttt acaagaaagc ggagcacgtg


721
accgacgtcg tgaaacgctg ccccaaccac gagctcggga gggacttcaa cgaaggacag


781
tctgctccag ccagccacct catccgcgtg gaaggcaata atctctcgca gtatgtggat


841
gaccctgtca ccggcaggca gagcgtcgtg gtgccctatg agccaccaca ggtggggacg


901
gaattcacca ccatcctgta caacttcatg tgtaacagca gctgtgtagg gggcatgaac


961
cggcggccca tcctcatcat catcaccctg gagatgcggg atgggcaggt gctgggccgc


1021
cggtcctttg agggccgcat ctgcgcctgt cctggccgcg accgaaaagc tgatgaggac


1081
cactaccggg agcagcaggc cctgaacgag agctccgcca agaacggggc cgccagcaag


1141
cgtgccttca agcagagccc ccctgccgtc cccgcccttg gtgccggtgt gaagaagcgg


1201
cggcatggag acgaggacac gtactacctt caggtgcgag gccgggagaa ctttgagatc


1261
ctgatgaagc tgaaagagag cctggagctg atggagttgg tgccgcagcc actggtggac


1321
tcctatcggc agcagcagca gctcctacag aggccgagtc acctacagcc cccgtcctac


1381
gggccggtcc tctcgcccat gaacaaggtg cacgggggca tgaacaagct gccctccgtc


1441
aaccagctgg tgggccagcc tcccccgcac agttcggcag ctacacccaa cctggggccc


1501
gtgggccccg ggatgctcaa caaccatggc cacgcagtgc cagccaacgg cgagatgagc


1561
agcagccaca gcgcccagtc catggtctcg gggtcccact gcactccgcc acccccctac


1621
cacgccgacc ccagcctcgt caggacctgg gggccctgaa gatccccgag cagtaccgca


1681
tgaccatctg gcggggcctg caggacctga agcagggcca cgactacagc accgcgcagc


1741
agctgctccg ctctagcaac gcggccacca tctccatcgg cggctcaggg gaactgcagc


1801
gccagcgggt catggaggcc gtgcacttcc gcgtgcgcca caccatcacc atccccaacc


1861
gcggcggccc aggcggcggc cctgacgagt gggcggactt cggcttcgac ctgcccgact


1921
gcaaggcccg caagcagccc atcaaggagg agttcacgga ggccgagatc cactgagggc


1981
ctcgcctggc tgcagcctgc gccaccgccc agagacccaa gctgcctccc ctctccttcc


2041
tgtgtgtcca aaactgcctc aggaggcagg accttcgggc tgtgcccggg gaaaggcaag


2101
gtccggccca tccccaggca cctcacaggc cccaggaaag gcccagccac cgaagccgcc


2161
tgtggacagc ctgagtcacc tgcagaacct tctggagctg ccctagtgct gggcttgtgg


2221
ggcgggggct ggcccactct cagccctgcc actgccccgg cgtgctccat ggcaggcgtg


2281
ggtggggacc gcagcgtcgg ctccgacttc caggcttcat cctagagact gtcatctccc


2341
aaccaggcga ggtccttcca aaggaaagga tcctctttgc tgatggactg ccaaaaagta


2401
ttttgcgaca tcttttggtt ctggatagta gtgagcagcc aagtgactgt gtctgaaaca


2461
ccagtgtatt ttcagggaat gtccctaact gcgtcttgcc cgcgccgggg gctggggact


2521
ctctctgctg gacttgggac tggcctctgc ccccagcacg ctgtattctg caggaccgcc


2581
tccttcctgc ccctaacaac aaccacagtg ttgctgaaat tggagaaaac tggggagggc


2641
gcaacccccc ccaggcgcgg ggaagcatgt ggtaccgcct cagccagtgc ccctcagcct


2701
ggccacagtc gcctctcctc ggggacccct cagcagaaag ggacagcctg tccttagagg


2761
actggaaatt gtcaatattt gataaaatga tacccttttc tacatggtgg gtcagctttt


2821
tttttttttt ttttaacttt ctttctcagc attctctttg gagttcaacc tagcgcccat


2881
gagccaggct gaggaagctg agtgagaagc caggtgggcg ggacttgttc ccaggaaggc


2941
cgggtgggga ggaagcctag agggaacccc aggaagggca aatccaggca aatctgcagg


3001
aatgctctgc catgggagca gctcctccct tgccacggcc accttctcta gcactgcaag


3061
gtccacaggg cattgctttc ctttctaggc ggtggcagtc agggaacaga ctgaggtagg


3121
tgtagggggg tctaggcctt cgtggagcac cccagggagt tagtaggccc cggggagaca


3181
gagtctgcac aggccctttc tggggccacc tccatccacg aggagcagcc tgagccttgg


3241
tggccgaacc ttgaccgtcc cggagcacag cttcagggca gggaaccgga gcccctgggg


3301
ggcctcacgg gtgtgacgag gcccttcatt gcaggcaggt gggccaatgg gagccctcac


3361
ccacgcaagc cgagacacca cccagagtgc aggctgcctg gccccttctg gcacggccag


3421
ctccacaccc cctgcctagg gtatgtgtgg tcctaagggc taggagcttc ccctactaac


3481
atctcccaga aaaagcagtt aagcccctca gggcacagca aggttagaca cagcccccat


3541
ccccagatca ggactccatc ttgctaagtg gcatcaccgt caccagcctc cccttattta


3601
aaagcagcga ctggtgttgc cgcaggtacc tggtctacga agacgcaggc atccctctcc


3661
caccgtccac ctccccgggg gccgctgaca gcacagtcgc ctgggtgcac gcttgtgggg


3721
gcagcaggaa cggggctgtc ggctctcagg ggatctggct gcagccaggg cgagggcctg


3781
gcccttcctt ccagctcctt ccggctcctt ccagctgaag ggcaggaagc tctggccgct


3841
tagcttctag ggttccatct ccctagaaag gtgcccacgc ccagggcatc agtcagtagc


3901
ggcagcagca gcagactcgg ggctttccca gggtggcgca gccaccccag ctgcatgtca


3961
cctcagctct ccatcttatt gccattttgt agatgaggaa gctgagacca gaaaggctaa


4021
gacccatgcc ccaggcacca cacccatctc ttgggggctg ggcacctgct acccgaggcc


4081
acctcctgaa gcccccactc ttcccccatg ttccacttca ggagccgcgg gggcccatcc


4141
tgacacccgg ggttcctcag cccagcgcag atgtgcttca gttccagagg gcttgttgat


4201
ttgtttctta ggtacgttac ctgtccaccc tgagtccagt gaggctgtcc caagagcccc


4261
tgtagtgtgc tcctgggaag ggctgggggg gctggggggg ctgggagagg cccaggggca


4321
gctgtcactg gaaccccagc cagatgtcca aggaagccgg ccagaacacg gagcagccag


4381
atggccccag ctgcacctgt ctagggagcc catgcagcct ccttgcactg gagaagcagc


4441
tgtgaaagta gacagagttg agacttcgcc gtggtcagga gaaaatgcaa attcccagga


4501
acaagaatcc tttaagtgat atgtttttat aaaactaaac aaatcaacaa ataaatcttg


4561
aaggcggatg gttttcccag cagtgcaggg gttggaggga ggctgctggc actcctgggg


4621
ccaaggggga caggcagtgg tcctgagtct gctcagagag gcaaggcaga aggagctcgc


4681
caggcaggtc agctcacatc tgtccaagtc gctctggtca gaaacagcga ctctccccca


4741
ttcccccagc gttcccacca ggcctgggct gctgggaagc ccttgctgta cccaggagcc


4801
cgacccgcag tatcctggca cagagccact tgtcactcag aacagtcagt gtctccaacg


4861
cacaaacatc cactcctctg ttaccagtta aagcacttta atgctttaag gtgaaaacga


4921
aatcccatcc gtgtttttcg tgtaagatcg tgcttctccg agcagtatta atggacgccc


4981
tccaatgaca taacaactgt ttttggtaat gtaatcttgg gaaaatgtgt tattttttta


5041
gctgtgtttc agtggggatt tttgtttttg taacataata aagtgtatgt tccaatga










SEQ ID NO: 117 Human TP73 isoform 8 amino acid sequence (NP_001191113.1)








1
maqstatspd ggttfehlws slepdstyfd lpqssrgnne vvggtdssmd vfhlegmtts


61
vmaqfnllss tmdqmssraa saspytpeha asvpthspya qpsstfdtms papvipsntd


121
ypgphhfevt fqqsstaksa twtyspllkk lycqiaktcp iqikvstppp pgtairampv


181
ykkaehvtdv vkrcpnhelg rdfnegqsap ashlirvegn nlsqyvddpv tgrqsvvvpy


241
eppqvgteft tilynfmcns scvggmnrrp iliiitlemr dgqvlgrrsf egricacpgr


301
drkadedhyr eqqalnessa kngaaskraf kqsppavpal gagvkkrrhg dedtyylqvr


361
grenfeilmk lkeslelmel vpqplvdsyr qqqqllqrps hlqppsygpv lspmnkvhgg


421
mnklpsvnql vgqppphssa atpnlgpvgp gmlnnhghav pangemsssh saqsmvsgsh


481
ctppppyhad pslvrtwgp










SEQ ID NO: 118 Human TP73 transcript variant 9 cDNA sequence


(NM_001204185.2; CDS: 160-1587)








1
gccctgcctc cccgcccgcg cacccgcccg gaggctcgcg cgcccgcgaa ggggacgcag


61
cgaaaccggg gcccgcgcca ggccagccgg gacggacgcc gatgcccggg gctgcgacgg


121
ctgcagagcg agctgccctc ggaggccggc gtggggaaga tggcccagtc caccgccacc


181
tcccctgatg ggggcaccac gtttgagcac ctctggagct ctctggaacc agacagcacc


241
tacttcgacc ttccccagtc aagccggggg aataatgagg tggtgggcgg aacggattcc


301
agcatggacg tcttccacct ggagggcatg actacatctg tcatggccca gttcaatctg


361
ctgagcagca ccatggacca gatgagcagc cgcgcggcct cggccagccc ctacacccca


421
gagcacgccg ccagcgtgcc cacccactcg ccctacgcac aacccagctc caccttcgac


481
accatgtcgc cggcgcctgt catcccctcc aacaccgact accccggacc ccaccacttt


541
gaggtcactt tccagcagtc cagcacggcc aagtcagcca cctggacgta ctccccgctc


601
ttgaagaaac tctactgcca gatcgccaag acatgcccca tccagatcaa ggtgtccacc


661
ccgccacccc caggcaccgc catccgggcc atgcctgttt acaagaaagc ggagcacgtg


721
accgacgtcg tgaaacgctg ccccaaccac gagctcggga gggacttcaa cgaaggacag


781
tctgctccag ccagccacct catccgcgtg gaaggcaata atctctcgca gtatgtggat


841
gaccctgtca ccggcaggca gagcgtcgtg gtgccctatg agccaccaca ggtggggacg


901
gaattcacca ccatcctgta caacttcatg tgtaacagca gctgtgtagg gggcatgaac


961
cggcggccca tcctcatcat catcaccctg gagatgcggg atgggcaggt gctgggccgc


1021
cggtcctttg agggccgcat ctgcgcctgt cctggccgcg accgaaaagc tgatgaggac


1081
cactaccggg agcagcaggc cctgaacgag agctccgcca agaacggggc cgccagcaag


1141
cgtgccttca agcagagccc ccctgccgtc cccgcccttg gtgccggtgt gaagaagcgg


1201
cggcatggag acgaggacac gtactacctt caggtgcgag gccgggagaa ctttgagatc


1261
ctgatgaagc tgaaagagag cctggagctg atggagttgg tgccgcagcc actggtggac


1321
tcctatcggc agcagcagca gctcctacag aggccgcccc gggatgctca acaaccatgg


1381
ccacgcagtg ccagccaacg gcgagatgag cagcagccac agcgcccagt ccatggtctc


1441
ggggtcccac tgcactccgc caccccccta ccacgccgac cccagcctcg tcagtttttt


1501
aacaggattg gggtgtccaa actgcatcga gtatttcacc tcccaagggt tacagagcat


1561
ttaccacctg cagaacctga ccattgagga cctgggggcc ctgaagatcc ccgagcagta


1621
ccgcatgacc atctggcggg gcctgcagga cctgaagcag ggccacgact acagcaccgc


1681
gcagcagctg ctccgctcta gcaacgcggc caccatctcc atcggcggct caggggaact


1741
gcagcgccag cgggtcatgg aggccgtgca cttccgcgtg cgccacacca tcaccatccc


1801
caaccgcggc ggcccaggcg gcggccctga cgagtgggcg gacttcggct tcgacctgcc


1861
cgactgcaag gcccgcaagc agcccatcaa ggaggagttc acggaggccg agatccactg


1921
agggcctcgc ctggctgcag cctgcgccac cgcccagaga cccaagctgc ctcccctctc


1981
cttcctgtgt gtccaaaact gcctcaggag gcaggacctt cgggctgtgc ccggggaaag


2041
gcaaggtccg gcccatcccc aggcacctca caggccccag gaaaggccca gccaccgaag


2101
ccgcctgtgg acagcctgag tcacctgcag aaccttctgg agctgcccta gtgctgggct


2161
tgtggggcgg gggctggccc actctcagcc ctgccactgc cccggcgtgc tccatggcag


2221
gcgtgggtgg ggaccgcagc gtcggctccg acttccaggc ttcatcctag agactgtcat


2281
ctcccaacca ggcgaggtcc ttccaaagga aaggatcctc tttgctgatg gactgccaaa


2341
aagtattttg cgacatcttt tggttctgga tagtagtgag cagccaagtg actgtgtctg


2401
aaacaccagt gtattttcag ggaatgtccc taactgcgtc ttgcccgcgc cgggggctgg


2461
ggactctctc tgctggactt gggactggcc tctgccccca gcacgctgta ttctgcagga


2521
ccgcctcctt cctgccccta acaacaacca cagtgttgct gaaattggag aaaactgggg


2581
agggcgcaac cccccccagg cgcggggaag catgtggtac cgcctcagcc agtgcccctc


2641
agcctggcca cagtcgcctc tcctcgggga cccctcagca gaaagggaca gcctgtcctt


2701
agaggactgg aaattgtcaa tatttgataa aatgataccc ttttctacat ggtgggtcag


2761
cttttttttt ttttttttta actttctttc tcagcattct ctttggagtt caacctagcg


2821
cccatgagcc aggctgagga agctgagtga gaagccaggt gggcgggact tgttcccagg


2881
aaggccgggt ggggaggaag cctagaggga accccaggaa gggcaaatcc aggcaaatct


2941
gcaggaatgc tctgccatgg gagcagctcc tcccttgcca cggccacctt ctctagcact


3001
gcaaggtcca cagggcattg ctttcctttc taggcggtgg cagtcaggga acagactgag


3061
gtaggtgtag gggggtctag gccttcgtgg agcaccccag ggagttagta ggccccgggg


3121
agacagagtc tgcacaggcc ctttctgggg ccacctccat ccacgaggag cagcctgagc


3181
cttggtggcc gaaccttgac cgtcccggag cacagcttca gggcagggaa ccggagcccc


3241
tggggggcct cacgggtgtg acgaggccct tcattgcagg caggtgggcc aatgggagcc


3301
ctcacccacg caagccgaga caccacccag agtgcaggct gcctggcccc ttctggcacg


3361
gccagctcca caccccctgc ctagggtatg tgtggtccta agggctagga gcttccccta


3421
ctaacatctc ccagaaaaag cagttaagcc cctcagggca cagcaaggtt agacacagcc


3481
cccatcccca gatcaggact ccatcttgct aagtggcatc accgtcacca gcctcccctt


3541
atttaaaagc agcgactggt gttgccgcag gtacctggtc tacgaagacg caggcatccc


3601
tctcccaccg tccacctccc cgggggccgc tgacagcaca gtcgcctggg tgcacgcttg


3661
tgggggcagc aggaacgggg ctgtcggctc tcaggggatc tggctgcagc cagggcgagg


3721
gcctggccct tccttccagc tccttccggc tccttccagc tgaagggcag gaagctctgg


3781
ccgcttagct tctagggttc catctcccta gaaaggtgcc cacgcccagg gcatcagtca


3841
gtagcggcag cagcagcaga ctcggggctt tcccagggtg gcgcagccac cccagctgca


3901
tgtcacctca gctctccatc ttattgccat tttgtagatg aggaagctga gaccagaaag


3961
gctaagaccc atgccccagg caccacaccc atctcttggg ggctgggcac ctgctacccg


4021
aggccacctc ctgaagcccc cactcttccc ccatgttcca cttcaggagc cgcgggggcc


4081
catcctgaca cccggggttc ctcagcccag cgcagatgtg cttcagttcc agagggcttg


4141
ttgatttgtt tcttaggtac gttacctgtc caccctgagt ccagtgaggc tgtcccaaga


4201
gcccctgtag tgtgctcctg ggaagggctg ggggggctgg gggggctggg agaggcccag


4261
gggcagctgt cactggaacc ccagccagat gtccaaggaa gccggccaga acacggagca


4321
gccagatggc cccagctgca cctgtctagg gagcccatgc agcctccttg cactggagaa


4381
gcagctgtga aagtagacag agttgagact tcgccgtggt caggagaaaa tgcaaattcc


4441
caggaacaag aatcctttaa gtgatatgtt tttataaaac taaacaaatc aacaaataaa


4501
tcttgaaggc ggatggtttt cccagcagtg caggggttgg agggaggctg ctggcactcc


4561
tggggccaag ggggacaggc agtggtcctg agtctgctca gagaggcaag gcagaaggag


4621
ctcgccaggc aggtcagctc acatctgtcc aagtcgctct ggtcagaaac agcgactctc


4681
ccccattccc ccagcgttcc caccaggcct gggctgctgg gaagcccttg ctgtacccag


4741
gagcccgacc cgcagtatcc tggcacagag ccacttgtca ctcagaacag tcagtgtctc


4801
caacgcacaa acatccactc ctctgttacc agttaaagca ctttaatgct ttaaggtgaa


4861
aacgaaatcc catccgtgtt tttcgtgtaa gatcgtgctt ctccgagcag tattaatgga


4921
cgccctccaa tgacataaca actgtttttg gtaatgtaat cttgggaaaa tgtgttattt


4981
ttttagctgt gtttcagtgg ggatttttgt ttttgtaaca taataaagtg tatgttccaa


5041
tga










SEQ ID NO: 119 Human TP73 isoform 9 amino acid sequence (NP_001191114.1)








1
maqstatspd ggttfehlws slepdstyfd lpqssrgnne vvggtdssmd vfhlegmtts


61
vmaqfnllss tmdqmssraa saspytpeha asvpthspya qpsstfdtms papvipsntd


121
ypgphhfevt fqqsstaksa twtyspllkk lycqiaktcp iqikvstppp pgtairampv


181
ykkaehvtdv vkrcpnhelg rdfnegqsap ashlirvegn nlsqyvddpv tgrqsvvvpy


241
eppqvgteft tilynfmcns scvggmnrrp iliiitlemr dgqvlgrrsf egricacpgr


301
drkadedhyr eqqalnessa kngaaskraf kqsppavpal gagvkkrrhg dedtyylqvr


361
grenfeilmk lkeslelmel vpqplvdsyr qqqqllqrpp rdaqqpwprs asqrrdeqqp


421
qrpvhglgvp lhsatpiprr pqprqffnri gvsklhrvfh lprvtehlpp aepdh










SEQ ID NO: 120 Human TP73 transcript variant 10 cDNA sequence


(NM_001204186.2; CDS: 160-1371)








1
gccctgcctc cccgcccgcg cacccgcccg gaggctcgcg cgcccgcgaa ggggacgcag


61
cgaaaccggg gcccgcgcca ggccagccgg gacggacgcc gatgcccggg gctgcgacgg


121
ctgcagagcg agctgccctc ggaggccggc gtggggaaga tggcccagtc caccgccacc


181
tcccctgatg ggggcaccac gtttgagcac ctctggagct ctctggaacc agacagcacc


241
tacttcgacc ttccccagtc aagccggggg aataatgagg tggtgggcgg aacggattcc


301
agcatggacg tcttccacct ggagggcatg actacatctg tcatggccca gttcaatctg


361
ctgagcagca ccatggacca gatgagcagc cgcgcggcct cggccagccc ctacacccca


421
gagcacgccg ccagcgtgcc cacccactcg ccctacgcac aacccagctc caccttcgac


481
accatgtcgc cggcgcctgt catcccctcc aacaccgact accccggacc ccaccacttt


541
gaggtcactt tccagcagtc cagcacggcc aagtcagcca cctggacgta ctccccgctc


601
ttgaagaaac tctactgcca gatcgccaag acatgcccca tccagatcaa ggtgtccacc


661
ccgccacccc caggcaccgc catccgggcc atgcctgttt acaagaaagc ggagcacgtg


721
accgacgtcg tgaaacgctg ccccaaccac gagctcggga gggacttcaa cgaaggacag


781
tctgctccag ccagccacct catccgcgtg gaaggcaata atctctcgca gtatgtggat


841
gaccctgtca ccggcaggca gagcgtcgtg gtgccctatg agccaccaca ggtggggacg


901
gaattcacca ccatcctgta caacttcatg tgtaacagca gctgtgtagg gggcatgaac


961
cggcggccca tcctcatcat catcaccctg gagatgcggg atgggcaggt gctgggccgc


1021
cggtcctttg agggccgcat ctgcgcctgt cctggccgcg accgaaaagc tgatgaggac


1081
cactaccggg agcagcaggc cctgaacgag agctccgcca agaacggggc cgccagcaag


1141
cgtgccttca agcagagccc ccctgccgtc cccgcccttg gtgccggtgt gaagaagcgg


1201
cggcatggag acgaggacac gtactacctt caggtgcgag gccgggagaa ctttgagatc


1261
ctgatgaagc tgaaagagag cctggagctg atggagttgg tgccgcagcc actggtggac


1321
tcctatcggc agcagcagca gctcctacag aggccgacct gggggccctg aagatccccg


1381
agcagtaccg catgaccatc tggcggggcc tgcaggacct gaagcagggc cacgactaca


1441
gcaccgcgca gcagctgctc cgctctagca acgcggccac catctccatc ggcggctcag


1501
gggaactgca gcgccagcgg gtcatggagg ccgtgcactt ccgcgtgcgc cacaccatca


1561
ccatccccaa ccgcggcggc ccaggcggcg gccctgacga gtgggcggac ttcggcttcg


1621
acctgcccga ctgcaaggcc cgcaagcagc ccatcaagga ggagttcacg gaggccgaga


1681
tccactgagg gcctcgcctg gctgcagcct gcgccaccgc ccagagaccc aagctgcctc


1741
ccctctcctt cctgtgtgtc caaaactgcc tcaggaggca ggaccttcgg gctgtgcccg


1801
gggaaaggca aggtccggcc catccccagg cacctcacag gccccaggaa aggcccagcc


1861
accgaagccg cctgtggaca gcctgagtca cctgcagaac cttctggagc tgccctagtg


1921
ctgggcttgt ggggcggggg ctggcccact ctcagccctg ccactgcccc ggcgtgctcc


1981
atggcaggcg tgggtgggga ccgcagcgtc ggctccgact tccaggcttc atcctagaga


2041
ctgtcatctc ccaaccaggc gaggtccttc caaaggaaag gatcctcttt gctgatggac


2101
tgccaaaaag tattttgcga catcttttgg ttctggatag tagtgagcag ccaagtgact


2161
gtgtctgaaa caccagtgta ttttcaggga atgtccctaa ctgcgtcttg cccgcgccgg


2221
gggctgggga ctctctctgc tggacttggg actggcctct gcccccagca cgctgtattc


2281
tgcaggaccg cctccttcct gcccctaaca acaaccacag tgttgctgaa attggagaaa


2341
actggggagg gcgcaacccc ccccaggcgc ggggaagcat gtggtaccgc ctcagccagt


2401
gcccctcagc ctggccacag tcgcctctcc tcggggaccc ctcagcagaa agggacagcc


2461
tgtccttaga ggactggaaa ttgtcaatat ttgataaaat gatacccttt tctacatggt


2521
gggtcagctt tttttttttt ttttttaact ttctttctca gcattctctt tggagttcaa


2581
cctagcgccc atgagccagg ctgaggaagc tgagtgagaa gccaggtggg cgggacttgt


2641
tcccaggaag gccgggtggg gaggaagcct agagggaacc ccaggaaggg caaatccagg


2701
caaatctgca ggaatgctct gccatgggag cagctcctcc cttgccacgg ccaccttctc


2761
tagcactgca aggtccacag ggcattgctt tcctttctag gcggtggcag tcagggaaca


2821
gactgaggta ggtgtagggg ggtctaggcc ttcgtggagc accccaggga gttagtaggc


2881
cccggggaga cagagtctgc acaggccctt tctggggcca cctccatcca cgaggagcag


2941
cctgagcctt ggtggccgaa ccttgaccgt cccggagcac agcttcaggg cagggaaccg


3001
gagcccctgg ggggcctcac gggtgtgacg aggcccttca ttgcaggcag gtgggccaat


3061
gggagccctc acccacgcaa gccgagacac cacccagagt gcaggctgcc tggccccttc


3121
tggcacggcc agctccacac cccctgccta gggtatgtgt ggtcctaagg gctaggagct


3181
tcccctacta acatctccca gaaaaagcag ttaagcccct cagggcacag caaggttaga


3241
cacagccccc atccccagat caggactcca tcttgctaag tggcatcacc gtcaccagcc


3301
tccccttatt taaaagcagc gactggtgtt gccgcaggta cctggtctac gaagacgcag


3361
gcatccctct cccaccgtcc acctccccgg gggccgctga cagcacagtc gcctgggtgc


3421
acgcttgtgg gggcagcagg aacggggctg tcggctctca ggggatctgg ctgcagccag


3481
ggcgagggcc tggcccttcc ttccagctcc ttccggctcc ttccagctga agggcaggaa


3541
gctctggccg cttagcttct agggttccat ctccctagaa aggtgcccac gcccagggca


3601
tcagtcagta gcggcagcag cagcagactc ggggctttcc cagggtggcg cagccacccc


3661
agctgcatgt cacctcagct ctccatctta ttgccatttt gtagatgagg aagctgagac


3721
cagaaaggct aagacccatg ccccaggcac cacacccatc tcttgggggc tgggcacctg


3781
ctacccgagg ccacctcctg aagcccccac tcttccccca tgttccactt caggagccgc


3841
gggggcccat cctgacaccc ggggttcctc agcccagcgc agatgtgctt cagttccaga


3901
gggcttgttg atttgtttct taggtacgtt acctgtccac cctgagtcca gtgaggctgt


3961
cccaagagcc cctgtagtgt gctcctggga agggctgggg gggctggggg ggctgggaga


4021
ggcccagggg cagctgtcac tggaacccca gccagatgtc caaggaagcc ggccagaaca


4081
cggagcagcc agatggcccc agctgcacct gtctagggag cccatgcagc ctccttgcac


4141
tggagaagca gctgtgaaag tagacagagt tgagacttcg ccgtggtcag gagaaaatgc


4201
aaattcccag gaacaagaat cctttaagtg atatgttttt ataaaactaa acaaatcaac


4261
aaataaatct tgaaggcgga tggttttccc agcagtgcag gggttggagg gaggctgctg


4321
gcactcctgg ggccaagggg gacaggcagt ggtcctgagt ctgctcagag aggcaaggca


4381
gaaggagctc gccaggcagg tcagctcaca tctgtccaag tcgctctggt cagaaacagc


4441
gactctcccc cattccccca gcgttcccac caggcctggg ctgctgggaa gcccttgctg


4501
tacccaggag cccgacccgc agtatcctgg cacagagcca cttgtcactc agaacagtca


4561
gtgtctccaa cgcacaaaca tccactcctc tgttaccagt taaagcactt taatgcttta


4621
aggtgaaaac gaaatcccat ccgtgttttt cgtgtaagat cgtgcttctc cgagcagtat


4681
taatggacgc cctccaatga cataacaact gtttttggta atgtaatctt gggaaaatgt


4741
gttatttttt tagctgtgtt tcagtgggga tttttgtttt tgtaacataa taaagtgtat


4801
gttccaatga










SEQ ID NO: 121 Human TP73 isoform 10 amino acid sequence (NP_001191115.1)








1
maqstatspd ggttfehlws slepdstyfd lpqssrgnne vvggtdssmd vfhlegmtts


61
vmaqfnllss tmdqmssraa saspytpeha asvpthspya qpsstfdtms papvipsntd


121
ypgphhfevt fqqsstaksa twtyspllkk lycqiaktcp iqikvstppp pgtairampv


181
ykkaehvtdv vkrcpnhelg rdfnegqsap ashlirvegn nlsqyvddpv tgrqsvvvpy


241
eppqvgteft tilynfmcns scvggmnrrp iliiitlemr dgqvlgrrsf egricacpgr


301
drkadedhyr eqqalnessa kngaaskraf kqsppavpal gagvkkrrhg dedtyylqvr


361
grenfeilmk lkeslelmel vpqplvdsyr qqqqllqrpt wgp










SEQ ID NO: 122 Human TP73 transcript variant 11 cDNA sequence


(NM_001204187.1; CDS: NP_001191116.1)








1
maqstatspd ggttfehlws slepdstyfd lpqssrgnne vvggtdssmd vfhlegmtts


61
vmaqfnllss tmdqmssraa saspytpeha asvpthspya qpsstfdtms papvipsntd


121
ypgphhfevt fqqsstaksa twtyspllkk lycqiaktcp iqikvstppp pgtairampv


181
ykkaehvtdv vkrcpnhelg rdfnegqsap ashlirvegn nlsqyvddpv tgrqsvvvpy


241
eppqvgteft tilynfmcns scvggmnrrp iliiitlemr dgqvlgrrsf egricacpgr


301
drkadedhyr eqqalnessa kngaaskraf kqsppavpal gagvkkrrhg dedtyylqvr


361
grenfeilmk lkeslelmel vpqplvdsyr qqqqllqrpp rdaqqpwprs asqrrdeqqp


421
qrpvhglgvp lhsatplprr pqprqdlgal kipeqyrmti wrglqdlkqg hdystaqqll


481
rssnaatisi ggsgelqrqr vmeavhfrvr htitipnrgg pgggpdewad fgfdlpdcka


541
rkqpikeeft eaeih










SEQ ID NO: 123 Human TP73 isoform 11 amino acid sequence (NP_001191116.1)








1
maqstatspd ggttfehlws slepdstyfd lpqssrgnne vvggtdssmd vfhlegmtts


61
vmaqfnllss tmdqmssraa saspytpeha asvpthspya qpsstfdtms papvipsntd


121
ypgphhfevt fqqsstaksa twtyspllkk lycqiaktcp iqikvstppp pgtairampv


181
ykkaehvtdv vkrcpnhelg rdfnegqsap ashlirvegn nlsqyvddpv tgrqsvvvpy


241
eppqvgteft tilynfmcns scvggmnrrp iliiitlemr dgqvlgrrsf egricacpgr


301
drkadedhyr eqqalnessa kngaaskraf kqsppavpal gagvkkrrhg dedtyylqvr


361
grenfeilmk lkeslelmel vpqplvdsyr qqqqllqrpp rdaqqpwprs asqrrdeqqp


421
qrpvhglgvp lhsatplprr pqprqdlgal kipeqyrmti wrglqdlkqg hdystaqqll


481
rssnaatisi ggsgelqrqr vmeavhfrvr htitipnrgg pgggpdewad fgfdlpdcka


541
rkqpikeeft eaeih










SEQ ID NO: 124 Human TP73 transcript variant 12 cDNA sequence


(NM_001204188.1; CDS: 111-1733)








1
aggggacgca gcgaaaccgg ggcccgcgcc aggccagccg ggacggacgc cgatgcccgg


61
ggctgcgacg gctgcagagc gagctgccct cggaggccgg cgtggggaag atggcccagt


121
ccaccgccac ctcccctgat gggggcacca cgtttgagca cctctggagc tctctggaac


181
cagacagcac ctacttcgac cttccccagt caagccgggg gaataatgag gtggtgggcg


241
gaacggattc cagcatggac gtcttccacc tggagggcat gactacatct gtcatggccc


301
agttcaatct gctgagcagc accatggacc agatgagcag ccgcgcggcc tcggccagcc


361
cctacacccc agagcacgcc gccagcgtgc ccacccactc gccctacgca caacccagct


421
ccaccttcga caccatgtcg ccggcgcctg tcatcccctc caacaccgac taccccggac


481
cccaccactt tgaggtcact ttccagcagt ccagcacggc caagtcagcc acctggacgt


541
actccccgct cttgaagaaa ctctactgcc agatcgccaa gacatgcccc atccagatca


601
aggtgtccac cccgccaccc ccaggcaccg ccatccgggc catgcctgtt tacaagaaag


661
cggagcacgt gaccgacgtc gtgaaacgct gccccaacca cgagctcggg agggacttca


721
acgaaggaca gtctgctcca gccagccacc tcatccgcgt ggaaggcaat aatctctcgc


781
agtatgtgga tgaccctgtc accggcaggc agagcgtcgt ggtgccctat gagccaccac


841
aggtggggac ggaattcacc accatcctgt acaacttcat gtgtaacagc agctgtgtag


901
ggggcatgaa ccggcggccc atcctcatca tcatcaccct ggagatgcgg gatgggcagg


961
tgctgggccg ccggtccttt gagggccgca tctgcgcctg tcctggccgc gaccgaaaag


1021
ctgatgagga ccactaccgg gagcagcagg ccctgaacga gagctccgcc aagaacgggg


1081
ccgccagcaa gcgtgccttc aagcagagcc cccctgccgt ccccgccctt ggtgccggtg


1141
tgaagaagcg gcggcatgga gacgaggaca cgtactacct tcaggtgcga ggccgggaga


1201
actttgagat cctgatgaag ctgaaagaga gcctggagct gatggagttg gtgccgcagc


1261
cactggtgga ctcctatcgg cagcagcagc agctcctaca gaggcctttt ttaacaggat


1321
tggggtgtcc aaactgcatc gagtatttca cctcccaagg gttacagagc atttaccacc


1381
tgcagaacct gaccattgag gacctggggg ccctgaagat ccccgagcag taccgcatga


1441
ccatctggcg gggcctgcag gacctgaagc agggccacga ctacagcacc gcgcagcagc


1501
tgctccgctc tagcaacgcg gccaccatct ccatcggcgg ctcaggggaa ctgcagcgcc


1561
agcgggtcat ggaggccgtg cacttccgcg tgcgccacac catcaccatc cccaaccgcg


1621
gcggcccagg cggcggccct gacgagtggg cggacttcgg cttcgacctg cccgactgca


1681
aggcccgcaa gcagcccatc aaggaggagt tcacggaggc cgagatccac tgagggcctc


1741
gcctggctgc agcctgcgcc accgcccaga gacccaagct gcctcccctc tccttcctgt


1801
gtgtccaaaa ctgcctcagg aggcaggacc ttcgggctgt gcccggggaa aggcaaggtc


1861
cggcccatcc ccaggcacct cacaggcccc aggaaaggcc cagccaccga agccgcctgt


1921
ggacagcctg agtcacctgc agaaccttct ggagctgccc tagtgctggg cttgtggggc


1981
gggggctggc ccactctcag ccctgccact gccccggcgt gctccatggc aggcgtgggt


2041
ggggaccgca gcgtcggctc cgacttccag gcttcatcct agagactgtc atctcccaac


2101
caggcgaggt ccttccaaag gaaaggatcc tctttgctga tggactgcca aaaagtattt


2161
tgcgacatct tttggttctg gatagtagtg agcagccaag tgactgtgtc tgaaacacca


2221
gtgtattttc agggaatgtc cctaactgcg tcttgcccgc gccgggggct ggggactctc


2281
tctgctggac ttgggactgg cctctgcccc cagcacgctg tattctgcag gaccgcctcc


2341
ttcctgcccc taacaacaac cacagtgttg ctgaaattgg agaaaactgg ggagggcgca


2401
acccccccca ggcgcgggga agcatgtggt accgcctcag ccagtgcccc tcagcctggc


2461
cacagtcgcc tctcctcggg gacccctcag cagaaaggga cagcctgtcc ttagaggact


2521
ggaaattgtc aatatttgat aaaatgatac ccttttctac atggtgggtc agcttttttt


2581
tttttttttt taactttctt tctcagcatt ctctttggag ttcaacctag cgcccatgag


2641
ccaggctgag gaagctgagt gagaagccag gtgggcggga cttgttccca ggaaggccgg


2701
gtggggagga agcctagagg gaaccccagg aagggcaaat ccaggcaaat ctgcaggaat


2761
gctctgccat gggagcagct cctcccttgc cacggccacc ttctctagca ctgcaaggtc


2821
cacagggcat tgctttcctt tctaggcggt ggcagtcagg gaacagactg aggtaggtgt


2881
aggggggtct aggccttcgt ggagcacccc agggagttag taggccccgg ggagacagag


2941
tctgcacagg ccctttctgg ggccacctcc atccacgagg agcagcctga gccttggtgg


3001
ccgaaccttg accgtcccgg agcacagctt cagggcaggg aaccggagcc cctggggggc


3061
ctcacgggtg tgacgaggcc cttcattgca ggcaggtggg ccaatgggag ccctcaccca


3121
cgcaagccga gacaccaccc agagtgcagg ctgcctggcc ccttctggca cggccagctc


3181
cacaccccct gcctagggta tgtgtggtcc taagggctag gagcttcccc tactaacatc


3241
tcccagaaaa agcagttaag cccctcaggg cacagcaagg ttagacacag cccccatccc


3301
cagatcagga ctccatcttg ctaagtggca tcaccgtcac cagcctcccc ttatttaaaa


3361
gcagcgactg gtgttgccgc aggtacctgg tctacgaaga cgcaggcatc cctctcccac


3421
cgtccacctc cccgggggcc gctgacagca cagtcgcctg ggtgcacgct tgtgggggca


3481
gcaggaacgg ggctgtcggc tctcagggga tctggctgca gccagggcga gggcctggcc


3541
cttccttcca gctccttccg gctccttcca gctgaagggc aggaagctct ggccgcttag


3601
cttctagggt tccatctccc tagaaaggtg cccacgccca gggcatcagt cagtagcggc


3661
agcagcagca gactcggggc tttcccaggg tggcgcagcc accccagctg catgtcacct


3721
cagctctcca tcttattgcc attttgtaga tgaggaagct gagaccagaa aggctaagac


3781
ccatgcccca ggcaccacac ccatctcttg ggggctgggc acctgctacc cgaggccacc


3841
tcctgaagcc cccactcttc ccccatgttc cacttcagga gccgcggggg cccatcctga


3901
cacccggggt tcctcagccc agcgcagatg tgcttcagtt ccagagggct tgttgatttg


3961
tttcttaggt acgttacctg tccaccctga gtccagtgag gctgtcccaa gagcccctgt


4021
agtgtgctcc tgggaagggc tgggggggct gggggggctg ggagaggccc aggggcagct


4081
gtcactggaa ccccagccag atgtccaagg aagccggcca gaacacggag cagccagatg


4141
gccccagctg cacctgtcta gggagcccat gcagcctcct tgcactggag aagcagctgt


4201
gaaagtagac agagttgaga cttcgccgtg gtcaggagaa aatgcaaatt cccaggaaca


4261
agaatccttt aagtgatatg tttttataaa actaaacaaa tcaacaaata aatcttgaag


4321
gcggatggtt ttcccagcag tgcaggggtt ggagggaggc tgctggcact cctggggcca


4381
agggggacag gcagtggtcc tgagtctgct cagagaggca aggcagaagg agctcgccag


4441
gcaggtcagc tcacatctgt ccaagtcgct ctggtcagaa acagcgactc tcccccattc


4501
ccccagcgtt cccaccaggc ctgggctgct gggaagccct tgctgtaccc aggagcccga


4561
cccgcagtat cctggcacag agccacttgt cactcagaac agtcagtgtc tccaacgcac


4621
aaacatccac tcctctgtta ccagttaaag cactttaatg ctttaaggtg aaaacgaaat


4681
cccatccgtg tttttcgtgt aagatcgtgc ttctccgagc agtattaatg gacgccctcc


4741
aatgacataa caactgtttt tggtaatgta atcttgggaa aatgtgttat ttttttagct


4801
gtgtttcagt ggggattttt gtttttgtaa cataataaag tgtatgttcc aatgaaaaaa


4861
aaaaaa










SEQ ID NO: 125 Human TP73 isoform 12 amino acid sequence (NP_001191117.1)








1
maqstatspd ggttfehlws slepdstyfd lpqssrgnne vvggtdssmd vfhlegmtts


61
vmaqfnllss tmdqmssraa saspytpeha asvpthspya qpsstfdtms papvipsntd


121
ypgphhfevt fqqsstaksa twtyspllkk lycqiaktcp iqikvstppp pgtairampv


181
ykkaehvtdv vkrcpnhelg rdfnegqsap ashlirvegn nlsqyvddpv tgrqsvvvpy


241
eppqvgteft tilynfmcns scvggmnrrp iliiitlemr dgqvlgrrsf egricacpgr


301
drkadedhyr eqqalnessa kngaaskraf kqsppavpal gagvkkrrhg dedtyylqvr


361
grenfeilmk lkeslelmel vpqplvdsyr qqqqllqrpf ltglgcpnci eyftsqglqs


421
iyhlqnltie dlgalkipeq yrmtiwrglq dlkqghdyst aqqllrssna atisiggsge


481
lqrqrvmeav hfrvrhtiti pnrggpgggp dewadfgfdl pdckarkqpi keefteaeih










SEQ ID NO: 126 Human TP73 transcript variant 13 cDNA sequence


(NM_001204192.2; CDS: 134-1831)








1
aatgtgtgct ggaaggtgtc caggaagccc tgctaagcat ctgtcagtgt ctccagcaca


61
gcaggaggct gttacaggtg gcgcctgatt cacatctgca ggacaggccc agttcaatct


121
gctgagcagc accatggacc agatgagcag ccgcgcggcc tcggccagcc cctacacccc


181
agagcacgcc gccagcgtgc ccacccactc gccctacgca caacccagct ccaccttcga


241
caccatgtcg ccggcgcctg tcatcccctc caacaccgac taccccggac cccaccactt


301
tgaggtcact ttccagcagt ccagcacggc caagtcagcc acctggacgt actccccgct


361
cttgaagaaa ctctactgcc agatcgccaa gacatgcccc atccagatca aggtgtccac


421
cccgccaccc ccaggcaccg ccatccgggc catgcctgtt tacaagaaag cggagcacgt


481
gaccgacgtc gtgaaacgct gccccaacca cgagctcggg agggacttca acgaaggaca


541
gtctgctcca gccagccacc tcatccgcgt ggaaggcaat aatctctcgc agtatgtgga


601
tgaccctgtc accggcaggc agagcgtcgt ggtgccctat gagccaccac aggtggggac


661
ggaattcacc accatcctgt acaacttcat gtgtaacagc agctgtgtag ggggcatgaa


721
ccggcggccc atcctcatca tcatcaccct ggagatgcgg gatgggcagg tgctgggccg


781
ccggtccttt gagggccgca tctgcgcctg tcctggccgc gaccgaaaag ctgatgagga


841
ccactaccgg gagcagcagg ccctgaacga gagctccgcc aagaacgggg ccgccagcaa


901
gcgtgccttc aagcagagcc cccctgccgt ccccgccctt ggtgccggtg tgaagaagcg


961
gcggcatgga gacgaggaca cgtactacct tcaggtgcga ggccgggaga actttgagat


1021
cctgatgaag ctgaaagaga gcctggagct gatggagttg gtgccgcagc cactggtgga


1081
ctcctatcgg cagcagcagc agctcctaca gaggccgagt cacctacagc ccccgtccta


1141
cgggccggtc ctctcgccca tgaacaaggt gcacgggggc atgaacaagc tgccctccgt


1201
caaccagctg gtgggccagc ctcccccgca cagttcggca gctacaccca acctggggcc


1261
cgtgggcccc gggatgctca acaaccatgg ccacgcagtg ccagccaacg gcgagatgag


1321
cagcagccac agcgcccagt ccatggtctc ggggtcccac tgcactccgc caccccccta


1381
ccacgccgac cccagcctcg tcagtttttt aacaggattg gggtgtccaa actgcatcga


1441
gtatttcacc tcccaagggt tacagagcat ttaccacctg cagaacctga ccattgagga


1501
cctgggggcc ctgaagatcc ccgagcagta ccgcatgacc atctggcggg gcctgcagga


1561
cctgaagcag ggccacgact acagcaccgc gcagcagctg ctccgctcta gcaacgcggc


1621
caccatctcc atcggcggct caggggaact gcagcgccag cgggtcatgg aggccgtgca


1681
cttccgcgtg cgccacacca tcaccatccc caaccgcggc ggcccaggcg gcggccctga


1741
cgagtgggcg gacttcggct tcgacctgcc cgactgcaag gcccgcaagc agcccatcaa


1801
ggaggagttc acggaggccg agatccactg agggcctcgc ctggctgcag cctgcgccac


1861
cgcccagaga cccaagctgc ctcccctctc cttcctgtgt gtccaaaact gcctcaggag


1921
gcaggacctt cgggctgtgc ccggggaaag gcaaggtccg gcccatcccc aggcacctca


1981
caggccccag gaaaggccca gccaccgaag ccgcctgtgg acagcctgag tcacctgcag


2041
aaccttctgg agctgcccta gtgctgggct tgtggggcgg gggctggccc actctcagcc


2101
ctgccactgc cccggcgtgc tccatggcag gcgtgggtgg ggaccgcagc gtcggctccg


2161
acttccaggc ttcatcctag agactgtcat ctcccaacca ggcgaggtcc ttccaaagga


2221
aaggatcctc tttgctgatg gactgccaaa aagtattttg cgacatcttt tggttctgga


2281
tagtagtgag cagccaagtg actgtgtctg aaacaccagt gtattttcag ggaatgtccc


2341
taactgcgtc ttgcccgcgc cgggggctgg ggactctctc tgctggactt gggactggcc


2401
tctgccccca gcacgctgta ttctgcagga ccgcctcctt cctgccccta acaacaacca


2461
cagtgttgct gaaattggag aaaactgggg agggcgcaac cccccccagg cgcggggaag


2521
catgtggtac cgcctcagcc agtgcccctc agcctggcca cagtcgcctc tcctcgggga


2581
cccctcagca gaaagggaca gcctgtcctt agaggactgg aaattgtcaa tatttgataa


2641
aatgataccc ttttctacat ggtgggtcag cttttttttt ttttttttta actttctttc


2701
tcagcattct ctttggagtt caacctagcg cccatgagcc aggctgagga agctgagtga


2761
gaagccaggt gggcgggact tgttcccagg aaggccgggt ggggaggaag cctagaggga


2821
accccaggaa gggcaaatcc aggcaaatct gcaggaatgc tctgccatgg gagcagctcc


2881
tcccttgcca cggccacctt ctctagcact gcaaggtcca cagggcattg ctttcctttc


2941
taggcggtgg cagtcaggga acagactgag gtaggtgtag gggggtctag gccttcgtgg


3001
agcaccccag ggagttagta ggccccgggg agacagagtc tgcacaggcc ctttctgggg


3061
ccacctccat ccacgaggag cagcctgagc cttggtggcc gaaccttgac cgtcccggag


3121
cacagcttca gggcagggaa ccggagcccc tggggggcct cacgggtgtg acgaggccct


3181
tcattgcagg caggtgggcc aatgggagcc ctcacccacg caagccgaga caccacccag


3241
agtgcaggct gcctggcccc ttctggcacg gccagctcca caccccctgc ctagggtatg


3301
tgtggtccta agggctagga gcttccccta ctaacatctc ccagaaaaag cagttaagcc


3361
cctcagggca cagcaaggtt agacacagcc cccatcccca gatcaggact ccatcttgct


3421
aagtggcatc accgtcacca gcctcccctt atttaaaagc agcgactggt gttgccgcag


3481
gtacctggtc tacgaagacg caggcatccc tctcccaccg tccacctccc cgggggccgc


3541
tgacagcaca gtcgcctggg tgcacgcttg tgggggcagc aggaacgggg ctgtcggctc


3601
tcaggggatc tggctgcagc cagggcgagg gcctggccct tccttccagc tccttccggc


3661
tccttccagc tgaagggcag gaagctctgg ccgcttagct tctagggttc catctcccta


3721
gaaaggtgcc cacgcccagg gcatcagtca gtagaggcag cagcagcaga ctaggggctt


3781
tcccagggtg gcgcagccac cccagctgca tgtcacctca gctctccatc ttattgccat


3841
tttgtagatg aggaagctga gaccagaaag gctaagaccc atgccccagg caccacaccc


3901
atctcttggg ggctgggcac ctgctacccg aggccacctc ctgaagcccc cactcttccc


3961
ccatgttcca cttcaggagc cgcgggggcc catcctgaca cccggggttc ctcagcccag


4021
cgcagatgtg cttcagttcc agagggcttg ttgatttgtt tcttaggtac gttacctgtc


4081
caccctgagt ccagtgaggc tgtcccaaga gcccctgtag tgtgctcctg ggaagggctg


4141
ggggggctgg gggggctggg agaggcccag gggcagctgt cactggaacc ccagccagat


4201
gtccaaggaa gccggccaga acacggagca gccagatggc cccagctgca cctgtctagg


4261
gagcccatgc agcctccttg cactggagaa gcagctgtga aagtagacag agttgagact


4321
tcgccgtggt caggagaaaa tgcaaattcc caggaacaag aatcctttaa gtgatatgtt


4381
tttataaaac taaacaaatc aacaaataaa tcttgaaggc ggatggtttt cccagcagtg


4441
caggggttgg agggaggctg ctggcactcc tggggccaag ggggacaggc agtggtcctg


4501
agtctgctca gagaggcaag gcagaaggag ctcgccaggc aggtcagctc acatctgtcc


4561
aagtcgctct ggtcagaaac agcgactctc ccccattccc ccagcgttcc caccaggcct


4621
gggctgctgg gaagcccttg ctgtacccag gagcccgacc cgcagtatcc tggcacagag


4681
ccacttgtca ctcagaacag tcagtgtctc caacgcacaa acatccactc ctctgttacc


4741
agttaaagca ctttaatgct ttaaggtgaa aacgaaatcc catccgtgtt tttcgtgtaa


4801
gatcgtgctt ctccgagcag tattaatgga cgccctccaa tgacataaca actgtttttg


4861
gtaatgtaat cttgggaaaa tgtgttattt ttttagctgt gtttcagtgg ggatttttgt


4921
ttttgtaaca taataaagtg tatgttccaa tga










SEQ ID NO: 127 Human TP73 isoform 13 amino acid sequence (NP_001191121.1)








1
mdqmssraas aspytpehaa svpthspyaq psstfdtmsp apvipsntdy pgphhfevtf


61
qqsstaksat wtyspllkkl ycqiaktcpi qikvstpppp gtairampvy kkaehvtdvv


121
krcpnhelgr dfnegqsapa shlirvegnn lsqyvddpvt grqsvvvpye ppqvgteftt


181
ilynfmcnss cvggmnrrpi liiitlemrd gqvlgrrsfe gricacpgrd rkadedhyre


241
qqalnessak ngaaskrafk qsppavpalg agvkkrrhgd edtyylqvrg renfeilmkl


301
keslelmelv pqplvdsyrq qqqllqrpsh lqppsygpvl spmnkvhggm nklpsvnqlv


361
gqppphssaa tpnlgpvgpg mlnnhghavp angemssshs aqsmvsgshc tppppyhadp


421
slvsfltglg cpncieyfts qglqsiyhlq nitiedlgal kipeqyrmti wrglqdlkqg


481
hdystaqqll rssnaatisi ggsgelqrqr vmeavhfrvr htitipnrgg pgggpdewad


541
fgfdlpdcka rkqpikeeft eaeih










SEQ ID NO: 128 Mouse TP73 transcript variant 1 cDNA sequence (NM_011642.4;


CDS: 76-1971)








1
gaggcaacgc tgcagcccag ccctcgccga cgccgacgcc cggcccggag cagaatgagc


61
ggcagcgttg gggagatggc ccagacctct tcttcctcct cctccacctt cgagcacctg


121
tggagttctc tagagccaga cagcacctac tttgacctcc cccagcccag ccaagggact


181
agcgaggcat caggcagcga ggagtccaac atggatgtct tccacctgca aggcatggcc


241
cagttcaatt tgctcagcag tgccatggac cagatgggca gccgtgcggc cccggcgagc


301
ccctacaccc cggagcacgc cgccagcgcg cccacccact cgccctacgc gcagcccagc


361
tccaccttcg acaccatgtc tccggcgcct gtcatccctt ccaataccga ctaccccggc


421
ccccaccact tcgaggtcac cttccagcag tcgagcactg ccaagtcggc cacctggaca


481
tactccccac tcttgaagaa gttgtactgt cagattgcta agacatgccc catccagatc


541
aaagtgtcca caccaccacc cccgggcacg gccatccggg ccatgcctgt ctacaagaag


601
gcagagcatg tgaccgacat tgttaagcgc tgccccaacc acgagcttgg aagggacttc


661
aatgaaggac agtctgcccc ggctagccac ctcatccgtg tagaaggcaa caacctcgcc


721
cagtacgtgg atgaccctgt caccggaagg cagagtgtgg ttgtgccgta tgaaccccca


781
caggtgggaa cagaatttac caccatcctg tacaacttca tgtgtaacag cagctgtgtg


841
gggggcatga ataggaggcc catccttgtc atcatcaccc tggagacccg ggatggacag


901
gtcctgggcc gccggtcttt cgagggtcgc atctgtgcct gtcctggccg tgaccgcaaa


961
gctgatgaag accattaccg ggagcaacag gctctgaatg aaagtaccac caaaaatgga


1021
gctgccagca aacgtgcatt caagcagagc ccccctgcca tccctgccct gggtaccaac


1081
gtgaagaaga gacgccacgg ggacgaggac atgttctaca tgcacgtgcg aggccgggag


1141
aactttgaga tcttgatgaa agtcaaggag agcctagaac tgatggagct tgtgccccag


1201
cctttggttg actcctatcg acagcagcag cagcagcagc tcctacagag gccgagtcac


1261
ctgcagcctc catcctatgg gcccgtgctc tccccaatga acaaggtaca cggtggtgtc


1321
aacaaactgc cctccgtcaa ccagctggtg ggccagcctc ccccgcacag ctcagcagct


1381
gggcccaacc tggggcccat gggctccggg atgctcaaca gccacggcca cagcatgccg


1441
gccaatggtg agatgaatgg aggccacagc tcccagacca tggtttcggg atcccactgc


1501
accccgccac ccccctatca tgcagacccc agcctcgtca gttttttgac agggttgggg


1561
tgtccaaact gcatcgagtg cttcacttcc caagggttgc agagcatcta ccacctgcag


1621
aaccttacca tcgaggacct tggggctctg aaggtccctg accagtaccg tatgaccatc


1681
tggaggggcc tacaggacct gaagcagagc catgactgcg gccagcaact gctacgctcc


1741
agcagcaacg cggccaccat ctccatcggc ggctctggcg agctgcagcg gcagcgggtc


1801
atggaagccg tgcatttccg tgtgcgccac accatcacga tccccaaccg tggaggcgca


1861
ggtgcggtga caggtcccga cgagtgggcg gactttggct ttgacctgcc tgactgcaag


1921
tcccgtaagc agcccatcaa agaggagttc acagagacag agagccactg aggaacgtac


1981
cttcttctcc tgtccttcct ctgtgagaaa ctgctcttgg aagtgggacc tgttggctgt


2041
gcccacagaa accagcaagg accttctgcc ggatgccatt cctgaaggga agtcgctcat


2101
gaactaactc cctcttggaa acttctggaa ctgcccttag ctacatatac acaagggcag


2161
gtggtgagcc aagtgctgag acagggagct gtccctttgt gggtgggtat gcagcaccca


2221
tttgcttctc ccgttctcta ttgaggactc tgccacctcc aggacagagc agcatccttc


2281
acttgctcac cctctgccac aaagtattcc aacatcttct gttcctgcta accatgcaca


2341
gcccagcctc tgtgtcatca gcgcttacgt acaggtcgat tccactgtgt cttgaaagtg


2401
aattcagggc cagagacatc ttctgcagga tgtgtggaca gatctgtccc taatgtaggt


2461
cattctgccg ttaccccttg tctcccgagt cttgattgct ggggtcaggg aagactgtgg


2521
cagagcaggg gaagccgctg gccctccgcc tctagccagc accctgaaca tgctggctgt


2581
agcagcctct agggacctct ctggtcagac aaagggacag aatgagtctc agactaccga


2641
aaattgaatt gtcaatattt gataaaaggt tactctttct acttggtggg gtcagcttgc


2701
tttttccccc ctctctgact ctctcagcat tcctttctga gatcagccta gtgtgtccac


2761
acgtacttct caacaagtct aaaacgccga gcatcaatcc aggaagggtc cttacctgtt


2821
accaggatgg ttggaaggga aagagactca gagagagcat agccgtggga gtgcaggtca


2881
gacagacccc agctgtgagg aacatctgtt ctcactaagt gctcagagtc tgggctctgt


2941
gcctgagtgc tagcccatcc tcgtggcctg gaactggagt ggctgctggg ggccctggtc


3001
ttcatgattc atccccaaag agtcagtggc tagagaaaca gctcctgcat gcattcagcc


3061
aatggggccc tgtacctgcc agaagctttg tgaacttctg caatgagagc ccccagcagt


3121
ccctgccagg agtggagaag cacagaggag cccctgccaa cagtaaagcc caacatctgc


3181
cgagtcactt tggagccatc ctctttaggc ttggctttca ttagcaaggc ccaacagagg


3241
cagtgacgtc cgtgggatag cctcagagtc agcactacca gggctggcgt catatcaggg


3301
ctgcctcctc gaagcccagg gacaatgttg ccaatcttag caatcttagc aagctctgca


3361
aacttaggtg gttaccaccc atgctatgct tcatgaatct ctgaggggca ggatttgggt


3421
gcacttaggg taggtgcagg catcacattg tcagagacca gtgctgacca tacaggcctt


3481
tccaacttga cagatgttga cagcttaggc tctggggggg tggggggttc ctgcacccag


3541
atgggccgtt aacagctgca gcatcaggct tgcttcttgg gtgtaggttg tggccctccc


3601
agtgagtggt aacacacttc acaaagcctg aggttgacta cacacttctt gttgctgctc


3661
agatgaggaa gctgaggcta gacagactga gtgccctgcc tcgggcatca gctcattgca


3721
gaagtgggtg ttcactcctg aggtacatgc tgccccatgc tacctcagaa actaggcagc


3781
acattctcac tcctaggcct gtgaacccca ctgagatgcg cttgcgttct gggatctcac


3841
ataagtatgt ctcaggcatt gtccaggagg gaccatccta agcgccccac cacatgctcc


3901
tgggaaggag gagtggttag gaggagtggt tgtcaccagg catctgagga gggaagagcc


3961
cccctccagc aaggacccag ggcttgtgtc tccctagacc ctgcctcaag tgccaaagct


4021
gtctcgtgag cttccaggat cctgacaggc ctggagggaa ctgcaaaggg ccatctgcca


4081
ggaaataaac gtcacagagg caatgcttgc agtgcctgag aagctctcca ggaaccagcc


4141
tttgggtctg aaccaaactt tgttctacaa aacacagaaa gcaagagaaa gcaaatcttc


4201
cagccaccaa ctttcccagg agcactggag tactagtttg gaaacaagtt tgggggtgcc


4261
ctggaagaca tctgttgagc aagggcaggt tgagcagggc tgtaaaagca ggccactcca


4321
gcctcagtct gtatggtccc atccagcttt gtgcatccaa ttaacagcag ctcccatgtc


4381
ccttcctggc cttgcttacc gtgcctgaca gctctacctt gggctgcttt gagcttgtga


4441
gttcgcagaa ccagcacccc tacgcaagaa tcctgcaagg gtcaaaagtt gccacttagt


4501
tgcatttcag atgggagaca aaaaccaaaa ctaaattgtc catgtttcaa tgtgatgaaa


4561
tgcttctcca agcagtattg atggatacag tctagtgact ctattaactg ttttgggtga


4621
tgtcatttta gaaaaatgtg ttattttttt tagctgtgtt tcggtgggaa tttttgtttt


4681
tgtaatataa taaaaatcac atgttcccat










SEQ ID NO: 129 Mouse TP73 isoform 1 amino acid sequence (NP_035772.3)








1
maqtssssss tfehlwssle pdstyfdlpq psqgtseasg seesnmdvfh lqgmaqfnll


61
ssamdqmgsr aapaspytpe haasapthsp yaqpsstfdt mspapvipsn tdypgphhfe


121
vtfqqsstak satwtyspll kklycqiakt cpiqikvstp pppgtairam pvykkaehvt


181
divkrcpnhe lgrdfnegqs apashlirve gnnlaqyvdd pvtgrqsvvv pyeppqvgte


241
fttilynfmc nsscvggmnr rpilviitle trdgqvlgrr sfegricacp grdrkadedh


301
yreqqalnes ttkngaaskr afkgsppaip algtnvkkrr hgdedmfymh vrgrenfeil


361
mkvkeslelm elvpqplvds yrqqqqqqll qrpshlqpps ygpvlspmnk vhggvnklps


421
vnqlvgqppp hssaagpnlg pmgsgmlnsh ghsmpangem ngghssqtmv sgshctpppp


481
yhadpslvsf ltglgcpnci ecftsqglqs iyhlqnltie dlgalkvpdq yrmtiwrglq


541
dlkqshdcgq qllrsssnaa tisiggsgel qrqrvmeavh frvrhtitip nrggagavtg


601
pdewadfgfd lpdcksrkqp ikeeftetes h










SEQ ID NO: 130 Mouse TP73 transcript variant 2 cDNA sequence


(NM_001126330.1; CDS: 242-2014)








1
gttgttggat gcagccagtt gacagaaatg agggagatgg gcagggtgag aatgccaact


61
ctcagtccgc acgcctctga gcatcctccg ctcctgcctt cctagccaca gagcctcaac


121
ccctcagtcc accccaccgg gcagccacca gtctacccct accccaccta gccacccaga


181
cccatgcctc gtcccgcggc acaccagctc ctcagcgtgt gcagaccccc acgagcctac


241
catgctttac gtcggtgacc ccatgagaca cctcgccacg gcccagttca atttgctcag


301
cagtgccatg gaccagatgg gcagccgtgc ggccccggcg agcccctaca ccccggagca


361
cgccgccagc gcgcccaccc actcgcccta cgcgcagccc agctccacct tcgacaccat


421
gtctccggcg cctgtcatcc cttccaatac cgactacccc ggcccccacc acttcgaggt


481
caccttccag cagtcgagca ctgccaagtc ggccacctgg acatactccc cactcttgaa


541
gaagttgtac tgtcagattg ctaagacatg ccccatccag atcaaagtgt ccacaccacc


601
acccccgggc acggccatcc gggccatgcc tgtctacaag aaggcagagc atgtgaccga


661
cattgttaag cgctgcccca accacgagct tggaagggac ttcaatgaag gacagtctgc


721
cccggctagc cacctcatcc gtgtagaagg caacaacctc gcccagtacg tggatgaccc


781
tgtcaccgga aggcagagtg tggttgtgcc gtatgaaccc ccacaggtgg gaacagaatt


841
taccaccatc ctgtacaact tcatgtgtaa cagcagctgt gtggggggca tgaatcggag


901
gcccatcctt gtcatcatca ccctggagac ccgggatgga caggtcctgg gccgccggtc


961
tttcgagggt cgcatctgtg cctgtcctgg ccgtgaccgc aaagctgatg aagaccatta


1021
ccgggagcaa caggctctga atgaaagtac caccaaaaat ggagctgcca gcaaacgtgc


1081
attcaagcag agcccccctg ccatccctgc cctgggtacc aacgtgaaga agagacgcca


1141
cggggacgag gacatgttct acatgcacgt gcgaggccgg gagaactttg agatcttgat


1201
gaaagtcaag gagagcctag aactgatgga gcttgtgccc cagcctttgg ttgactccta


1261
tcgacagcag cagcagcagc agctcctaca gaggccgagt cacctgcagc ctccatccta


1321
tgggcccgtg ctctccccaa tgaacaaggt acacggtggt gtcaacaaac tgccctccgt


1381
caaccagctg gtgggccagc ctcccccgca cagctcagca gctgggccca acctggggcc


1441
catgggctcc gggatgctca acagccacgg ccacagcatg ccggccaatg gtgagatgaa


1501
tggaggccac agctcccaga ccatggtttc gggatcccac tgcaccccgc caccccccta


1561
tcatgcagac cccagcctcg tcagtttttt gacagggttg gggtgtccaa actgcatcga


1621
gtgcttcact tcccaagggt tgcagagcat ctaccacctg cagaacctta ccatcgagga


1681
ccttggggct ctgaaggtcc ctgaccagta ccgtatgacc atctggaggg gcctacagga


1741
cctgaagcag agccatgact gcggccagca actgctacgc tccagcagca acgcggccac


1801
catctccatc ggcggctctg gcgagctgca gcggcagcgg gtcatggaag ccgtgcattt


1861
ccgtgtgcgc cacaccatca cgatccccaa ccgtggaggc gcaggtgcgg tgacaggtcc


1921
cgacgagtgg gcggactttg gctttgacct gcctgactgc aagtcccgta agcagcccat


1981
caaagaggag ttcacagaga cagagagcca ctgaggaacg taccttcttc tcctgtcctt


2041
cctctgtgag aaactgctct tggaagtggg acctgttggc tgtgcccaca gaaaccagca


2101
aggaccttct gccggatgcc attcctgaag ggaagtcgct catgaactaa ctccctcttg


2161
gaaacttctg gaactgccct tagctacata tacacaaggg caggtggtga gccaagtgct


2221
gagacaggga gctgtccctt tgtgggtggg tatgcagcac ccatttgctt ctcccgttct


2281
ctattgagga ctctgccacc tccaggacag agcagcatcc ttcacttgct caccctctgc


2341
cacaaagtat tccaacatct tctgttcctg ctaaccatgc acagcccagc ctctgtgtca


2401
tcagcgctta cgtacaggtc gattccactg tgtcttgaaa gtgaattcag ggccagagac


2461
atcttctgca ggatgtgtgg acagatctgt ccctaatgta ggtcattctg ccgttacccc


2521
ttgtctcccg agtcttgatt gctggggtca gggaagactg tggcagagca ggggaagccg


2581
ctggccctcc gcctctagcc agcaccctga acatgctggc tgtagcagcc tctagggacc


2641
tctctggtca gacaaaggga cagaatgagt ctcagactac cgaaaattga attgtcaata


2701
tttgataaaa ggttactctt tctacttggt ggggtcagct tgctttttcc cccctctctg


2761
actctctcag cattcctttc tgagatcagc ctagtgtgtc cacacgtact tctcaacaag


2821
tctaaaacgc cgagcatcaa tccaggaagg gtccttacct gttaccagga tggttggaag


2881
ggaaagagac tcagagagag catagccgtg ggagtgcagg tcagacagac cccagctgtg


2941
aggaacatct gttctcacta agtgctcaga gtctgggctc tgtgcctgag tgctagccca


3001
tcctcgtggc ctggaactgg agtggctgct gggggccctg gtcttcatga ttcatcccca


3061
aagagtcagt ggctagagaa acagctcctg catgcattca gccaatgggg ccctgtacct


3121
gccagaagct ttgtgaactt ctgcaatgag agcccccagc agtccctgcc aggagtggag


3181
aagcacagag gagcccctgc caacagtaaa gcccaacatc tgccgagtca ctttggagcc


3241
atcctcttta ggcttggctt tcattagcaa ggcccaacag aggcagtgac gtccgtggga


3301
tagcctcaga gtcagcacta ccagggctgg cgtcatatca gggctgcctc ctcgaagccc


3361
agggacaatg ttgccaatct tagcaatctt agcaagctct gcaaacttag gtggttacca


3421
cccatgctat gcttcatgaa tctctgaggg gcaggatttg ggtgcactta gggtaggtgc


3481
aggcatcaca ttgtcagaga ccagtgctga ccatacaggc ctttccaact tgacagatgt


3541
tgacagctta ggctctgggg gggtgggggg ttcctgcacc cagatgggcc gttaacagct


3601
gcagcatcag gcttgcttct tgggtgtagg ttgtggccct cccagtgagt ggtaacacac


3661
ttcacaaagc ctgaggttga ctacacactt cttgttgctg ctcagatgag gaagctgagg


3721
ctagacagac tgagtgccct gcctcgggca tcagctcatt gcagaagtgg gtgttcactc


3781
ctgaggtaca tgctgcccca tgctacctca gaaactaggc agcacattct cactcctagg


3841
cctgtgaacc ccactgagat gcgcttgcgt tctgggatct cacataagta tgtctcaggc


3901
attgtccagg agggaccatc ctaagcgccc caccacatgc tcctgggaag gaggagtggt


3961
taggaggagt ggttgtcacc aggcatctga ggagggaaga gcccccctcc agcaaggacc


4021
cagggcttgt gtctccctag accctgcctc aagtgccaaa gctgtctcgt gagcttccag


4081
gatcctgaca ggcctggagg gaactgcaaa gggccatctg ccaggaaata aacgtcacag


4141
aggcaatgct tgcagtgcct gagaagctct ccaggaacca gcctttgggt ctgaaccaaa


4201
ctttgttcta caaaacacag aaagcaagag aaagcaaatc ttccagccac caactttccc


4261
aggagcactg gagtactagt ttggaaacaa gtttgggggt gccctggaag acatctgttg


4321
agcaagggca ggttgagcag ggctgtaaaa gcaggccact ccagcctcag tctgtatggt


4381
cccatccagc tttgtgcatc caattaacag cagctcccat gtcccttcct ggccttgctt


4441
accgtgcctg acagctctac cttgggctgc tttgagcttg tgagttcgca gaaccagcac


4501
ccctacgcaa gaatcctgca agggtcaaaa gttgccactt agttgcattt cagatgggag


4561
acaaaaacca aaactaaatt gtccatgttt caatgtgatg aaatgcttct ccaagcagta


4621
ttgatggata cagtctagtg actctattaa ctgttttggg tgatgtcatt ttagaaaaat


4681
gtgttatttt ttttagctgt gtttcggtgg gaatttttgt ttttgtaata taataaaaat


4741
cacatgttcc catggt










SEQ ID NO: 131 Mouse TP73 isoform 2 amino acid sequence (NP_001119802.1)








1
mlyvgdpmrh lataqfnlls samdqmgsra apaspytpeh aasapthspy aqpsstfdtm


61
spapvipsnt dypgphhfev tfqqsstaks atwtyspllk klycqiaktc piqikvstpp


121
ppgtairamp vykkaehvtd ivkrcpnhel grdfnegqsa pashlirveg nnlaqyvddp


181
vtgrqsvvvp yeppqvgtef ttilynfmcn sscvggmnrr pilviitlet rdgqvlgrrs


241
fegricacpg rdrkadedhy reqqalnest tkngaaskra fkqsppaipa lgtnvkkrrh


301
gdedmfymhv rgrenfeilm kvkeslelme lvpqplvdsy rqqqqqqllq rpshlqppsy


361
gpvlspmnkv hggvnklpsv nqlvgqppph ssaagpnlgp mgsgmlnshg hsmpangemn


421
gghssqtmvs gshctppppy hadpslvsfl tglgcpncie cftsqglqsi yhlqnltied


481
lgalkvpdqy rmtiwrglqd lkqshdcgqq llrsssnaat isiggsgelq rqrvmeavhf


541
rvrhtitipn rggagavtgp dewadfgfdl pdcksrkqpi keeftetesh










SEQ ID NO: 132 Mouse TP73 transcript variant 3 cDNA sequence


(NM_001126331.1; CDS: 242-1726)








1
gttgttggat gcagccagtt gacagaaatg agggagatgg gcagggtgag aatgccaact


61
ctcagtccgc acgcctctga gcatcctccg ctcctgcctt cctagccaca gagcctcaac


121
ccctcagtcc accccaccgg gcagccacca gtctacccct accccaccta gccacccaga


181
cccatgcctc gtcccgcggc acaccagctc ctcagcgtgt gcagaccccc acgagcctac


241
catgctttac gtcggtgacc ccatgagaca cctcgccacg gcccagttca atttgctcag


301
cagtgccatg gaccagatgg gcagccgtgc ggccccggcg agcccctaca ccccggagca


361
cgccgccagc gcgcccaccc actcgcccta cgcgcagccc agctccacct tcgacaccat


421
gtctccggcg cctgtcatcc cttccaatac cgactacccc ggcccccacc acttcgaggt


481
caccttccag cagtcgagca ctgccaagtc ggccacctgg acatactccc cactcttgaa


541
gaagttgtac tgtcagattg ctaagacatg ccccatccag atcaaagtgt ccacaccacc


601
acccccgggc acggccatcc gggccatgcc tgtctacaag aaggcagagc atgtgaccga


661
cattgttaag cgctgcccca accacgagct tggaagggac ttcaatgaag gacagtctgc


721
cccggctagc cacctcatcc gtgtagaagg caacaacctc gcccagtacg tggatgaccc


781
tgtcaccgga aggcagagtg tggttgtgcc gtatgaaccc ccacaggtgg gaacagaatt


841
taccaccatc ctgtacaact tcatgtgtaa cagcagctgt gtggggggca tgaatcggag


901
gcccatcctt gtcatcatca ccctggagac ccgggatgga caggtcctgg gccgccggtc


961
tttcgagggt cgcatctgtg cctgtcctgg ccgtgaccgc aaagctgatg aagaccatta


1021
ccgggagcaa caggctctga atgaaagtac caccaaaaat ggagctgcca gcaaacgtgc


1081
attcaagcag agcccccctg ccatccctgc cctgggtacc aacgtgaaga agagacgcca


1141
cggggacgag gacatgttct acatgcacgt gcgaggccgg gagaactttg agatcttgat


1201
gaaagtcaag gagagcctag aactgatgga gcttgtgccc cagcctttgg ttgactccta


1261
tcgacagcag cagcagcagc agctcctaca gaggcctttt ttgacagggt tggggtgtcc


1321
aaactgcatc gagtgcttca cttcccaagg gttgcagagc atctaccacc tgcagaacct


1381
taccatcgag gaccttgggg ctctgaaggt ccctgaccag taccgtatga ccatctggag


1441
gggcctacag gacctgaagc agagccatga ctgcggccag caactgctac gctccagcag


1501
caacgcggcc accatctcca tcggcggctc tggcgagctg cagcggcagc gggtcatgga


1561
agccgtgcat ttccgtgtgc gccacaccat cacgatcccc aaccgtggag gcgcaggtgc


1621
ggtgacaggt cccgacgagt gggcggactt tggctttgac ctgcctgact gcaagtcccg


1681
taagcagccc atcaaagagg agttcacaga gacagagagc cactgaggaa cgtaccttct


1741
tctcctgtcc ttcctctgtg agaaactgct cttggaagtg ggacctgttg gctgtgccca


1801
cagaaaccag caaggacctt ctgccggatg ccattcctga agggaagtcg ctcatgaact


1861
aactccctct tggaaacttc tggaactgcc cttagctaca tatacacaag ggcaggtggt


1921
gagccaagtg ctgagacagg gagctgtccc tttgtgggtg ggtatgcagc acccatttgc


1981
ttctcccgtt ctctattgag gactctgcca cctccaggac agagcagcat ccttcacttg


2041
ctcaccctct gccacaaagt attccaacat cttctgttcc tgctaaccat gcacagccca


2101
gcctctgtgt catcagcgct tacgtacagg tcgattccac tgtgtcttga aagtgaattc


2161
agggccagag acatcttctg caggatgtgt ggacagatct gtccctaatg taggtcattc


2221
tgccgttacc ccttgtctcc cgagtcttga ttgctggggt cagggaagac tgtggcagag


2281
caggggaagc cgctggccct ccgcctctag ccagcaccct gaacatgctg gctgtagcag


2341
cctctaggga cctctctggt cagacaaagg gacagaatga gtctcagact accgaaaatt


2401
gaattgtcaa tatttgataa aaggttactc tttctacttg gtggggtcag cttgcttttt


2461
cccccctctc tgactctctc agcattcctt tctgagatca gcctagtgtg tccacacgta


2521
cttctcaaca agtctaaaac gccgagcatc aatccaggaa gggtccttac ctgttaccag


2581
gatggttgga agggaaagag actcagagag agcatagccg tgggagtgca ggtcagacag


2641
accccagctg tgaggaacat ctgttctcac taagtgctca gagtctgggc tctgtgcctg


2701
agtgctagcc catcctcgtg gcctggaact ggagtggctg ctgggggccc tggtcttcat


2761
gattcatccc caaagagtca gtggctagag aaacagctcc tgcatgcatt cagccaatgg


2821
ggccctgtac ctgccagaag ctttgtgaac ttctgcaatg agagccccca gcagtccctg


2881
ccaggagtgg agaagcacag aggagcccct gccaacagta aagcccaaca tctgccgagt


2941
cactttggag ccatcctctt taggcttggc tttcattagc aaggcccaac agaggcagtg


3001
acgtccgtgg gatagcctca gagtcagcac taccagggct ggcgtcatat cagggctgcc


3061
tcctcgaagc ccagggacaa tgttgccaat cttagcaatc ttagcaagct ctgcaaactt


3121
aggtggttac cacccatgct atgcttcatg aatctctgag gggcaggatt tgggtgcact


3181
tagggtaggt gcaggcatca cattgtcaga gaccagtgct gaccatacag gcctttccaa


3241
cttgacagat gttgacagct taggctctgg gggggtgggg ggttcctgca cccagatggg


3301
ccgttaacag ctgcagcatc aggcttgctt cttgggtgta ggttgtggcc ctcccagtga


3361
gtggtaacac acttcacaaa gcctgaggtt gactacacac ttcttgttgc tgctcagatg


3421
aggaagctga ggctagacag actgagtgcc ctgcctcggg catcagctca ttgcagaagt


3481
gggtgttcac tcctgaggta catgctgccc catgctacct cagaaactag gcagcacatt


3541
ctcactccta ggcctgtgaa ccccactgag atgcgcttgc gttctgggat ctcacataag


3601
tatgtctcag gcattgtcca ggagggacca tcctaagcgc cccaccacat gctcctggga


3661
aggaggagtg gttaggagga gtggttgtca ccaggcatct gaggagggaa gagcccccct


3721
ccagcaagga cccagggctt gtgtctccct agaccctgcc tcaagtgcca aagctgtctc


3781
gtgagcttcc aggatcctga caggcctgga gggaactgca aagggccatc tgccaggaaa


3841
taaacgtcac agaggcaatg cttgcagtgc ctgagaagct ctccaggaac cagcctttgg


3901
gtctgaacca aactttgttc tacaaaacac agaaagcaag agaaagcaaa tcttccagcc


3961
accaactttc ccaggagcac tggagtacta gtttggaaac aagtttgggg gtgccctgga


4021
agacatctgt tgagcaaggg caggttgagc agggctgtaa aagcaggcca ctccagcctc


4081
agtctgtatg gtcccatcca gctttgtgca tccaattaac agcagctccc atgtcccttc


4141
ctggccttgc ttaccgtgcc tgacagctct accttgggct gctttgagct tgtgagttcg


4201
cagaaccagc acccctacgc aagaatcctg caagggtcaa aagttgccac ttagttgcat


4261
ttcagatggg agacaaaaac caaaactaaa ttgtccatgt ttcaatgtga tgaaatgctt


4321
ctccaagcag tattgatgga tacagtctag tgactctatt aactgttttg ggtgatgtca


4381
ttttagaaaa atgtgttatt ttttttagct gtgtttcggt gggaattttt gtttttgtaa


4441
tataataaaa atcacatgtt cccatggt










SEQ ID NO: 133 Mouse TP73 isoform 3 amino acid sequence (NP_001119803.1)








1
mlyvgdpmrh lataqfnlls samdqmgsra apaspytpeh aasapthspy aqpsstfdtm


61
spapvipsnt dypgphhfev tfqqsstaks atwtyspllk klycqiaktc piqikvstpp


121
ppgtairamp vykkaehvtd ivkrcpnhel grdfnegqsa pashlirveg nnlaqyvddp


181
vtgrqsvvvp yeppqvgtef ttilynfmcn sscvggmnrr pilviitlet rdgqvlgrrs


241
fegricacpg rdrkadedhy reqqalnest tkngaaskra fkqsppaipa lgtnvkkrrh


301
gdedmfymhv rgrenfeilm kvkeslelme lvpqplvdsy rqqqqqqllq rpfltglgcp


361
nciecftsqg lqsiyhlqnl tiedlgalkv pdqyrmtiwr glqdlkqshd cgqqllrsss


421
naatisiggs gelqrqrvme avhfrvrhti tipnrggaga vtgpdewadf gfdlpdcksr


481
kqpikeefte tesh










SEQ ID NO: 134 Human SMAD1 transcript variant 1 cDNA sequence


(NM_001003688.1; CDS: 241-1638)








1
cactgcatgt gtattcgtga gttcgcggtt gaacaactgt tcctttactc tgctccctgt


61
ctttgtgctg actgggttac ttttttaaac actaggaatg gtaatttcta ctcttctgga


121
cttcaaacta agaagttaaa gagacttctc tgtaaataaa caaatctctt ctgctgtcct


181
tttgcatttg gagacagctt tatttcacca tatccaagga gtataactag tgctgtcatt


241
atgaatgtga caagtttatt ttcctttaca agtccagctg tgaagagact tcttgggtgg


301
aaacagggcg atgaagaaga aaaatgggca gagaaagctg ttgatgcttt ggtgaaaaaa


361
ctgaagaaaa agaaaggtgc catggaggaa ctggaaaagg ccttgagctg cccagggcaa


421
ccgagtaact gtgtcaccat tccccgctct ctggatggca ggctgcaagt ctcccaccgg


481
aagggactgc ctcatgtcat ttactgccgt gtgtggcgct ggcccgatct tcagagccac


541
catgaactaa aaccactgga atgctgtgag tttccttttg gttccaagca gaaggaggtc


601
tgcatcaatc cctaccacta taagagagta gaaagccctg tacttcctcc tgtgctggtt


661
ccaagacaca gcgaatataa tcctcagcac agcctcttag ctcagttccg taacttagga


721
caaaatgagc ctcacatgcc actcaacgcc acttttccag attctttcca gcaacccaac


781
agccacccgt ttcctcactc tcccaatagc agttacccaa actctcctgg gagcagcagc


841
agcacctacc ctcactctcc caccagctca gacccaggaa gccctttcca gatgccagct


901
gatacgcccc cacctgctta cctgcctcct gaagacccca tgacccagga tggctctcag


961
ccgatggaca caaacatgat ggcgcctccc ctgccctcag aaatcaacag aggagatgtt


1021
caggcggttg cttatgagga accaaaacac tggtgctcta ttgtctacta tgagctcaac


1081
aatcgtgtgg gtgaagcgtt ccatgcctcc tccacaagtg tgttggtgga tggtttcact


1141
gatccttcca acaataagaa ccgtttctgc cttgggctgc tctccaatgt taaccggaat


1201
tccactattg aaaacaccag gcggcatatt ggaaaaggag ttcatcttta ttatgttgga


1261
ggggaggtgt atgccgaatg ccttagtgac agtagcatct ttgtgcaaag tcggaactgc


1321
aactaccatc atggatttca tcctactact gtttgcaaga tccctagtgg gtgtagtctg


1381
aaaattttta acaaccaaga atttgctcag ttattggcac agtctgtgaa ccatggattt


1441
gagacagtct atgagcttac aaaaatgtgt actatacgta tgagctttgt gaagggctgg


1501
ggagcagaat accaccgcca ggatgttact agcaccccct gctggattga gatacatctg


1561
cacggccccc tccagtggct ggataaagtt cttactcaaa tgggttcacc tcataatcct


1621
atttcatctg tatcttaaat ggccccaggc atctgcctct ggaaaactat tgagccttgc


1681
atgtacttga aggatggatg agtcagacac gattgagaac tgacaaagga gccttgataa


1741
tacttgacct ctgtgaccaa ctgttggatt cagaaattta aacaaaaaaa aaaaaaaaca


1801
cacacacctt ggtaacatac tgttgatatc aagaacctgt ttagtttaca ttgtaacatt


1861
ctattgtaaa atcaactaaa attcagactt ttagcaggac tttgtgtaca gttaaaggag


1921
agatggccaa gccagggaca aattgtctat tagaaaacgg tcctaagaga ttctttggtg


1981
tttggcactt taaggtcatc gttgggcaga agtttagcat taatagttgt tctgaaacgt


2041
gttttatcag gtttagagcc catgttgagt cttcttttca tgggttttca taatatttta


2101
aaactatttg tttagcgatg gttttgttcg tttaagtaaa ggttaatctt gatgatatac


2161
ataataatct ttctaaaatt gtatgctgac catacttgct gtcagaataa tgctaggcat


2221
atgctttttg ctaaatatgt atgtacagag tatttggaag ttaagaattg attagactag


2281
tgaatttagg agtatttgag gtgggtgggg ggaagaggga aatgacaact gcaaatgtag


2341
actatactgt aaaaattcag tttgttgctt taaagaaaca aactgatacc tgaattttgc


2401
tgtgtttcca ttttttagag atttttatca tttttttctc tctcggcatt cttttttctc


2461
atactcttca aaaagcagtt ctgcagctgg ttaattcatg taactgtgag agcaaatgaa


2521
taattcctgc tattctgaaa ttgcctacat gtttcaatac cagttatatg gagtgcttga


2581
atttaataag cagtttttac ggagtttaca gtacagaaat aggctttaat tttcaagtga


2641
attttttgcc aaacttagta actctgttaa atatttggag gatttaaaga acatcccagt


2701
ttgaattcat ttcaaacttt ttaaattttt ttgtactatg tttggtttta ttttccttct


2761
gttaatcttt tgtattcact tatgctctcg tacattgagt acttttattc caaaactagt


2821
gggttttctc tactggaaat tttcaataaa cctgtcatta ttgcttactt tgattaaaaa










SEQ ID NO: 135 Human SMAD1 transcript variant 2 cDNA sequence


(NM_001354811.1; CDS: 664-2061)








1
gctgtgggaa gcccagttcc cgggcccccg agcctcggct cccgggcctg accgcgctgg


61
gatctccccg gccgcgctcc ccttccgcgc gctcctcaca tctctcccgt gctgccgccg


121
ggccgaggcc cgttcgcgtg gcccgcggac ccattgtgtc ccccgcgccg gcggggcgac


181
ccctgcggga gctggaggac gaccgctggc gctgctctcc aaggcgcctg gtggagcggg


241
tctcgcgggc gggggacccc ggcgccccgg gcccctccac atcccgcacg ggttttcttc


301
tcggccccag caagcctctt tggggtcgag gtcaaggaaa gttcgcaccg agatcccctc


361
taatttattc aaaggtttgg cggcggcgcg taattttttc cccctcttcc gcctacaccc


421
gctgcgtctc ctggtgtctc gttcctttcc ctttaccgga gtcgattgcc tcactgcatg


481
tgtattcgtg ctgactgggt tactttttta aacactagga atggtaattt ctactcttct


541
ggacttcaaa ctaagaagtt aaagagactt ctctgtaaat aaacaaatct cttctgctgt


601
ccttttgcat ttggagacag ctttatttca ccatatccaa ggagtataac tagtgctgtc


661
attatgaatg tgacaagttt attttccttt acaagtccag ctgtgaagag acttcttggg


721
tggaaacagg gcgatgaaga agaaaaatgg gcagagaaag ctgttgatgc tttggtgaaa


781
aaactgaaga aaaagaaagg tgccatggag gaactggaaa aggccttgag ctgcccaggg


841
caaccgagta actgtgtcac cattccccgc tctctggatg gcaggctgca agtctcccac


901
cggaagggac tgcctcatgt catttactgc cgtgtgtggc gctggcccga tcttcagagc


961
caccatgaac taaaaccact ggaatgctgt gagtttcctt ttggttccaa gcagaaggag


1021
gtctgcatca atccctacca ctataagaga gtagaaagcc ctgtacttcc tcctgtgctg


1081
gttccaagac acagcgaata taatcctcag cacagcctct tagctcagtt ccgtaactta


1141
ggacaaaatg agcctcacat gccactcaac gccacttttc cagattcttt ccagcaaccc


1201
aacagccacc cgtttcctca ctctcccaat agcagttacc caaactctcc tgggagcagc


1261
agcagcacct accctcactc tcccaccagc tcagacccag gaagcccttt ccagatgcca


1321
gctgatacgc ccccacctgc ttacctgcct cctgaagacc ccatgaccca ggatggctct


1381
cagccgatgg acacaaacat gatggcgcct cccctgccct cagaaatcaa cagaggagat


1441
gttcaggcgg ttgcttatga ggaaccaaaa cactggtgct ctattgtcta ctatgagctc


1501
aacaatcgtg tgggtgaagc gttccatgcc tcctccacaa gtgtgttggt ggatggtttc


1561
actgatcctt ccaacaataa gaaccgtttc tgccttgggc tgctctccaa tgttaaccgg


1621
aattccacta ttgaaaacac caggcggcat attggaaaag gagttcatct ttattatgtt


1681
ggaggggagg tgtatgccga atgccttagt gacagtagca tctttgtgca aagtcggaac


1741
tgcaactacc atcatggatt tcatcctact actgtttgca agatccctag tgggtgtagt


1801
ctgaaaattt ttaacaacca agaatttgct cagttattgg cacagtctgt gaaccatgga


1861
tttgagacag tctatgagct tacaaaaatg tgtactatac gtatgagctt tgtgaagggc


1921
tggggagcag aataccaccg ccaggatgtt actagcaccc cctgctggat tgagatacat


1981
ctgcacggcc ccctccagtg gctggataaa gttcttactc aaatgggttc acctcataat


2041
cctatttcat ctgtatctta aatggcccca ggcatctgcc tctggaaaac tattgagcct


2101
tgcatgtact tgaaggatgg atgagtcaga cacgattgag aactgacaaa ggagccttga


2161
taatacttga cctctgtgac caactgttgg attcagaaat ttaaacaaaa aaaaaaaaaa


2221
acacacacac cttggtaaca tactgttgat atcaagaacc tgtttagttt acattgtaac


2281
attctattgt aaaatcaact aaaattcaga cttttagcag gactttgtgt acagttaaag


2341
gagagatggc caagccaggg acaaattgtc tattagaaaa cggtcctaag agattctttg


2401
gtgtttggca ctttaaggtc atcgttgggc agaagtttag cattaatagt tgttctgaaa


2461
cgtgttttat caggtttaga gcccatgttg agtcttcttt tcatgggttt tcataatatt


2521
ttaaaactat ttgtttagcg atggttttgt tcgtttaagt aaaggttaat cttgatgata


2581
tacataataa tctttctaaa attgtatgct gaccatactt gctgtcagaa taatgctagg


2641
catatgcttt ttgctaaata tgtatgtaca gagtatttgg aagttaagaa ttgattagac


2701
tagtgaattt aggagtattt gaggtgggtg gggggaagag ggaaatgaca actgcaaatg


2761
tagactatac tgtaaaaatt cagtttgttg ctttaaagaa acaaactgat acctgaattt


2821
tgctgtgttt ccatttttta gagattttta tcattttttt ctctctcggc attctttttt


2881
ctcatactct tcaaaaagca gttctgcagc tggttaattc atgtaactgt gagagcaaat


2941
gaataattcc tgctattctg aaattgccta catgtttcaa taccagttat atggagtgct


3001
tgaatttaat aagcagtttt tacggagttt acagtacaga aataggcttt aattttcaag


3061
tgaatttttt gccaaactta gtaactctgt taaatatttg gaggatttaa agaacatccc


3121
agtttgaatt catttcaaac tttttaaatt tttttgtact atgtttggtt ttattttcct


3181
tctgttaatc ttttgtattc acttatgctc tcgtacattg agtactttta ttccaaaact


3241
agtgggtttt ctctactgga aattttcaat aaacctgtca ttattgctta ctttgattaa


3301
aaa










SEQ ID NO: 136 Human SMAD1 transcript variant 3 cDNA sequence


(NM_001354812.1; CDS: 272-1669)








1
caattctggg tacgtacaac ttctggggcc tgcaaattat tggagagtga gtgaggggca


61
acgaaagata gacataaaag ggcgcgtctc gaaaggtgct gactgggtta cttttttaaa


121
cactaggaat ggtaatttct actcttctgg acttcaaact aagaagttaa agagacttct


181
ctgtaaataa acaaatctct tctgctgtcc ttttgcattt ggagacagct ttatttcacc


241
atatccaagg agtataacta gtgctgtcat tatgaatgtg acaagtttat tttcctttac


301
aagtccagct gtgaagagac ttcttgggtg gaaacagggc gatgaagaag aaaaatgggc


361
agagaaagct gttgatgctt tggtgaaaaa actgaagaaa aagaaaggtg ccatggagga


421
actggaaaag gccttgagct gcccagggca accgagtaac tgtgtcacca ttccccgctc


481
tctggatggc aggctgcaag tctcccaccg gaagggactg cctcatgtca tttactgccg


541
tgtgtggcgc tggcccgatc ttcagagcca ccatgaacta aaaccactgg aatgctgtga


601
gtttcctttt ggttccaagc agaaggaggt ctgcatcaat ccctaccact ataagagagt


661
agaaagccct gtacttcctc ctgtgctggt tccaagacac agcgaatata atcctcagca


721
cagcctctta gctcagttcc gtaacttagg acaaaatgag cctcacatgc cactcaacgc


781
cacttttcca gattctttcc agcaacccaa cagccacccg tttcctcact ctcccaatag


841
cagttaccca aactctcctg ggagcagcag cagcacctac cctcactctc ccaccagctc


901
agacccagga agccctttcc agatgccagc tgatacgccc ccacctgctt acctgcctcc


961
tgaagacccc atgacccagg atggctctca gccgatggac acaaacatga tggcgcctcc


1021
cctgccctca gaaatcaaca gaggagatgt tcaggcggtt gcttatgagg aaccaaaaca


1081
ctggtgctct attgtctact atgagctcaa caatcgtgtg ggtgaagcgt tccatgcctc


1141
ctccacaagt gtgttggtgg atggtttcac tgatccttcc aacaataaga accgtttctg


1201
ccttgggctg ctctccaatg ttaaccggaa ttccactatt gaaaacacca ggcggcatat


1261
tggaaaagga gttcatcttt attatgttgg aggggaggtg tatgccgaat gccttagtga


1321
cagtagcatc tttgtgcaaa gtcggaactg caactaccat catggatttc atcctactac


1381
tgtttgcaag atccctagtg ggtgtagtct gaaaattttt aacaaccaag aatttgctca


1441
gttattggca cagtctgtga accatggatt tgagacagtc tatgagctta caaaaatgtg


1501
tactatacgt atgagctttg tgaagggctg gggagcagaa taccaccgcc aggatgttac


1561
tagcaccccc tgctggattg agatacatct gcacggcccc ctccagtggc tggataaagt


1621
tcttactcaa atgggttcac ctcataatcc tatttcatct gtatcttaaa tggccccagg


1681
catctgcctc tggaaaacta ttgagccttg catgtacttg aaggatggat gagtcagaca


1741
cgattgagaa ctgacaaagg agccttgata atacttgacc tctgtgacca actgttggat


1801
tcagaaattt aaacaaaaaa aaaaaaaaac acacacacct tggtaacata ctgttgatat


1861
caagaacctg tttagtttac attgtaacat tctattgtaa aatcaactaa aattcagact


1921
tttagcagga ctttgtgtac agttaaagga gagatggcca agccagggac aaattgtcta


1981
ttagaaaacg gtcctaagag attctttggt gtttggcact ttaaggtcat cgttgggcag


2041
aagtttagca ttaatagttg ttctgaaacg tgttttatca ggtttagagc ccatgttgag


2101
tcttcttttc atgggttttc ataatatttt aaaactattt gtttagcgat ggttttgttc


2161
gtttaagtaa aggttaatct tgatgatata cataataatc tttctaaaat tgtatgctga


2221
ccatacttgc tgtcagaata atgctaggca tatgcttttt gctaaatatg tatgtacaga


2281
gtatttggaa gttaagaatt gattagacta gtgaatttag gagtatttga ggtgggtggg


2341
gggaagaggg aaatgacaac tgcaaatgta gactatactg taaaaattca gtttgttgct


2401
ttaaagaaac aaactgatac ctgaattttg ctgtgtttcc attttttaga gatttttatc


2461
atttttttct ctctcggcat tcttttttct catactcttc aaaaagcagt tctgcagctg


2521
gttaattcat gtaactgtga gagcaaatga ataattcctg ctattctgaa attgcctaca


2581
tgtttcaata ccagttatat ggagtgcttg aatttaataa gcagttttta cggagtttac


2641
agtacagaaa taggctttaa ttttcaagtg aattttttgc caaacttagt aactctgtta


2701
aatatttgga ggatttaaag aacatcccag tttgaattca tttcaaactt tttaaatttt


2761
tttgtactat gtttggtttt attttccttc tgttaatctt ttgtattcac ttatgctctc


2821
gtacattgag tacttttatt ccaaaactag tgggttttct ctactggaaa ttttcaataa


2881
acctgtcatt attgcttact ttgattaaaa a










SEQ ID NO: 137 Human SMAD1 transcript variant 4 cDNA sequence


(NM_001354813.1; CDS: 280-1677)








1
gccgtcctcc ggccccggcc gcgctgcgct cacgccggcc gggccgggaa tttggagagg


61
atccctggtc gcgcggcagc ggcggcggcg cgcgggtgag cgggtgctga ctgggttact


121
tttttaaaca ctaggaatgg taatttctac tcttctggac ttcaaactaa gaagttaaag


181
agacttctct gtaaataaac aaatctcttc tgctgtcctt ttgcatttgg agacagcttt


241
atttcaccat atccaaggag tataactagt gctgtcatta tgaatgtgac aagtttattt


301
tcctttacaa gtccagctgt gaagagactt cttgggtgga aacagggcga tgaagaagaa


361
aaatgggcag agaaagctgt tgatgctttg gtgaaaaaac tgaagaaaaa gaaaggtgcc


421
atggaggaac tggaaaaggc cttgagctgc ccagggcaac cgagtaactg tgtcaccatt


481
ccccgctctc tggatggcag gctgcaagtc tcccaccgga agggactgcc tcatgtcatt


541
tactgccgtg tgtggcgctg gcccgatctt cagagccacc atgaactaaa accactggaa


601
tgctgtgagt ttccttttgg ttccaagcag aaggaggtct gcatcaatcc ctaccactat


661
aagagagtag aaagccctgt acttcctcct gtgctggttc caagacacag cgaatataat


721
cctcagcaca gcctcttagc tcagttccgt aacttaggac aaaatgagcc tcacatgcca


781
ctcaacgcca cttttccaga ttctttccag caacccaaca gccacccgtt tcctcactct


841
cccaatagca gttacccaaa ctctcctggg agcagcagca gcacctaccc tcactctccc


901
accagctcag acccaggaag ccctttccag atgccagctg atacgccccc acctgcttac


961
ctgcctcctg aagaccccat gacccaggat ggctctcagc cgatggacac aaacatgatg


1021
gcgcctcccc tgccctcaga aatcaacaga ggagatgttc aggcggttgc ttatgaggaa


1081
ccaaaacact ggtgctctat tgtctactat gagctcaaca atcgtgtggg tgaagcgttc


1141
catgcctcct ccacaagtgt gttggtggat ggtttcactg atccttccaa caataagaac


1201
cgtttctgcc ttgggctgct ctccaatgtt aaccggaatt ccactattga aaacaccagg


1261
cggcatattg gaaaaggagt tcatctttat tatgttggag gggaggtgta tgccgaatgc


1321
cttagtgaca gtagcatctt tgtgcaaagt cggaactgca actaccatca tggatttcat


1381
cctactactg tttgcaagat ccctagtggg tgtagtctga aaatttttaa caaccaagaa


1441
tttgctcagt tattggcaca gtctgtgaac catggatttg agacagtcta tgagcttaca


1501
aaaatgtgta ctatacgtat gagctttgtg aagggctggg gagcagaata ccaccgccag


1561
gatgttacta gcaccccctg ctggattgag atacatctgc acggccccct ccagtggctg


1621
gataaagttc ttactcaaat gggttcacct cataatccta tttcatctgt atcttaaatg


1681
gccccaggca tctgcctctg gaaaactatt gagccttgca tgtacttgaa ggatggatga


1741
gtcagacacg attgagaact gacaaaggag ccttgataat acttgacctc tgtgaccaac


1801
tgttggattc agaaatttaa acaaaaaaaa aaaaaaacac acacaccttg gtaacatact


1861
gttgatatca agaacctgtt tagtttacat tgtaacattc tattgtaaaa tcaactaaaa


1921
ttcagacttt tagcaggact ttgtgtacag ttaaaggaga gatggccaag ccagggacaa


1981
attgtctatt agaaaacggt cctaagagat tctttggtgt ttggcacttt aaggtcatcg


2041
ttgggcagaa gtttagcatt aatagttgtt ctgaaacgtg ttttatcagg tttagagccc


2101
atgttgagtc ttcttttcat gggttttcat aatattttaa aactatttgt ttagcgatgg


2161
ttttgttcgt ttaagtaaag gttaatcttg atgatataca taataatctt tctaaaattg


2221
tatgctgacc atacttgctg tcagaataat gctaggcata tgctttttgc taaatatgta


2281
tgtacagagt atttggaagt taagaattga ttagactagt gaatttagga gtatttgagg


2341
tgggtggggg gaagagggaa atgacaactg caaatgtaga ctatactgta aaaattcagt


2401
ttgttgcttt aaagaaacaa actgatacct gaattttgct gtgtttccat tttttagaga


2461
tttttatcat ttttttctct ctcggcattc ttttttctca tactcttcaa aaagcagttc


2521
tgcagctggt taattcatgt aactgtgaga gcaaatgaat aattcctgct attctgaaat


2581
tgcctacatg tttcaatacc agttatatgg agtgcttgaa tttaataagc agtttttacg


2641
gagtttacag tacagaaata ggctttaatt ttcaagtgaa ttttttgcca aacttagtaa


2701
ctctgttaaa tatttggagg atttaaagaa catcccagtt tgaattcatt tcaaactttt


2761
taaatttttt tgtactatgt ttggttttat tttccttctg ttaatctttt gtattcactt


2821
atgctctcgt acattgagta cttttattcc aaaactagtg ggttttctct actggaaatt


2881
ttcaataaac ctgtcattat tgcttacttt gattaaaaa










SEQ ID NO: 138 Human SMAD1 transcript variant 5 cDNA sequence


(NM_001354814.1; CDS: 272-1669)








1
gccgtcctcc ggccccggcc gcgctgcgct cacgccggcc gggccgggaa tttggagagg


61
atccctggtc gcgcggcagc ggcggcggcg cgcgggtgct gactgggtta cttttttaaa


121
cactaggaat ggtaatttct actcttctgg acttcaaact aagaagttaa agagacttct


181
ctgtaaataa acaaatctct tctgctgtcc ttttgcattt ggagacagct ttatttcacc


241
atatccaagg agtataacta gtgctgtcat tatgaatgtg acaagtttat tttcctttac


301
aagtccagct gtgaagagac ttcttgggtg gaaacagggc gatgaagaag aaaaatgggc


361
agagaaagct gttgatgctt tggtgaaaaa actgaagaaa aagaaaggtg ccatggagga


421
actggaaaag gccttgagct gcccagggca accgagtaac tgtgtcacca ttccccgctc


481
tctggatggc aggctgcaag tctcccaccg gaagggactg cctcatgtca tttactgccg


541
tgtgtggcgc tggcccgatc ttcagagcca ccatgaacta aaaccactgg aatgctgtga


601
gtttcctttt ggttccaagc agaaggaggt ctgcatcaat ccctaccact ataagagagt


661
agaaagccct gtacttcctc ctgtgctggt tccaagacac agcgaatata atcctcagca


721
cagcctctta gctcagttcc gtaacttagg acaaaatgag cctcacatgc cactcaacgc


781
cacttttcca gattctttcc agcaacccaa cagccacccg tttcctcact ctcccaatag


841
cagttaccca aactctcctg ggagcagcag cagcacctac cctcactctc ccaccagctc


901
agacccagga agccctttcc agatgccagc tgatacgccc ccacctgctt acctgcctcc


961
tgaagacccc atgacccagg atggctctca gccgatggac acaaacatga tggcgcctcc


1021
cctgccctca gaaatcaaca gaggagatgt tcaggcggtt gcttatgagg aaccaaaaca


1081
ctggtgctct attgtctact atgagctcaa caatcgtgtg ggtgaagcgt tccatgcctc


1141
ctccacaagt gtgttggtgg atggtttcac tgatccttcc aacaataaga accgtttctg


1201
ccttgggctg ctctccaatg ttaaccggaa ttccactatt gaaaacacca ggcggcatat


1261
tggaaaagga gttcatcttt attatgttgg aggggaggtg tatgccgaat gccttagtga


1321
cagtagcatc tttgtgcaaa gtcggaactg caactaccat catggatttc atcctactac


1381
tgtttgcaag atccctagtg ggtgtagtct gaaaattttt aacaaccaag aatttgctca


1441
gttattggca cagtctgtga accatggatt tgagacagtc tatgagctta caaaaatgtg


1501
tactatacgt atgagctttg tgaagggctg gggagcagaa taccaccgcc aggatgttac


1561
tagcaccccc tgctggattg agatacatct gcacggcccc ctccagtggc tggataaagt


1621
tcttactcaa atgggttcac ctcataatcc tatttcatct gtatcttaaa tggccccagg


1681
catctgcctc tggaaaacta ttgagccttg catgtacttg aaggatggat gagtcagaca


1741
cgattgagaa ctgacaaagg agccttgata atacttgacc tctgtgacca actgttggat


1801
tcagaaattt aaacaaaaaa aaaaaaaaac acacacacct tggtaacata ctgttgatat


1861
caagaacctg tttagtttac attgtaacat tctattgtaa aatcaactaa aattcagact


1921
tttagcagga ctttgtgtac agttaaagga gagatggcca agccagggac aaattgtcta


1981
ttagaaaacg gtcctaagag attctttggt gtttggcact ttaaggtcat cgttgggcag


2041
aagtttagca ttaatagttg ttctgaaacg tgttttatca ggtttagagc ccatgttgag


2101
tcttcttttc atgggttttc ataatatttt aaaactattt gtttagcgat ggttttgttc


2161
gtttaagtaa aggttaatct tgatgatata cataataatc tttctaaaat tgtatgctga


2221
ccatacttgc tgtcagaata atgctaggca tatgcttttt gctaaatatg tatgtacaga


2281
gtatttggaa gttaagaatt gattagacta gtgaatttag gagtatttga ggtgggtggg


2341
gggaagaggg aaatgacaac tgcaaatgta gactatactg taaaaattca gtttgttgct


2401
ttaaagaaac aaactgatac ctgaattttg ctgtgtttcc attttttaga gatttttatc


2461
atttttttct ctctcggcat tcttttttct catactcttc aaaaagcagt tctgcagctg


2521
gttaattcat gtaactgtga gagcaaatga ataattcctg ctattctgaa attgcctaca


2581
tgtttcaata ccagttatat ggagtgcttg aatttaataa gcagttttta cggagtttac


2641
agtacagaaa taggctttaa ttttcaagtg aattttttgc caaacttagt aactctgtta


2701
aatatttgga ggatttaaag aacatcccag tttgaattca tttcaaactt tttaaatttt


2761
tttgtactat gtttggtttt attttccttc tgttaatctt ttgtattcac ttatgctctc


2821
gtacattgag tacttttatt ccaaaactag tgggttttct ctactggaaa ttttcaataa


2881
acctgtcatt attgcttact ttgattaaaa a










SEQ ID NO: 139 Human SMAD1 transcript variant 6 cDNA sequence


(NM_001354816.1; CDS: 551-1948)








1
gctgtgggaa gcccagttcc cgggcccccg agcctcggct cccgggcctg accgcgctgg


61
gatctccccg gccgcgctcc ccttccgcgc gctcctcaca tctctcccgt gctgccgccg


121
ggccgaggcc cgttcgcgtg gcccgcggac ccattgtgtc ccccgcgccg gcggggcgac


181
ccctgcggga gctggaggac gaccgctggc gctgctctcc aaggcgcctg gtggagcggg


241
tctcgcgggc gggggacccc ggcgccccgg gcccctccac atcccgcacg ggttttcttc


301
tcggccccag caagcctctt tggggtcgag gtcaaggaaa gttcgcaccg agatcccctc


361
taatttattc aaaggtgctg actgggttac ttttttaaac actaggaatg gtaatttcta


421
ctcttctgga cttcaaacta agaagttaaa gagacttctc tgtaaataaa caaatctctt


481
ctgctgtcct tttgcatttg gagacagctt tatttcacca tatccaagga gtataactag


541
tgctgtcatt atgaatgtga caagtttatt ttcctttaca agtccagctg tgaagagact


601
tcttgggtgg aaacagggcg atgaagaaga aaaatgggca gagaaagctg ttgatgcttt


661
ggtgaaaaaa ctgaagaaaa agaaaggtgc catggaggaa ctggaaaagg ccttgagctg


721
cccagggcaa ccgagtaact gtgtcaccat tccccgctct ctggatggca ggctgcaagt


781
ctcccaccgg aagggactgc ctcatgtcat ttactgccgt gtgtggcgct ggcccgatct


841
tcagagccac catgaactaa aaccactgga atgctgtgag tttccttttg gttccaagca


901
gaaggaggtc tgcatcaatc cctaccacta taagagagta gaaagccctg tacttcctcc


961
tgtgctggtt ccaagacaca gcgaatataa tcctcagcac agcctcttag ctcagttccg


1021
taacttagga caaaatgagc ctcacatgcc actcaacgcc acttttccag attctttcca


1081
gcaacccaac agccacccgt ttcctcactc tcccaatagc agttacccaa actctcctgg


1141
gagcagcagc agcacctacc ctcactctcc caccagctca gacccaggaa gccctttcca


1201
gatgccagct gatacgcccc cacctgctta cctgcctcct gaagacccca tgacccagga


1261
tggctctcag ccgatggaca caaacatgat ggcgcctccc ctgccctcag aaatcaacag


1321
aggagatgtt caggcggttg cttatgagga accaaaacac tggtgctcta ttgtctacta


1381
tgagctcaac aatcgtgtgg gtgaagcgtt ccatgcctcc tccacaagtg tgttggtgga


1441
tggtttcact gatccttcca acaataagaa ccgtttctgc cttgggctgc tctccaatgt


1501
taaccggaat tccactattg aaaacaccag gcggcatatt ggaaaaggag ttcatcttta


1561
ttatgttgga ggggaggtgt atgccgaatg ccttagtgac agtagcatct ttgtgcaaag


1621
tcggaactgc aactaccatc atggatttca tcctactact gtttgcaaga tccctagtgg


1681
gtgtagtctg aaaattttta acaaccaaga atttgctcag ttattggcac agtctgtgaa


1741
ccatggattt gagacagtct atgagcttac aaaaatgtgt actatacgta tgagctttgt


1801
gaagggctgg ggagcagaat accaccgcca ggatgttact agcaccccct gctggattga


1861
gatacatctg cacggccccc tccagtggct ggataaagtt cttactcaaa tgggttcacc


1921
tcataatcct atttcatctg tatcttaaat ggccccaggc atctgcctct ggaaaactat


1981
tgagccttgc atgtacttga aggatggatg agtcagacac gattgagaac tgacaaagga


2041
gccttgataa tacttgacct ctgtgaccaa ctgttggatt cagaaattta aacaaaaaaa


2101
aaaaaaaaca cacacacctt ggtaacatac tgttgatatc aagaacctgt ttagtttaca


2161
ttgtaacatt ctattgtaaa atcaactaaa attcagactt ttagcaggac tttgtgtaca


2221
gttaaaggag agatggccaa gccagggaca aattgtctat tagaaaacgg tcctaagaga


2281
ttctttggtg tttggcactt taaggtcatc gttgggcaga agtttagcat taatagttgt


2341
tctgaaacgt gttttatcag gtttagagcc catgttgagt cttcttttca tgggttttca


2401
taatatttta aaactatttg tttagcgatg gttttgttcg tttaagtaaa ggttaatctt


2461
gatgatatac ataataatct ttctaaaatt gtatgctgac catacttgct gtcagaataa


2521
tgctaggcat atgctttttg ctaaatatgt atgtacagag tatttggaag ttaagaattg


2581
attagactag tgaatttagg agtatttgag gtgggtgggg ggaagaggga aatgacaact


2641
gcaaatgtag actatactgt aaaaattcag tttgttgctt taaagaaaca aactgatacc


2701
tgaattttgc tgtgtttcca ttttttagag atttttatca tttttttctc tctcggcatt


2761
cttttttctc atactcttca aaaagcagtt ctgcagctgg ttaattcatg taactgtgag


2821
agcaaatgaa taattcctgc tattctgaaa ttgcctacat gtttcaatac cagttatatg


2881
gagtgcttga atttaataag cagtttttac ggagtttaca gtacagaaat aggctttaat


2941
tttcaagtga attttttgcc aaacttagta actctgttaa atatttggag gatttaaaga


3001
acatcccagt ttgaattcat ttcaaacttt ttaaattttt ttgtactatg tttggtttta


3061
ttttccttct gttaatcttt tgtattcact tatgctctcg tacattgagt acttttattc


3121
caaaactagt gggttttctc tactggaaat tttcaataaa cctgtcatta ttgcttactt


3181
tgattaaaaa










SEQ ID NO: 140 Human SMAD1 transcript variant 7 cDNA sequence


(NM_001354817.1; CDS: 549-1946)








1
cactgcatgt gtattcgtga gttcgcggtt gaacaactgt tcctttactc tgctccctgt


61
ctttgttagt gtttctcggg gttgtttctg taggaaggtg ggggtggtgg gcgtgagaga


121
cagatgtggg cttgtttttc tagttgctga aactgtatga aggctttaaa gggagaacgt


181
tttcttgatg tgctttagga ggggaggagg aacaaatgcc tgccagatct cacagctaca


241
gtagctgagc ttttgtttat tttgaagagc atgcaatttt taaatacacg gtgcaagata


301
accagtaaag gcgcgttcct tctgaaaatt gaggccggtc tcagaaccat ctcctgagaa


361
agcatccttt tcgtgctgac tgggttactt ttttaaacac taggaatggt aatttctact


421
cttctggact tcaaactaag aagttaaaga gacttctctg taaataaaca aatctcttct


481
gctgtccttt tgcatttgga gacagcttta tttcaccata tccaaggagt ataactagtg


541
ctgtcattat gaatgtgaca agtttatttt cctttacaag tccagctgtg aagagacttc


601
ttgggtggaa acagggcgat gaagaagaaa aatgggcaga gaaagctgtt gatgctttgg


661
tgaaaaaact gaagaaaaag aaaggtgcca tggaggaact ggaaaaggcc ttgagctgcc


721
cagggcaacc gagtaactgt gtcaccattc cccgctctct ggatggcagg ctgcaagtct


781
cccaccggaa gggactgcct catgtcattt actgccgtgt gtggcgctgg cccgatcttc


841
agagccacca tgaactaaaa ccactggaat gctgtgagtt tccttttggt tccaagcaga


901
aggaggtctg catcaatccc taccactata agagagtaga aagccctgta cttcctcctg


961
tgctggttcc aagacacagc gaatataatc ctcagcacag cctcttagct cagttccgta


1021
acttaggaca aaatgagcct cacatgccac tcaacgccac ttttccagat tctttccagc


1081
aacccaacag ccacccgttt cctcactctc ccaatagcag ttacccaaac tctcctggga


1141
gcagcagcag cacctaccct cactctccca ccagctcaga cccaggaagc cctttccaga


1201
tgccagctga tacgccccca cctgcttacc tgcctcctga agaccccatg acccaggatg


1261
gctctcagcc gatggacaca aacatgatgg cgcctcccct gccctcagaa atcaacagag


1321
gagatgttca ggcggttgct tatgaggaac caaaacactg gtgctctatt gtctactatg


1381
agctcaacaa tcgtgtgggt gaagcgttcc atgcctcctc cacaagtgtg ttggtggatg


1441
gtttcactga tccttccaac aataagaacc gtttctgcct tgggctgctc tccaatgtta


1501
accggaattc cactattgaa aacaccaggc ggcatattgg aaaaggagtt catctttatt


1561
atgttggagg ggaggtgtat gccgaatgcc ttagtgacag tagcatcttt gtgcaaagtc


1621
ggaactgcaa ctaccatcat ggatttcatc ctactactgt ttgcaagatc cctagtgggt


1681
gtagtctgaa aatttttaac aaccaagaat ttgctcagtt attggcacag tctgtgaacc


1741
atggatttga gacagtctat gagcttacaa aaatgtgtac tatacgtatg agctttgtga


1801
agggctgggg agcagaatac caccgccagg atgttactag caccccctgc tggattgaga


1861
tacatctgca cggccccctc cagtggctgg ataaagttct tactcaaatg ggttcacctc


1921
ataatcctat ttcatctgta tcttaaatgg ccccaggcat ctgcctctgg aaaactattg


1981
agccttgcat gtacttgaag gatggatgag tcagacacga ttgagaactg acaaaggagc


2041
cttgataata cttgacctct gtgaccaact gttggattca gaaatttaaa caaaaaaaaa


2101
aaaaaacaca cacaccttgg taacatactg ttgatatcaa gaacctgttt agtttacatt


2161
gtaacattct attgtaaaat caactaaaat tcagactttt agcaggactt tgtgtacagt


2221
taaaggagag atggccaagc cagggacaaa ttgtctatta gaaaacggtc ctaagagatt


2281
ctttggtgtt tggcacttta aggtcatcgt tgggcagaag tttagcatta atagttgttc


2341
tgaaacgtgt tttatcaggt ttagagccca tgttgagtct tcttttcatg ggttttcata


2401
atattttaaa actatttgtt tagcgatggt tttgttcgtt taagtaaagg ttaatcttga


2461
tgatatacat aataatcttt ctaaaattgt atgctgacca tacttgctgt cagaataatg


2521
ctaggcatat gctttttgct aaatatgtat gtacagagta tttggaagtt aagaattgat


2581
tagactagtg aatttaggag tatttgaggt gggtgggggg aagagggaaa tgacaactgc


2641
aaatgtagac tatactgtaa aaattcagtt tgttgcttta aagaaacaaa ctgatacctg


2701
aattttgctg tgtttccatt ttttagagat ttttatcatt tttttctctc tcggcattct


2761
tttttctcat actcttcaaa aagcagttct gcagctggtt aattcatgta actgtgagag


2821
caaatgaata attcctgcta ttctgaaatt gcctacatgt ttcaatacca gttatatgga


2881
gtgcttgaat ttaataagca gtttttacgg agtttacagt acagaaatag gctttaattt


2941
tcaagtgaat tttttgccaa acttagtaac tctgttaaat atttggagga tttaaagaac


3001
atcccagttt gaattcattt caaacttttt aaattttttt gtactatgtt tggttttatt


3061
ttccttctgt taatcttttg tattcactta tgctctcgta cattgagtac ttttattcca


3121
aaactagtgg gttttctcta ctggaaattt tcaataaacc tgtcattatt gcttactttg


3181
attaaaaa










SEQ ID NO: 141 Human SMAD1 transcript variant 8 cDNA sequence (NM_005900.3;


CDS: 363-1760)








1
agatcaatcc aggctccagg agaaagcagg cgggcgggcg gagaaaggag aggccgagcg


61
gctcaacccg ggccgaggct cggggagcgg agagtggcgc agcgcccggc cgtccggacc


121
cgggccgcga gaccccgctc gcccggccac tcgtgctccc acacggacgg gcgcgccgcc


181
aacccggtgc tgactgggtt acttttttaa acactaggaa tggtaatttc tactcttctg


241
gacttcaaac taagaagtta aagagacttc tctgtaaata aacaaatctc ttctgctgtc


301
cttttgcatt tggagacagc tttatttcac catatccaag gagtataact agtgctgtca


361
ttatgaatgt gacaagttta ttttccttta caagtccagc tgtgaagaga cttcttgggt


421
ggaaacaggg cgatgaagaa gaaaaatggg cagagaaagc tgttgatgct ttggtgaaaa


481
aactgaagaa aaagaaaggt gccatggagg aactggaaaa ggccttgagc tgcccagggc


541
aaccgagtaa ctgtgtcacc attccccgct ctctggatgg caggctgcaa gtctcccacc


601
ggaagggact gcctcatgtc atttactgcc gtgtgtggcg ctggcccgat cttcagagcc


661
accatgaact aaaaccactg gaatgctgtg agtttccttt tggttccaag cagaaggagg


721
tctgcatcaa tccctaccac tataagagag tagaaagccc tgtacttcct cctgtgctgg


781
ttccaagaca cagcgaatat aatcctcagc acagcctctt agctcagttc cgtaacttag


841
gacaaaatga gcctcacatg ccactcaacg ccacttttcc agattctttc cagcaaccca


901
acagccaccc gtttcctcac tctcccaata gcagttaccc aaactctcct gggagcagca


961
gcagcaccta ccctcactct cccaccagct cagacccagg aagccctttc cagatgccag


1021
ctgatacgcc cccacctgct tacctgcctc ctgaagaccc catgacccag gatggctctc


1081
agccgatgga cacaaacatg atggcgcctc ccctgccctc agaaatcaac agaggagatg


1141
ttcaggcggt tgcttatgag gaaccaaaac actggtgctc tattgtctac tatgagctca


1201
acaatcgtgt gggtgaagcg ttccatgcct cctccacaag tgtgttggtg gatggtttca


1261
ctgatccttc caacaataag aaccgtttct gccttgggct gctctccaat gttaaccgga


1321
attccactat tgaaaacacc aggcggcata ttggaaaagg agttcatctt tattatgttg


1381
gaggggaggt gtatgccgaa tgccttagtg acagtagcat ctttgtgcaa agtcggaact


1441
gcaactacca tcatggattt catcctacta ctgtttgcaa gatccctagt gggtgtagtc


1501
tgaaaatttt taacaaccaa gaatttgctc agttattggc acagtctgtg aaccatggat


1561
ttgagacagt ctatgagctt acaaaaatgt gtactatacg tatgagcttt gtgaagggct


1621
ggggagcaga ataccaccgc caggatgtta ctagcacccc ctgctggatt gagatacatc


1681
tgcacggccc cctccagtgg ctggataaag ttcttactca aatgggttca cctcataatc


1741
ctatttcatc tgtatcttaa atggccccag gcatctgcct ctggaaaact attgagcctt


1801
gcatgtactt gaaggatgga tgagtcagac acgattgaga actgacaaag gagccttgat


1861
aatacttgac ctctgtgacc aactgttgga ttcagaaatt taaacaaaaa aaaaaaaaaa


1921
cacacacacc ttggtaacat actgttgata tcaagaacct gtttagttta cattgtaaca


1981
ttctattgta aaatcaacta aaattcagac ttttagcagg actttgtgta cagttaaagg


2041
agagatggcc aagccaggga caaattgtct attagaaaac ggtcctaaga gattctttgg


2101
tgtttggcac tttaaggtca tcgttgggca gaagtttagc attaatagtt gttctgaaac


2161
gtgttttatc aggtttagag cccatgttga gtcttctttt catgggtttt cataatattt


2221
taaaactatt tgtttagcga tggttttgtt cgtttaagta aaggttaatc ttgatgatat


2281
acataataat ctttctaaaa ttgtatgctg accatacttg ctgtcagaat aatgctaggc


2341
atatgctttt tgctaaatat gtatgtacag agtatttgga agttaagaat tgattagact


2401
agtgaattta ggagtatttg aggtgggtgg ggggaagagg gaaatgacaa ctgcaaatgt


2461
agactatact gtaaaaattc agtttgttgc tttaaagaaa caaactgata cctgaatttt


2521
gctgtgtttc cattttttag agatttttat catttttttc tctctcggca ttcttttttc


2581
tcatactctt caaaaagcag ttctgcagct ggttaattca tgtaactgtg agagcaaatg


2641
aataattcct gctattctga aattgcctac atgtttcaat accagttata tggagtgctt


2701
gaatttaata agcagttttt acggagttta cagtacagaa ataggcttta attttcaagt


2761
gaattttttg ccaaacttag taactctgtt aaatatttgg aggatttaaa gaacatccca


2821
gtttgaattc atttcaaact ttttaaattt ttttgtacta tgtttggttt tattttcctt


2881
ctgttaatct tttgtattca cttatgctct cgtacattga gtacttttat tccaaaacta


2941
gtgggttttc tctactggaa attttcaata aacctgtcat tattgcttac tttgattaaa


3001
aa










SEQ ID NO: 142 Human SMAD1 amino acid sequence


(NP_005891.1. NP_001341746.1, NP_001341745.1, NP_001341743.1, NP_001341742.1,


NP_001341741.1, NP_001341740.1, NP_001003688.1)








1
mnvtslfsft spavkrllgw kqgdeeekwa ekavdalvkk lkkkkgamee lekalscpgq


61
psncvtiprs ldgrlqvshr kglphviycr vwrwpdlqsh helkplecce fpfgskqkev


121
cinpyhykrv espvlppvlv prhseynpqh sllaqfrnlg qnephmplna tfpdsfqqpn


181
shpfphspns sypnspgsss styphsptss dpgspfqmpa dtpppaylpp edpmtqdgsq


241
pmdtnmmapp lpseinrgdv qavayeepkh wcsivyyeln nrvgeafhas stsvlvdgft


301
dpsnnknrfc lgllsnvnrn stientrrhi gkgvhlyyvg gevyaeclsd ssifvqsrnc


361
nyhhgfhptt vckipsgcsl kifnnqefaq llaqsvnhgf etvyeltkmc tirmsfvkgw


421
gaeyhrqdvt stpcwieihl hgplqwldkv ltqmgsphnp issvs










SEQ ID NO: 143 Mouse SMAD1 cDNA sequence (NM_008539.4; CDS: 358-1755)








1
agatcaatcc aggctcgggg agcgagcggg cgcaccaagg cgaggccggg gccgaggcgc


61
ggggacggcg gcccggagct aagcagagcg cggggacggc ggccgggagc ggatcggagc


121
acgggacccg gcgccgggtc tcgtgcgtcc ctgcggatgg gcgcgccgcc gagccggcgc


181
taactgggat cctcgctgga acaggaggga cagtattttc tacctttcca aaccgcagac


241
caagaagcta aggagaatct atgtaaatat actgaaatct ctgttggctc tgcgcccaac


301
accccggagc tggcacctca ccctgtctga ggagcgtgta gaactagacc agccgctatg


361
aatgtgacca gcttgttttc attcacaagt ccagctgtga agagactcct tgggtggaaa


421
cagggcgatg aagaagagaa atgggcagag aaagctgtgg acgctttggt gaagaaactg


481
aagaagaaga aaggggccat ggaagagctg gagaaggccc tgagctgccc tggacagccg


541
agtaactgcg tcaccattcc tcgctccctg gatggcaggt tgcaggtgtc ccaccggaag


601
ggactacctc atgtcattta ttgccgtgtg tggcgctggc ccgacctcca gagccaccat


661
gaactgaagc ctctggaatg ctgtgagttc ccatttggtt ccaagcagaa ggaggtctgc


721
atcaacccct accactataa gcgagtggag agcccggttc tcccgccggt gctggttccg


781
aggcacagcg agtacaatcc tcagcacagc cttctggctc agttccgcaa cctgggacaa


841
aatgagcctc acatgccact gaacgccacg ttcccagact ctttccagca gcccaacagc


901
cacccgttcc cccactcccc caacagcagc taccccaact ctcctggcgg cagcagcagc


961
acctaccctc actccccaac cagctcagac ccgggcagcc cttttcagat gccagctgac


1021
acacccccac ctgcttacct gcctcctgaa gaccccatgg cccaggatgg ctctcagccc


1081
atggacacga acatgatggc gcctccactg cccgctgaaa tcagcagagg agatgttcag


1141
gcagttgctt acgaggaacc aaaacactgg tgctctattg tgtactatga gctcaacaac


1201
cgtgtgggtg aagcgttcca cgcctcgtcc accagcgtgc tggtggatgg tttcacagat


1261
ccgtccaaca ataagaaccg cttctgcctt ggcttgctct ccaacgttaa ccggaattcc


1321
actattgaaa acaccaggcg acatattggg aaaggagtcc acctttatta cgttggagga


1381
gaggtgtatg cggaatgcct cagtgacagc agcatcttcg tgcagagccg gaactgcaac


1441
taccaccacg gctttcaccc caccaccgtc tgcaagatcc ccagcgggtg cagcttgaaa


1501
atcttcaaca accaagagtt tgctcagcta ctggcgcagt ctgtgaacca cgggttcgag


1561
accgtgtatg aactcaccaa aatgtgcact attcggatga gcttcgtgaa gggttgggga


1621
gccgaatacc accggcagga tgttaccagc accccctgct ggattgagat ccatctgcat


1681
ggccctctcc agtggctgga taaggttctg acccagatgg gctcacccca caatcctatt


1741
tcatccgtgt cttaaaagac ctgtggcttc cgtctcttgc aaactatcga gccttgcatg


1801
tacttgaagg atggacaagt cagacaggat ggagacctga cgaaggagcc acgataatac


1861
ttgacctctg tgaccaacta ttggattgag aaactgacaa gccttggttg atagcaagaa


1921
ccctttcagt ttacattgtg acattctgtt gtaaaaatca actaaaatgc tgactttcag


1981
caggactttt gtgtatagtt aaaaaaaaaa gagatggcca agccagggac aaattatcta


2041
ttaggaaaaa agaaaaaaat gattgtaatc aatccttttg tgtggggtgt tggcagaagg


2101
ttggcgctga tagtctttct gaagtgggct ttcatcaggc tcagagccca cgttgaatca


2161
tcttctcatg ggttttctta atattttaaa actacttgtt tagaaatgaa tgggtttttt


2221
gtttgttttt aaagtacagg ttaatcgtta tgacatgcat agtaatcttt ctgaaactgt


2281
atgctggctg tattactgtc agaatgatgg caggcatatg ctctttgcta aatatgtata


2341
tacagaatat ttggaggtta tgaatagtct aaatggctag tgggtttaca gagtatctga


2401
ggggcggggt cgggaagaaa acgacggctg caaatgtaga ctataccgta aagctcagct


2461
tgctgcctta aacagacaag ctggtgtctg aatttgctgt gtttcagttt ttgtagagtt


2521
ttatctgact tcttttcttc tgtcttatcc gctccacggc acagttaagc agctggttaa


2581
ttcctctaac tgtgagagca gatgagtaat tccttctgtt cgcaaatcaa ctggcttcgt


2641
gtttcagtac ccagtatatg aaaagcttga attgaatgag cagtttttat ggagtttaca


2701
gtacagacat aggctttgat ttccaaataa attgtttgcc aaacctggta actctgttca


2761
ttattcgcag gattaaagat ctctctattg gaatccattt caaaggttgt tttttttgtt


2821
tttgtttttg ttttttgttt tattttgatt tgtttttttt tgtactattt ggtttctttt


2881
cttctgttaa tttttttatt ctcctttgct cttatacagc gagtactttt attccaacac


2941
tagcagggtt tttctctact ggaaattttt aaataaaacc tgtcattatt gcttactttg


3001
attaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa










SEQ ID NO: 144 Mouse SMAD1 isoform amino acid sequence (NP_0325652)








1
mnvtslfsft spavkrllgw kqgdeeekwa ekavdalvkk lkkkkgamee lekalscpgq


61
psncvtiprs ldgrlqvshr kglphviycr vwrwpdlqsh helkplecce fpfgskqkev


121
cinpyhykrv espvlppvlv prhseynpqh sllaqfrnlg qnephmpina tfpdsfqqpn


181
shpfphspns sypnspggss styphsptss dpgspfqmpa dtpppaylpp edpmaqdgsq


241
pmdtnmmapp lpaeisrgdv qavayeepkh wcsivyyeln nrvgeafhas stsvlvdgft


301
dpsnnknrfc lgllsnvnrn stientrrhi gkgvhlyyvg gevyaeclsd ssifvqsrnc


361
nyhhgfhptt vckipsgcsl kifnnqefaq llaqsvnhgf etvyeltkmc tirmsfvkgw


421
gaeyhrqdvt stpcwieihl hgplqwldkv ltqmgsphnp issvs










SEQ ID NO: 145 SMAD3 transcript variant 1 cDNA sequence (NM_005902.4;


CDS: 554-1831)








1
gaaacacaga ctgggagcgg gcgggagcgg gagcgcggcg cacgccccgg gccggcccag


61
ccagcgagcg agcgagcggc gagccgggag gaggagggtg gcggggcggt gaggccgcag


121
aggcggaggg atctgcgcat caaagctagc gaggcgagcg aagtttggcc gggggttgga


181
ctttccttcc cggaggcggc acccaaacag ctaccccgtg cggaaaccca aacttctgct


241
gccacttgga gtctcgcggc cgccgcctcc gccccgcgtt cggggccttc ccgaccctgc


301
actgctgccg tccgcccgcc cggccgctct tctcttcgcc gtgggagccg ctccgggcgc


361
agggccgcgc gccgagcccc gcaggctgca gcgccgcggc ccggcccggc gccccggcaa


421
cttcgccgag agttgaggcg aagtttgggc gaccgcggca ggccccggcc gagctcccct


481
ctgcgccccc ggcgtcccgt cgagcccagc cccgccgggg gcgctcctcg ccgcccgcgc


541
gccctcccca gccatgtcgt ccatcctgcc tttcactccc ccgatcgtga agcgcctgct


601
gggctggaag aagggcgagc agaacgggca ggaggagaaa tggtgcgaga aggcggtcaa


661
gagcctggtc aagaaactca agaagacggg gcagctggac gagctggaga aggccatcac


721
cacgcagaac gtcaacacca agtgcatcac catccccagg tccctggatg gccggttgca


781
ggtgtcccat cggaaggggc tccctcatgt catctactgc cgcctgtggc gatggccaga


841
cctgcacagc caccacgagc tacgggccat ggagctgtgt gagttcgcct tcaatatgaa


901
gaaggacgag gtctgcgtga atccctacca ctaccagaga gtagagacac cagttctacc


961
tcctgtgttg gtgccacgcc acacagagat cccggccgag ttccccccac tggacgacta


1021
cagccattcc atccccgaaa acactaactt ccccgcaggc atcgagcccc agagcaatat


1081
tccagagacc ccaccccctg gctacctgag tgaagatgga gaaaccagtg accaccagat


1141
gaaccacagc atggacgcag gttctccaaa cctatccccg aatccgatgt ccccagcaca


1201
taataacttg gacctgcagc cagttaccta ctgcgagccg gccttctggt gctccatctc


1261
ctactacgag ctgaaccagc gcgtcgggga gacattccac gcctcgcagc catccatgac


1321
tgtggatggc ttcaccgacc cctccaattc ggagcgcttc tgcctagggc tgctctccaa


1381
tgtcaacagg aatgcagcag tggagctgac acggagacac atcggaagag gcgtgcggct


1441
ctactacatc ggaggggagg tcttcgcaga gtgcctcagt gacagcgcta tttttgtcca


1501
gtctcccaac tgtaaccagc gctatggctg gcacccggcc accgtctgca agatcccacc


1561
aggatgcaac ctgaagatct tcaacaacca ggagttcgct gccctcctgg cccagtcggt


1621
caaccagggc tttgaggctg tctaccagtt gacccgaatg tgcaccatcc gcatgagctt


1681
cgtcaaaggc tggggagcgg agtacaggag acagactgtg accagtaccc cctgctggat


1741
tgagctgcac ctgaatgggc ctttgcagtg gcttgacaag gtcctcaccc agatgggctc


1801
cccaagcatc cgctgttcca gtgtgtctta gagacatcaa gtatggtagg ggagggcagg


1861
cttggggaaa atggccatgc aggaggtgga gaaaattgga actctactca acccattgtt


1921
gtcaaggaag aagaaatctt tctccctcaa ctgaaggggt gcacccacct gttttctgaa


1981
acacacgagc aaacccagag gtggatgtta tgaacagctg tgtctgccaa acacatttac


2041
cctttggccc cactttgaag ggcaagaaat ggcgtctgct ctggtggctt aagtgagcag


2101
aacaggtagt attacaccac cggccccctc cccccagact ctttttttga gtgacagctt


2161
tctgggatgt cacagtccaa ccagaaacac ccctctgtct aggactgcag tgtggagttc


2221
accttggaag ggcgttctag gtaggaagag cccgcagggc catgcagacc tcatgcccag


2281
ctctctgacg cttgtgacag tgcctcttcc agtgaacatt cccagcccag ccccgccccg


2341
ccccgcccca ccactccagc agaccttgcc ccttgtgagc tggatagact tgggatgggg


2401
agggagggag ttttgtctgt ctccctcccc tctcagaaca tactgattgg gaggtgcgtg


2461
ttcagcagaa cctgcacaca ggacagcggg aaaaatcgat gagcgccacc tctttaaaaa


2521
ctcacttacg tttgtccttt ttcactttga aaagttggaa ggatctgctg aggcccagtg


2581
catatgcaat gtatagtgtc tattatcaca ttaatctcaa agagattcga atgacggtaa


2641
gtgttctcat gaagcaggag gcccttgtcg tgggatggca tttggtctca ggcagcacca


2701
cactgggtgc gtctccagtc atctgtaaga gcttgctcca gattctgatg catacggcta


2761
tattggttta tgtagtcagt tgcattcatt aaatcaactt tatcatatgc tcttttaaat


2821
gtttggttta tatattttct ttaaaaatcc tgggctggca cattgactgg gaaacctgag


2881
tgagacccag caactgcttc tctcccttct ctctcctgag gtgaagcttt tccaggtttt


2941
gttgaagaga tacctgccag cacttctgca agctgaaatt tacagaagca aattcaccag


3001
aagggaaaca tctcaggcca acataggcaa atgaaaaggg ctattaaaat atttttacac


3061
ctttgaaaat tgcaggcttg gtacaaagag gtctgtcatc ttccccctgg gatataagat


3121
gatctagctc ccggtagagg atcaccggtg acaactatag cagttgtatt gtgtaacaag


3181
tactgctccc agcagcaatt agggagaaaa ctagtctaaa ttatttcaac tggaaaaaag


3241
aaaaaagagt cctcttcttt tcccagcctt ttgcagaaca cagtagacag aactgccacc


3301
ttcaattggt actttattct ttgctgctgt ttttgtataa aatgacctat cccacgtttt


3361
tgcatgaatt tatagcagga aaaatcaagg gatttcctat ggaagtcctg ctttattcca


3421
ggtgaaggga aggaagtgta tatacttttg gcaagtcata cagctcaaat gtgatgagat


3481
ttctgatgtt agagggagat ggagaggctt cctgatgcct catctgcagg gtcctgtgcc


3541
tctgaagttc tagccatgag gtttccaggt aggacagctg ctccccaagc ctcctgagga


3601
cacaggaaga gacggaagga gcaccttgac agacttgtgt gagtcttctc gaaggagggt


3661
tgactcagaa cccagagaca atacaaaacc cctcacttcc tctgagaggg ccaaatgctg


3721
tgagtctgaa gtatgtgcct ggtgtgaaat gatctatggc ctgtttctta cacaggaagc


3781
cccctgaacc tcctgtacat gtgttcatgt tcccagccag ctctgagacc caggaaccaa


3841
atattccatt ttggcttctg ctagagcagt catggttcct ctcctaaaag ccatgggcag


3901
cagtttccga gggcctgcat gatccacctg ctgcacgatc ctatgagggc ttcctgtggc


3961
acacagccct ctgggtgctt gggaactagc ttcaggcaca gcctgattct ggtgatccag


4021
tgatctatgg aagtcgtgtc ttactccagg tgaaggggga aaaaaaaagc ctatactttg


4081
gcaggttatg aactttgaat gtgatgaaat gacacgtttg gctgcatttg gatggtgtct


4141
tagaaccctc attgctcaga cctgaaggct acttctagga gcatgaagtt tgagttttgt


4201
gtttttccaa aggatacttc cttggccctt tttctttatt gactagacca ccagaggagg


4261
atgtgtggga ttgtaggcaa acccacctgt ggcatcactg aaaataaatt tgatcatacc


4321
taagaggtta ggaaatggtg ccattcccac cttagagtgc tacataggtg ctttgggcgt


4381
atgtaacatt agtgtccttc cttgaagcca caagctagtt ttcttagttt taaaatcctg


4441
ttgtatgaat ggcatttgta tattaaaaca cttttttaaa ggacagttga aaagggcaag


4501
aggaaaccag ggcagttcta gaggagtgct ggtgactgga tagcagtttt aagtggcgtt


4561
cacctagtca acacgaccgc gtgtgttgcc cctgccctgg gctccccgcc atgacatctt


4621
caccttgcag cttgtgctga gactgaccca agtgcagcta gcactgggac acagatcctt


4681
gtcttcagca ccttccaagg agccaacttt tattcccttt cctctctccc ctccccacct


4741
cgcttcttcc caatttagta acttagatgc ttccagcaca tacgtaggta gctaccccag


4801
ccggtttgga ttacaggcct gtgctggaac atcatctcag ttggccacct tcctggcagg


4861
ctgtagacct gacattttga gacaagccta gaggagtcag gagcagggac tttgactctt


4921
aggaagagca cacatgaggg caaggctgct ggcagacgtc tccattgtcc ttatgttgtc


4981
tgtgttgtat tttttttttt ttattgacca tggtgattat ttttttaaac catcgttaat


5041
atactgaagt gagctatagc acatatcatg tgcttagttt gtttattttt ctccatctcc


5101
ccttggcttc ctagagtttg gacatattcc aggctaaatg cttttactca agactacaga


5161
aaggtttgaa gtagtgtgtg catggcatgc acgtatgtaa gtaatctggg gaagaagcaa


5221
agatctgttt cattcttagc ctcaggcctc atgagggtct ccacagggcc ggagctcagg


5281
ttacaccact ccttcgtcct tacaggagat gtagggagaa gaatctgcag gctgcttgta


5341
ggactgttca ccaaggggga taccagcagc aagagagtgc acccgtttag ccctggaccc


5401
tgtttcttac tgtgtgactt ggctagagtt gggagttccc ccaaaataaa cgtgtcccca


5461
ttttaccaga accaaacctc aacacagcga agctgtactg tctttgtgtg gcaaagatgt


5521
tcccttgtag gcccctttca ggtaaccgtc ttcacaatgt attttcatca cagtttaagg


5581
agcatcagcc gcttctcaag tgggtaggga aagcagaaaa acgtacgcaa gaggacatgg


5641
atccaaaatg atgatgaagc atctcccatg gggaggtgat ggtggggaga tgatgggcta


5701
aacaggcaac ttttcaaaaa cacagctatc atagaaaaga aacttgcctc atgtaaactg


5761
gattgagaaa ttctcagtga ttctgcaatg gatttttttt taatgcagaa gtaatgtata


5821
ctctagtatt ctggtgtttt tatatttatg taataatttc ttaaaaccat tcagacagat


5881
aactatttaa ttttttttaa gaaagttgga aaggtctctc ctcccaagga cagtggctgg


5941
aagagttggg gcacagccag ttctgaatgt tggtggaggg tgtagtggct ttttggctca


6001
gcatccagaa acaccaaacc aggctggcta aacaagtggc cgcgtgtaaa aacagacagc


6061
tctgagtcaa atctgggccc ttccacaagg gtcctctgaa ccaagcccca ctcccttgct


6121
aggggtgaaa gcattacaga gagatggagc catctatcca agaagccttc actcaccttc


6181
actgctgctg ttgcaactcg gctgttctgg actctgatgt gtgtggaggg atggggaata


6241
gaacattgac tgtgttgatt accttcacta ttcggccagc ctgacctttt aataactttg


6301
taaaaagcat gtatgtattt atagtgtttt agatttttct aacttttata tcttaaaagc


6361
agagcacctg tttaagcatt gtacccctat tgttaaagat ttgtgtcctc tcattccctc


6421
tcttcctctt gtaagtgccc ttctaataaa cttttcatgg aaaa










SEQ ID NO: 146 Human SMAD3 isoform 1 amino acid sequence (NP_005893.1)








1
mssilpftpp ivkrllgwkk geqngqeekw cekavkslvk klkktgqlde lekaittqnv


61
ntkcitiprs ldgrlqvshr kglphviycr lwrwpdlhsh helramelce fafnmkkdev


121
cvnpyhyqrv etpvlppvlv prhteipaef pplddyshsi pentnfpagi epqsnipetp


181
ppgylsedge tsdhqmnhsm dagspnlspn pmspahnnld lqpvtycepa fwcsisyyel


241
nqrvgetfha sqpsmtvdgf tdpsnserfc lgllsnvnrn aaveltrrhi grgvrlyyig


301
gevfaeclsd saifvqspnc nqrygwhpat vckippgcnl kifnnqefaa llaqsvnqgf


361
eavyqltrmc tirmsfvkgw gaeyrrqtvt stpcwielhl ngplqwldkv ltqmgspsir


421
cssvs










SEQ ID NO: 147 Human SMAD3 transcript variant 2 cDNA sequence


(NM_001145102.1; CDS: 379-1341)








1
aaatatgagc ttgtgcttgc tggaggagga tgacagagga gcctgctgct gagttcactg


61
gtgctggggt taggtcactg ctgggctgaa gcgcactgac cataagagca acatgtgggc


121
aagagccgcg gcactggggt aatttattgc cgccgctcgc ttcaccagga accccacacg


181
ctgggttccc acaggatgcg acattcccac aggatgggac aactgcatgg aaacccacac


241
tcgggcctgt gttgagcaac cacgtttgag tccctggatg gccggttgca ggtgtcccat


301
cggaaggggc tccctcatgt catctactgc cgcctgtggc gatggccaga cctgcacagc


361
caccacgagc tacgggccat ggagctgtgt gagttcgcct tcaatatgaa gaaggacgag


421
gtctgcgtga atccctacca ctaccagaga gtagagacac cagttctacc tcctgtgttg


481
gtgccacgcc acacagagat cccggccgag ttccccccac tggacgacta cagccattcc


541
atccccgaaa acactaactt ccccgcaggc atcgagcccc agagcaatat tccagagacc


601
ccaccccctg gctacctgag tgaagatgga gaaaccagtg accaccagat gaaccacagc


661
atggacgcag gttctccaaa cctatccccg aatccgatgt ccccagcaca taataacttg


721
gacctgcagc cagttaccta ctgcgagccg gccttctggt gctccatctc ctactacgag


781
ctgaaccagc gcgtcgggga gacattccac gcctcgcagc catccatgac tgtggatggc


841
ttcaccgacc cctccaattc ggagcgcttc tgcctagggc tgctctccaa tgtcaacagg


901
aatgcagcag tggagctgac acggagacac atcggaagag gcgtgcggct ctactacatc


961
ggaggggagg tcttcgcaga gtgcctcagt gacagcgcta tttttgtcca gtctcccaac


1021
tgtaaccagc gctatggctg gcacccggcc accgtctgca agatcccacc aggatgcaac


1081
ctgaagatct tcaacaacca ggagttcgct gccctcctgg cccagtcggt caaccagggc


1141
tttgaggctg tctaccagtt gacccgaatg tgcaccatcc gcatgagctt cgtcaaaggc


1201
tggggagcgg agtacaggag acagactgtg accagtaccc cctgctggat tgagctgcac


1261
ctgaatgggc ctttgcagtg gcttgacaag gtcctcaccc agatgggctc cccaagcatc


1321
cgctgttcca gtgtgtctta gagacatcaa gtatggtagg ggagggcagg cttggggaaa


1381
atggccatgc aggaggtgga gaaaattgga actctactca acccattgtt gtcaaggaag


1441
aagaaatctt tctccctcaa ctgaaggggt gcacccacct gttttctgaa acacacgagc


1501
aaacccagag gtggatgtta tgaacagctg tgtctgccaa acacatttac cctttggccc


1561
cactttgaag ggcaagaaat ggcgtctgct ctggtggctt aagtgagcag aacaggtagt


1621
attacaccac cggccccctc cccccagact ctttttttga gtgacagctt tctgggatgt


1681
cacagtccaa ccagaaacac ccctctgtct aggactgcag tgtggagttc accttggaag


1741
ggcgttctag gtaggaagag cccgcagggc catgcagacc tcatgcccag ctctctgacg


1801
cttgtgacag tgcctcttcc agtgaacatt cccagcccag ccccgccccg ccccgcccca


1861
ccactccagc agaccttgcc ccttgtgagc tggatagact tgggatgggg agggagggag


1921
ttttgtctgt ctccctcccc tctcagaaca tactgattgg gaggtgcgtg ttcagcagaa


1981
cctgcacaca ggacagcggg aaaaatcgat gagcgccacc tctttaaaaa ctcacttacg


2041
tttgtccttt ttcactttga aaagttggaa ggatctgctg aggcccagtg catatgcaat


2101
gtatagtgtc tattatcaca ttaatctcaa agagattcga atgacggtaa gtgttctcat


2161
gaagcaggag gcccttgtcg tgggatggca tttggtctca ggcagcacca cactgggtgc


2221
gtctccagtc atctgtaaga gcttgctcca gattctgatg catacggcta tattggttta


2281
tgtagtcagt tgcattcatt aaatcaactt tatcatatgc tcttttaaat gtttggttta


2341
tatattttct ttaaaaatcc tgggctggca cattgactgg gaaacctgag tgagacccag


2401
caactgcttc tctcccttct ctctcctgag gtgaagcttt tccaggtttt gttgaagaga


2461
tacctgccag cacttctgca agctgaaatt tacagaagca aattcaccag aagggaaaca


2521
tctcaggcca acataggcaa atgaaaaggg ctattaaaat atttttacac ctttgaaaat


2581
tgcaggcttg gtacaaagag gtctgtcatc ttccccctgg gatataagat gatctagctc


2641
ccggtagagg atcaccggtg acaactatag cagttgtatt gtgtaacaag tactgctccc


2701
agcagcaatt agggagaaaa ctagtctaaa ttatttcaac tggaaaaaag aaaaaagagt


2761
cctcttcttt tcccagcctt ttgcagaaca cagtagacag aactgccacc ttcaattggt


2821
actttattct ttgctgctgt ttttgtataa aatgacctat cccacgtttt tgcatgaatt


2881
tatagcagga aaaatcaagg gatttcctat ggaagtcctg ctttattcca ggtgaaggga


2941
aggaagtgta tatacttttg gcaagtcata cagctcaaat gtgatgagat ttctgatgtt


3001
agagggagat ggagaggctt cctgatgcct catctgcagg gtcctgtgcc tctgaagttc


3061
tagccatgag gtttccaggt aggacagctg ctccccaagc ctcctgagga cacaggaaga


3121
gacggaagga gcaccttgac agacttgtgt gagtcttctc gaaggagggt tgactcagaa


3181
cccagagaca atacaaaacc cctcacttcc tctgagaggg ccaaatgctg tgagtctgaa


3241
gtatgtgcct ggtgtgaaat gatctatggc ctgtttctta cacaggaagc cccctgaacc


3301
tcctgtacat gtgttcatgt tcccagccag ctctgagacc caggaaccaa atattccatt


3361
ttggcttctg ctagagcagt catggttcct ctcctaaaag ccatgggcag cagtttccga


3421
gggcctgcat gatccacctg ctgcacgatc ctatgagggc ttcctgtggc acacagccct


3481
ctgggtgctt gggaactagc ttcaggcaca gcctgattct ggtgatccag tgatctatgg


3541
aagtcgtgtc ttactccagg tgaaggggga aaaaaaaagc ctatactttg gcaggttatg


3601
aactttgaat gtgatgaaat gacacgtttg gctgcatttg gatggtgtct tagaaccctc


3661
attgctcaga cctgaaggct acttctagga gcatgaagtt tgagttttgt gtttttccaa


3721
aggatacttc cttggccctt tttctttatt gactagacca ccagaggagg atgtgtggga


3781
ttgtaggcaa acccacctgt ggcatcactg aaaataaatt tgatcatacc taagaggtta


3841
ggaaatggtg ccattcccac cttagagtgc tacataggtg ctttgggcgt atgtaacatt


3901
agtgtccttc cttgaagcca caagctagtt ttcttagttt taaaatcctg ttgtatgaat


3961
ggcatttgta tattaaaaca cttttttaaa ggacagttga aaagggcaag aggaaaccag


4021
ggcagttcta gaggagtgct ggtgactgga tagcagtttt aagtggcgtt cacctagtca


4081
acacgaccgc gtgtgttgcc cctgccctgg gctccccgcc atgacatctt caccttgcag


4141
cttgtgctga gactgaccca agtgcagcta gcactgggac acagatcctt gtcttcagca


4201
ccttccaagg agccaacttt tattcccttt cctctctccc ctccccacct cgcttcttcc


4261
caatttagta acttagatgc ttccagcaca tacgtaggta gctaccccag ccggtttgga


4321
ttacaggcct gtgctggaac atcatctcag ttggccacct tcctggcagg ctgtagacct


4381
gacattttga gacaagccta gagtcaggag cagggacttt gactcttagg aagagcacac


4441
atgagggcaa ggctgctggc agacgtctcc attgtcctta tgttgtctgt gttgtatttt


4501
ttttttttta ttgaccatgg tgattatttt tttaaaccat cgttaatata ctgaagtgag


4561
ctatagcaca tatcatgtgc ttagtttgtt tatttttctc catctcccct tggcttccta


4621
gagtttggac atattccagg ctaaatgctt ttactcaaga ctacagaaag gtttgaagta


4681
gtgtgtgcat ggcatgcacg tatgtaagta atctggggaa gaagcaaaga tctgtttcat


4741
tcttagcctc aggcctcatg agggtctcca cagggccgga gctcaggtta caccactcct


4801
tcgtccttac aggagatgta gggagaagaa tctgcaggct gcttgtagga ctgttcacca


4861
agggggatac cagcagcaag agagtgcacc cgtttagccc tggaccctgt ttcttactgt


4921
gtgacttggc tagagttggg agttccccca aaataaacgt gtccccattt taccagaacc


4981
aaacctcaac acagcgaagc tgtactgtct ttgtgtggca aagatgttcc cttgtaggcc


5041
cctttcaggt aaccgtcttc acaatgtatt ttcatcacag tttaaggagc atcagccgct


5101
tctcaagtgg gtagggaaag cagaaaaacg tacgcaagag gacatggatc caaaatgatg


5161
atgaagcatc tcccatgggg aggtgatggt ggggagatga tgggctaaac aggcaacttt


5221
tcaaaaacac agctatcata gaaaagaaac ttgcctcatg taaactggat tgagaaattc


5281
tcagtgattc tgcaatggat ttttttttaa tgcagaagta atgtatactc tagtattctg


5341
gtgtttttat atttatgtaa taatttctta aaaccattca gacagataac tatttaattt


5401
tttttaagaa agttggaaag gtctctcctc ccaaggacag tggctggaag agttggggca


5461
cagccagttc tgaatgttgg tggagggtgt agtggctttt tggctcagca tccagaaaca


5521
ccaaaccagg ctggctaaac aagtggccgc gtgtaaaaac agacagctct gagtcaaatc


5581
tgggcccttc cacaagggtc ctctgaacca agccccactc ccttgctagg ggtgaaagca


5641
ttacagagag atggagccat ctatccaaga agccttcact caccttcact gctgctgttg


5701
caactcggct gttctggact ctgatgtgtg tggagggatg gggaatagaa cattgactgt


5761
gttgattacc ttcactattc ggccagcctg accttttaat aactttgtaa aaagcatgta


5821
tgtatttata gtgttttaga tttttctaac ttttatatct taaaagcaga gcacctgttt


5881
aagcattgta cccctattgt taaagatttg tgtcctctca ttccctctct tcctcttgta


5941
agtgcccttc taataaactt ttcatggaaa agctcctgtg ccaggagctc agtctga










SEQ ID NO: 148 Human SMAD3 isoform 2 amino acid sequence (NP_001138574.1)








1
melcefafnm kkdevcvnpy hyqrvetpvl ppvlvprhte ipaefppldd yshsipentn


61
fpagiepqsn ipetpppgyl sedgetsdhq mnhsmdagsp nlspnpmspa hnnldlqpvt


121
ycepafwcsi syyelnqrvg etfhasqpsm tvdgftdpsn serfclglls nvnrnaavel


181
trrhigrgvr lyyiggevfa eclsdsaifv qspncnqryg whpatvckip pgcnlkifnn


241
qefaallaqs vnqgfeavyq ltrmctirms fvkgwgaeyr rqtvtstpcw ielhlngplq


301
wldkvltqmg spsircssvs










SEQ ID NO: 149 Human SMAD3 transcript variant 3 cDNA sequence


(NM_001145103.1; CDS: 7-1152)








1
acaaacatgt cttgcctgca ccctaggcaa acgtggaaag gcgcagctct ggtacaccgg


61
aaagcatggt ggatggggag gtccctggat ggccggttgc aggtgtccca tcggaagggg


121
ctccctcatg tcatctactg ccgcctgtgg cgatggccag acctgcacag ccaccacgag


181
ctacgggcca tggagctgtg tgagttcgcc ttcaatatga agaaggacga ggtctgcgtg


241
aatccctacc actaccagag agtagagaca ccagttctac ctcctgtgtt ggtgccacgc


301
cacacagaga tcccggccga gttcccccca ctggacgact acagccattc catccccgaa


361
aacactaact tccccgcagg catcgagccc cagagcaata ttccagagac cccaccccct


421
ggctacctga gtgaagatgg agaaaccagt gaccaccaga tgaaccacag catggacgca


481
ggttctccaa acctatcccc gaatccgatg tccccagcac ataataactt ggacctgcag


541
ccagttacct actgcgagcc ggccttctgg tgctccatct cctactacga gctgaaccag


601
cgcgtcgggg agacattcca cgcctcgcag ccatccatga ctgtggatgg cttcaccgac


661
ccctccaatt cggagcgctt ctgcctaggg ctgctctcca atgtcaacag gaatgcagca


721
gtggagctga cacggagaca catcggaaga ggcgtgcggc tctactacat cggaggggag


781
gtcttcgcag agtgcctcag tgacagcgct atttttgtcc agtctcccaa ctgtaaccag


841
cgctatggct ggcaccaggc caccgtctgc aagatcccac caggatgcaa cctgaagatc


901
ttcaacaacc aggagttcgc tgccctcctg gcccagtcgg tcaaccaggg ctttgaggct


961
gtctaccagt tgacccgaat gtgcaccatc cgcatgagct tcgtcaaagg ctggggagcg


1021
gagtacagga gacagactgt gaccagtacc ccctgctgga ttgagctgca cctgaatggg


1081
cctttgcagt ggcttgacaa ggtcctcacc cagatgggct ccccaagcat ccgctgttcc


1141
agtgtgtctt agagacatca agtatggtag gggagggcag gcttggggaa aatggccatg


1201
caggaggtgg agaaaattgg aactctactc aacccattgt tgtcaaggaa gaagaaatct


1261
ttctccctca actgaagggg tgcacccacc tgttttctga aacacacgag caaacccaga


1321
ggtggatgtt atgaacagct gtgtctgcca aacacattta ccctttggcc ccactttgaa


1381
gggcaagaaa tggcgtctgc tctggtggct taagtgagca gaacaggtag tattacacca


1441
ccggccccct ccccccagac tctttttttg agtgacagct ttctgggatg tcacagtcca


1501
accagaaaca cccctctgtc taggactgca gtgtggagtt caccttggaa gggcgttcta


1561
ggtaggaaga gcccgcaggg ccatgcagac ctcatgccca gctctctgac gcttgtgaca


1621
gtgcctcttc cagtgaacat tcccagccca gccccgcccc gccccgcccc accactccag


1681
cagaccttgc cccttgtgag ctggatagac ttgggatggg gagggaggga gttttgtctg


1741
tctccctccc ctctcagaac atactgattg ggaggtgcgt gttcagcaga acctgcacac


1801
aggacagcgg gaaaaatcga tgagcgccac ctctttaaaa actcacttac gtttgtcctt


1861
tttcactttg aaaagttgga aggatctgct gaggcccagt gcatatgcaa tgtatagtgt


1921
ctattatcac attaatctca aagagattcg aatgacggta agtgttctca tgaagcagga


1981
ggcccttgtc gtgggatggc atttggtctc aggcagcacc acactgggtg cgtctccagt


2041
catctgtaag agcttgctcc agattctgat gcatacggct atattggttt atgtagtcag


2101
ttgcattcat taaatcaact ttatcatatg ctcttttaaa tgtttggttt atatattttc


2161
tttaaaaatc ctgggctggc acattgactg ggaaacctga gtgagaccca gcaactgctt


2221
ctctcccttc tctctcctga ggtgaagctt ttccaggttt tgttgaagag atacctgcca


2281
gcacttctgc aagctgaaat ttacagaagc aaattcacca gaagggaaac atctcaggcc


2341
aacataggca aatgaaaagg gctattaaaa tatttttaca cctttgaaaa ttgcaggctt


2401
ggtacaaaga ggtctgtcat cttccccctg ggatataaga tgatctagct cccggtagag


2461
gatcaccggt gacaactata gcagttgtat tgtgtaacaa gtactgctcc cagcagcaat


2521
tagggagaaa actagtctaa attatttcaa ctggaaaaaa gaaaaaagag tcctcttctt


2581
ttcccagcct tttgcagaac acagtagaca gaactgccac cttcaattgg tactttattc


2641
tttgctgctg tttttgtata aaatgaccta tcccacgttt ttgcatgaat ttatagcagg


2701
aaaaatcaag ggatttccta tggaagtcct gctttattcc aggtgaaggg aaggaagtgt


2761
atatactttt ggcaagtcat acagctcaaa tgtgatgaga tttctgatgt tagagggaga


2821
tggagaggct tcctgatgcc tcatctgcag ggtcctgtgc ctctgaagtt ctagccatga


2881
ggtttccagg taggacagct gctccccaag cctcctgagg acacaggaag agacggaagg


2941
agcaccttga cagacttgtg tgagtcttct cgaaggaggg ttgactcaga acccagagac


3001
aatacaaaac ccctcacttc ctctgagagg gccaaatgct gtgagtctga agtatgtgcc


3061
tggtgtgaaa tgatctatgg cctgtttctt acacaggaag ccccctgaac ctcctgtaca


3121
tgtgttcatg ttcccagcca gctctgagac ccaggaacca aatattccat tttggcttct


3181
gctagagcag tcatggttcc tctcctaaaa gccatgggca gcagtttccg agggcctgca


3241
tgatccacct gctgcacgat cctatgaggg cttcctgtgg cacacagccc tctgggtgct


3301
tgggaactag cttcaggcac agcctgattc tggtgatcca gtgatctatg gaagtcgtgt


3361
cttactccag gtgaaggggg aaaaaaaaag cctatacttt ggcaggttat gaactttgaa


3421
tgtgatgaaa tgacacgttt ggctgcattt ggatggtgtc ttagaaccct cattgctcag


3481
acctgaaggc tacttctagg agcatgaagt ttgagttttg tgtttttcca aaggatactt


3541
ccttggccct ttttctttat tgactagacc accagaggag gatgtgtggg attgtaggca


3601
aacccacctg tggcatcact gaaaataaat ttgatcatac ctaagaggtt aggaaatggt


3661
gccattccca ccttagagtg ctacataggt gctttgggcg tatgtaacat tagtgtcctt


3721
ccttgaagcc acaagctagt tttcttagtt ttaaaatcct gttgtatgaa tggcatttgt


3781
atattaaaac acttttttaa aggacagttg aaaagggcaa gaggaaacca gggcagttct


3841
agaggagtgc tggtgactgg atagcagttt taagtggcgt tcacctagtc aacacgaccg


3901
cgtgtgttgc ccctgccctg ggctccccgc catgacatct tcaccttgca gcttgtgctg


3961
agactgaccc aagtgcagct agcactggga cacagatcct tgtcttcagc accttccaag


4021
gagccaactt ttattccctt tcctctctcc cctccccacc tcgcttcttc ccaatttagt


4081
aacttagatg cttccagcac atacgtaggt agctacccca gccggtttgg attacaggcc


4141
tgtgctggaa catcatctca gttggccacc ttcctggcag gctgtagacc tgacattttg


4201
agacaagcct agagtcagga gcagggactt tgactcttag gaagagcaca catgagggca


4261
aggctgctgg cagacgtctc cattgtcctt atgttgtctg tgttgtattt tttttttttt


4321
attgaccatg gtgattattt ttttaaacca tcgttaatat actgaagtga gctatagcac


4381
atatcatgtg cttagtttgt ttatttttct ccatctcccc ttggcttcct agagtttgga


4441
catattccag gctaaatgct tttactcaag actacagaaa ggtttgaagt agtgtgtgca


4501
tggcatgcac gtatgtaagt aatctgggga agaagcaaag atctgtttca ttcttagcct


4561
caggcctcat gagggtctcc acagggccgg agctcaggtt acaccactcc ttcgtcctta


4621
caggagatgt agggagaaga atctgcaggc tgcttgtagg actgttcacc aagggggata


4681
ccagcagcaa gagagtgcac ccgtttagcc ctggaccctg tttcttactg tgtgacttgg


4741
ctagagttgg gagttccccc aaaataaacg tgtccccatt ttaccagaac caaacctcaa


4801
cacagcgaag ctgtactgtc tttgtgtggc aaagatgttc ccttgtaggc ccctttcagg


4861
taaccgtctt cacaatgtat tttcatcaca gtttaaggag catcagccgc ttctcaagtg


4921
ggtagggaaa gcagaaaaac gtacgcaaga ggacatggat ccaaaatgat gatgaagcat


4981
ctcccatggg gaggtgatgg tggggagatg atgggctaaa caggcaactt ttcaaaaaca


5041
cagctatcat agaaaagaaa cttgcctcat gtaaactgga ttgagaaatt ctcagtgatt


5101
ctgcaatgga ttttttttta atgcagaagt aatgtatact ctagtattct ggtgttttta


5161
tatttatgta ataatttctt aaaaccattc agacagataa ctatttaatt ttttttaaga


5221
aagttggaaa ggtctctcct cccaaggaca gtggctggaa gagttggggc acagccagtt


5281
ctgaatgttg gtggagggtg tagtggcttt ttggctcagc atccagaaac accaaaccag


5341
gctggctaaa caagtggccg cgtgtaaaaa cagacagctc tgagtcaaat ctgggccctt


5401
ccacaagggt cctctgaacc aagccccact cccttgctag gggtgaaagc attacagaga


5461
gatggagcca tctatccaag aagccttcac tcaccttcac tgctgctgtt gcaactcggc


5521
tgttctggac tctgatgtgt gtggagggat ggggaataga acattgactg tgttgattac


5581
cttcactatt cggccagcct gaccttttaa taactttgta aaaagcatgt atgtatttat


5641
agtgttttag atttttctaa cttttatatc ttaaaagcag agcacctgtt taagcattgt


5701
acccctattg ttaaagattt gtgtcctctc attccctctc ttcctcttgt aagtgccctt


5761
ctaataaact tttcatggaa aagctcctgt gccaggagct cagtctga










SEQ ID NO: 150 Human SMAD3 isoform 3 amino acid sequence (NP_001138575.1)








1
msclhprqtw kgaalvhrka wwmgrsldgr lqvshrkglp hviycrlwrw pdlhshhelr


61
amelcefafn mkkdevcvnp yhyqrvetpv lppvlvprht eipaefppld dyshsipent


121
nfpagiepqs nipetpppgy lsedgetsdh qmnhsmdags pnlspnpmsp ahnnldlqpv


181
tycepafwcs isyyelnqrv getfhasqps mtvdgftdps nserfclgll snvnrnaave


241
ltrrhigrgv rlyyiggevf aeclsdsaif vqspncnqry gwhpatvcki ppgcnlkifn


301
nqefaallaq svnqgfeavy qltrmctirm sfvkgwgaey rrqtvtstpc wielhlngpl


361
qwldkvltqm gspsircssv s










SEQ ID NO: 151 Human SMAD3 transcript variant 4 cDNA sequence


(NM_001145104.1; CDS: 93-785)








1
cttctcagat cctttgcggg tagccctggc gtcccgcgga gaccccaccc cctggctacc


61
tgagtgaaga tggagaaacc agtgaccacc agatgaacca cagcatggac gcaggttctc


121
caaacctatc cccgaatccg atgtccccag cacataataa cttggacctg cagccagtta


181
cctactgcga gccggccttc tggtgctcca tctcctacta cgagctgaac cagcgcgtcg


241
gggagacatt ccacgcctcg cagccatcca tgactgtgga tggcttcacc gacccctcca


301
attcggagcg cttctgccta gggctgctct ccaatgtcaa caggaatgca gcagtggagc


361
tgacacggag acacatcgga agaggcgtgc ggctctacta catcggaggg gaggtcttcg


421
cagagtgcct cagtgacagc gctatttttg tccagtctcc caactgtaac cagcgctatg


481
gctggcaccc ggccaccgtc tgcaagatcc caccaggatg caacctgaag atcttcaaca


541
accaggagtt cgctgccctc ctggcccagt cggtcaacca gggctttgag gctgtctacc


601
agttgacccg aatgtgcacc atccgcatga gcttcgtcaa aggctgggga gcggagtaca


661
ggagacagac tgtgaccagt accccctgct ggattgagct gcacctgaat gggcctttgc


721
agtggcttga caaggtcctc acccagatgg gctccccaag catccgctgt tccagtgtgt


781
cttagagaca tcaagtatgg taggggaggg caggcttggg gaaaatggcc atgcaggagg


841
tggagaaaat tggaactcta ctcaacccat tgttgtcaag gaagaagaaa tctttctccc


901
tcaactgaag gggtgcaccc acctgttttc tgaaacacac gagcaaaccc agaggtggat


961
gttatgaaca gctgtgtctg ccaaacacat ttaccctttg gccccacttt gaagggcaag


1021
aaatggcgtc tgctctggtg gcttaagtga gcagaacagg tagtattaca ccaccggccc


1081
cctcccccca gactcttttt ttgagtgaca gctttctggg atgtcacagt ccaaccagaa


1141
acacccctct gtctaggact gcagtgtgga gttcaccttg gaagggcgtt ctaggtagga


1201
agagcccgca gggccatgca gacctcatgc ccagctctct gacgcttgtg acagtgcctc


1261
ttccagtgaa cattcccagc ccagccccgc cccgccccgc cccaccactc cagcagacct


1321
tgccccttgt gagctggata gacttgggat ggggagggag ggagttttgt ctgtctccct


1381
cccctctcag aacatactga ttgggaggtg cgtgttcagc agaacctgca cacaggacag


1441
cgggaaaaat cgatgagcgc cacctcttta aaaactcact tacgtttgtc ctttttcact


1501
ttgaaaagtt ggaaggatct gctgaggccc agtgcatatg caatgtatag tgtctattat


1561
cacattaatc tcaaagagat tcgaatgacg gtaagtgttc tcatgaagca ggaggccctt


1621
gtcgtgggat ggcatttggt ctcaggcagc accacactgg gtgcgtctcc agtcatctgt


1681
aagagcttgc tccagattct gatgcatacg gctatattgg tttatgtagt cagttgcatt


1741
cattaaatca actttatcat atgctctttt aaatgtttgg tttatatatt ttctttaaaa


1801
atcctgggct ggcacattga ctgggaaacc tgagtgagac ccagcaactg cttctctccc


1861
ttctctctcc tgaggtgaag cttttccagg ttttgttgaa gagatacctg ccagcacttc


1921
tgcaagctga aatttacaga agcaaattca ccagaaggga aacatctcag gccaacatag


1981
gcaaatgaaa agggctatta aaatattttt acacctttga aaattgcagg cttggtacaa


2041
agaggtctgt catcttcccc ctgggatata agatgatcta gctcccggta gaggatcacc


2101
ggtgacaact atagcagttg tattgtgtaa caagtactgc tcccagcagc aattagggag


2161
aaaactagtc taaattattt caactggaaa aaagaaaaaa gagtcctctt cttttcccag


2221
ccttttgcag aacacagtag acagaactgc caccttcaat tggtacttta ttctttgctg


2281
ctgtttttgt ataaaatgac ctatcccacg tttttgcatg aatttatagc aggaaaaatc


2341
aagggatttc ctatggaagt cctgctttat tccaggtgaa gggaaggaag tgtatatact


2401
tttggcaagt catacagctc aaatgtgatg agatttctga tgttagaggg agatggagag


2461
gcttcctgat gcctcatctg cagggtcctg tgcctctgaa gttctagcca tgaggtttcc


2521
aggtaggaca gctgctcccc aagcctcctg aggacacagg aagagacgga aggagcacct


2581
tgacagactt gtgtgagtct tctcgaagga gggttgactc agaacccaga gacaatacaa


2641
aacccctcac ttcctctgag agggccaaat gctgtgagtc tgaagtatgt gcctggtgtg


2701
aaatgatcta tggcctgttt cttacacagg aagccccctg aacctcctgt acatgtgttc


2761
atgttcccag ccagctctga gacccaggaa ccaaatattc cattttggct tctgctagag


2821
cagtcatggt tcctctccta aaagccatgg gcagcagttt ccgagggcct gcatgatcca


2881
cctgctgcac gatcctatga gggcttcctg tggcacacag ccctctgggt gcttgggaac


2941
tagcttcagg cacagcctga ttctggtgat ccagtgatct atggaagtcg tgtcttactc


3001
caggtgaagg gggaaaaaaa aagcctatac tttggcaggt tatgaacttt gaatgtgatg


3061
aaatgacacg tttggctgca tttggatggt gtcttagaac cctcattgct cagacctgaa


3121
ggctacttct aggagcatga agtttgagtt ttgtgttttt ccaaaggata cttccttggc


3181
cctttttctt tattgactag accaccagag gaggatgtgt gggattgtag gcaaacccac


3241
ctgtggcatc actgaaaata aatttgatca tacctaagag gttaggaaat ggtgccattc


3301
ccaccttaga gtgctacata ggtgctttgg gcgtatgtaa cattagtgtc cttccttgaa


3361
gccacaagct agttttctta gttttaaaat cctgttgtat gaatggcatt tgtatattaa


3421
aacacttttt taaaggacag ttgaaaaggg caagaggaaa ccagggcagt tctagaggag


3481
tgctggtgac tggatagcag ttttaagtgg cgttcaccta gtcaacacga ccgcgtgtgt


3541
tgcccctgcc ctgggctccc cgccatgaca tcttcacctt gcagcttgtg ctgagactga


3601
cccaagtgca gctagcactg ggacacagat ccttgtcttc agcaccttcc aaggagccaa


3661
cttttattcc ctttcctctc tcccctcccc acctcgcttc ttcccaattt agtaacttag


3721
atgcttccag cacatacgta ggtagctacc ccagccggtt tggattacag gcctgtgctg


3781
gaacatcatc tcagttggcc accttcctgg caggctgtag acctgacatt ttgagacaag


3841
cctagagtca ggagcaggga ctttgactct taggaagagc acacatgagg gcaaggctgc


3901
tggcagacgt ctccattgtc cttatgttgt ctgtgttgta tttttttttt tttattgacc


3961
atggtgatta tttttttaaa ccatcgttaa tatactgaag tgagctatag cacatatcat


4021
gtgcttagtt tgtttatttt tctccatctc cccttggctt cctagagttt ggacatattc


4081
caggctaaat gcttttactc aagactacag aaaggtttga agtagtgtgt gcatggcatg


4141
cacgtatgta agtaatctgg ggaagaagca aagatctgtt tcattcttag cctcaggcct


4201
catgagggtc tccacagggc cggagctcag gttacaccac tccttcgtcc ttacaggaga


4261
tgtagggaga agaatctgca ggctgcttgt aggactgttc accaaggggg ataccagcag


4321
caagagagtg cacccgttta gccctggacc ctgtttctta ctgtgtgact tggctagagt


4381
tgggagttcc cccaaaataa acgtgtcccc attttaccag aaccaaacct caacacagcg


4441
aagctgtact gtctttgtgt ggcaaagatg ttcccttgta ggcccctttc aggtaaccgt


4501
cttcacaatg tattttcatc acagtttaag gagcatcagc cgcttctcaa gtgggtaggg


4561
aaagcagaaa aacgtacgca agaggacatg gatccaaaat gatgatgaag catctcccat


4621
ggggaggtga tggtggggag atgatgggct aaacaggcaa cttttcaaaa acacagctat


4681
catagaaaag aaacttgcct catgtaaact ggattgagaa attctcagtg attctgcaat


4741
ggattttttt ttaatgcaga agtaatgtat actctagtat tctggtgttt ttatatttat


4801
gtaataattt cttaaaacca ttcagacaga taactattta atttttttta agaaagttgg


4861
aaaggtctct cctcccaagg acagtggctg gaagagttgg ggcacagcca gttctgaatg


4921
ttggtggagg gtgtagtggc tttttggctc agcatccaga aacaccaaac caggctggct


4981
aaacaagtgg ccgcgtgtaa aaacagacag ctctgagtca aatctgggcc cttccacaag


5041
ggtcctctga accaagcccc actcccttgc taggggtgaa agcattacag agagatggag


5101
ccatctatcc aagaagcctt cactcacctt cactgctgct gttgcaactc ggctgttctg


5161
gactctgatg tgtgtggagg gatggggaat agaacattga ctgtgttgat taccttcact


5221
attcggccag cctgaccttt taataacttt gtaaaaagca tgtatgtatt tatagtgttt


5281
tagatttttc taacttttat atcttaaaag cagagcacct gtttaagcat tgtaccccta


5341
ttgttaaaga tttgtgtcct ctcattccct ctcttcctct tgtaagtgcc cttctaataa


5401
acttttcatg gaaaagctcc tgtgccagga gctcagtctg a










SEQ ID NO: 152 Human SMAD3 isoform 4 amino acid sequence (NP_001138576.1)








1
mnhsmdagsp nlspnpmspa hnnldlqpvt ycepafwcsi syyelnqrvg etfhasqpsm


61
tvdgftdpsn serfclglls nvnrnaavel trrhigrgvr lyyiggevfa eclsdsaifv


121
qspncnqryg whpatvckip pgcnlkifnn qefaallaqs vnqgfeavyq ltrmctirms


181
fvkgwgaeyr rqtvtstpcw ielhlngplq wldkvltqmg spsircssvs










SEQ ID NO: 153 Mouse SMAD3 cDNA sequence (NM_016769.4; CDS: 318-1595)








1
ggcggcaccc aaacagctac cccgtgcgga aacccaaact ttctactgcc acttggagtc


61
tcgcggccgc cgcctccgcc ccgcgcgtcc ggggcctgcc cgtcagtccg tcggtccgcg


121
tggagcagct cgggcgccgc cgtgctcccg atccccgcag ctgcagcgcc gcagtcctgg


181
cccggacgcc cgggcaagtt ctccagagtt aaaagcgaag ttcgggcgag gcgcgggccg


241
agctgcctct gagcgccccc ggcgtcccca gtgcgcccag ccccgccggg ggcgccggtg


301
acccttcggt gccagccatg tcgtccatcc tgcccttcac ccccccgatc gtgaagcgcc


361
tgctgggttg gaagaagggc gagcagaacg ggcaggagga gaagtggtgc gagaaggcgg


421
tcaagagctt ggtgaagaag ctcaagaaga cggggcagtt ggacgagctg gagaaggcca


481
tcaccacgca gaacgtgaac accaagtgca ttaccatccc caggtcactg gatggtcggc


541
tgcaggtgtc ccatcggaag gggctccctc acgttatcta ctgccgcctg tggcgatggc


601
ccgacctgca cagccaccat gaattacggg ccatggagct ctgtgagttt gccttcaaca


661
tgaagaagga tgaagtgtgt gtaaatcctt accactatca gagagtagag acgccagttc


721
tacctccagt gttggtgcca cgccacaccg agatcccggc cgagttcccc ccactggatg


781
actacagcca ttccattccc gagaacacta acttccctgc tggcattgag ccccagagca


841
atattccaga aaccccacct cctggctacc tgagtgaaga tggagaaacc agtgaccacc


901
agatgaacca cagcatggac gcaggttctc caaacctctc cccgaatccg atgtccccag


961
cacacaataa cttggaccta cagccagtca cctactgtga gccggccttc tggtgctcca


1021
tctcctacta cgagctgaac cagcgagttg gggagacatt ccacgcctca cagccatcca


1081
tgacagtaga tggcttcact gacccctcca actcggagcg cttctgcctg ggcctactgt


1141
ccaatgtcaa ccggaatgca gccgtggaac ttacaaggcg acacattggg agaggtgtgc


1201
ggctctacta catcggaggg gaggtctttg cggagtgcct cagtgacagt gctattttcg


1261
tccagtctcc caactgcaac cagcgctatg gctggcaccc ggccactgtc tgcaagatcc


1321
caccaggctg caacctgaag atcttcaaca accaggaatt tgctgccctc ctagctcagt


1381
ctgtcaacca gggctttgag gctgtctacc agctgacgcg catgtgcacc atccgtatga


1441
gcttcgtcaa aggctgggga gcagagtaca ggagacagac agtgaccagc accccctgct


1501
ggattgagct acacctgaat ggacccttgc agtggcttga caaggtcctc acccagatgg


1561
gttccccgag catccgctgt tccagtgtgt cttagagaca ctaggagtaa agggagcggg


1621
ttggggaggg cgggcttggg gaaaatgacc ttggaagaga actccatcca acttggtctt


1681
gtcaaagaac accgattcca ctcaactaag gcaccagcct gtttctgaga ccacagaaga


1741
aaaccccagg gatggattta tgaacagctg tgtctgctac atacacgtgc ccctgtctga


1801
aggccaagtg atggcttctg ttctggtggc ttgaactaac aggtggtgta tcgccacctg


1861
actccttgtt taatgacaga ggtctgggat gtcacagtcc aaaaggaaag tgcctttctc


1921
catggctgga gtatggagtt tacctttgga gaagttgtaa tggagcatgc cctgtcccac


1981
cactctcaga gagggtgtac ctgtcaaact ggatggccta cataggtact cccccctacc


2041
cctaggatgc agagagacgg gaacacgccg gagggtagag ctggggagaa cccattcttc


2101
cttggaagga tccgctgaag gtcagcgtat aggtgatgta cagttcctaa tatcacatca


2161
gtctcagagt gttcacagga agcagcaagg gcactcgtgg agtatgtgtc ctgggtgagg


2221
tggcaccaca ccgaatgaat gcatctctgg gagctggcac cacaaccctg atgtataggc


2281
tgtgttggtt tatggagaca agttgcatca atgaattcac ctagcatagg ctctttgaaa


2341
tgtcctctgt ttgataaaaa acaatcctgg gtacgtatgt tggctggaaa accacaatgg


2401
accctgccac tgcttcttgc cctgaggttt ggaagctgag agttatagaa gccaattcac


2461
caggaggtaa gacatcccag gctgacatgg gcaaatgaaa agggctatta aaattttttt


2521
acaccttgga aaattgcagg cttggtgcag agcgctctgt catcttcacc ctgggatgta


2581
ggattaccta gctatggtaa aggattgcca cagcaaactg tgacactgtg taatgagcac


2641
tgttcccagc ggcaattaca gagaaaacga gtgtaaatta tttcaactgg aaaaaagtcc


2701
ctttcttggc tgttttagaa cagggtacac aggatcgcca cctgcaactg gtactcgctt


2761
cttggctgct gcttctgttg tgaaaagacg agcccatgtt tctgcatgga tttcccatgg


2821
aagtcctgtc ctgctacaga ggggaagaaa gtgtaccctc caatgtgata aatcttctga


2881
tgcccccaga ctcttggagc acatcctggt gcccctcctg caggagcctg tggcatattt


2941
ccagctgggc atgctgatcc tccttgagac acagatgcct gtgtgagtct ccgttgatac


3001
aattctgaac ccctcaggtt ctctgaaagg gcacagacca tgggcgtgaa cattgtgccg


3061
tacctgagat ggtctgtgga ctgctgcttc agacacacga gtcctcggaa ctgcctggct


3121
gcctgtcacg catgctctga gtcagaacac accaacgctc tgctgtggct cctagggaag


3181
cattcatggt cctctgttat cagcaggggt ttatgtcact tgctgtccgg tttcctaggg


3241
gcttcctgtg ccccttcccc agctatcctc caggtggcta gggacagtct attctgctgc


3301
aactggaaag tagagggaac cggcactgct cagagcagat ggcggcttct ggaggcacac


3361
agtgggagta caccccttca tgttattggc cagttgctgg agaatgctgt aggagaaaat


3421
tctaggcagg tctactcttg gcatccctga gagtcaaagg cttggagtct aggaaaggtc


3481
acaccatgat ggagaacaca ggtcatttgg gtacgtgtaa tcaaagtgcc ctcccaaatc


3541
agttctcctt ttcgtatgaa cagcatctct acttttaaag aggagttgag gatcgagaag


3601
atgacagtgc agcagtgggt gtggcctgac tacatgtgct gttccagccc tgggtgccca


3661
ctgacaccga cccccaggca gaggcctttg tcttcagcac tcctgagaag ttggctcttt


3721
accccttctc ctctgctgcc cctccttcct gctggttcag gtagccccag ccacgtgggt


3781
tagagtcctg tgctggcctg ccatggcagc tggctacctt ccagaccaac tgtagagata


3841
cctggcattt tgaagaaagc ctagactgga gagcagggcc tctcttggga aggacacaag


3901
gcgggcaagg ctgctggcag acttctccac tgacctgagt gtgctttttt tttcccctaa


3961
atgtattgca tcaagcctca gtgcttatgg agtgcagtgg tcttcatctt ccccaacttg


4021
cttctcagag ctgggatgta ttccagagcc tgatgttttt attcaaacca cagaaaagtt


4081
ttctttaagt agcctgtgca gtcatgcatg tgcctgagtt gtctggagca gaggcaaaca


4141
tctgacttca ttcttagccc caagctgcca tttctgagtc cttgagaggc tgagaaggct


4201
ctagctttgt actgtattct tactgtgtga ctagatgcgt gagcgcttta cattagaagg


4261
aacctggtta gagctcgctc ctcctgtctt tgtgtggcat ttgtgttcca ttaccggccc


4321
ctttaagtaa cggccttcac agcaccttcc cagtgggtag aaagccacac accaggatgt


4381
gggtcaacca tgaagatgtg gcattgcaga cgggggaaca tgtggatgca tggctatcgc


4441
cctgaacagt ccctgcagct acttgtgtta acacagaact gatgtttagc attctgccgc


4501
tttcgtattt atgtaacaat tccttaaagc cattcaaatg gctaactatt taatttcttt


4561
aggacagttg taaaggtctc tctcctgagg acaatgactt ggaagaactg gggcacagcc


4621
agtcccagac actggtggag gctgcagtga ctttttttgg ctcaagatcc acaagcatta


4681
gagtagactg ggccaacaag tcaacaagtg gtggcgtgtg caaacgggct gccctagtca


4741
agcccagtcc cttcaacagt atgtctgatg caccacaggc cctccctact ggaagtggga


4801
acttcaaatg gaaattggag ccatctttta tcccagaagc ctttgctgct gccagggcaa


4861
gtgggctggt gtggactctt gtttaggagg ctgaggttct tgtcactcct tagccagcca


4921
ggcctttagt gtctttgtaa aaagcatgta tttatagtgt tttagatttt tctaactttt


4981
gtatcttaca gcattgtacc ccattgttaa agagccgtgt cccctcttct tataaacgcc


5041
cttctaataa acttttcacc gtaaagctcc tgagacagga gcacagtctg










SEQ ID NO: 154 Mouse SMAD3 amino acid sequence (NP_032565.2)








1
mssilpftpp ivkrllgwkk geqngqeekw cekavkslvk klkktgqlde lekaittqnv


61
ntkcitiprs ldgrlqvshr kglphviycr lwrwpdlhsh helramelce fafnmkkdev


121
cvnpyhyqrv etpvlppvlv prhteipaef pplddyshsi pentnfpagi epqsnipetp


181
ppgylsedge tsdhqmnhsm dagspnlspn pmspahnnld lqpvtycepa fwcsisyyel


241
nqrvgetfha sqpsmtvdgf tdpsnserfc lgllsnvnrn aaveltrrhi grgvrlyyig


301
gevfaeclsd saifvqspnc nqrygwhpat vckippgcnl kifnnqefaa llaqsvnqgf


361
eavyqltrmc tirmsfvkgw gaeyrrqtvt stpcwielhl ngplqwldkv ltqmgspsir


421
cssvs










SEQ ID NO: 155 Human SMAD4 cDNA sequence (NM_005359.5; CDS: 539-2197)








1
atgctcagtg gcttctcgac aagttggcag caacaacacg gccctggtcg tcgtcgccgc


61
tgcggtaacg gagcggtttg ggtggcggag cctgcgttcg cgccttcccg ctctcctcgg


121
gaggcccttc ctgctctccc ctaggctccg cggccgccca gggggtggga gcgggtgagg


181
ggagccaggc gcccagcgag agaggccccc cgccgcaggg cggcccggga gctcgaggcg


241
gtccggcccg cgcgggcagc ggcgcggcgc tgaggagggg cggcctggcc gggacgcctc


301
ggggcggggg ccgaggagct ctccgggccg ccggggaaag ctacgggccc ggtgcgtccg


361
cggaccagca gcgcgggaga gcggactccc ctcgccaccg cccgagccca ggttatcctg


421
aatacatgtc taacaatttt ccttgcaacg ttagctgttg tttttcactg tttccaaagg


481
atcaaaattg cttcagaaat tggagacata tttgatttaa aaggaaaaac ttgaacaaat


541
ggacaatatg tctattacga atacaccaac aagtaatgat gcctgtctga gcattgtgca


601
tagtttgatg tgccatagac aaggtggaga gagtgaaaca tttgcaaaaa gagcaattga


661
aagtttggta aagaagctga aggagaaaaa agatgaattg gattctttaa taacagctat


721
aactacaaat ggagctcatc ctagtaaatg tgttaccata cagagaacat tggatgggag


781
gcttcaggtg gctggtcgga aaggatttcc tcatgtgatc tatgcccgtc tctggaggtg


841
gcctgatctt cacaaaaatg aactaaaaca tgttaaatat tgtcagtatg cgtttgactt


901
aaaatgtgat agtgtctgtg tgaatccata tcactacgaa cgagttgtat cacctggaat


961
tgatctctca ggattaacac tgcagagtaa tgctccatca agtatgatgg tgaaggatga


1021
atatgtgcat gactttgagg gacagccatc gttgtccact gaaggacatt caattcaaac


1081
catccagcat ccaccaagta atcgtgcatc gacagagaca tacagcaccc cagctctgtt


1141
agccccatct gagtctaatg ctaccagcac tgccaacttt cccaacattc ctgtggcttc


1201
cacaagtcag cctgccagta tactgggggg cagccatagt gaaggactgt tgcagatagc


1261
atcagggcct cagccaggac agcagcagaa tggatttact ggtcagccag ctacttacca


1321
tcataacagc actaccacct ggactggaag taggactgca ccatacacac ctaatttgcc


1381
tcaccaccaa aacggccatc ttcagcacca cccgcctatg ccgccccatc ccggacatta


1441
ctggcctgtt cacaatgagc ttgcattcca gcctcccatt tccaatcatc ctgctcctga


1501
gtattggtgt tccattgctt actttgaaat ggatgttcag gtaggagaga catttaaggt


1561
tccttcaagc tgccctattg ttactgttga tggatacgtg gacccttctg gaggagatcg


1621
cttttgtttg ggtcaactct ccaatgtcca caggacagaa gccattgaga gagcaaggtt


1681
gcacataggc aaaggtgtgc agttggaatg taaaggtgaa ggtgatgttt gggtcaggtg


1741
ccttagtgac cacgcggtct ttgtacagag ttactactta gacagagaag ctgggcgtgc


1801
acctggagat gctgttcata agatctaccc aagtgcatat ataaaggtct ttgatttgcg


1861
tcagtgtcat cgacagatgc agcagcaggc ggctactgca caagctgcag cagctgccca


1921
ggcagcagcc gtggcaggaa acatccctgg cccaggatca gtaggtggaa tagctccagc


1981
tatcagtctg tcagctgctg ctggaattgg tgttgatgac cttcgtcgct tatgcatact


2041
caggatgagt tttgtgaaag gctggggacc ggattaccca agacagagca tcaaagaaac


2101
accttgctgg attgaaattc acttacaccg ggccctccag ctcctagacg aagtacttca


2161
taccatgccg attgcagacc cacaaccttt agactgaggt cttttaccgt tggggccctt


2221
aaccttatca ggatggtgga ctacaaaata caatcctgtt tataatctga agatatattt


2281
cacttttgtt ctgctttatc ttttcataaa gggttgaaaa tgtgtttgct gccttgctcc


2341
tagcagacag aaactggatt aaaacaattt tttttttcct cttcagaact tgtcaggcat


2401
ggctcagagc ttgaagatta ggagaaacac attcttatta attcttcacc tgttatgtat


2461
gaaggaatca ttccagtgct agaaaattta gccctttaaa acgtcttaga gccttttatc


2521
tgcagaacat cgatatgtat atcattctac agaataatcc agtattgctg attttaaagg


2581
cagagaagtt ctcaaagtta attcacctat gttattttgt gtacaagttg ttattgttga


2641
acatacttca aaaataatgt gccatgtggg tgagttaatt ttaccaagag taactttact


2701
ctgtgtttaa aaagtaagtt aataatgtat tgtaatcttt catccaaaat attttttgca


2761
agttatatta gtgaagatgg tttcaattca gattgtcttg caacttcagt tttatttttg


2821
ccaaggcaaa aaactcttaa tctgtgtgta tattgagaat cccttaaaat taccagacaa


2881
aaaaatttaa aattacgttt gttattccta gtggatgact gttgatgaag tatacttttc


2941
ccctgttaaa cagtagttgt attcttctgt atttctaggc acaaggttgg ttgctaagaa


3001
gcctataaga ggaatttctt ttccttcatt catagggaaa ggttttgtat tttttaaaac


3061
actaaaagca gcgtcactct acctaatgtc tcactgttct gcaaaggtgg caatgcttaa


3121
actaaataat gaataaactg aatattttgg aaactgctaa attctatgtt aaatactgtg


3181
cagaataatg gaaacattac agttcataat aggtagtttg gatatttttg tacttgattt


3241
gatgtgactt tttttggtat aatgtttaaa tcatgtatgt tatgatattg tttaaaattc


3301
agtttttgta tcttggggca agactgcaaa cttttttata tcttttggtt attctaagcc


3361
ctttgccatc aatgatcata tcaattggca gtgactttgt atagagaatt taagtagaaa


3421
agttgcagat gtattgactg taccacagac acaatatgta tgctttttac ctagctggta


3481
gcataaataa aactgaatct caacatacaa agttgaattc taggtttgat ttttaagatt


3541
ttttttttct tttgcacttt tgagtccaat ctcagtgatg aggtaccttc tactaaatga


3601
caggcaacag ccagttctat tgggcagctt tgtttttttc cctcacactc taccgggact


3661
tccccatgga cattgtgtat catgtgtaga gttggttttt ttttttttta atttttattt


3721
tactatagca gaaatagacc tgattatcta caagatgata aatagattgt ctacaggata


3781
aatagtatga aataaaatca aggattatct ttcagatgtg tttacttttg cctggagaac


3841
ttttagctat agaaacactt gtgtgatgat agtcctcctt atatcacctg gaatgaacac


3901
agcttctact gccttgctca gaaggtcttt taaatagacc atcctagaaa ccactgagtt


3961
tgcttatttc tgtgatttaa acatagatct tgatccaagc tacatgactt ttgtctttaa


4021
ataacttatc taccacctca tttgtactct tgattactta caaattcttt cagtaaacac


4081
ctaattttct tctgtaaaag tttggtgatt taagttttat tggcagtttt ataaaaagac


4141
atcttctcta gaaattgcta actttaggtc cattttactg tgaatgagga ataggagtga


4201
gttttagaat aacagatttt taaaaatcca gatgatttga ttaaaacctt aatcatacat


4261
tgacataatt cattgcttct tttttttgag atatggagtc ttgctgtgtt gcccaggcag


4321
gagtgcagtg gtatgatctc agctcactgc aacctctgcc tcccgggttc aactgattct


4381
cctgcctcag cctccctggt agctaggatt acaggtgccc gccaccatgc ctggctaact


4441
tttgtagttt tagtagagac ggggttttgc ctgttggcca ggctggtctt gaactcctga


4501
cctcaagtga tccatccacc ttggcctccc aaagtgctgg gattacgggc gtgagccact


4561
gtccctggcc tcattgttcc cttttctact ttaaggaaag ttttcatgtt taatcatctg


4621
gggaaagtat gtgaaaaata tttgttaaga agtatctctt tggagccaag ccacctgtct


4681
tggtttcttt ctactaagag ccataaagta tagaaatact tctagttgtt aagtgcttat


4741
atttgtacct agatttagtc acacgctttt gagaaaacat ctagtatgtt atgatcagct


4801
attcctgaga gcttggttgt taatctatat ttctatttct tagtggtagt catctttgat


4861
gaataagact aaagattctc acaggtttaa aattttatgt ctactttaag ggtaaaatta


4921
tgaggttatg gttctgggtg ggttttctct agctaattca tatctcaaag agtctcaaaa


4981
tgttgaattt cagtgcaagc tgaatgagag atgagccatg tacacccacc gtaagacctc


5041
attccatgtt tgtccagtgc ctttcagtgc attatcaaag ggaatccttc atggtgttgc


5101
ctttattttc cggggagtag atcgtgggat atagtctatc tcatttttaa tagtttaccg


5161
cccctggtat acaaagataa tgacaataaa tcactgccat ataaccttgc tttttccaga


5221
aacatggctg ttttgtattg ctgtaaccac taaataggtt gcctatacca ttcctcctgt


5281
gaacagtgca gatttacagg ttgcatggtc tggcttaagg agagccatac ttgagacatg


5341
tgagtaaact gaactcatat tagctgtgct gcatttcaga cttaaaatcc atttttgtgg


5401
ggcagggtgt ggtgtgtaaa ggggggtgtt tgtaatacaa gttgaaggca aaataaaatg


5461
tcctgtctcc cagatgatat acatcttatt atttttaaag tttattgcta attgtaggaa


5521
ggtgagttgc aggtatcttt gactatggtc atctggggaa ggaaaatttt acattttact


5581
attaatgctc cttaagtgtc tatggaggtt aaagaataaa atggtaaatg tttctgtgcc


5641
tggtttgatg gtaactggtt aatagttact caccatttta tgcagagtca cattagttca


5701
caccctttct gagagccttt tgggagaagc agttttattc tctgagtgga acagagttct


5761
ttttgttgat aatttctagt ttgctccctt cgttattgcc aactttactg gcattttatt


5821
taatgatagc agattgggaa aatggcaaat ttaggttacg gaggtaaatg agtatatgaa


5881
agcaattacc tctaaagcca gttaacaatt attttgtagg tggggtacac tcagcttaaa


5941
gtaatgcatt tttttttccc gtaaaggcag aatccatctt gttgcagata gctatctaaa


6001
taatctcata tcctcttttg caaagactac agagaatagg ctatgacaat cttgttcaag


6061
cctttccatt tttttccctg ataactaagt aatttctttg aacataccaa gaagtatgta


6121
aaaagtccat ggccttattc atccacaaag tggcatccta ggcccagcct tatccctagc


6181
agttgtccca gtgctgctag gttgcttatc ttgtttatct ggaatcactg tggagtgaaa


6241
ttttccacat catccagaat tgccttattt aagaagtaaa acgttttaat ttttagcctt


6301
tttttggtgg agttatttaa tatgtatatc agaggatata ctagatggta acatttcttt


6361
ctgtgcttgg ctatctttgt ggacttcagg ggcttctaaa acagacagga ctgtgttgcc


6421
tttactaaat ggtctgagac agctatggtt ttgaattttt agtttttttt ttttaaccca


6481
cttcccctcc tggtctcttc cctctctgat aattaccatt catatgtgag tgttagtgtg


6541
cctcctttta gcattttctt cttctctttc tgattcttca tttctgactg cctaggcaag


6601
gaaaccagat aaccaaactt actagaacgt tctttaaaac acaagtacaa actctgggac


6661
aggacccaag acactttcct gtgaagtgct gaaaaagacc tcattgtatt ggcatttgat


6721
atcagtttga tgtagcttag agtgcttcct gattcttgct gagtttcagg tagttgagat


6781
agagagaagt gagtcatatt catattttcc cccttagaat aatattttga aaggtttcat


6841
tgcttccact tgaatgctgc tcttacaaaa actggggtta caagggttac taaattagca


6901
tcagtagcca gaggcaatac cgttgtctgg aggacaccag caaacaacac acaacaaagc


6961
aaaacaaacc ttgggaaact aaggccattt gttttgtttt ggtgtcccct ttgaagccct


7021
gccttctggc cttactcctg tacagatatt tttgacctat aggtgccttt atgagaattg


7081
agggtctgac atcctgcccc aaggagtagc taaagtaatt gctagtgttt tcagggattt


7141
taacatcaga ctggaatgaa tgaatgaaac tttttgtcct ttttttttct gttttttttt


7201
ttctaatgta gtaaggacta aggaaaacct ttggtgaaga caatcatttc tctctgttga


7261
tgtggatact tttcacaccg tttatttaaa tgctttctca ataggtccag agccagtgtt


7321
cttgttcaac ctgaaagtaa tggctctggg ttgggccaga cagttgcact ctctagtttg


7381
ccctctgcca caaatttgat gtgtgacctt tgggcaagtc atttatcttc tctgggcctt


7441
agttgcctca tctgtaaaat gagggagttg gagtagatta attattccag ctctgaaatt


7501
ctaagtgacc ttggctacct tgcagcagtt ttggatttct tccttatctt tgttctgctg


7561
tttgaggggg ctttttactt atttccatgt tattcaaagg agactaggct tgatatttta


7621
ttactgttct tttatggaca aaaggttaca tagtatgccc ttaagactta attttaacca


7681
aaggcctagc accaccttag gggctgcaat aaacacttaa cgcgcgtgcg cacgcgcgcg


7741
cgcacacaca cacacacaca cacacacaca cacaggtcag agtttaaggc tttcgagtca


7801
tgacattcta gcttttgaat tgcgtgcaca cacacacgca cgcacacact ctggtcagag


7861
tttattaagg ctttcgagtc atgacattat agcttttgag ttggtgtgtg tgacaccacc


7921
ctcctaagtg gtgtgtgctt gtaatttttt ttttcagtga aaatggattg aaaacctgtt


7981
gttaatgctt agtgatatta tgctcaaaac aaggaaattc ccttgaaccg tgtcaattaa


8041
actggtttat atgactcaag aaaacaatac cagtagatga ttattaactt tattcttggc


8101
tctttttagg tccattttga ttaagtgact tttggctgga tcattcagag ctctcttcta


8161
gcctaccctt ggatgagtac aattaatgaa attcatattt tcaaggacct gggagccttc


8221
cttggggctg ggttgagggt ggggggttgg ggagtcctgg tagaggccag ctttgtggta


8281
gctggagagg aagggatgaa accagctgct gttgcaaagg ctgcttgtca ttgatagaag


8341
gactcacggg cttggattga ttaagactaa acatggagtt ggcaaacttt cttcaagtat


8401
tgagttctgt tcaatgcatt ggacatgtga tttaagggaa aagtgtgaat gcttatagat


8461
gatgaaaacc tggtgggctg cagagcccag tttagaagaa gtgagttggg ggttggggac


8521
agatttggtg gtggtatttc ccaactgttt cctcccctaa attcagagga atgcagctat


8581
gccagaagcc agagaagagc cactcgtagc ttctgctttg gggacaactg gtcagttgaa


8641
agtcccagga gttcctttgt ggctttctgt atacttttgc ctggttaaag tctgtggcta


8701
aaaaatagtc gaacctttct tgagaactct gtaacaaagt atgtttttga ttaaaagaga


8761
aagccaacta aaaaaaaaaa aaaaaaaaa










SEQ ID NO: 156 Human SMAD4 amino acid sequence (NP_005350.1)








1
mdnmsitntp tsndaclsiv hslmchrqgg esetfakrai eslvkklkek kdeldslita


61
ittngahpsk cvtiqrtldg rlqvagrkgf phviyarlwr wpdlhknelk hvkycqyafd


121
lkcdsvcvnp yhyervvspg idlsgltlqs napssmmvkd eyvhdfegqp slsteghsiq


181
tiqhppsnra stetystpal lapsesnats tanfpnipva stsqpasilg gshsegllqi


241
asgpqpgqqq ngftgqpaty hhnstttwtg srtapytpnl phhqnghlqh hppmpphpgh


301
ywpvhnelaf qppisnhpap eywcsiayfe mdvqvgetfk vpsscpivtv dgyvdpsggd


361
rfclgqlsnv hrteaierar lhigkgvqle ckgegdvwvr clsdhavfvq syyldreagr


421
apgdavhkiy psayikvfdl rqchrqmqqq aataqaaaaa qaaavagnip gpgsvggiap


481
aislsaaagi gvddlrrlci lrmsfvkgwg pdyprqsike tpcwieihlh ralqlldevl


541
htmpiadpqp ld










SEQ ID NO: 157 Mouse SMAD4 transcript variant 1 cDNA sequence


(NM_001364967.1; CDS: 491-1699)








1
agtgtccttc cgacaagttg gcagcaacaa cacggccctg gtcgtcgtcg ccgctgcggt


61
aacggagcgg ctcgggtggc ggagcccgtg ttcgcgtccg tccgcccgcc cgcccgccgt


121
cctccggagg cccttcccgc gccgcgctcc gctccgcggc cgtccccggg gcgggagcgc


181
gtgaccggag ccggcgcccg cgagcgaggc cccccgcagc ggggcggctc cggagctcca


241
gcggcccggc cggccggcgc ggtccgcggc gcggcgggga gagggggccg cctgggccgg


301
acgccgcggg cggggcccgg gaagcgacag cgaggcgagg cgcggtgcgg cgaggagccc


361
aggtcatcct gctcaccaga tgtcttgaca gtttttcttg caacattggc cattggtttt


421
cactgccttc aaaagatcaa aattactcca gaaattggag agttggattt aaaagaaaaa


481
acttgaacaa atggacaata tgtctataac aaatacacca acaagtaacg atgcctgtct


541
gagcattgta catagtttga tgtgtcatag acaaggtggg gaaagtgaaa cctttgcaaa


601
aagagcaatt gagagtttgg taaagaagct gaaagagaaa aaagatgaat tggattcttt


661
aataacagct ataactacaa atggagctca tcctagcaag tgtgtcacca tacagagaac


721
attggatgga cgacttcagg tggctggtcg gaaaggattt cctcatgtga tctatgcccg


781
tctgtggagg tggcctgatc tacacaagaa tgaactaaag catgttaaat attgtcagta


841
tgcgtttgac ttaaaatgtg acagtgtctg tgtgaatcca tatcactatg agcgggttgt


901
ctcacctgga attgatctct caggattaac actgcagagt aatgctccaa gtatgttagt


961
gaaggatgag tacgttcacg actttgaagg acagccgtcc ttacccactg aaggacattc


1021
gattcaaacc atccaacacc cgccaagtaa tcgcgcatca acggagacgt acagcgcccc


1081
ggctctgtta gccccggcag agtctaacgc caccagcacc accaacttcc ccaacattcc


1141
tgtggcttcc acaaggccag ttcacaatga gcttgcattc cagcctccca tttccaatca


1201
tcctgctcct gagtactggt gctccattgc ttactttgaa atggacgttc aggtaggaga


1261
gacgtttaag gtcccttcaa gctgccctgt tgtgactgtg gatggctatg tggatccttc


1321
gggaggagat cgcttttgct tgggtcaact ctccaatgtc cacaggacag aagcgattga


1381
gagagcgagg ttgcacatag gcaaaggagt gcagttggaa tgtaaaggtg aaggtgacgt


1441
ttgggtcagg tgccttagtg accacgcggt ctttgtacag agttactacc tggacagaga


1501
agctggccga gcacctggcg acgctgttca taagatctac ccaagcgcgt atataaaggt


1561
cagtgtttat atgtctttga tctgcggcag tgtcaccggc agatgcagca acaggcggcc


1621
actgcgcaag ctgcagctgc tgctcaggcg gcggccgtgg cagggaacat ccctggccct


1681
gggtccgtgg gtggaatagc tccagccatc agtctgtctg ctgctgctgg catcggtgtg


1741
gatgacctcc ggcgattgtg cattctcagg atgagctttg tgaagggctg gggcccagac


1801
taccccaggc agagcatcaa ggaaaccccg tgctggattg agattcacct tcaccgagct


1861
ctgcagctct tggatgaagt cctgcacacc atgcccattg cggacccaca gcctttagac


1921
tgagatctca caccacggac gccctaacca tttccaggat ggtggactat gaaatatact


1981
cgtgtttata atctgaagat ctattgcatt ttgttctgct ctgtcttttc ctaaagggtt


2041
gagagatgtg tttgctgcct tgctcttagc agacagaaac tgaattaaaa cttcttttct


2101
attttagaac tttcaggtgt ggctcagtgc ttgaagatca gaaagatgca gttcttgctg


2161
agtcttccct gctggttctg tatggaggag tcggccagtg ctgggcgctc agccctttag


2221
tgtgtgcgag cgccttgcat gccgaggaga gtcagagctg ctgattgtaa ggctgagaag


2281
ttctcacagt taagccacct gccccttagt gggcgagtta ttaaacgcac tgtgctcacg


2341
tggcgctggg ccagccagct ctaccaagag caactttact ctcctttaaa aaccttttag


2401
caacctttga ttcacaatgg tttttgcaag ttaaacagtg aaggtgaatt aaattcatac


2461
tgtcttgcag acttcagggt ttcttcccca agacaaaaca ctaatctgtg tgcatattga


2521
caattcctta caattatcag tcaaagaaat gccatttaaa attacaattt ttttaatccc


2581
taatggatga ccactatcaa gatgtatact ttgccctgtt aaacagtaaa tgaattcttc


2641
tatatttcta ggcacaaggt tagttattta aaaaaaaaaa aaaaagccta ggggagggat


2701
ttttccctta attcctaggg agaaggtttt gtataaaaca ctaaaagcag tgtcactctg


2761
cctgctgctt cactgttctg caaggtggca gtacttcaac tgaaataatg aatattttgg


2821
aaactgctaa attctatgtt aaatactgtg cagaataatg gaaacagtgc agttggtaac


2881
aggtggtttg gatatttttg tacttgattt gatgtgtgac ttcttttcat atactgttaa


2941
aatcatgtat gttttgacat tgtttaaaat tcagtttttg tatcttaggg caagactgca


3001
gactttttta taccttttgg ttataagccc tgtgtttgcc atccttgatc acttggcggt


3061
gactttgtag agattgaagt ggaggagtta agacacattg actgtaccac agacacacat


3121
gtatactttc tacctagtta ctagcgtaaa taaaactgag tcactatacg aagtggaatt


3181
ctagatttgg tttttaaaat gctttccttt tgcacttttg agtccagtct cagtggcaag


3241
acaccttctg ctaaatgaca ggtggcagcc agttgtacca tgcagcgctg gttccctccc


3301
actctaccag gactttccca tggacactgt gcatcatgtg tagttggtta ttttttgagt


3361
ttttatttta ctgtagcaaa aaaaaaaaaa aaaacttgga taaatagtgt gaataaaatc


3421
aagaccatgg agatgttttt accctgagag ttttctgtga gttttaaatt gcagtaggca


3481
tttgagctct ggaaaccccg tgcatagcag ttctctttgt gccaacagaa atgaccacgt


3541
cctgcagcct gctgcggaag gttccagagg ctctgagaaa ccagagtgct gcagtgactg


3601
gggtccatct cagcccagcg cacacagcgt gcgttgtaaa agctgcctct gtgtcttgtc


3661
ttctgtactt agggatgctt tgtctcgggc ctaatcttat ctgtagaagt ttggtgattt


3721
ttttttttta aatgttgtat tgacagaatt ataaaaagat accttctcta gaaatgcttg


3781
tcttcagatc cgtttcacga tggccgggga acaggagtga gaagagagag taagctgtag


3841
tgtaacgggt ttttaagacc cagctcatct gaccaggcag tgctgtaact tgatgcttcc


3901
tgttgtacct tatggaacct ttcccatatt taatcatctt cagaaagtag gtgggaaata


3961
tttgctggga agtatctctt cagagccaag ccacttgtct tggttttctt actaagagcc


4021
atagaaatga tttctggtta ttgatgaaat ttgtaatttg cctgtcctag tcttttttcc


4081
tttcacttcg ctatctttga ataagacttt taaaaacttc cctgagttga aaaattttgg


4141
gataaaatag tttccctagt tcttagagac tgattatgat gtgggtatgg ttctgggtgg


4201
gttttttttc taagtcatag ctcaaaagtc tcccaagatt aaatttcagt gggcacccag


4261
tttgaaacca ttctactttt gtcttgtgcc tttctttgca tgattaaaga gaatctgtaa


4321
tggtattgcc tttatttgct tggaagtaga ttcttttctg ggatagagtc taccttaatc


4381
gttgtccttt accgcccctg ctgtacagat agatgctaag ccactgccgg gaacttgctt


4441
ttccatagac agtcttttta tactgcctga acccattgct cctgttcaca gtataagttc


4501
acagacaggg tgagccggcc gaggcgcaca cctgcagaat ccagcaacaa ccatgcttaa


4561
ctgtgtgtat ttcaaagtta gaaatccagt tttgtgggga atggtgtggt ttatattagc


4621
agctttgaag gcgaagtaac tcagaggttt tacagtctgg agaagggaag cttcctggaa


4681
tgcttgtgaa gtatctgtgg tggccaaatg tgtttgctcc tggccttgct tgtaactggc


4741
taattgtcac tcttcagatt tttaaaaatt tttaatgagc tgagaccccc ttggaaggag


4801
cttgtttgga gctggccaga gatgtttttg gtagttcctg tcttcatccg gtcttcatca


4861
ctgttttctt taatggtcag ttagtaaagt ataagttagg tcactgtcat gagtggagca


4921
ggaacaactc tcccaggtgg gggcctggaa gggactcgtt acatggagcc atctgtaact


4981
agccctttaa atcctccttt gcatgacata gagaaaaggc tgtgagactc ctgcccaggc


5041
ctttctagtt ttcccttcta gtaaccaagc aatcgcatct ctgcggtgca gtaggctgta


5101
tgtaaaaagc cgtggcctta ctcctagcag cacccttggc agggcctttt tctcagcgca


5161
gtgaggctgt gcatctggca ctcctgagga atgaaagttt tcatcatctt gccttattaa


5221
gcagtaaaac ttttgaaaaa tgagccgttt attggcagga gctatttaca caaatcagaa


5281
tattatacca tttctttttc tctctctcct gtctctgtgg acctccgggg cttctgagat


5341
agacagtact gcctagccat tcgaaatgcc caagccagct ggggttgttg ggctctcctc


5401
tcccttcctc cttcctcaca gctcctgctc ttgcgtggtt agtgagcctc tactcagtgt


5461
ttcctgtcct cgctgctcag gcgagggaag acgacaactg atagtcttag agttcacctt


5521
tctgtcgggg gcggcattgt tctgattgct gccatcgtct ccgatccttg atgagtttta


5581
tacgattgat gtggagagaa tttaattgat attcatagcc catagctgct cccctctccc


5641
tggtgttgtg gaagatttag tttccaccga attcactcaa aaagctgtcc tgttggcacc


5701
agcaaaccac acgctctttt agaaaacatc tttgcttgtt ttgtgtcctg accctgctct


5761
ctggcctcct tcctctgtag atacttctga cctataggtg cctttatgag aattgagggt


5821
ctgataccgt gccccaagga atagctgatg caatgagtga tgtttttcag ggattttagc


5881
atcaaattaa ataaatgaat gaaactttta agtccttctt ttcttttatt tttttaatgc


5941
aggaaggact gaggagacgt cgggtgacga caatcatttc tctgtgttgc tgtaaaggct


6001
ttcacacagt ttaagatgct tttctcagta gctccagagt tgatgttctt gttcaaccta


6061
aagcaggctc tggactcgcc cagaccgttg cacttgtagt ttacgacttc atgtgtcctc


6121
cctcggcaag tcattccctt ctctgggcct cagctgcctc gtctgtgaaa tgaggggttg


6181
gactattgtg ccagctctgg cttctaagtg accttgcccg ccctgcagca ggttgagatg


6241
cgctctttac cttttttctg ctgtgtgagg gggaatctta ctttttcctt tgttactcag


6301
tgagactagg cttgatcttt gagtacccgc tctcctgtgg acaagtagtt acatatgtcc


6361
ttatgactta tttttaacca aaggccgagc accaccttag gggctgccgt aagtaccata


6421
cagaacactg gggtgggggg cggggggcac cttcatttca ctgtgtcatc gtctgtgttc


6481
agagcctctg caaaggcctt catctgtcat gacattctga ctttgaagtt agtatgtgta


6541
tgattctgtc ctcctaagtg ctggcaattc ttcatctaaa ctggactgaa atcctgttgt


6601
aaatgcctgg taatattaga gggcctttct ttgggtcttt tgtagcttaa ttcctctatg


6661
ttcaaaacag gaagttcttc agaaattata tcaatatttt aattgatgct atgaaagaca


6721
gtcccagtga atgactgtcc actttatttt tgcctctttt atatccattt tgattgacaa


6781
cttttggctg gatcatgcct ttcagagagt tttcttccag cctgcttgga tgagtataat


6841
aaccgacttt gttattttta cggacctggg aacctttcta gggggtgggg tggggtgggg


6901
tggggtgggg agtcctggta gaggccacat ctgtggcagc tgtgaagaag ggatgaagcc


6961
agctgctctt gctaaggctg cttgtcattg gtagaaggac tcaccggttt gggttactta


7021
aaaggctaaa tatagagttg gcaaacttct ccaagcgggg agggtttttt ttttgttcca


7081
tgcatctaac gtgatttaaa agcatgactt cctataggtt atgaaaactg gtgtgctgca


7141
gatccagtgt ggaagaggtg actgggcgtt ggggacagct ttgatggtga cacttctagc


7201
tctgagagtc tcctactctg ggtccactct tagcttggct cttaggaaaa actggtcagc


7261
taaaggccca ccactttctt tctatagact tttgcctggt tgaagtctgt ggcttaaaaa


7321
aaatagttga atctttcttg agaactctgt aacaaagtat gtttttgatt aaaaagagaa


7381
agccaactaa a










SEQ ID NO: 158 Mouse SMAD4 isoform 1 amino acid sequence (NP_001351896.1)








1
mdnmsitntp tsndaclsiv hslmchrqgg esetfakrai eslvkklkek kdeldslita


61
ittngahpsk cvtiqrtldg rlqvagrkgf phviyarlwr wpdlhknelk hvkycqyafd


121
lkcdsvcvnp yhyervvspg idlsgltlqs napsmlvkde yvhdfegqps lpteghsiqt


181
iqhppsnras tetysapall apaesnatst tnfpnipvas trpvhnelaf qppisnhpap


241
eywcsiayfe mdvqvgetfk vpsscpvvtv dgyvdpsggd rfclgqlsnv hrteaierar


301
lhigkgvqle ckgegdvwvr clsdhavfvq syyldreagr apgdavhkiy psayikvsvy


361
mslicgsvtg rcsnrrplrk lqlllrrrpw qgtslalgpw ve










SEQ ID NO: 159 Mouse SMAD4 transcript variant 2 cDNA sequence


(NM_001364968.1;CDS: 491-1858)








1
agtgtccttc cgacaagttg gcagcaacaa cacggccctg gtcgtcgtcg ccgctgcggt


61
aacggagcgg ctcgggtggc ggagcccgtg ttcgcgtccg tccgcccgcc cgcccgccgt


121
cctccggagg cccttcccgc gccgcgctcc gctccgcggc cgtccccggg gcgggagcgc


181
gtgaccggag ccggcgcccg cgagcgaggc cccccgcagc ggggcggctc cggagctcca


241
gcggcccggc cggccggcgc ggtccgcggc gcggcgggga gagggggccg cctgggccgg


301
acgccgcggg cggggcccgg gaagcgacag cgaggcgagg cgcggtgcgg cgcggagccc


361
aggtcatcct gctcaccaga tgtcttgaca gtttttcttg caacattggc cattggtttt


421
cactgccttc aaaagatcaa aattactcca gaaattggag agttggattt aaaagaaaaa


481
acttgaacaa atggacaata tgtctataac aaatacacca acaagtaacg atgcctgtct


541
gagcattgta catagtttga tgtgtcatag acaaggtggg gaaagtgaaa cctttgcaaa


601
aagagcaatt gagagtttgg taaagaagct gaaagagaaa aaagatgaat tggattcttt


661
aataacagct ataactacaa atggagctca tcctagcaag tgtgtcacca tacagagaac


721
attggatgga cgacttcagg tggctggtcg gaaaggattt cctcatgtga tctatgcccg


781
tctgtggagg tggcctgatc tacacaagaa tgaactaaag catgttaaat attgtcagta


841
tgcgtttgac ttaaaatgtg acagtgtctg tgtgaatcca tatcactatg agagggttgt


901
ctcacctgga attgatctct caggattaac actgcagagt aatgctccaa gtatgttagt


961
gaaggatgag tacgttcacg actttgaagg acagccgtcc ttacccactg aaggacattc


1021
gattcaaacc atccaacacc cgccaagtaa tcgcgcatca acggagacgt acagcgcccc


1081
ggctctgtta gccccggcag agtctaacgc caccagcacc accaacttcc ccaacattcc


1141
tgtggcttcc acaactcctg agtactggtg ctccattgct tactttgaaa tggacgttca


1201
ggtaggagag acgtttaagg tcccttcaag ctgccctgtt gtgactgtgg atggctatgt


1261
ggatccttcg ggaggagatc gcttttgctt gggtcaactc tccaatgtcc acaggacaga


1321
agcgattgag agagcgaggt tgcacatagg caaaggagtg cagttggaat gtaaaggtga


1381
aggtgacgtt tgggtcaggt gccttagtga ccacgcggtc tttgtacaga gttactacct


1441
ggacagagaa gctggccgag cacctggcga cgctgttcat aagatctacc caagcgcgta


1501
tataaaggtc tttgatctgc ggcagtgtca ccggcagatg cagcaacagg cggccactgc


1561
gcaagctgca gctgctgctc aggcggcggc cgtggcaggg aacatccctg gccctgggtc


1621
cgtgggtgga atagctccag ccatcagtct gtctgctgct gctggcatcg gtgtggatga


1681
cctccggcga ttgtgcattc tcaggatgag ctttgtgaag ggctggggcc cagactaccc


1741
caggcagagc atcaaggaaa ccccgtgctg gattgagatt caccttcacc gagctctgca


1801
gctcttggat gaagtcctgc acaccatgcc cattgcggac ccacagcctt tagactgaga


1861
tctcacacca cggacgccct aaccatttcc aggatggtgg actatgaaat atactcgtgt


1921
ttataatctg aagatctatt gcattttgtt ctgctctgtc ttttcctaaa gggttgagag


1981
atgtgtttgc tgccttgctc ttagcagaca gaaactgaat taaaacttct tttctatttt


2041
agaactttca ggtgtggctc agtgcttgaa gatcagaaag atgcagttct tgctgagtct


2101
tccctgctgg ttctgtatgg aggagtcggc cagtgctggg cgctcagccc tttagtgtgt


2161
gcgagcgcct tgcatgccga ggagagtcag agctgctgat tgtaaggctg agaagttctc


2221
acagttaagc cacctgcccc ttagtgggcg agttattaaa cgcactgtgc tcacgtggcg


2281
ctgggccagc cagctctacc aagagcaact ttactctcct ttaaaaacct tttagcaacc


2341
tttgattcac aatggttttt gcaagttaaa cagtgaaggt gaattaaatt catactgtct


2401
tgcagacttc agggtttctt ccccaagaca aaacactaat ctgtgtgcat attgacaatt


2461
ccttacaatt atcagtcaaa gaaatgccat ttaaaattac aattttttta atccctaatg


2521
gatgaccact atcaagatgt atactttgcc ctgttaaaca gtaaatgaat tcttctatat


2581
ttctaggcac aaggttagtt atttaaaaaa aaaaaaaaaa gcctagggga gggatttttc


2641
ccttaattcc tagggagaag gttttgtata aaacactaaa agcagtgtca ctctgcctgc


2701
tgcttcactg ttctgcaagg tggcagtact tcaactgaaa taatgaatat tttggaaact


2761
gctaaattct atgttaaata ctgtgcagaa taatggaaac agtgcagttg gtaacaggtg


2821
gtttggatat ttttgtactt gatttgatgt gtgacttctt ttcatatact gttaaaatca


2881
tgtatgtttt gacattgttt aaaattcagt ttttgtatct tagggcaaga ctgcagactt


2941
ttttatacct tttggttata agccctgtgt ttgccatcct tgatcacttg gcggtgactt


3001
tgtagagatt gaagtggagg agttaagaca cattgactgt accacagaca cacatgtata


3061
ctttctacct agttactagc gtaaataaaa ctgagtcact atacgaagtg gaattctaga


3121
tttggttttt aaaatgcttt ccttttgcac ttttgagtcc agtctcagtg gcaagacacc


3181
ttctgctaaa tgacaggtgg cagccagttg taccatgcag cgctggttcc ctcccactct


3241
accaggactt tcccatggac actgtgcatc atgtgtagtt ggttattttt tgagttttta


3301
ttttactgta gcaaaaaaaa aaaaaaaaac ttggataaat agtgtgaata aaatcaagac


3361
catggagatg tttttaccct gagagttttc tgtgagtttt aaattgcagt aggcatttga


3421
gctctggaaa ccccgtgcat agcagttctc tttgtgccaa cagaaatgac cacgtcctgc


3481
agcctgctgc ggaaggttcc agaggctctg agaaaccaga gtgctgcagt gactggggtc


3541
catctcagcc cagcgcacac agcgtgcgtt gtaaaagctg cctctgtgtc ttgtcttctg


3601
tacttaggga tgctttgtct cgggcctaat cttatctgta gaagtttggt gatttttttt


3661
ttttaaatgt tgtattgaca gaattataaa aagatacctt ctctagaaat gcttgtcttc


3721
agatccgttt cacgatggcc ggggaacagg agtgagaaga gagagtaagc tgtagtgtaa


3781
cgggttttta agacccagct catctgacca ggcagtgctg taacttgatg cttcctgttg


3841
taccttatgg aacctttccc atatttaatc atcttcagaa agtaggtggg aaatatttgc


3901
tgggaagtat ctcttcagag ccaagccact tgtcttggtt ttcttactaa gagccataga


3961
aatgatttct ggttattgat gaaatttgta atttgcctgt cctagtcttt tttcctttca


4021
cttcgctatc tttgaataag acttttaaaa acttccctga gttgaaaaat tttgggataa


4081
aatagtttcc ctagttctta gagactgatt atgatgtggg tatggttctg ggtgggtttt


4141
ttttctaagt catagctcaa aagtctccca agattaaatt tcagtgggca cccagtttga


4201
aaccattcta cttttgtctt gtgcctttct ttgcatgatt aaagagaatc tgtaatggta


4261
ttgcctttat ttgcttggaa gtagattctt ttctgggata gagtctacct taatcgttgt


4321
cctttaccgc ccctgctgta cagatagatg ctaagccact gccgggaact tgcttttcca


4381
tagacagtct ttttatactg cctgaaccca ttgctcctgt tcacagtata agttcacaga


4441
cagggtgagc cggccgaggc gcacacctgc agaatccagc aacaaccatg cttaactgtg


4501
tgtatttcaa agttagaaat ccagttttgt ggggaatggt gtggtttata ttagcagctt


4561
tgaaggcgaa gtaactcaga ggttttacag tctggagaag ggaagcttcc tggaatgctt


4621
gtgaagtatc tgtggtggcc aaatgtgttt gctcctggcc ttgcttgtaa ctggctaatt


4681
gtcactcttc agatttttaa aaatttttaa tgagctgaga cccccttgga aggagcttgt


4741
ttggagctgg ccagagatgt ttttggtagt tcctgtcttc atccggtctt catcactgtt


4801
ttctttaatg gtcagttagt aaagtataag ttaggtcact gtcatgagtg gagcaggaac


4861
aactctccca ggtgggggcc tggaagggac tcgttacatg gagccatctg taactagccc


4921
tttaaatcct cctttgcatg acatagagaa aaggctgtga gactcctgcc caggcctttc


4981
tagttttccc ttctagtaac caagcaatcg catctctgcg gtgcagtagg ctgtatgtaa


5041
aaagccgtgg ccttactcct agcagcaccc ttggcagggc ctttttctca gcgcagtgag


5101
gctgtgcatc tggcactcct gaggaatgaa agttttcatc atcttgcctt attaagcagt


5161
aaaacttttg aaaaatgagc cgtttattgg caggagctat ttacacaaat cagaatatta


5221
taccatttct ttttctctct ctcctgtctc tgtggacctc cggggcttct gagatagaca


5281
gtactgccta gccattcgaa atgcccaagc cagctggggt tgttgggctc tcctctccct


5341
tcctccttcc tcacagctcc tgctcttgcg tggttagtga gcctctactc agtgtttcct


5401
gtcctcgctg ctcaggcgag ggaagacgac aactgatagt cttagagttc acctttctgt


5461
cgggggcggc attgttctga ttgctgccat cgtctccgat ccttgatgag ttttatacga


5521
ttgatgtgga gagaatttaa ttgatattca tagcccatag ctgctcccct ctccctggtg


5581
ttgtggaaga tttagtttcc accgaattca ctcaaaaagc tgtcctgttg gcaccagcaa


5641
accacacgct cttttagaaa acatctttgc ttgttttgtg tcctgaccct gctctctggc


5701
ctccttcctc tgtagatact tctgacctat aggtgccttt atgagaattg agggtctgat


5761
accgtgcccc aaggaatagc tgatgcaatg agtgatgttt ttcagggatt ttagcatcaa


5821
attaaataaa tgaatgaaac ttttaagtcc ttcttttctt ttattttttt aatgcaggaa


5881
ggactgagga gacgtcgggt gacgacaatc atttctctgt gttgctgtaa aggctttcac


5941
acagtttaag atgcttttct cagtagctcc agagttgatg ttcttgttca acctaaagca


6001
ggctctggac tcgcccagac cgttgcactt gtagtttacg acttcatgtg tcctccctcg


6061
gcaagtcatt cccttctctg ggcctcagct gcctcgtctg tgaaatgagg ggttggacta


6121
ttgtgccagc tctggcttct aagtgacctt gcccgccctg cagcaggttg agatgcgctc


6181
tttacctttt ttctgctgtg tgagggggaa tcttactttt tcctttgtta ctcagtgaga


6241
ctaggcttga tctttgagta cccgctctcc tgtggacaag tagttacata tgtccttatg


6301
acttattttt aaccaaaggc cgagcaccac cttaggggct gccgtaagta ccatacagaa


6361
cactggggtg gggggcgggg ggcaccttca tttcactgtg tcatcgtctg tgttcagagc


6421
ctctgcaaag gccttcatct gtcatgacat tctgactttg aagttagtat gtgtatgatt


6481
ctgtcctcct aagtgctggc aattcttcat ctaaactgga ctgaaatcct gttgtaaatg


6541
cctggtaata ttagagggcc tttctttggg tcttttgtag cttaattcct ctatgttcaa


6601
aacaggaagt tcttcagaaa ttatatcaat attttaattg atgctatgaa agacagtccc


6661
agtgaatgac tgtccacttt atttttgcct cttttatatc cattttgatt gacaactttt


6721
ggctggatca tgcctttcag agagttttct tccagcctgc ttggatgagt ataataaccg


6781
actttgttat ttttacggac ctgggaacct ttctaggggg tggggtgggg tggggtgggg


6841
tggggagtcc tggtagaggc cacatctgtg gcagctgtga agaagggatg aagccagctg


6901
ctcttgctaa ggctgcttgt cattggtaga aggactcacc ggtttgggtt acttaaaagg


6961
ctaaatatag agttggcaaa cttctccaag cggggagggt tttttttttg ttccatgcat


7021
ctaacgtgat ttaaaagcat gacttcctat aggttatgaa aactggtgtg ctgcagatcc


7081
agtgtggaag aggtgactgg gcgttgggga cagctttgat ggtgacactt ctagctctga


7141
gagtctccta ctctgggtcc actcttagct tggctcttag gaaaaactgg tcagctaaag


7201
gcccaccact ttctttctat agacttttgc ctggttgaag tctgtggctt aaaaaaaata


7261
gttgaatctt tcttgagaac tctgtaacaa agtatgtttt tgattaaaaa gagaaagcca


7321
actaaa










SEQ ID NO: 160 Mouse SMAD4 isoform 2 amino acid sequence (NP_001351897.1)








1
mdnmsitntp tsndaclsiv hslmchrqgg esetfakrai eslvkklkek kdeldslita


61
ittngahpsk cvtiqrtldg rlqvagrkgf phviyarlwr wpdlhknelk hvkycqyafd


121
lkcdsvcvnp yhyervvspg idlsgltlqs napsmlvkde yvhdfegqps lpteghsiqt


181
iqhppsnras tetysapall apaesnatst tnfpnipvas ttpeywcsia yfemdvqvge


241
tfkvpsscpv vtvdgyvdps ggdrfclgql snvhrteaie rarlhigkgv qleckgegdv


301
wvrclsdhav fvqsyyldre agrapgdavh kiypsayikv fdlrqchrqm qqqaataqaa


361
aaaqaaavag nipgpgsvgg iapaislsaa agigvddlrr lcilrmsfvk gwgpdyprqs


421
iketpcwiei hlhralqlld evlhtmpiad pqpld










SEQ ID NO: 161 Mouse SMAD4 transcript variant 3 cDNA sequence (NM_008540.3;


CDS: 491-2146)








1
agtgtccttc cgacaagttg gcagcaacaa cacggccctg gtcgtcgtcg ccgctgcggt


61
aacggagcgg ctcgggtggc ggagcccgtg ttcgcgtccg tccgcccgcc cgcccgccgt


121
cctccggagg cccttcccgc gccgcgctcc gctccgcggc cgtccccggg gcgggagcgc


181
gtgaccggag ccggcgcccg cgagcgaggc cccccgcagc ggggcggctc cggagctcca


241
gcggcccggc cggccggcgc ggtccgcggc gcggcgggga gagggggccg cctgggccgg


301
acgccgcggg cggggcccgg gaagcgacag cgaggcgagg cgcggtgcgg cgcggagccc


361
aggtcatcct gctcaccaga tgtcttgaca gtttttcttg caacattggc cattggtttt


421
cactgccttc aaaagatcaa aattactcca gaaattggag agttggattt aaaagaaaaa


481
acttgaacaa atggacaata tgtctataac aaatacacca acaagtaacg atgcctgtct


541
gagcattgta catagtttga tgtgtcatag acaaggtggg gaaagtgaaa cctttgcaaa


601
aagagcaatt gagagtttgg taaagaagct gaaagagaaa aaagatgaat tggattcttt


661
aataacagct ataactacaa atggagctca tcctagcaag tgtgtcacca tacagagaac


721
attggatgga cgacttcagg tggctggtcg gaaaggattt cctcatgtga tctatgcccg


781
tctgtggagg tggcctgatc tacacaagaa tgaactaaag catgttaaat attgtcagta


841
tgcgtttgac ttaaaatgtg acagtgtctg tgtgaatcca tatcactatg agagggttgt


901
ctcacctgga attgatctct caggattaac actgcagagt aatgctccaa gtatgttagt


961
gaaggatgag tacgttcacg actttgaagg acagccgtcc ttacccactg aaggacattc


1021
gattcaaacc atccaacacc cgccaagtaa tcgcgcatca acggagacgt acagcgcccc


1081
ggctctgtta gccccggcag agtctaacgc caccagcacc accaacttcc ccaacattcc


1141
tgtggcttcc acaagtcagc cggccagtat tctggcgggc agccatagtg aaggactgtt


1201
gcagatagct tcagggcctc agccaggaca gcagcagaat ggatttactg ctcagccagc


1261
tacttaccat cataacagca ctaccacctg gactggaagt aggactgcac catacacacc


1321
taatttgcct caccaccaaa acggccatct tcagcaccac ccgcctatgc cgccccatcc


1381
tggacattac tggccagttc acaatgagct tgcattccag cctcccattt ccaatcatcc


1441
tgctcctgag tactggtgct ccattgctta ctttgaaatg gacgttcagg taggagagac


1501
gtttaaggtc ccttcaagct gccctgttgt gactgtggat ggctatgtgg atccttcggg


1561
aggagatcgc ttttgcttgg gtcaactctc caatgtccac aggacagaag cgattgagag


1621
agcgaggttg cacataggca aaggagtgca gttggaatgt aaaggtgaag gtgacgtttg


1681
ggtcaggtgc cttagtgacc acgcggtctt tgtacagagt tactacctgg acagagaagc


1741
tggccgagca cctggcgacg ctgttcataa gatctaccca agcgcgtata taaaggtctt


1801
tgatctgcgg cagtgtcacc ggcagatgca gcaacaggcg gccactgcgc aagctgcagc


1861
tgctgctcag gcggcggccg tggcagggaa catccctggc cctgggtccg tgggtggaat


1921
agctccagcc atcagtctgt ctgctgctgc tggcatcggt gtggatgacc tccggcgatt


1981
gtgcattctc aggatgagct ttgtgaaggg ctggggccca gactacccca ggcagagcat


2041
caaggaaacc ccgtgctgga ttgagattca ccttcaccga gctctgcagc tcttggatga


2101
agtcctgcac accatgccca ttgcggaccc acagccttta gactgagatc tcacaccacg


2161
gacgccctaa ccatttccag gatggtggac tatgaaatat actcgtgttt ataatctgaa


2221
gatctattgc attttgttct gctctgtctt ttcctaaagg gttgagagat gtgtttgctg


2281
ccttgctctt agcagacaga aactgaatta aaacttcttt tctattttag aactttcagg


2341
tgtggctcag tgcttgaaga tcagaaagat gcagttcttg ctgagtcttc cctgctggtt


2401
ctgtatggag gagtcggcca gtgctgggcg ctcagccctt tagtgtgtgc gagcgccttg


2461
catgccgagg agagtcagag ctgctgattg taaggctgag aagttctcac agttaagcca


2521
cctgcccctt agtgggcgag ttattaaacg cactgtgctc acgtggcgct gggccagcca


2581
gctctaccaa gagcaacttt actctccttt aaaaaccttt tagcaacctt tgattcacaa


2641
tggtttttgc aagttaaaca gtgaaggtga attaaattca tactgtcttg cagacttcag


2701
ggtttcttcc ccaagacaaa acactaatct gtgtgcatat tgacaattcc ttacaattat


2761
cagtcaaaga aatgccattt aaaattacaa tttttttaat ccctaatgga tgaccactat


2821
caagatgtat actttgccct gttaaacagt aaatgaattc ttctatattt ctaggcacaa


2881
ggttagttat ttaaaaaaaa aaaaaaaagc ctaggggagg gatttttccc ttaattccta


2941
gggagaaggt tttgtataaa acactaaaag cagtgtcact ctgcctgctg cttcactgtt


3001
ctgcaaggtg gcagtacttc aactgaaata atgaatattt tggaaactgc taaattctat


3061
gttaaatact gtgcagaata atggaaacag tgcagttggt aacaggtggt ttggatattt


3121
ttgtacttga tttgatgtgt gacttctttt catatactgt taaaatcatg tatgttttga


3181
cattgtttaa aattcagttt ttgtatctta gggcaagact gcagactttt ttataccttt


3241
tggttataag ccctgtgttt gccatccttg atcacttggc ggtgactttg tagagattga


3301
agtggaggag ttaagacaca ttgactgtac cacagacaca catgtatact ttctacctag


3361
ttactagcgt aaataaaact gagtcactat acgaagtgga attctagatt tggtttttaa


3421
aatgctttcc ttttgcactt ttgagtccag tctcagtggc aagacacctt ctgctaaatg


3481
acaggtggca gccagttgta ccatgcagcg ctggttccct cccactctac caggactttc


3541
ccatggacac tgtgcatcat gtgtagttgg ttattttttg agtttttatt ttactgtagc


3601
aaaaaaaaaa aaaaaaactt ggataaatag tgtgaataaa atcaagacca tggagatgtt


3661
tttaccctga gagttttctg tgagttttaa attgcagtag gcatttgagc tctggaaacc


3721
ccgtgcatag cagttctctt tgtgccaaca gaaatgacca cgtcctgcag cctgctgcgg


3781
aaggttccag aggctctgag aaaccagagt gctgcagtga ctggggtcca tctcagccca


3841
gcgcacacag cgtgcgttgt aaaagctgcc tctgtgtctt gtcttctgta cttagggatg


3901
ctttgtctcg ggcctaatct tatctgtaga agtttggtga tttttttttt ttaaatgttg


3961
tattgacaga attataaaaa gataccttct ctagaaatgc ttgtcttcag atccgtttca


4021
cgatggccgg ggaacaggag tgagaagaga gagtaagctg tagtgtaacg ggtttttaag


4081
acccagctca tctgaccagg cagtgctgta acttgatgct tcctgttgta ccttatggaa


4141
cctttcccat atttaatcat cttcagaaag taggtgggaa atatttgctg ggaagtatct


4201
cttcagagcc aagccacttg tcttggtttt cttactaaga gccatagaaa tgatttctgg


4261
ttattgatga aatttgtaat ttgcctgtcc tagtcttttt tcctttcact tcgctatctt


4321
tgaataagac ttttaaaaac ttccctgagt tgaaaaattt tgggataaaa tagtttccct


4381
agttcttaga gactgattat gatgtgggta tggttctggg tgggtttttt ttctaagtca


4441
tagctcaaaa gtctcccaag attaaatttc agtgggcacc cagtttgaaa ccattctact


4501
tttgtcttgt gcctttcttt gcatgattaa agagaatctg taatggtatt gcctttattt


4561
gcttggaagt agattctttt ctgggataga gtctacctta atcgttgtcc tttaccgccc


4621
ctgctgtaca gatagatgct aagccactgc cgggaacttg cttttccata gacagtcttt


4681
ttatactgcc tgaacccatt gctcctgttc acagtataag ttcacagaca gggtgagccg


4741
gccgaggcgc acacctgcag aatccagcaa caaccatgct taactgtgtg tatttcaaag


4801
ttagaaatcc agttttgtgg ggaatggtgt ggtttatatt agcagctttg aaggcgaagt


4861
aactcagagg ttttacagtc tggagaaggg aagcttcctg gaatgcttgt gaagtatctg


4921
tggtggccaa atgtgtttgc tcctggcctt gcttgtaact ggctaattgt cactcttcag


4981
atttttaaaa atttttaatg agctgagacc cccttggaag gagcttgttt ggagctggcc


5041
agagatgttt ttggtagttc ctgtcttcat ccggtcttca tcactgtttt ctttaatggt


5101
cagttagtaa agtataagtt aggtcactgt catgagtgga gcaggaacaa ctctcccagg


5161
tgggggcctg gaagggactc gttacatgga gccatctgta actagccctt taaatcctcc


5221
tttgcatgac atagagaaaa ggctgtgaga ctcctgccca ggcctttcta gttttccctt


5281
ctagtaacca agcaatcgca tctctgcggt gcagtaggct gtatgtaaaa agccgtggcc


5341
ttactcctag cagcaccctt ggcagggcct ttttctcagc gcagtgaggc tgtgcatctg


5401
gcactcctga ggaatgaaag ttttcatcat cttgccttat taagcagtaa aacttttgaa


5461
aaatgagccg tttattggca ggagctattt acacaaatca gaatattata ccatttcttt


5521
ttctctctct cctgtctctg tggacctccg gggcttctga gatagacagt actgcctagc


5581
cattcgaaat gcccaagcca gctggggttg ttgggctctc ctctcccttc ctccttcctc


5641
acagctcctg ctcttgcgtg gttagtgagc ctctactcag tgtttcctgt cctcgctgct


5701
caggcgaggg aagacgacaa ctgatagtct tagagttcac ctttctgtcg ggggcggcat


5761
tgttctgatt gctgccatcg tctccgatcc ttgatgagtt ttatacgatt gatgtggaga


5821
gaatttaatt gatattcata gcccatagct gctcccctct ccctggtgtt gtggaagatt


5881
tagtttccac cgaattcact caaaaagctg tcctgttggc accagcaaac cacacgctct


5941
tttagaaaac atctttgctt gttttgtgtc ctgaccctgc tctctggcct ccttcctctg


6001
tagatacttc tgacctatag gtgcctttat gagaattgag ggtctgatac cgtgccccaa


6061
ggaatagctg atgcaatgag tgatgttttt cagggatttt agcatcaaat taaataaatg


6121
aatgaaactt ttaagtcctt cttttctttt atttttttaa tgcaggaagg actgaggaga


6181
cgtcgggtga cgacaatcat ttctctgtgt tgctgtaaag gctttcacac agtttaagat


6241
gcttttctca gtagctccag agttgatgtt cttgttcaac ctaaagcagg ctctggactc


6301
gcccagaccg ttgcacttgt agtttacgac ttcatgtgtc ctccctcggc aagtcattcc


6361
cttctctggg cctcagctgc ctcgtctgtg aaatgagggg ttggactatt gtgccagctc


6421
tggcttctaa gtgaccttgc ccgccctgca gcaggttgag atgcgctctt tacctttttt


6481
ctgctgtgtg agggggaatc ttactttttc ctttgttact cagtgagact aggcttgatc


6541
tttgagtacc cgctctcctg tggacaagta gttacatatg tccttatgac ttatttttaa


6601
ccaaaggccg agcaccacct taggggctgc cgtaagtacc atacagaaca ctggggtggg


6661
gggcgggggg caccttcatt tcactgtgtc atcgtctgtg ttcagagcct ctgcaaaggc


6721
cttcatctgt catgacattc tgactttgaa gttagtatgt gtatgattct gtcctcctaa


6781
gtgctggcaa ttcttcatct aaactggact gaaatcctgt tgtaaatgcc tggtaatatt


6841
agagggcctt tctttgggtc ttttgtagct taattcctct atgttcaaaa caggaagttc


6901
ttcagaaatt atatcaatat tttaattgat gctatgaaag acagtcccag tgaatgactg


6961
tccactttat ttttgcctct tttatatcca ttttgattga caacttttgg ctggatcatg


7021
cctttcagag agttttcttc cagcctgctt ggatgagtat aataaccgac tttgttattt


7081
ttacggacct gggaaccttt ctagggggtg gggtggggtg gggtggggtg gggagtcctg


7141
gtagaggcca catctgtggc agctgtgaag aagggatgaa gccagctgct cttgctaagg


7201
ctgcttgtca ttggtagaag gactcaccgg tttgggttac ttaaaaggct aaatatagag


7261
ttggcaaact tctccaagcg gggagggttt tttttttgtt ccatgcatct aacgtgattt


7321
aaaagcatga cttcctatag gttatgaaaa ctggtgtgct gcagatccag tgtggaagag


7381
gtgactgggc gttggggaca gctttgatgg tgacacttct agctctgaga gtctcctact


7441
ctgggtccac tcttagcttg gctcttagga aaaactggtc agctaaaggc ccaccacttt


7501
ctttctatag acttttgcct ggttgaagtc tgtggcttaa aaaaaatagt tgaatctttc


7561
ttgagaactc tgtaacaaag tatgtttttg attaaaaaga gaaagccaac taaa










SEQ ID NO: 162 Mouse SMAD4 isoform 3 amino acid sequence (NP_032566.2)








1
mdnmsitntp tsndaclsiv hslmchrqgg esetfakrai eslvkklkek kdeldslita


61
ittngahpsk cvtiqrtldg rlqvagrkgf phviyarlwr wpdlhknelk hvkycqyafd


121
lkcdsvcvnp yhyervvspg idlsgltlqs napsmlvkde yvhdfegqps lpteghsiqt


181
iqhppsnras tetysapall apaesnatst tnfpnipvas tsqpasilag shsegllqia


241
sgpqpgqqqn gftaqpatyh hnstttwtgs rtapytpnlp hhqnghlqhh ppmpphpghy


301
wpvhnelafq ppisnhpape ywcsiayfem dvqvgetfkv psscpvvtvd gyvdpsggdr


361
fclgqlsnvh rteaierarl higkgvqlec kgegdvwvrc lsdhavfvqs yyldreagra


421
pgdavhkiyp sayikvfdlr qchrqmqqqa ataqaaaaaq aaavagnipg pgsvggiapa


481
islsaaagig vddlrrlcil rmsfvkgwgp dyprqsiket pcwieihlhr alqlldevlh


541
tmpiadpqpl d










SEQ ID NO: 163 Human SMAD5 transcript variant 1 cDNA sequence (NM_005903.7;


CDS: 363-1760)








1
atccgggtcc tgggcgagcg ggcgccgtgc gcgtgtcccg cggccgagct gctaataaag


61
ttgcagcgag gagaagcgca gcgacggcgt cgggagagcg cgcctagccg gctcgcgaaa


121
aggaagctgt tgaagttatt gaagtacctg ttgctatatt ctaagaaatt aaaatgtcca


181
gaaatctgcc tctgacttga cccaatgaaa gaagcatatg gcacttgtga agataaatgt


241
tactcctccc tttttaattg gaacttctgc ttaggacctg tgtatgacgt ttcacctgtg


301
atctgttctt tcggtagcca ctgactttga gttacaggaa ggtctccgaa gatttgtgtc


361
aaatgacgtc aatggccagc ttgttttctt ttactagtcc agcagtaaag cgattgttgg


421
gctggaaaca aggtgatgag gaggagaaat gggcagaaaa ggcagttgat gctttggtga


481
agaaactaaa aaagaaaaag ggtgccatgg aggaactgga gaaagccttg agcagtccag


541
gacagccgag taaatgtgtc actattccca gatctttaga tggacgcctg caggtttctc


601
acagaaaagg cttaccccat gttatatatt gtcgtgtttg gcgctggccg gatttgcaga


661
gtcatcatga gctaaagccg ttggatattt gtgaatttcc ttttggatct aagcaaaaag


721
aagtttgtat caacccatac cactataaga gagtggagag tccagtctta cctccagtat


781
tagtgcctcg tcataatgaa ttcaatccac aacacagcct tctggttcag tttaggaacc


841
tgagccacaa tgaaccacac atgccacaaa atgccacgtt tccagattct ttccaccagc


901
ccaacaacac tccttttccc ttatctccaa acagccctta tcccccttct cctgctagca


961
gcacatatcc caactcccca gcaagttctg gaccaggaag tccatttcag ctcccagctg


1021
atacgcctcc tcctgcctat atgccacctg atgatcagat gggtcaagat aattcccagc


1081
ctatggatac aagcaataat atgattcctc agattatgcc cagtatatcc agcagggatg


1141
ttcagcctgt tgcctatgaa gagcctaaac attggtgttc aatagtctac tatgaattaa


1201
acaatcgtgt tggagaagct tttcatgcat cttctactag tgtgttagta gatggattca


1261
cagatccttc aaataacaaa agtagattct gcttgggttt gttgtcaaat gttaatcgta


1321
attcgacaat tgaaaacact aggcgacata ttggaaaagg tgttcatctg tactatgttg


1381
gtggagaggt gtatgcggaa tgcctcagtg acagcagcat atttgtacag agtaggaact


1441
gcaactttca tcatggcttt catcccacca ctgtctgtaa gattcccagc agctgcagcc


1501
tcaaaatttt taacaatcag gagtttgctc agcttctggc tcaatctgtc aaccatgggt


1561
ttgaggcagt atatgagctc accaaaatgt gtaccattcg gatgagtttt gtcaagggtt


1621
ggggagcaga atatcaccgg caggatgtaa ccagcacccc atgttggatt gagattcatc


1681
ttcatgggcc tcttcagtgg ctggataaag tccttactca gatgggctcc cctctgaacc


1741
ccatatcttc tgtttcataa tgcagaagta ttcttttcaa ttatattgtt agtggacttg


1801
ttttaatttt agagaaactt tgagtacaga tactgtgagc ttacattgaa aacagatatt


1861
acagcttatt tttttctaca taattgtgac caatacattt gtattttgtg atgaatctac


1921
atttgtttgt attcatgttc atgtgattaa ctcttagaag tgttgtaaaa gatgcagagt


1981
aagtattatg ccccagttca gaaatttggc attgatctta aactggaaca tgcttttact


2041
ttattgccct aacaattttt tattaaattt atttgaaaat gcatcacatg atgaaaaatt


2101
atagtagctt ataagagggc atatacagtg aagagtaagt tttccctcct actctcgatc


2161
ttccagaagc tgtactttta ccagtttctt tgtcccacca acttaaaaaa aaaaagtaca


2221
attcattgtt ttgcaaaagt gtatggtagg ggcttaaaag aaactataaa gttttatttg


2281
aatgaacact atgcactgct gtaactggta gtgttcagta aaagcaaaat gatagttttc


2341
tagatgacat aaaatttaca tttaatacag ataagtgttc ttcagtgtaa tgtgacttca


2401
tgctatatat cttttgtaag acatttcctt ttttaaaaaa atttttgcaa ataactgatc


2461
tcaagtatat gtcatttact caaaatctgt cataagcatt actttatagc tagtgacagt


2521
gcatgcacag ccttgttcaa ctatgtttgc tgcttttgga caatgttgca agaactctat


2581
ttttgacatg cattaatctt ttattttgca cttttatggg tgacagtttt tagcataacc


2641
tttgataaaa tacactcaag tgacttggac ttagatgctt atccttacgt ccttggtacc


2701
ttttttgtat taacaaacac tgcaatttat agattacatt tgtaggaagt tatgcttttt


2761
tctggttttt gttttacttt caacctaggt tataagactg ttattctata gctccaactt


2821
aaggtgcctt tttaattccc tacagtttta tgggtgttat cagtgctgga gaatcatgta


2881
gttaatccca ttgctcttac aagtgtcagc ttacttgtat cagcctccct acgcaaggac


2941
ctatgcactg gagccgtagg aggctcttca gttgggcccc aaggataagg ctactgattt


3001
gatactaaat gaatcagcag tggatgtagg gatagctgat tttaaaacac tcggctgggc


3061
acagtggctc acacctgtaa tcccagcact ttgggaggct gaggcaggca gatcatgatg


3121
tcaggagttt gagaccagcc tggccaatat ggtgaaaccc tgtctctaca aaaaatacaa


3181
aaattagctg ggcatggtgg tgcgtgcctg aagtcccagc tactcgggaa gctgaggcag


3241
aagaatcact tgaacctggg aggcggaggt tgtggtgagc cgagatcgca ccactgcact


3301
ccagcctggg cgacagagcg agactctgcc tcaaaaaaca aaacaaaaca aaacactcac


3361
ccatcaacga atatagactc ttctctcatt tatcgatgat cctctttttc cattttttaa


3421
gtacttatgt ggaagctagt ctcccaaaac acaatcttta gagagaaaag acatgaacga


3481
actccaaaat atccatttaa tcaatcatgt ttttggcttt ggataaagaa ctttgaacca


3541
gtttttttct caggagctgt caaatggaca cttaattatg acatgagaat gaagaaatta


3601
ttttggaaaa aaaaaatgac ctaatttacc tatcagtgaa agctttattt tctggtgcct


3661
tttgaaagta tatggagtca tatcattctt ctgtttaaaa tgttagtttg gtttgacttt


3721
ccactttgtc ctttctgctc ttgtgaagaa aaaaaaaagc attttcgagg aaagaattat


3781
gcaatttctt ttgttttctg tgtcattatt tattgctttt tcaatgtgca gccagtggat


3841
ggttttagtt ctttcagatg aactgccatt tgtgtttcag ctcacagttc tttgctgggt


3901
aaaagaaata ctttctgaca gtcacctgag ccttaaatgt aagtattaca tgacatgcat


3961
tctgtttctt ccagagttct gtctgccaca cgaaagagaa tatttgctta cttgatagaa


4021
ctttggcatt ttcatcattc ttttacttaa ccaggcttat ggcatgatct ctggaacaaa


4081
tttgtaggaa aaaattactc caattgaatg actgatgtat gtaatcaact tcattgggct


4141
gcagtaaact agtggaaatt agagagttgt tttattggtg ttttctactg tgagttaatt


4201
aaaaattgtt tttatttggg gtcattatgt cacagtcttg agttaacaag atcttacgtg


4261
attggccttt tctttgtttt ctcttaggag ttgtgtctca tgaatgacag tactaaagct


4321
attaacaact aagagtttga cagagaacta taagcctgtt gtatctccta aaagttgtca


4381
actccccacc cttggacttt aaatgaaaat tttattcagt ccagctattc ttacagtccc


4441
taaggatttt catatatcta tgtataggag ataaaatttg ctagtaagat ttttaaaaac


4501
tggctagtga aaggaaagta cctctgaaag aaaccatttt agcaaattat ggttatatgt


4561
tttaatttaa tctacagaat gttttatagt aaaattctag caccactaga ataatcacat


4621
agcatgtaca atatatttat gctggctgaa aagacagaat ctgggaataa taaaattgca


4681
accagtttgg taatgcaaac agcagaatag aatgaaatct cagtaatgaa ttaaagcaac


4741
aaaaagatat tgattggcaa aaagcaagat ataagagatt catttgctta acatttctac


4801
ataatattta tggtctggtc agtattggtc tggtcagtat tgcctggctg acgtgaaatg


4861
taaactagta ggcgtgttat tgatctgcta aaactaaccc tctttttaag aggagattta


4921
aggaagacgt caatcaaaat gtcaaatatg tgtgtcagaa tataaataat ttttcacatt


4981
gtattgttgc tatataaaaa aaataataga attggttggg tttctgaggt gaaatccaga


5041
gtaagagtac tagacagttc aacaagccac atctaatggc acagatagag gatgtagcta


5101
ttttatacct ttcataacat ttgagagtaa gatatccttc aggatgtgaa gtgattatta


5161
agtactcata cctgaaatct gttgtcaaga ttagaactgg ggttcatgtt aaaaaccttc


5221
catattacct gagggtacct gtggggaaca gttccttccc ctgtgtggta gtattttgtt


5281
ggaagagaat gtttatacaa aaaatgaaat tcttccaaca gcagagaaac tctaaaaagt


5341
ttgatagtac ctatcaaagt gctgtacttc tgtgatagag aacatctgat gtaccaattt


5401
agatctattt ctttatactt tttctaatca attgcttaat agtactttgg atgattatca


5461
cctttgccac ttaaaatata taaatatcct ttttacttca tgaggaagga agaatttttt


5521
gataattact gagttcagcc ttttgtgatg acttatattt tggacttaca ttttaacttt


5581
aaagaatgtc agatcccttc tttgtcttac tagttaaatc ctcacctaat ctcttgggta


5641
tgaatataaa tgtgtgtcat cgttatattg ttcagctaga tgagcaagta tcttagggta


5701
gtaggtagcc tggtggtttt agaagtgttt ggtgattttt atggagagag ttttcctaag


5761
tggtggttta taggtggtat cagatattat tagggcagct ttttggggag taatctcagg


5821
tctcccagag cagcagcatt tttctcattg atataagtaa gattcttagg agcttttctt


5881
atcacacaag atgcctgaat cgaatgtgag aattgaaggc atttcttctg cataaacaaa


5941
gaattctacc tgctggacag aaacctggaa agttctttgg aattcgctga attacagttt


6001
agtatgtcct gattacagag tgacaatatt tatcaagcct ttgttatatt ggattatctt


6061
ctctcttaaa atacaactgt attataattg aaatgacagc ccaaaattgg atggtttacc


6121
aaaaccaatg aaagggattt cacacatcaa tttttatttc tgttttgaag agcacatgct


6181
atataataat tgctagtagc aactgcagta aaacaggtga taagttattt tctctgaaaa


6241
gatccagtcc tagagcagga ttcttcgatc attcatggca gagtgaaaaa ggtttgtatg


6301
gttcttgtcc aaataactca gttcttaaaa ttcttaaaat gatcgtaaac cattatcctt


6361
taaaggttta tttgaagatg ctgttaaagt acagaatttt gtgtacaggt agatttttcc


6421
gtccctcatt aatagtgcct tcttaattaa tacagactgg tgttagctat aacaaaactc


6481
cagtaaggcc aaagaatccc aagttctttg tggaaaaaaa aaaaaaatct tttagggtca


6541
gattttccct tctaatatca ttgaagatga tgttgcattg atttattcat aaagtatttt


6601
aactatagga actctagaag ataatggtta ggcaagtgat ttttttttta aatatggttg


6661
gcgtaagttg tattttgaaa ttcacttatt ttaaaatcga agaggattgt aatcatggaa


6721
atagaatgtt tgtatctacc tgcccacatt ttcttaaaaa gatatttcat atacagataa


6781
tgaagaccaa gctagtggct gcactgtagg tctgctgctt atttgtattt gttgtgcttc


6841
tgtttatgtt gtagaagctg aaattctagc aacatgcttc aattctgtta ttttgatact


6901
tatgaaaatg tattaggttt tactatattg tgcttttgaa agccataact cttaagaact


6961
ttgtttttgc atattgtttg ctaattcttt actttaataa acctcaaaac ctg










SEQ ID NO: 164 Human SMAD5 transcript variant 2 cDNA sequence


(NM_001001419.3; CDS: 447-1844)








1
atccgggtcc tgggcgagcg ggcgccgtgc gcgtgtcccg cggccgagct gctaataaag


61
ttgcagcgag gagaagcgca gcgacggcgt cgggagagcg cgcctagccg gctcgcgaaa


121
aggaagctgt tgaagttatt gaagtacctg ttgctatatt ctaagaaatt aaaatgtcca


181
gaaatctgcc tctaaatggg atctcactat gttgctcaga ctggacgtga ttgaactcct


241
gggctcaagt gagtctcccg aataactggg attacaggac ttgacccaat gaaagaagca


301
tatggcactt gtgaagataa atgttactcc tcccttttta attggaactt ctgcttagga


361
cctgtgtatg acgtttcacc tgtgatctgt tctttcggta gccactgact ttgagttaca


421
ggaaggtctc cgaagatttg tgtcaaatga cgtcaatggc cagcttgttt tcttttacta


481
gtccagcagt aaagcgattg ttgggctgga aacaaggtga tgaggaggag aaatgggcag


541
aaaaggcagt tgatgctttg gtgaagaaac taaaaaagaa aaagggtgcc atggaggaac


601
tggagaaagc cttgagcagt ccaggacagc cgagtaaatg tgtcactatt cccagatctt


661
tagatggacg cctgcaggtt tctcacagaa aaggcttacc ccatgttata tattgtcgtg


721
tttggcgctg gccggatttg cagagtcatc atgagctaaa gccgttggat atttgtgaat


781
ttccttttgg atctaagcaa aaagaagttt gtatcaaccc ataccactat aagagagtgg


841
agagtccagt cttacctcca gtattagtgc ctcgtcataa tgaattcaat ccacaacaca


901
gccttctggt tcagtttagg aacctgagcc acaatgaacc acacatgcca caaaatgcca


961
cgtttccaga ttctttccac cagcccaaca acactccttt tcccttatct ccaaacagcc


1021
cttatccccc ttctcctgct agcagcacat atcccaactc cccagcaagt tctggaccag


1081
gaagtccatt tcagctccca gctgatacgc ctcctcctgc ctatatgcca cctgatgatc


1141
agatgggtca agataattcc cagcctatgg atacaagcaa taatatgatt cctcagatta


1201
tgcccagtat atccagcagg gatgttcagc ctgttgccta tgaagagcct aaacattggt


1261
gttcaatagt ctactatgaa ttaaacaatc gtgttggaga agcttttcat gcatcttcta


1321
ctagtgtgtt agtagatgga ttcacagatc cttcaaataa caaaagtaga ttctgcttgg


1381
gtttgttgtc aaatgttaat cgtaattcga caattgaaaa cactaggcga catattggaa


1441
aaggtgttca tctgtactat gttggtggag aggtgtatgc ggaatgcctc agtgacagca


1501
gcatatttgt acagagtagg aactgcaact ttcatcatgg ctttcatccc accactgtct


1561
gtaagattcc cagcagctgc agcctcaaaa tttttaacaa tcaggagttt gctcagcttc


1621
tggctcaatc tgtcaaccat gggtttgagg cagtatatga gctcaccaaa atgtgtacca


1681
ttcggatgag ttttgtcaag ggttggggag cagaatatca ccggcaggat gtaaccagca


1741
ccccatgttg gattgagatt catcttcatg ggcctcttca gtggctggat aaagtcctta


1801
ctcagatggg ctcccctctg aaccccatat cttctgtttc ataatgcaga agtattcttt


1861
tcaattatat tgttagtgga cttgttttaa ttttagagaa actttgagta cagatactgt


1921
gagcttacat tgaaaacaga tattacagct tatttttttc tacataattg tgaccaatac


1981
atttgtattt tgtgatgaat ctacatttgt ttgtattcat gttcatgtga ttaactctta


2041
gaagtgttgt aaaagatgca gagtaagtat tatgccccag ttcagaaatt tggcattgat


2101
cttaaactgg aacatgcttt tactttattg ccctaacaat tttttattaa atttatttga


2161
aaatgcatca catgatgaaa aattatagta gcttataaga gggcatatac agtgaagagt


2221
aagttttccc tcctactctc gatcttccag aagctgtact tttaccagtt tctttgtccc


2281
accaacttaa aaaaaaaaag tacaattcat tgttttgcaa aagtgtatgg taggggctta


2341
aaagaaacta taaagtttta tttgaatgaa cactatgcac tgctgtaact ggtagtgttc


2401
agtaaaagca aaatgatagt tttctagatg acataaaatt tacatttaat acagataagt


2461
gttcttcagt gtaatgtgac ttcatgctat atatcttttg taagacattt ccttttttaa


2521
aaaaattttt gcaaataact gatctcaagt atatgtcatt tactcaaaat ctgtcataag


2581
cattacttta tagctagtga cagtgcatgc acagccttgt tcaactatgt ttgctgcttt


2641
tggacaatgt tgcaagaact ctatttttga catgcattaa tcttttattt tgcactttta


2701
tgggtgacag tttttagcat aacctttgat aaaatacact caagtgactt ggacttagat


2761
gcttatcctt acgtccttgg tacctttttt gtattaacaa acactgcaat ttatagatta


2821
catttgtagg aagttatgct tttttctggt ttttgtttta ctttcaacct aggttataag


2881
actgttattc tatagctcca acttaaggtg cctttttaat tccctacagt tttatgggtg


2941
ttatcagtgc tggagaatca tgtagttaat cccattgctc ttacaagtgt cagcttactt


3001
gtatcagcct ccctacgcaa ggacctatgc actggagccg taggaggctc ttcagttggg


3061
ccccaaggat aaggctactg atttgatact aaatgaatca gcagtggatg tagggatagc


3121
tgattttaaa acactcggct gggcacagtg gctcacacct gtaatcccag cactttggga


3181
ggctgaggca ggcagatcat gatgtcagga gtttgagacc agcctggcca atatggtgaa


3241
accctgtctc tacaaaaaat acaaaaatta gctgggcatg gtggtgcgtg cctgaagtcc


3301
cagctactcg ggaagctgag gcagaagaat cacttgaacc tgggaggcgg aggttgtggt


3361
gagccgagat cgcaccactg cactccagcc tgggcgacag agcgagactc tgcctcaaaa


3421
aacaaaacaa aacaaaacac tcacccatca acgaatatag actcttctct catttatcga


3481
tgatcctctt tttccatttt ttaagtactt atgtggaagc tagtctccca aaacacaatc


3541
tttagagaga aaagacatga acgaactcca aaatatccat ttaatcaatc atgtttttgg


3601
ctttggataa agaactttga accagttttt ttctcaggag ctgtcaaatg gacacttaat


3661
tatgacatga gaatgaagaa attattttgg aaaaaaaaaa tgacctaatt tacctatcag


3721
tgaaagcttt attttctggt gccttttgaa agtatatgga gtcatatcat tcttctgttt


3781
aaaatgttag tttggtttga ctttccactt tgtcctttct gctcttgtga agaaaaaaaa


3841
aagcattttc gaggaaagaa ttatgcaatt tcttttgttt tctgtgtcat tatttattgc


3901
tttttcaatg tgcagccagt ggatggtttt agttctttca gatgaactgc catttgtgtt


3961
tcagctcaca gttctttgct gggtaaaaga aatactttct gacagtcacc tgagccttaa


4021
atgtaagtat tacatgacat gcattctgtt tcttccagag ttctgtctgc cacacgaaag


4081
agaatatttg cttacttgat agaactttgg cattttcatc attcttttac ttaaccaggc


4141
ttatggcatg atctctggaa caaatttgta ggaaaaaatt actccaattg aatgactgat


4201
gtatgtaatc aacttcattg ggctgcagta aactagtgga aattagagag ttgttttatt


4261
ggtgttttct actgtgagtt aattaaaaat tgtttttatt tggggtcatt atgtcacagt


4321
cttgagttaa caagatctta cgtgattggc cttttctttg ttttctctta ggagttgtgt


4381
ctcatgaatg acagtactaa agctattaac aactaagagt ttgacagaga actataagcc


4441
tgttgtatct cctaaaagtt gtcaactccc cacccttgga ctttaaatga aaattttatt


4501
cagtccagct attcttacag tccctaagga ttttcatata tctatgtata ggagataaaa


4561
tttgctagta agatttttaa aaactggcta gtgaaaggaa agtacctctg aaagaaacca


4621
ttttagcaaa ttatggttat atgttttaat ttaatctaca gaatgtttta tagtaaaatt


4681
ctagcaccac tagaataatc acatagcatg tacaatatat ttatgctggc tgaaaagaca


4741
gaatctggga ataataaaat tgcaaccagt ttggtaatgc aaacagcaga atagaatgaa


4801
atctcagtaa tgaattaaag caacaaaaag atattgattg gcaaaaagca agatataaga


4861
gattcatttg cttaacattt ctacataata tttatggtct ggtcagtatt ggtctggtca


4921
gtattgcctg gctgacgtga aatgtaaact agtaggcgtg ttattgatct gctaaaacta


4981
accctctttt taagaggaga tttaaggaag acgtcaatca aaatgtcaaa tatgtgtgtc


5041
agaatataaa taatttttca cattgtattg ttgctatata aaaaaaataa tagaattggt


5101
tgggtttctg aggtgaaatc cagagtaaga gtactagaca gttcaacaag ccacatctaa


5161
tggcacagat agaggatgta gctattttat acctttcata acatttgaga gtaagatatc


5221
cttcaggatg tgaagtgatt attaagtact catacctgaa atctgttgtc aagattagaa


5281
ctggggttca tgttaaaaac cttccatatt acctgagggt acctgtgggg aacagttcct


5341
tcccctgtgt ggtagtattt tgttggaaga gaatgtttat acaaaaaatg aaattcttcc


5401
aacagcagag aaactctaaa aagtttgata gtacctatca aagtgctgta cttctgtgat


5461
agagaacatc tgatgtacca atttagatct atttctttat actttttcta atcaattgct


5521
taatagtact ttggatgatt atcacctttg ccacttaaaa tatataaata tcctttttac


5581
ttcatgagga aggaagaatt ttttgataat tactgagttc agccttttgt gatgacttat


5641
attttggact tacattttaa ctttaaagaa tgtcagatcc cttctttgtc ttactagtta


5701
aatcctcacc taatctcttg ggtatgaata taaatgtgtg tcatcgttat attgttcagc


5761
tagatgagca agtatcttag ggtagtaggt agcctggtgg ttttagaagt gtttggtgat


5821
ttttatggag agagttttcc taagtggtgg tttataggtg gtatcagata ttattagggc


5881
agctttttgg ggagtaatct caggtctccc agagcagcag catttttctc attgatataa


5941
gtaagattct taggagcttt tcttatcaca caagatgcct gaatcgaatg tgagaattga


6001
aggcatttct tctgcataaa caaagaattc tacctgctgg acagaaacct ggaaagttct


6061
ttggaattcg ctgaattaca gtttagtatg tcctgattac agagtgacaa tatttatcaa


6121
gcctttgtta tattggatta tcttctctct taaaatacaa ctgtattata attgaaatga


6181
cagcccaaaa ttggatggtt taccaaaacc aatgaaaggg atttcacaca tcaattttta


6241
tttctgtttt gaagagcaca tgctatataa taattgctag tagcaactgc agtaaaacag


6301
gtgataagtt attttctctg aaaagatcca gtcctagagc aggattcttc gatcattcat


6361
ggcagagtga aaaaggtttg tatggttctt gtccaaataa ctcagttctt aaaattctta


6421
aaatgatcgt aaaccattat cctttaaagg tttatttgaa gatgctgtta aagtacagaa


6481
ttttgtgtac aggtagattt ttccgtccct cattaatagt gccttcttaa ttaatacaga


6541
ctggtgttag ctataacaaa actccagtaa ggccaaagaa tcccaagttc tttgtggaaa


6601
aaaaaaaaaa atcttttagg gtcagatttt cccttctaat atcattgaag atgatgttgc


6661
attgatttat tcataaagta ttttaactat aggaactcta gaagataatg gttaggcaag


6721
tgattttttt tttaaatatg gttggcgtaa gttgtatttt gaaattcact tattttaaaa


6781
tcgaagagga ttgtaatcat ggaaatagaa tgtttgtatc tacctgccca cattttctta


6841
aaaagatatt tcatatacag ataatgaaga ccaagctagt ggctgcactg taggtctgct


6901
gcttatttgt atttgttgtg cttctgttta tgttgtagaa gctgaaattc tagcaacatg


6961
cttcaattct gttattttga tacttatgaa aatgtattag gttttactat attgtgcttt


7021
tgaaagccat aactcttaag aactttgttt ttgcatattg tttgctaatt ctttacttta


7081
ataaacctca aaacctg










SEQ ID NO: 165 Human SMAD5 transcript variant 3 cDNA sequence


(NM_001001420.2; CDS: 288-1685)








1
atccgggtcc tgggcgagcg ggcgccgtgc gcgtgtcccg cggccgagct gctaataaag


61
ttgcagcgag gagaagcgca gcgacggcgt cgggagagcg cgcctagccg gctcgcgaga


121
cttgacccaa tgaaagaagc atatggcact tgtgaagata aatgttactc ctcccttttt


181
aattggaact tctgcttagg acctgtgtat gacgtttcac ctgtgatctg ttctttcggt


241
agccactgac tttgagttac aggaaggtct ccgaagattt gtgtcaaatg acgtcaatgg


301
ccagcttgtt ttcttttact agtccagcag taaagcgatt gttgggctgg aaacaaggtg


361
atgaggagga gaaatgggca gaaaaggcag ttgatgcttt ggtgaagaaa ctaaaaaaga


421
aaaagggtgc catggaggaa ctggagaaag ccttgagcag tccaggacag ccgagtaaat


481
gtgtcactat tcccagatct ttagatggac gcctgcaggt ttctcacaga aaaggcttac


541
cccatgttat atattgtcgt gtttggcgct ggccggattt gcagagtcat catgagctaa


601
agccgttgga tatttgtgaa tttccttttg gatctaagca aaaagaagtt tgtatcaacc


661
cataccacta taagagagtg gagagtccag tcttacctcc agtattagtg cctcgtcata


721
atgaattcaa tccacaacac agccttctgg ttcagtttag gaacctgagc cacaatgaac


781
cacacatgcc acaaaatgcc acgtttccag attctttcca ccagcccaac aacactcctt


841
ttcccttatc tccaaacagc ccttatcccc cttctcctgc tagcagcaca tatcccaact


901
ccccagcaag ttctggacca ggaagtccat ttcagctccc agctgatacg cctcctcctg


961
cctatatgcc acctgatgat cagatgggtc aagataattc ccagcctatg gatacaagca


1021
ataatatgat tcctcagatt atgcccagta tatccagcag ggatgttcag cctgttgcct


1081
atgaagagcc taaacattgg tgttcaatag tctactatga attaaacaat cgtgttggag


1141
aagcttttca tgcatcttct actagtgtgt tagtagatgg attcacagat ccttcaaata


1201
acaaaagtag attctgcttg ggtttgttgt caaatgttaa tcgtaattcg acaattgaaa


1261
acactaggcg acatattgga aaaggtgttc atctgtacta tgttggtgga gaggtgtatg


1321
cggaatgcct cagtgacagc agcatatttg tacagagtag gaactgcaac tttcatcatg


1381
gctttcatcc caccactgtc tgtaagattc ccagcagctg cagcctcaaa atttttaaca


1441
atcaggagtt tgctcagctt ctggctcaat ctgtcaacca tgggtttgag gcagtatatg


1501
agctcaccaa aatgtgtacc attcggatga gttttgtcaa gggttgggga gcagaatatc


1561
accggcagga tgtaaccagc accccatgtt ggattgagat tcatcttcat gggcctcttc


1621
agtggctgga taaagtcctt actcagatgg gctcccctct gaaccccata tcttctgttt


1681
cataatgcag aagtattctt ttcaattata ttgttagtgg acttgtttta attttagaga


1741
aactttgagt acagatactg tgagcttaca ttgaaaacag atattacagc ttattttttt


1801
ctacataatt gtgaccaata catttgtatt ttgtgatgaa tctacatttg tttgtattca


1861
tgttcatgtg attaactctt agaagtgttg taaaagatgc agagtaagta ttatgcccca


1921
gttcagaaat ttggcattga tcttaaactg gaacatgctt ttactttatt gccctaacaa


1981
ttttttatta aatttatttg aaaatgcatc acatgatgaa aaattatagt agcttataag


2041
agggcatata cagtgaagag taagttttcc ctcctactct cgatcttcca gaagctgtac


2101
ttttaccagt ttctttgtcc caccaactta aaaaaaaaaa gtacaattca ttgttttgca


2161
aaagtgtatg gtaggggctt aaaagaaact ataaagtttt atttgaatga acactatgca


2221
ctgctgtaac tggtagtgtt cagtaaaagc aaaatgatag ttttctagat gacataaaat


2281
ttacatttaa tacagataag tgttcttcag tgtaatgtga cttcatgcta tatatctttt


2341
gtaagacatt tcctttttta aaaaaatttt tgcaaataac tgatctcaag tatatgtcat


2401
ttactcaaaa tctgtcataa gcattacttt atagctagtg acagtgcatg cacagccttg


2461
ttcaactatg tttgctgctt ttggacaatg ttgcaagaac tctatttttg acatgcatta


2521
atcttttatt ttgcactttt atgggtgaca gtttttagca taacctttga taaaatacac


2581
tcaagtgact tggacttaga tgcttatcct tacgtccttg gtaccttttt tgtattaaca


2641
aacactgcaa tttatagatt acatttgtag gaagttatgc ttttttctgg tttttgtttt


2701
actttcaacc taggttataa gactgttatt ctatagctcc aacttaaggt gcctttttaa


2761
ttccctacag ttttatgggt gttatcagtg ctggagaatc atgtagttaa tcccattgct


2821
cttacaagtg tcagcttact tgtatcagcc tccctacgca aggacctatg cactggagcc


2881
gtaggaggct cttcagttgg gccccaagga taaggctact gatttgatac taaatgaatc


2941
agcagtggat gtagggatag ctgattttaa aacactcggc tgggcacagt ggctcacacc


3001
tgtaatccca gcactttggg aggctgaggc aggcagatca tgatgtcagg agtttgagac


3061
cagcctggcc aatatggtga aaccctgtct ctacaaaaaa tacaaaaatt agctgggcat


3121
ggtggtgcgt gcctgaagtc ccagctactc gggaagctga ggcagaagaa tcacttgaac


3181
ctgggaggcg gaggttgtgg tgagccgaga tcgcaccact gcactccagc ctgggcgaca


3241
gagcgagact ctgcctcaaa aaacaaaaca aaacaaaaca ctcacccatc aacgaatata


3301
gactcttctc tcatttatcg atgatcctct ttttccattt tttaagtact tatgtggaag


3361
ctagtctccc aaaacacaat ctttagagag aaaagacatg aacgaactcc aaaatatcca


3421
tttaatcaat catgtttttg gctttggata aagaactttg aaccagtttt tttctcagga


3481
gctgtcaaat ggacacttaa ttatgacatg agaatgaaga aattattttg gaaaaaaaaa


3541
atgacctaat ttacctatca gtgaaagctt tattttctgg tgccttttga aagtatatgg


3601
agtcatatca ttcttctgtt taaaatgtta gtttggtttg actttccact ttgtcctttc


3661
tgctcttgtg aagaaaaaaa aaagcatttt cgaggaaaga attatgcaat ttcttttgtt


3721
ttctgtgtca ttatttattg ctttttcaat gtgcagccag tggatggttt tagttctttc


3781
agatgaactg ccatttgtgt ttcagctcac agttctttgc tgggtaaaag aaatactttc


3841
tgacagtcac ctgagcctta aatgtaagta ttacatgaca tgcattctgt ttcttccaga


3901
gttctgtctg ccacacgaaa gagaatattt gcttacttga tagaactttg gcattttcat


3961
cattctttta cttaaccagg cttatggcat gatctctgga acaaatttgt aggaaaaaat


4021
tactccaatt gaatgactga tgtatgtaat caacttcatt gggctgcagt aaactagtgg


4081
aaattagaga gttgttttat tggtgttttc tactgtgagt taattaaaaa ttgtttttat


4141
ttggggtcat tatgtcacag tcttgagtta acaagatctt acgtgattgg ccttttcttt


4201
gttttctctt aggagttgtg tctcatgaat gacagtacta aagctattaa caactaagag


4261
tttgacagag aactataagc ctgttgtatc tcctaaaagt tgtcaactcc ccacccttgg


4321
actttaaatg aaaattttat tcagtccagc tattcttaca gtccctaagg attttcatat


4381
atctatgtat aggagataaa atttgctagt aagattttta aaaactggct agtgaaagga


4441
aagtacctct gaaagaaacc attttagcaa attatggtta tatgttttaa tttaatctac


4501
agaatgtttt atagtaaaat tctagcacca ctagaataat cacatagcat gtacaatata


4561
tttatgctgg ctgaaaagac agaatctggg aataataaaa ttgcaaccag tttggtaatg


4621
caaacagcag aatagaatga aatctcagta atgaattaaa gcaacaaaaa gatattgatt


4681
ggcaaaaagc aagatataag agattcattt gcttaacatt tctacataat atttatggtc


4741
tggtcagtat tggtctggtc agtattgcct ggctgacgtg aaatgtaaac tagtaggcgt


4801
gttattgatc tgctaaaact aaccctcttt ttaagaggag atttaaggaa gacgtcaatc


4861
aaaatgtcaa atatgtgtgt cagaatataa ataatttttc acattgtatt gttgctatat


4921
aaaaaaaata atagaattgg ttgggtttct gaggtgaaat ccagagtaag agtactagac


4981
agttcaacaa gccacatcta atggcacaga tagaggatgt agctatttta tacctttcat


5041
aacatttgag agtaagatat ccttcaggat gtgaagtgat tattaagtac tcatacctga


5101
aatctgttgt caagattaga actggggttc atgttaaaaa ccttccatat tacctgaggg


5161
tacctgtggg gaacagttcc ttcccctgtg tggtagtatt ttgttggaag agaatgttta


5221
tacaaaaaat gaaattcttc caacagcaga gaaactctaa aaagtttgat agtacctatc


5281
aaagtgctgt acttctgtga tagagaacat ctgatgtacc aatttagatc tatttcttta


5341
tactttttct aatcaattgc ttaatagtac tttggatgat tatcaccttt gccacttaaa


5401
atatataaat atccttttta cttcatgagg aaggaagaat tttttgataa ttactgagtt


5461
cagccttttg tgatgactta tattttggac ttacatttta actttaaaga atgtcagatc


5521
ccttctttgt cttactagtt aaatcctcac ctaatctctt gggtatgaat ataaatgtgt


5581
gtcatcgtta tattgttcag ctagatgagc aagtatctta gggtagtagg tagcctggtg


5641
gttttagaag tgtttggtga tttttatgga gagagttttc ctaagtggtg gtttataggt


5701
ggtatcagat attattaggg cagctttttg gggagtaatc tcaggtctcc cagagcagca


5761
gcatttttct cattgatata agtaagattc ttaggagctt ttcttatcac acaagatgcc


5821
tgaatcgaat gtgagaattg aaggcatttc ttctgcataa acaaagaatt ctacctgctg


5881
gacagaaacc tggaaagttc tttggaattc gctgaattac agtttagtat gtcctgatta


5941
cagagtgaca atatttatca agcctttgtt atattggatt atcttctctc ttaaaataca


6001
actgtattat aattgaaatg acagcccaaa attggatggt ttaccaaaac caatgaaagg


6061
gatttcacac atcaattttt atttctgttt tgaagagcac atgctatata ataattgcta


6121
gtagcaactg cagtaaaaca ggtgataagt tattttctct gaaaagatcc agtcctagag


6181
caggattctt cgatcattca tggcagagtg aaaaaggttt gtatggttct tgtccaaata


6241
actcagttct taaaattctt aaaatgatcg taaaccatta tcctttaaag gtttatttga


6301
agatgctgtt aaagtacaga attttgtgta caggtagatt tttccgtccc tcattaatag


6361
tgccttctta attaatacag actggtgtta gctataacaa aactccagta aggccaaaga


6421
atcccaagtt ctttgtggaa aaaaaaaaaa aatcttttag ggtcagattt tcccttctaa


6481
tatcattgaa gatgatgttg cattgattta ttcataaagt attttaacta taggaactct


6541
agaagataat ggttaggcaa gtgatttttt ttttaaatat ggttggcgta agttgtattt


6601
tgaaattcac ttattttaaa atcgaagagg attgtaatca tggaaataga atgtttgtat


6661
ctacctgccc acattttctt aaaaagatat ttcatataca gataatgaag accaagctag


6721
tggctgcact gtaggtctgc tgcttatttg tatttgttgt gcttctgttt atgttgtaga


6781
agctgaaatt ctagcaacat gcttcaattc tgttattttg atacttatga aaatgtatta


6841
ggttttacta tattgtgctt ttgaaagcca taactcttaa gaactttgtt tttgcatatt


6901
gtttgctaat tctttacttt aataaacctc aaaacctgc










SEQ ID NO: 166 Human SMAD5 amino acid sequence (NP_001001419.1,


NP_001001420.1, NP_005894.3)








1
mtsmaslfsf tspavkrllg wkqgdeeekw aekavdalvk klkkkkgame elekalsspg


61
qpskcvtipr sldgrlqvsh rkglphviyc rvwrwpdlqs hhelkpldic efpfgskqke


121
vcinpyhykr vespvlppvl vprhnefnpq hsllvqfrnl shnephmpqn atfpdsfhqp


181
nntpfplspn spyppspass typnspassg pgspfqlpad tpppaymppd dqmgqdnsqp


241
mdtsnnmipq impsissrdv qpvayeepkh wcsivyyeln nrvgeafhas stsvlvdgft


301
dpsnnksrfc lgllsnvnrn stientrrhi gkgvhlyyvg gevyaeclsd ssifvqsrnc


361
nfhhgfhptt vckipsscsl kifnnqefaq llaqsvnhgf eavyeltkmc tirmsfvkgw


421
gaeyhrqdvt stpcwieihl hgplqwldkv ltqmgspinp issvs










SEQ ID NO: 167 Mouse SMAD5 transcript variant 1 cDNA sequence (NM_008541.3,


CDS: 288-1685)








1
atcatccggg tccccggcga gcgggcgccg agcgcttgtc ccggggccga gctgctaata


61
aagttgcggc gcgtgcacag cgcggcgacg gcgtgaggag agcgcgcctg ggcggcgggg


121
aggacttgca ctaagaagaa gcctatggca cctgtcaagt taaatgtcac tccccgcctc


181
cacttggact ttctgcttaa gacctgcatg tgacttttca cctgcgagcc acgcttttgg


241
tatctactga ctttgattac aggaaagtgt ctgaagattt gtatcaaatg acgtcaatgg


301
ccagcttgtt ttctttcact agtccagccg tgaagcgatt gttgggctgg aaacaaggtg


361
acgaggaaga gaaatgggca gaaaaggcag tggatgcttt agtgaaaaag ctgaagaaga


421
agaagggtgc tatggaggag ctggagaaag ccttgagcag cccaggacag ccaagcaagt


481
gtgtcacgat ccccaggtcc ttggatggac gtctgcaagt ttctcacagg aaaggcttgc


541
cccatgttat atattgccgt gtttggcgct ggccagattt gcagagccat cacgagctaa


601
aaccattgga tatttgtgaa tttccttttg gatctaagca aaaggaagtt tgtatcaatc


661
cataccacta taagagagtg gagagtccag tcttacctcc agtattagtg cctcgtcaca


721
atgaattcaa tccacaacac agccttctgg ttcagttcag gaacctgagc cacaatgaac


781
cgcacatgcc acaaaacgcc acgtttcccg attctttcca ccaacccaac aacgctcctt


841
tccccttatc tcctaacagc ccctatcctc cttcccctgc tagcagcaca tatcccaact


901
ccccagcaag ctctggacct ggaagtccat ttcaactccc agctgacacc cctccccctg


961
cctatatgcc acctgatgat cagatggccc cagataattc ccagcctatg gatacaagca


1021
gtaacatgat tcctcagacc atgcccagca tatccagcag agatgttcag cctgtcgcct


1081
atgaggagcc caaacactgg tgttcgattg tctactatga attaaacaat cgtgttgggg


1141
aagcttttca tgcatcttct actagtgtgt tagtagatgg atttacagat ccttcaaata


1201
acaaaagtag attctgcctg ggattgttgt caaatgttaa tcgtaattca actattgaaa


1261
acactaggcg gcatattgga aaaggtgttc atctatacta cgttggtggg gaggtgtacg


1321
ctgagtgtct tagtgacagc agcatctttg ttcagagtag gaactgcaac tttcaccatg


1381
gcttccatcc caccaccgtc tgtaagatcc ccagcagctg cagcctcaag atttttaaca


1441
atcaggagtt tgctcagctt ctggctcagt cagtcaacca tggattcgag gctgtgtatg


1501
agctcaccaa gatgtgtacc attcgaatga gctttgtcaa gggctgggga gcagagtacc


1561
accgacagga cgtcaccagt actccctgct ggattgagat tcacctccac gggcctctgc


1621
agtggctgga taaagtcctt actcagatgg gctctccgct gaaccccatt tcttctgttt


1681
catagtgcag aagtattctt tcaactatat ttttagtgga cttgttttaa ttttagagga


1741
atttccagta cagatgctgt gagctgacat ggaaaacaga tattattttt tctacgtaat


1801
tgtgaccaac acatttgtat tttatgatga tattacattt gtttgtattc gtgttcattg


1861
tgattaactt tcaaaagtat tgtaaacgat gtagagtatt ttgcccctgt tgaaatgttt


1921
agcattgatc ttaaactgga acgtactttt tcttattgtc ccaacgtttt ttaatttgtt


1981
aaattttttt tacaaagtag ttcatcacat aatgaaattt tatcctataa gagaacatat


2041
attgtggaaa gcagtagatg atatttctct gggaatttct ttgccttacc acctttgaaa


2101
aagcatacat tgtttgcaaa acctcaaagt agggcttgct taaaggaaac tgttgaatct


2161
tgtttgaagg acactgcagt cctaacgtgt tcagtgaaag caaggtggta gatttctgga


2221
cgtcatacat ttacatttaa tataggtaat attcatcagt gtaatgtgac ttcatgccat


2281
atatattttg taaaacaatt cctttttaaa aacttcaagt atttctcatt tactcaaatt


2341
tgttgtaagt cctacttaac agttagttac tatgtgctct gtggccttgt tcagcattgt


2401
ttgctgcttt gggccaacaa ttcaagaact ctaattttcc tgtgcattaa tcttttcatt


2461
ttgcactttt atgggtgact gtcttagtgt agcctctggt aaaatactat taggtggcct


2521
ggttttagag ctcctcctcg ctgccttggc actcctttgt gcaacacgac cacttagaga


2581
tgacagctgt gagctgtgct gctttttcta gcctttaatt tccaatgtag tttataatgt


2641
tgttcttcta tagctccagc taaggtgcct gttagtcccc tacaatgtta tgagcattat


2701
tgacattgaa aggttatgta tgtatgaata cctttgctcc ttaccagact tgtcatacaa


2761
ggactcgtgc agtgtagcca gtagaggctc tttggttggc ccaagaatga ggctgttggt


2821
gtaagtgaat cacaataggg attgggatag ttcatgtcat atgtcatata gcaagacaat


2881
gtagagtgta ggcttgtctc tctgcatcaa cgctctgcct ctttcttttt atccttttag


2941
aacctacatg gacgctaatc tccacaacac tgttggatgt gaacactctt aagacactca


3001
tctagttcac tgtgccttgt ccttaggact cttaaccact ttctagggag cagttatggc


3061
ctgagatgga cagtcatggc ctgagaatga agacactact ttgataaaga aaaaggcctc


3121
atttgcctat cagagtgaga aaggtttttt tctggtgcct tttgaaaata tacagagcca


3181
cttggttctt ctgctgaaaa tgtaattttg gtttgacttt ttagagtgcc cttcctgcct


3241
ttatgaggaa aacagctatt tttttttttg ggggggggga ttccttttgt tttctgtgcc


3301
attatttatt gcctttcaga gtgcaaccat tgggtggctt tgctccttca gagagggctc


3361
cttgatagcc ttcagtagct tgagctgtag acataagtat tccatagcaa gagtgtgtca


3421
gctccatgag agagatgtct gctttatagc cgaggcagaa accgttcatg ttcctttact


3481
tggcagcctt caggaacagg tttgtaagaa cgtgtcttga gttgagtgag tgtatgtctg


3541
tgagctctgc tgaagtctgg acacaagggc cttgcctgct ccttttttca gcagtgggtt


3601
acatgttgtc tctccacagt cttcatgtca taggtctcgg acttgcagag tcctatgtgg


3661
cctgccatct gtacagtggc aggactgaag ctctgagctg ttctgaggtt catggagaaa


3721
tcccaaccta ttctgtggtc agtaaatgga gactgtgtag tctacctgct cctgtactgt


3781
ccttactgta tgtaaggata tacagacgcc tgtgggtagg cagtactcac agtgagatga


3841
agacagcaag tgtgcactga accacagagg gcagggagta gggcctctga agaagccacc


3901
agaccagacc agtgccggta cagtctttgt cagagatggc tctgatgggg cccagactga


3961
ccctgaccat gctgagttgc tgagggtagc cttcagttct ctaccctctg aagtgctagg


4021
atgacagaca tccgccatca tacccagctt ccgtggtgct aaggatcagc ctcagtcttc


4081
aggcgtgcta ggcatgtact ttgccaagta tttagtatac aaaatacatt agtatctgcc


4141
agggaaaaaa gatttgcaaa taataaagat tgccatcagt ttgataaatg ttgtaaatgg


4201
aagaatcaaa atctcagcga tggattacag caacaagatg ctgcctagga aaagcaggac


4261
caagaggtac atttgactag tataccttca gcgtagcgtg atgacctcac tgatgtcacc


4321
caactgaact taagggctgt aagtaggcgt gctgtgggcc ttccagaact agagaaaatt


4381
ataggaggaa gtcagttcta aagtatcaaa agctgggtaa tggtggcaca tgcctttgat


4441
tctagcactc gggaagcagg ggctagccta gtctacagag caacttctac acagagaaac


4501
tgtcttggag gaaaataaaa aaagaaaagt caaagagcaa acaaatagaa cagagtagga


4561
atccgtgtcc ccttttttct atgtttcacg gttgcaggtg taagaaaagt agtcatagat


4621
gtggctgagt ttctaagatg aaaccagtag taagattgct aaatataaca cttcaaccaa


4681
gttaaacacc ctttgggggt atgaatgaaa gtaacactgc aatatgaaat gaaccgtgca


4741
agtaacactt ggggttacct cacagtctcc ctatgcctga gaggactgtg ggaaacattt


4801
ccatcccctg ccagtatcgc cattgggagg acagagtaga tgaagaagtg aagtcttact


4861
ggtccagggc acgcctgtca gcaatgccat ttgtgcttct gccacagaga gcaccgagag


4921
gcttggctca gtatcctcga accttctctg gtcacttccc tggcagcact tgggtccctg


4981
tcactcactg gtctcttaaa agtcccgtct ctttgcttcc taaagattct ctaaaaaaat


5041
tactattttt tatttctttt ttaaaagtct ttgttatttt gttttgggat acagtctctt


5101
tgtacagtcc tggctggcct ggaaattact atgtaggcca gcctcaaact tgaagtaatt


5161
ctcttgcctc tgcctctgga gttctgggat tacaggcatg cactgcagag tacagtgagc


5221
tctgatggct tttaaaattc agcccctttg agggtttggt tttagatcca ttagctttgt


5281
ctgaacccat ctttgtccgg ccgagtaaat cctctgctat ccggggtctc ggtagaaatg


5341
tgttctcagt atacatacga ctaaacattg gttgtttata ggtagcctca gatatttggt


5401
agagcatctt ttttgaaagt aatctccagc taggtgggta tttccctcac agcagtagga


5461
ttttcccttt aggagatacc agttcttcat ctttcttgtg aaaataatgc ctttatgggg


5521
agtgaagatt aaggagttgt ttctacacta acagaattct atttgatgga caacttggac


5581
agttctgtgg acttgggtgg gttctagtgt gctaagaagg ataacagtat ttaatagtgt


5641
ctgtcatcag gccttgctca tctccctgtc tagggctgta ggtcagtgct cgagcactta


5701
gcaggcatcg agtctagtgt tcagtgccca gcattgcaca gaactcagaa tatatctgta


5761
ctgaaactga agtgaccacc tacaaccagg tggtatgcca gaaccacaga aaggagattc


5821
acggtgatgt gtttaaagca ttgggctggt gacggttgct gtgtagtaat gacctcttcc


5881
tcagcaaaga gagtcctgga gcaggctgtc ctcagaagag ggaagggact ggtgtgctcc


5941
ttgtgcagat aacttagtgt ataaatcggc atgagtagct atcctttaag gatttgtttg


6001
aagttactct ttgtaaaaag ttgagaattt tgtgtgcagt tgggcacatg cttgcccttc


6061
ccccacccgc catagtcctg cctctcttgc tgtgaactgg tgtcagctac aacactccag


6121
ctaggtctga gctcttttga gagaaggtct cgtagagcac cattctcaga gagaagctaa


6181
agcatgggga gccttaggac ggtcaggcaa tgcactcttt accacggctg gctaaggctg


6241
cagcttgacc gtccttacct aaatcaggta agaatgtgat tacagagcga gtgcttgtgt


6301
tccccggcct gccttctccg aggaagatgc ttcatccgag gatgatgcag agcagacgat


6361
ggctgcactg taggtctgcc tccttctgtg tatgggttct gctgctgctt acggcatagg


6421
aaagtacact agcagcgtgc ttcaattctg ccatcttttg atacttataa aaatgtatta


6481
ggttttactg tattgtgctc tcaaagccat aactcttaag aaatttggtt tttttgcata


6541
ttgtttgcta atactttgtt ttaataaacc tcaaaatctg cttac










SEQ ID NO: 168 Mouse SMAD5 transcript variant 2 cDNA sequence


(NM_001164041.1; CDS: 691-2088)








1
ggggccgagc tgctaataaa gttgcggcgc gtgcacagcg cggcgacggc gtgaggagag


61
cgcgcctggg cggcggggag gtgagtgagg ggccccaggg cgggcgctcg gggcccggcg


121
gagggacaag cgccggcggc agcggcccgc gtgaggctgg aggcctagag gctccccacg


181
cgggacctga cggcacggga cggggctccg cgcagcgcgg gaggccccgg tgctaaggag


241
gccccgcgcg gccgacgagg ccggcgcgga cgaggccgct gccacctcgg cgcgccaccg


301
acgcccgggc ccgcgcgcgg agccgcgcag gcggcctagg ccgagcgcgc gccccgccgc


361
tttgtgtctg ggagataagg atccgcgctt atcggtggga attacactcc ggccagccgg


421
ctggcggcga cccgcccctg cgcccgcccg cccgcccgcc cgcccgctcg cccgcccgtc


481
actctccgga cgtcgcagag gctccctcgc tgcgctaaac tttgtgactt gcactaagaa


541
gaagcctatg gcacctgtca agttaaatgt cactccccgc ctccacttgg actttctgct


601
taagacctgc atgtgacttt tcacctgcga gccacgcttt tggtatctac tgactttgat


661
tacaggaaag tgtctgaaga tttgtatcaa atgacgtcaa tggccagctt gttttctttc


721
actagtccag ccgtgaagcg attgttgggc tggaaacaag gtgacgagga agagaaatgg


781
gcagaaaagg cagtggatgc tttagtgaaa aagctgaaga agaagaaggg tgctatggag


841
gagctggaga aagccttgag cagcccagga cagccaagca agtgtgtcac gatccccagg


901
tccttggatg gacgtctgca agtttctcac aggaaaggct tgccccatgt tatatattgc


961
cgtgtttggc gctggccaga tttgcagagc catcacgagc taaaaccatt ggatatttgt


1021
gaatttcctt ttggatctaa gcaaaaggaa gtttgtatca atccatacca ctataagaga


1081
gtggagagtc cagtcttacc tccagtatta gtgcctcgtc acaatgaatt caatccacaa


1141
cacagccttc tggttcagtt caggaacctg agccacaatg aaccgcacat gccacaaaac


1201
gccacgtttc ccgattcttt ccaccaaccc aacaacgctc ctttcccctt atctcctaac


1261
agcccctatc ctccttcccc tgctagcagc acatatccca actccccagc aagctctgga


1321
cctggaagtc catttcaact cccagctgac acccctcccc ctgcctatat gccacctgat


1381
gatcagatgg ccccagataa ttcccagcct atggatacaa gcagtaacat gattcctcag


1441
accatgccca gcatatccag cagagatgtt cagcctgtcg cctatgagga gcccaaacac


1501
tggtgttcga ttgtctacta tgaattaaac aatcgtgttg gggaagcttt tcatgcatct


1561
tctactagtg tgttagtaga tggatttaca gatccttcaa ataacaaaag tagattctgc


1621
ctgggattgt tgtcaaatgt taatcgtaat tcaactattg aaaacactag gcggcatatt


1681
ggaaaaggtg ttcatctata ctacgttggt ggggaggtgt acgctgagtg tcttagtgac


1741
agcagcatct ttgttcagag taggaactgc aactttcacc atggcttcca tcccaccacc


1801
gtctgtaaga tccccagcag ctgcagcctc aagattttta acaatcagga gtttgctcag


1861
cttctggctc agtcagtcaa ccatggattc gaggctgtgt atgagctcac caagatgtgt


1921
accattcgaa tgagctttgt caagggctgg ggagcagagt accaccgaca ggacgtcacc


1981
agtactccct gctggattga gattcacctc cacgggcctc tgcagtggct ggataaagtc


2041
cttactcaga tgggctctcc gctgaacccc atttcttctg tttcatagtg cagaagtatt


2101
ctttcaacta tatttttagt ggacttgttt taattttaga ggaatttcca gtacagatgc


2161
tgtgagctga catggaaaac agatattatt ttttctacgt aattgtgacc aacacatttg


2221
tattttatga tgatattaca tttgtttgta ttcgtgttca ttgtgattaa ctttcaaaag


2281
tattgtaaac gatgtagagt attttgcccc tgttgaaatg tttagcattg atcttaaact


2341
ggaacgtact ttttcttatt gtcccaacgt tttttaattt gttaaatttt ttttacaaag


2401
tagttcatca cataatgaaa ttttatccta taagagaaca tatattgtgg aaagcagtag


2461
atgatatttc tctgggaatt tctttgcctt accacctttg aaaaagcata cattgtttgc


2521
aaaacctcaa agtagggctt gcttaaagga aactgttgaa tcttgtttga aggacactgc


2581
agtcctaacg tgttcagtga aagcaaggtg gtagatttct ggacgtcata catttacatt


2641
taatataggt aatattcatc agtgtaatgt gacttcatgc catatatatt ttgtaaaaca


2701
attccttttt aaaaacttca agtatttctc atttactcaa atttgttgta agtcctactt


2761
aacagttagt tactatgtgc tctgtggcct tgttcagcat tgtttgctgc tttgggccaa


2821
caattcaaga actctaattt tcctgtgcat taatcttttc attttgcact tttatgggtg


2881
actgtcttag tgtagcctct ggtaaaatac tattaggtgg cctggtttta gagctcctcc


2941
tcgctgcctt ggcactcctt tgtgcaacac gaccacttag agatgacagc tgtgagctgt


3001
gctgcttttt ctagccttta atttccaatg tagtttataa tgttgttctt ctatagctcc


3061
agctaaggtg cctgttagtc ccctacaatg ttatgagcat tattgacatt gaaaggttat


3121
gtatgtatga atacctttgc tccttaccag acttgtcata caaggactcg tgcagtgtag


3181
ccagtagagg ctctttggtt ggcccaagaa tgaggctgtt ggtgtaagtg aatcacaata


3241
gggattggga tagttcatgt catatgtcat atagcaagac aatgtagagt gtaggcttgt


3301
ctctctgcat caacgctctg cctctttctt tttatccttt tagaacctac atggacgcta


3361
atctccacaa cactgttgga tgtgaacact cttaagacac tcatctagtt cactgtgcct


3421
tgtccttagg actcttaacc actttctagg gagcagttat ggcctgagat ggacagtcat


3481
ggcctgagaa tgaagacact actttgataa agaaaaaggc ctcatttgcc tatcagagtg


3541
agaaaggttt ttttctggtg ccttttgaaa atatacagag ccacttggtt cttctgctga


3601
aaatgtaatt ttggtttgac tttttagagt gcccttcctg cctttatgag gaaaacagct


3661
attttttttt ttgggggggg ggattccttt tgttttctgt gccattattt attgcctttc


3721
agagtgcaac cattgggtgg ctttgctcct tcagagaggg ctccttgata gccttcagta


3781
gcttgagctg tagacataag tattccatag caagagtgtg tcagctccat gagagagatg


3841
tctgctttat agccgaggca gaaaccgttc atgttccttt acttggcagc cttcaggaac


3901
aggtttgtaa gaacgtgtct tgagttgagt gagtgtatgt ctgtgagctc tgctgaagtc


3961
tggacacaag ggccttgcct gctccttttt tcagcagtgg gttacatgtt gtctctccac


4021
agtcttcatg tcataggtct cggacttgca gagtcctatg tggcctgcca tctgtacagt


4081
ggcaggactg aagctctgag ctgttctgag gttcatggag aaatcccaac ctattctgtg


4141
gtcagtaaat ggagactgtg tagtctacct gctcctgtac tgtccttact gtatgtaagg


4201
atatacagac gcctgtgggt aggcagtact cacagtgaga tgaagacagc aagtgtgcac


4261
tgaaccacag agggcaggga gtagggcctc tgaagaagcc accagaccag accagtgccg


4321
gtacagtctt tgtcagagat ggctctgatg gggcccagac tgaccctgac catgctgagt


4381
tgctgagggt agccttcagt tctctaccct ctgaagtgct aggatgacag acatccgcca


4441
tcatacccag cttccgtggt gctaaggatc agcctcagtc ttcaggcgtg ctaggcatgt


4501
actttgccaa gtatttagta tacaaaatac attagtatct gccagggaaa aaagatttgc


4561
aaataataaa gattgccatc agtttgataa atgttgtaaa tggaagaatc aaaatctcag


4621
cgatggatta cagcaacaag atgctgccta ggaaaagcag gaccaagagg tacatttgac


4681
tagtatacct tcagcgtagc gtgatgacct cactgatgtc acccaactga acttaagggc


4741
tgtaagtagg cgtgctgtgg gccttccaga actagagaaa attataggag gaagtcagtt


4801
ctaaagtatc aaaagctggg taatggtggc acatgccttt gattctagca ctcgggaagc


4861
aggggctagc ctagtctaca gagcaacttc tacacagaga aactgtcttg gaggaaaata


4921
aaaaaagaaa agtcaaagag caaacaaata gaacagagta ggaatccgtg tccccttttt


4981
tctatgtttc acggttgcag gtgtaagaaa agtagtcata gatgtggctg agtttctaag


5041
atgaaaccag tagtaagatt gctaaatata acacttcaac caagttaaac accctttggg


5101
ggtatgaatg aaagtaacac tgcaatatga aatgaaccgt gcaagtaaca cttggggtta


5161
cctcacagtc tccctatgcc tgagaggact gtgggaaaca tttccatccc ctgccagtat


5221
cgccattggg aggacagagt agatgaagaa gtgaagtctt actggtccag ggcacgcctg


5281
tcagcaatgc catttgtgct tctgccacag agagcaccga gaggcttggc tcagtatcct


5341
cgaaccttct ctggtcactt ccctggcagc acttgggtcc ctgtcactca ctggtctctt


5401
aaaagtcccg tctctttgct tcctaaagat tctctaaaaa aattactatt ttttatttct


5461
tttttaaaag tctttgttat tttgttttgg gatacagtct ctttgtacag tcctggctgg


5521
cctggaaatt actatgtagg ccagcctcaa acttgaagta attctcttgc ctctgcctct


5581
ggagttctgg gattacaggc atgcactgca gagtacagtg agctctgatg gcttttaaaa


5641
ttcagcccct ttgagggttt ggttttagat ccattagctt tgtctgaacc catctttgtc


5701
cggccgagta aatcctctgc tatccggggt ctcggtagaa atgtgttctc agtatacata


5761
cgactaaaca ttggttgttt ataggtagcc tcagatattt ggtagagcat cttttttgaa


5821
agtaatctcc agctaggtgg gtatttccct cacagcagta ggattttccc tttaggagat


5881
accagttctt catctttctt gtgaaaataa tgcctttatg gggagtgaag attaaggagt


5941
tgtttctaca ctaacagaat tctatttgat ggacaacttg gacagttctg tggacttggg


6001
tgggttctag tgtgctaaga aggataacag tatttaatag tgtctgtcat caggccttgc


6061
tcatctccct gtctagggct gtaggtcagt gctcgagcac ttagcaggca tcgagtctag


6121
tgttcagtgc ccagcattgc acagaactca gaatatatct gtactgaaac tgaagtgacc


6181
acctacaacc aggtggtatg ccagaaccac agaaaggaga ttcacggtga tgtgtttaaa


6241
gcattgggct ggtgacggtt gctgtgtagt aatgacctct tcctcagcaa agagagtcct


6301
ggagcaggct gtcctcagaa gagggaaggg actggtgtgc tccttgtgca gataacttag


6361
tgtataaatc ggcatgagta gctatccttt aaggatttgt ttgaagttac tctttgtaaa


6421
aagttgagaa ttttgtgtgc agttgggcac atgcttgccc ttcccccacc cgccatagtc


6481
ctgcctctct tgctgtgaac tggtgtcagc tacaacactc cagctaggtc tgagctcttt


6541
tgagagaagg tctcgtagag caccattctc agagagaagc taaagcatgg ggagccttag


6601
gacggtcagg caatgcactc tttaccacgg ctggctaagg ctgcagcttg accgtcctta


6661
cctaaatcag gtaagaatgt gattacagag cgagtgcttg tgttccccgg cctgccttct


6721
ccgaggaaga tgcttcatcc gaggatgatg cagagcagac gatggctgca ctgtaggtct


6781
gcctccttct gtgtatgggt tctgctgctg cttacggcat aggaaagtac actagcagcg


6841
tgcttcaatt ctgccatctt ttgatactta taaaaatgta ttaggtttta ctgtattgtg


6901
ctctcaaagc cataactctt aagaaatttg gtttttttgc atattgtttg ctaatacttt


6961
gttttaataa acctcaaaat ctgcttac










SEQ ID NO: 169 Mouse SMAD5 transcript variant 3 cDNA sequence


(NM_001164042.1; CDS: 311-1708)








1
gccctttctc ctctgcgctt ctggctgcgc cgagccggga accctaagct ctgggaactt


61
ccccggtggc ggccgtctta gggtcagagc atgctcagtg gcccggactt ttcggttgca


121
gaaggagctg gcggggatgg tcgaggactt gcactaagaa gaagcctatg gcacctgtca


181
agttaaatgt cactccccgc ctccacttgg actttctgct taagacctgc atgtgacttt


241
tcacctgcga gccacgcttt tggtatctac tgactttgat tacaggaaag tgtctgaaga


301
tttgtatcaa atgacgtcaa tggccagctt gttttctttc actagtccag ccgtgaagcg


361
attgttgggc tggaaacaag gtgacgagga agagaaatgg gcagaaaagg cagtggatgc


421
tttagtgaaa aagctgaaga agaagaaggg tgctatggag gagctggaga aagccttgag


481
cagcccagga cagccaagca agtgtgtcac gatccccagg tccttggatg gacgtctgca


541
agtttctcac aggaaaggct tgccccatgt tatatattgc cgtgtttggc gctggccaga


601
tttgcagagc catcacgagc taaaaccatt ggatatttgt gaatttcctt ttggatctaa


661
gcaaaaggaa gtttgtatca atccatacca ctataagaga gtggagagtc cagtcttacc


721
tccagtatta gtgcctcgtc acaatgaatt caatccacaa cacagccttc tggttcagtt


781
caggaacctg agccacaatg aaccgcacat gccacaaaac gccacgtttc ccgattcttt


841
ccaccaaccc aacaacgctc ctttcccctt atctcctaac agcccctatc ctccttcccc


901
tgctagcagc acatatccca actccccagc aagctctgga cctggaagtc catttcaact


961
cccagctgac acccctcccc ctgcctatat gccacctgat gatcagatgg ccccagataa


1021
ttcccagcct atggatacaa gcagtaacat gattcctcag accatgccca gcatatccag


1081
cagagatgtt cagcctgtcg cctatgagga gcccaaacac tggtgttcga ttgtctacta


1141
tgaattaaac aatcgtgttg gggaagcttt tcatgcatct tctactagtg tgttagtaga


1201
tggatttaca gatccttcaa ataacaaaag tagattctgc ctgggattgt tgtcaaatgt


1261
taatcgtaat tcaactattg aaaacactag gcggcatatt ggaaaaggtg ttcatctata


1321
ctacgttggt ggggaggtgt acgctgagtg tcttagtgac agcagcatct ttgttcagag


1381
taggaactgc aactttcacc atggcttcca tcccaccacc gtctgtaaga tccccagcag


1441
ctgcagcctc aagattttta acaatcagga gtttgctcag cttctggctc agtcagtcaa


1501
ccatggattc gaggctgtgt atgagctcac caagatgtgt accattcgaa tgagctttgt


1561
caagggctgg ggagcagagt accaccgaca ggacgtcacc agtactccct gctggattga


1621
gattcacctc cacgggcctc tgcagtggct ggataaagtc cttactcaga tgggctctcc


1681
gctgaacccc atttcttctg tttcatagtg cagaagtatt ctttcaacta tatttttagt


1741
ggacttgttt taattttaga ggaatttcca gtacagatgc tgtgagctga catggaaaac


1801
agatattatt ttttctacgt aattgtgacc aacacatttg tattttatga tgatattaca


1861
tttgtttgta ttcgtgttca ttgtgattaa ctttcaaaag tattgtaaac gatgtagagt


1921
attttgcccc tgttgaaatg tttagcattg atcttaaact ggaacgtact ttttcttatt


1981
gtcccaacgt tttttaattt gttaaatttt ttttacaaag tagttcatca cataatgaaa


2041
ttttatccta taagagaaca tatattgtgg aaagcagtag atgatatttc tctgggaatt


2101
tctttgcctt accacctttg aaaaagcata cattgtttgc aaaacctcaa agtagggctt


2161
gcttaaagga aactgttgaa tcttgtttga aggacactgc agtcctaacg tgttcagtga


2221
aagcaaggtg gtagatttct ggacgtcata catttacatt taatataggt aatattcatc


2281
agtgtaatgt gacttcatgc catatatatt ttgtaaaaca attccttttt aaaaacttca


2341
agtatttctc atttactcaa atttgttgta agtcctactt aacagttagt tactatgtgc


2401
tctgtggcct tgttcagcat tgtttgctgc tttgggccaa caattcaaga actctaattt


2461
tcctgtgcat taatcttttc attttgcact tttatgggtg actgtcttag tgtagcctct


2521
ggtaaaatac tattaggtgg cctggtttta gagctcctcc tcgctgcctt ggcactcctt


2581
tgtgcaacac gaccacttag agatgacagc tgtgagctgt gctgcttttt ctagccttta


2641
atttccaatg tagtttataa tgttgttctt ctatagctcc agctaaggtg cctgttagtc


2701
ccctacaatg ttatgagcat tattgacatt gaaaggttat gtatgtatga atacctttgc


2761
tccttaccag acttgtcata caaggactcg tgcagtgtag ccagtagagg ctctttggtt


2821
ggcccaagaa tgaggctgtt ggtgtaagtg aatcacaata gggattggga tagttcatgt


2881
catatgtcat atagcaagac aatgtagagt gtaggcttgt ctctctgcat caacgctctg


2941
cctctttctt tttatccttt tagaacctac atggacgcta atctccacaa cactgttgga


3001
tgtgaacact cttaagacac tcatctagtt cactgtgcct tgtccttagg actcttaacc


3061
actttctagg gagcagttat ggcctgagat ggacagtcat ggcctgagaa tgaagacact


3121
actttgataa agaaaaaggc ctcatttgcc tatcagagtg agaaaggttt ttttctggtg


3181
ccttttgaaa atatacagag ccacttggtt cttctgctga aaatgtaatt ttggtttgac


3241
tttttagagt gcccttcctg cctttatgag gaaaacagct attttttttt ttgggggggg


3301
ggattccttt tgttttctgt gccattattt attgcctttc agagtgcaac cattgggtgg


3361
ctttgctcct tcagagaggg ctccttgata gccttcagta gcttgagctg tagacataag


3421
tattccatag caagagtgtg tcagctccat gagagagatg tctgctttat agccgaggca


3481
gaaaccgttc atgttccttt acttggcagc cttcaggaac aggtttgtaa gaacgtgtct


3541
tgagttgagt gagtgtatgt ctgtgagctc tgctgaagtc tggacacaag ggccttgcct


3601
gctccttttt tcagcagtgg gttacatgtt gtctctccac agtcttcatg tcataggtct


3661
cggacttgca gagtcctatg tggcctgcca tctgtacagt ggcaggactg aagctctgag


3721
ctgttctgag gttcatggag aaatcccaac ctattctgtg gtcagtaaat ggagactgtg


3781
tagtctacct gctcctgtac tgtccttact gtatgtaagg atatacagac gcctgtgggt


3841
aggcagtact cacagtgaga tgaagacagc aagtgtgcac tgaaccacag agggcaggga


3901
gtagggcctc tgaagaagcc accagaccag accagtgccg gtacagtctt tgtcagagat


3961
ggctctgatg gggcccagac tgaccctgac catgctgagt tgctgagggt agccttcagt


4021
tctctaccct ctgaagtgct aggatgacag acatccgcca tcatacccag cttccgtggt


4081
gctaaggatc agcctcagtc ttcaggcgtg ctaggcatgt actttgccaa gtatttagta


4141
tacaaaatac attagtatct gccagggaaa aaagatttgc aaataataaa gattgccatc


4201
agtttgataa atgttgtaaa tggaagaatc aaaatctcag cgatggatta cagcaacaag


4261
atgctgccta ggaaaagcag gaccaagagg tacatttgac tagtatacct tcagcgtagc


4321
gtgatgacct cactgatgtc acccaactga acttaagggc tgtaagtagg cgtgctgtgg


4381
gccttccaga actagagaaa attataggag gaagtcagtt ctaaagtatc aaaagctggg


4441
taatggtggc acatgccttt gattctagca ctcgggaagc aggggctagc ctagtctaca


4501
gagcaacttc tacacagaga aactgtcttg gaggaaaata aaaaaagaaa agtcaaagag


4561
caaacaaata gaacagagta ggaatccgtg tccccttttt tctatgtttc acggttgcag


4621
gtgtaagaaa agtagtcata gatgtggctg agtttctaag atgaaaccag tagtaagatt


4681
gctaaatata acacttcaac caagttaaac accctttggg ggtatgaatg aaagtaacac


4741
tgcaatatga aatgaaccgt gcaagtaaca cttggggtta cctcacagtc tccctatgcc


4801
tgagaggact gtgggaaaca tttccatccc ctgccagtat cgccattggg aggacagagt


4861
agatgaagaa gtgaagtctt actggtccag ggcacgcctg tcagcaatgc catttgtgct


4921
tctgccacag agagcaccga gaggcttggc tcagtatcct cgaaccttct ctggtcactt


4981
ccctggcagc acttgggtcc ctgtcactca ctggtctctt aaaagtcccg tctctttgct


5041
tcctaaagat tctctaaaaa aattactatt ttttatttct tttttaaaag tctttgttat


5101
tttgttttgg gatacagtct ctttgtacag tcctggctgg cctggaaatt actatgtagg


5161
ccagcctcaa acttgaagta attctcttgc ctctgcctct ggagttctgg gattacaggc


5221
atgcactgca gagtacagtg agctctgatg gcttttaaaa ttcagcccct ttgagggttt


5281
ggttttagat ccattagctt tgtctgaacc catctttgtc cggccgagta aatcctctgc


5341
tatccggggt ctcggtagaa atgtgttctc agtatacata cgactaaaca ttggttgttt


5401
ataggtagcc tcagatattt ggtagagcat cttttttgaa agtaatctcc agctaggtgg


5461
gtatttccct cacagcagta ggattttccc tttaggagat accagttctt catctttctt


5521
gtgaaaataa tgcctttatg gggagtgaag attaaggagt tgtttctaca ctaacagaat


5581
tctatttgat ggacaacttg gacagttctg tggacttggg tgggttctag tgtgctaaga


5641
aggataacag tatttaatag tgtctgtcat caggccttgc tcatctccct gtctagggct


5701
gtaggtcagt gctcgagcac ttagcaggca tcgagtctag tgttcagtgc ccagcattgc


5761
acagaactca gaatatatct gtactgaaac tgaagtgacc acctacaacc aggtggtatg


5821
ccagaaccac agaaaggaga ttcacggtga tgtgtttaaa gcattgggct ggtgacggtt


5881
gctgtgtagt aatgacctct tcctcagcaa agagagtcct ggagcaggct gtcctcagaa


5941
gagggaaggg actggtgtgc tccttgtgca gataacttag tgtataaatc ggcatgagta


6001
gctatccttt aaggatttgt ttgaagttac tctttgtaaa aagttgagaa ttttgtgtgc


6061
agttgggcac atgcttgccc ttcccccacc cgccatagtc ctgcctctct tgctgtgaac


6121
tggtgtcagc tacaacactc cagctaggtc tgagctcttt tgagagaagg tctcgtagag


6181
caccattctc agagagaagc taaagcatgg ggagccttag gacggtcagg caatgcactc


6241
tttaccacgg ctggctaagg ctgcagcttg accgtcctta cctaaatcag gtaagaatgt


6301
gattacagag cgagtgcttg tgttccccgg cctgccttct ccgaggaaga tgcttcatcc


6361
gaggatgatg cagagcagac gatggctgca ctgtaggtct gcctccttct gtgtatgggt


6421
tctgctgctg cttacggcat aggaaagtac actagcagcg tgcttcaatt ctgccatctt


6481
ttgatactta taaaaatgta ttaggtttta ctgtattgtg ctctcaaagc cataactctt


6541
aagaaatttg gtttttttgc atattgtttg ctaatacttt gttttaataa acctcaaaat


6601
ctgcttac










SEQ ID NO: 170 Mouse SMAD5 amino acid sequence (NP_001157513.1;


NP_001157514.1; NP_032567.1)








1
mtsmaslfsf tspavkrllg wkqgdeeekw aekavdalvk klkkkkgame elekalsspg


61
qpskcvtipr sldgrlqvsh rkglphviyc rvwrwpdlqs hhelkpldic efpfgskqke


121
vcinpyhykr vespvlppvl vprhnefnpq hsllvqfrnl shnephmpqn atfpdsfhqp


181
nnapfplspn spyppspass typnspassg pgspfqlpad tpppaymppd dqmapdnsqp


241
mdtssnmipq tmpsissrdv qpvayeepkh wcsivyyeln nrvgeafhas stsvlvdgft


301
dpsnnksrfc lgllsnvnrn stientrrhi gkgvhlyyvg gevyaeclsd ssifvqsrnc


361
nfhhgfhptt vckipsscsl kifnnqefaq llaqsvnhgf eavyeltkmc tirmsfvkgw


421
gaeyhrqdvt stpcwieihl hgplqwldkv ltqmgspinp issvs










SEQ ID NO: 171 Human SMAD9 transcript variant 1 cDNA sequence


(NM_001127217.2; CDS: 344-1747)








1
cgcactaata cgggcgatga ggcttcgcgg ctccagtctg actgacgccg gctggggccg


61
ccgccgccgc cgccgccgcc gccgctgctg cagccgctgt ctcggtcccc gccgccgccg


121
ccgggccctg caggcgctgg gcgcgcgcag ccaggcaagt tggccaccct gttcaagggc


181
ttaggagaaa gtcaacacac ttcgcaactt gaattggtcc cagctgctcc cagaagaacg


241
ggcgggttgg tccctatgcc acccctggag agctactcgc cgcccacttt gccgtgaagg


301
gctgtgcggt tcccgtgcgc gccggagcct gctgtggcct cttatgcact ccaccacccc


361
catcagctcc ctcttctcct tcaccagccc cgcagtgaag agactgctag gctggaagca


421
aggagatgaa gaggaaaagt gggcagagaa ggcagtggac tctctagtga agaagttaaa


481
gaagaagaag ggagccatgg acgagctgga gagggctctc agctgcccgg ggcagcccag


541
caaatgcgtc acgattcccc gctccctgga cgggcggctg caggtgtccc accgcaaggg


601
cctgccccat gtgatttact gtcgcgtgtg gcgctggccg gatctgcagt cccaccacga


661
gctgaagccg ctggagtgct gtgagttccc atttggctcc aagcagaaag aagtgtgcat


721
taacccttac cactaccgcc gggtggagac tccagtactg cctcctgtgc tcgtgccaag


781
acacagtgaa tataaccccc agctcagcct cctggccaag ttccgcagcg cctccctgca


841
cagtgagcca ctcatgccac acaacgccac ctatcctgac tctttccagc agcctccgtg


901
ctctgcactc cctccctcac ccagccacgc gttctcccag tccccgtgca cggccagcta


961
ccctcactcc ccaggaagtc cttctgagcc agagagtccc tatcaacact cagttgacac


1021
accacccctg ccttatcatg ccacagaagc ctctgagacc cagagtggcc aacctgtaga


1081
tgccacagct gatagacatg tagtgctatc gataccaaat ggagactttc gaccagtttg


1141
ttacgaggag ccccagcact ggtgctcggt cgcctactat gaactgaaca accgagttgg


1201
ggagacattc caggcttcct cccgaagtgt gctcatagat gggttcaccg acccttcaaa


1261
taacaggaac agattctgtc ttggacttct ttctaatgta aacagaaact caacgataga


1321
aaataccagg agacatatag gaaagggtgt gcacttgtac tacgtcgggg gagaggtgta


1381
tgccgagtgc gtgagtgaca gcagcatctt tgtgcagagc cggaactgca actatcaaca


1441
cggcttccac ccagctaccg tctgcaagat ccccagcggc tgcagcctca aggtcttcaa


1501
caaccagctc ttcgctcagc tcctggccca gtcagttcac cacggctttg aagtcgtgta


1561
tgaactgacc aagatgtgta ctatccggat gagttttgtt aagggttggg gtgctgagta


1621
tcatcgccag gatgtcacca gcaccccctg ctggattgag attcatcttc atgggccact


1681
gcagtggctg gacaaagttc tgactcagat gggctctcca cataacccca tttcttcagt


1741
gtcttaacag tcatgtctta agctgcattt ccataggata gaggctattg cagggagtgg


1801
cttgtatcat ttcagatttg caactgaagt ttctaaaaac atgtgtaaat acatagaatg


1861
tatactgttc ttattttttt taatcaccgt ttgttttgtg ctttctagtt aacctgatgc


1921
cagtacagtg caattggaaa agcaggactt tggtgcctgt gctataagca gcagattttg


1981
tgggaggaaa cacttgagag gcgatattgt caacagtatt tgaagggtgt tagcagaata


2041
aaagacagct ttagtcagcc gtgtcattat aaagcatgtt gtgtggcctc acagaaacat


2101
tgaaactgtt tatacagcaa aagtcaggta ttagcagcac taaagcaaat atcactcaga


2161
tgaaacaaag cagtgaaacc cctacagttt aaatgatgtc acttttagtg ctgttggcaa


2221
gaaaaaaaaa acaacaaact tgtacaatga attaatgaga taggccatag aaactttatt


2281
tctaaggttg acatacctat agctgggctc ctgtgctcat attcagtggt acattttaaa


2341
caaactgtga tcggaaaaga aaaaaaactg tgaagccaaa agtcatgttc cctcagtcta


2401
ccactgtaaa aacagagtct aatatgggaa aataaatatg aaaatagcat gaaatgctgt


2461
ttcccagatt gcaagataag accagaactt ggtccaagag ccagccaccc agggagactc


2521
ctgctttcca cagaggagac caggttcctg tcgtgctggt tgttcgtgtc aggcagtcct


2581
gcaaactttg agtctgcgca gcgtgccaga atagcttgtg tttcagtcct gtgtcaagaa


2641
gcaggtgaaa ccaaaggttg gagaaaagca tcacacgtcg acttacactt tctcatttcc


2701
cacgttccag tctcctggga agggcactct ttcgccacgt tttcctgcct cttggcaaat


2761
attaactctt tgcagatcac taaagcaaca gtaaagactt tgagaaaatc tagacacatt


2821
attggatcaa tgagttattt aacctagtgt ctagtgatta tctaacctgg aaataaattc


2881
ccaaggaaag tgataataat ttcataatca tctgcaattt ctggggaaca gtggtactga


2941
ataataagac atcttttaaa aatatacaca atattaaaaa cctgttctta ttttacttta


3001
gatgagggag gaaaatcccc caaatttcta ggtactttca tatatatact tgccatgcac


3061
taaacactgc attgcttgga aaaatatttc acaccctctt taaaaatgta caatttaaga


3121
tggcagttat gcttgtaaca gacagcactt cagtaatcca agaagtttct tcatttatac


3181
attttatctc aactctttct agcattagtg cacatggtag tttttctaat taaattgtat


3241
tcaaggtaga aatgatcatg tgagaaagat atatgattga gctactactg tcacctctta


3301
cagttactag tgttagctaa tagaaacttt catatataca catagaaaag aattattaca


3361
ttttacattg aaaaatgtaa tatatggccc atgtagtgta tagaaaaatc tgtagtttat


3421
tggttcatca actatgtatt gtgcacctac ctatgggtgt caggtacaat gttaggtact


3481
gtagaatcaa atgtaaataa gagacagtcc cagccctcag ggagccgaga acctaatagt


3541
gaatctgttt gtacagacat cttcatgttt cagaactttt aaaacaaaac aaaataatgt


3601
aatctatcat cttttgcttg aaagaatgtg attgatttct tatctctgtt ttgaaattat


3661
ttccttactc ttctgcaaag tcaggtaatg gattccttgt ataaatgcta cttttcttcc


3721
atgtctcaaa gttgtttttt ttcctcccct ttcttccctg ttttccaata attctccatg


3781
tccccttttc ttagaaaagg cattaatatg gtgaatcttg tatgggaacc attccatggg


3841
agaacttcaa cacagttttt gctccagaga tcaaacatag ctttcgtgat ctctctacca


3901
gctatctaac ttatcctctg gtaatctttt tttttttttt tttttttttg agatggagtc


3961
tcgctgtgtc accaggccag agtgcagtgg cgtgatcttg gctcactgca acctctgcct


4021
cccgggttcg agtgattctc ctgcctcagc ctcccaagta gttgggacta caggctacca


4081
cgcccagcta atttttatat ttttagtaga gacggggttt caccatggta gccagaatgg


4141
tctctatctc ttgaccttgt gatccgcccg cctcagcctc ccaaagtgct gggattacag


4201
gcgtgagcca ctgcgcccgg cttcctctgg taatcttaca cctttacaga attaatctaa


4261
actggtggct cataaatgac attaaaaaca aaaaaaaaat ctggatgcag tggctcattc


4321
ctatagtccc agcactttgg gaggccaagg cgggaggatc atctgagccc aggagtttgg


4381
ggctgtagtg aactatgatc atacaacttc attctagcct gggtgacaaa gtgacaccct


4441
gtctctaaac aaaaatcaag aaacaaaaaa cttgtatttc cctgcagctt tgggaagcca


4501
gaacacaata ttgcagtgaa tctgaatttt ctgtgacaaa taaattatta aattggcaca


4561
tatgatcatc accagtcatg tctcatcaaa agcctttatt atgatgcttg tacattttga


4621
agaatttaga attaatgaga agttaaccct ttagtcattg taacacaatc atattttaat


4681
cagctttttc ttttgctacc aagagtttca aaaaataaat gcagtatttg atttcaggct


4741
gctaaatggg ctcatttagc attcattcct tgatgtagac attaaaaaaa aaactgaata


4801
gcattctttc caggataact aataaagcag acatgctaag cctataaata catcagcact


4861
gcagcacacg tttaaggttg ccacggacaa ggatcacaca atagagaaca ctgtagtaac


4921
atttcggtct gctcacaaga cccagaacat tgatcagttt ttgttgttgg tttattattt


4981
ttctgttaaa aaattgtgaa aagtttgttt tagctagatg atattttaat agctgcgagt


5041
gctttggaac tataaagatg tcactactta acacatatac cttatgtttt gttttgtttt


5101
gttttacact cagtataaat caggagaagt tagccaacca tctagcattt agaatcctct


5161
tttttattgt cttctaagga tatggatgtt cccataacag caacaaaaca gcaacaaaaa


5221
catttcataa atatcacttg atagactgta agcacctgct taactttgtg tcccaaatat


5281
ttagtgtgta tatatatata tatatataca cacacacaca catatatatt caacaaataa


5341
agcaaaatat aacatgcatt tcacattttg tctttccctg ttacgatttt aatagcagaa


5401
ctgtatgaca agtttaggtg atcctagcat atgttaaatt caaattaatg taaaacagat


5461
taacaacaac aaagaaactg tctatttgag tgaagtcatg ctttctatta taataacttg


5521
gcttcggtta tccatcaaat gcacacttat actgttatct gattgtttat aataaagaat


5581
actgtactta ta










SEQ ID NO: 172 Human SMAD9 isoform 1 amino acid sequence (NP_001120689.1)








1
mhsttpissl fsftspavkr llgwkqgdee ekwaekavds lvkklkkkkg amdelerals


61
cpgqpskcvt iprsldgrlq vshrkglphv iycrvwrwpd lqshhelkpl eccefpfgsk


121
qkevcinpyh yrrvetpvlp pvlvprhsey npqlsllakf rsaslhsepl mphnatypds


181
fqqppcsalp pspshafsqs pctasyphsp gspsepespy qhsvdtpplp yhateasetq


241
sgqpvdatad rhvvlsipng dfrpvcyeep qhwcsvayye lnnrvgetfq assrsvlidg


301
ftdpsnnrnr fclgllsnvn rnstientrr higkgvhlyy vggevyaecv sdssifvqsr


361
ncnyqhgfhp atvckipsgc slkvfnnqlf aqllaqsvhh gfevvyeltk mctirmsfvk


421
gwgaeyhrqd vtstpcwiei hlhgplqwld kvltqmgsph npissvs










SEQ ID NO: 173 Human SMAD9 transcript variant 2 cDNA sequence (NM_005905.6;


CDS: 310-1602)








1
agtctgactg acgccggctg gggccgccgc cgccgccgcc gccgccgccg ctgctgcagc


61
cgctgtctcg gtccccgccg ccgccgccgg gccctgcagg cgctgggcgc gcgcagccag


121
gcaagttggc caccctgttc aagggcttag gagaaagtca acacacttcg caacttgaat


181
tggtcccagc tgctcccaga agaacgggcg ggttggtccc tatgccaccc ctggagagct


241
actcgccgcc cactttgccg tgaagggctg tgcggttccc gtgcgcgccg gagcctgctg


301
tggcctctta tgcactccac cacccccatc agctccctct tctccttcac cagccccgca


361
gtgaagagac tgctaggctg gaagcaagga gatgaagagg aaaagtgggc agagaaggca


421
gtggactctc tagtgaagaa gttaaagaag aagaagggag ccatggacga gctggagagg


481
gctctcagct gcccggggca gcccagcaaa tgcgtcacga ttccccgctc cctggacggg


541
cggctgcagg tgtcccaccg caagggcctg ccccatgtga tttactgtcg cgtgtggcgc


601
tggccggatc tgcagtccca ccacgagctg aagccgctgg agtgctgtga gttcccattt


661
ggctccaagc agaaagaagt gtgcattaac ccttaccact accgccgggt ggagactcca


721
gtactgcctc ctgtgctcgt gccaagacac agtgaatata acccccagct cagcctcctg


781
gccaagttcc gcagcgcctc cctgcacagt gagccactca tgccacacaa cgccacctat


841
cctgactctt tccagcagcc tccgtgctct gcactccctc cctcacccag ccacgcgttc


901
tcccagtccc cgtgcacggc cagctaccct cactccccag gaagtccttc tgagccagag


961
agtccctatc aacactcaga ctttcgacca gtttgttacg aggagcccca gcactggtgc


1021
tcggtcgcct actatgaact gaacaaccga gttggggaga cattccaggc ttcctcccga


1081
agtgtgctca tagatgggtt caccgaccct tcaaataaca ggaacagatt ctgtcttgga


1141
cttctttcta atgtaaacag aaactcaacg atagaaaata ccaggagaca tataggaaag


1201
ggtgtgcact tgtactacgt cgggggagag gtgtatgccg agtgcgtgag tgacagcagc


1261
atctttgtgc agagccggaa ctgcaactat caacacggct tccacccagc taccgtctgc


1321
aagatcccca gcggctgcag cctcaaggtc ttcaacaacc agctcttcgc tcagctcctg


1381
gcccagtcag ttcaccacgg ctttgaagtc gtgtatgaac tgaccaagat gtgtactatc


1441
cggatgagtt ttgttaaggg ttggggtgct gagtatcatc gccaggatgt caccagcacc


1501
ccctgctgga ttgagattca tcttcatggg ccactgcagt ggctggacaa agttctgact


1561
cagatgggct ctccacataa ccccatttct tcagtgtctt aacagtcatg tcttaagctg


1621
catttccata ggatagaggc tattgcaggg agtggcttgt atcatttcag atttgcaact


1681
gaagtttcta aaaacatgtg taaatacata gaatgtatac tgttcttatt ttttttaatc


1741
accgtttgtt ttgtgctttc tagttaacct gatgccagta cagtgcaatt ggaaaagcag


1801
gactttggtg cctgtgctat aagcagcaga ttttgtggga ggaaacactt gagaggcgat


1861
attgtcaaca gtatttgaag ggtgttagca gaataaaaga cagctttagt cagccgtgtc


1921
attataaagc atgttgtgtg gcctcacaga aacattgaaa ctgtttatac agcaaaagtc


1981
aggtattagc agcactaaag caaatatcac tcagatgaaa caaagcagtg aaacccctac


2041
agtttaaatg atgtcacttt tagtgctgtt ggcaagaaaa aaaaaacaac aaacttgtac


2101
aatgaattaa tgagataggc catagaaact ttatttctaa ggttgacata cctatagctg


2161
ggctcctgtg ctcatattca gtggtacatt ttaaacaaac tgtgatcgga aaagaaaaaa


2221
aactgtgaag ccaaaagtca tgttccctca gtctaccact gtaaaaacag agtctaatat


2281
gggaaaataa atatgaaaat agcatgaaat gctgtttccc agattgcaag ataagaccag


2341
aacttggtcc aagagccagc cacccaggga gactcctgct ttccacagag gagaccaggt


2401
tcctgtcgtg ctggttgttc gtgtcaggca gtcctgcaaa ctttgagtct gcgcagcgtg


2461
ccagaatagc ttgtgtttca gtcctgtgtc aagaagcagg tgaaaccaaa ggttggagaa


2521
aagcatcaca cgtcgactta cactttctca tttcccacgt tccagtctcc tgggaagggc


2581
actctttcgc cacgttttcc tgcctcttgg caaatattaa ctctttgcag atcactaaag


2641
caacagtaaa gactttgaga aaatctagac acattattgg atcaatgagt tatttaacct


2701
agtgtctagt gattatctaa cctggaaata aattcccaag gaaagtgata ataatttcat


2761
aatcatctgc aatttctggg gaacagtggt actgaataat aagacatctt ttaaaaatat


2821
acacaatatt aaaaacctgt tcttatttta ctttagatga gggaggaaaa tcccccaaat


2881
ttctaggtac tttcatatat atacttgcca tgcactaaac actgcattgc ttggaaaaat


2941
atttcacacc ctctttaaaa atgtacaatt taagatggca gttatgcttg taacagacag


3001
cacttcagta atccaagaag tttcttcatt tatacatttt atctcaactc tttctagcat


3061
tagtgcacat ggtagttttt ctaattaaat tgtattcaag gtagaaatga tcatgtgaga


3121
aagatatatg attgagctac tactgtcacc tcttacagtt actagtgtta gctaatagaa


3181
actttcatat atacacatag aaaagaatta ttacatttta cattgaaaaa tgtaatatat


3241
ggcccatgta gtgtatagaa aaatctgtag tttattggtt catcaactat gtattgtgca


3301
cctacctatg ggtgtcaggt acaatgttag gtactgtaga atcaaatgta aataagagac


3361
agtcccagcc ctcagggagc cgagaaccta atagtgaatc tgtttgtaca gacatcttca


3421
tgtttcagaa cttttaaaac aaaacaaaat aatgtaatct atcatctttt gcttgaaaga


3481
atgtgattga tttcttatct ctgttttgaa attatttcct tactcttctg caaagtcagg


3541
taatggattc cttgtataaa tgctactttt cttccatgtc tcaaagttgt tttttttcct


3601
cccctttctt ccctgttttc caataattct ccatgtcccc ttttcttaga aaaggcatta


3661
atatggtgaa tcttgtatgg gaaccattcc atgggagaac ttcaacacag tttttgctcc


3721
agagatcaaa catagctttc gtgatctctc taccagctat ctaacttatc ctctggtaat


3781
cttttttttt tttttttttt ttttgagatg gagtctcgct gtgtcaccag gccagagtgc


3841
agtggcgtga tcttggctca ctgcaacctc tgcctcccgg gttcgagtga ttctcctgcc


3901
tcagcctccc aagtagttgg gactacaggc taccacgccc agctaatttt tatattttta


3961
gtagagacgg ggtttcacca tggtagccag aatggtctct atctcttgac cttgtgatcc


4021
gcccgcctca gcctcccaaa gtgctgggat tacaggcgtg agccactgcg cccggcttcc


4081
tctggtaatc ttacaccttt acagaattaa tctaaactgg tggctcataa atgacattaa


4141
aaacaaaaaa aaaatctgga tgcagtggct cattcctata gtcccagcac tttgggaggc


4201
caaggcggga ggatcatctg agcccaggag tttggggctg tagtgaacta tgatcataca


4261
acttcattct agcctgggtg acaaagtgac accctgtctc taaacaaaaa tcaagaaaca


4321
aaaaacttgt atttccctgc agctttggga agccagaaca caatattgca gtgaatctga


4381
attttctgtg acaaataaat tattaaattg gcacatatga tcatcaccag tcatgtctca


4441
tcaaaagcct ttattatgat gcttgtacat tttgaagaat ttagaattaa tgagaagtta


4501
accctttagt cattgtaaca caatcatatt ttaatcagct ttttcttttg ctaccaagag


4561
tttcaaaaaa taaatgcagt atttgatttc aggctgctaa atgggctcat ttagcattca


4621
ttccttgatg tagacattaa aaaaaaaact gaatagcatt ctttccagga taactaataa


4681
agcagacatg ctaagcctat aaatacatca gcactgcagc acacgtttaa ggttgccacg


4741
gacaaggatc acacaataga gaacactgta gtaacatttc ggtctgctca caagacccag


4801
aacattgatc agtttttgtt gttggtttat tatttttctg ttaaaaaatt gtgaaaagtt


4861
tgttttagct agatgatatt ttaatagctg cgagtgcttt ggaactataa agatgtcact


4921
acttaacaca tataccttat gttttgtttt gttttgtttt acactcagta taaatcagga


4981
gaagttagcc aaccatctag catttagaat cctctttttt attgtcttct aaggatatgg


5041
atgttcccat aacagcaaca aaacagcaac aaaaacattt cataaatatc acttgataga


5101
ctgtaagcac ctgcttaact ttgtgtccca aatatttagt gtgtatatat atatatatat


5161
atacacacac acacacatat atattcaaca aataaagcaa aatataacat gcatttcaca


5221
ttttgtcttt ccctgttacg attttaatag cagaactgta tgacaagttt aggtgatcct


5281
agcatatgtt aaattcaaat taatgtaaaa cagattaaca acaacaaaga aactgtctat


5341
ttgagtgaag tcatgctttc tattataata acttggcttc ggttatccat caaatgcaca


5401
cttatactgt tatctgattg tttataataa agaatactgt acttata










SEQ ID NO: 174 Human SMAD9 isoform 2 amino acid sequence (NP_005896.1)








1
mhsttpissl fsftspavkr llgwkqgdee ekwaekavds lvkklkkkkg amdelerals


61
cpgqpskcvt iprsldgrlq vshrkglphv iycrvwrwpd lqshhelkpl eccefpfgsk


121
qkevcinpyh yrrvetpvlp pvlvprhsey npqlsllakf rsaslhsepl mphnatypds


181
fqqppcsalp pspshafsqs pctasyphsp gspsepespy qhsdfrpvcy eepqhwcsva


241
yyelnnrvge tfqassrsvl idgftdpsnn rnrfclglls nvnrnstien trrhigkgvh


301
lyyvggevya ecvsdssifv qsrncnyqhg fhpatvckip sgcslkvfnn qlfaqllaqs


361
vhhgfevvye ltkmctirms fvkgwgaeyh rqdvtstpcw ieihlhgplq wldkvltqmg


421
sphnpissvs










SEQ ID NO: 175 Mouse SMAD9 cDNA sequence (NM_019483.5; CDS: 320-1612)








1
agcctgactg acgcctctgg agccgctgtc tcggtcccgc cgccgcccgg ccgaccctgc


61
agctaccgcg caaccggagt gcgcgggggg cacgcgtggc acctctcgga cagagtaagc


121
tggctccact ttccaagagc tttggaagac gtcagcccat ctcccagttt gaatcggacc


181
ccactgcttc cagaaggaaa ggcaagcttg ttcctatgac atccgtggac aggtacttgc


241
cgccgacctg cccggggccc tgcaagcctt gaaaggtctc atcctctttc cccgtgcagc


301
agcctgagct ctgcctccta tgcaccccag cacccccatc agctccctct tctccttcac


361
cagccccgca gtgaagcggc tgctgggctg gaagcaggga gatgaagagg agaagtgggc


421
agagaaggcg gtggactctt tggtgaagaa gttaaagaag aagaaaggcg ccatggatga


481
actggagagg gcgctgagct gcccgggtca gcctagcaag tgtgtcacca tcccacggtc


541
cctcgatgga cgcctccagg tgtcccaccg aaaggggctg ccccacgtca tctactgccg


601
cgtgtggcgc tggccagacc tgcagtccca tcatgagctg aagcccttgg agtgctgtga


661
gttcccgttc ggctccaagc agaaggaggt ctgcatcaac ccataccatt accgcagagt


721
ggagacccca gttctgcctc cagtgctggt accaagacac agcgagtaca accctcagct


781
cagcctcctg gccaagttcc gaagtgcctc gctgcacagc gaacccctca tgccgcacaa


841
cgccacctac cctgactctt tccagcagtc tctctgtccg gcaccgccct cctcgccagg


901
ccatgtgttt ccgcagtctc catgccccac cagctacccg cactcccccg gaagtccttc


961
cgagtcagac agtccctatc aacactcaga cttccggcca gtttgctacg aggaacccca


1021
gcactggtgt tctgttgcct actacgaact aaacaaccgg gtcggagaga ctttccaggc


1081
gtcctcgcgg agcgtgctca tagacggctt caccgaccct tccaataaca ggaataggtt


1141
ctgccttggg cttctctcaa atgtaaacag aaactcgacc atagaaaaca ccaggaggca


1201
cattggaaag ggtgtgcatt tgtactacgt tgggggcgag gtgtatgcgg agtgcgtgag


1261
cgacagcagc atctttgtcc agagccggaa ctgcaactac cagcacggct tccacccggc


1321
caccgtctgc aagatcccca gcggctgcag cctcaaggtc ttcaacaacc agctcttcgc


1381
ccagctgctc gcccagtccg tgcaccacgg ctttgaagtg gtgtatgagc tgacgaagat


1441
gtgcacgatt cggatgagct ttgtgaaggg ctggggagca gagtatcatc gccaggatgt


1501
cacgagcacc ccctgctgga tcgagatcca tcttcatgga ccgctgcagt ggttggataa


1561
ggtgctcact cagatgggct ccccacacaa ccctatctct tcagtgtctt aagtcacgtc


1621
gtcagccacg ttgccacaga acagactcgg gcaggggctt ccatcgtggc aaccgcagct


1681
aatgcagggt tccggatgca gatgtaaata cacgtgtaac gcatccgagt cacgtttata


1741
tcaccgtttg ttttgtgcta cctacttaac ctggggccag tgcggtgtgg tcgaagaagc


1801
gtggtttctc tctgatggga gccaagtctt ctgtgagagg gaaacagcac gtgagggcgt


1861
cggcaggact caaggccacc gagtcagctc atcgtcactc cacaggaggt tgtgccccac


1921
atggaaaaca caaagctgct tacacagaag gaataggagc actagagcaa aatcagtcac


1981
acacaagtgg ttttaaaaag acctcacttg caatgtgagt gtcaagaaag aaaaccaagc


2041
ttgtccaggg acctgtgaga taaagccaca gaaactttat ctccgaagct gaaatacaca


2101
tagccaggta ctgtgctgac ggcaggtaca ttcaaccaga tctaaactgt gattggagag


2161
ggagaaactg tgaagcttgg agtcagtggc ctcaatctaa aacaagcaag caggcaggca


2221
ggcaggcggg cgggcgggcg ggcaggcggg tgggcaggca ggcaagcaaa gccaaggctc


2281
ttaagggaaa ccggcctgag aggaggcttg atccagggtt agcccagaat tcaggcccgg


2341
aagcacaggg aactcctgcg tccactctgg aagccatctt cccgtcttcc cgtccctcct


2401
gtctgacctt gcagatggct gcctgccctg tgcacactac aaaccccgtg cagagatgaa


2461
gctgtagact ggaaggttgg gagggaagtg caggctaggc agggcatccc ttgcctcatt


2521
tttcctcctg gtgacaaata gcaattagtg acagatgatt caaacaagag caaagccttg


2581
ggaaagctcg aggcatcttt ggatcttatt tatgcatctc tcagcctggc acctatgtta


2641
agttattagc tggttacatc agtgcagcct cttctaaagc tattaaatac ctggatatag


2701
cttcccaggt gaagtaggaa tgtttcatat gccctacatt tttttatttt tatgaggaaa


2761
cagtggtagt gaataataaa gcatctttaa aaaacacctt atgtgtatat agacatgcat


2821
atatcagctc attccctctg ttggatgata agggaaatat cctccagact tcaaggtaca


2881
tgccactcat taggcacccc attgcttcta agtttacttc aagccctttg aaaaggatta


2941
tgtaggatgg catttattgt ttaaaggata gagcttccat aatatgatag agatattata


3001
tcggaaactc atttcgtctc aaactaccac ttagagtgta taagaaaaaa aacccaagca


3061
tgtcgattca ttaagtctgt cttgtgcatt tgtgtgtact gggtacagtg tcaggtacca


3121
gggaatcaaa cgcacattag aggcagtccc cacctccata acgccagaca tctaacggta


3181
aaccatttgc acagacatca ggtctcagaa ctttaaaaac cccacacatg tgaatcttct


3241
tgggctcgaa aaataacata atcgagttct gaacaatagt taagaactct attgtaataa


3301
ctatattggg attttatgtc tcctcagaac acttgagtaa tttatctttt cataactact


3361
tccattccta gccaccccac ctcctggaat ccctattttt ttctgatatt tctcctggtt


3421
tcttccttgg aaaagccatg tgtacccatc taaggacaca aagcattgtc ccagatttcc


3481
caccgcccct ttgatctcct cacaagtggc caaatatccc tggcaatctg tagttgtaag


3541
aaactattca ggagtaggag cttcagggtg tagtggtacc gtggtacctg cctttgatct


3601
cagcagcagg gagacagagg caggtggatc cctgtgaatt caggcctgac ctggtctata


3661
taaggagtta caggacagcc agggctatac actgaaaccc tgtctcaaaa caaaagtaga


3721
agcttaaaaa caaaactaaa aaccaaacaa acaagtaaac tacttggact tccttgcagt


3781
gttaagaaat caaaatattg aagcgtgtct gatttctttg agaaaggaat catgacctag


3841
gttcatatgt atattatcag agaatttagc tttgaagaga tataagtcct atgcttgtat


3901
agcagagtca cattttaatg aattttcccc ctttggctgt taagagatct aaacgtatca


3961
taacgtaatc cttgacttca actcctctga gtgaccatgt ggcgatcatt ccatgaagct


4021
gacaagcaaa cttatgctgc gtaggttgtt ttacagggtg aaggggaaag tgggcagcca


4081
ggcctttgca cactgcaagt tgcctcaggc agggtcaggc aatggagatc tgtatcggtt


4141
tggcttgccc acaagaccca gaatgtttat cactgtgtac aagtcagtat gtgtgagtct


4201
tagcaaaaat aagacatgat cagtttgttt cagctaagtg attacaactg tttcagaact


4261
aagaagacac caccttgtta acatacacac ttcggtgttg tgttgtagag tcagcaaaac


4321
tctctagcat ttagaatatt cttttcattg tgttctaagg gtggagttat cctcataacg


4381
acaacagaaa gaagagtagc aaaatcattt tataaaaatc gcttgctgga ctttaagctc


4441
ctgcttaatg ctgagtatgt tccagatatt tcatgtatgt atttaataaa gtaaaatata


4501
ccatgcattc cacatcgtct tacctgctag agtcaagagc cgaactttgc aagggtaggt


4561
aaccctcaca tatgttcata ataagttctt tttttggggg gagagggagg ttcaagacag


4621
ggtttctctg tatagccctg gctgtcctgg aactcgcttt gtagaacagg ctggcctcaa


4681
actcagaaat ctgcttgcct ctgcctcccg agtgctggga ttaaaggcgt gcaccaccac


4741
gtccggctct catgataaat tcgaatgtat ataaaacaga cagccaagat tactctttga


4801
ttcccagaag ccttgccttc ctgaaatgcc acacaccaca ctttggtagt ctgtgctaga


4861
caatgataca ccttttggct tatttttctt tcaaactcta ggaaatactt ctatgtatat


4921
gatctatggc tccttaagat gcttaatcat aaactgttct acttagaaaa tgagcttttt


4981
aagaagtctt catgctgtaa aaactttggt ggcactataa caaaaaagac atcttcgaat


5041
atttggcatt aatgtgtaat tttaatgata ctttgcagaa tttttagagg tgtttaacta


5101
ctgctcccca gcttagcacc aggacacaca actcaaaccc tttgtatggt aaagctgttg


5161
ttattaaaaa gtgaatttaa tacacactgt cgtttgagca tcctacctta gcaactcaac


5221
agccacgtcc atcaaggaac atgtctatag gaagatgttt agcatgtgat gcttaaaaca


5281
cctggatata taggggaact ttcactaaaa actcatttat ttttcatatg ccatgaaata


5341
tgtttaactg attaaaatgt tttctaagag aagcttgtga










SEQ ID NO: 176 Mouse SMAD9 amino acid sequence (NP_062356.3)








1
mhpstpissl fsftspavkr llgwkqgdee ekwaekavds lvkklkkkkg amdelerals


61
cpgqpskcvt iprsldgrlq vshrkglphv iycrvwrwpd lqshhelkpl eccefpfgsk


121
qkevcinpyh yrrvetpvlp pvlvprhsey npqlsllakf rsaslhsepl mphnatypds


181
fqqslcpapp sspghvfpqs pcptsyphsp gspsesdspy qhsdfrpvcy eepqhwcsva


241
yyelnnrvge tfqassrsvl idgftdpsnn rnrfclglls nvnrnstien trrhigkgvh


301
lyyvggevya ecvsdssifv qsrncnyqhg fhpatvckip sgcslkvfnn qlfaqllaqs


361
vhhgfevvye ltkmctirms fvkgwgaeyh rqdvtstpcw ieihlhgplq wldkvltqmg


421
sphnpissvs









Included in Table 1 are nucleic acid molecules comprising a nucleic acid sequence having at least 30%, 40%, 50%, 60%, 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more identity to the region encoding the DNA binding domain or across their full length with a nucleic acid sequence of any SEQ ID NO listed in Table 1. Such nucleic acid molecules can encode a polypeptide having a function of the full-length polypeptide as described further herein.


Included in Table 1 are polypeptide molecules comprising an amino acid sequence having at least 30%, 40%, 50%, 60%, 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or more identity to the DNA binding domain or across their full length with an amino acid sequence of any SEQ ID NO listed in Table 1. Such polypeptides can have a function of the full-length polypeptide as described further herein.









TABLE 2







Smad6


Smad7


SEQ ID NO: 177 Human Smad6 cDNA sequence (NM_005585.5; CDS: 1024-2514)








1
atatgatggg aggcagccaa tgactccgcg gcgctcctcc gggggccctc agtgtgcgtt





61
tgaggagaac aaaaaagaga gagagagccg agcgggggag cgatcgaggg agctgagccg





121
agagaaagag ccgccgggcg ctgcctcgcc agacctcgct gggaccccgg ggccaccggg





181
aggcactttt gtggaggggg gagggggggc gacctcggca gcctcggcgc acgaagcgtc





241
cgagggcagc gtggggcggg ctgcgacctc tgcatcggtg gactgcattt ttaattaagg





301
attcccagca gctctttggg atttttacag cttccactca tgtgttgaca cccgcgtcca





361
ggagaaactc gctccaagtg catctagcgc ctgggacctg agacggcgtt ggcctttcgt





421
gcatgcaaat ccagggattt aggttttgtt tgggatttcc ttttctttct ttcctttttt





481
ttttcttttt gcagggagta agaagggagc tgggggtatc aacaagcctg cctttcggat





541
cctgcgggaa aagcccatgt agttaagcgc tttggtttaa aaaaaaggca aggtaaaggc





601
agggctttcc agacacattt aggggttcgc gcgagcgctt tgtgctcatg gaccagccgc





661
acaacttttg aaggctcgcc ggcccatgtg gggtctttct ggcggcgcgc cgcctgcagc





721
ccccctaaag cgcgggggct ggagttgttg agcagccccg ccgctgtggt ccatgtagcc





781
gctggccgcg cgcggactgc ggctcggcgt gcgcgtgttc ccggccgtcc cgcctcggcg





841
agctccctca tgttgtcgcc ctgcggcgcc ccttcgacga caggctgtgc gcggtctgca





901
cggcgctccg cggcggagct tcatgtgggg ctgcgacccg cgcagccggc gcctcgctga





961
gggaacggac ccccggtaac cggagaccgc ctccccccca cccctggcgc caaaggatat





1021
cgtatgttca ggtccaaacg ctcggggctg gtgcggcgac tttggcgaag tcgtgtggtc





1081
cccgaccggg aggaaggcgg cagcggcggc ggcggtggcg gcgacgagga tgggagcttg





1141
ggcagccgag ctgagccggc cccgcgggca agagagggcg gaggctgcgg ccgctccgaa





1201
gtccgcccgg tagccccgcg gcggccccgg gacgcagtgg gacagcgagg cgcccagggc





1261
gcggggaggc gccggcgcgc agggggcccc ccgaggccca tgtcggagcc aggggccggc





1321
gctgggagct ccctgctgga cgtggcggag ccgggaggcc cgggctggct gcccgagagt





1381
gactgcgaga cggtgacctg ctgtctcttt tcggagcggg acgccgccgg cgcgccccgg





1441
gacgccagcg accccctggc cggggcggcc ctggagccgg cgggcggcgg gcggagtcgc





1501
gaagcgcgct cgcggctgct gctgctggag caggaactca aaaccgtcac gtactcgctg





1561
ctgaagcggc tcaaggagcg ctcgctggac acgctgctgg aggcggtgga gtcccgcggc





1621
ggcgtgccgg gcggctgcgt gctggtgccg cgcgccgacc tccgcctggg cggccagccc





1681
gcgccgccgc agctgctgct cggccgcctc tttcgctggc ccgacctgca gcacgccgtg





1741
gagctgaagc ccctgtgcgg ctgccacagc ttcgccgccg ccgccgacgg ccctaccgtg





1801
tgctgcaacc cctaccactt cagccggctc tgcgggcccg aatctccgcc acctccctac





1861
tctcggctgt ctcctcgcga cgagtacaag ccactggatc tgtccgattc cacattgtct





1921
tacactgaaa cggaggctac caactccctc atcactgctc cgggtgaatt ctcagacgcc





1981
agcatgtctc cggacgccac caagccgagc cactggtgca gcgtggcgta ctgggagcac





2041
cggacgcgcg tgggccgcct ctatgcggtg tacgaccagg ccgtcagcat cttctacgac





2101
ctacctcagg gcagcggctt ctgcctgggc cagctcaacc tggagcagcg cagcgagtcg





2161
gtgcggcgaa cgcgcagcaa gatcggcttc ggcatcctgc tcagcaagga gcccgacggc





2221
gtgtgggcct acaaccgcgg cgagcacccc atcttcgtca actccccgac gctggacgcg





2281
cccggcggcc gcgccctggt cgtgcgcaag gtgccccccg gctactccat caaggtgttc





2341
gacttcgagc gctcgggcct gcagcacgcg cccgagcccg acgccgccga cggcccctac





2401
gaccccaaca gcgtccgcat cagcttcgcc aagggctggg ggccctgcta ctcccggcag





2461
ttcatcacct cctgcccctg ctggctggag atcctcctca acaaccccag atagtggcgg





2521
ccccggcggg aggggcgggt gggaggccgc ggccaccgcc acctgccggc ctcgagaggg





2581
gccgatgccc agagacacag cccccacgga caaaaccccc cagatatcat ctacctagat





2641
ttaatataaa gttttatata ttatatggaa atatatatta tacttgtaat tatggagtca





2701
tttttacaat gtaattattt atgtatggtg caatgtgtgt atatggacaa aacaagaaag





2761
acgcactttg gcttataatt ctttcaatac agatatattt tctttctctt cctccttcct





2821
cttccttact ttttatatat atatataaag aaaatgatac agcagagcta ggtggaaaag





2881
cctgggtttg gtgtatggtt tttgagatat taatgcccag acaaaaagct aataccagtc





2941
actcgataat aaagtattcg cattatagtt ttttttaaac tgtcttcttt ttacaaagag





3001
gggcaggtag ggcttcagcg gatttctgac ccatcatgta ccttgaaact tgacctcagt





3061
tttcaagttt tacttttatt ggataaagac agaacaaatt gaaaagggag gaaagtcaca





3121
tttactctta agtaaaccag agaaagttct gttgttcctt cctgcccatg gctatggggt





3181
gtccagtgga tagggatggc ggtggggaaa agaatacact ggccatttat cctggacaag





3241
ctcttccagt ctgatggagg aggttcatgc cctagcctag aaaggcccag gtccatgccc





3301
cccatctttg agttatgagc aagctaaaag aagacactat ttctcaccat tttgtggaaa





3361
tggcctgggg aacaaagact gaaatgggcc ttgagcccac ctgctacctt gcagagaacc





3421
atctcgagcc ccgtagatct ttttaggacc tccacaggct atttcccacc ccccagccaa





3481
aaatagctca gaatctgccc atccagggct gtattaatga tttatgtaaa ggcagatggt





3541
ttatttctac tttgtgaaag ggaaaagttg aggttctgga aggttaaatg atttgctcat





3601
gagacaaaat caaggttaga agttacatgg aattgtagga ccagagccat atcattagat





3661
cagctttctg aagaatattc tcaaaaaaag aaagtctcct tggccagata actaagagga





3721
atgtttcatt gtatatcttt tttcttggag atttatatta acatattaag tgctctgaga





3781
agtcctgtgt attatctctt gctgcataat aaattatccc caaactta










SEQ ID NO: 178 Human Smad6 amino acid sequence (NP_005576.3)








1
mfrskrsglv rrlwrsrvvp dreeggsggg gggdedgslg sraepaprar egggcgrsev





61
rpvaprrprd avgqrgaqga grrrraggpp rpmsepgaga gsslldvaep ggpgwlpesd





121
cetvtcclfs erdaagaprd asdplagaal epagggrsre arsrlllleq elktvtysll





181
krlkersldt lleavesrgg vpggcvlvpr adlrlggqpa ppqlllgrlf rwpdlqhave





241
lkplcgchsf aaaadgptvc cnpyhfsrlc gpesppppys rlsprdeykp ldlsdstlsy





301
teteatnsli tapgefsdas mspdatkpsh wcsvaywehr trvgrlyavy dqavsifydl





361
pqgsgfclgq lnleqrsesv rrtrskigfg illskepdgv waynrgehpi fvnsptldap





421
ggralvvrkv ppgysikvfd fersglqhap epdaadgpyd pnsvrisfak gwgpcysrqf





481
itscpcwlei llnnpr










SEQ ID NO: 179 Mouse Smad6 cDNA sequence (NM_008542.3; CDS: 1036-2523)








1
agactggcat atgatgggag gcagccaatg actccgcggc gctcctccgg gggccctcag





61
tgtgcgtttg aggagaacaa aaaagagaga gagcgccgag agggggaacg agcgagggag





121
ctgagtccag agaaagagcc gccgggcgct gcctcgccaa acctcgctgg gaccgcgggg





181
ccaccaggag gcactttggt gaaggggggg gggggcgacc tcggcagccg cggcgcccga





241
agcgacccag cgcagcgtgg ggcgggctgc gacctctgct tcggtggatt gcatttttaa





301
ttaaggattc ctagcagctc tttgggattt tttttttccg gcttccactc atgtgttgac





361
acccgcgttc aggagagact tgccccaagt gcaccgagcg cccgggacct gagacggaat





421
tgcttttcgt gcgtgcaaaa tccaagcatt ttgagttttg tttgggacct ttttcttgct





481
ttgcttttat ttctattttt attttgttgc agggatatgg gagttatcca caagccttag





541
tttcggatcc tgcagggaaa gcccatgtag catagcttgg cttttgaagg cagagttgtg





601
cagacacatt tgggggcacg acgcaagcgc tttgtgctcg tgtaccagcc gcgcaacttt





661
tgaaggctcg ccggcccatg cagggtgtct ctagcatcgt ttcgctggtg gcttccctaa





721
ggctccaaag cagctggagt tgagcggtcc cggcccatcg tgatccatgt agcccgctgg





781
tccctcgcgg actgaggctc aacacgcgcg tgttcccggc ccggcccggc ccggcttggc





841
ccggcgcgag ctccctcatg ttgcagccct gcggtgcccc ttcgacgaca ggctgtgcgc





901
ggtctgcacg gcgccccgcg gcagagcttc atgtggggct gcggcccgct cagccggcgc





961
ctcgttgagg gaacggaccc ccggtaaccg gagaccgcct cccctcccac caccccaggc





1021
gccaaagggt atcgtatgtt caggtctaaa cgttcggggc tggtgcggcg actttggcga





1081
agtcgtgtgg tccctgatcg ggaggaaggc agcggcggcg gcggtggtgt cgacgaggat





1141
gggagcctgg gcagccgagc tgagcctgcc ccgcgggcac gagagggcgg aggctgcagc





1201
cgctccgaag tccgctcggt agccccgcgg cggccccggg acgcggtggg accgcgaggc





1261
gccgcgatcg cgggcaggcg ccggcgcaca gggggcctcc cgaggcccgt gtcggagtcg





1321
ggggccgggg ctgggggctc cccgctggat gtggcggagc ctggaggccc aggctggctg





1381
cctgagagtg actgcgagac ggtgacctgc tgtctcttct ccgaacggga cgcagcaggc





1441
gcgccccggg actctggcga tccccaagcc agacagtccc cggagccgga ggagggcggc





1501
gggcctcgga gtcgcgaagc ccgctcgcga ctgctgcttc tggagcagga gctcaagacg





1561
gtcacgtact cgctgctcaa gaggctcaag gagcgttcgc tggacacgct gttggaggct





1621
gtggagtccc gaggcggcgt accgggcggc tgcgtgctgg tgccgcgcgc cgacctccgc





1681
ttgggcggcc agcccgcgcc accgcagctg ctgctcggcc gcctcttccg ctggccagac





1741
ctgcagcacg cagtggagct gaaacccctg tgcggctgcc acagctttac cgccgccgcc





1801
gacgggccca cggtgtgttg caacccctac cacttcagcc ggctctgcgg gccagaatca





1861
ccgccgcccc cctattctcg gctgtctcct cctgaccagt acaagccact ggatctgtcc





1921
gattctacat tgtcttacac tgaaaccgag gccaccaact ccctcatcac tgctccgggt





1981
gaattctcag atgccagcat gtctccggat gccaccaagc cgagccactg gtgcagcgtg





2041
gcgtactggg agcaccggac acgcgtgggc cgcctctatg cggtgtacga ccaggctgtc





2101
agcattttct acgacctacc tcagggcagc ggcttctgcc tgggccagct caacctggag





2161
cagcgcagtg agtcggtgcg gcgcacgcgc agcaagatcg gttttggcat actgctcagc





2221
aaggagccag acggcgtgtg ggcctacaac cggggcgagc accccatctt cgtcaactcc





2281
ccgacgctgg atgcgcccgg aggccgcgcc ctggtcgtgc gcaaggtgcc accgggttac





2341
tccatcaagg tgttcgactt tgagcgctca gggctgctgc agcacgcaga cgccgctcac





2401
ggcccctacg acccgcacag tgtgcgcatc agcttcgcca agggctgggg accctgctac





2461
tcgcgacagt tcatcacctc ctgcccctgt tggctggaga tcctactcaa caaccacaga





2521
tagcaatgcg gctgccactg tgccgcagcg tcccccaacc tctggggggc cagcgcccag





2581
agacaccacc ccagggacaa cctcgccctc cccccagata tcatctacct agatttaata





2641
taaagtttta tatattatat ggaaatatat attatacttg taattatgga gtcattttta





2701
caacgtaatt atttatatat ggtgcaatgt gtgtatatgg agaaacaaga aagacgcact





2761
ttggcttgta attctttcaa tacagatata tttttttctt tctttccctc tttccttttt





2821
taaagagaat tatacagtag aactaggtgg aaagcctagg tttggtgtat ggctttttta





2881
aaaaatatta atgcccagac caaaaaaaaa caaaacaaaa aacaaaaaaa ctaataccag





2941
tcactcttga taataaagtg tttgcattat a










SEQ ID NO: 180 Mouse Smad6 amino acid sequence (NP_032568.3)








1
mfrskrsglv rrlwrsrvvp dreegsgggg gvdedgslgs raepaprare gggcsrsevr





61
svaprrprda vgprgaaiag rrrrtgglpr pvsesgagag gspldvaepg gpgwlpesdc





121
etvtcclfse rdaagaprds gdpqarqspe peegggprsr earsrlllle qelktvtysl





181
lkrlkersld tlleavesrg gvpggcvlvp radlrlggqp appqlllgrl frwpdlqhav





241
elkplcgchs ftaaadgptv ccnpyhfsrl cgpesppppy srlsppdqyk pldlsdstls





301
yteteatnsl itapgefsda smspdatkps hwcsvayweh rtrvgrlyav ydqavsifyd





361
lpqgsgfclg qlnleqrses vrrtrskigf gillskepdg vwaynrgehp ifvnsptlda





421
pggralvvrk vppgysikvf dfersgllqh adaahgpydp hsvrisfakg wgpcysrqfi





481
tscpcwleil lnnhr










SEQ ID NO: 181 Human Smad7 transcript variant 1 cDNA sequence (NM_005904.3;


CDS: 288-1568)








1
cggagagccg cgcagggcgc gggccgcgcg gggtggggca gccggagcgc aggcccccga





61
tccccggcgg gcgcccccgg gcccccgcgc gcgccccggc ctccgggaga ctggcgcatg





121
ccacggagcg cccctcgggc cgccgccgct cctgcccggg cccctgctgc tgctgctgtc





181
gcctgcgcct gctgccccaa ctcggcgccc gacttcttca tggtgtgcgg aggtcatgtt





241
cgctccttag caggcaaacg acttttctcc tcgcctcctc gccccgcatg ttcaggacca





301
aacgatctgc gctcgtccgg cgtctctgga ggagccgtgc gcccggcggc gaggacgagg





361
aggagggcgc agggggaggt ggaggaggag gcgagctgcg gggagaaggg gcgacggaca





421
gccgagcgca tggggccggt ggcggcggcc cgggcagggc tggatgctgc ctgggcaagg





481
cggtgcgagg tgccaaaggt caccaccatc cccacccgcc agccgcgggc gccggcgcgg





541
ccgggggcgc cgaggcggat ctgaaggcgc tcacgcactc ggtgctcaag aaactgaagg





601
agcggcagct ggagctgctg ctccaggccg tggagtcccg cggcgggacg cgcaccgcgt





661
gcctcctgct gcccggccgc ctggactgca ggctgggccc gggggcgccc gccggcgcgc





721
agcctgcgca gccgccctcg tcctactcgc tccccctcct gctgtgcaaa gtgttcaggt





781
ggccggatct caggcattcc tcggaagtca agaggctgtg ttgctgtgaa tcttacggga





841
agatcaaccc cgagctggtg tgctgcaacc cccatcacct tagccgactc tgcgaactag





901
agtctccccc ccctccttac tccagatacc cgatggattt tctcaaacca actgcagact





961
gtccagatgc tgtgccttcc tccgctgaaa cagggggaac gaattatctg gcccctgggg





1021
ggctttcaga ttcccaactt cttctggagc ctggggatcg gtcacactgg tgcgtggtgg





1081
catactggga ggagaagacg agagtgggga ggctctactg tgtccaggag ccctctctgg





1141
atatcttcta tgatctacct caggggaatg gcttttgcct cggacagctc aattcggaca





1201
acaagagtca gctggtgcag aaggtgcgga gcaaaatcgg ctgcggcatc cagctgacgc





1261
gggaggtgga tggtgtgtgg gtgtacaacc gcagcagtta ccccatcttc atcaagtccg





1321
ccacactgga caacccggac tccaggacgc tgttggtaca caaggtgttc cccggtttct





1381
ccatcaaggc tttcgactac gagaaggcgt acagcctgca gcggcccaat gaccacgagt





1441
ttatgcagca gccgtggacg ggctttaccg tgcagatcag ctttgtgaag ggctggggcc





1501
agtgctacac ccgccagttc atcagcagct gcccgtgctg gctagaggtc atcttcaaca





1561
gccggtagcc gcgtgcggag gggacagagc gtgagctgag caggccacac ttcaaactac





1621
tttgctgcta atattttcct cctgagtgct tgcttttcat gcaaactctt tggtcgtttt





1681
ttttttgttt gttggttggt tttcttcttc tcgtcctcgt ttgtgttctg ttttgtttcg





1741
ctctttgaga aatagcttat gaaaagaatt gttgggggtt tttttggaag aaggggcagg





1801
tatgatcggc aggacaccct gataggaaga ggggaagcag aaatccaagc accaccaaac





1861
acagtgtatg aaggggggcg gtcatcattt cacttgtcag gagtgtgtgt gagtgtgagt





1921
gtgcggctgt gtgtgcacgc gtgtgcagga gcggcagatg gggagacaac gtgctctttg





1981
ttttgtgtct cttatggatg tccccagcag agaggtttgc agtcccaagc ggtgtctctc





2041
ctgccccttg gacacgctca gtggggcaga ggcagtacct gggcaagctg gcggctgggg





2101
tcccagcagc tgccaggagc acggctctgt ccccagcctg ggaaagcccc tgcccctcct





2161
ctccctcatc aaggacacgg gcctgtccac aggcttctga gcagcgagcc tgctagtggc





2221
cgaaccagaa ccaattattt tcatccttgt cttattccct tcctgccagc ccctgccatt





2281
gtagcgtctt tcttttttgg ccatctgctc ctggatctcc ctgagatggg cttcccaagg





2341
gctgccgggg cagccccctc acagtattgc tcacccagtg ccctctcccc tcagcctctc





2401
ccctgcctgc cctggtgaca tcaggttttt cccggactta gaaaaccagc tcagcactgc





2461
ctgctcccat cctgtgtgtt aagctctgct attaggccag caagcgggga tgtccctggg





2521
agggacatgc ttagcagtcc ccttccctcc aagaaggatt tggtccgtca taacccaagg





2581
taccatccta ggctgacacc taactcttct ttcatttctt ctacaactca tacactcgta





2641
tgatacttcg acactgttct tagctcaatg agcatgttta gactttaaca taagctattt





2701
ttctaactac aaaggtttaa atgaacaaga gaagcattct cattggaaat ttagcattgt





2761
agtgctttga gagagaaagg actcctgaaa aaaaacctga gatttattaa agaaaaaaat





2821
gtattttatg ttatatataa atatattatt acttgtaaat ataaagacgt tttataagca





2881
tcattattta tgtattgtgc aatgtgtata aacaagaaaa ataaagaaaa gatgcacttt





2941
gctttaatat aaatgcaaat aacaaatgcc aaattaaaaa agataaacac aagattggtg





3001
tttttttcta tgggtgttat cacctagctg aatgtttttc taaaggagtt tatgttccat





3061
taaacgattt ttaaaatgta cacttgaa










SEQ ID NO: 182 Human Smad7 isoform 1 amino acid sequence (NP_005895.1)








1
mfrtkrsalv rrlwrsrapg gedeeegagg gggggelrge gatdsrahga ggggpgragc





61
clgkavrgak ghhhphppaa gagaaggaea dlkalthsvl kklkerqlel llqavesrgg





121
trtaclllpg rldcrlgpga pagaqpaqpp ssyslplllc kvfrwpdlrh ssevkrlccc





181
esygkinpel vccnphhlsr lcelespppp ysrypmdflk ptadcpdavp ssaetggtny





241
lapgglsdsq lllepgdrsh wcvvayweek trvgrlycvq epsldifydl pqgngfclgq





301
lnsdnksqlv qkvrskigcg iqltrevdgv wvynrssypi fiksatldnp dsrtllvhkv





361
fpgfsikafd yekayslqrp ndhefmqqpw tgftvqisfv kgwgqcytrq fisscpcwle





421
vifnsr










SEQ ID NO: 183 Human Smad7 transcript variant 2 cDNA sequence


(NM_001190821.1; CDS: 288-1565)








1
cggagagccg cgcagggcgc gggccgcgcg gggtggggca gccggagcgc aggcccccga





61
tccccggcgg gcgcccccgg gcccccgcgc gcgccccggc ctccgggaga ctggcgcatg





121
ccacggagcg cccctcgggc cgccgccgct cctgcccggg cccctgctgc tgctgctgtc





181
gcctgcgcct gctgccccaa ctcggcgccc gacttcttca tggtgtgcgg aggtcatgtt





241
cgctccttag caggcaaacg acttttctcc tcgcctcctc gccccgcatg ttcaggacca





301
aacgatctgc gctcgtccgg cgtctctgga ggagccgtgc gcccggcggc gaggacgagg





361
aggagggcgc agggggaggt ggaggaggag gcgagctgcg gggagaaggg gcgacggaca





421
gccgagcgca tggggccggt ggcggcggcc cgggcagggc tggatgctgc ctgggcaagg





481
cggtgcgagg tgccaaaggt caccaccatc cccacccgcc agccgcgggc gccggcgcgg





541
ccgggggcgc cgaggcggat ctgaaggcgc tcacgcactc ggtgctcaag aaactgaagg





601
agcggcagct ggagctgctg ctccaggccg tggagtcccg cggcgggacg cgcaccgcgt





661
gcctcctgct gcccggccgc ctggactgca ggctgggccc gggggcgccc gccggcgcgc





721
agcctgcgca gccgccctcg tcctactcgc tccccctcct gctgtgcaaa gtgttcaggt





781
ggccggatct caggcattcc tcggaagtca agaggctgtg ttgctgtgaa tcttacggga





841
agatcaaccc cgagctggtg tgctgcaacc cccatcacct tagccgactc tgcgaactag





901
agtctccccc ccctccttac tccagatacc cgatggattt tctcaaacca actgactgtc





961
cagatgctgt gccttcctcc gctgaaacag ggggaacgaa ttatctggcc cctggggggc





1021
tttcagattc ccaacttctt ctggagcctg gggatcggtc acactggtgc gtggtggcat





1081
actgggagga gaagacgaga gtggggaggc tctactgtgt ccaggagccc tctctggata





1141
tcttctatga tctacctcag gggaatggct tttgcctcgg acagctcaat tcggacaaca





1201
agagtcagct ggtgcagaag gtgcggagca aaatcggctg cggcatccag ctgacgcggg





1261
aggtggatgg tgtgtgggtg tacaaccgca gcagttaccc catcttcatc aagtccgcca





1321
cactggacaa cccggactcc aggacgctgt tggtacacaa ggtgttcccc ggtttctcca





1381
tcaaggcttt cgactacgag aaggcgtaca gcctgcagcg gcccaatgac cacgagttta





1441
tgcagcagcc gtggacgggc tttaccgtgc agatcagctt tgtgaagggc tggggccagt





1501
gctacacccg ccagttcatc agcagctgcc cgtgctggct agaggtcatc ttcaacagcc





1561
ggtagccgcg tgcggagggg acagagcgtg agctgagcag gccacacttc aaactacttt





1621
gctgctaata ttttcctcct gagtgcttgc ttttcatgca aactctttgg tcgttttttt





1681
tttgtttgtt ggttggtttt cttcttctcg tcctcgtttg tgttctgttt tgtttcgctc





1741
tttgagaaat agcttatgaa aagaattgtt gggggttttt ttggaagaag gggcaggtat





1801
gatcggcagg acaccctgat aggaagaggg gaagcagaaa tccaagcacc accaaacaca





1861
gtgtatgaag gggggcggtc atcatttcac ttgtcaggag tgtgtgtgag tgtgagtgtg





1921
cggctgtgtg tgcacgcgtg tgcaggagcg gcagatgggg agacaacgtg ctctttgttt





1981
tgtgtctctt atggatgtcc ccagcagaga ggtttgcagt cccaagcggt gtctctcctg





2041
ccccttggac acgctcagtg gggcagaggc agtacctggg caagctggcg gctggggtcc





2101
cagcagctgc caggagcacg gctctgtccc cagcctggga aagcccctgc ccctcctctc





2161
cctcatcaag gacacgggcc tgtccacagg cttctgagca gcgagcctgc tagtggccga





2221
accagaacca attattttca tocttgtott attcccttcc tgccagcccc tgccattgta





2281
gcgtctttct tttttggcca tctgctcctg gatctccctg agatgggctt cccaagggct





2341
gccggggcag ccccctcaca gtattgctca cccagtgccc tctcccctca gcctctcccc





2401
tgcctgccct ggtgacatca ggtttttccc ggacttagaa aaccagctca gcactgcctg





2461
ctcccatcct gtgtgttaag ctctgctatt aggccagcaa gcggggatgt ccctgggagg





2521
gacatgctta gcagtcccct tccctccaag aaggatttgg tccgtcataa cccaaggtac





2581
catcctaggc tgacacctaa ctcttctttc atttcttcta caactcatac actcgtatga





2641
tacttcgaca ctgttcttag ctcaatgagc atgtttagac tttaacataa gctatttttc





2701
taactacaaa ggtttaaatg aacaagagaa gcattctcat tggaaattta gcattgtagt





2761
gctttgagag agaaaggact cctgaaaaaa aacctgagat ttattaaaga aaaaaatgta





2821
ttttatgtta tatataaata tattattact tgtaaatata aagacgtttt ataagcatca





2881
ttatttatgt attgtgcaat gtgtataaac aagaaaaata aagaaaagat gcactttgct





2941
ttaatataaa tgcaaataac aaatgccaaa ttaaaaaaga taaacacaag attggtgttt





3001
ttttctatgg gtgttatcac ctagctgaat gtttttctaa aggagtttat gttccattaa





3061
acgattttta aaatgtacac ttgaa










SEQ ID NO: 184 Human Smad7 isoform 2 amino acid sequence (NP_001177750.1)








1
mfrtkrsalv rrlwrsrapg gedeeegagg gggggelrge gatdsrahga ggggpgragc





61
clgkavrgak ghhhphppaa gagaaggaea dlkalthsvl kklkerqlel llqavesrgg





121
trtaclllpg rldcrlgpga pagaqpaqpp ssyslplllc kvfrwpdlrh ssevkrlccc





181
esygkinpel vccnphhlsr lcelespppp ysrypmdflk ptdcpdavps saetggtnyl





241
apgglsdsql llepgdrshw cvvayweekt rvgrlycvqe psldifydlp qgngfclgql





301
nsdnksqlvq kvrskigcgi qltrevdgvw vynrssypif iksatldnpd srtllvhkvf





361
pgfsikafdy ekayslqrpn dhefmqqpwt gftvqisfvk gwgqcytrqf isscpcwlev





421
ifnsr










SEQ ID NO: 185 Human Smad7 transcript variant 3 cDNA sequence


NM_001190822.2; CDS: 138-773)








1
agtaaatacg gagaatcacg tcgaacacca gtggcccaga tactgtcgtg gccgcgcacc





61
tttggagttt tggggcaaag agagttggat ggaaggccga actggagtct cccccccctc





121
cttactccag atacccgatg gattttctca aaccaactgc agactgtcca gatgctgtgc





181
cttcctccgc tgaaacaggg ggaacgaatt atctggcccc tggggggctt tcagattccc





241
aacttcttct ggagcctggg gatcggtcac actggtgcgt ggtggcatac tgggaggaga





301
agacgagagt ggggaggctc tactgtgtcc aggagccctc tctggatatc ttctatgatc





361
tacctcaggg gaatggcttt tgcctcggac agctcaattc ggacaacaag agtcagctgg





421
tgcagaaggt gcggagcaaa atcggctgcg gcatccagct gacgcgggag gtggatggtg





481
tgtgggtgta caaccgcagc agttacccca tcttcatcaa gtccgccaca ctggacaacc





541
cggactccag gacgctgttg gtacacaagg tgttccccgg tttctccatc aaggctttcg





601
actacgagaa ggcgtacagc ctgcagcggc ccaatgacca cgagtttatg cagcagccgt





661
ggacgggctt taccgtgcag atcagctttg tgaagggctg gggccagtgc tacacccgcc





721
agttcatcag cagctgcccg tgctggctag aggtcatctt caacagccgg tagccgcgtg





781
cggaggggac agagcgtgag ctgagcaggc cacacttcaa actactttgc tgctaatatt





841
ttcctcctga gtgcttgctt ttcatgcaaa ctctttggtc gttttttttt tgtttgttgg





901
ttggttttct tcttctcgtc ctcgtttgtg ttctgttttg tttcgctctt tgagaaatag





961
cttatgaaaa gaattgttgg gggttttttt ggaagaaggg gcaggtatga tcggcaggac





1021
accctgatag gaagagggga agcagaaatc caagcaccac caaacacagt gtatgaaggg





1081
gggcggtcat catttcactt gtcaggagtg tgtgtgagtg tgagtgtgcg gctgtgtgtg





1141
cacgcgtgtg caggagcggc agatggggag acaacgtgct ctttgttttg tgtctcttat





1201
ggatgtcccc agcagagagg tttgcagtcc caagcggtgt ctctcctgcc ccttggacac





1261
gctcagtggg gcagaggcag tacctgggca agctggcggc tggggtccca gcagctgcca





1321
ggagcacggc tctgtcccca gcctgggaaa gcccctgccc ctcctctccc tcatcaagga





1381
cacgggcctg tccacaggct tctgagcagc gagcctgcta gtggccgaac cagaaccaat





1441
tattttcatc cttgtcttat tcccttcctg ccagcccctg ccattgtagc gtctttcttt





1501
tttggccatc tgctcctgga tctccctgag atgggcttcc caagggctgc cggggcagcc





1561
ccctcacagt attgctcacc cagtgccctc tcccctcagc ctctcccctg cctgccctgg





1621
tgacatcagg tttttcccgg acttagaaaa ccagctcagc actgcctgct cccatcctgt





1681
gtgttaagct ctgctattag gccagcaagc ggggatgtcc ctgggaggga catgcttagc





1741
agtccccttc cctccaagaa ggatttggtc cgtcataacc caaggtacca tcctaggctg





1801
acacctaact cttctttcat ttcttctaca actcatacac tcgtatgata cttcgacact





1861
gttcttagct caatgagcat gtttagactt taacataagc tatttttcta actacaaagg





1921
tttaaatgaa caagagaagc attctcattg gaaatttagc attgtagtgc tttgagagag





1981
aaaggactcc tgaaaaaaaa cctgagattt attaaagaaa aaaatgtatt ttatgttata





2041
tataaatata ttattacttg taaatataaa gacgttttat aagcatcatt atttatgtat





2101
tgtgcaatgt gtataaacaa gaaaaataaa gaaaagatgc actttgcttt aatataaatg





2161
caaataacaa atgccaaatt aaaaaagata aacacaagat tggtgttttt ttctatgggt





2221
gttatcacct agctgaatgt ttttctaaag gagtttatgt tccattaaac gatttttaaa





2281
atgtacactt ga










SEQ ID NO: 186 Human Smad7 isoform 3 amino acid sequence (NP_001177751.1)








1
mdflkptadc pdavpssaet ggtnylapgg lsdsqlllep gdrshwcvva yweektrvgr





61
lycvqepsld ifydlpqgng fclgqlnsdn ksqlvqkvrs kigcgiqltr evdgvwvynr





121
ssypifiksa tldnpdsrtl lvhkvfpgfs ikafdyekay slqrpndhef mqqpwtgftv





181
qisfvkgwgq cytrqfissc pcwlevifns r










SEQ ID NO: 187 Human Smad7 transcript variant 4 cDNA sequence


NM_001190823.1; CDS: 150-866)








1
agtctcattg agcctgactc gagtaatgat taactggctg cccggagccc agacgggtga





61
caaggtgctg tggtctgtct tacgatgggc agtgaagcct gagcagacca ttaataatca





121
gcatcaaggc cgcgagtcag ccttttggaa tgtgtggttt gtctttcatg ctgtttagag





181
cgtgcttaaa gatggatctt ggtgttttta tttgtgtatt tatttctttc tctccccttt





241
tcaaatccac agcagactgt ccagatgctg tgccttcctc cgctgaaaca gggggaacga





301
attatctggc ccctgggggg ctttcagatt cccaacttct tctggagcct ggggatcggt





361
cacactggtg cgtggtggca tactgggagg agaagacgag agtggggagg ctctactgtg





421
tccaggagcc ctctctggat atottctatg atctacctca ggggaatggc ttttgcctcg





481
gacagctcaa ttcggacaac aagagtcagc tggtgcagaa ggtgcggagc aaaatcggct





541
gcggcatcca gctgacgcgg gaggtggatg gtgtgtgggt gtacaaccgc agcagttacc





601
ccatcttcat caagtccgcc acactggaca acccggactc caggacgctg ttggtacaca





661
aggtgttccc cggtttctcc atcaaggctt tcgactacga gaaggcgtac agcctgcagc





721
ggcccaatga ccacgagttt atgcagcagc cgtggacggg ctttaccgtg cagatcagct





781
ttgtgaaggg ctggggccag tgctacaccc gccagttcat cagcagctgc ccgtgctggc





841
tagaggtcat cttcaacagc cggtagccgc gtgcggaggg gacagagcgt gagctgagca





901
ggccacactt caaactactt tgctgctaat attttcctcc tgagtgcttg cttttcatgc





961
aaactctttg gtcgtttttt ttttgtttgt tggttggttt tcttcttctc gtcctcgttt





1021
gtgttctgtt ttgtttcgct ctttgagaaa tagcttatga aaagaattgt tgggggtttt





1081
tttggaagaa ggggcaggta tgatcggcag gacaccctga taggaagagg ggaagcagaa





1141
atccaagcac caccaaacac agtgtatgaa ggggggcggt catcatttca cttgtcagga





1201
gtgtgtgtga gtgtgagtgt gcggctgtgt gtgcacgcgt gtgcaggagc ggcagatggg





1261
gagacaacgt gctctttgtt ttgtgtctct tatggatgtc cccagcagag aggtttgcag





1321
tcccaagcgg tgtctctcct gccccttgga cacgctcagt ggggcagagg cagtacctgg





1381
gcaagctggc ggctggggtc ccagcagctg ccaggagcac ggctctgtcc ccagcctggg





1441
aaagcccctg cccctcctct ccctcatcaa ggacacgggc ctgtccacag gcttctgagc





1501
agcgagcctg ctagtggccg aaccagaacc aattattttc atccttgtct tattcccttc





1561
ctgccagccc ctgccattgt agcgtctttc ttttttggcc atctgctcct ggatctccct





1621
gagatgggct tcccaagggc tgccggggca gccccctcac agtattgctc acccagtgcc





1681
ctctcccctc agcctctccc ctgcctgccc tggtgacatc aggtttttcc cggacttaga





1741
aaaccagctc agcactgcct gctcccatcc tgtgtgttaa gctctgctat taggccagca





1801
agcggggatg tccctgggag ggacatgctt agcagtcccc ttccctccaa gaaggatttg





1861
gtccgtcata acccaaggta ccatcctagg ctgacaccta actcttcttt catttcttct





1921
acaactcata cactcgtatg atacttcgac actgttctta gctcaatgag catgtttaga





1981
ctttaacata agctattttt ctaactacaa aggtttaaat gaacaagaga agcattctca





2041
ttggaaattt agcattgtag tgctttgaga gagaaaggac tcctgaaaaa aaacctgaga





2101
tttattaaag aaaaaaatgt attttatgtt atatataaat atattattac ttgtaaatat





2161
aaagacgttt tataagcatc attatttatg tattgtgcaa tgtgtataaa caagaaaaat





2221
aaagaaaaga tgcactttgc tttaatataa atgcaaataa caaatgccaa attaaaaaag





2281
ataaacacaa gattggtgtt tttttctatg ggtgttatca cctagctgaa tgtttttcta





2341
aaggagttta tgttccatta aacgattttt aaaatgtaca cttgaa










SEQ ID NO: 188 Human Smad7 isoform 4 amino acid sequence (NP_001177752.1)








1
mcglsfmlfr aclkmdlgvf icvfisfspl fkstadcpda vpssaetggt nylapgglsd





61
sqlllepgdr shwavvaywe ektrvgrlyc vqepsldify dlpqgngfcl gqlnsdnksq





121
lvqkvrskig cgiqltrevd gvwvynrssy pifiksatld npdsrtllvh kvfpgfsika





181
fdyekayslq rpndhefmqq pwtgftvqis fvkgwgqcyt rqfisscpcw levifnsr










SEQ ID NO: 189 Mouse Smad7 cDNA sequence (NM_001042660.1; CDS: 1592-


2872)








1
ttcgctcgct gatcggcgca cagaggatct tgtccccgag ctgcgccagc agagccagcc





61
gggcgcctcg ctcggtccgc tcgccgcgcc ggagagagct gcctgagacg cagccagcca





121
gccagccggc gccacgccgc cgagcgctcg gccccggagt ccctgagtgc ggcgcggcga





181
gcccccagcg gcggcagaag gactcgagcg ccaggagagg gcggacgggg gacgaggagg





241
ctccggggcg cgacgaagag agtctccgag gaagaggctg cgagaggaca cccgggcctc





301
ctgccgccac tgtcgggtcg gggccagcag ctcatgagag cagccccggc ggccacccgc





361
ggccaggaga aggagcaccg gaggccccca cactagcctg tgccctcggg ggcgagagct





421
tgcgacccgc cggagcccgc cgccgcgccg ccctcccccg cgctgacagc coccoggggc





481
gcagccgccg ccgcagcatc ttctgtccct gcttccccag cgcggaggaa gtccccgccg





541
aggacctggg cccccgggaa cgcaggagga aagaccagag actctaaaac acccagatac





601
gcaagattga agcagcctag ccagaccttt ctgtggatta aaagaaatac gatttttttt





661
ttttttttgg cagaagaaaa ggaaaggaag accggctggg ttcagcaagg aaaaaaaggg





721
ggatgtaact cgtggatacg gtttttttcc cccacccttc caacatcttg ttttactttg





781
taaacatttt ctcttttaaa cccgggctcc atccggtgcc ctccagacct ccgaggtgcg





841
aggaggtggt gtgttttttc attgggggct ttgcatattt tggttttggg ggttttgaga





901
gaccctccag acatctcacg aggggtgaag tctactcggt cccctccctc aagtcttcgc





961
gtgcacagaa ttcgaggaga tccggttact aaggatatag aagaaaaaaa ataaatcgtg





1021
cctgcctttt ttttttaatt gcctgcttct ccccaccccc aaattaagtt gcttagcaag





1081
ggggaaagag gotttttcct ccctttagta gctcagccta acgtctttcg tttttttttt





1141
tttttttttg cccccgagga tcttccatgt aggaagccga ggctggcgag cccgacactc





1201
gggagccact gtaggggggc cttttttggg ggaggcgtct accggggttg cctcggccgc





1261
ccccagggaa gcggcggccg cgttcctcca gggcacgccg gggcccgaaa gccgcgcagg





1321
gcgcgggccg cgccgggtgg ggcagccgaa gcgcagcccc ccgatccccg gcaggcgccc





1381
ctgggccccc gcgcgcgccc cggcctctgg gagactggcg catgccacgg agcgcccctc





1441
gggccgccgc cgcttctgcc cgggcccctg ctgttgctgc tgtcgcctgc gcctgctgcc





1501
ccaactcggc gcccgacttc ttcatggtgt gcggaggtca tgttcgctcc ttagccggca





1561
aacgactttt ctcctcgcct cctcgcccog catgttcagg accaaacgat ctgcgctcgt





1621
ccggcgtctc tggaggagcc gtgcgcccgg cggcgaggac gaggaggagg gcgtgggggg





1681
tggcggcgga ggaggcgagc tgcggggaga aggggcgacg gacggccggg cttatggggc





1741
tggtggcggc ggtgcgggca gggctggctg ctgcctgggc aaggcagtcc gaggtgccaa





1801
aggtcaccac catccccatc ccccaacctc gggtgccggg gcggccgggg gcgccgaggc





1861
ggatctgaag gcgctcacgc actcggtgct caagaaactc aaggagcggc agctggagct





1921
gctgcttcag gccgtggagt cccgcggcgg tacgcgcacc gcgtgcctcc tgctgcccgg





1981
ccgcctggac tgcaggctgg gcccgggggc gcccgccagc gcgcagcccg cgcagccgcc





2041
ctcgtcctac tcgctccccc tcctgctgtg caaagtgttc aggtggccgg atctcaggca





2101
ttcctcggaa gtcaagaggc tgtgttgctg tgaatcttac gggaagatca accccgagct





2161
ggtgtgctgc aacccccatc accttagtcg actctgtgaa ctagagtctc cccctcctcc





2221
ttactccaga tacccaatgg attttctcaa accaactgca ggctgtccag atgctgtacc





2281
ttcctccgcg gaaaccgggg gaacgaatta tctggcccct ggggggcttt cagattccca





2341
acttcttctg gagcctgggg atcggtcaca ctggtgcgtg gtggcatact gggaggagaa





2401
gactcgcgtg gggaggctct actgtgtcca agagccctcc ctggatatct tctatgatct





2461
acctcagggg aatggctttt gcctcggaca gctcaattcg gacaacaaga gtcagctggt





2521
acagaaagtg cggagcaaga tcggctgtgg catccagctg acgcgggaag tggatggcgt





2581
gtgggtttac aaccgcagca gttaccccat cttcatcaag tccgccacac tggacaaccc





2641
ggactccagg acgctgttgg tgcacaaagt gttccctggt ttctccatca aggcttttga





2701
ctatgagaaa gcctacagcc tgcagcggcc caatgaccac gagttcatgc agcaaccatg





2761
gacgggtttc accgtgcaga tcagctttgt gaagggctgg ggccagtgct acacccgcca





2821
gttcatcagc agctgcccgt gctggctgga ggtcatcttc aacagccggt agtcggtcgt





2881
gtggtgggga gaagaggaca gggcggatcg tgagccgagc aggccaccgt tcaaactact





2941
tgctgctaac ctttcccgag tgattgcttt tcatgcaaac tctttggttg gtgttgttat





3001
tgccattcat tgttggtttt gttttgttct gttctggttt gttttttttt ttttttcctc





3061
ctcctttctc gtcatccgtg tgtcccgctt gtcttgttct ttgagaaatt agcttatggt





3121
gcggattttt gttgggttgt gtgtgtgtgt tttgtttttg ttttgaggtg gtgggtgtgg





3181
ttggcaggac accccctccc cccatatacg aagacaggaa acgagagtca gcactgccaa





3241
gcatggtgtg tgaaagtggg caccaccttc cctttggatc agcgtttcgg ttgtccgtgc





3301
gtaggggtgt acccgagcga cagatggggg aagtgctttt ttgtgtgtgt gttctttatg





3361
gatgcccccg gctgagaggc tcatagtgcc aagctgtgtg tctctctagc cttttggaca





3421
cgctcggtgg ggcagaggca gtacctgggc agactggcag caggtgccaa gctctgctcc





3481
agcctgccga agctgccccg ccccgccccg cccccgcccc cacaggacac gggcctatcc





3541
acaggcttct gagaagccag cctgctagaa ggctgaacca gaaccaattg ttttcatccc





3601
tgtcttactg ccgcctgtca cccgctgcca ttgtcgagtc tgtctttttt ggccatctgc





3661
tcctggatct ctctcttgag atgggcttcc caagggctgc cgggacagcc ccagtcacag





3721
tattgctacc ccagtaccct ctcaggccct tccaccgggt cccagccgtg gtggtttttt





3781
catcaggttt ctcccagatg tggaaagtca gctcagcacc ccatccccca tcctgtgtgc





3841
tgagctctgt agaccagcga ggggcatcag ggagggacct gcgcagtgcc cccccttcct





3901
gctgagaagg gtgtagcccc gtcacaacaa aggtaccatc ccttggctgg ctcccagccc





3961
ttctctcagc tcatacgctc gctcgtatga tactttgaca ctgttcttag ctcaatgagc





4021
atgtttagaa tttaacataa gctatttttc taactacaaa ggtttaaatg aacaagagaa





4081
gcattctcat tggaaattta gcattgtagt gctttgagag aggaaaggac tccttaaaag





4141
aaaaaaaaag ctgagattta ttaaagaaaa atgtatttta tgttatatat aaatatatta





4201
ttacttgtaa atataaagac gttttataag catcattatt tatgtattgt gcaatgtgta





4261
taaacgagaa gaataaagaa aagatgcact ttgctttaat ataaatgcaa ataacatgcc





4321
aaattaaaaa aaaaaagata aacacaagat tggtgttttt ttctatgggt gttatcacct





4381
agctgaatgt ttttctaaag gagtttatgt tccattaaac aatttttaaa atgtatactg





4441
c










SEQ ID NO: 190 Mouse Smad amino acid sequence (NP_001036125.1)








1
mfrtkrsalv rriwrsrapg gedeeegvgg gggggelrge gatdgrayga ggggagragc





61
clgkavrgak ghhhphppts gagaaggaea dlkalthsvl kklkerqlel llqavesrgg





121
trtaclllpg rldcrlgpga pasaqpaqpp ssyslplllc kvfrwpdlrh ssevkrlccc





181
esygkinpel vccnphhlsr lcelespppp ysrypmdflk ptagcpdavp ssaetggtny





241
lapgglsdsq lllepgdrsh wcvvayweek trvgrlycvq epsldifydl pqgngfclgq





301
lnsdnksqlv qkvrskigcg iqltrevdgv wvynrssypi fiksatldnp dsrtllvhkv





361
fpgfsikafd yekayslqrp ndhefmqqpw tgftvgisfv kgwgqcytrq fisscpcwle





421
vifnsr









Included in Table 2 are nucleic acid molecules comprising a nucleic acid sequence having at least 30%, 40%, 50%, 60%, 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or more identity to the region encoding the DNA binding domain or across their full length with a nucleic acid sequence of any SEQ ID NO listed in Table 2. Such nucleic acid molecules can encode a polypeptide having a function of the full-length polypeptide as described further herein.


Included in Table 2 are polypeptide molecules comprising an amino acid sequence having at least 30%, 40%, 50%, 60%, 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or more identity to the DNA binding domain or across their full length with an amino acid sequence of any SEQ ID NO listed in Table 2. Such polypeptides can have a function of the full-length polypeptide as described further herein.


II. Cancer Vaccine

The present invention provides a cancer vaccine comprising cancer cells, wherein the cancer cells are (1) PTEN-deficient, (2) p53-deficient, and (3) modified to activate the TGFβ-Smad/p63 signaling pathway. The cancer cells may be derived from a solid or hematological cancer (e.g., breast cancer). In certain embodiments, the breast cancer cells are triple-negative breast cancer (TNBC). In one embodiment, the cancer cells are derived from a subject. For example, the cancer cells may be derived from a breast cancer driven by co-loss of p53 and PTEN. In another embodiment, the cancer cells are derived from a cancer cell line. The cancer cells may be from any cancer cell line or primary cancer cells. For example, the cancer cells may be derived from a cell line selected from the group consisting of HCC1954, SUM149, BxPC-3, T3M4, 143B, A549, H520, H23, HaCaT, H357, H400, Detroit, OKF6, BICR6, H103, SPT, JHU12, JHU22, HSC3, SCC25, and NTERT cells. The cancer cells may have different kinds of additional genetic mutations. The cancer cells may be derived from the subject who is treated with the cancer vaccine. The cancer cells may also be derived from a different subject who is not treated with the cancer vaccine. The cancer cells may be derived from a cancer that is the same type as the cancer treated with the cancer vaccine. The cancer cells may also be derived from a cancer that is a different type from the cancer treated with the cancer vaccine. The cancer cells may be derived from a cancer that has the same genetic mutations as the cancer treated with the cancer vaccine. The cancer cells may also be derived from a cancer that has different genetic mutations from the cancer treated with the cancer vaccine.


a. Cancer Cell Isolation and Purification


In some embodiments, the cancer cells are derived from a subject. Isolation and purification of tumor cell from various tumor tissues such as surgical tumor tissues, ascites or carcinous hydrothorax is a common process to obtain the purified tumor cells. Cancer cells may be purified from fresh biopsy samples from cancer patients or animal tumor models. The biopsy samples often contain a heterogeneous population of cells that include normal tissue, blood, and cancer cells. Preferably, a purified cancer cell composition can have greater than 10%, 20% 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or more, or any range in between or any value in between, total viable cancer cells. To purify cancer cells from the heterogeneous population, a number of methods can be used.


In one embodiment, laser microdissection is used to isolate cancer cells. Cancer cells of interest can be carefully dissected from thin tissue slices prepared for microscopy. In this method, the tissue section is coated with a thin plastic film and an area containing the selected cells is irradiated with a focused infrared laser beam pulse. This melts a small circle in the plastic film, causing cell binding underneath. Those captured cells are removed for additional analysis. This technique is good for separating and analyzing cells from different parts of a tumor, which allows for a comparison of their similar and distinct properties. It was used recently to analyze pituitary cells from dissociated tissues and from cultured populations of heterogeneous pituitary, thyroid, and carcinoid tumor cells, as well as analyzing single cells found in various sarcomas.


In another embodiment, fluorescence activated cell sorting (FACS), also referred to as flow cytometry, is used to sort and analyze the different cell populations. Cells having a cellular marker or other specific marker of interest are tagged with an antibody, or typically a mixture of antibodies, that bind the cellular markers. Each antibody directed to a different marker is conjugated to a detectable molecule, particularly a fluorescent dye that may be distinguished from other fluorescent dyes coupled to other antibodies. A stream of tagged or “stained” cells is passed through a light source that excites the fluorochrome and the emission spectrum from the cells detected to determine the presence of a particular labeled antibody. By concurrent detection of different fluorochromes, also referred to in the art as multicolor fluorescence cell sorting, cells displaying different sets of cell markers may be identified and isolated from other cells in the population. Other FACS parameters, including, by way of example and not limitation, side scatter (SSC), forward scatter (FSC), and vital dye staining (e.g., with propidium iodide) allow selection of cells based on size and viability. FACS sorting and analysis of HSC and related lineage cells is well-known in the art and described in, for example, U.S. Pat. Nos. 5,137,809; 5,750,397; 5,840,580; 6,465,249; Manz et al. (202) Proc. Natl. Acad. Sci. U.S.A. 99:11872-11877; and Akashi et al. (200) Nature 404:193-197. General guidance on fluorescence activated cell sorting is described in, for example, Shapiro (2003) Practical Flow Cytometry, 4th Ed., Wiley-Liss (2003) and Ormerod (2000) Flow Cytometry: A Practical Approach, 3rd Ed., Oxford University Press.


Another method of isolating useful cell populations involves a solid or insoluble substrate to which is bound antibodies or ligands that interact with specific cell surface markers. In immunoadsorption techniques, cells are contacted with the substrate (e.g., column of beads, flasks, magnetic particles, etc.) containing the antibodies and any unbound cells removed. Immunoadsorption techniques may be scaled up to deal directly with the large numbers of cells in a clinical harvest. Suitable substrates include, by way of example and not limitation, plastic, cellulose, dextran, polyacrylamide, agarose, and others known in the art (e.g., Pharmacia Sepharose 6 MB macrobeads). When a solid substrate comprising magnetic or paramagnetic beads is used, cells bound to the beads may be readily isolated by a magnetic separator (see, e.g., Kato and Radbruch (1993) Cytometry 14:384-92). Affinity chromatographic cell separations typically involve passing a suspension of cells over a support bearing a selective ligand immobilized to its surface. The ligand interacts with its specific target molecule on the cell and is captured on the matrix. The bound cell is released by the addition of an elution agent to the running buffer of the column and the free cell is washed through the column and harvested as a homogeneous population. As apparent to the skilled artisan, adsorption techniques are not limited to those employing specific antibodies, and may use nonspecific adsorption. For example, adsorption to silica is a simple procedure for removing phagocytes from cell preparations. One of the most common uses of this technology is for isolating circulating tumor cells (CTCs) from the blood of breast, NSC lung cancer, prostate and colon cancer patients using an antibody against EpCAM, a cell surface glycoprotein that has been found to be highly expressed in epithelial cancers.


FACS and most batch wise immunoadsorption techniques may be adapted to both positive and negative selection procedures (see, e.g., U.S. Pat. No. 5,877,299). In positive selection, the desired cells are labeled with antibodies and removed away from the remaining unlabeled/unwanted cells. In negative selection, the unwanted cells are labeled and removed. Another type of negative selection that may be employed is use of antibody/complement treatment or immunotoxins to remove unwanted cells.


In still another embodiment, microfluidics, one of the newest technologies, is used to isolate cancer cells. This method used a microfluidic chip with a spiral channel that can isolate circulating tumor cells (CTCs) from blood based upon their size. A sample of blood is pumped into the device and as cells flow through the channel at high speeds, the inertial and centrifugal forces cause smaller cells to flow along the outer wall while larger cells, including CTCs, flow along the inner wall. Researchers have used this chip technology to isolate CTCs from the blood of patients with metastatic lung or breast cancer.


Fluorescent nanodiamonds (FNDs), according to a recently published article (Lin et al. Small (2015) 11:4394-4402), can be used to label and isolate slow-proliferating/quiescent cancer stem cells, which, according to study authors, have been difficult to isolate and track over extended time periods using traditional fluorescent markers. It was concluded that nanoparticles do not cause DNA damage or impair cell growth, and that they outperformed EdU and CFSE fluorescent labels in terms of long-term tracking capability.


It is to be understood that the purification or isolation of cells also includes combinations of the methods described above. A typical combination may comprise an initial procedure that is effective in removing the bulk of unwanted cells and cellular material. A second step may include isolation of cells expressing a marker common to one or more of the progenitor cell populations by immunoadsorption on antibodies bound to a substrate. An additional step providing higher resolution of different cell types, such as FACS sorting with antibodies to a set of specific cellular markers, may be used to obtain substantially pure populations of the desired cells.


b. Cancer Cell Engineering and Modification


The cancer cells comprised in the cancer vaccine are PTEN- and p53-deficient. In some embodiments, cancer cells are PTEN- and p53-deficient due to genetic mutations acquired by the cancer cells during cancer transformation or progression. In some other embodiments, cancer cells are engineered to become PTEN- and p53-deficient with an agent that reduces copy number, amount, and/or activity of PTEN and/or p53.


The agent that reduces copy number, amount, and/or activity of PTEN and/or p53 could be a small molecule inhibitor, CRISPR guide RNA (gRNA), RNA interfering agent, antisense oligonucleotide, peptide or peptidomimetic inhibitor, aptamer, antibody, or intrabody.


In one embodiment, peptides or peptide mimetics can be used to antagonize the activity of PTEN and/or p53. In one embodiment, variants of PTEN and/or p53 which function as a modulating agent for the respective full length protein, can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, for antagonist activity. In one embodiment, a variegated library of variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of variants can be produced, for instance, by enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential polypeptide sequences is expressible as individual polypeptides containing the set of polypeptide sequences therein. There are a variety of methods which can be used to produce libraries of polypeptide variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential polypeptide sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S. A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477.


In addition, libraries of fragments of a polypeptide coding sequence can be used to generate a variegated population of polypeptide fragments for screening and subsequent selection of variants of a given polypeptide. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a polypeptide coding sequence with a nuclease under conditions wherein nicking occurs only about once per polypeptide, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the polypeptide.


Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of polypeptides. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify variants of interest (Arkin and Youvan (1992) Proc. Natl. Acad. Sci. USA 89:7811-7815; Delagrave et al. (1993) Protein Eng. 6(3):327-331). In one embodiment, cell based assays can be exploited to analyze a variegated polypeptide library. For example, a library of expression vectors can be transfected into a cell line which ordinarily synthesizes PTEN and/or p53. The transfected cells are then cultured such that the full length polypeptide and a particular mutant polypeptide are produced and the effect of expression of the mutant on the full length polypeptide activity in cell supernatants can be detected, e.g., by any of a number of functional assays. Plasmid DNA can then be recovered from the cells which score for inhibition, or alternatively, potentiation of full length polypeptide activity, and the individual clones further characterized.


Systematic substitution of one or more amino acids of a polypeptide amino acid sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) can be used to generate more stable peptides. In addition, constrained peptides comprising a polypeptide amino acid sequence of interest or a substantially identical sequence variation can be generated by methods known in the art (Rizo and Gierasch (1992) Annu. Rev. Biochem. 61:387, incorporated herein by reference); for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.


The amino acid sequences disclosed herein will enable those of skill in the art to produce polypeptides corresponding peptide sequences and sequence variants thereof. Such polypeptides can be produced in prokaryotic or eukaryotic host cells by expression of polynucleotides encoding the peptide sequence, frequently as part of a larger polypeptide. Alternatively, such peptides can be synthesized by chemical methods. Methods for expression of heterologous proteins in recombinant hosts, chemical synthesis of polypeptides, and in vitro translation are well-known in the art and are described further in Maniatis et al. Molecular Cloning: A Laboratory Manual (1989), 2nd Ed., Cold Spring Harbor, N.Y.; Berger and Kimmel, Methods in Enzymology, Volume 152, Guide to Molecular Cloning Techniques (1987), Academic Press, Inc., San Diego, Calif.; Merrifield, J. (1969) J. Am. Chem. Soc. 91:501; Chaiken I. M. (1981) CRC Crit. Rev. Biochem. 11: 255; Kaiser et al. (1989) Science 243:187; Merrifield, B. (1986) Science 232:342; Kent, S. B. H. (1988) Annu. Rev. Biochem. 57:957; and Offord, R. E. (1980) Semisynthetic Proteins, Wiley Publishing, which are incorporated herein by reference).


Peptides can be produced, typically by direct chemical synthesis. Peptides can be produced as modified peptides, with nonpeptide moieties attached by covalent linkage to the N-terminus and/or C-terminus. In certain preferred embodiments, either the carboxy-terminus or the amino-terminus, or both, are chemically modified. The most common modifications of the terminal amino and carboxyl groups are acetylation and amidation, respectively. Amino-terminal modifications such as acylation (e.g., acetylation) or alkylation (e.g., methylation) and carboxy-terminal-modifications such as amidation, as well as other terminal modifications, including cyclization, can be incorporated into various embodiments of the invention. Certain amino-terminal and/or carboxy-terminal modifications and/or peptide extensions to the core sequence can provide advantageous physical, chemical, biochemical, and pharmacological properties, such as: enhanced stability, increased potency and/or efficacy, resistance to serum proteases, desirable pharmacokinetic properties, and others. Peptides disclosed herein can be used therapeutically to treat disease, e.g., by altering costimulation in a patient.


Peptidomimetics (Fauchere (1986) Adv. Drug Res. 15:29; Veber and Freidinger (1985) TINS p. 392; and Evans et al. (1987) J. Med. Chem. 30:1229, which are incorporated herein by reference) are usually developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to therapeutically useful peptides can be used to produce an equivalent therapeutic or prophylactic effect. Generally, peptidomimetics are structurally similar to a paradigm polypeptide (i.e., a polypeptide that has a biological or pharmacological activity), but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: —CH2NH—, —CH2S—, —CH2-CH2-, —CH═CH— (cis and trans), —COCH2-, —CH(OH)CH2-, and —CH2SO—, by methods known in the art and further described in the following references: Spatola, A. F. in “Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins” Weinstein, B., ed., Marcel Dekker, New York, p. 267 (1983); Spatola, A. F., (1983) Vega Data Vol. 1, Issue 3, “Peptide Backbone Modifications” (general review); Morley, J. S. (1980) Trends Pharm. Sci. 463-468 (general review); Hudson, D. et al. (1979) Int. J. Pept. Prot. Res. 14:177-185 (—CH2NH—, CH2CH2-); Spatola, A. F. et at (1986) Life Sci. 38:1243-1249 (—CH2-S); Hann, M. M. (1982) J. Chem. Soc. Perkin Trans. I. 307-314 (—CH—CH—, cis and trans); Almquist, R. G. et al. (1980) J. Med. Chem. 23:1392-1398 (—COCH2-); Jennings-White, C. et al. (1982) Tetrahedron Lett. 23:2533 (—COCH2-); Szelke, M. et al. (1982) European Appln. EP 45665 CA: 97:39405 (—CH(OH)CH2-); Holladay, M. W. et at (1983) Tetrahedron Lett. 24:4401-4404 (—C(OH)CH2-); and Hruby, V. J. (1982) Life Sci. 31:189-199 (—CH2-S—); each of which is incorporated herein by reference. A particularly preferred non-peptide linkage is —CH2NH—. Such peptide mimetics may have significant advantages over polypeptide embodiments, including, for example: more economical production, greater chemical stability, enhanced pharmacological properties (half-life, absorption, potency, efficacy, etc.), altered specificity (e.g., a broad-spectrum of biological activities), reduced antigenicity, and others. Labeling of peptidomimetics usually involves covalent attachment of one or more labels, directly or through a spacer (e.g., an amide group), to non-interfering position(s) on the peptidomimetic that are predicted by quantitative structure-activity data and/or molecular modeling. Such non-interfering positions generally are positions that do not form direct contacts with the macropolypeptides(s) to which the peptidomimetic binds to produce the therapeutic effect. Derivatization (e.g., labeling) of peptidomimetics should not substantially interfere with the desired biological or pharmacological activity of the peptidomimetic.


Also encompassed by the present invention are small molecules which can modulate (e.g., inhibit) activity of PTEN and/or p53 or their interactions with their natural binding partners. The small molecules of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the ‘one-bead one-compound’ library method; and synthetic library methods using affinity chromatography selection. (Lam, K. S. (1997) Anticancer Drug Des. 12:145).


Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA 90:6909; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91:11422; Zuckermann et al. (1994) J. Med. Chem. 37:2678; Cho et al (1993) Science 261:1303; Carrell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2061; and in Gallop et al (1994) J. Med. Chem. 37:1233.


Libraries of compounds can be presented in solution (e.g., Houghten (1992) Biotechniques 13:412-421), or on beads (Lam (1991) Nature 354:82-84), chips (Fodor (1993) Nature 364:555-556), bacteria (Ladner U.S. Pat. No. 5,223,409), spores (Ladner USP '409), plasmids (Cull et al. (1992) Proc. Natl. Acad. Sci. USA 89:1865-1869) or on phage (Scott and Smith (1990) Science 249:386-390); (Devlin (1990) Science 249:404-406); (Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87:6378-6382); (Felici (1991)J Mol. Biol. 222:301-310); (Ladner supra.). Compounds can be screened in cell based or non-cell based assays. Compounds can be screened in pools (e.g. multiple compounds in each testing sample) or as individual compounds.


Also provided herein are compositions comprising one or more nucleic acids comprising or capable of expressing at least 1, 2, 3, 4, 5, 10, 20 or more small nucleic acids or antisense oligonucleotides or derivatives thereof, wherein said small nucleic acids or antisense oligonucleotides or derivatives thereof in a cell specifically hybridize (e.g., bind) under cellular conditions, with cellular nucleic acids (e.g., small non-coding RNAS such as miRNAs, pre-miRNAs, pri-miRNAs, miRNA*, anti-miRNA, a miRNA binding site, a variant and/or functional variant thereof, cellular mRNAs or a fragments thereof). In one embodiment, expression of the small nucleic acids or antisense oligonucleotides or derivatives thereof in a cell can inhibit expression or biological activity of cellular nucleic acids and/or proteins, e.g., by inhibiting transcription, translation and/or small nucleic acid processing of, for example, PTEN and/or p53. In one embodiment, the small nucleic acids or antisense oligonucleotides or derivatives thereof are small RNAs (e.g., microRNAs) or complements of small RNAs. In another embodiment, the small nucleic acids or antisense oligonucleotides or derivatives thereof can be single or double stranded and are at least six nucleotides in length and are less than about 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 50, 40, 30, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, or 10 nucleotides in length. In another embodiment, a composition may comprise a library of nucleic acids comprising or capable of expressing small nucleic acids or antisense oligonucleotides or derivatives thereof, or pools of said small nucleic acids or antisense oligonucleotides or derivatives thereof. A pool of nucleic acids may comprise about 2-5, 5-10, 10-20, 10-30 or more nucleic acids comprising or capable of expressing small nucleic acids or antisense oligonucleotides or derivatives thereof.


In one embodiment, binding may be by conventional base pair complementarity, or, for example, in the case of binding to DNA duplexes, through specific interactions in the major groove of the double helix. In general, “antisense” refers to the range of techniques generally employed in the art, and includes any process that relies on specific binding to oligonucleotide sequences.


It is well-known in the art that modifications can be made to the sequence of a miRNA or a pre-miRNA without disrupting miRNA activity. As used herein, the term “functional variant” of a miRNA sequence refers to an oligonucleotide sequence that varies from the natural miRNA sequence, but retains one or more functional characteristics of the miRNA (e.g. cancer cell proliferation inhibition, induction of cancer cell apoptosis, enhancement of cancer cell susceptibility to chemotherapeutic agents, specific miRNA target inhibition). In some embodiments, a functional variant of a miRNA sequence retains all of the functional characteristics of the miRNA. In certain embodiments, a functional variant of a miRNA has a nucleobase sequence that is a least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the miRNA or precursor thereof over a region of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more nucleobases, or that the functional variant hybridizes to the complement of the miRNA or precursor thereof under stringent hybridization conditions. Accordingly, in certain embodiments the nucleobase sequence of a functional variant is capable of hybridizing to one or more target sequences of the miRNA.


MicroRNAs and their corresponding stem-loop sequences described herein may be found in miRBase, an online searchable database of miRNA sequences and annotation, found on the world wide web at microrna.sanger.ac.uk. Entries in the miRBase Sequence database represent a predicted hairpin portion of a miRNA transcript (the stem-loop), with information on the location and sequence of the mature miRNA sequence. The miRNA stem-loop sequences in the database are not strictly precursor miRNAs (pre-miRNAs), and may in some instances include the pre-miRNA and some flanking sequence from the presumed primary transcript. The miRNA nucleobase sequences described herein encompass any version of the miRNA, including the sequences described in Release 10.0 of the miRBase sequence database and sequences described in any earlier Release of the miRBase sequence database. A sequence database release may result in the re-naming of certain miRNAs. A sequence database release may result in a variation of a mature miRNA sequence.


In some embodiments, miRNA sequences of the invention may be associated with a second RNA sequence that may be located on the same RNA molecule or on a separate RNA molecule as the miRNA sequence. In such cases, the miRNA sequence may be referred to as the active strand, while the second RNA sequence, which is at least partially complementary to the miRNA sequence, may be referred to as the complementary strand. The active and complementary strands are hybridized to create a double-stranded RNA that is similar to a naturally occurring miRNA precursor. The activity of a miRNA may be optimized by maximizing uptake of the active strand and minimizing uptake of the complementary strand by the miRNA protein complex that regulates gene translation. This can be done through modification and/or design of the complementary strand.


In some embodiments, the complementary strand is modified so that a chemical group other than a phosphate or hydroxyl at its 5′ terminus. The presence of the 5′ modification apparently eliminates uptake of the complementary strand and subsequently favors uptake of the active strand by the miRNA protein complex. The 5′ modification can be any of a variety of molecules known in the art, including NH2, NHCOCH3, and biotin.


In another embodiment, the uptake of the complementary strand by the miRNA pathway is reduced by incorporating nucleotides with sugar modifications in the first 2-6 nucleotides of the complementary strand. It should be noted that such sugar modifications can be combined with the 5′ terminal modifications described above to further enhance miRNA activities.


In some embodiments, the complementary strand is designed so that nucleotides in the 3′ end of the complementary strand are not complementary to the active strand. This results in double-strand hybrid RNAs that are stable at the 3′ end of the active strand but relatively unstable at the 5′ end of the active strand. This difference in stability enhances the uptake of the active strand by the miRNA pathway, while reducing uptake of the complementary strand, thereby enhancing miRNA activity.


Small nucleic acid and/or antisense constructs of the methods and compositions presented herein can be delivered, for example, as an expression plasmid which, when transcribed in the cell, produces RNA which is complementary to at least a unique portion of cellular nucleic acids (e.g., small RNAs, mRNA, and/or genomic DNA). Alternatively, the small nucleic acid molecules can produce RNA which encodes mRNA, miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof. For example, selection of plasmids suitable for expressing the miRNAs, methods for inserting nucleic acid sequences into the plasmid, and methods of delivering the recombinant plasmid to the cells of interest are within the skill in the art. See, for example, Zeng et al. (2002) Mol. Cell 9:1327-1333; Tuschl (2002), Nat. Biotechnol. 20:446-448; Brummelkamp et al. (2002) Science 296:550-553; Miyagishi et al. (2002) Nat. Biotechnol. 20:497-500; Paddison et al. (2002) Genes Dev. 16:948-958; Lee et al. (2002) Nat. Biotechnol. 20:500-505; and Paul et al. (2002) Nat. Biotechnol. 20:505-508, the entire disclosures of which are herein incorporated by reference.


Alternatively, small nucleic acids and/or antisense constructs are oligonucleotide probes that are generated ex vivo and which, when introduced into the cell, results in hybridization with cellular nucleic acids. Such oligonucleotide probes are preferably modified oligonucleotides that are resistant to endogenous nucleases, e.g., exonucleases and/or endonucleases, and are therefore stable in vivo. Exemplary nucleic acid molecules for use as small nucleic acids and/or antisense oligonucleotides are phosphoramidate, phosphothioate and methylphosphonate analogs of DNA (see also U.S. Pat. Nos. 5,176,996; 5,264,564; and 5,256,775). Additionally, general approaches to constructing oligomers useful in antisense therapy have been reviewed, for example, by Van der Krol et al. (1988) BioTechniques 6:958-976; and Stein et al. (1988) Cancer Res 48:2659-2668.


Antisense approaches may involve the design of oligonucleotides (either DNA or RNA) that are complementary to cellular nucleic acids (e.g., complementary to PTEN and/or p53 genes). Absolute complementarity is not required. In the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with a nucleic acid (e.g., RNA) it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.


Oligonucleotides that are complementary to the 5′ end of the mRNA, e.g., the 5′ untranslated sequence up to and including the AUG initiation codon, should work most efficiently at inhibiting translation. However, sequences complementary to the 3′ untranslated sequences of mRNAs have recently been shown to be effective at inhibiting translation of mRNAs as well (Wagner (1994) Nature 372:333). Therefore, oligonucleotides complementary to either the 5′ or 3′ untranslated, non-coding regions of genes could be used in an antisense approach to inhibit translation of endogenous mRNAs. Oligonucleotides complementary to the 5′ untranslated region of the mRNA may include the complement of the AUG start codon. Antisense oligonucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could also be used in accordance with the methods and compositions presented herein. Whether designed to hybridize to the 5′, 3′ or coding region of cellular mRNAs, small nucleic acids and/or antisense nucleic acids should be at least six nucleotides in length, and can be less than about 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 50, 40, 30, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, or 10 nucleotides in length.


Regardless of the choice of target sequence, it is preferred that in vitro studies are first performed to quantitate the ability of the antisense oligonucleotide to inhibit gene expression. In one embodiment these studies utilize controls that distinguish between antisense gene inhibition and nonspecific biological effects of oligonucleotides. In another embodiment these studies compare levels of the target nucleic acid or protein with that of an internal control nucleic acid or protein. Additionally, it is envisioned that results obtained using the antisense oligonucleotide are compared with those obtained using a control oligonucleotide. It is preferred that the control oligonucleotide is of approximately the same length as the test oligonucleotide and that the nucleotide sequence of the oligonucleotide differs from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.


Small nucleic acids and/or antisense oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. Small nucleic acids and/or antisense oligonucleotides can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc., and may include other appended groups such as peptides (e.g., for targeting host cell receptors), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad. Sci. U.S.A. 84:648-652; PCT Publication No. WO88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO89/10134), hybridization-triggered cleavage agents. (See, e.g., Krol et al. (1988) BioTech. 6:958-976) or intercalating agents. (See, e.g., Zon (1988) Pharm. Res. 5:539-549). To this end, small nucleic acids and/or antisense oligonucleotides may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.


Small nucleic acids and/or antisense oligonucleotides may comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxytiethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Small nucleic acids and/or antisense oligonucleotides may also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.


In certain embodiments, a compound comprises an oligonucleotide (e.g., a miRNA or miRNA encoding oligonucleotide) conjugated to one or more moieties which enhance the activity, cellular distribution or cellular uptake of the resulting oligonucleotide. In certain such embodiments, the moiety is a cholesterol moiety (e.g., antagomirs) or a lipid moiety or liposome conjugate. Additional moieties for conjugation include carbohydrates, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes. In certain embodiments, a conjugate group is attached directly to the oligonucleotide. In certain embodiments, a conjugate group is attached to the oligonucleotide by a linking moiety selected from amino, hydroxyl, carboxylic acid, thiol, unsaturations (e.g., double or triple bonds), 8-amino-3,6-dioxaoctanoic acid (ADO), succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC), 6-aminohexanoic acid (AHEX or AHA), substituted C1-C10 alkyl, substituted or unsubstituted C2-C10 alkenyl, and substituted or unsubstituted C2-C10 alkynyl. In certain such embodiments, a substituent group is selected from hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl.


In certain such embodiments, the compound comprises the oligonucleotide having one or more stabilizing groups that are attached to one or both termini of the oligonucleotide to enhance properties such as, for example, nuclease stability. Included in stabilizing groups are cap structures. These terminal modifications protect the oligonucleotide from exonuclease degradation, and can help in delivery and/or localization within a cell. The cap can be present at the 5′-terminus (5′-cap), or at the 3′-terminus (3′-cap), or can be present on both termini. Cap structures include, for example, inverted deoxy abasic caps.


Suitable cap structures include a 4′,5′-methylene nucleotide, a 1-(beta-D-erythrofuranosyl) nucleotide, a 4′-thio nucleotide, a carbocyclic nucleotide, a 1,5-anhydrohexitol nucleotide, an L-nucleotide, an alpha-nucleotide, a modified base nucleotide, a phosphorodithioate linkage, a threo-pentofuranosyl nucleotide, an acyclic 3′,4′-seco nucleotide, an acyclic 3,4-dihydroxybutyl nucleotide, an acyclic 3,5-dihydroxypentyl nucleotide, a 3′-3′-inverted nucleotide moiety, a 3′-3′-inverted abasic moiety, a 3′-2′-inverted nucleotide moiety, a 3′-2′-inverted abasic moiety, a 1,4-butanediol phosphate, a 3′-phosphoramidate, a hexylphosphate, an aminohexyl phosphate, a 3′-phosphate, a 3′-phosphorothioate, a phosphorodithioate, a bridging methylphosphonate moiety, and a non-bridging methylphosphonate moiety 5′-amino-alkyl phosphate, a 1,3-diamino-2-propyl phosphate, 3-aminopropyl phosphate, a 6-aminohexyl phosphate, a 1,2-aminododecyl phosphate, a hydroxypropyl phosphate, a 5′-5′-inverted nucleotide moiety, a 5′-5′-inverted abasic moiety, a 5′-phosphoramidate, a 5′-phosphorothioate, a 5′-amino, a bridging and/or non-bridging 5′-phosphoramidate, a phosphorothioate, and a 5′-mercapto moiety.


Small nucleic acids and/or antisense oligonucleotides can also contain a neutral peptide-like backbone. Such molecules are termed peptide nucleic acid (PNA)-oligomers and are described, e.g., in Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. U.S.A. 93:14670 and in Eglom et al. (1993) Nature 365:566. One advantage of PNA oligomers is their capability to bind to complementary DNA essentially independently from the ionic strength of the medium due to the neutral backbone of the DNA. In yet another embodiment, small nucleic acids and/or antisense oligonucleotides comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.


In a further embodiment, small nucleic acids and/or antisense oligonucleotides are α-anomeric oligonucleotides. An α-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual b-units, the strands run parallel to each other (Gautier et al. (1987) Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2′-O-methylribonucleotide (Inoue et al. (1987) Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).


Small nucleic acids and/or antisense oligonucleotides of the methods and compositions presented herein may be synthesized by standard methods known in the art, e.g., by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. (1988) Nucl. Acids Res. 16:3209, methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al. (1988) Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc. For example, an isolated miRNA can be chemically synthesized or recombinantly produced using methods known in the art. In some instances, miRNA are chemically synthesized using appropriately protected ribonucleoside phosphoramidites and a conventional DNA/RNA synthesizer. Commercial suppliers of synthetic RNA molecules or synthesis reagents include, e.g., Proligo (Hamburg, Germany), Dharmacon Research (Lafayette, Colo., USA), Pierce Chemical (part of Perbio Science, Rockford, Ill., USA), Glen Research (Sterling, Va., USA), ChemGenes (Ashland, Mass., USA), Cruachem (Glasgow, UK), and Exiqon (Vedbaek, Denmark).


Small nucleic acids and/or antisense oligonucleotides can be delivered to cells in vivo. A number of methods have been developed for delivering small nucleic acids and/or antisense oligonucleotides DNA or RNA to cells; e.g., antisense molecules can be injected directly into the tissue site, or modified antisense molecules, designed to target the desired cells (e.g., antisense linked to peptides or antibodies that specifically bind receptors or antigens expressed on the target cell surface) can be administered systematically.


In one embodiment, small nucleic acids and/or antisense oligonucleotides may comprise or be generated from double stranded small interfering RNAs (siRNAs), in which sequences fully complementary to cellular nucleic acids (e.g. mRNAs) sequences mediate degradation or in which sequences incompletely complementary to cellular nucleic acids (e.g., mRNAs) mediate translational repression when expressed within cells. In another embodiment, double stranded siRNAs can be processed into single stranded antisense RNAs that bind single stranded cellular RNAs (e.g., microRNAs) and inhibit their expression. RNA interference (RNAi) is the process of sequence-specific, post-transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene. In vivo, long dsRNA is cleaved by ribonuclease III to generate 21- and 22-nucleotide siRNAs. It has been shown that 21-nucleotide siRNA duplexes specifically suppress expression of endogenous and heterologous genes in different mammalian cell lines, including human embryonic kidney (293) and HeLa cells (Elbashir et al. (2001) Nature 411:494-498). Accordingly, translation of a gene in a cell can be inhibited by contacting the cell with short double stranded RNAs having a length of about 15 to 30 nucleotides or of about 18 to 21 nucleotides or of about 19 to 21 nucleotides. Alternatively, a vector encoding for such siRNAs or short hairpin RNAs (shRNAs) that are metabolized into siRNAs can be introduced into a target cell (see, e.g., McManus et al (2002) RNA 8:842; Xia et al. (2002) Nature Biotechnology 20:1006; and Brummelkamp et al. (2002) Science 296:550). Vectors that can be used are commercially available, e.g., from OligoEngine under the name pSuper RNAi System™.


Ribozyme molecules designed to catalytically cleave cellular mRNA transcripts can also be used to prevent translation of cellular mRNAs and expression of cellular polypeptides, or both (See, e.g., PCT International Publication WO90/11364, published Oct. 4, 1990; Sarver et al. (1990) Science 247:1222-1225 and U.S. Pat. No. 5,093,246). While ribozymes that cleave mRNA at site-specific recognition sequences can be used to destroy cellular mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5′-UG-3′ The construction and production of hammerhead ribozymes is well-known in the art and is described more fully in Haseloff and Gerlach (1988) Nature 334:585-591. The ribozyme may be engineered so that the cleavage recognition site is located near the 5′ end of cellular mRNAs; i.e., to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.


The ribozymes of the methods presented herein also include RNA endoribonucleases (hereinafter “Cech-type ribozymes”) such as the one which occurs naturally in Tetrahymena thermophila (known as the IVS, or L-19 IVS RNA) and which has been extensively described by Thomas Cech and collaborators (Zaug et al. (1984) Science 224:574-578; Zaug et al. (1986) Science 231:470-475; Zaug et al. (1986) Nature 324:429-433; WO 88/04300; and Been et al. (1986) Cell 47:207-216). The Cech-type ribozymes have an eight base pair active site which hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place. The methods and compositions presented herein encompasses those Cech-type ribozymes which target eight base-pair active site sequences that are present in cellular genes.


As in the antisense approach, the ribozymes can be composed of modified oligonucleotides (e.g., for improved stability, targeting, etc.). A preferred method of delivery involves using a DNA construct “encoding” the ribozyme under the control of a strong constitutive pol III or pol II promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous cellular messages and inhibit translation. Because ribozymes unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.


Nucleic acid molecules to be used in triple helix formation for the inhibition of transcription of cellular genes are preferably single stranded and composed of deoxyribonucleotides. The base composition of these oligonucleotides should promote triple helix formation via Hoogsteen base pairing rules, which generally require sizable stretches of either purines or pyrimidines to be present on one strand of a duplex. Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC triplets across the three associated strands of the resulting triple helix. The pyrimidine-rich molecules provide base complementarity to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand. In addition, nucleic acid molecules may be chosen that are purine-rich, for example, containing a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in CGC triplets across the three strands in the triplex.


Alternatively, the potential sequences that can be targeted for triple helix formation may be increased by creating a so-called “switchback” nucleic acid molecule. Switchback molecules are synthesized in an alternating 5′-3′, 3′-5′ manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizable stretch of either purines or pyrimidines to be present on one strand of a duplex.


Small nucleic acids (e.g., miRNAs, pre-miRNAs, pri-miRNAs, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof), antisense oligonucleotides, ribozymes, and triple helix molecules of the methods and compositions presented herein may be prepared by any method known in the art for the synthesis of DNA and RNA molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides and oligoribonucleotides well-known in the art such as for example solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.


Moreover, various well-known modifications to nucleic acid molecules may be introduced as a means of increasing intracellular stability and half-life. Possible modifications include but are not limited to the addition of flanking sequences of ribonucleotides or deoxyribonucleotides to the 5′ and/or 3′ ends of the molecule or the use of phosphorothioate or 2′ O-methyl rather than phosphodiesterase linkages within the oligodeoxyribonucleotide backbone. One of skill in the art will readily understand that polypeptides, small nucleic acids, and antisense oligonucleotides can be further linked to another peptide or polypeptide (e.g., a heterologous peptide), e.g., that serves as a means of protein detection. Non-limiting examples of label peptide or polypeptide moieties useful for detection in the invention include, without limitation, suitable enzymes such as horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; epitope tags, such as FLAG, MYC, HA, or HIS tags; fluorophores such as green fluorescent protein; dyes; radioisotopes; digoxygenin; biotin; antibodies; polymers; as well as others known in the art, for example, in Principles of Fluorescence Spectroscopy, Joseph R. Lakowicz (Editor), Plenum Pub Corp, 2nd edition (July 1999).


The present invention also contemplates well-known methods for genetically modifying the genome of an organism or cell to modify the expression and/or activity of PTEN and/or p53 without contacting the organism or cell with agent once the genetic modification has been completed. For example, cancer cells can be genetically modified using recombinant techniques in order to modulate the expression and/or activity of PTEN and/or p53, such that no agent needs to contact the cancer cells in order for the expression and/or activity PTEN and/or p53 to be modulated. For example, targeted or untargeted gene knockout methods can be used, such as to recombinantly engineer subject cancer cell ex vivo prior to infusion into the subject. For example, the target DNA in the genome can be manipulated by deletion, insertion, and/or mutation using retroviral insertion, artificial chromosome techniques, gene insertion, random insertion with tissue specific promoters, gene targeting, transposable elements and/or any other method for introducing foreign DNA or producing modified DNA/modified nuclear DNA. Other modification techniques include deleting DNA sequences from a genome and/or altering nuclear DNA sequences. Nuclear DNA sequences, for example, may be altered by site-directed mutagenesis. Such methods generally use host cells into which a recombinant expression vector of the invention has been introduced. The terms “host cell” and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein. Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms “transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals. For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).


Similarly, the CRISPR-Cas system can be used for precise editing of genomic nucleic acids (e.g., for creating null mutations). In such embodiments, the CRISPR guide RNA and/or the Cas enzyme may be expressed. For example, a vector containing only the guide RNA can be administered to an animal or cells transgenic for the Cas9 enzyme. Similar strategies may be used (e.g., designer zinc finger, transcription activator-like effectors (TALEs) or homing meganucleases). Such systems are well-known in the art (see, for example, U.S. Pat. No. 8,697,359; Sander and Joung (2014) Nat. Biotech. 32:347-355; Hale et al. (2009) Cell 139:945-956; Karginov and Hannon (2010) Mol. Cell 37:7; U.S. Pat. Publ. 2014/0087426 and 2012/0178169; Boch et al. (2011) Nat. Biotech. 29:135-136; Boch et al. (2009) Science 326:1509-1512; Moscou and Bogdanove (2009) Science 326:1501; Weber et al. (2011) PLoS One 6:e19722; Li et al. (2011) Nucl. Acids Res. 39:6315-6325; Zhang et al. (2011) Nat. Biotech. 29:149-153; Miller et al. (2011) Nat. Biotech. 29:143-148; Lin et al. (2014) Nucl. Acids Res. 42:e47). Such genetic strategies can use constitutive expression systems or inducible expression systems according to well-known methods in the art.


In some embodiments, the cancer cells are non-replicative. In certain embodiments, the cancer cells are non-replicative due to irradiation (e.g., γ and/or UV irradiation), and/or administration of an agent rendering cell replication incompetent (e.g., compounds that disrupt the cell membrane, inhibitors of DNA replication, inhibitors of spindle formation during cell division, etc.). Typically a minimum dose of about 3500 rads radiation is sufficient, although doses up to about 30,000 rads are acceptable. In some embodiments, a sub-lethal dose of irradiation may be used. For example, the cancer cells may be irradiated to suppress cell proliferation before administration of the cancer vaccine to reduce the risk of giving rise to new neoplastic lesions. It is understood that irradiation is only one way to render the cells non-replicative, and that other methods which result in cancer cells incapable of cell division but that retain the ability to to trigger the antitumor immunity upon activation of the TGFβ-Smad/p63 signaling pathway are included in the present invention.


c. Agents that Activate TGFβ-Smad/p63 Signaling Pathway


It is demonstrated herein that activation of TGFβ-Smad/p63 axis in cancer cells regulates expression of multiple pathways that promote immune respons and ultimately activation of cytotoxic T cells and immunological memory. Thus, the cancer cells encompassed by the present invention described herein are modified to activate TGFβ-Smad/p63 signaling pathway. In one embodiments, the cancer cells are contacted with a TGFβ superfamily protein to activate TGFβ-Smad/p63 signaling pathway. In another embodiment, the cancer cells are contacted with a modulator of the copy number, the expression, and/or the activity of one or more biomarkers listed in Table 1 that can activate TGFβ-Smad/p63 signaling pathway. The cancer cells (e.g., cancer cell lines or tumor tissues) can be cultured in 2D or 3D (e.g., cultured as tumorspheres or organoids) in vitro or ex vivo.


In some embodiments, cancer vaccine comprising the modified cancer cells described herein may be tested for certain desired characteristics or functions prior to administration into a subject. In one embodiment, the loss of PTEN and p53 is confirmed in the modified cancer cells. In another embodiment, the activation of the TGFβ-Smad/p63 signaling pathway is detected in the modified cancer cells. In still another embodiment, the modified cancer cells are tested for one or more of the following properties:

    • a) reduced grow rate in either a 2D- or 3D-culture system;
    • b) activation of the TGFβ-Smad/p63 signatures, such as upregulation of ICOSL, PYCARD, SFN, PERP, RIPK3, CASP9, and/or SESN1; and/or downregulation of KSR1, EIF4EBP1, ITGA5, EMILIN1, CD200, and/or CSF1;
    • c) upregulation of one or more dendritic cells (DCs) activation markers, which include but are not limited to, CD40, CD80, CD86, CD8, HLA-DR, IL1-beta, etc.; and/or
    • d) activation of T cells in the presence of DCs, such as increasing the secretion of TNFα and/or IFNγ by T cells in the presence of DCs.


i. TGFβ Superfamily Proteins


In one embodiment, PTEN- and p53-deficient cancer cells described herein are contacted with a TGFβ superfamily protein to activate the TGFβ-Smad/p63 signaling pathway. The TGFβ superfamily protein can be any member of the TGFβ superfamily that is capable of activating the TGFβ-Smad/p63 signaling pathway. The TGFβ superfamily protein may be from the TGFβ family, which includes but is not limitated to, LAP, TGFβ1, TGFβ2, TGFβ3, and TGFβ5. The TGFβ superfamily protein may be from the Activin family, which includes but is not limitated to, Activin A, Activin AB, Activin AC, Activin B, Activin C, C17ORF99, INHBA, INHBB, Inhibin, Inhibin A, and Inhibin B. The TGFβ superfamily protein may be from the BMP (Bone Morphogenetic Protein) family, BMP-1/PCP, BMP-2, BMP-2/BMP-6 Heterodimer, BMP-2/BMP-7 Heterodimer, BMP-2a, BMP-3, BMP-3b/GDF-10, BMP-4, BMP-4/BMP-7 Heterodimer, BMP-5, BMP-6, BMP-7, BMP-8, BMP-8a, BMP-8b, BMP-9, BMP-10, BMP-15/GDF-9B, and Decapentaplegic/DPP. The TGFβ superfamily protein may be from the GDNF Family, Artemin, GDNF, Neurturin, and Persephin. The TGFβ superfamily protein may be from a family other than the ones listed above, which includes but is not limitated to, Lefty A, Lefty B, MIS/AMH, Nodal, and SCUBE3. In certain embodiments, the TGFβ superfamily protein is TGFβ1, TGFβ2 and/or TGFβ3. In one embodiment, the cancer cells are contacted with a single TGFβ superfamily protein (e.g., TGFβ1, TGFβ2, or TGFβ3). In another embodiment, the cancer cells are contacted with a combination of TGFβ superfamily proteins (e.g., a combination of TGFβ1, TGFβ2 and TGFβ3).


The cancer cells may be contacted with a TGFβ superfamily protein alone in vitro, in vivo, and/or ex vivo. In one embodiment, the cancer cells are contacted with a TGFβ superfamily protein in vitro or ex vivo, and then the cancer cells are administered to a subject without administration of the TGFβ superfamily protein to the subject in vivo. In another embodiment, the cancer cells are administered to a subject, wherein the TGFβ superfamily protein is administered to the subject to thereby contact the cancer cells in vivo. In still another embodiment, the cancer cells are contacted with a TGFβ superfamily protein in vitro or ex vivo, and then the cancer cells are administered to a subject with administration of the TGFβ superfamily protein to the subject in vivo. The TGFβ superfamily protein may be administered to the subject before, after, and/or concurrently with administration of the cancer cells. In some embodiments, the cancer cells are contacted with the TGFβ superfamily protein in combination with an immune checkpoint blockade in vitro, in vivo, and/or ex vivo. The subject may be administered with an immune checkpoint blockade before, after, and/or concurrently with administration of the cancer vaccine.


The dosage of the TGFβ superfamily protein may be varied so as to obtain an amount of the activation of TGFβ-Smad/p63 signaling pathway which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.


The selected dosage level will depend upon a variety of factors including the activity of the particular TGFβ superfamily protein employed, the specific type of cancer cells to be contacted with, the route of administration, the time of administration, the rate of excretion or metabolism of the particular TGFβ superfamily protein being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular TGFβ superfamily protein employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated with the cancer vaccine, and like factors well known in the medical arts.


In some embodiments, the cancer cells are contacted with a TGFβ superfamily protein at a dosage more than 0.1 ng/ml, such as more than 0.2 ng/ml, more than 0.3 ng/ml, more than 0.4 ng/ml, more than 0.5 ng/ml, more than 0.6 ng/ml, more than 0.7 ng/ml, more than 0.8 ng/ml, more than 0.9 ng/ml, more than 1 ng/ml, more than 1.5 ng/ml, more than 2 ng/ml, more than 2.5 ng/ml, more than 3 ng/ml, more than 3.5 ng/ml, more than 4 ng/ml, more than 4.5 ng/ml, more than 5 ng/ml, more than 5.5 ng/ml, more than 6 ng/ml, more than 6.5 ng/ml, more than 7 ng/ml, more than 7.5 ng/ml, more than 8 ng/ml, more than 8.5 ng/ml, more than 9 ng/ml, more than 9.5 ng/ml, more than 10 ng/ml, etc.


In some embodiments, the cancer cells are contacted with a TGFβ superfamily protein at a dosage from about 0.1 ng/ml to about 100 ng/ml. In preferred embodiments, the cancer cells are contacted with a TGFβ superfamily protein at a dosage from about 1 ng/ml to about 10 ng/ml, such as about 1 ng/ml, 1.5 ng/ml, 2 ng/ml, 2.5 ng/ml, 3 ng/ml, 3.5 ng/ml, 4 ng/ml, 4.5 ng/ml, 5 ng/ml, 5.5 ng/ml, 6 ng/ml, 6.5 ng/ml, 7 ng/ml, 7.5 ng/ml, 8 ng/ml, 8.5 ng/ml, 9 ng/ml, 9.5 ng/ml, or 10 ng/ml or any value in between.


In some embodiments, the cancer cells are contacted with a TGFβ superfamily protein for a period of time. The period of time may be from minutes to 4 weeks, such as 10 min, 30 min, 1 hour, 3 hours, 6 hours, 9 hours, 12 hours, 15 hours, 18 hours, 21 hours, 24 hours, 36 hours, 2 days, 2.5 days, 3 days, 3.5 days, 4 days, 4.5 days, 5 days, 5.5 days, 6 days, 6.5 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 16 days, 17 days, 18 days, 19 days, 20 days, 21 days, 22 days, 23 days, 24 days, 25 days, 26 days, 27 days, or 28 days or any value in between. Preferred ranges of the period of time are from about 6 hours to about 21 days, from about 12 hours to about 15 days, from about 1 day to about 10 days, or from about 3 days to about 7 days.


ii. Agents that Increase the Copy Number, Amount, and/or Activity of at Least One Biomarker Listed in Table 1


In another embodiment, the PTNE- and p53-deficient cancer cells described herein are contacted with a modulator of the copy number, the expression, and/or the activity of one or more biomarkers listed in Table 1 and thereby activate the TGFβ-Smad/p63 signaling pathway. Agents that increase the copy number, the expression, and/or the activity of one or more biomarkers listed in Table 1 can do so either directly or indirectly.


Agents useful in the methods encompassed by the present invention include antibodies, small molecules, peptides, peptidomimetics, natural ligands, derivatives of natural ligands, etc. that can bind and/or modulate one or more biomarkers listed in Table 1, or fragments thereof; RNA interference, antisense, nucleic acid aptamers, nucleic acid, polypeptide, etc. that can increase the expression and/or activity of one or more biomarkers listed in Table 1, or fragments thereof.


In one embodiment, isolated nucleic acid molecules that specifically hybridize with or encode one or more biomarkers listed in Table 1 or biologically active portions thereof. As used herein, the term “nucleic acid molecule” is intended to include DNA molecules (i.e., cDNA or genomic DNA) and RNA molecules (i.e., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An “isolated” nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an “isolated” nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5′ and 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecules corresponding to one or more biomarkers listed in Table 1 can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (i.e., a lymphoma cell). Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.


A nucleic acid molecule encompassed by the present invention, e.g., a nucleic acid molecule having the nucleotide sequence of one or more biomarkers listed in Table 1 or a nucleotide sequence which is at least about 50%, preferably at least about 60%, more preferably at least about 70%, yet more preferably at least about 80%, still more preferably at least about 90%, and most preferably at least about 95% or more (e.g., about 98%) homologous to the nucleotide sequence of one or more biomarkers listed in Table 1 or a portion thereof (i.e., 100, 200, 300, 400, 450, 500, or more nucleotides), can be isolated using standard molecular biology techniques and the sequence information provided herein. For example, a human cDNA can be isolated from a human cell line (from Stratagene, LaJolla, Calif., or Clontech, Palo Alto, Calif.) using all or portion of the nucleic acid molecule, or fragment thereof, as a hybridization probe and standard hybridization techniques (i.e., as described in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989). Moreover, a nucleic acid molecule encompassing all or a portion of the nucleotide sequence of one or more biomarkers listed in Table 1 or a nucleotide sequence which is at least about 50%, preferably at least about 60%, more preferably at least about 70%, yet more preferably at least about 80%, still more preferably at least about 90%, and most preferably at least about 95% or more homologous to the nucleotide sequence, or fragment thereof, can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon one or more biomarkers listed in Table 1, or fragment thereof, or the homologous nucleotide sequence. For example, mRNA can be isolated from muscle cells (i.e., by the guanidinium-thiocyanate extraction procedure of Chirgwin et al. (1979) Biochemistry 18: 5294-5299) and cDNA can be prepared using reverse transcriptase (i.e., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, Md.; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, Fla.). Synthetic oligonucleotide primers for PCR amplification can be designed according to well-known methods in the art. A nucleic acid encompassed by the present invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to the nucleotide sequence of one or more biomarkers listed in Table 1 can be prepared by standard synthetic techniques, i.e., using an automated DNA synthesizer.


Probes based on the nucleotide sequences of one or more biomarkers listed in Table 1 can be used to detect or confirm the desired transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, i.e., the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissue which express one or more biomarkers listed in Table 1, such as by measuring a level of nucleic acid of one or more biomarkers listed in Table 1 in a sample of cells from a subject, i.e., detecting mRNA levels of one or more biomarkers listed in Table 1.


Nucleic acid molecules encoding proteins corresponding to one or more biomarkers listed in Table 1 from different species are also contemplated. For example, rat or monkey cDNA can be identified based on the nucleotide sequence of a human and/or mouse sequence and such sequences are well-known in the art. In one embodiment, the nucleic acid molecule(s) encompassed by the present invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of one or more biomarkers listed in Table 1, such that the protein or portion thereof modulates (e.g., enhance), one or more of the following biological activities: a) binding to the biomarker; b) modulating the copy number of the biomarker; c) modulating the expression level of the biomarker; and d) modulating the activity level of the biomarker.


As used herein, the language “sufficiently homologous” refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one or more biomarkers listed in Table 1, or fragment thereof) amino acid residues to an amino acid sequence of the biomarker, or fragment thereof, such that the protein or portion thereof modulates (e.g., enhance) one or more of the following biological activities: a) binding to the biomarker; b) modulating the copy number of the biomarker; c) modulating the expression level of the biomarker; and d) modulating the activity level of the biomarker.


In another embodiment, the protein is at least about 30%, preferably at least about 60%, more preferably at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more homologous to the entire amino acid sequence of the biomarker, or a fragment thereof.


Portions of proteins encoded by nucleic acid molecules of one or more biomarkers listed in Table 1 are preferably biologically active portions of the protein. As used herein, the term “biologically active portion” of one or more biomarkers listed in Table 1 is intended to include a portion, e.g., a domain/motif, that has one or more of the biological activities of the full-length protein.


Standard binding assays, e.g., immunoprecipitations and yeast two-hybrid assays, as described herein, or functional assays, e.g., RNAi or overexpression experiments, can be performed to determine the ability of the protein or a biologically active fragment thereof to maintain a biological activity of the full-length protein.


The invention further encompasses nucleic acid molecules that differ from the nucleotide sequence of one or more biomarkers listed in Table 1, or fragment thereof due to degeneracy of the genetic code and thus encode the same protein as that encoded by the nucleotide sequence, or fragment thereof. In another embodiment, an isolated nucleic acid molecule encompassed by the present invention has a nucleotide sequence encoding a protein having an amino acid sequence of one or more biomarkers listed in Table 1, or fragment thereof, or a protein having an amino acid sequence which is at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more homologous to the amino acid sequence of one or more biomarkers listed in Table 1, or fragment thereof. In another embodiment, a nucleic acid encoding a polypeptide consists of nucleic acid sequence encoding a portion of a full-length fragment of interest that is less than 195, 190, 185, 180, 175, 170, 165, 160, 155, 150, 145, 140, 135, 130, 125, 120, 115, 110, 105, 100, 95, 90, 85, 80, 75, or 70 amino acids in length.


It will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of one or more biomarkers listed in Table 1 may exist within a population (e.g., a mammalian and/or human population). Such genetic polymorphisms may exist among individuals within a population due to natural allelic variation. As used herein, the terms “gene” and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame encoding one or more biomarkers listed in Table 1, preferably a mammalian, e.g., human, protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of one or more biomarkers listed in Table 1. Any and all such nucleotide variations and resulting amino acid polymorphisms in one or more biomarkers listed in Table 1 that are the result of natural allelic variation and that do not alter the functional activity of one or more biomarkers listed in Table 1 are intended to be within the scope encompassed by the present invention. Moreover, nucleic acid molecules encoding proteins of one or more biomarkers listed in Table 1 from other species.


In addition to naturally-occurring allelic variants of one or more biomarkers listed in Table 1 that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequence, or fragment thereof, thereby leading to changes in the amino acid sequence of the encoded one or more biomarkers listed in Table 1, without altering the functional ability of one or more biomarkers listed in Table 1. For example, nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in the sequence, or fragment thereof. A “non-essential” amino acid residue is a residue that can be altered from the wild-type sequence of one or more biomarkers listed in Table 1 without altering the activity of one or more biomarkers listed in Table 1, whereas an “essential” amino acid residue is required for the activity of one or more biomarkers listed in Table 1. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved between mouse and human) may not be essential for activity and thus are likely to be amenable to alteration without altering the activity of one or more biomarkers listed in Table 1.


The term “sequence identity or homology” refers to the sequence similarity between two polypeptide molecules or between two nucleic acid molecules. When a position in both of the two compared sequences is occupied by the same base or amino acid monomer subunit, e.g., if a position in each of two DNA molecules is occupied by adenine, then the molecules are homologous or sequence identical at that position. The percent of homology or sequence identity between two sequences is a function of the number of matching or homologous identical positions shared by the two sequences divided by the number of positions compared ×100. For example, if 6 of 10, of the positions in two sequences are the same then the two sequences are 60% homologous or have 60% sequence identity. By way of example, the DNA sequences ATTGCC and TATGGC share 50% homology or sequence identity. Generally, a comparison is made when two sequences are aligned to give maximum homology. Unless otherwise specified “loop out regions”, e.g., those arising from, from deletions or insertions in one of the sequences are counted as mismatches.


The comparison of sequences and determination of percent homology between two sequences can be accomplished using a mathematical algorithm.


Preferably, the alignment can be performed using the Clustal Method. Multiple alignment parameters include GAP Penalty=10, Gap Length Penalty=10. For DNA alignments, the pairwise alignment parameters can be Htuple=2, Gap penalty=5, Window=4, and Diagonal saved=4. For protein alignments, the pairwise alignment parameters can be Ktuple=1, Gap penalty=3, Window=5, and Diagonals Saved=5.


In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available online), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available online), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0) (available online), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.


An isolated nucleic acid molecule encoding a protein homologous to one or more biomarkers listed in Table 1, or fragment thereof, can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence, or fragment thereof, or a homologous nucleotide sequence such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in one or more biomarkers listed in Table 1 is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of the coding sequence of one or more biomarkers listed in Table 1, such as by saturation mutagenesis, and the resultant mutants can be screened for an activity described herein to identify mutants that retain desired activity. Following mutagenesis, the encoded protein can be expressed recombinantly according to well-known methods in the art and the activity of the protein can be determined using, for example, assays described herein.


The levels of one or more biomarkers listed in Table 1 may be assessed by any of a wide variety of well-known methods for detecting expression of a transcribed molecule or protein. Non-limiting examples of such methods include immunological methods for detection of proteins, protein purification methods, protein function or activity assays, nucleic acid hybridization methods, nucleic acid reverse transcription methods, and nucleic acid amplification methods.


In preferred embodiments, the levels of one or more biomarkers listed in Table 1 are ascertained by measuring gene transcript (e.g., mRNA), by a measure of the quantity of translated protein, or by a measure of gene product activity. Expression levels can be monitored in a variety of ways, including by detecting mRNA levels, protein levels, or protein activity, any of which can be measured using standard techniques. Detection can involve quantification of the level of gene expression (e.g., genomic DNA, cDNA, mRNA, protein, or enzyme activity), or, alternatively, can be a qualitative assessment of the level of gene expression, in particular in comparison with a control level. The type of level being detected will be clear from the context.


In a particular embodiment, the mRNA expression level can be determined both by in situ and by in vitro formats in a biological sample using methods known in the art. The term “biological sample” is intended to include tissues, cells, biological fluids and isolates thereof, isolated from a subject, as well as tissues, cells and fluids present within a subject. Many expression detection methods use isolated RNA. For in vitro methods, any RNA isolation technique that does not select against the isolation of mRNA can be utilized for the purification of RNA from cells (see, e.g., Ausubel et al., ed., Current Protocols in Molecular Biology, John Wiley & Sons, New York 1987-1999). Additionally, large numbers of tissue samples can readily be processed using techniques well-known to those of skill in the art, such as, for example, the single-step RNA isolation process of Chomczynski (1989, U.S. Pat. No. 4,843,155).


The isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or Northern analyses, polymerase chain reaction analyses and probe arrays. One preferred diagnostic method for the detection of mRNA levels involves contacting the isolated mRNA with a nucleic acid molecule (probe) that can hybridize to the mRNA encoded by the gene being detected. The nucleic acid probe can be, for example, a full-length cDNA, or a portion thereof, such as an oligonucleotide of at least 7, 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to a mRNA or genomic DNA encoding one or more biomarkers listed in Table 1. Other suitable probes for use in the diagnostic assays encompassed by the present invention are described herein. Hybridization of an mRNA with the probe indicates that one or more biomarkers listed in Table 1 is being expressed.


In one format, the mRNA is immobilized on a solid surface and contacted with a probe, for example by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an alternative format, the probe(s) are immobilized on a solid surface and the mRNA is contacted with the probe(s), for example, in a gene chip array, e.g., an Affymetrix™ gene chip array. A skilled artisan can readily adapt known mRNA detection methods for use in detecting the level of one or more biomarkers listed in Table 1 mRNA expression levels.


An alternative method for determining mRNA expression level in a sample involves the process of nucleic acid amplification, e.g., by RT-PCR (the experimental embodiment set forth in Mullis, 1987, U.S. Pat. No. 4,683,202), ligase chain reaction (Barany, 1991, Proc. Natl. Acad. Sci. USA, 88:189-193), self sustained sequence replication (Guatelli et al., 1990, Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh et al., 1989, Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al., 1988, Bio/Technology 6:1197), rolling circle replication (Lizardi et al., U.S. Pat. No. 5,854,033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well-known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers. As used herein, amplification primers are defined as being a pair of nucleic acid molecules that can anneal to 5′ or 3′ regions of a gene (plus and minus strands, respectively, or vice-versa) and contain a short region in between. In general, amplification primers are from about 10 to 30 nucleotides in length and flank a region from about 50 to 200 nucleotides in length. Under appropriate conditions and with appropriate reagents, such primers permit the amplification of a nucleic acid molecule comprising the nucleotide sequence flanked by the primers.


For in situ methods, mRNA does not need to be isolated from the cells prior to detection. In such methods, a cell or tissue sample is prepared/processed using known histological methods. The sample is then immobilized on a support, typically a glass slide, and then contacted with a probe that can hybridize to mRNA of one or more biomarkers listed in Table 1.


As an alternative to making determinations based on the absolute expression level, determinations may be based on the normalized expression level of one or more biomarkers listed in Table 1. Expression levels are normalized by correcting the absolute expression level by comparing its expression to the expression of a non-biomarker gene, e.g., a housekeeping gene that is constitutively expressed. Suitable genes for normalization include housekeeping genes such as the actin gene, or epithelial cell-specific genes. This normalization allows the comparison of the expression level in one sample, e.g., a subject sample, to another sample, e.g., a normal sample, or between samples from different sources.


The level or activity of a protein corresponding to one or more biomarkers listed in Table 1 can also be detected and/or quantified by detecting or quantifying the expressed polypeptide. The polypeptide can be detected and quantified by any of a number of means well-known to those of skill in the art. These may include analytic biochemical methods such as electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, and the like, or various immunological methods such as fluid or gel precipitin reactions, immunodiffusion (single or double), immunoelectrophoresis, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, Western blotting, and the like. A skilled artisan can readily adapt known protein/antibody detection methods for use in determining whether cells express the biomarker of interest.


The present invention further provides soluble, purified and/or isolated polypeptide forms of one or more biomarkers listed in Table 1, or fragments thereof. In addition, it is to be understood that any and all attributes of the polypeptides described herein, such as percentage identities, polypeptide lengths, polypeptide fragments, biological activities, antibodies, etc. can be combined in any order or combination with respect to one or more biomarkers listed in Table 1.


In one aspect, a polypeptide may comprise a full-length amino acid sequence corresponding to one or more biomarkers listed in Table 1 or a full-length amino acid sequence with 1 to about 20 conservative amino acid substitutions. An amino acid sequence of any described herein can also be at least 50, 55, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 99.5% identical to the full-length sequence of one or more biomarkers listed in Table 1, which is either described herein, well-known in the art, or a fragment thereof. In another aspect, the present invention contemplates a composition comprising an isolated polypeptide corresponding to polypeptide of one or more biomarkers listed in Table 1 and less than about 25%, or alternatively 15%, or alternatively 5%, contaminating biological macromolecules or polypeptides.


The present invention further provides compositions related to producing, detecting, or characterizing such polypeptides, or fragment thereof, such as nucleic acids, vectors, host cells, and the like. Such compositions may serve as compounds that modulate (e.g., enhance) the expression and/or activity of one or more biomarkers listed in Table 1.


An isolated polypeptide or a fragment thereof (or a nucleic acid encoding such a polypeptide) corresponding to one or more biomarkers listed in Table 1, can be used as an immunogen to generate antibodies that bind to said immunogen, using standard techniques for polyclonal and monoclonal antibody preparation according to well-known methods in the art. An antigenic peptide comprises at least 8 amino acid residues and encompasses an epitope present in the respective full length molecule such that an antibody raised against the peptide forms a specific immune complex with the respective full length molecule. Preferably, the antigenic peptide comprises at least 10 amino acid residues. In one embodiment such epitopes can be specific for a given polypeptide molecule from one species, such as mouse or human (i.e., an antigenic peptide that spans a region of the polypeptide molecule that is not conserved across species is used as immunogen; such non conserved residues can be determined using an alignment such as that provided herein).


In one embodiment, an antibody, especially an intrabody, binds substantially specifically to one or more biomarkers listed in Table 1, and enhances its biological function. In another embodiment, an antibody, especially an intrabody, binds substantially specifically to a binding partner of one or more biomarkers listed in Table 1, and enhances its biological function.


Antibodies for use according to the present invention can be generated according to well-known methods in the art. For example, a polypeptide immunogen typically is used to prepare antibodies by immunizing a suitable subject (e.g., rabbit, goat, mouse or other mammal) with the immunogen. An appropriate immunogenic preparation can contain, for example, a recombinantly expressed or chemically synthesized molecule or fragment thereof to which the immune response is to be generated. The preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or similar immunostimulatory agent. Immunization of a suitable subject with an immunogenic preparation induces a polyclonal antibody response to the antigenic peptide contained therein.


Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a polypeptide immunogen. The polypeptide antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide. If desired, the antibody directed against the antigen can be isolated from the mammal (e.g., from the blood) and further purified by well-known techniques, such as protein A chromatography, to obtain the IgG fraction. At an appropriate time after immunization, e.g., when the antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique (originally described by Kohler and Milstein (1975) Nature 256:495-497) (see also Brown et al. (1981) J. Immunol. 127:539-46; Brown et al. (1980) J. Biol. Chem. 255:4980-83; Yeh et al. (1976) Proc. Natl. Acad. Sci. 76:2927-31; Yeh et al. (1982) Int. J. Cancer 29:269-75), the more recent human B cell hybridoma technique (Kozbor et al. (1983) Immunol. Today 4:72), the EBV-hybridoma technique (Cole et al. (1985) Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96) or trioma techniques. The technology for producing monoclonal antibody hybridomas is well-known (see generally Kenneth, R. H. in Monoclonal Antibodies: A New Dimension In Biological Analyses, Plenum Publishing Corp., New York, N.Y. (1980); Lerner, E. A. (1981) Yale J. Biol. Med. 54:387-402; Gefter, M. L. et al. (1977) Somatic Cell Genet. 3:231-36). Briefly, an immortal cell line (typically a myeloma) is fused to lymphocytes (typically splenocytes) from a mammal immunized with an immunogen as described above, and the culture supernatants of the resulting hybridoma cells are screened to identify a hybridoma producing a monoclonal antibody that binds to the polypeptide antigen, preferably specifically.


Any of the many well-known protocols used for fusing lymphocytes and immortalized cell lines can be applied for the purpose of generating a monoclonal antibody against one or more biomarkers listed in Table 1, or a fragment thereof (see, e.g., Galfre, G. et al. (1977) Nature 266:55052; Gefter et al. (1977) supra; Lerner (1981) supra; Kenneth (1980) supra). Moreover, the ordinary skilled worker will appreciate that there are many variations of such methods which also would be useful. Typically, the immortal cell line (e.g., a myeloma cell line) is derived from the same mammalian species as the lymphocytes. For example, murine hybridomas can be made by fusing lymphocytes from a mouse immunized with an immunogenic preparation encompassed by the present invention with an immortalized mouse cell line. Preferred immortal cell lines are mouse myeloma cell lines that are sensitive to culture medium containing hypoxanthine, aminopterin and thymidine (“HAT medium”). Any of a number of myeloma cell lines can be used as a fusion partner according to standard techniques, e.g., the P3-NS1/1-Ag4-1, P3-x63-Ag8.653 or Sp2/O-Ag14 myeloma lines. These myeloma lines are available from the American Type Culture Collection (ATCC), Rockville, Md. Typically, HAT-sensitive mouse myeloma cells are fused to mouse splenocytes using polyethylene glycol (“PEG”). Hybridoma cells resulting from the fusion are then selected using HAT medium, which kills unfused and unproductively fused myeloma cells (unfused splenocytes die after several days because they are not transformed). Hybridoma cells producing a monoclonal antibody encompassed by the present invention are detected by screening the hybridoma culture supernatants for antibodies that bind a given polypeptide, e.g., using a standard ELISA assay.


As an alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal specific for one of the above described polypeptides can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the appropriate polypeptide to thereby isolate immunoglobulin library members that bind the polypeptide. Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAP™ Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening an antibody display library can be found in, for example, Ladner et al. U.S. Pat. No. 5,223,409; Kang et al. International Publication No. WO 92/18619; Dower et al. International Publication No. WO 91/17271; Winter et al. International Publication WO 92/20791; Markland et al. International Publication No. WO 92/15679; Breitling et al. International Publication WO 93/01288; McCafferty et al. International Publication No. WO 92/01047; Garrard et al. International Publication No. WO 92/09690; Ladner et al. International Publication No. WO 90/02809; Fuchs et al. (1991) Biotechnology (NY) 9:1369-1372; Hay et al. (1992) Hum. Antibod. Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; Griffiths et al. (1993) EMBO J. 12:725-734; Hawkins et al. (1992)J Mol. Biol. 226:889-896; Clarkson et al. (1991) Nature 352:624-628; Gram et al. (1992) Proc. Natl. Acad. Sci. USA 89:3576-3580; Garrard et at (1991) Biotechnology (NY) 9:1373-1377; Hoogenboom et al. (1991) Nucleic Acids Res. 19:4133-4137; Barbas et al. (1991) Proc. Natl. Acad. Sci. USA 88:7978-7982; and McCafferty et al. (1990) Nature 348:552-554.


Since it is well-known in the art that antibody heavy and light chain CDR3 domains play a particularly important role in the binding specificity/affinity of an antibody for an antigen, the recombinant monoclonal antibodies encompassed by the present invention prepared as set forth above preferably comprise the heavy and light chain CDR3s of variable regions of antibodies of interest. The antibodies further can comprise the CDR2s of variable regions encompassed by the present invention. The antibodies further can comprise the CDR's of variable regions encompassed by the present invention. In other embodiments, the antibodies can comprise any combinations of the CDRs.


The CDR1, 2, and/or 3 regions of the engineered antibodies described above can comprise the exact amino acid sequence(s) as those of variable regions encompassed by the present invention. However, the ordinarily skilled artisan will appreciate that some deviation from the exact CDR sequences may be possible while still retaining the ability of the antibody to bind a target of interest, such as one or more biomarkers listed in Table 1 and/or one or more natural binding partners effectively (e.g., conservative sequence modifications). Accordingly, in another embodiment, the engineered antibody may be composed of one or more CDRs that are, for example, 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.5% identical to one or more CDRs encompassed by the present invention.


For example, the structural features of non-human or human antibodies (e.g., a rat anti-mouse/anti-human antibody) can be used to create structurally related human antibodies, especially introbodies, that retain at least one functional property of the antibodies encompassed by the present invention, such as binding to one or more biomarkers listed in Table 1, binding partners/substrates of one or more biomarkers listed in Table 1, and/or an immune checkpoint. Another functional property includes inhibiting binding of the original known, non-human or human antibodies in a competition ELISA assay.


A skilled artisan will note that such percentage homology is equivalent to and can be achieved by introducing 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more conservative amino acid substitutions within a given CDR.


The monoclonal antibodies encompassed by the present invention can comprise a heavy chain, wherein the variable domain comprises at least a CDR having a sequence selected from the group consisting of the heavy chain variable domain CDRs described herein, and a light chain, wherein the variable domain comprises at least a CDR having a sequence selected from the group consisting of the light chain variable domain CDRs described herein.


Such monoclonal antibodies can comprise a light chain, wherein the variable domain comprises at least a CDR having a sequence selected from the group consisting of CDR-L1, CDR-L2, and CDR-L3, as described herein; and/or a heavy chain, wherein the variable domain comprises at least a CDR having a sequence selected from the group consisting of CDR-H1, CDR-H2, and CDR-H3, as described herein. In some embodiments, the monoclonal antibodies capable of binding one or more biomarkers listed in Table 1, comprises or consists of CDR-L1, CDR-L2, CDR-L3, CDR-H1, CDR-H2, and CDR-H3, as described herein.


The heavy chain variable domain of the monoclonal antibodies encompassed by the present invention can comprise or consist of the vH amino acid sequence set forth herein and/or the light chain variable domain of the monoclonal antibodies encompassed by the present invention can comprise or consist of the vκ amino acid sequence set forth herein.


The present invention further provides fragments of said monoclonal antibodies which include, but are not limited to, Fv, Fab, F(ab′)2, Fab′, dsFv, scFv, sc(Fv)2 and diabodies; and multispecific antibodies formed from antibody fragments. For example, a number of immunoinhibitory molecules, such as PD-L1, PD-1, CTLA-4, and the like, can be bound in a bispecific or multispecific manner.


Other fragments of the monoclonal antibodies encompassed by the present invention are also contemplated. For example, individual immunoglobulin heavy and/or light chains are provided, wherein the variable domains thereof comprise at least a CDR described herein. In one embodiment, the immunoglobulin heavy chain comprises at least a CDR having a sequence that is at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identical from the group of heavy chain or light chain variable domain CDRs described herein. In another embodiment, an immunoglobulin light chain comprises at least a CDR having a sequence that is at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or 100% identical from the group of light chain or heavy chain variable domain CDRs described herein, are also provided.


In some embodiments, the immunoglobulin heavy and/or light chain comprises a variable domain comprising at least one of CDR-L1, CDR-L2, CDR-L3, CDR-H1, CDR-H2, or CDR-H3 described herein. Such immunoglobulin heavy chains can comprise or consist of at least one of CDR-H1, CDR-H2, and CDR-H3. Such immunoglobulin light chains can comprise or consist of at least one of CDR-L1, CDR-L2, and CDR-L3.


In other embodiments, an immunoglobulin heavy and/or light chain according to the present invention comprises or consists of a vH or vκ variable domain sequence, respectively, described herein.


The present invention further provides polypeptides which have a sequence selected from the group consisting of vH variable domain, vκ variable domain, CDR-L1, CDR-L2, CDR-L3, CDR-H1, CDR-H2, and CDR-H3 sequences described herein.


Antibodies, immunoglobulins, and polypeptides encompassed by the present invention can be use in an isolated (e.g., purified) form or contained in a vector, such as a membrane or lipid vesicle (e.g. a liposome).


Amino acid sequence modification(s) of the antibodies described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. It is known that when a humanized antibody is produced by simply grafting only CDRs in VH and VL of an antibody derived from a non-human animal in FRs of the VH and VL of a human antibody, the antigen binding activity is reduced in comparison with that of the original antibody derived from a non-human animal. It is considered that several amino acid residues of the VH and VL of the non-human antibody, not only in CDRs but also in FRs, are directly or indirectly associated with the antigen binding activity. Hence, substitution of these amino acid residues with different amino acid residues derived from FRs of the VH and VL of the human antibody would reduce binding activity and can be corrected by replacing the amino acids with amino acid residues of the original antibody derived from a non-human animal.


Modifications and changes may be made in the structure of the antibodies encompassed by the present invention, and in the DNA sequences encoding them, and still obtain a functional molecule that encodes an antibody and polypeptide with desirable characteristics. For example, certain amino acids may be substituted by other amino acids in a protein structure without appreciable loss of activity. Since the interactive capacity and nature of a protein define the protein's biological functional activity, certain amino acid substitutions can be made in a protein sequence, and, of course, in its DNA encoding sequence, while nevertheless obtaining a protein with like properties. It is thus contemplated that various changes may be made in the antibodies sequences encompassed by the present invention, or corresponding DNA sequences which encode said polypeptides, without appreciable loss of their biological activity.


In making the changes in the amino sequences of polypeptide, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art. It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like. Each amino acid has been assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (−0.4); threonine (−0.7); serine (−0.8); tryptophane (−0.9); tyrosine (−1.3); proline (−1.6); histidine (−3.2); glutamate (−3.5); glutamine (−3.5); aspartate (<RTI 3.5); asparagine (−3.5); lysine (−3.9); and arginine (−4.5).


It is known in the art that certain amino acids may be substituted by other amino acids having a similar hydropathic index or score and still result in a protein with similar biological activity, i.e. still obtain a biological functionally equivalent protein.


As outlined above, amino acid substitutions are generally therefore based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions which take various of the foregoing characteristics into consideration are well-known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.


Another type of amino acid modification of the antibody encompassed by the present invention may be useful for altering the original glycosylation pattern of the antibody to, for example, increase stability. By “altering” is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody. Glycosylation of antibodies is typically N-linked. “N-linked” refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagines-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. Addition of glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). Another type of covalent modification involves chemically or enzymatically coupling glycosides to the antibody. These procedures are advantageous in that they do not require production of the antibody in a host cell that has glycosylation capabilities for N- or O-linked glycosylation. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine. For example, such methods are described in WO87/05330.


Similarly, removal of any carbohydrate moieties present on the antibody may be accomplished chemically or enzymatically. Chemical deglycosylation requires exposure of the antibody to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the antibody intact. Chemical deglycosylation is described by Sojahr et al. (1987) and by Edge et al. (1981). Enzymatic cleavage of carbohydrate moieties on antibodies can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al. (1987).


Other modifications can involve the formation of immunoconjugates. For example, in one type of covalent modification, antibodies or proteins are covalently linked to one of a variety of non proteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.


Conjugation of antibodies or other proteins encompassed by the present invention with heterologous agents can be made using a variety of bifunctional protein coupling agents including but not limited to N-succinimidyl (2-pyridyldithio) propionate (SPDP), succinimidyl (N-maleimidomethyl)cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, carbon labeled 1-isothiocyanatobenzyl methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody (WO 94/11026).


In another aspect, the present invention features antibodies conjugated to a therapeutic moiety, such as a cytotoxin, a drug, and/or a radioisotope. When conjugated to a cytotoxin, these antibody conjugates are referred to as “immunotoxins.” A cytotoxin or cytotoxic agent includes any agent that is detrimental to (e.g., kills) cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine). An antibody encompassed by the present invention can be conjugated to a radioisotope, e.g., radioactive iodine, to generate cytotoxic radiopharmaceuticals for treating a related disorder, such as a cancer.


Conjugated antibodies can be used diagnostically or prognostically to monitor polypeptide levels in tissue as part of a clinical testing procedure, e.g., to determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, P-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate (FITC), rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin (PE); an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 35S, or 3H. [0134] As used herein, the term “labeled”, with regard to the antibody, is intended to encompass direct labeling of the antibody by coupling (i.e., physically linking) a detectable substance, such as a radioactive agent or a fluorophore (e.g. fluorescein isothiocyanate (FITC) or phycoerythrin (PE) or Indocyanine (Cy5)) to the antibody, as well as indirect labeling of the antibody by reactivity with a detectable substance.


The antibody conjugates encompassed by the present invention can be used to modify a given biological response. The therapeutic moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, an enzymatically active toxin, or active fragment thereof, such as abrin, ricin A, Pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor or interferon-.gamma.; or, biological response modifiers such as, for example, lymphokines, interleukin-1 (“IL-1”), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other cytokines or growth factors.


Techniques for conjugating such therapeutic moiety to antibodies are well-known, see, e.g., Arnon et al., “Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy”, in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243 56 (Alan R. Liss, Inc. 1985); Hellstrom et al., “Antibodies For Drug Delivery”, in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623 53 (Marcel Dekker, Inc. 1987); Thorpe, “Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review”, in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475 506 (1985); “Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy”, in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303 16 (Academic Press 1985), and Thorpe et al., “The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates”, Immunol. Rev., 62:119 58 (1982).


In some embodiments, conjugations can be made using a “cleavable linker” facilitating release of the cytotoxic agent or growth inhibitory agent in a cell. For example, an acid-labile linker, peptidase-sensitive linker, photolabile linker, dimethyl linker or disulfide-containing linker (See e.g. U.S. Pat. No. 5,208,020) may be used. Alternatively, a fusion protein comprising the antibody and cytotoxic agent or growth inhibitory agent may be made, by recombinant techniques or peptide synthesis. The length of DNA may comprise respective regions encoding the two portions of the conjugate either adjacent one another or separated by a region encoding a linker peptide which does not destroy the desired properties of the conjugate.


Additionally, recombinant polypeptide antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope encompassed by the present invention. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in Robinson et al. International Patent Publication PCT/US86/02269; Akira et al. European Patent Application 184,187; Taniguchi, M. European Patent Application 171,496; Morrison et al. European Patent Application 173,494; Neuberger et al. PCT Application WO 86/01533; Cabilly et al. U.S. Pat. No. 4,816,567; Cabilly et al. European Patent Application 125,023; Better et al. (1988) Science 240:1041-1043; Liu et al. (1987) Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al. (1987) J. Immunol. 139:3521-3526; Sun et al. (1987) Proc. Natl. Acad. Sci. 84:214-218; Nishimura et al. (1987) Cancer Res. 47:999-1005; Wood et al. (1985) Nature 314:446-449; Shaw et al. (1988) J. Natl. Cancer Inst. 80:1553-1559); Morrison, S. L. (1985) Science 229:1202-1207; Oi et al. (1986) Biotechniques 4:214; Winter U.S. Pat. No. 5,225,539; Jones et al. (1986) Nature 321:552-525; Verhoeyan et al. (1988) Science 239:1534; and Beidler et al. (1988) J. Immunol. 141:4053-4060.


In addition, humanized antibodies can be made according to standard protocols such as those disclosed in U.S. Pat. No. 5,565,332. In another embodiment, antibody chains or specific binding pair members can be produced by recombination between vectors comprising nucleic acid molecules encoding a fusion of a polypeptide chain of a specific binding pair member and a component of a replicable generic display package and vectors containing nucleic acid molecules encoding a second polypeptide chain of a single binding pair member using techniques known in the art, e.g., as described in U.S. Pat. Nos. 5,565,332, 5,871,907, or 5,733,743. The use of intracellular antibodies to inhibit protein function in a cell is also known in the art (see e.g., Carlson, J. R. (1988) Mol. Cell. Biol. 8:2638-2646; Biocca, S. et al. (1990) EMBO J 9:101-108; Werge, T. M. et al. (1990) FEES Lett. 274:193-198; Carlson, J. R. (1993) Proc. Natl. Acad. Sci. USA 90:7427-7428; Marasco, W. A. et al. (1993) Proc. Natl. Acad. Sci. USA 90:7889-7893; Biocca, S. et al. (1994) Biotechnology (IVY) 12:396-399; Chen, S-Y. et al. (1994) Hum. Gene Ther. 5:595-601; Duan, L et al. (1994) Proc. Natl. Acad. Sci. USA 91:5075-5079; Chen, S-Y. et al. (1994) Proc. Natl. Acad. Sci. USA 91:5932-5936; Beerli, R. R. et al. (1994) J. Biol. Chem. 269:23931-23936; Beerli, R. R. et al. (1994) Biochem. Biophys. Res. Commun. 204:666-672; Mhashilkar, A. M. et al. (1995) EMBO J 14:1542-1551; Richardson, J. H. et at (1995) Proc. Natl. Acad. Sci. USA 92:3137-3141; PCT Publication No. WO 94/02610 by Marasco et al.; and PCT Publication No. WO 95/03832 by Duan et al.).


Additionally, fully human antibodies could be made against one or more biomarkers listed in Table 1, or fragments thereof. Fully human antibodies can be made in mice that are transgenic for human immunoglobulin genes, e.g. according to Hogan et al., “Manipulating the Mouse Embryo: A Laboratory Manuel,” Cold Spring Harbor Laboratory. Briefly, transgenic mice are immunized with purified immunogen. Spleen cells are harvested and fused to myeloma cells to produce hybridomas. Hybridomas are selected based on their ability to produce antibodies which bind to the immunogen. Fully human antibodies would reduce the immunogenicity of such antibodies in a human.


In one embodiment, an antibody for use in the instant invention is a bispecific antibody. A bispecific antibody has binding sites for two different antigens within a single antibody polypeptide. Antigen binding may be simultaneous or sequential. Triomas and hybrid hybridomas are two examples of cell lines that can secrete bispecific antibodies. Examples of bispecific antibodies produced by a hybrid hybridoma or a trioma are disclosed in U.S. Pat. No. 4,474,893. Bispecific antibodies have been constructed by chemical means (Staerz et al. (1985) Nature 314:628, and Perez et al. (1985) Nature 316:354) and hybridoma technology (Staerz and Bevan (1986) Proc. Natl. Acad. Sci. USA, 83:1453, and Staerz and Bevan (1986) Immunol. Today 7:241). Bispecific antibodies are also described in U.S. Pat. No. 5,959,084. Fragments of bispecific antibodies are described in U.S. Pat. No. 5,798,229.


Bispecific agents can also be generated by making heterohybridomas by fusing hybridomas or other cells making different antibodies, followed by identification of clones producing and co-assembling both antibodies. They can also be generated by chemical or genetic conjugation of complete immunoglobulin chains or portions thereof such as Fab and Fv sequences. The antibody component can bind to a polypeptide or a fragment thereof of one or more biomarkers encompassed by the present invention, including one or more biomarkers listed in Table 1, or a fragment thereof. In one embodiment, the bispecific antibody could specifically bind to both a polypeptide or a fragment thereof and its natural binding partner(s) or a fragment(s) thereof.


In another aspect encompassed by the present invention, peptides or peptide mimetics can be used to agonize the activity of one or more biomarkers encompassed by the present invention, including one or more biomarkers listed in Table 1, or a fragment(s) thereof. In one embodiment, variants of one or more biomarkers listed in Table 1 which function as a modulating agent for the respective full length protein, can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, for agonist activity. In one embodiment, a variegated library of variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of variants can be produced and screened using methods described above. The production of peptides and peptidomimetics are also described herein.


Also encompassed by the present invention are small molecules which can modulate (e.g., enhance) interactions, e.g., between one or more biomarkers listed in Table 1 and their natural binding partners. The small molecules encompassed by the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the ‘one-bead one-compound’library method; and synthetic library methods using affinity chromatography selection. (Lam, K. S. (1997) Anticancer Drug Des. 12:145).


Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA 90:6909; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91:11422; Zuckermann et al. (1994) J. Med. Chem. 37:2678; Cho et al. (1993) Science 261:1303; Carrell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2061; and in Gallop et al. (1994) J. Med. Chem. 37:1233.


Libraries of compounds can be presented in solution (e.g., Houghten (1992) Biotechniques 13:412-421), or on beads (Lam (1991) Nature 354:82-84), chips (Fodor (1993) Nature 364:555-556), bacteria (Ladner U.S. Pat. No. 5,223,409), spores (Ladner USP '409), plasmids (Cull et al. (1992) Proc. Natl. Acad. Sci. USA 89:1865-1869) or on phage (Scott and Smith (1990) Science 249:386-390); (Devlin (1990) Science 249:404-406); (Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87:6378-6382); (Felici (1991) J. Mol. Biol. 222:301-310); (Ladner supra.). Compounds can be screened in cell based or non-cell based assays. Compounds can be screened in pools (e.g. multiple compounds in each testing sample) or as individual compounds.


The invention also relates to chimeric or fusion proteins of the biomarkers encompassed by the present invention, including one or more biomarkers listed in Table 1, or fragments thereof. As used herein, a “chimeric protein” or “fusion protein” comprises one or more biomarkers encompassed by the present invention, including one or more biomarkers listed in Table 1, or a fragment thereof, operatively linked to another polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the respective biomarker. In a preferred embodiment, the fusion protein comprises at least one biologically active portion of one or more biomarkers encompassed by the present invention, including one or more biomarkers listed in Table 1, or fragments thereof. Within the fusion protein, the term “operatively linked” is intended to indicate that the biomarker sequences and the non-biomarker sequences are fused in-frame to each other in such a way as to preserve functions exhibited when expressed independently of the fusion. The “another” sequences can be fused to the N-terminus or C-terminus of the biomarker sequences, respectively.


Such a fusion protein can be produced by recombinant expression of a nucleotide sequence encoding the first peptide and a nucleotide sequence encoding the second peptide. The second peptide may optionally correspond to a moiety that alters the solubility, affinity, stability or valency of the first peptide, for example, an immunoglobulin constant region. In another preferred embodiment, the first peptide consists of a portion of a biologically active molecule (e.g. the extracellular portion of the polypeptide or the ligand binding portion). The second peptide can include an immunoglobulin constant region, for example, a human Cγ1 domain or Cγ4 domain (e.g., the hinge, CH2 and CH3 regions of human IgCγ1, or human IgCγ4, see e.g., Capon et al. U.S. Pat. Nos. 5,116,964; 5,580,756; 5,844,095 and the like, incorporated herein by reference). Such constant regions may retain regions which mediate effector function (e.g. Fc receptor binding) or may be altered to reduce effector function. A resulting fusion protein may have altered solubility, binding affinity, stability and/or valency (i.e., the number of binding sites available per polypeptide) as compared to the independently expressed first peptide, and may increase the efficiency of protein purification. Fusion proteins and peptides produced by recombinant techniques can be secreted and isolated from a mixture of cells and medium containing the protein or peptide. Alternatively, the protein or peptide can be retained cytoplasmically and the cells harvested, lysed and the protein isolated. A cell culture typically includes host cells, media and other byproducts. Suitable media for cell culture are well-known in the art. Protein and peptides can be isolated from cell culture media, host cells, or both using techniques known in the art for purifying proteins and peptides. Techniques for transfecting host cells and purifying proteins and peptides are known in the art.


Preferably, a fusion protein encompassed by the present invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al. John Wiley & Sons: 1992).


In another embodiment, the fusion protein contains a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a polypeptide can be increased through use of a heterologous signal sequence.


The fusion proteins encompassed by the present invention can be used as immunogens to produce antibodies in a subject. Such antibodies may be used to purify the respective natural polypeptides from which the fusion proteins were generated, or in screening assays to identify polypeptides which inhibit the interactions between one or more biomarkers polypeptide or a fragment thereof and its natural binding partner(s) or a fragment(s) thereof.


The modulatory agents described herein (e.g., nucleic acids, peptides, antibodies, small molecules, or fusion proteins) can be incorporated into pharmaceutical compositions and administered to a subject in vivo. The compositions may contain a single such molecule or agent or any combination of agents described herein. “Single active agents” described herein can be combined with other pharmacologically active compounds (“second active agents”) known in the art according to the methods and compositions provided herein. It is believed that certain combinations work synergistically in the treatment of conditions that would benefit from the mouldation of immune responses. Second active agents can be large molecules (e.g., proteins) or small molecules (e.g., synthetic inorganic, organometallic, or organic molecules).


Biomarker nucleic acids and/or biomarker polypeptides can be analyzed according to the methods described herein and techniques known to the skilled artisan to identify such genetic or expression alterations useful for the present invention including, but not limited to, 1) an alteration in the level of a biomarker transcript or polypeptide, 2) a deletion or addition of one or more nucleotides from a biomarker gene, 4) a substitution of one or more nucleotides of a biomarker gene, 5) aberrant modification of a biomarker gene, such as an expression regulatory region, and the like.


1. Methods for Detection of Copy Number


Methods of evaluating the copy number of a biomarker nucleic acid are well-known to those of skill in the art. The presence or absence of chromosomal gain or loss can be evaluated simply by a determination of copy number of the regions or markers identified herein.


In one embodiment, a biological sample is tested for the presence of copy number changes in genomic loci containing the genomic marker.


Methods of evaluating the copy number of a biomarker locus include, but are not limited to, hybridization-based assays. Hybridization-based assays include, but are not limited to, traditional “direct probe” methods, such as Southern blots, in situ hybridization (e.g., FISH and FISH plus SKY) methods, and “comparative probe” methods, such as comparative genomic hybridization (CGH), e.g., cDNA-based or oligonucleotide-based CGH. The methods can be used in a wide variety of formats including, but not limited to, substrate (e.g. membrane or glass) bound methods or array-based approaches.


In one embodiment, evaluating the biomarker gene copy number in a sample involves a Southern Blot. In a Southern Blot, the genomic DNA (typically fragmented and separated on an electrophoretic gel) is hybridized to a probe specific for the target region. Comparison of the intensity of the hybridization signal from the probe for the target region with control probe signal from analysis of normal genomic DNA (e.g., a non-amplified portion of the same or related cell, tissue, organ, etc.) provides an estimate of the relative copy number of the target nucleic acid. Alternatively, a Northern blot may be utilized for evaluating the copy number of encoding nucleic acid in a sample. In a Northern blot, mRNA is hybridized to a probe specific for the target region. Comparison of the intensity of the hybridization signal from the probe for the target region with control probe signal from analysis of normal RNA (e.g., a non-amplified portion of the same or related cell, tissue, organ, etc.) provides an estimate of the relative copy number of the target nucleic acid. Alternatively, other methods well-known in the art to detect RNA can be used, such that higher or lower expression relative to an appropriate control (e.g., a non-amplified portion of the same or related cell tissue, organ, etc.) provides an estimate of the relative copy number of the target nucleic acid.


An alternative means for determining genomic copy number is in situ hybridization (e.g., Angerer (1987)Meth. Enzymol 152: 649). Generally, in situ hybridization comprises the following steps: (1) fixation of tissue or biological structure to be analyzed; (2) prehybridization treatment of the biological structure to increase accessibility of target DNA, and to reduce nonspecific binding; (3) hybridization of the mixture of nucleic acids to the nucleic acid in the biological structure or tissue; (4) post-hybridization washes to remove nucleic acid fragments not bound in the hybridization and (5) detection of the hybridized nucleic acid fragments. The reagent used in each of these steps and the conditions for use vary depending on the particular application. In a typical in situ hybridization assay, cells are fixed to a solid support, typically a glass slide. If a nucleic acid is to be probed, the cells are typically denatured with heat or alkali. The cells are then contacted with a hybridization solution at a moderate temperature to permit annealing of labeled probes specific to the nucleic acid sequence encoding the protein. The targets (e.g., cells) are then typically washed at a predetermined stringency or at an increasing stringency until an appropriate signal to noise ratio is obtained. The probes are typically labeled, e.g., with radioisotopes or fluorescent reporters. In one embodiment, probes are sufficiently long so as to specifically hybridize with the target nucleic acid(s) under stringent conditions. Probes generally range in length from about 200 bases to about 1000 bases. In some applications it is necessary to block the hybridization capacity of repetitive sequences. Thus, in some embodiments, tRNA, human genomic DNA, or Cot-I DNA is used to block non-specific hybridization.


An alternative means for determining genomic copy number is comparative genomic hybridization. In general, genomic DNA is isolated from normal reference cells, as well as from test cells (e.g., tumor cells) and amplified, if necessary. The two nucleic acids are differentially labeled and then hybridized in situ to metaphase chromosomes of a reference cell. The repetitive sequences in both the reference and test DNAs are either removed or their hybridization capacity is reduced by some means, for example by prehybridization with appropriate blocking nucleic acids and/or including such blocking nucleic acid sequences for said repetitive sequences during said hybridization. The bound, labeled DNA sequences are then rendered in a visualizable form, if necessary. Chromosomal regions in the test cells which are at increased or decreased copy number can be identified by detecting regions where the ratio of signal from the two DNAs is altered. For example, those regions that have decreased in copy number in the test cells will show relatively lower signal from the test DNA than the reference compared to other regions of the genome. Regions that have been increased in copy number in the test cells will show relatively higher signal from the test DNA. Where there are chromosomal deletions or multiplications, differences in the ratio of the signals from the two labels will be detected and the ratio will provide a measure of the copy number. In another embodiment of CGH, array CGH (aCGH), the immobilized chromosome element is replaced with a collection of solid support bound target nucleic acids on an array, allowing for a large or complete percentage of the genome to be represented in the collection of solid support bound targets. Target nucleic acids may comprise cDNAs, genomic DNAs, oligonucleotides (e.g., to detect single nucleotide polymorphisms) and the like. Array-based CGH may also be performed with single-color labeling (as opposed to labeling the control and the possible tumor sample with two different dyes and mixing them prior to hybridization, which will yield a ratio due to competitive hybridization of probes on the arrays). In single color CGH, the control is labeled and hybridized to one array and absolute signals are read, and the possible tumor sample is labeled and hybridized to a second array (with identical content) and absolute signals are read. Copy number difference is calculated based on absolute signals from the two arrays. Methods of preparing immobilized chromosomes or arrays and performing comparative genomic hybridization are well-known in the art (see, e.g., U.S. Pat. Nos. 6,335,167; 6,197,501; 5,830,645; and 5,665,549 and Albertson (1984) EMBO J. 3: 1227-1234; Pinkel (1988) Proc. Natl. Acad. Sci. USA 85: 9138-9142; EPO Pub. No. 430,402; Methods in Molecular Biology, Vol. 33: In situ Hybridization Protocols, Choo, ed., Humana Press, Totowa, N.J. (1994), etc.). In another embodiment, the hybridization protocol of Pinkel et al. (1998) Nature Genetics 20: 207-211, or of Kallioniemi (1992) Proc. Natl Acad Sci USA 89:5321-5325 (1992) is used.


In still another embodiment, amplification-based assays can be used to measure copy number. In such amplification-based assays, the nucleic acid sequences act as a template in an amplification reaction (e.g., Polymerase Chain Reaction (PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls, e.g. healthy tissue, provides a measure of the copy number.


Methods of “quantitative” amplification are well-known to those of skill in the art. For example, quantitative PCR involves simultaneously co-amplifying a known quantity of a control sequence using the same primers. This provides an internal standard that may be used to calibrate the PCR reaction. Detailed protocols for quantitative PCR are provided in Innis et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. N.Y.). Measurement of DNA copy number at microsatellite loci using quantitative PCR analysis is described in Ginzonger et al. (2000) Cancer Research 60:5405-5409. The known nucleic acid sequence for the genes is sufficient to enable one of skill in the art to routinely select primers to amplify any portion of the gene. Fluorogenic quantitative PCR may also be used in the methods encompassed by the present invention. In fluorogenic quantitative PCR, quantitation is based on amount of fluorescence signals, e.g., TaqMan and SYBR green.


Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see Wu and Wallace (1989) Genomics 4: 560, Landegren et al. (1988) Science 241:1077, and Barringer et al. (1990) Gene 89: 117), transcription amplification (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86: 1173), self-sustained sequence replication (Guatelli et al. (1990) Proc. Nat. Acad. Sci. USA 87: 1874), dot PCR, and linker adapter PCR, etc.


Loss of heterozygosity (LOH) and major copy proportion (MCP) mapping (Wang, Z. C. et al. (2004) Cancer Res 64(1):64-71; Seymour, A. B. et al. (1994) Cancer Res 54, 2761-4; Hahn, S. A. et al. (1995) Cancer Res 55, 4670-5; Kimura, M. et al. (1996) Genes Chromosomes Cancer 17, 88-93; Li et at, (2008) MBC Bioinform. 9, 204-219) may also be used to identify regions of amplification or deletion.


2. Methods for Detection of Biomarker Nucleic Acid Expression


Biomarker expression may be assessed by any of a wide variety of well-known methods for detecting expression of a transcribed molecule or protein. Non-limiting examples of such methods include immunological methods for detection of secreted, cell-surface, cytoplasmic, or nuclear proteins, protein purification methods, protein function or activity assays, nucleic acid hybridization methods, nucleic acid reverse transcription methods, and nucleic acid amplification methods.


In preferred embodiments, activity of a particular gene is characterized by a measure of gene transcript (e.g. mRNA), by a measure of the quantity of translated protein, or by a measure of gene product activity. Marker expression can be monitored in a variety of ways, including by detecting mRNA levels, protein levels, or protein activity, any of which can be measured using standard techniques. Detection can involve quantification of the level of gene expression (e.g., genomic DNA, cDNA, mRNA, protein, or enzyme activity), or, alternatively, can be a qualitative assessment of the level of gene expression, in particular in comparison with a control level. The type of level being detected will be clear from the context.


In another embodiment, detecting or determining expression levels of a biomarker and functionally similar homologs thereof, including a fragment or genetic alteration thereof (e.g., in regulatory or promoter regions thereof) comprises detecting or determining RNA levels for the marker of interest. In one embodiment, one or more cells from the subject to be tested are obtained and RNA is isolated from the cells. In a preferred embodiment, a sample of breast tissue cells is obtained from the subject.


In one embodiment, RNA is obtained from a single cell. For example, a cell can be isolated from a tissue sample by laser capture microdissection (LCM). Using this technique, a cell can be isolated from a tissue section, including a stained tissue section, thereby assuring that the desired cell is isolated (see, e.g., Bonner et al. (1997) Science 278: 1481; Emmert-Buck et ed. (1996) Science 274:998; Fend et al. (1999) Am. J. Path. 154: 61 and Murakami et al. (2000) Kidney Int. 58:1346). For example, Murakami et al., supra, describe isolation of a cell from a previously immunostained tissue section.


It is also be possible to obtain cells from a subject and culture the cells in vitro, such as to obtain a larger population of cells from which RNA can be extracted. Methods for establishing cultures of non-transformed cells, i.e., primary cell cultures, are known in the art.


When isolating RNA from tissue samples or cells from individuals, it may be important to prevent any further changes in gene expression after the tissue or cells has been removed from the subject. Changes in expression levels are known to change rapidly following perturbations, e.g., heat shock or activation with lipopolysaccharide (LPS) or other reagents. In addition, the RNA in the tissue and cells may quickly become degraded. Accordingly, in a preferred embodiment, the tissue or cells obtained from a subject is snap frozen as soon as possible.


RNA can be extracted from the tissue sample by a variety of methods, e.g., the guanidium thiocyanate lysis followed by CsCl centrifugation (Chirgwin et al., 1979, Biochemistry 18:5294-5299). RNA from single cells can be obtained as described in methods for preparing cDNA libraries from single cells, such as those described in Dulac, C. (1998) Curr. Top. Dev. Biol. 36, 245 and Jena et al. (1996) J. Immunol. Methods 190:199. Care to avoid RNA degradation must be taken, e.g., by inclusion of RNAsin. The RNA sample can then be enriched in particular species. In one embodiment, poly(A)+ RNA is isolated from the RNA sample. In general, such purification takes advantage of the poly-A tails on mRNA. In particular and as noted above, poly-T oligonucleotides may be immobilized within on a solid support to serve as affinity ligands for mRNA. Kits for this purpose are commercially available, e.g., the MessageMaker kit (Life Technologies, Grand Island, N.Y.).


In a preferred embodiment, the RNA population is enriched in marker sequences. Enrichment can be undertaken, e.g., by primer-specific cDNA synthesis, or multiple rounds of linear amplification based on cDNA synthesis and template-directed in vitro transcription (see, e.g., Wang et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86: 9717; Dulac et al., supra, and Jena et al., supra).


The population of RNA, enriched or not in particular species or sequences, can further be amplified. As defined herein, an “amplification process” is designed to strengthen, increase, or augment a molecule within the RNA. For example, where RNA is mRNA, an amplification process such as RT-PCR can be utilized to amplify the mRNA, such that a signal is detectable or detection is enhanced. Such an amplification process is beneficial particularly when the biological, tissue, or tumor sample is of a small size or volume.


Various amplification and detection methods can be used. For example, it is within the scope encompassed by the present invention to reverse transcribe mRNA into cDNA followed by polymerase chain reaction (RT-PCR); or, to use a single enzyme for both steps as described in U.S. Pat. No. 5,322,770, or reverse transcribe mRNA into cDNA followed by symmetric gap ligase chain reaction (RT-AGLCR) as described by R. L. Marshall et al., PCR Methods and Applications 4: 80-84 (1994). Real time PCR may also be used.


Other known amplification methods which can be utilized herein include but are not limited to the so-called “NASBA” or “3SR” technique described in PNAS USA 87: 1874-1878 (1990) and also described in Nature 350 (No. 6313): 91-92 (1991); Q-beta amplification as described in published European Patent Application (EPA) No. 4544610; strand displacement amplification (as described in G. T. Walker et al., Clin. Chem. 42: 9-13 (1996) and European Patent Application No. 684315; target mediated amplification, as described by PCT Publication WO9322461; PCR; ligase chain reaction (LCR) (see, e.g., Wu and Wallace, Genomics 4, 560 (1989), Landegren et al., Science 241, 1077 (1988)); self-sustained sequence replication (SSR) (see, e.g., Guatelli et al., Proc. Nat. Acad. Sci. USA, 87, 1874 (1990)); and transcription amplification (see, e.g., Kwoh et al., Proc. Natl. Acad. Sci. USA 86, 1173 (1989)).


Many techniques are known in the state of the art for determining absolute and relative levels of gene expression, commonly used techniques suitable for use in the present invention include Northern analysis, RNase protection assays (RPA), microarrays and PCR-based techniques, such as quantitative PCR and differential display PCR. For example, Northern blotting involves running a preparation of RNA on a denaturing agarose gel, and transferring it to a suitable support, such as activated cellulose, nitrocellulose or glass or nylon membranes. Radiolabeled cDNA or RNA is then hybridized to the preparation, washed and analyzed by autoradiography.


In situ hybridization visualization may also be employed, wherein a radioactively labeled antisense RNA probe is hybridized with a thin section of a biopsy sample, washed, cleaved with RNase and exposed to a sensitive emulsion for autoradiography. The samples may be stained with hematoxylin to demonstrate the histological composition of the sample, and dark field imaging with a suitable light filter shows the developed emulsion. Non-radioactive labels such as digoxigenin may also be used.


Alternatively, mRNA expression can be detected on a DNA array, chip or a microarray. Labeled nucleic acids of a test sample obtained from a subject may be hybridized to a solid surface comprising biomarker DNA. Positive hybridization signal is obtained with the sample containing biomarker transcripts. Methods of preparing DNA arrays and their use are well-known in the art (see, e.g., U.S. Pat. Nos. 6,618,6796; 6,379,897; 6,664,377; 6,451,536; 548,257; U.S. 20030157485 and Schena et al. (1995) Science 20, 467-470; Gerhold et al. (1999) Trends In Biochem. Sci. 24, 168-173; and Lennon et al. (2000) Drug Discovery Today 5, 59-65, which are herein incorporated by reference in their entirety). Serial Analysis of Gene Expression (SAGE) can also be performed (See for example U.S. Patent Application 20030215858).


To monitor mRNA levels, for example, mRNA is extracted from the biological sample to be tested, reverse transcribed, and fluorescently-labeled cDNA probes are generated. The microarrays capable of hybridizing to marker cDNA are then probed with the labeled cDNA probes, the slides scanned and fluorescence intensity measured. This intensity correlates with the hybridization intensity and expression levels.


Types of probes that can be used in the methods described herein include cDNA, riboprobes, synthetic oligonucleotides and genomic probes. The type of probe used will generally be dictated by the particular situation, such as riboprobes for in situ hybridization, and cDNA for Northern blotting, for example. In one embodiment, the probe is directed to nucleotide regions unique to the RNA. The probes may be as short as is required to differentially recognize marker mRNA transcripts, and may be as short as, for example, 15 bases; however, probes of at least 17, 18, 19 or 20 or more bases can be used. In one embodiment, the primers and probes hybridize specifically under stringent conditions to a DNA fragment having the nucleotide sequence corresponding to the marker. As herein used, the term “stringent conditions” means hybridization will occur only if there is at least 95% identity in nucleotide sequences. In another embodiment, hybridization under “stringent conditions” occurs when there is at least 97% identity between the sequences.


The form of labeling of the probes may be any that is appropriate, such as the use of radioisotopes, for example, 32P and 35S. Labeling with radioisotopes may be achieved, whether the probe is synthesized chemically or biologically, by the use of suitably labeled bases.


In one embodiment, the biological sample contains polypeptide molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject.


In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting marker polypeptide, mRNA, genomic DNA, or fragments thereof, such that the presence of the marker polypeptide, mRNA, genomic DNA, or fragments thereof, is detected in the biological sample, and comparing the presence of the marker polypeptide, mRNA, genomic DNA, or fragments thereof, in the control sample with the presence of the marker polypeptide, mRNA, genomic DNA, or fragments thereof in the test sample.


3. Methods for Detection of Biomarker Protein Expression


The activity or level of a biomarker protein can be detected and/or quantified by detecting or quantifying the expressed polypeptide. The polypeptide can be detected and quantified by any of a number of means well-known to those of skill in the art. Aberrant levels of polypeptide expression of the polypeptides encoded by a biomarker nucleic acid and functionally similar homologs thereof, including a fragment or genetic alteration thereof (e.g., in regulatory or promoter regions thereof) are associated with the likelihood of response of a condition that would benefit from modulating an immune response to modulators of IRE1α-XBP1 pathway. Any method known in the art for detecting polypeptides can be used. Such methods include, but are not limited to, immunodiffusion, immunoelectrophoresis, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, Western blotting, binder-ligand assays, immunohistochemical techniques, agglutination, complement assays, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, and the like (e.g., Basic and Clinical Immunology, Sites and Terr, eds., Appleton and Lange, Norwalk, Conn. pp 217-262, 1991 which is incorporated by reference). Preferred are binder-ligand immunoassay methods including reacting antibodies with an epitope or epitopes and competitively displacing a labeled polypeptide or derivative thereof.


For example, ELISA and RIA procedures may be conducted such that a desired biomarker protein standard is labeled (with a radioisotope such as 125I or 35S, or an assayable enzyme, such as horseradish peroxidase or alkaline phosphatase), and, together with the unlabeled sample, brought into contact with the corresponding antibody, whereon a second antibody is used to bind the first, and radioactivity or the immobilized enzyme assayed (competitive assay). Alternatively, the biomarker protein in the sample is allowed to react with the corresponding immobilized antibody, radioisotope- or enzyme-labeled anti-biomarker protein antibody is allowed to react with the system, and radioactivity or the enzyme assayed (ELISA-sandwich assay). Other conventional methods may also be employed as suitable.


The above techniques may be conducted essentially as a “one-step” or “two-step” assay. A “one-step” assay involves contacting antigen with immobilized antibody and, without washing, contacting the mixture with labeled antibody. A “two-step” assay involves washing before contacting, the mixture with labeled antibody. Other conventional methods may also be employed as suitable.


In one embodiment, a method for measuring biomarker protein levels comprises the steps of: contacting a biological specimen with an antibody or variant (e.g., fragment) thereof which selectively binds the biomarker protein, and detecting whether said antibody or variant thereof is bound to said sample and thereby measuring the levels of the biomarker protein.


Enzymatic and radiolabeling of biomarker protein and/or the antibodies may be effected by conventional means. Such means will generally include covalent linking of the enzyme to the antigen or the antibody in question, such as by glutaraldehyde, specifically so as not to adversely affect the activity of the enzyme, by which is meant that the enzyme must still be capable of interacting with its substrate, although it is not necessary for all of the enzyme to be active, provided that enough remains active to permit the assay to be effected. Indeed, some techniques for binding enzyme are non-specific (such as using formaldehyde), and will only yield a proportion of active enzyme.


It is usually desirable to immobilize one component of the assay system on a support, thereby allowing other components of the system to be brought into contact with the component and readily removed without laborious and time-consuming labor. It is possible for a second phase to be immobilized away from the first, but one phase is usually sufficient.


It is possible to immobilize the enzyme itself on a support, but if solid-phase enzyme is required, then this is generally best achieved by binding to antibody and affixing the antibody to a support, models and systems for which are well-known in the art. Simple polyethylene may provide a suitable support.


Enzymes employable for labeling are not particularly limited, but may be selected from the members of the oxidase group, for example. These catalyze production of hydrogen peroxide by reaction with their substrates, and glucose oxidase is often used for its good stability, ease of availability and cheapness, as well as the ready availability of its substrate (glucose). Activity of the oxidase may be assayed by measuring the concentration of hydrogen peroxide formed after reaction of the enzyme-labeled antibody with the substrate under controlled conditions well-known in the art.


Other techniques may be used to detect biomarker protein according to a practitioner's preference based upon the present disclosure. One such technique is Western blotting (Towbin et at., Proc. Nat. Acad. Sci. 76:4350 (1979)), wherein a suitably treated sample is run on an SDS-PAGE gel before being transferred to a solid support, such as a nitrocellulose filter. Anti-biomarker protein antibodies (unlabeled) are then brought into contact with the support and assayed by a secondary immunological reagent, such as labeled protein A or anti-immunoglobulin (suitable labels including 125I, horseradish peroxidase and alkaline phosphatase). Chromatographic detection may also be used.


Immunohistochemistry may be used to detect expression of biomarker protein, e.g., in a biopsy sample. A suitable antibody is brought into contact with, for example, a thin layer of cells, washed, and then contacted with a second, labeled antibody. Labeling may be by fluorescent markers, enzymes, such as peroxidase, avidin, or radiolabeling. The assay is scored visually, using microscopy.


Anti-biomarker protein antibodies, such as intrabodies, may also be used for imaging purposes, for example, to detect the presence of biomarker protein in cells and tissues of a subject. Suitable labels include radioisotopes, iodine (125I, 121I) carbon (14C), sulphur (35S), tritium (3H), indium (112In), and technetium (99mTc), fluorescent labels, such as fluorescein and rhodamine, and biotin.


For in vivo imaging purposes, antibodies are not detectable, as such, from outside the body, and so must be labeled, or otherwise modified, to permit detection. Markers for this purpose may be any that do not substantially interfere with the antibody binding, but which allow external detection. Suitable markers may include those that may be detected by X-radiography, NMR or MRI. For X-radiographic techniques, suitable markers include any radioisotope that emits detectable radiation but that is not overtly harmful to the subject, such as barium or cesium, for example. Suitable markers for NMR and MRI generally include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by suitable labeling of nutrients for the relevant hybridoma, for example.


The size of the subject, and the imaging system used, will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of technetium-99. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain biomarker protein. The labeled antibody or antibody fragment can then be detected using known techniques.


Antibodies that may be used to detect biomarker protein include any antibody, whether natural or synthetic, full length or a fragment thereof, monoclonal or polyclonal, that binds sufficiently strongly and specifically to the biomarker protein to be detected. An antibody may have a Kd of at most about 10−6M, 10−7M, 10−8M, 10−9M, 10−10M, 10−11M, 10−12M. The phrase “specifically binds” refers to binding of, for example, an antibody to an epitope or antigen or antigenic determinant in such a manner that binding can be displaced or competed with a second preparation of identical or similar epitope, antigen or antigenic determinant. An antibody may bind preferentially to the biomarker protein relative to other proteins, such as related proteins.


Antibodies are commercially available or may be prepared according to methods known in the art.


Antibodies and derivatives thereof that may be used encompass polyclonal or monoclonal antibodies, chimeric, human, humanized, primatized (CDR-grafted), veneered or single-chain antibodies as well as functional fragments, i.e., biomarker protein binding fragments, of antibodies. For example, antibody fragments capable of binding to a biomarker protein or portions thereof, including, but not limited to, Fv, Fab, Fab′ and F(ab′) 2 fragments can be used. Such fragments can be produced by enzymatic cleavage or by recombinant techniques. For example, papain or pepsin cleavage can generate Fab or F(ab′) 2 fragments, respectively. Other proteases with the requisite substrate specificity can also be used to generate Fab or F(ab′) 2 fragments. Antibodies can also be produced in a variety of truncated forms using antibody genes in which one or more stop codons have been introduced upstream of the natural stop site. For example, a chimeric gene encoding a F(ab′) 2 heavy chain portion can be designed to include DNA sequences encoding the CH, domain and hinge region of the heavy chain.


Synthetic and engineered antibodies are described in, e.g., Cabilly et al., U.S. Pat. No. 4,816,567 Cabilly et al., European Patent No. 0,125,023 B1; Boss et al., U.S. Pat. No. 4,816,397; Boss et al., European Patent No. 0,120,694 B1; Neuberger, M. S. et al., WO 86/01533; Neuberger, M. S. et al., European Patent No. 0,194,276 B1; Winter, U.S. Pat. No. 5,225,539; Winter, European Patent No. 0,239,400 B1; Queen et al., European Patent No. 0451216 B1; and Padlan, E. A. et al., EP 0519596 A1. See also, Newman, R. et al., BioTechnology, 10: 1455-1460 (1992), regarding primatized antibody, and Ladner et al., U.S. Pat. No. 4,946,778 and Bird, R. E. et al., Science, 242: 423-426 (1988)) regarding single-chain antibodies. Antibodies produced from a library, e.g., phage display library, may also be used.


In some embodiments, agents that specifically bind to a biomarker protein other than antibodies are used, such as peptides. Peptides that specifically bind to a biomarker protein can be identified by any means known in the art. For example, specific peptide binders of a biomarker protein can be screened for using peptide phage display libraries.


4. Methods for Detection of Biomarker Structural Alterations


The following illustrative methods can be used to identify the presence of a structural alteration in a biomarker nucleic acid and/or biomarker polypeptide molecule in order to, for example, identify one or more biomarkers listed in Table 1, or other biomarkers used in the immunotherapies described herein.


In certain embodiments, detection of the alteration involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988) Science 241:1077-1080; and Nakazawa et al. (1994) Proc. Natl. Acad. Sci. USA 91:360-364), the latter of which can be particularly useful for detecting point mutations in a biomarker nucleic acid such as a biomarker gene (see Abravaya et al. (1995) Nucleic Acids Res. 23:675-682). This method can include the steps of collecting a sample of cells from a subject, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a biomarker gene under conditions such that hybridization and amplification of the biomarker gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.


Alternative amplification methods include: self-sustained sequence replication (Guatelli, J. C. et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi, P. M. et al. (1988) Bio-Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well-known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.


In an alternative embodiment, mutations in a biomarker nucleic acid from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, for example, U.S. Pat. No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.


In other embodiments, genetic mutations in biomarker nucleic acid can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotide probes (Cronin, M. T. et al. (1996) Hum. Mutat. 7:244-255; Kozal, M. J. et al. (1996) Nat. Med. 2:753-759). For example, biomarker genetic mutations can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin et al. (1996) supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential, overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene. Such biomarker genetic mutations can be identified in a variety of contexts, including, for example, germline and somatic mutations.


In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence a biomarker gene and detect mutations by comparing the sequence of the sample biomarker with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxam and Gilbert (1977) Proc. Natl. Acad. Sci. USA 74:560 or Sanger (1977) Proc. Natl. Acad Sci. USA 74:5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve (1995) Biotechniques 19:448-53), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al. (1996) Adv. Chromatogr. 36:127-162; and Griffin et al. (1993) Appl. Biochem. Biotechnol. 38:147-159).


Other methods for detecting mutations in a biomarker gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230:1242). In general, the art technique of “mismatch cleavage” starts by providing heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild-type biomarker sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent which cleaves single-stranded regions of the duplex such as which will exist due to base pair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with SI nuclease to enzymatically digest the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, for example, Cotton et al. (1988) Proc. Natl. Acad. Sci. USA 85:4397 and Saleeba et al. (1992) Methods Enzymol. 217:286-295. In a preferred embodiment, the control DNA or RNA can be labeled for detection.


In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes) in defined systems for detecting and mapping point mutations in biomarker cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662). According to an exemplary embodiment, a probe based on a biomarker sequence, e.g., a wild-type biomarker treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like (e.g., U.S. Pat. No. 5,459,039.)


In other embodiments, alterations in electrophoretic mobility can be used to identify mutations in biomarker genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc Natl. Acad. Sci USA 86:2766; see also Cotton (1993) Mutat. Res. 285:125-144 and Hayashi (1992) Genet. Anal. Tech. Appl. 9:73-79). Single-stranded DNA fragments of sample and control biomarker nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet. 7:5).


In yet another embodiment the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495). When DGGE is used as the method of analysis, DNA will be modified to ensure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys. Chem. 265:12753).


Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163; Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230). Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.


Alternatively, allele specific amplification technology which depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3′ end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 11:238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al. (1992) Mol. Cell Probes 6:1). It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3′ end of the 5′ sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.


III. Subjects

In one embodiment, the subject for whom a cancer vaccine comprising cancer cells, wherein the cancer cells are (1) PTEN-deficient, (2) p53-deficient, and (3) modified to activate TGFβ-Smad/p63 signaling pathway is administered, or whose predicted likelihood of efficacy of the cancer vaccine for treating a cancer is determined, is a mammal (e.g., rat, primate, non-human mammal, domestic animal, such as a dog, cat, cow, horse, and the like), and is preferably a human. In another embodiment, the subject is an animal model of cancer. For example, the animal model can be an orthotopic xenograft animal model of a human-derived cancer or allograft of syngeneic cancer models.


In another embodiment of the methods of the present invention, the subject has not undergone treatment, such as chemotherapy, radiation therapy, targeted therapy, and/or immunotherapies. In still another embodiment, the subject has undergone treatment, such as chemotherapy, radiation therapy, targeted therapy, and/or immunotherapies. In yet another embodiment, the subject is previously has the cancer and/or in remission for the cancer.


In certain embodiments, the subject has had surgery to remove cancerous or precancerous tissue. In other embodiments, the cancerous tissue has not been removed, e.g., the cancerous tissue may be located in an inoperable region of the body, such as in a tissue that is essential for life, or in a region where a surgical procedure would cause considerable risk of harm to the patient.


The methods of the present invention can be used to determine the responsiveness to the cancer vaccine for treating a cancer.


IV. Methods of Treatment

The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a cancer. The cancer may be a solid or hematological cancer. In one embodiment, the cancer is the same cancer type with the same genetic mutations as the cancer vaccine. In another embodiment, the cancer is a different cancer type from the cancer vaccine but has the same genetic mutations (e.g., co-loss of p53 and PTEN). In still another embodiment, the cancer is the same cancer type as the cancer vaccine with different genetic mutations. In yet another embodiment, the cancer is a different cancer type the cancer vaccine with different genetic mutations. For example, the cancer may be a PPA tumor (a very aggressive breast cancer characterized by triple loss of p53, PTEN, and p110α), C260 tumor (a high grade serous ovarian cancer drived by p53/PTEN co-loss and high Myc expression), D658 (a Kras mutated recurrent breast cancer cell model generated from a PIK3CAH1047R GEMM of breast cancer), or d333 (a glioblastoma tumor model derived from p53 and PTEN co-loss GEMM).


a. Prophylactic Methods


In one aspect, the present invention provides a method for preventing a subject afflicted with cancer, by administering to the subject a therapeutically effective amount of a cancer vaccine comprising cancer cells, wherein the cancer cells are (1) PTEN-deficient, (2) p53-deficient, and (3) modified to activate the TGFβ-Smad/p63 signaling pathway. Administration of a prophylactic agent (e.g., the cancer vaccine described herein) can occur prior to the manifestation of symptoms characteristic of cancer, such that a cancer is prevented or, alternatively, delayed in its progression. In certain embodiments, administration of the prophylactic agent (e.g., the cancer vaccine described herein) protects the subject from recurrent cancer.


b. Therapeutic Methods


Another aspect of the present invention pertains to methods treating a subject afflicted with cancer, by administering to the subject a therapeutically effective amount of a cancer vaccine comprising cancer cells, wherein the cancer cells are (1) PTEN-deficient, (2) p53-deficient, and (3) modified to activate the TGFβ-Smad/p63 signaling pathway.


As described below and in some embodiments, a cancer vaccine comprising cancer cells, wherein the cancer cells are (1) PTEN-deficient, (2) p53-deficient, and (3) modified to activate the TGFβ-Smad/p63 signaling pathway, is administered to a subject. Thus, the cancer cells will have an immunocompatibility relationship to the subject host and any such relationship is contemplated for use according to the present invention. For example, the cancer cells can be syngeneic. The term “syngeneic” can refer to the state of deriving from, originating in, or being members of the same species that are genetically identical, particularly with respect to antigens or immunological reactions. These include identical twins having matching MHC types. Thus, a “syngeneic transplant” refers to transfer of cells from a donor to a recipient who is genetically identical to the donor or is sufficiently immunologically compatible as to allow for transplantation without an undesired adverse immunogenic response (e.g., such as one that would work against interpretation of immunological screen results described herein).


A syngeneic transplant can be “autologous” if the transferred cells are obtained from and transplanted to the same subject. An “autologous transplant” refers to the harvesting and reinfusion or transplant of a subject's own cells or organs. Exclusive or supplemental use of autologous cells may eliminate or reduce many adverse effects of administration of the cells back to the host, particular graft versus host reaction.


A syngeneic transplant can be “matched allogeneic” if the transferred cells are obtained from and transplanted to different members of the same species yet have sufficiently matched major histocompatibility complex (MHC) antigens to avoid an adverse immunogenic response. Determining the degree of MHC mismatch may be accomplished according to standard tests known and used in the art. For instance, there are at least six major categories of MHC genes in humans, identified as being important in transplant biology. HLA-A, HLA-B, HLA-C encode the HLA class I proteins while HLA-DR, HLA-DQ, and HLA-DP encode the HLA class II proteins. Genes within each of these groups are highly polymorphic, as reflected in the numerous HLA alleles or variants found in the human population, and differences in these groups between individuals is associated with the strength of the immune response against transplanted cells. Standard methods for determining the degree of MHC match examine alleles within HLA-B and HLA-DR, or HLA-A, HLA-B and HLA-DR groups. Thus, tests may be made of at least 4, and even 5 or 6 MHC antigens within the two or three HLA groups, respectively. In serological MEC tests, antibodies directed against each HLA antigen type are reacted with cells from one subject (e.g., donor) to determine the presence or absence of certain MHC antigens that react with the antibodies. This is compared to the reactivity profile of the other subject (e.g., recipient). Reaction of the antibody with an MHC antigen is typically determined by incubating the antibody with cells, and then adding complement to induce cell lysis (i.e., lymphocytotoxicity testing). The reaction is examined and graded according to the amount of cells lysed in the reaction (see, for example, Mickelson and Petersdorf (1999) Hematopoietic Cell Transplantation, Thomas, E. D. et al. eds., pg 28-37, Blackwell Scientific, Malden, Mass.). Other cell-based assays include flow cytometry using labeled antibodies or enzyme linked immunoassays (ELISA). Molecular methods for determining MHC type are well-known and generally employ synthetic probes and/or primers to detect specific gene sequences that encode the HLA protein. Synthetic oligonucleotides may be used as hybridization probes to detect restriction fragment length polymorphisms associated with particular HLA types (Vaughn (2002) Method. Mol. Biol. MHC Protocol. 210:45-60). Alternatively, primers may be used for amplifying the HLA sequences (e.g., by polymerase chain reaction or ligation chain reaction), the products of which may be further examined by direct DNA sequencing, restriction fragment polymorphism analysis (RFLP), or hybridization with a series of sequence specific oligonucleotide primers (SSOP) (Petersdorf et al. (1998) Blood 92:3515-3520; Morishima et al. (2002) Blood 99:4200-4206; and Middleton and Williams (2002) Method. Mol. Biol. MHC Protocol. 210:67-112).


A syngeneic transplant can be “congenic” if the transferred cells and cells of the subject differ in defined loci, such as a single locus, typically by inbreeding. The term “congenic” refers to deriving from, originating in, or being members of the same species, where the members are genetically identical except for a small genetic region, typically a single genetic locus (i.e., a single gene). A “congenic transplant” refers to transfer of cells or organs from a donor to a recipient, where the recipient is genetically identical to the donor except for a single genetic locus. For example, CD45 exists in several allelic forms and congenic mouse lines exist in which the mouse lines differ with respect to whether the CD45.1 or CD45.2 allelic versions are expressed.


By contrast, “mismatched allogeneic” refers to deriving from, originating in, or being members of the same species having non-identical major histocompatibility complex (MHC) antigens (i.e., proteins) as typically determined by standard assays used in the art, such as serological or molecular analysis of a defined number of MHC antigens, sufficient to elicit adverse immunogenic responses. A “partial mismatch” refers to partial match of the MHC antigens tested between members, typically between a donor and recipient. For instance, a “half mismatch” refers to 50% of the MHC antigens tested as showing different MHC antigen type between two members. A “full” or “complete” mismatch refers to all MHC antigens tested as being different between two members.


Similarly, in contrast, “xenogeneic” refers to deriving from, originating in, or being members of different species, e.g., human and rodent, human and swine, human and chimpanzee, etc. A “xenogeneic transplant” refers to transfer of cells or organs from a donor to a recipient where the recipient is a species different from that of the donor.


In addition, cancer cells can be obtained from a single source or a plurality of sources (e.g., a single subject or a plurality of subjects). A plurality refers to at least two (e.g., more than one). In still another embodiment, the non-human mammal is a mouse. The animals from which cell types of interest are obtained may be adult, newborn (e.g., less than 48 hours old), immature, or in utero. Cell types of interest may be primary cancer cells, cancer stem cells, established cancer cell lines, immortalized primary cancer cells, and the like. In certain embodiments, the immune systems of host subjects can be engineered or otherwise elected to be immunological compatible with transplanted cancer cells. For example, in one embodiment, the subject may be “humanized” in order to be compatible with human cancer cells. The term “immune-system humanized” refers to an animal, such as a mouse, comprising human HSC lineage cells and human acquired and innate immune cells, survive without being rejected from the host animal, thereby allowing human hematopoiesis and both acquired and innate immunity to be reconstituted in the host animal. Acquired immune cells include T cells and B cells. Innate immune cells include macrophages, granulocytes (basophils, eosinophils, neutrophils), DCs, NK cells and mast cells. Representative, non-limiting examples include SCID-hu, Hu-PBL-SCID, Hu-SRC-SCID, NSG (NOD-SCID IL2r-gamma(null) lack an innate immune system, B cells, T cells, and cytokine signaling), NOG (NOD-SCID IL2r-gamma(truncated)), BRG (BALB/c-Rag2(null)IL2r-gamma(null)), and H2dRG (Stock-H2d-Rag2(null)IL2r-gamma(null)) mice (see, for example, Shultz et al. (2007) Nat. Rev. Immunol. 7:118; Pearson et al. (2008) Curr. Protocol. Immunol. 15:21; Brehm et al (2010) Clin. Immunol. 135:84-98; McCune et al. (1988) Science 241:1632-1639, U.S. Pat. No. 7,960,175, and U.S. Pat. Publ. 2006/0161996), as well as related null mutants of immune-related genes like Rag1 (lack B and T cells), Rag2 (lack B and T cells), TCR alpha (lack T cells), perforin (cD8+ T cells lack cytotoxic function), FoxP3 (lack functional CD4+ T regulatory cells), IL2rg, or Prfl, as well as mutants or knockouts of PD-1, PD-L1, Tim3, and/or 2B4, allow for efficient engraftment of human immune cells in and/or provide compartment-specific models of immunocompromised animals like mice (see, for example, PCT Publ. WO2013/062134). In addition, NSG-CD34+ (NOD-SCID IL2r-gamma(null) CD34+) humanized mice are useful for studying human gene and tumor activity in animal models like mice.


As used herein, “obtained” from a biological material source means any conventional method of harvesting or partitioning a source of biological material from a donor. For example, biological material may obtained from a solid tumor, a blood sample, such as a peripheral or cord blood sample, or harvested from another body fluid, such as bone marrow or amniotic fluid. Methods for obtaining such samples are well-known to the artisan. In the present invention, the samples may be fresh (i.e., obtained from a donor without freezing). Moreover, the samples may be further manipulated to remove extraneous or unwanted components prior to expansion. The samples may also be obtained from a preserved stock. For example, in the case of cell lines or fluids, such as peripheral or cord blood, the samples may be withdrawn from a cryogenically or otherwise preserved bank of such cell lines or fluid. Such samples may be obtained from any suitable donor.


The obtained populations of cells may be used directly or frozen for use at a later date. A variety of mediums and protocols for cryopreservation are known in the art. Generally, the freezing medium will comprise DMSO from about 5-10%, 10-90% serum albumin, and 50-90% culture medium. Other additives useful for preserving cells include, by way of example and not limitation, disaccharides such as trehalose (Scheinkonig et al. (2004) Bone Marrow Transplant. 34:531-536), or a plasma volume expander, such as hetastarch (i.e., hydroxyethyl starch). In some embodiments, isotonic buffer solutions, such as phosphate-buffered saline, may be used. An exemplary cryopreservative composition has cell-culture medium with 4% HSA, 7.5% dimethyl sulfoxide (DMSO), and 2% hetastarch. Other compositions and methods for cryopreservation are well-known and described in the art (see, e.g., Broxmeyer et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100:645-650). Cells are preserved at a final temperature of less than about −135° C.


c. Combination Therapy


The cancer vaccine can be administered in combination therapy with, e.g., chemotherapeutic agents, hormones, antiangiogens, radiolabelled, compounds, or with surgery, cryotherapy, and/or radiotherapy. The preceding treatment methods can be administered in conjunction with other forms of conventional therapy (e.g., standard-of-care treatments for cancer well-known to the skilled artisan), either consecutively with, pre- or post-conventional therapy. For example, the cancer vaccine can be administered with a therapeutically effective dose of chemotherapeutic agent. In another embodiment, the cancer vaccine is administered in conjunction with chemotherapy to enhance the activity and efficacy of the chemotherapeutic agent. The Physicians' Desk Reference (PDR) discloses dosages of chemotherapeutic agents that have been used in the treatment of various cancers. The dosing regimen and dosages of these aforementioned chemotherapeutic drugs that are therapeutically effective will depend on the particular cancer being treated, the extent of the disease and other factors familiar to the physician of skill in the art, and can be determined by the physician.


The cancer vaccine can also be administered in combination with targeted therapy, e.g., immunotherapy. The term “targeted therapy” refers to administration of agents that selectively interact with a chosen biomolecule to thereby treat cancer. For example, targeted therapy regarding the inhibition of immune checkpoint inhibitor is useful in combination with the methods of the present invention. The term “immune checkpoint inhibitor” means a group of molecules on the cell surface of CD4+ and/or CD8+ T cells that fine-tune immune responses by down-modulating or inhibiting an anti-tumor immune response. Immune checkpoint proteins are well-known in the art and include, without limitation, CTLA-4, PD-1, VISTA, B7-H2, B7-H3, PD-L1, B7-H4, B7-H6, 2B4, ICOS, HVEM, PD-L2, CD160, gp49B, PIR-B, KM family receptors, TIM-1, TIM-3, TIM-4, LAG-3, BTLA, SIRPalpha (CD47), CD48, 2B4 (CD244), B7.1, B7.2, ILT-2, ILT-4, TIGIT, and A2aR (see, for example, WO 2012/177624). Inhibition of one or more immune checkpoint inhibitors can block or otherwise neutralize inhibitory signaling to thereby upregulate an immune response in order to more efficaciously treat cancer. In some embodiments, the cancer vaccine is administered in combination with one or more inhibitors of immune checkpoints, such as PD1, PD-L1, and/or CD47 inhibitors.


Immunotherapy is one form of targeted therapy that may comprise, for example, the use of additional cancer vaccines and/or sensitized antigen presenting cells. For example, an oncolytic virus is a virus that is able to infect and lyse cancer cells, while leaving normal cells unharmed, making them potentially useful in cancer therapy. Replication of oncolytic viruses both facilitates tumor cell destruction and also produces dose amplification at the tumor site. They may also act as vectors for anticancer genes, allowing them to be specifically delivered to the tumor site. The immunotherapy can involve passive immunity for short-term protection of a host, achieved by the administration of pre-formed antibody directed against a cancer antigen or disease antigen (e.g., administration of a monoclonal antibody, optionally linked to a chemotherapeutic agent or toxin, to a tumor antigen). For example, anti-VEGF and mTOR inhibitors are known to be effective in treating renal cell carcinoma. Immunotherapy can also focus on using the cytotoxic lymphocyte-recognized epitopes of cancer cell lines. Alternatively, antisense polynucleotides, ribozymes, RNA interference molecules, triple helix polynucleotides and the like, can be used to selectively modulate biomolecules that are linked to the initiation, progression, and/or pathology of a tumor or cancer.


The term “untargeted therapy” refers to administration of agents that do not selectively interact with a chosen biomolecule yet treat cancer. Representative examples of untargeted therapies include, without limitation, chemotherapy, gene therapy, and radiation therapy.


In one embodiment, chemotherapy is used. Chemotherapy includes the administration of a chemotherapeutic agent. Such a chemotherapeutic agent may be, but is not limited to, those selected from among the following groups of compounds: platinum compounds, cytotoxic antibiotics, antimetabolities, anti-mitotic agents, alkylating agents, arsenic compounds, DNA topoisomerase inhibitors, taxanes, nucleoside analogues, plant alkaloids, and toxins; and synthetic derivatives thereof. Exemplary compounds include, but are not limited to, alkylating agents: cisplatin, treosulfan, and trofosfamide; plant alkaloids: vinblastine, paclitaxel, docetaxol; DNA topoisomerase inhibitors: teniposide, crisnatol, and mitomycin; anti-folates: methotrexate, mycophenolic acid, and hydroxyurea; pyrimidine analogs: 5-fluorouracil, doxifluridine, and cytosine arabinoside; purine analogs: mercaptopurine and thioguanine; DNA antimetabolites: 2′-deoxy-5-fluorouridine, aphidicolin glycinate, and pyrazoloimidazole; and antimitotic agents: halichondrin, colchicine, and rhizoxin. Compositions comprising one or more chemotherapeutic agents (e.g., FLAG, CHOP) may also be used. FLAG comprises fludarabine, cytosine arabinoside (Ara-C) and G-CSF. CHOP comprises cyclophosphamide, vincristine, doxorubicin, and prednisone. The foregoing examples of chemotherapeutic agents are illustrative, and are not intended to be limiting.


In another embodiment, radiation therapy is used. The radiation used in radiation therapy can be ionizing radiation. Radiation therapy can also be gamma rays, X-rays, or proton beams. Examples of radiation therapy include, but are not limited to, external-beam radiation therapy, interstitial implantation of radioisotopes (I-125, palladium, iridium), radioisotopes such as strontium-89, thoracic radiation therapy, intraperitoneal P-32 radiation therapy, and/or total abdominal and pelvic radiation therapy. For a general overview of radiation therapy, see Hellman, Chapter 16: Principles of Cancer Management: Radiation Therapy, 6th edition, 2001, DeVita et al., eds., J. B. Lippencott Company, Philadelphia. The radiation therapy can be administered as external beam radiation or teletherapy wherein the radiation is directed from a remote source. The radiation treatment can also be administered as internal therapy or brachytherapy wherein a radioactive source is placed inside the body close to cancer cells or a tumor mass. Also encompassed is the use of photodynamic therapy comprising the administration of photosensitizers, such as hematoporphyrin and its derivatives, Vertoporfin (BPD-MA), phthalocyanine, photosensitizer Pc4, demethoxy-hypocrellin A; and 2BA-2-DMHA.


In another embodiment, hormone therapy is used. Hormonal therapeutic treatments can comprise, for example, hormonal agonists, hormonal antagonists (e.g., flutamide, bicalutamide, tamoxifen, raloxifene, leuprolide acetate (LUPRON), LH-RH antagonists), inhibitors of hormone biosynthesis and processing, and steroids (e.g., dexamethasone, retinoids, deltoids, betamethasone, cortisol, cortisone, prednisone, dehydrotestosterone, glucocorticoids, mineralocorticoids, estrogen, testosterone, progestins), vitamin A derivatives (e.g., all-trans retinoic acid (ATRA)); vitamin D3 analogs; antigestagens (e.g., mifepristone, onapristone), or antiandrogens (e.g., cyproterone acetate).


In another embodiment, hyperthermia, a procedure in which body tissue is exposed to high temperatures (up to 106° F.) is used. Heat may help shrink tumors by damaging cells or depriving them of substances they need to live. Hyperthermia therapy can be local, regional, and whole-body hyperthermia, using external and internal heating devices. Hyperthermia is almost always used with other forms of therapy (e.g., radiation therapy, chemotherapy, and biological therapy) to try to increase their effectiveness. Local hyperthermia refers to heat that is applied to a very small area, such as a tumor. The area may be heated externally with high-frequency waves aimed at a tumor from a device outside the body. To achieve internal heating, one of several types of sterile probes may be used, including thin, heated wor hollow tubes filled with warm water; implanted microwave antennae; and radiofrequency electrodes. In regional hyperthermia, an organ or a limb is heated. Magnets and devices that produce high energy are placed over the region to be heated. In another approach, called perfusion, some of the patient's blood is removed, heated, and then pumped (perfused) into the region that is to be heated internally. Whole-body heating is used to treat metastatic cancer that has spread throughout the body. It can be accomplished using warm-water blankets, hot wax, inductive coils (like those in electric blankets), or thermal chambers (similar to large incubators). Hyperthermia does not cause any marked increase in radiation side effects or complications. Heat applied directly to the skin, however, can cause discomfort or even significant local pain in about half the patients treated. It can also cause blisters, which generally heal rapidly.


In still another embodiment, photodynamic therapy (also called PDT, photoradiation therapy, phototherapy, or photochemotherapy) is used for the treatment of some types of cancer. It is based on the discovery that certain chemicals known as photosensitizing agents can kill one-celled organisms when the organisms are exposed to a particular type of light. PDT destroys cancer cells through the use of a fixed-frequency laser light in combination with a photosensitizing agent. In PDT, the photosensitizing agent is injected into the bloodstream and absorbed by cells all over the body. The agent remains in cancer cells for a longer time than it does in normal cells. When the treated cancer cells are exposed to laser light, the photosensitizing agent absorbs the light and produces an active form of oxygen that destroys the treated cancer cells. Light exposure must be timed carefully so that it occurs when most of the photosensitizing agent has left healthy cells but is still present in the cancer cells. The laser light used in PDT can be directed through a fiber-optic (a very thin glass strand). The fiber-optic is placed close to the cancer to deliver the proper amount of light. The fiber-optic can be directed through a bronchoscope into the lungs for the treatment of lung cancer or through an endoscope into the esophagus for the treatment of esophageal cancer. An advantage of PDT is that it causes minimal damage to healthy tissue. However, because the laser light currently in use cannot pass through more than about 3 centimeters of tissue (a little more than one and an eighth inch), PDT is mainly used to treat tumors on or just under the skin or on the lining of internal organs. Photodynamic therapy makes the skin and eyes sensitive to light for 6 weeks or more after treatment. Patients are advised to avoid direct sunlight and bright indoor light for at least 6 weeks. If patients must go outdoors, they need to wear protective clothing, including sunglasses. Other temporary side effects of PDT are related to the treatment of specific areas and can include coughing, trouble swallowing, abdominal pain, and painful breathing or shortness of breath. In December 1995, the U.S. Food and Drug Administration (FDA) approved a photosensitizing agent called porfimer sodium, or Photofrin®, to relieve symptoms of esophageal cancer that is causing an obstruction and for esophageal cancer that cannot be satisfactorily treated with lasers alone. In January 1998, the FDA approved porfimer sodium for the treatment of early non-small cell lung cancer in patients for whom the usual treatments for lung cancer are not appropriate. The National Cancer Institute and other institutions are supporting clinical trials (research studies) to evaluate the use of photodynamic therapy for several types of cancer, including cancers of the bladder, brain, larynx, and oral cavity.


In yet another embodiment, laser therapy is used to harness high-intensity light to destroy cancer cells. This technique is often used to relieve symptoms of cancer such as bleeding or obstruction, especially when the cancer cannot be cured by other treatments. It may also be used to treat cancer by shrinking or destroying tumors. The term “laser” stands for light amplification by stimulated emission of radiation. Ordinary light, such as that from a light bulb, has many wavelengths and spreads in all directions. Laser light, on the other hand, has a specific wavelength and is focused in a narrow beam. This type of high-intensity light contains a lot of energy. Lasers are very powerful and may be used to cut through steel or to shape diamonds. Lasers also can be used for very precise surgical work, such as repairing a damaged retina in the eye or cutting through tissue (in place of a scalpel). Although there are several different kinds of lasers, only three kinds have gained wide use in medicine: Carbon dioxide (CO2) laser—This type of laser can remove thin layers from the skin's surface without penetrating the deeper layers. This technique is particularly useful in treating tumors that have not spread deep into the skin and certain precancerous conditions. As an alternative to traditional scalpel surgery, the CO2 laser is also able to cut the skin. The laser is used in this way to remove skin cancers. Neodymium:yttrium-aluminum-garnet (Nd:YAG) laser—Light from this laser can penetrate deeper into tissue than light from the other types of lasers, and it can cause blood to clot quickly. It can be carried through optical fibers to less accessible parts of the body. This type of laser is sometimes used to treat throat cancers. Argon laser—This laser can pass through only superficial layers of tissue and is therefore useful in dermatology and in eye surgery. It also is used with light-sensitive dyes to treat tumors in a procedure known as photodynamic therapy (PDT). Lasers have several advantages over standard surgical tools, including: Lasers are more precise than scalpels. Tissue near an incision is protected, since there is little contact with surrounding skin or other tissue. The heat produced by lasers sterilizes the surgery site, thus reducing the risk of infection. Less operating time may be needed because the precision of the laser allows for a smaller incision. Healing time is often shortened; since laser heat seals blood vessels, there is less bleeding, swelling, or scarring. Laser surgery may be less complicated. For example, with fiber optics, laser light can be directed to parts of the body without making a large incision. More procedures may be done on an outpatient basis. Lasers can be used in two ways to treat cancer: by shrinking or destroying a tumor with heat, or by activating a chemical—known as a photosensitizing agent—that destroys cancer cells. In PDT, a photosensitizing agent is retained in cancer cells and can be stimulated by light to cause a reaction that kills cancer cells. CO2 and Nd:YAG lasers are used to shrink or destroy tumors. They may be used with endoscopes, tubes that allow physicians to see into certain areas of the body, such as the bladder. The light from some lasers can be transmitted through a flexible endoscope fitted with fiber optics. This allows physicians to see and work in parts of the body that could not otherwise be reached except by surgery and therefore allows very precise aiming of the laser beam. Lasers also may be used with low-power microscopes, giving the doctor a clear view of the site being treated. Used with other instruments, laser systems can produce a cutting area as small as 200 microns in diameter—less than the width of a very fine thread. Lasers are used to treat many types of cancer. Laser surgery is a standard treatment for certain stages of glottis (vocal cord), cervical, skin, lung, vaginal, vulvar, and penile cancers. In addition to its use to destroy the cancer, laser surgery is also used to help relieve symptoms caused by cancer (palliative care). For example, lasers may be used to shrink or destroy a tumor that is blocking a patient's trachea (windpipe), making it easier to breathe. It is also sometimes used for palliation in colorectal and anal cancer. Laser-induced interstitial thermotherapy (LITT) is one of the most recent developments in laser therapy. LITT uses the same idea as a cancer treatment called hyperthermia; that heat may help shrink tumors by damaging cells or depriving them of substances they need to live. In this treatment, lasers are directed to interstitial areas (areas between organs) in the body. The laser light then raises the temperature of the tumor, which damages or destroys cancer cells.


The immunotherapy and/or cancer therapy may be administered before, after, or concurrently with the cancer vaccine described herein. The duration and/or dose of treatment with the cancer vaccine may vary according to the particular cancer vaccine, or the particular combinatory therapy. An appropriate treatment time for a particular cancer therapeutic agent will be appreciated by the skilled artisan. The invention contemplates the continued assessment of optimal treatment schedules for each cancer therapeutic agent, where the phenotype of the cancer of the subject as determined by the methods of the invention is a factor in determining optimal treatment doses and schedules.


V. Clinical Efficacy

Clinical efficacy can be measured by any method known in the art. For example, the response to an cancer therapy (e.g., a cancer vaccine comprising cancer cells, wherein the cancer cells are (1) PTEN-deficient, (2) p53-deficient, and (3) modified to activate the TGFβ-Samd/p63 signaling pathway), relates to any response of the cancer, e.g., a tumor, to the therapy, preferably to a change in tumor mass and/or volume after initiation of neoadjuvant or adjuvant chemotherapy. Tumor response may be assessed in a neoadjuvant or adjuvant situation where the size of a tumor after systemic intervention can be compared to the initial size and dimensions as measured by CT, PET, mammogram, ultrasound or palpation and the cellularity of a tumor can be estimated histologically and compared to the cellularity of a tumor biopsy taken before initiation of treatment. Response may also be assessed by caliper measurement or pathological examination of the tumor after biopsy or surgical resection. Response may be recorded in a quantitative fashion like percentage change in tumor volume or cellularity or using a semi-quantitative scoring system such as residual cancer burden (Symmans et al. (2007) J. Clin. Oncol. 25:4414-4422) or Miller-Payne score (Ogston et al. (2003) Breast (Edinburgh, Scotland) 12:320-327) in a qualitative fashion like “pathological complete response” (pCR), “clinical complete remission” (cCR), “clinical partial remission” (cPR), “clinical stable disease” (cSD), “clinical progressive disease” (cPD) or other qualitative criteria. Assessment of tumor response may be performed early after the onset of neoadjuvant or adjuvant therapy, e.g., after a few hours, days, weeks or preferably after a few months. A typical endpoint for response assessment is upon termination of neoadjuvant chemotherapy or upon surgical removal of residual tumor cells and/or the tumor bed.


In some embodiments, clinical efficacy of the therapeutic treatments described herein may be determined by measuring the clinical benefit rate (CBR). The clinical benefit rate is measured by determining the sum of the percentage of patients who are in complete remission (CR), the number of patients who are in partial remission (PR) and the number of patients having stable disease (SD) at a time point at least 6 months out from the end of therapy. The shorthand for this formula is CBR=CR+PR+SD over 6 months. In some embodiments, the CBR for a particular cancer vaccine therapeutic regimen is at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, or more.


Additional criteria for evaluating the response to cancer therapy (e.g., a cancer vaccine comprising cancer cells, wherein the cancer cells are (1) PTEN-deficient, (2) p53-deficient, and (3) modified to activate the TGFβ-Samd/p63 signaling pathway) are related to “survival,” which includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related); “recurrence-free survival” (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith). The length of said survival may be calculated by reference to a defined start point (e.g., time of diagnosis or start of treatment) and end point (e.g., death, recurrence or metastasis). In addition, criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence.


For example, in order to determine appropriate threshold values, a particular agent encompassed by the present invention can be administered to a population of subjects and the outcome can be correlated to biomarker measurements that were determined prior to administration of any cancer therapy (e.g., a cancer vaccine comprising cancer cells, wherein the cancer cells are (1) PTEN-deficient, (2) p53-deficient, and (3) modified to activate the TGFβ-Samd/p63 signaling pathway). The outcome measurement may be pathologic response to therapy given in the neoadjuvant setting. Alternatively, outcome measures, such as overall survival and disease-free survival can be monitored over a period of time for subjects following cancer therapy (e.g., a cancer vaccine comprising cancer cells, wherein the cancer cells are (1) PTEN-deficient, (2) p53-deficient, and (3) modified to activate the TGFβ-Samd/p63 signaling pathway) for whom biomarker measurement values are known. In certain embodiments, the same doses of the agent are administered to each subject. In related embodiments, the doses administered are standard doses known in the art for the agent. The period of time for which subjects are monitored can vary. For example, subjects may be monitored for at least 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 55, or 60 months. Biomarker measurement threshold values that correlate to outcome of a cancer therapy (e.g., a cancer vaccine comprising cancer cells, wherein the cancer cells are (1) PTEN-deficient, (2) p53-deficient, and (3) modified to activate the TGFβ-Samd/p63 signaling pathway) can be determined using methods such as those described in the Examples section.


VI. Pharmaceutical Compositions and Administration

For cancer vaccine of present invention, cancer cells can be administered at 1, 10, 1000, 10,000, 0.1×106, 0.2×106, 0.3×106, 0.4×106, 0.5×106, 0.6×106, 0.7×106, 0.8×106, 0.9×106, 1.0×106, 5.0×106, 1.0×107, 5.0×107, 1.0×108, 5.0×108, 1.0×109 or more, or any range in between or any value in between, cells per kilogram of subject body weight. The number of cells transplanted may be adjusted based on the desired level of engraftment in a given amount of time. Generally, 1×105 to about 1×109 cells/kg of body weight, from about 1×106 to about 1×108 cells/kg of body weight, or about 1×107 cells/kg of body weight, or more cells, as necessary, may be transplanted. In some embodiment, transplantation of at least about 100, 1000, 10,000, 0.1×106, 0.5×106, 1.0×106, 2.0×106, 3.0×106, 4.0×106, or 5.0×106 total cells relative to an average size mouse is effective.


Cancer vaccine can be administered in any suitable route as described herein, such as by infusion. Cancer vaccine can also be administered before, concurrently with, or after, other anti-cancer agents.


Administration can be accomplished using methods generally known in the art. Agents, including cells, may be introduced to the desired site by direct injection, or by any other means used in the art including, but are not limited to, intravascular, intracerebral, parenteral, intraperitoneal, intravenous, epidural, intraspinal, intrasternal, intra-articular, intra-synovial, intrathecal, intra-arterial, intracardiac, or intramuscular administration. For example, subjects of interest may be engrafted with the transplanted cells by various routes. Such routes include, but are not limited to, intravenous administration, subcutaneous administration, administration to a specific tissue (e.g., focal transplantation), injection into the femur bone marrow cavity, injection into the spleen, administration under the renal capsule of fetal liver, and the like. In certain embodiment, the cancer vaccine of the present invention is injected to the subject intratumorally or subcutaneously. Cells may be administered in one infusion, or through successive infusions over a defined time period sufficient to generate a desired effect. Exemplary methods for transplantation, engraftment assessment, and marker phenotyping analysis of transplanted cells are well-known in the art (see, for example, Pearson et al. (2008) Curr. Protoc. Immunol. 81:15.21.1-15.21.21; Ito et al. (2002) Blood 100:3175-3182; Traggiai et al. (2004) Science 304:104-107; Ishikawa et al. Blood (2005) 106:1565-1573; Shultz et al. (2005) J. Immunol. 174:6477-6489; and Holyoake et al. (1999) Exp. Hematol. 27:1418-1427).


Two or more cell types can be combined and administered, such as cancer vaccine and adoptive cell transfer of stem cells, cancer vaccine and other cell-based vaccines, and the like. For example adoptive cell-based immunotherapies can be combined with the cancer vaccine of the present invention. Well-known adoptive cell-based immunotherapeutic modalities, including, without limitation, irradiated autologous or allogeneic tumor cells, tumor lysates or apoptotic tumor cells, antigen-presenting cell-based immunotherapy, dendritic cell-based immunotherapy, adoptive T cell transfer, adoptive CAR T cell therapy, autologous immune enhancement therapy (AIET), cancer vaccines, and/or antigen presenting cells. Such cell-based immunotherapies can be further modified to express one or more gene products to further modulate immune responses, such as expressing cytokines like GM-CSF, and/or to express tumor-associated antigen (TAA) antigens, such as Mage-1, gp-100, and the like. The ratio of cancer cells in the cancer vaccine described herein to other cell types can be 1:1, but can modulated in any amount desired (e.g., 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5.5:1, 6:1, 6.5:1, 7:1, 7.5:1, 8:1, 8.5:1, 9:1, 9.5:1, 10:1, or greater).


Engraftment of transplanted cells may be assessed by any of various methods, such as, but not limited to, tumor volume, cytokine levels, time of administration, flow cytometric analysis of cells of interest obtained from the subject at one or more time points following transplantation, and the like. For example, a time-based analysis of waiting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 days or can signal the time for tumor harvesting. Any such metrics are variables that can be adjusted according to well-known parameters in order to determine the effect of the variable on a response to anti-cancer immunotherapy. In addition, the transplanted cells can be co-transplanted with other agents, such as cytokines, extracellular matrices, cell culture supports, and the like.


In addition, anti-cancer agents (e.g., TGFβ superfamily proteins, agents that increase the copy number, amount, and/or activity of at least one biomarker listed in Table 1, and/or immune checkpoint inhibitors) of the present invention can be administered to subjects or otherwise applied outside of a subject body in a biologically compatible form suitable for pharmaceutical administration. By “biologically compatible form suitable for administration in vivo” is meant a form to be administered in which any toxic effects are outweighed by the therapeutic effects. Administration of an anti-cancer agent as described herein can be in any pharmacological form including a therapeutically active amount of an agent alone or in combination with a pharmaceutically acceptable carrier. The phrase “therapeutically-effective amount” as used herein means that amount of an agent that is effective for producing some desired therapeutic effect, e.g., cancer treatment, at a reasonable benefit/risk ratio.


Administration of a therapeutically active amount of the therapeutic composition of the present invention is defined as an amount effective, at dosages and for periods of time necessary, to achieve the desired result. For example, a therapeutically active amount of an agent may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of peptide to elicit a desired response in the individual. Dosage regimens can be adjusted to provide the optimum therapeutic response. For example, several divided doses can be administered daily or the dose can be proportionally reduced as indicated by the exigencies of the therapeutic situation.


A combination dosage form or simultaneous administration of single agents can result in effective amounts of each desired modulatory agent present in the patient at the same time.


The therapeutic agents described herein can be administered in a convenient manner such as by injection (subcutaneous, intravenous, etc.), oral administration, inhalation, transdermal application, or rectal administration. Depending on the route of administration, the active compound can be coated in a material to protect the compound from the action of enzymes, acids and other natural conditions which may inactivate the compound. For example, for administration of agents, by other than parenteral administration, it may be desirable to coat the agent with, or co-administer the agent with, a material to prevent its inactivation.


An agent can be administered to an individual in an appropriate carrier, diluent or adjuvant, co-administered with enzyme inhibitors or in an appropriate carrier such as liposomes. Pharmaceutically acceptable diluents include saline and aqueous buffer solutions. Adjuvant is used in its broadest sense and includes any immune stimulating compound such as interferon. Adjuvants contemplated herein include resorcinols, non-ionic surfactants such as polyoxyethylene oleyl ether and n-hexadecyl polyethylene ether. Enzyme inhibitors include pancreatic trypsin inhibitor, diisopropylfluorophosphate (DEEP) and trasylol. Liposomes include water-in-oil-in-water emulsions as well as conventional liposomes (Sterna et al. (1984) J. Neuroimmunol. 7:27).


The agent may also be administered parenterally or intraperitoneally. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof, and in oils. Under ordinary conditions of storage and use, these preparations may contain a preservative to prevent the growth of microorganisms.


Pharmaceutical compositions of agents suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. In all cases the composition will preferably be sterile and must be fluid to the extent that easy syringeability exists. It will preferably be stable under the conditions of manufacture and storage and preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it is preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.


Sterile injectable solutions can be prepared by incorporating an agent of the invention in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the agent plus any additional desired ingredient from a previously sterile-filtered solution thereof.


When the agent is suitably protected, as described above, the protein can be orally administered, for example, with an inert diluent or an assimilable edible carrier. As used herein “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutically active substances is well-known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the therapeutic compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.


It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. “Dosage unit form”, as used herein, refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by, and directly dependent on, (a) the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in individuals.


VII. Kits

The present invention also encompasses kits. For example, the kit can comprise PTEN and p53-deficient cancer cells modified as described herein, TGFβ superfamily proteins, agents that increase the copy number, amount, and/or activity of at least one biomarker listed in Table 1, immune checkpoint inhibitors, and combinations thereof, packaged in a suitable container and can further comprise instructions for using such reagents. The kit may also contain other components, such as administration tools packaged in a separate container.


Other embodiments of the present invention are described in the following Examples. The present invention is further illustrated by the following examples which should not be construed as further limiting. The contents of all references, patents and published patent applications cited throughout this application, as well as the Figures, are incorporated herein by reference.


EXAMPLES
Example 1: Materials and Methods for Examples 2-7

a. Cell Culture


PP and PPT breast cancer cells were cultured in DMEM/F12 (3:1) media supplemented with 10% fetal bovine serum (FBS), 25 ng/ml hydrocortisone, 5 μg/ml insulin, 8.5 ng/ml cholera toxin, 0.125 ng/ml epidermal growth factor (EGF), 5 μM Y-27632 Rock1 inhibitor, penicillin (100 U/mL), and streptomycin (100 mg/mL). For PPT cells, 4 ng/ml TGFβ1 was freshly added into the media every three days. Cells were incubated at 37° C. in a humidified atmosphere under 5% CO2. NMuMG, HMEC, MCF10A, ZR-75-1, MDA-MB-453, MDA-MB-231, MCF7, BT549, HCC1954 and HCC70 cells were purchased from American Type Culture Collection (ATCC) and were cultured according to vendor's instructions.


b. Antibodies and Reagents


TGFβ1 (#GF111) was purchased from Millipore (Billerica, Mass., USA). FITC anti-mouse CD45 (30-F11), PE/Dazzle™ 594 anti-mouse CD3 (145-2C11), APC/Cy7 anti-mouse CD4 (RM4-5), Alexa Fluor® 700 anti-mouse CD8 (53-6.7), APC anti-mouse TNFα (MP6-XT22), PE anti-mouse IFNγ (XMG1.2), PE/Cy7 anti-mouse CD11c (N418), APC/Cy7 anti-mouse I-A/I-E (M5/114.15.2), PerCP/Cy5 anti-mouse CD103 (2E7), PE anti-mouse CD80 (16-10A1), FITC anti-human CD45 (H130), Alexa Fluor® 700 anti-human CD11C (Bu15), PerCP/Cy5 anti-human CD80 (2D10), Pacific Blue™ anti-human CD86 (IT2.2), and anti-human APC CD103 (Ber-ACT8) were purchased from Biolegend (San Diego, Calif., USA). Smad2 (D43B4) rabbit monoclonal antibody (#5339), phospho-Smad2 (Ser465/467; 138D4) rabbit monoclonal antibody, Lamin A/C (4C11) mouse monoclonal antibody, and p63 (D9L7L) rabbit monoclonal antibody (#39692) were purchased from Cell Signaling Technology. Anti-Vinculin antibody (#V9131) was bought from Sigma Aldrich.


c. Real-Time PCR


Real-time PCR was performed using SYBR® Select Master Mix on an Applied Biosystems® 7300 Fast Real-Time PCR system according to manufacturer's instructions. In brief, incubation cycles were as follows: 95° C. for 10 min, then 95° C. for 15 s, 60° C. for 1 min. Amplification was completed by 40 cycles and melting curves were measured. Primers used for real-time PCR assay are shown in Table. 3.










TABLE 3







mAx1-F
ATGGCCGACATTGCCAGTG





mAx1-R
CGGTAGTAATCCCCGTTGTAGA





mBatf3-F
CAGAGCCCCAAGGACGATG





mBatf3-R
GCACAAAGTTCATAGGACACAGC





mCcl2-F
TTAAAAACCTGGATCGGAACCAA





mCcl2-R
GCATTAGCTTCAGATTTACGGGT





mCcl7-F
GCTGCTTTCAGCATCCAAGTG





mCcl7-R
CCAGGGACACCGACTACTG





mCcl8-F
CTGGGCCAGATAAGGCTCC





mCCL8-F
CTGGGCCAGATAAGGCTCC





mCcl8-R
CATGGGGCACTGGATATTGTT





mCCL8-R
CATGGGGCACTGGATATTGTT





mCCR7-F
TGTACGAGTCGGTGTGCTTC





mCCR7-R
GGTAGGTATCCGTCATGGTCTTG





mCD14-F
CTCTGTCCTTAAAGCGGCTTAC





mCD14-R
GTTGCGGAGGTTCAAGATGTT





mCD200-F
CTCTCCACCTACAGCCTGATT





mCD200-R
AGAACATCGTAAGGATGCAGTTG





mCD207-F
CCGAAGCGCACTTCACAGT





mCD207-R
GCAGATACAGAGAGGTTTCCTCA





mCD4-F
TCCTAGCTGTCACTCAAGGGA





mCD4-R
TCAGAGAACTTCCAGGTGAAGA





mCD40-F
TGTCATCTGTGAAAAGGTGGTC





mCD40-R
ACTGGAGCAGCGGTGTTATG





mCD45-F
CAGAAACGCCTAAGCCTAGTTG





mCD45-R
ATGCAGGATCAGGTTTAGATGC





mCD74-F
AGTGCGACGAGAACGGTAAC





mCD74-R
CGTTGGGGAACACACACCA





mCD8-F
CCGTTGACCCGCTTTCTGT





mCD8-R
CGGCGTCCATTTTCTTTGGAA





mCd80-F
ACCCCCAACATAACTGAGTCT





mCd80-R
TTCCAACCAAGAGAAGCGAGG





mCD86-F
CTGGACTCTACGACTTCACAATG





mCD86-R
AGTTGGCGATCACTGACAGTT





mCD8a-F
CCGTTGACCCGCTTTCTGT





mCD8a-R
CGGCGTCCATTTTCTTTGGAA





mCeacam1-F
TTCCCTGGGGAGGACTACTG





mCeacam1-R
TGTATGCTTGCCCCGTGAAAT





mClec9a-F
GAAGTGCCAATCCCCTAGCAA





mClec9a-R
CAGTCACTACCTGAATGGAGAGA





mCtsb-F
TCCTTGATCCTTCTTTCTTGCC





mCtsb-F
TCCTTGATCCTTCTTTCTTGCC





mCtsb-R
ACAGTGCCACACAGCTTCTTC





mCtsb-R
ACAGTGCCACACAGCTTCTTC





mCts1-F
ATCAAACCTTTAGTGCAGAGTGG





mCts1-F
ATCAAACCTTTAGTGCAGAGTGG





mCts1-R
CTGTATTCCCCGTTGTGTAGC





mCts1-R
CTGTATTCCCCGTTGTGTAGC





mCXCL10-F
CCAAGTGCTGCCGTCATTTTC





mCXCL10-R
GGCTCGCAGGGATGATTTCAA





mCXCR3-F
TACCTTGAGGTTAGTGAACGTCA





mCXCR3-R
CGCTCTCGTTTTCCCCATAATC





mFyn-F
ACCTCCATCCCGAACTACAAC





mFyn-R
CGCCACAAACAGTGTCACTC





mGas6-F
TGCTGGCTTCCGAGTCTTC





mGas6-R
CGGGGTCGTTCTCGAACAC





mH2-Ab1-F
AGCCCCATCACTGTGGAGT





mH2-Ab1-R
GATGCCGCTCAACATCTTGC





mH2-D1-F
CCCTGACCTGGCAGTTGAATG





mH2-D1-R
AGCTCCAATGATGGCCATAGC





mHspa1b-F
GAGATCGACTCTCTGTTCGAGG





mHspa1b-R
GCCCGTTGAAGAAGTCCTG





mIcos-F
ATGAAGCCGTACTTCTGCCAT





mIcos-R
CGCATTTTTAACTGCTGGACAG





mIfnb1-F
CAGCTCCAAGAAAGGACGAAC





mIfnb1-R
GGCAGTGTAACTCTTCTGCAT





mIfng-F
ATGAACGCTACACACTGCATC





mIfng-R
CCATCCTTTTGCCAGTTCCTC





mIL12b-F
TGGTTTGCCATCGTTTTGCTG





mIL12b-R
ACAGGTGAGGTTCACTGTTTCT





mIL18-F
GTGAACCCCAGACCAGACTG





mIL18-R
CCTGGAACACGTTTCTGAAAGA





mIL1b-F
GAAATGCCACCTTTTGACAGTG





mIL1b-R
TGGATGCTCTCATCAGGACAG





mIL2ra-F
AACCATAGTACCCAGTTGTCGG





mIL2ra-R
TCCTAAGCAACGCATATAGACCA





mIL2rb-F
TGGAGCCTGTCCCTCTACG





mIL2rb-R
TCCACATGCAAGAGACATTGG





mIL6st-F
CCGTGTGGTTACATCTACCCT





mIL6st-R
CGTGGTTCTGTTGATGACAGTG





mIrf1-F
ATGCCAATCACTCGAATGCG





mIrf1-R
TTGTATCGGCCTGTGTGAATG





mIrf4-F
TCCGACAGTGGTTGATCGAC





mIrf4-R
CCTCACGATTGTAGTCCTGCTT





mIrf8-F
CGGGGCTGATCTGGGAAAAT





mIrf8-R
CACAGCGTAACCTCGTCTTC





mItga6-F
TGCAGAGGGCGAACAGAAC





mItga6-R
GCACACGTCACCACTTTGC





mItgae-F
CCTGTGCAGCATGTAAAAGAATG





mItgae-R
CAAGGATCGGCAGTTCAGATAC





mItgam-F
ATGGACGCTGATGGCAATACC





mItgam-R
TCCCCATTCACGTCTCCCA





mK1rc1-F
GCCCCTGCAAAGATACCGAA





mK1rc1-R
TCTGTGGGTTCTAGTCATTGAGG





mLamp1-F
CAGCACTCTTTGAGGTGAAAAAC





mLamp1-R
ACGATCTGAGAACCATTCGCA





mLifr-F
TACGTCGGCAGACTCGATATT





mLifr-R
TGGGCGTATCTCTCTCTCCTT





mMalt1-F
CACAGAACTGAGCGACTTCCT





mMalt1-R
CAGCCAACACTGCCTTGGA





mNotch2-F
GAGAAAAACCGCTGTCAGAATGG





mNotch2-R
GGTGGAGTATTGGCAGTCCTC





mPik3cd-F
GTAAACGACTTCCGCACTAAGA





mPik3cd-R
GCTGACACGCAATAAGCCG





mRelb-F
CCGTACCTGGTCATCACAGAG





mRelb-R
CAGTCTCGAAGCTCGATGGC





mSirpa-F
CCACGGGGAAGGAACTGAAG





mSirpa-R
ACGTATTCTCCTGCGAAACTGTA





mTap1-F
GGACTTGCCTTGTTCCGAGAG





mTAp1-R
GCTGCCACATAACTGATAGCGA





mTapbp-F
ACAAGGCCCCCAGAGTGT





mTapbp-R
GGAAGAAGTGGGATGCAAGA





mTlr1-F
TGAGGGTCCTGATAATGTCCTAC





mTlr1-R
AGAGGTCCAAATGCTTGAGGC





mTlr3-F
GTGAGATACAACGTAGCTGACTG





mTlr3-R
TCCTGCATCCAAGATAGCAAGT





mTlr6-F
TGAGCCAAGACAGAAAACCCA





mTlr6-R
GGGACATGAGTAAGGTTCCTGTT





mTnf-F
CCCTCACACTCAGATCATCTTCT





mTnf-R
GCTACGACGTGGGCTACAG





mTnfaip3-F
GAACAGCGATCAGGCCAGG





mTnfaip3-R
GGACAGTTGGGTGTCTCACATT





mXcr1-F
CTCAGCCTTGTGGGTAACAGC





mXcr1-R
ACAGGCAGTAGACAGGAGAAC





mZeb2-F
ATTGCACATCAGACTTTGAGGAA





mZeb2-R
ATAATGGCCGTGTCGCTTCG






d. Flow Cytometry Analysis


To obtain single cell suspensions, tumors were first disrupted by mechanical dissociation and then digested in dissociation buffer (1× collagenase/hyaluronidase [#07912, Stem Cell Technologies] in DMEM, 10 mM HEPES, 5% FBS, 100 ng/mL DNase I [#07900, Stem Cell Technologies], and penicillin-streptomycin [#14140122, Thermo Fisher]) for 1 hour at 37° C. Spleens and lymph nodes were first dissociated by passing through 70- and 40-μm cell strainers. Blood was collected by retro-orbital bleeding with EDTA microcaps (#47729-742, VWR) and microtainer (#0266933, Thermo Fisher), and blood cells were separated by centrifugation. For all tissues, red blood cells were lysed with ammonium chloride (4 volumes of 0.8% NH4Cl 0.1 mM EDTA [#07850, Stem Cell Technologies] plus 1 volume PBS). Single cell suspensions were then blocked with anti-CD16/32 (93, Biolegend) and stained with appropriate cell surface antibodies. For intracellular staining, cells were fixed and permeabilized using fixation and permeabilization wash buffers (#421002 and #4208801, Biolegend) according to manufacturer's instructions. Gating strategies can be found in the Supplementary Methods section.


e. Animal Experiments


Six-to-eight-week-old female nude, SCID and wild type FVB mice were purchased from Taconic Biosciences. For PP and PPT cell tumor formation assays, 1×106 cells were injected into the third fat pads in 50% matrigel. For tumor transplantation assays, 1×105 collagenase-digested PP tumor cells were injected into the third fat pads in 10% matrigel. For vaccination assays, 1×106PPT cells were injected subcutaneously in 10% matrigel. After one month, PP cells or tumors were injected into the third fat pads of immunized mice. For in vivo depletion assays, mice were injected intravenously with Ultra-LEAF™ purified anti-CD3 (200 μg/mouse, 145-2C11, Biolegend), anti-CD4 (200 μg/mouse, GK1.5, Biolegend), anti-CD8 (200 μg/mouse, 53-6.7, Biolegend), or anti-IgG (200 μg/mouse, HTK888, Biolegend) one week before tumor challenge and weekly thereafter. All mouse experiments were performed in accordance with federal laws for animal protection and permission from the local veterinary office, and in compliance with the guidelines approved by the Institutional Animal Care and Use Committee of Dana-Farber Cancer Institute and Harvard Medical School.


f. Mouse Transcriptome Methodology and Analysis


An Ion AmpliSeq™ Custom Panel containing 4,604 cancer- and immune-associated genes (designed by Thermo Fisher using Ion AmpliSeq® Designer) was used for the studies as described previously (Goel et al. (2017) Nature 548:471-475). 10 ng total RNA was used to prepare the cDNA library for each sample. Libraries were multiplexed and amplified using an Ion OneTouch™ 2 System, and sequenced on an Ion Torrent Proton™ system (Thermo Fisher). Count data was generated by Thermo Fisher's Torrent Suite™ and AmpliSeq™ RNA analysis plugin. For gene ontology enrichment and KEGG pathway analysis, genes with a mean fold change (PPT vs PP) greater than two or lesser than 0.4 were utilized. Gene Ontology enrichment and KEGG pathway analysis were carried out using Cytoscape Software and STRING plugin.


g. In Vitro Immature DC Differentiation and Activation


Mouse bone marrow monocytes were isolated with EasySep™ Mouse Monocyte Isolation Kit (#19861, StemCell Technologies) from wild type female FVB mice according to vendor's instructions. Enriched monocytes were cultured in RPMI 1640 medium with 20 ng/ml mouse recombinant GM-CSF (Stem Cell Technologies, #78017), 10 ng/ml mouse recombinant IL-4 (Stem Cell Technologies, #78047), and 10% FBS for one week. Immature DCs were then incubated with indicated cells at a 1:1 ratio for 24 hours. Human bone marrow was purchased from ALLCELLS (#ABM001, MA). Monocytes were isolated with EasySep™ Human Monocyte Isolation Kit (#19359, StemCell) according to vendor's instruction. Monocytes were then cultured in RPMI 1640 medium with 10% FBS, 20 ng/ml human recombinant GM-CSF (#78190, Stem Cell) and 10 ng/ml human recombinant IL-4 (#78045, StemCell) for one week. DC function was determined by flow cytometry 24 hours after incubation with human breast cancer cell lines at a 1:1 ratio.


h. Mixed Lymphocyte Reaction Assay


Spleens collected from wild type female FVB mice were mechanically dissociated by passing through 70 μm cell strainers. Naïve CD3+ T cells were then isolated with EasySep™ Mouse Pan-Naïve T Cell Isolation Kit (Stem Cell Technologies, #19848) according to manufacturer's instructions. Purified T cells were co-cultured with tumor cells at a 10:1 ratio in presence or absence of immature DCs. After co-culturing overnight, cells were harvested and T cell activation was determined by flow cytometry.


i. Nuclear and Cytoplasmic Protein Extraction, Co-Immunoprecipitation, and Western Blotting


Cells were lysed with cytoplasmic extract (CE) buffer (10 mM HEPES (pH 7.6), 50 mM KCl, 0.05% NP40, and phosphatase and protease inhibitors in 1×PBS) for 5 minutes on ice. Cell lysates were centrifuged at 2,300 g for 5 min and supernatants were collected as the cytoplasmic fraction. After three washes with CE buffer, the precipitate was lysed by sonication in nuclear extraction buffer (20 mM HEPES pH 7.6, 100 mM KCl, 5% glycerol, 0.5% NP40, phosphatase and protease inhibitors in 1×PBS). Cell lysates were centrifuged at 13,400 g for 5 min and supernatants were collected as the nuclear fraction. For co-immunoprecipitation assays, cell extracts were adjusted to 20 mM HEPES (pH 7.6), 0.1% NP40, 50 mM KCl, 5% glycerol and 2.5 mM MgCl2, and incubated with an appropriate primary antibody or IgG overnight at 4° C. Protein A/G magnetic beads were added into the mixture and incubated for 2 hours. After three washes with binding buffer, beads were re-suspended in 1× western blotting loading buffer and denatured at 95° C. for 10 min. Western blot analysis was performed as previously described (Tang et al. (2015) Nat. Commun. 6:8230).


j. Statistical Analysis


Quantitative data were expressed as means±SEM. Statistical significance was determined by t-test for comparison of two groups and ANOVA with post-hoc analysis for three or more groups. A P-value of <0.05 was considered statistically significant.


Example 2: TGFβ-Treated Tumor Cells Induce T Cell Dependent Antitumor Immunity

Transforming growth factor beta (TGFβ) is a pluripotent cytokine that plays critical roles in regulating embryo development, cell metabolism, tumor progression, and immune system homeostasis (David and Massagué (2018) Nat. Rev. Mol. Cell. Biol. 19:419-435). Upon binding to its receptors on plasma membrane, TGFβ, regulates the expressions of its downstream genes in Smad-dependent and independent manners (FIG. 16).


Loss of tumor suppressor p53 or PTEN is among the most frequent events in human cancer (Lawrence et al. (2014) Nature 505:495-501). The majority of advanced epithelial tumors, including triple-negative breast cancer (TNBC), exhibit loss of both p53 and PTEN (Cancer Genome Atlas Network (2012) Nature 490:61-70). A syngeneic genetically-engineered mouse model (GEMM) of TNBC derived from concurrent ablation of p53 (encoded by Trp53 in mice) and Pten (termed PP) in female FVB mice carrying K14-Cre; Trp53L/L; PtenL/L, was generated (Berrueta et al. (2018) Sci. Rep. 8:7864). To investigate the interaction of tumor cells harboring activated TGFβ signaling with the immune system, primary PP tumor cells were treated with TGFβ in vitro for a prolonged time (e.g., one month), and were subsequently allografted to FVB female mice. These TGFβ-treated PP cells (termed PPT) were confirmed to have activated TGFβ signaling with significant induction of epithelial-to-mesenchymal transition (EMT; FIG. 1B). Unexpectedly, while orthotopic injection of PP cells into wild type FVB mice resulted in tumor formation with full penetration, PPT cells completely failed to form tumors in FVB recipients despite their EMT phenotype, which is usually associated with more aggressive tumors (FIG. 1C). However, both PP and PPT cells were able to grow in immune-compromised mouse hosts lacking adaptive immunity, including athymic nude and severe combined immunodeficient (SCID) mice, although the growth rate of PPT tumors was slower than that of PP tumors (FIGS. 2A and 2B).


To further assess whether T cells are required for immune rejection of PPT cells, CD3+ T cells were depleted via injection of an antibody against CD3 in recipient FVB mice transplanted with PPT cells. In this case, in contrast to absolute no growth of PPT cells in FVB mice with proficient T cells, PPT cells were able to form tumors with 100% penetrance upon depletion of T cells (FIGS. 3A and 3B). Tumor tissue, spleens and blood were harvested from host mice six days after transplantation of PP or PPT tumor cells, and T cells were analyzed by flow cytometry (FIG. 3C). Both the abundance of CD4+ and CD8+ T cell levels, as well as TNFα and INFγ production, were significantly increased in the tumors and blood of PPT-transplanted mice compared to PP-bearing mice (FIGS. 3D-3I). Together, these results indicate that activated TGFβ signaling in tumor cells triggers cytotoxic T cell-mediated antitumor immunity.


Example 3: DC Plays an Essential Role in Mediating TGFβ-Induced Antitumor Immunity

In parallel, transcriptome analysis was performed across a panel of 4,604 cancer- and immune-related genes on PP and PPT tumor tissue isolated from recipient mice six days after engrafting. Notably, expression of genes with gene ontology (GO) terms related to activation of multiple immune pathways was greatly up-regulated in PPT tumors compared to PP tumors (FIG. 4A). Significant up-regulation of genes encoding cytokines, cytokine receptors, and T cell costimulatory molecules was further confirmed by real time quantitative PCR (FIG. 4B). Moreover, expression of genes encoding components of both class I and class II major histocompatibility complex (MHC), such as H2-D1, H2-Ab1 and Cd74, was significantly up-regulated in PPT tumor sites compared to PP tumors (FIG. 4B). These data further confirm that PPT cells were able to elicit a robust immune response in the tumor microenvironment.


Interestingly, Cd74 (also known as HLA class II histocompatibility antigen gamma chain) was at the top of up-regulated immune-related networks in PPT tumor tissues (FIG. 4C). Flow cytometry analysis determined that neither PP nor PPT tumor cells express MHC class II molecules (FIGS. 5A and 5B), indicating that antigen-presenting cells (APCs), and dendritic cells (DCs) in particular, are likely involved in PPT tumor-induced immune response in the host animals. Indeed, PPT tumors had a significantly higher number of tumor-infiltrating DCs than PP tumors (FIG. 4D). Further analysis revealed that PPT tumor-associated DCs also have increased levels of CD80, a costimulatory molecule necessary for T cell activation, CD103, a critical molecule for priming tumor-specific CD8+ T cells and trafficking of effector T cells, and MHC-II antigen-presenting machinery (Eisenbarth (2019) Nat. Rev. Immunol. 19:89-103; Worbs et al. (2017) Nat. Rev. Immunol. 17:30-48) (FIG. 4E). These observations indicate that tumor-associated DCs play an important role in mediating antitumor immunity against TGFβ-treated tumor cells.


To delineate how PPT tumor cells elicit antitumor immunity when they are introduced into immune competent host animals, co-culture experiments of PP or PPT tumor cells with DCs or T cells in vitro were performed. Co-culture of bone marrow-derived DCs (BMDCs) obtained from naïve mice with tumor cells revealed that PPT cells, but not PP, were able to activate BMDCs (FIGS. 4F and 4G). A similar co-culture of T cells isolated from the spleen of naïve FVB mice with tumor cells showed that T cells were not activated when they were co-cultured with either PP or PPT cells (FIGS. 5C and 5D). However, in the presence of DCs, both CD4+ and CD8+ T cells were activated by co-culturing with PPT cells, but not with PP cells (FIGS. 4H and 4I). These results indicate that PPT cells trigger activation of DCs to mount an adaptive immune response, which in turn primes T cells to target PPT tumor cells (FIG. 17).


Example 4: TGFβ Stimulates Antitumor Immunity Through the TGFβ-Smad/p63 Signaling Axis

The molecular mechanisms by which prolonged treatment of tumor cells with TGFβ could enhance immunogenicity to the extent observed in PPT cells were next determined. Since Smad proteins are specific transcriptional effectors of TGFβ signaling (Xu et al. (2016) Cold Spring Harb. Perspect. Biol. 8: a022087; Budi et al. (2017) Trends Cell Biol. 27:658-672; Cantelli et al. (2017) Semin. Cancer Biol. 42:60-69), the expression levels of Smads and Smad-related transcription factors in PPT cells were analyzed by transcriptome profiling. Notably, the expression level of p63 (encoded by Trp63 in mice) was highest among the Smad-associated transcriptional networks (FIG. 6A). The transcription factor p63 is a member of the p53 family, which has been reported to either suppress or promote tumor progression depending on the cellular context (Bergholz and Xiao (2012) Cancer Microenviron. 5:311-322; Adorno et al. (2009) Cell 137:87-98; Memmi et al. (2015) Proc. Natl. Acad. Sci. U.S.A. 112:3499-3504; Chen et al. (2018) Cell Mol. Life Sci. 75:965-973; Yoh et al. (2016) Proc. Natl. Acad. Sci. U S. A. 113:E6107-E6116). To determine the role of p63 in PPT cells, p63 was depleted via short hairpin RNA (shRNA) and p63-knockdown PPT cells were transplanted into FVB mice. Remarkably, while PPT cells expressing a control shRNA failed to form tumors, PPT cells expressing shTrp63-1 and undetectable p63 protein levels quickly formed tumors with full penetrance (FIG. 6B). PPT cells expressing shTrp63-2 with still detectable p63 formed tumors with a longer latency and reduced penetrance (70%) than that of cells expressing shTrp63-1 (FIG. 6B). Moreover, PPT cells expressing either shTrp63-1 or shTrp63-2 lost the capacity to activate BMDCs in co-culture systems (FIG. 6C). These results indicate that p63 plays a critical role in mediating enhanced immunogenicity and immune sensitization induced by TGFβ treatment, which then results in failure to evade immune attack and loss of tumorigenicity.


Intriguingly, both PP and PPT cells express an abundant amount of p63 (FIG. 7A). To investigate why and how p63 plays a different role in PP and PPT cells, immunofluorescence analysis was performed to detect the cellular localization of p63 and Smad2. Results showed that while p63 was in the nucleus in both PP and PPT cells, Smad2 was restricted to the cytoplasmic compartment in PP cells, but localized to both the cytoplasm and nucleus in PPT cells (FIG. 7B). The cellular localization of p63 and Smad2 was validated by cellular fractionation (FIG. 7C), and their association in the nucleus of PPT cells was confirmed by co-immunoprecipitation (FIG. 7D). These data indicate that p63 can act as a co-factor of the nuclear Smads to target specific sets of genes for transcriptional regulation upon TGFβ treatment.


To determine transcriptional programs co-regulated by p63 and Smad2, transcriptome analysis of PPT cells with shRNA-mediated silencing of p63 or Smad2 expression was performed. Approximately 70% of altered genes in PPT cells expressing shTrp63 or shSmad2 were regulated in common by p63 and Smad2 (FIGS. 8A and 8B). Notably, while multiple major oncogenic signaling pathways were up-regulated in both shTrp63- and shSmad2-expressing PPT cells, many immune regulatory pathways were down-regulated (FIGS. 8C and 8D).


Example 5: TGFβ-Smad/p63 Signaling Activation Reprogramed Human Tumor Cells to Activate DCs in a Similar Fashion

To determine whether TGFβ-Smad/p63 pathway was also important in the interaction of human tumor cells with the immune system, a panel of breast cancer cell lines was screened and it was found that most of these cell lines do not express p63. Only HCC1954 and the two non-cancer cell lines screened express p63 at levels detectable by western blotting (FIG. 9A). HCC1954 and MCF7 cells were treated with TGFβ and co-cultured with human DCs (FIG. 9B). Consistent with previous results, only HCC1954 cells, but not MCF7, were able to induce DC activation upon TGFβ-treatment (FIGS. 9C-9E). These data indicate that the TGFβ-Smad/p63 signaling activation can also reprogram human tumor cells to activate DCs in a similar fashion. More importantly, breast cancer patients with a higher level of the TP63/Smad-based gene expression signature had much better survival outcome than those patients with a lower level of TP63/Smad-based gene signature (FIG. 9F).


Example 6: PPT Cells have Therapeutic Effect on Blocking the Growth of their Parental PP Tumor Cells

It was determined whether the enhanced immune response elicited by PPT cells can extend its cytotoxic effects towards non-TGFβ-treated parental PP tumor cells, which can lead to important therapeutic implications for cancer treatment. Remarkably, co-injection of PPT cells with PP tumor cells into FVB mice completely abrogated growth of PP tumors (FIGS. 10 A and 10B). The results indicated that PPT induced antitumor immunities against its parental PP tumor cells.


Example 7: PPT Cells have Potent Vaccine Activity Against Parental PP Tumor Cells Through Induction of Memory T Cell Responses

To gain a further understanding on the antitumor immunity of PPT cells, it was determined whether PPT cells can induce tumor specific memory T cell responses. T cells harvested from the spleen and lymph nodes of PPT-bearing mice at 1, 2 and 6 weeks after injection of PPT cells were analyzed, and it was found that both populations of CD4+ central memory (TCM) and effector memory (TEM) T cell were increased (FIGS. 11A and 11B) Increased long-term splenic CD8+ TCM and TEM cells were also observed in these mice after PPT cell injection (FIGS. 11C and 11D).


It was next determined whether PPT cells can prevent the growth of parental PP cells in the primary site as well as in a distal tissue, i.e., the lung. Remarkably, PP tumor cells or tumor fragments were entirely rejected when they were introduced into the mammary fat pads of FVB mice that had been previously immunized with PPT cells (FIGS. 12A-12E). In addition, PP cells were introduced into PPT-immunized mice via tail vein injection to mimic metastatic tumor cells in the circulation. While control mice developed substantial metastatic burden in the lungs when analyzed four weeks after injection, PPT-immunized mice were completely clear of tumor lesions (FIGS. 12F and 12G).


It was further shown that the tumor infiltrating CD4+ and CD8+ T cells were significantly increased in the PP tumor cells injection sites in mice immunized with PPT cells (FIGS. 13A and 13B). Both the CD4+ and CD8+ effector memory T cells as well as central memory T cells were also substantially increased in these sites in immunized mice (FIGS. 13C and 13D).


Example 8: The Vaccine Effect of PPT Cells was not Dampened by a Sub-Lethal Dose of Irradiation

In order to prevent further cell division, PPT tumor cells were treated with a sub-lethal dose of irradiation (100 Gy), and it was determined whether irradiation can impair the potency of the vaccine effect of the PPT tumor cells. As shown in FIGS. 14A-14C, mice immunized with irradiated PPT cells were fully protected from tumor development when PP tumor fragments were transplanted (FIGS. 14A-14C). In contrast, PP tumor fragments were quickly grafted and grew in non-immunized mice (FIGS. 14A-14C). In parallel, PP tumor cells were also treated with the same dose of irradiation and injected them into one flank of mice, and 4 weeks later, these mice were transplanted with PP tumor fragments into the other side of frank. Irradiated PP tumor cells fail to grow in vivo, confirming that the irradiation prevented the further proliferation of PP tumor cells in vivo. Interestingly, pre-injection of irradiated PP tumor cells were able to delay the growth of transplanted PP tumor fragments and extend the survival, but, in a limited manner (FIGS. 14A-14C)


Example 9: PPT can be an Effective Allogeneic Vaccine Against Other Tumor Types

The autologous tumor cell vaccines are greatly limited by the availability of tumor tissues. Therefore, it's also important to determine if PPT can also be used as an allogeneic tumor vaccine against other tumors with similar genetic background but different tumor types, or the same tumor type with different genetic mutations. The results showed that PPT vaccination completely rejected growth of PPA tumor (a very aggressive breast cancer cell characterized by triple loss of p53, PTEN, and p110alpha; FIGS. 15A and 15B). Notably, 9/10 of C260 tumor transplants (a high-grade serious ovarian cancer model driven by p53/PTEN co-loss and high Myc expression) were rejected in PPT immunized mice and 1/10 C260 eventual grew in a much delayed time (FIGS. 15C and 15D). Moreover, PPT vaccination significantly delayed the tumor latency of D658 (a Kras-mutated recurrent breast cancer cell model generated from a PIK3CAH1047R GEMM of breast cancer) and d333 (a glioblastoma tumor model derived from p53 and PTEN co-loss GEMM) and markedly extended the survivals of these mice (FIGS. 15E to 15H). The data indicated that PPT can be used not only as a highly effective allogeneic vaccine against other epithelial tumors with the same genetic changes, i.e., loss of p53 and PTEN, but also as a biologic which is active against different types of cancers with different cancer mutations. The data described herein support a tumor-cell based vaccine (T. Vax) platform (FIG. 18).


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned herein are hereby incorporated by reference in their entirety as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.


Also incorporated by reference in their entirety are any polynucleotide and polypeptide sequences which reference an accession number correlating to an entry in a public database, such as those maintained by The Institute for Genomic Research (TIGR) on the world wide web at tigr.org and/or the National Center for Biotechnology Information (NCBI) on the World Wide Web at ncbi.nlm.nih.gov.


EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims
  • 1. A cancer vaccine comprising cancer cells, wherein the cancer cells are: (1) PTEN-deficient;(2) p53-deficient; and(3) modified to activate the TGFβ-Smad/p63 signaling pathway.
  • 2. The cancer vaccine of claim 1, wherein the TGFβ-Smad/p63 signaling pathway is activated by contacting the cancer cells with at least one TGFβ superfamily protein.
  • 3. The cancer vaccine of claim 1 or 2, wherein the at least one TGFβ superfamily protein is selected from the group consisting of LAP, TGFβ1, TGFβ2, TGFβ3, TGFβ5, Activin A, Activin AB, Activin AC, Activin B, Activin C, C17ORF99, INHBA, INHBB, Inhibin, Inhibin A, Inhibin B, BMP-1/PCP, BMP-2, BMP-2/BMP-6 Heterodimer, BMP-2/BMP-7 Heterodimer, BMP-2a, BMP-3, BMP-3b/GDF-10, BMP-4, BMP-4/BMP-7 Heterodimer, BMP-5, BMP-6, BMP-7, BMP-8, BMP-8a, BMP-8b, BMP-9, BMP-10, BMP-15/GDF-9B, Decapentaplegic/DPP, Artemin, GDNF, Neurturin, Persephin, Lefty A, Lefty B, MIS/AMH, Nodal, and SCUBE3.
  • 4. The cancer vaccine of any one of claims 1-3, wherein the at least one TGFβ superfamily protein is selected from the group consisting of TGFβ1, TGFβ2, and TGFβ3.
  • 5. The cancer vaccine of any one of claims 1-4, wherein the cancer cells are contacted with the TGFβ superfamily protein in vitro, in vivo, and/or ex vivo.
  • 6. The cancer vaccine of claim 5, wherein the cancer cells are contacted with the TGFβ superfamily protein in vitro or ex vivo.
  • 7. The cancer vaccine of claim 5, wherein the cancer cells are administered to a subject, wherein the TGFβ superfamily protein is administered to the subject to thereby contact the cancer cells in vivo.
  • 8. The cancer vaccine of claim 7, wherein the TGFβ superfamily protein is administered before, after, or concurrently with administration of the cancer cells.
  • 9. The cancer vaccine of any one of claims 1-8, wherein the TGFβ-Smad/p63 signaling pathway is activated by increasing the copy number, amount, and/or activity of at least one biomarker listed in Table 1, and/or decreasing the copy number, amount, and/or activity of at least one biomarker listed in Table 2 in the cancer cells.
  • 10. The cancer vaccine of claim 9, wherein the copy number, amount, and/or activity of at least one biomarker listed in Table 1 is increased by contacting the cancer cells with a nucleic acid molecule encoding at least one biomarker listed in Table 1 or fragment thereof, a polypeptide of at least one biomarker listed in Table 1 or fragment thereof, or a small molecule that binds to at least one biomarker listed in Table 1.
  • 11. The cancer vaccine of claim 9, wherein the copy number, amount, and/or activity of at least one biomarker listed in Table 2 is decreased by contacting the cancer cells with a small molecule inhibitor, CRISPR guide RNA (gRNA), RNA interfering agent, antisense oligonucleotide, peptide or peptidomimetic inhibitor, aptamer, antibody, and/or intrabody.
  • 12. The cancer vaccine of any one of claims 1-11, wherein the TGFβ-Smad/p63 signaling pathway is activated by increasing nuclear localization of Smad2, and/or association of p63 and Smad2 in the nucleus of the cancer cells.
  • 13. The cancer vaccine of any one of claims 1-12, wherein the cancer cells are derived from a solid or hematological cancer.
  • 14. The cancer vaccine of any one of claims 1-13, wherein the cancer cells are derived from a cancer cell line.
  • 15. The cancer vaccine of any one of claims 1-13, wherein the cancer cells are derived from primary cancer cells.
  • 16. The cancer vaccine of any one of claims 1-15, wherein the cancer cells are breast cancer cells.
  • 17. The cancer vaccine of any one of claims 1-16, wherein the cancer cells are derived from a triple-negative breast cancer (TNBC).
  • 18. The cancer vaccine of any one of claims 1-17, wherein activation of TGFβ-Smad/p63 signaling pathway induces epithelial-to-mesenchymal (EMT) transition in the cancer cells.
  • 19. The cancer vaccine of any one of claims 1-18, wherein activation of TGFβ-Smad/p63 signaling pathway upregulates the expression levels of ICOSL, PYCARD, SFN, PERP, RIPK3, CASP9, and/or SESN1 in the cancer cells.
  • 20. The cancer vaccine of any one of claims 1-19, wherein activation of TGFβ-Smad/p63 signaling pathway downregulates the expression levels of KSR1, KSR1, EIF4EBP1, ITGA5, EMILIN1, CD200, and/or CSF1 in the cancer cells.
  • 21. The cancer vaccine of any one of claims 1-20, wherein the cancer cells are capable of activating co-cultured dendritic cells (DCs) in in vitro.
  • 22. The cancer vaccine of any one of claims 1-21, wherein the cancer cells are capable of upregulating CD40, CD80, CD86, CD103, CD8, HLA-DR, MHC-II, and/or IL1-β in the co-cultured dendritic cells in vitro.
  • 23. The cancer vaccine of any one of claims 1-22, wherein the cancer cells are capable of activating co-cultured T cells in the presence of DCs in vitro.
  • 24. The cancer vaccine of any one of claims 1-23, wherein the cancer cells are capable of increasing secretion of TNFα and/or IFNγ by the co-cultured T cells in the presence of DCs in vitro.
  • 25. The cancer vaccine of any one of claims 1-24, wherein the cancer cells do not form a tumor in an immune-competent subject.
  • 26. The cancer vaccine of any one of claims 1-25, wherein the cancer vaccine triggers cytotoxic T cell-mediated antitumor immunity.
  • 27. The cancer vaccine of any one of claims 1-26, wherein the cancer vaccine increases CD4+ T cells and CD8+ T cells in blood and/or tumor microenvironment.
  • 28. The cancer vaccine of any one of claims 1-27, wherein the cancer vaccine increases TNFα- and INFγ-secreting CD4+ and CD8+ T cells in blood and/or tumor microenvironment.
  • 29. The cancer vaccine of any one of claims 1-28, wherein the cancer vaccine upregulates expression of Icos, Klrc1, Il2rb, Pik3cd, H2-D1, Cc18, Ifng, Icosl, Il2ra, Cxcr3, Ccr7, Cxcl10, Cd74, H2-Ab1, Hspa1b, Cd45, Lifr, and/or Tnf in tumor tissues.
  • 30. The cancer vaccine of any one of claims 1-29, wherein the cancer vaccine increases the amount of tumor-infiltrating dendritic cells.
  • 31. The cancer vaccine of any one of claims 1-30, wherein the cancer vaccine upregulates CD80, CD103, and/or MHC-II in tumor-associated DCs.
  • 32. The cancer vaccine of any one of claims 1-31, wherein the cancer vaccine reduces the number of proliferating cells in a cancer and/or reduces the volume or size of a tumor comprising cancer cells.
  • 33. The cancer vaccine of claim 32, wherein the cancer vaccine reduces the number of proliferating cells in a cancer and/or reduces the volume or size of a tumor comprising cancer cells at the primary site of immunization.
  • 34. The cancer vaccine of claim 32, wherein the cancer vaccine reduces the number of proliferating cells in a cancer and/or reduces the volume or size of a tumor comprising cancer cells in a tissue that is distal to the site of immunization.
  • 35. The cancer vaccine of any one of claims 1-34, wherein the cancer vaccine induces a tumor-specific memory T cell response.
  • 36. The cancer vaccine of any one of claims 1-35, wherein the cancer vaccine increases the percentages of CD4+ central memory (TCM) T cells and/or CD4+ effector memory (TEM) T cells in a spleen and/or lymph nodes.
  • 37. The cancer vaccine of any one of claims 1-36, wherein cancer vaccine increases the percentage of splenic CD8+ TCM cells.
  • 38. The cancer vaccine of any one of claims 1-37, wherein cancer vaccine increases the percentage of CD8+ TEM cells in a spleen and/or lymph nodes.
  • 39. The cancer vaccine of any one of claims 1-38, wherein the cancer vaccine increases the amount of tumor infiltrating CD4+ T cells and/or CD8+ T cells.
  • 40. The cancer vaccine of any one of claims 1-39, wherein the cancer vaccine increases the amount of tumor infiltrating CD4+ TCM cells and/or CD4+ TEM cells.
  • 41. The cancer vaccine of any one of claims 1-40, wherein the cancer vaccine increases the amount of tumor infiltrating CD8+ TCM cells and/or CD8+ TEM cells.
  • 42. The cancer vaccine of any one of claims 1-41, wherein the cancer cells are non-replicative.
  • 43. The cancer vaccine of claim 42, wherein the cancer cells are non-replicative due to irradiation.
  • 44. The cancer vaccine of claim 43, wherein the irradiation is at a sub-lethal dose.
  • 45. The cancer vaccine of any one of claims 1-44, wherein the cancer vaccine is administered to a subject in combination with an immunotherapy and/or cancer therapy, optionally wherein the immunotherapy and/or cancer therapy is administered before, after, or concurrently with the cancer vaccine.
  • 46. The cancer vaccine of claim 45, wherein the immunotherapy is cell-based.
  • 47. The cancer vaccine of claim 46, wherein the immunotherapy comprises a cancer vaccine and/or virus.
  • 48. The cancer vaccine of claim 47, wherein the immunotherapy inhibits an immune checkpoint.
  • 49. The cancer vaccine of claim 48, wherein the immune checkpoint is selected from the group consisting of CTLA-4, PD-1, VISTA, B7-H2, B7-H3, PD-L1, B7-H4, B7-H6, ICOS, HVEM, PD-L2, CD160, gp49B, PIR-B, KIR family receptors, TIM-1, TIM-3, TIM-4, LAG-3, GITR, 4-IBB, OX-40, BTLA, SIRPalpha (CD47), CD48, 2B4 (CD244), B7.1, B7.2, ELT-2, ILT-4, TIGIT, HHLA2, butyrophilins, and A2aR.
  • 50. The cancer vaccine of claim 49, wherein the immune checkpoint is PD1, PD-L1, or CD47.
  • 51. The cancer vaccine of claim 50, wherein the cancer therapy is selected from the group consisting of radiation, a radiosensitizer, and a chemotherapy.
  • 52. A method of preventing occurrence of a cancer, delaying onset of a cancer, preventing reoccurrence of a cancer, and/or treating a cancer in a subject comprising administering to the subject a therapeutically effective amount of a cancer vaccine comprising cancer cells, wherein the cancer cells are: (1) PTEN-deficient;(2) p53-deficient; and(3) modified to activate the TGFβ-Smad/p63 signaling pathway, optionally wherein the subject is afflicted with a cancer.
  • 53. The method of claim 52, wherein the TGFβ-Smad/p63 signaling pathway is activated by contacting the cancer cells with at least one TGFβ superfamily protein.
  • 54. The method of claim 52 or 53, wherein the at least one TGFβ superfamily protein is selected from the group consisting of LAP, TGFβ1, TGFβ2, TGFβ3, TGFβ5, Activin A, Activin AB, Activin AC, Activin B, Activin C, C17ORF99, INHBA, INHBB, Inhibin, Inhibin A, Inhibin B, BMP-1/PCP, BMP-2/BMP-6 Heterodimer, BMP-2/BMP-7 Heterodimer, BMP-2a, BMP-3, BMP-3b/GDF-10, BMP-4, BMP-4/BMP-7 Heterodimer, BMP-5, BMP-6, BMP-7, BMP-8, BMP-8a, BMP-8b, BMP-9, BMP-10, BMP-15/GDF-9B, Decapentaplegic/DPP, Artemin, GDNF, Neurturin, Persephin, Lefty A, Lefty B, MIS/AMH, Nodal, and SCUBE3.
  • 55. The method of any one of claims 52-54, wherein the at least one TGFβ superfamily protein is selected from the group consisting of TGFβ1, TGFβ2, and TGFβ3.
  • 56. The method of any one of claims 52-55, wherein the cancer cells are contacted with the TGFβ superfamily protein in vitro, in vivo, and/or ex vivo.
  • 57. The method of claim 56, wherein the cancer cells are contacted with the TGFβ superfamily protein in vitro or ex vivo.
  • 58. The method of claim 56, wherein the cancer cells are administered to a subject, wherein the TGFβ superfamily protein is administered to the subject to thereby contact the cancer cells in vivo.
  • 59. The method of claim 58, wherein the TGFβ superfamily protein is administered before, after, or concurrently with administration of the cancer cells.
  • 60. The method of any one of claims 52-59, wherein the TGFβ-Smad/p63 signaling pathway is activated by increasing the copy number, amount, and/or activity of at least one biomarker listed in Table 1, and/or decreasing the copy number, amount, and/or activity of at least one biomarker listed in Table 2 in the cancer cells.
  • 61. The method of claim 60, wherein the copy number, amount, and/or activity of at least one biomarker listed in Table 1 is increased by contacting the cancer cells with a nucleic acid molecule encoding at least one biomarker listed in Table 1 or fragment thereof, a polypeptide of at least one biomarker listed in Table 1 or fragment thereof, or a small molecule that binds to at least one biomarker listed in Table 1.
  • 62. The method of claim 60, wherein the copy number, amount, and/or activity of at least one biomarker listed in Table 2 is decreased by contacting the cancer cells with a small molecule inhibitor, CRISPR guide RNA (gRNA), RNA interfering agent, antisense oligonucleotide, peptide or peptidomimetic inhibitor, aptamer, antibody, and/or intrabody.
  • 63. The method of any one of claims 52-62, wherein the TGFβ-Smad/p63 signaling pathway is activated by increasing nuclear localization of Smad2, and/or association of p63 and Smad2 in the nucleus of the cancer cells.
  • 64. The method of any one of claims 52-63, wherein the cancer cells are derived from a solid or hematological cancer.
  • 65. The method of any one of claims 52-64, wherein the cancer cells are derived from a cancer cell line.
  • 66. The method of any one of claims 52-64, wherein the cancer cells are derived from primary cancer cells.
  • 67. The method of any one of claims 52-66, wherein the cancer cells are breast cancer cells.
  • 68. The method of any one of claims 52-67, wherein the cancer cells are derived from a triple-negative breast cancer (TNBC).
  • 69. The method of any one of claims 52-68, wherein the cancer cells are derived from a cancer that is the same type as the cancer treated with the cancer vaccine.
  • 70. The method of any one of claims 52-68, wherein the cancer cells are derived from a cancer that is a different type from the cancer treated with the cancer vaccine.
  • 71. The method of any one of claims 52-70, wherein the cancer treated with the cancer vaccine is characterized by loss of PTEN, p53, and/or p110, optionally wherein the cancer further expresses Myc.
  • 72. The method of any one of claims 52-70, wherein the cancer treated with the cancer vaccine has functional PTEN and/or p53, optionally wherein the cancer has a Kras activating mutation G12D.
  • 73. The method of any one of claims 52-72, wherein the cancer vaccine is syngeneic or xenogeneic to the subject.
  • 74. The method of any one of claims 52-73, wherein the cancer vaccine is autologous, matched allogeneic, mismatched allogeneic, or congenic to the subject.
  • 75. The method of any one of claims 52-68, wherein the cancer treated with the cancer vaccine is selected from the group consisting of breast tumor, ovarian tumor, or brain tumor.
  • 76. The method of any one of claims 52-75, wherein activation of TGFβ-Smad/p63 signaling pathway induces epithelial-to-mesenchymal (EMT) transition in the cancer cells.
  • 77. The method of any one of claims 52-76, wherein activation of TGFβ-Smad/p63 signaling pathway upregulates the expression levels of ICOSL, PYCARD, SFN, PERP, RIPK3, CASP9, and/or SESN1 in the cancer cells.
  • 78. The method of any one of claims 52-77, wherein activation of TGFβ-Smad/p63 signaling pathway downregulates the expression levels of KSR1, KSR1, EIF4EBP1, ITGA5, EMILIN1, CD200, and/or CSF1 in the cancer cells.
  • 79. The method of any one of claims 52-78, wherein the cancer cells are capable of activating co-cultured dendritic cells (DCs) in in vitro.
  • 80. The method of any one of claims 52-79, wherein the cancer cells are capable of upregulating CD40, CD80, CD86, CD103, CD8, HLA-DR, MHC-II, and/or IL1-β in co-cultured dendritic cells in vitro.
  • 81. The method of any one of claims 52-80, wherein the cancer cells are capable of activating co-cultured T cells in the presence of DCs in vitro.
  • 82. The method of any one of claims 52-81, wherein the cancer cells are capable of increasing secretion of TNFα and/or IFNγ by co-cultured T cells in the presence of DCs in vitro.
  • 83. The method of any one of claims 52-82, wherein the cancer cells do not form a tumor in an immune-competent subject.
  • 84. The method of any one of claims 52-83, wherein the cancer vaccine triggers cytotoxic T cell-mediated antitumor immunity.
  • 85. The method of any one of claims 52-84, wherein the cancer vaccine increases CD4+ T cells and CD8+ T cells in blood and/or tumor microenvironment.
  • 86. The method of any one of claims 52-85, wherein the cancer vaccine increases TNFα- and INFγ-secreting CD4+ and CD8+ T cells in blood and/or tumor microenvironment.
  • 87. The method of any one of claims 52-86, wherein the cancer vaccine upregulates expression of Icos, Klrc1, 112rb, Pik3cd, H2-D1, Cc18, Ifng, Icosl, Il2ra, Cxcr3, Ccr7, Cxcl10, Cd74, H2-Ab1, Hspa1b, Cd45, Lifr, and/or Tnf in tumor tissues.
  • 88. The method of any one of claims 52-87, wherein the cancer vaccine increases the amount of tumor-infiltrating dendritic cells.
  • 89. The method of any one of claims 52-88, wherein the cancer vaccine upregulates CD80, CD103, and/or MHC-II in tumor-associated DCs.
  • 90. The method of any one of claims 52-89, wherein the cancer vaccine reduces the number of proliferating cells in a cancer and/or reduces the volume or size of a tumor comprising cancer cells.
  • 91. The method of claim 90, wherein the cancer vaccine reduces the number of proliferating cells in a cancer and/or reduces the volume or size of a tumor comprising cancer cells at the primary site of immunization.
  • 92. The method of claim 90, wherein the cancer vaccine reduces the number of proliferating cells in a cancer and/or reduces the volume or size of a tumor comprising cancer cells in a tissue that is distal to the site of immunization.
  • 93. The method of any one of claims 52-92, wherein the cancer vaccine induces a tumor-specific memory T cell response.
  • 94. The method of any one of claims 52-93, wherein the cancer vaccine increases the percentages of CD4+ central memory (TCM) T cells and/or CD4+ effector memory (TEM) T cells in a spleen and/or lymph nodes.
  • 95. The method of any one of claims 52-94, wherein cancer vaccine increases the percentage of splenic CD8+ TCM cells.
  • 96. The method of any one of claims 52-95, wherein cancer vaccine increases the percentage of CD8+ TEM cells in a spleen and/or lymph nodes.
  • 97. The method of any one of claims 52-96, wherein the cancer vaccine increases the amount of tumor infiltrating CD4+ T cells and/or CD8+ T cells.
  • 98. The method of any one of claims 52-97, wherein the cancer vaccine increases the amount of tumor infiltrating CD4+ TCM cells and/or CD4+ TEM cells.
  • 99. The method of any one of claims 52-98, wherein the cancer vaccine increases the amount of tumor infiltrating CD8+ TCM cells and/or CD8+ TEM cells.
  • 100. The method of any one of claims 52-99, wherein the cancer cells are non-replicative.
  • 101. The method of claim 100, wherein the cancer cells are non-replicative due to irradiation.
  • 102. The method of claim 101, wherein the irradiation is at a sub-lethal dose.
  • 103. The method of any one of claims 52-102, wherein the method further comprising administering to the subject an immunotherapy and/or cancer therapy, optionally wherein the immunotherapy and/or cancer therapy is administered before, after, or concurrently with the cancer vaccine.
  • 104. The method of claim 103, wherein the immunotherapy is cell-based.
  • 105. The method of claim 103, wherein the immunotherapy comprises a cancer vaccine and/or virus.
  • 106. The method of claim 103, wherein the immunotherapy inhibits an immune checkpoint.
  • 107. The method of claim 106, wherein the immune checkpoint is selected from the group consisting of CTLA-4, PD-1, VISTA, B7-H2, B7-H3, PD-L1, B7-H4, B7-H6, ICOS, HVEM, PD-L2, CD160, gp49B, PIR-B, KIR family receptors, TIM-1, TIM-3, TIM-4, LAG-3, GITR, 4-IBB, OX-40, BTLA, SIRPalpha (CD47), CD48, 2B4 (CD244), B7.1, B7.2, ILT-2, ILT-4, TIGIT, HHLA2, butyrophilins, and A2aR.
  • 108. The method of claim 107, wherein the immune checkpoint is PD1, PD-L1, or CD47.
  • 109. The method of claim 108, wherein the cancer therapy is selected from the group consisting of radiation, a radiosensitizer, and a chemotherapy.
  • 110. A method of assessing the efficacy of the cancer vaccine of claim 1 for treating a subject afflicted with a cancer, comprising: a) detecting in a subject sample at a first point in time the number of proliferating cells in the cancer and/or the volume or size of a tumor comprising the cancer cells;b) repeating step a) during at least one subsequent point in time after administration of the cancer vaccine; andc) comparing the number of proliferating cells in the cancer and/or the volume or size of a tumor comprising the cancer cells detected in steps a) and b), wherein the absence of, or a significant decrease in number of proliferating cells in the cancer and/or the volume or size of a tumor comprising the cancer cells in the subsequent sample as compared to the number and/or the volume or size in the sample at the first point in time, indicates that the cancer vaccine treats cancer in the subject.
  • 111. The method of claim 110, wherein between the first point in time and the subsequent point in time, the subject has undergone treatment, completed treatment, and/or is in remission for the cancer.
  • 112. The method of claim 110 or 111, wherein the first and/or at least one subsequent sample is selected from the group consisting of ex vivo and in vivo samples.
  • 113. The method of any one of claims 110-112, wherein the first and/or at least one subsequent sample is a portion of a single sample or pooled samples obtained from the subject.
  • 114. The method of any one of claims 110-113, wherein the sample comprises cells, serum, peripheral lymphoid organs, and/or intratumoral tissue obtained from the subject.
  • 115. The method of any one of claims 110-114, further comprising determining responsiveness to the agent by measuring at least one criteria selected from the group consisting of clinical benefit rate, survival until mortality, pathological complete response, semi-quantitative measures of pathologic response, clinical complete remission, clinical partial remission, clinical stable disease, recurrence-free survival, metastasis free survival, disease free survival, circulating tumor cell decrease, circulating marker response, and RECIST criteria.
  • 116. The method of any one of claims 52-115, wherein the cancer vaccine is administered in a pharmaceutically acceptable formulation.
  • 117. The method of any one of claims 52-116, wherein the step of administering occurs in vivo, ex vivo, or in vitro.
  • 118. The cancer vaccine or method of any one of claims 1-117, wherein the cancer vaccine prevent recurrent and metastatic tumor lesions.
  • 119. The cancer vaccine or method of any one of claims 1-118, wherein the cancer vaccine is administered to the subject intratumorally or subcutaneously.
  • 120. The cancer vaccine or method of any one of claims 1-119, wherein the subject is an animal model of the cancer, optionally wherein the animal model is a mouse model.
  • 121. The cancer vaccine or method of any one of claims 1-119, wherein the subject is a mammal, optionally wherein the mammal is in remission for a cancer.
  • 122. The cancer vaccine or method of claim 121, wherein the mammal is a mouse or a human.
  • 123. The cancer vaccine or method of claim 122, wherein the mammal is a human.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Application Ser. No. 62/876,416, filed on 19 Jul. 2019; the entire contents of said application are incorporated herein in their entirety by this reference.

STATEMENT OF RIGHTS

This invention was made with government support under grant number P50 CA168504, CA233810, CA187918, and R35 CA210057 awarded by The National Institutes of Health. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/041886 7/14/2020 WO
Provisional Applications (1)
Number Date Country
62876416 Jul 2019 US