Not applicable
Not applicable
1. Technical Field
The present invention relates generally to wick-holder assemblies, and more particularly to wick-holder assemblies having a light show.
2. Background
Many different multi-sensory candle assemblies that emit sound and/or light are known. In one instance, a candle assembly has a wicked candle disposed inside a cylindrical container having a recessed stepped ring encircling an open top end thereof. A circular shade body fits within the open top end and has an outer peripheral flange that rests on the recessed stepped ring.
In another instance, a candleholder has a standard for receiving a candlestick, which extends from a base of the candleholder. The standard has a socket with an out-turned flange at an upper end thereof for receiving the candlestick therein. A funneled split tube is disposed in the socket. The split tube has an out-turned peripheral flange that rests on the out-turned flange of the socket. A cap spans the out-turned flange of the socket and rests on a peripheral edge thereof spaced above the split tube.
An electric candle is known that has a hollow cylindrical body portion extending up from a mounting base. A votive candle is carried within an open upper end of the body portion by a bracket having a plurality of arms extending radially outwardly from a central frustoconical rim. The votive is carried inside the rim, and the peripheral edges of the arms rest on a recessed inner annular rim at the open upper end of the body portion.
In some instances, a candle has a constant elevation flame with a wax body contained within a tubular outer casing. A spring urges the wax body upwardly toward a wick carried over an open end of the outer casing by a thermally-insulated cover. The wick extends through a central aperture in the cover and is retained at a constant elevational position by a wire. An outturned peripheral lip of the cover rests in a peripheral recess in the tubular casing.
In one instance, a decorated luminary product has a candle or candleholder containing a candle. The luminary product has a decorative web of a heat-shrinkable polymer conforming to the shape of the luminary product. The web is decorated with a thermochromatic ink or pigmentation that reacts to heat generated by burning a candle to provide a visual effect when the candle is burned.
In other instances, a melody candle has an optical fiber embedded in the candle in parallel with a wick. The optical fiber is connected to a photo sensor that controls a melody-producing unit, such that when the candle is lit, light is transferred through the optical fiber to the photo sensor, which causes a melody to be played. The optical fiber is coated with a dark colored color change pigment that prevents ambient light transfer to the photo sensor when the candle is not lit. Upon lighting of the wick, heat from the lit wick causes the color change pigment to become transparent allowing light to travel down the optical fiber to activate the melody-producing unit to initiate a melody.
Another melodic candle assembly has a candle with a wick axially disposed therewithin and a thermoresponsive, piezoelectric strip disposed alongside the wick. When the wick is lit, heat from a flame translated by the thermoresponsive strip initiates a melody, song, or vocal rendition by activating electronics in the candle base.
Still another melody-producing candle has an embedded integrated circuit that produces music. A fiber optic strand transfers light from a lit wick to a light sensor operatively connected to the integrated circuit. The candle further includes a light reflector that adjusts the sensitivity of the light sensor to light transferred to the sensor via the fiber optic strand.
A further melody candle assembly has a candle with one or more recesses on a bottom surface and a wick with a lower end extending to a bottom surface of the candle. The candle also has an optical fiber embedded axially therein. The candle assembly further also has a candlestick element with a top surface provided with one or more apertures and a center hole into which the wick extends. The candle assembly has a melody reproducing unit and a photosensor fitted in the center hole opposite of the lower end of the wick to sense light from the wick to prepare the melody producing unit for operation.
Another melody candle uses a color change pigment to coat an optical fiber that stays in black-like colors to shield light at normal states and gets changed to transparent colors at a time of the application of heat when the candle is burnt.
In another instance, a candle device has a flame-responsive circuit adapted to respond to a flame source and a receiver circuit configured to respond to a radio-frequency signal. The flame-responsive circuit and receiver circuit are coupled to an electronic playback device, an electromechanical device, or a light source device.
A further candle device has a candle body housed within a container having a bottom and a compartment formed at the bottom to contain a music generator that has an integrated circuit. The integrated circuit is controlled by switching means that trigger the integrated circuit in response to the presence of a candle flame on a lit wick of the candle. The switching means has a fiber optic member combined with a photosensitive resistor, a thermally conducting wire combined with a thermo-sensitive resistor, or a thermally conducting wire combined with an infrared resistor. The infrared resistor detects infrared radiation emitted by the heated wire.
A color-changing candle has a fiber optic strand embedded adjacent to and in parallel with a wick in a candle body. The fiber optic is operatively connected to electronics embedded within the candle body. In response to detecting light channeled from the fiber optic strand, the electronics activate one or more light emitting diodes that change the color of the candle body to that of the color of the one or more lit light emitting diodes.
In yet other instances, a candle contains an optical guide, such as a fiber optic cable, within a wick axially is disposed within a candle body. The optical guide is coupled to a music producing electronic circuit, such that when the candle is lit, candlelight transferred along the optical guide triggers the playing of a musical tune.
In other instances, a candle has a candle flame extinguisher assembly that functions to extinguish a candle flame once the candle has burned a sufficient amount of wax to trigger a magnet-based mechanism. The magnet-based candle flame extinguisher mechanism has a candle that has a wick holder and a first magnet having a first polarity. The candle is disposed over a second magnet that has a second polarity and is disposed beneath the candle. The first and second magnets are positioned such that the first polarity of the first magnet is repelled by the second polarity of the second magnet. However, the weight of the candle is sufficient initially to overcome the repulsion force of the first and second magnets allowing the candle to remain in an upright position. Upon sufficient melting of the candle, a pool of melted wax is formed. After an amount of wax is consumed, the repelling force between the magnets overcomes the weight of the candle and causes the candle to be tipped over into the pool of melted wax thereby extinguishing the flame.
In other instances, a candle support structure is designed to prevent a candle from being overturned by vibration of an earthquake or the like. The structure appears to consist of a thimble-like device that fits into a hole in the base of a conventional wax-bodied candle body. The thimble and candle are received upon a receiving body. The position on the receiving body where the thimble and candle are received has a permanent magnet embedded therein flush with what appears to be a dish-like structure, presumably to catch candle wax drippings from a burning candle. The candle is designed with a hole in its base for first receiving the thimble therein, but additionally for preventing the candle from overheating the thimble and permanent magnet thereunder.
In yet another instance, a magnetic candleholder assembly has a candleholder with a magnet adhered to a base thereof. Further, the assembly has a spiked disk comprising magnetic material. The disk is inserted into the base of a conventional wax-type candle, and the disk and candle are placed atop the magnet. The magnetic attractive force between the magnet adhered to the candleholder and the magnetic material-comprised disk inserted into the base of the candle secures the candle to the candleholder.
A lighted display device has a base that incorporates three light emitting diodes that together can emit color in the visible spectrum and selectively illuminate a translucent article disposed on the display device. The diodes are positioned below an upper surface of the base and within a centrally located light passage disposed in the base. A translucent article support is removably placed atop the upper surface of the base to further diffuse and distribute the light emitted by the LEDs. The translucent article support may be a flat sheet of translucent material or a candle holder.
In yet further instances, a candlestick element has at least two apertures spaced apart and a center hole to which the lower end of an optical fiber is extended and a melody producing unit with switch knobs movably protruded over respective apertures formed at the top portion of the candlestick element.
According to one aspect of the present disclosure, a candle assembly includes a support base that has a first retention member and a melting plate that includes an upwardly projecting capillary lobe. The capillary lobe includes a first capillary wall extending from the melting plate. The candle assembly further includes a wick holder that has a wick and a base portion that includes a second capillary wall. The capillary lobe cooperatively engages the base portion to define a capillary space between the first and the second capillary walls to allow capillary flow of melted fuel from the melting plate to the wick through the capillary space. The candle assembly further includes a control unit that has a light emitting system and a second retention member configured to lockingly engage with the first retention member.
According to another aspect of the present disclosure, a retention mechanism that includes a first retention member disposed on a support base that includes a melting plate configured to hold a fuel element and engage a wick holder. The melting plate includes a projecting capillary lobe. The capillary lobe includes a first capillary wall extending from the melting. The wick holder has a wick and a base portion that includes a second capillary wall. The capillary lobe cooperatively engages the base portion to define a capillary space between the first and the second capillary walls to allow capillary flow of melted fuel from the melting plate to the wick through the capillary space. The retention mechanism further includes a second retention member disposed on a control unit that has a light emitting system and is configured to lockingly engage the first retention member.
According to a further aspect of the present disclosure, a candle assembly includes a support base that has an upwardly projecting capillary lobe. The capillary lobe is disposed within a recessed base portion of a wick holder. The support base further includes a capillary space defined between the capillary lobe and the recessed base portion to allow capillary flow of melted fuel to a wick from the support base. The candle assembly further includes a control unit that has a light emitting system and a retention mechanism to attach the support base to the control unit and that includes a first retention member disposed on the support base and a second retention member disposed on the control unit. The second retention member is configured to lockingly engage the first retention member.
Other aspects and advantages will become apparent upon consideration of the figures and the following detailed description, wherein like reference numbers in the various drawings designate like structure in various embodiments.
Referring now to
As seen in
As seen in detail in
As shown in
In one embodiment of the fuel element 110, the slot 122 has a length l1 in the upper surface 154 that is shorter than a length l2 in the lower surface 156. The length l1 is shorter than a largest width wf of the fins 120 and the length l2 is longer than the largest width wf of the heat fins. Such a configuration of the slot lengths l1 and l2 in relation to wf, in addition to the slot widths w1 and w2 as described herein above, facilitates inserting the wick holder 106 fully into the slot from the lower surface 156. Such configuration of the slot 122 and cavity 158 also prevents the slot from fully receiving the wick holder if the fins 120 are inserted into the slot through the upper surface 154 rather than through the lower surface 156, thereby preventing or discouraging improper assembly of the fuel element 110 and the wick holder 106.
As illustrated in
Turning now to
Turning to
Other variations and embodiments of the candle assembly and wick holder 300 described in detail herein are also specifically contemplated. For example, in one embodiment, the barrel 118 may take the form of a sleeve having a cylindrical shape or a tubular shape having other cross-sectional areas and shapes. In another embodiment, the constricted portion 306 in the barrel 118 is formed by an inner annular ridge (not shown), which may be formed by indenting or crimping the sidewall 304 entirely around the wick barrel 118 or by an inner annular shoulder disposed on an inner surface of the sidewall 304. The constricted portion 306 in another embodiment may be formed by a single indentation 302 or by a plurality of indentations, which may be either in opposing relationship or offset from each other. In another embodiment (not shown) the barrel 118 may have form of a wick casing that is not generally tubular, but rather includes a longitudinally curved sidewall that encases a portion of the wick 108 and has first and second openings in the sidewall through which the wick extends.
According to another aspect, which is shown in
In a further embodiment, a successful relight can be achieved if the volume of the capillary well 350 is proportional to a thermal mass of an entire candle assembly, such as 100, in order to provide a sufficient source of melted fuel to the wick until the pool 352 of solidified wax has melted sufficiently to provide an adequate flow of fuel to the wick 108 to maintain a sustained burn of the flame 354. The thermal mass of the candle assembly 100 is a measure of the amount of energy needed to change the temperature of the entire melting plate candle by a measured amount and is equal to the sum of the products of the mass of each portion of the candle assembly multiplied by the specific heat of that portion. Illustratively, a successful relight may be achieved when the ratio of the volume of the capillary well 350 to the thermal mass of the entire candle assembly is between about 0.00006 cubic inches per calorie per degree centigrade (hereinafter, in3/cal/° C.) (1 mm3/cal/° C.) and about 0.0006 in3/cal/° C. (10 mm3/cal/° C.), or between about 0.0001 in3/cal/° C. (2 mm3/cal/° C.) and about 0.0004 in3/cal/° C. (6 mm3/cal/° C.), or between about 0.00018 in3/cal/° C. (3 mm3/cal/° C.) and about 0.00024 in3/cal/° C. (4 mm3/cal/° C.). Accordingly, in one embodiment, the thermal mass of the candle assembly is between about 135 cal/° C. and about 10 cal/° C., or between about 75 cal/° C. and about 40 cal/° C., or between about 61 cal/° C. and about 50 cal/° C., and the volume of the capillary well 350 is between about 0.006 in3 (100 mm3) and about 0.03 in3 (500 mm3), or between about 0.009 in3 (150 mm3) and about 0.018 in3 (300 mm3), or about 0.012 in3 (200 mm3).
For example, the thermal mass of an embodiment of a candle assembly, such as 100, includes the support base 102, the melting plate 202, and the wick holder 300 having a combined thermal mass of about 50 cal/° C. and the fuel element 110 of approximately 0.53 oz. (15 g) of wax having a thermal mass of about 10.5 cal/° C. before being burned. The capillary pedestal 204 has a generally frustoconical shape with a height h1 between about 0.39 inches (10 mm) and about 0.04 inches (1 mm), or about 0.2 inches (5 mm), a bottom radius Φ1 between about 1.18 inches (30 mm) and about 0.39 inches (10 mm), or about 0.83 inches (21 mm), and a top radius Φ2 between about 0.04 inches (1 mm) and about 0.79 inches (20 mm), or about 0.43 inches (11 mm). The base 116 has a frustoconical shape generally complementary to the capillary pedestal with the peripheral skirt 126 having an upper diameter Φ3 of between about 0.08 inches (2 mm) and about 0.83 inches (21 mm), or between about 0.43 inches (11 mm) and about 0.55 inches (14 mm), or about 0.51 inches (13 mm); a bottom diameter Φ4 between about 1.22 inches (31 mm) and about 0.43 inches (11 mm), or about 0.79 inches (20 mm) and about 0.91 inches (23 mm), or about 0.87 inches (22 mm); a height h2 between about 0.43 inches (11 mm) and about 0.08 inches (2 mm), or between about 0.28 inches (7 mm) and about 0.16 inches (4 mm), or about 0.2 inches (5 mm); and a height h3 of the rivets 132 from the end plate 124 of between about 0.004 inches (0.1 mm) and about 0.04 inches (1 mm), or between about 0.03 inches (0.8 mm) and about 0.02 inches (0.5 mm), or about 0.02 inches (0.6 mm). In another embodiment, the capillary pedestal 204 has a height h1 about 0.18 inches (4.7 mm), a bottom radius Φ1 about 0.81 inches (20.5 mm), a top radius Φ2 about 0.44 inches (11.1 mm), and the base 126 has a skirt 126 having an upper diameter Φ3 about 0.5 inches (12.6 mm), a bottom diameter Φ4 about 0.85 inches (21.6 mm), and a height h2 about 0.2 inches (5.05 mm). When the base 116 is placed on top of the capillary pedestal 204, the end plate 124 is a perpendicular distance of about 0.03 inches (0.65 mm) from a top wall 178 of the capillary pedestal, and the peripheral skirt 126 is perpendicular distance of about 0.02 inches (0.38 mm) from the sidewall 206, which defines a capillary well 350 having a volume of approximately 0.012 in3 (200 mm3).
Turning now to
In one embodiment, the base 402 and the melting plate 404 have a geometry to increase or promote substantially laminar air flow described by the following equations:
20,000 mm2+(Pmin2−Pmax2)≧SA≧2,500 mm2+(Pmax2−Pmin2); 1.
Dpmax≦(SA/1,000 mm)+{[(Hmin−Pmin)/2] sin θ}; 2.
Pmin≧6(Dp)(cos θ); and/or 3.
Hmin≈Pmin+2[R+(Dp−R)tan θ]; 4.
in which:
Pmax is a maximum width across the melting plate 404 in mm;
Pmin is a minimum width across the melting plate 404 in mm;
SA is a projected surface area, or surface area of a two-dimensional projection of an outline, of the melting plate 404 in square millimeters;
Hmin is a minimum width of the base 402 at the top edge 412 in mm;
Dp is a depth of the melting plate 404 from the top edge 412 of the base 402 in mm;
Dpmax is a maximum value for Dp in mm;
R is an outside radius of the upper edge of the base 402 in mm; and
θ is the zenith angle of the wall 410 in degrees.
Equation 1 quantifies an approximate relationship of the projected surface area of the melting plate and the width across the melting plate, within upper and lower constant boundaries, to promote the laminar air flow. Equation 2 quantifies an approximate relationship of the projected surface area of the melting plate 404 and the depth of the melting plate 404 from the top edge 412 of the base 402 to promote the laminar air flow. Equation 3 quantifies an approximate relationship of the minimum melting plate across the melting plate and the depth of the melting plate 404 from the top edge 412 of the base 402 and the zenith angle of the base wall 410 to promote the laminar air flow. Equation 4 quantifies an approximate minimum width of the base 402 at the top edge 412 as a function of the geometries of the melting plate 404 and the base to promote the laminar airflow. Although the equations 1-4 above have been described in relation to a generally rectangular base and holder, the relationships may also be used with other candle assembly shapes, such as oval and circular, in order to approach an optimized candle assembly geometry. For example, in one embodiment comprising a circular base and melting plate, such as the base 102 and melting plate 104 shown in
An alignment mechanism for ensuring proper alignment of the melting plate 504 within the recess 506 of the base 502 includes a shoulder, such as horizontal step 522, that projects inwardly from an interior side 524 of the sidewalls and extends entirely around the recess 506, and a complementary ledge, such as horizontal ledge 526, that rests on the shoulder. The ledge 526 extends around the melting plate and is vertically disposed between the peripheral edge 518 and the bottom wall 514 of the melting plate 504 and rests on the horizontal step 522 with the peripheral edge pressed against the inner surface 524 of the sidewalls 508 around the entire recess 506. The entire melting plate, including the capillary lobe 520 and the peripheral edge 518, is disposed below the upper rim 512. The melting plate 504 is spaced above the medial wall 510 in the recess 506 with the raised peripheral edge portions 516 pressed against the inner surface 524 of the sidewalls 508 and the capillary lobe 520 projecting upwardly. The melting plate 504 is secured to the base 502 with a bead of adhesive, such as the adhesive 166 (not shown), disposed between the ledge 526 and the shoulder 522. The adhesive may also provide a seal between the peripheral edge 518 of the melting plate 504 and the interior surface 524 of the sidewalls 508 to prevent melted wax or other liquids from seeping under the melting plate. Other substantially complementary alignment configurations may also or alternatively be used for alignment mechanisms. For example, the base shoulder may only include one or more discrete spaced apart step portions, and the melting plate ledge may be continuous or match the discrete ledge portions to provide only one possible correct mating fit between the melting plate and the base. In one embodiment, the alignment feature helps ensure that the melting plate 504 is located in a predetermined relation to the base 502 so that the bottom wall 514 of the melting plate is substantially level and spaced above the medial wall 510 to ensure that melted wax pools around the capillary lobe when the candle assembly 450 is placed on a level support surface and minimize heat loss from the melted wax into the base. Of course, the alignment feature may be readily modified to cause a melting plate to rest within the recess in other alignment configurations, such as with the bottom wall 514 contacting the medial wall 510 and/or with the bottom wall 514 disposed at a non-level angle. In yet another embodiment (not shown), the alignment feature may include one or more raised protrusions disposed anywhere within the recess 506 that engage complementary ledges or cavities in the melting plate 504 so as to provide a predetermined alignment between the base 502 and the melting plate. Further, the protrusions may be integral with the base 502, or the protrusions may be formed by a separate object, such as a wire or button (not shown), placed in the cavity. Another alignment mechanism (not shown) may include only one of the ledge and the shoulder without an opposing complementary shoulder or ledge, respectively, wherein the ledge or shoulder urges the melting plate into a predetermined alignment or orientation to the base.
A retainer feature for a magnet 528, such as a circular ring 530 projecting upwardly from a central area of the medial wall 510, is disposed below a cavity 532 in the bottom surface of the melting plate 504 underneath the capillary lobe 520. The ring 530 extends upwardly into the cavity 532 without engaging the bottom surface of the melting plate. The ring 530 acts as a retainer for the magnet 528, which is glued to the melting plate 504 inside the cavity 532, in case the magnet should become unglued from the melting plate. In one embodiment, the ring 530 does not engage, or is spaced from, the bottom surface of the melting plate in order to minimize loss of heat from the melted wax to the base. The retainer is not limited to the specific circular ring form shown in the drawings, but may take other shapes that would help retain the magnet 528 in a predetermined position underneath the capillary lobe 520. For example, the retainer may be a plurality of spaced projections that partially surround the magnet 528, and the magnet may be shaped so as to interfit with the spaced projections in a predetermined orientation. In another example, the retainer may engage the bottom surface of the cavity 532 to help align the melting plate 504 within the recess 506 in addition to the shoulder 522 and ledge 526. In addition, the alignment feature retainer feature may be readily adapted to work with any other combination of base and melting plate disclosed herein, such as the base 102 and circular melting plate 104, and are not limited to the particular base and melting plate of this embodiment.
The base 602 in another embodiment is made of clear or transparent glass, although other materials may be used having the same or different optical characteristics.
The diffuser (
The diffuser 604 may be removed from the control unit 606 by displacing the front and rear surfaces 642, 644 inwardly, thereby causing at least the right-hand sidewall 616 to deflect outwardly so that the outturned flange 628 of the tab 630 is moved out of interfering contact with the inner surface 632 of the lower portion 634. The diffuser 604 may then be pivoted upwardly and the tabs 610a, 610b may be removed from the recesses 622a, 622b, respectively.
As referring specifically to
Referring next to
The batteries 664a-664d are connected together in series to electrical components carried by a first printed circuit board 666 (
The first printed circuit board 666 carries a number of electrical components thereon, including an LED assembly 670 (the remainder of the electrical components carried by the printed circuit board 666 that are not shown for purposes of simplicity). With specific reference to
In one embodiment, the LEDs 670 include red, green, and blue light emitting diodes that are closely spaced together. The LEDs 670 are energized in a fashion described in greater detail hereinafter to develop light at a varying spectral content and/or intensity. This light is transmitted through the cylindrical member 650, the remaining portions of the diffuser 604 and the base 602 so that such light is visible to an observer. Also in one embodiment, the current delivered to each of the LEDs 670 is controlled to cause such LED 670 to develop a light intensity of a particular magnitude. While many methodologies exist for controlling the amount of current delivered to each LED 670, in another embodiment a pulse width modulation (PWM) operation is employed to minimize battery drain.
As seen specifically in
The battery holders 662 are retained within the housing 698 by a series of four screws 710a-710d that extend through washers 711a-711d, respectively, into threaded bosses 712a-712d, respectively, integral with or otherwise secured to the battery holder 662. During assembly, the battery holder 662 is inserted into the housing 698 such that the outturned flange 628 extends through a slot 714 in part defined by opposed hollow members 716a and 716b (
Referring next to
The control unit housing 698 further includes four feet 740a-740d (
The diffuser (
Referring next to
As discussed above, a greater or lesser number of batteries may be provided depending upon electrical requirements. The batteries 964a-964d are connected together in series to electrical components carried by a first printed circuit board 966 (
The first printed circuit board 966 carries a number of electrical components thereon, including an LED assembly 970 (the remainder of the electrical components carried by the printed circuit board 966 that are not shown for purposes of simplicity). With specific reference to
As further seen in
The second printed circuit board 968 is seen in detail in
Of course, through the substitution of a speaker and appropriate circuitry for the LEDs and circuitry of
Now referring to
Turning now to
In other embodiments not shown, the optical fiber 1204 may be interwoven into the wick 1208. Further, the optical fiber 1204 may be coated with a thermochromatic ink (not shown) to inhibit or prohibit ambient light from being transferred to or detected by the photosensitive sensor 1210. In this embodiment, the thermochromatic ink has a color impervious to or absorptive of light when at or below a first temperature (for example, about 120° F. to about 140° F.) and is coated or applied to the optical fiber 1204. Upon lighting of the wick 1208, the flame 1254 heats the thermochromatic ink to a second temperature higher than the first temperature that causes the thermochromatic ink to change from the light impervious or absorptive color to a color (for example, a clear color) that permits light to pass through the optical fiber 1204. In this embodiment, when the thermochromatic ink is exposed to sufficient heat from the flame 1254, light may travel through the optical fiber 1204 to the photosensitive sensor 1210. Thermochromatic inks useful in the present invention include, for example, those described in U.S. Patent Application Publication No. 2004/0160764. Additional thermochromatic inks useful in the present invention include, for example, those described in U.S. Patent Application Publication No. 2005/0024859. Further, thermochromatic inks useful in the present invention include those, for example, available from Matsui International, such as Chromicolor® inks. In an additional embodiment, the wick 1208 may have a clear microwax (for example, polyethylene and/or polypropylene) sheath (not shown) that transfers light to the photosensitive sensor 1210.
As an alternative embodiment, similar to the embodiment depicted in
Another embodiment depicted in
The photosensitive sensor 1210 is connected to electrical components within a control unit 1206 via a connector 1212 (for example, an electrical wire or other devices known to those skilled in the art) to activate or enable the various electrical components. Through the combination of the light communicating techniques, for example, the optical fiber 1204 and clear gel core 1232 and the photosensitive sensor 1210, the electrical components within the control unit 1206 are operatively linked when the candle is lit or unlit and may be used to activate and/or deactivate the electrical components within the control unit 1206 and/or enable the electrical components to be activated by separate switching mechanisms disclosed herein. The discontinuous structural nature of the combination of the optical fiber 1204 with the photosensitive sensor 1210 allows the control unit 1206 to be reused with multiple candle refills 1202.
In embodiments when the photosensitive sensor 1210 is an integral part of the candle refill 1202, for example, see
In another embodiment seen in
When the photosensitive sensor 1210 is not part of the candle refill, for example, when the photosensitive sensor is attached to or disposes on the sheath 1230 (not shown), the connector 1212 may be continuous from the photosensitive sensor 1210 to electrical components within the control unit 1206. In addition to or in place of the photosensitive sensor 1210, other heat sensors, optical sensors, and/or heat and photosensitive sensors may be used. For example, heat and/or photosensitive sensors useful for the present invention include those described in U.S. Pat. No. 6,491,516. Other photosensitive sensors useful in the present invention include, for example, those available from Banner Engineering Co., for example, MINI-BEAM® photoelectric sensors (for example, all variations of model no. SME312). Examples of optical sensors useful in the present invention include those described, for example, in Japanese Patent No. JP 408185710A. Optical fibers and photosensitive sensors useful in the present invention include, for example, those described in U.S. Patent Application Publication No. 2005/0111217. Additional optical fibers and photosensitive sensors useful in the present invention include, for example, those described in U.S. Pat. No. 5,807,096. Additional optical fibers and photosensitive sensors useful in the present invention include, for example, those described in U.S. Pat. No. 6,033,209. Additional photosensitive sensors useful in the present invention include those, for example, described in U.S. Pat. No. 6,468,071. Optical fibers and photosensitive sensors useful in the present invention include, for example, those described in U.S. Patent Application Publication No. 2002/0119413. Additional optical fibers and photosensitive sensors useful in the present invention include, for example, those described in U.S. Patent Application Publication No. 2005/0093834. Additional optical fibers and photosensitive sensors useful in the present invention include, for example, those described in U.S. Pat. No. 4,804,323. Additional optical fibers and photosensitive sensors useful in the present invention include, for example, those described in U.S. Pat. No. 4,477,249. Additional optical fibers and photosensitive sensors useful in the present invention include, for example, those described in U.S. Pat. No. 5,921,767. Additional photosensitive sensors useful in the present invention include those described in U.S. Pat. No. 6,050,812.
Now referring to
The embodiments depicted in
The embodiment shown in
In another embodiment, as shown in
Similar to the embodiments seen in
Heat sensitive sensors useful in the present invention include those, for example, described in U.S. Pat. No. 5,015,175. Additional heat sensors useful in the present invention include, for example, those described in U.S. Pat. No. 4,983,119. Additional heat sensitive sensors useful in the present invention include, for example, those described in U.S. Pat. No. 5,057,005.
Another mechanism to operatively link the flame 1354 with the activation, deactivation, enablement, and/or disablement of electrical components within the control unit 1306 is illustrated in
It is contemplated that the abovementioned mechanisms for operatively linking the flame to the activation of the various electrical components described herein may have the further function of maximizing battery life such that the one or more of the electrical components may be operable only when the flame is present and/or after a pre-select temperature (for example, greater than or equal to about 100° F., or greater than or equal to about 110° F., or greater than or equal to about 120° F., or greater than or equal to about 130° F., or greater than or equal to about 140° F., or greater than or equal to about 150° F.) is reached. Further, it is contemplated that when a candle assembly is equipped with a mechanism for operatively linking the flame to the activation of the electrical components, the light and sound switches (such as, for example, 700c,d and 702c,d of
Another example of a lock and key mechanism is depicted in
Now turning to
The reprogramming the electrical components associated with the control unit 1406 through the electrical communication link 1402 may be performed in any fashion known to those skilled in the art including, for example, at a user's home, over the internet, in a store (for example, at a reprogramming kiosk or display shelf apparatus), and/or from a remote location. Examples of electrical communication links not shown but contemplated for use in this embodiment include, for example, removable data storage media, cables, USB ports, radio frequency sensors, infrared sensors, blue tooth enabled links, inductive communication links, an acoustic switch, a vibration detecting switch, a phono jack (for example, to connect an iPod® or other portable devices), and/or the control unit may be removably docked in a docking bay to facilitate reprogramming of the control unit 1406. Inclusion of the link 1402 could permit seasonal reprogramming (for example, to reprogram a Christmas sound and light theme or a Halloween sound and light theme) and serve to remind the consumer to refill the candle. Any sound or light show is contemplated for programming, including, for example, spoken word, language lessons, books-on-tape, and/or poetry. Since the control unit uses a processor to operate the light and/or sound shows, any common interface (for example, those described herein) could be integrated into the electrical components and software controlling the light and/or sound shows. Further, it is contemplated that establishing an electronic connection with the control unit via the electrical communication link 1402 and/or pressing a button sequence could initiate an interface sequence that would download and/or make available a new light and/or sound program. It is also contemplated that a software-based application program could be provided that allows the user to create a personalized light and/or sound show program that could be input into the control unit via the electrical communication link using, for example, a personal digital assistant, a personal computer, or other devices. Further, the electrical communication link 1402 may be located at any convenient location on the candle assembly 1400 to facilitate the operation thereof.
In another embodiment shown in
In another embodiment, rechargeable batteries and/or an AC adapter may be included to power the electrical components described herein.
In another embodiment, a candle assembly (not shown) may be placed in a body of liquid wherein the candle assembly floats on the surface of the body of liquid. It is contemplated for the current embodiments that bodies of liquid include, for example, water ponds, lakes, streams, baths, containers of water and/or other liquids, and the like.
In another embodiment, a candle assembly (not shown) is contemplated that incorporates multiple fuel elements that may, for example, incorporate differently scented oils and/or fragrances. The multiple fuel elements may be modular, for example, they may be assembled together to form one fuel element. It is contemplated that when the fuel elements are modular, specific ratios of differently scented fuel elements may be combined to achieve a specific scent and/or fragrance blend when the fuel elements are burned at the same time. Further, the candle assembly may have multiple wick holders to accommodate multiple fuel elements. In the latter embodiment, for example, a consumer may choose to burn differently scented fuel elements simultaneously on the different wick holders in the same candle assembly to create a blend of scents. It is further contemplated that kits including a plurality of differently scented fuel elements be available for the user to be used either as a pre-selected combination of fuel elements or to allow the user to create a personalized fragrance blend according to personal preference.
In another embodiment, removable data storage media (not shown) including, for example, external hard drives, PDA's, cell phones, flash drives, compact flash memory cards, and/or memory sticks removably installed in the control unit may be used to provide variation in light and/or sound shows of the control unit 1406. The removable data storage media could be used in combination with the memory of the control unit installed at the time of manufacture to augment the memory of the control unit to increase the number and/or complexity of light and/or sound shows of the control unit. Further, the removable data storage media could have any conceivable type of sound and/or light information encoded thereon including, for example, spoken word, language lessons, poetry, holiday light and/or sound shows, popular culture light and/or sound shows (for example, those associated with movies or other popular events), international light and/or sound shows, cultural-specific light and/or sound shows, and the like. The removable data storage media could also be reprogrammed with light and/or sound shows through a personal computer or other methods known to those skilled in the art. Such shows could be preprogrammed on the removable data storage media and/or the removable data storage media could be selectively modified to incorporate shows and/or light and/or sound themes from one or more sources for free, for a fee per download, or through a subscription service.
It is contemplated that various combinations of the embodiments described herein may be available to a consumer, for example, in different configurations and/or kits. These configurations and/or kits may include, for example, fuel element refills, candle jar refills, removable data storage media, instructions, software-based application programs (including, for example, those described previously), batteries, replacement parts, customizable elements including, for example, decals, paints, stickers, letters, numbers, figures, and the like and combinations thereof. Further, the configurations and/or kits contemplated may have holiday themes, event themes (such as, for example, birthdays, special days, sporting events, movies, and other popular entertainment), personalized themes, and the like. The kits may have a complete candle assembly and accessories associated with the candle assembly, and/or the kits may be directed toward individual components of the candle assembly (such as, for example, melting plates, batteries, fuel elements, removable data storage media, etc.).
It is contemplated that the various mechanisms disclosed herein for operatively linking the flame to the activation of the various electrical components may be configured to be incorporated into any of the candle assemblies described or any variation thereof. For example, and referring now to
The processor 800, in one embodiment, is further responsive to a detection circuit 802 that determines when the combined voltage developed by the series of connected batteries 664a-664d drops below a predetermined level.
Referring now to
In addition to heat and/or light detecting methods, audio detecting sensors for example, the Clapper® acoustically operated switch, may be employed independent from or in conjunction with any of the embodiments disclosed herein, including the light detecting switching methods disclosed to activate and/or deactivate the electrical components within the control unit 1206. Possible audio detecting sensors could include microphones functionally linked with electronic filters (for example, ASICs and/or digital signal processor) or other combinations of electrical components. Functionally, the audio detecting mechanism could restart the light and/or sound shows from the previous setting or turn current selections on and/or off. In another embodiment, serial coded audio sequences would simulate the operation of each switch 700a-d. Acoustic switches useful in the present disclosure include those, for example, described in U.S. Pat. No. 5,493,618. Additional useful acoustic switches include those, for example, described in U.S. Pat. No. 5,615,271.
In one embodiment, an audio detecting sensor 1800 interconnects with the processor 800 in a fashion similar to that of
In
The flowcharts of
The sound and light buttons 702d and 702c operate to cause the processor 800 to step through different sound effects and light effects and no sound and no light conditions. In one embodiment, the light effects are independent of the sound effects in the sense that selection of a particular light effect does not result in selection of a particular sound effect, or vice versa. In one embodiment, each momentary depression of the sound button 702d causes the processor 800 to operate as follows:
No sound=>sound 1=>sound 2=>sound 3=>sound 4=>no sound
Similarly, a number of momentary depressions of the light button 702c cause the processor 800 to step through the following sequence:
No light=>light sequence 1=>light sequence 2=>light sequence 3=>light sequence 4=>no light
It should be noted that the processor need not step through an equal number of sounds and light sequences. Also, there may be a greater or lesser number of sounds and light sequences.
If the volume up button 702a or the volume down button 702d has been determined to be depressed, the blocks 826 and 828 increase or decrease the level of the sound emanating from the speaker 730, respectively.
Control from the blocks 822, 824, 826, or 828 passes to a block 830 which checks to determine whether the candle assembly control unit 606 has been operating for a predetermined period of time, such as three hours. If this is found to be the case, control returns to the block 810. Otherwise, a block 832 checks to determine whether the sound and light functions are both in the off state. If this is found to be the case, control returns to the block 810; otherwise, control passes to the block 812 which then checks to determine whether the combined voltage of the batteries 664 is above the predetermined level.
In one embodiment, the LEDs 670 are operated to provide a plurality of light shows that may be individually selected by a user. For example, each of the LEDs 670a-670c may receive one of 256 discrete current levels at any particular time, thereby resulting in the development of one of 256 light intensity levels at that time for the color emitted by the particular LED 670. Because the LEDs 670 are small and closely spaced next to one another, and because the light developed thereby is diffused, the human eye perceives the combination of the colors, as opposed to the individual colors emitted by the LEDs 670. Accordingly, in such embodiment, the LEDs are capable of displaying approximately 16.7 million colors. Obviously, a different energization scheme could be used whereby a greater or lesser number of colors (including an infinite number of colors) may be displayed, if desired.
Illustratively, the processor 800 may be programmed to display a particular number of light shows, wherein the light shows are individually selectable by depressing the button 702c until a particular color is displayed, indicating that a desired light show has been selected. Thereafter, the light show may proceed automatically such that the displayed color changes or “morphs” from one color to a next color, with a transition occurring therebetween. For example, a reddish-orange color may be initially displayed for a period of 7 seconds, followed by a transition to an orange color, and thence to a light yellow-orange color and back to the reddish-orange color. Each color may be displayed for a period lasting, for example, 14 seconds, and a 10 second transition interval may occur between the 14 second periods. The intensities of the LEDs may be linearly or non-linearly varied over time during the transition intervals between starting and ending levels wherein the starting and ending levels result in the displays of the colors during each 14 second period. Further, if desired, the 14 second display periods may have a different duration and may, in fact, be constant or vary in length from period-to-period. Also, the 10 second intervals may be shorter or longer in duration and may be constant or vary from interval-to-interval. As a further example, an orange color may be displayed for a first 6 second interval, followed by a fade for 6 seconds to a yellow color that is maintained for 12 seconds. Thereafter, a fade may be undertaken for 6 seconds to a green color that is maintained for 12 seconds. Additional 6 second fades to 12 second color maintenance periods of blue and pink colors in sequence may be followed by a 6 second fade to a 6 second orange color, whereupon the entire cycle repeats. Any other morphing of any number of colors may be undertaken as desired.
The user may be provided with a means to pause or stop color morphing and thereby maintain a currently displayed color by depressing a pause or stop button. For example, two buttons may be provided with a first button configured to activate a light show when initially depressed by the user and to scroll from light show to light show with each subsequent depression. Depressing the first button after advancing through a final light show mode deactivates the light show. A second button may be configured such that when depressed during the color morphing of the light show, the color morphing is paused or stopped at the currently displayed color. When the second button is depressed again, the light show and color morphing may continue from the point at which the light show was paused or the light show may be stopped. Depressing the first button while in the pause or stop mode may advance the light effect to the next light show with continued color morphing, or, if the light effect was operating in the last light show mode, the light effect may be terminated.
The flowchart of
The flowchart of
The flowchart of
Similar to the embodiments shown in
Now turning to
Operationally similar to embodiments previously described, the electrical components 2040 of the control unit 2006 may be programmed to display a particular number of light shows, wherein the light shows are individually selectable by depressing a control button 2012a until a particular color is displayed, indicating that a desired light show has been selected. Thereafter, the light show may proceed automatically such that the displayed color changes or “morphs” from one color to a next color, with a transition occurring therebetween. Examples of possible light shows that may vary are shown in Table 1.
As indicated above, each color may be displayed for a period lasting 4-5 seconds, and an 8-10 second transition interval may occur between each of the 4-5 second periods. Further, the durations for maintaining any particular color combination or transitioning between color combinations may be shorter or longer. The intensities of the LEDs may be linearly or non-linearly varied over time during the transition intervals between starting and ending levels wherein the starting and ending levels result in the displays of the colors during each 4-5 second period. Upon completion of each light show cycle, the entire cycle repeats. Any other morphing of any number of colors may be undertaken as desired including, for example, a random pattern.
The control button 2012a activates, selects, and deactivates the control unit. The user is also provided with a means to pause or stop color morphing and thereby maintain a currently displayed color by depressing a pause or stop button 2012b. Illustratively, a light show is activated when 2012a is initially depressed by the user, and subsequent scrolling from light show to light show occurs with each subsequent depression until reaching a final light show when a subsequent depression deactivates the light show and the control unit reverts back to a sleep mode. The second button 2012b may be configured such that when depressed during the color morphing of the light show, the color morphing is paused or stopped at the currently displayed color. When the second button is depressed again, the light show and color morphing may continue from the point at which the light show was paused or the light show may be stopped. Depressing the first button while in the pause or stop mode may advance the light effect to the next light show with continued color morphing, or if the light effect was operating in the last light show mode, the light effect may be terminated. Once activated, a light show may cycle continuously until the user turns off the light show, until no battery power remains, or until a time out limit is reached, for example, a preprogrammed duration of 1 hour.
In a further embodiment, it is contemplated that the control unit 2006 may be configured to display a light show at more than one brightness level, such as, for example, a low brightness level, a medium brightness level, and/or a high brightness level. Each brightness level may have the same light shows as described in Table 1, above, or may have additional light shows associated with one brightness level compared to another brightness level or a baseline brightness level, which may be, for example, the medium brightness level. In this way, the user may select a low brightness level light show that has an overall mean brightness level diminished by, for example, about 25% or more, or about 30% or more, or about 50% or more, and the like as compared to the same light show displayed at the baseline brightness level. Similarly, the user may choose to select a high brightness level light show that compared to the light show displayed at the medium brightness level and/or baseline level may be increased by about 25% or less, or about 30% or less, or about 50% or less, and the like.
In one embodiment, a candle assembly may have a control unit 2006 with an additional switch (not shown), for example, disposed on the bottom of the control unit that enables the user to select a desired brightness level. Further, referring to
Similar to the functional system diagrams previously discussed,
Now turning to
In a further embodiment, shown in
In addition, as shown in
As an additional feature of the current embodiment, the candle assembly 3000 includes a retention mechanism 3018 through which the diffuser 3004 attaches to the control unit 3006. The retention mechanism 3018 includes a first retention member such as retention tab 3020 depending from the diffuser 3004 that inserts into a second retention member such as a retention slot 3022 defined by a spring finger 3024 located inwardly from and opposite a retention tooth 3026. In other embodiments not shown, the retention tabs 3020 may be disposed on the control unit 3006 and insert into retention slots 3022 disposed on the diffuser 3004 and/or the support base 3002.
The tip 3030 of the retention tab 3020 may have an angle of greater than 45° to reduce resistance against insertion of the retention tab between the retention tooth 3026 and the spring finger 3024, however, any angle is contemplated within the present disclosure. Further, the tips of the teeth 3036 may be slightly rounded to preserve the structure of the teeth during the insertion process, therefore promoting greater resilience of the teeth against removal from between the retention tooth 3026 and spring finger 3024.
In another embodiment seen in
Furthermore, the one or more adhesives used to attach the support base 5002 to the diffuser 5004 may interact with geometric surface features 5014, such as holes, disposed on the diffuser, as well as the facing surface (not shown) of the support base 5002 to bond the diffuser to the support base. Without wishing to be bound by theory, when an adhesive is applied to the diffuser 5004 and/or the facing surface of the support base 5002, the adhesive partially penetrates the holes in the diffuser to form mushroom-shaped formations that have a hardened skin. The mushroom-shaped formations then serve as “rivets” to mechanically bond the diffuser 5004 to the support base 5002 until sufficient time has passed to allow the remainder of the adhesive to completely cure. In this way, the holes 5014 and the facing surface of the support base 5002 each act as retention members that provide adhesive anchor points and are lockingly engaged together by the one or more adhesives.
Another embodiment shown in
A further embodiment is shown in
It is further contemplated that the retention mechanism 7008 may be made of a transparent or translucent material such that an ultraviolet cure silicone adhesive may be cured over time through normal use of the candle assembly 7000 light source (not shown) or via directed curing of the adhesive using a source of ultraviolet light that may pass through the retention mechanism prior to complete assembly of the candle assembly.
It is understood that the terminology used herein is intended to be in the nature of description rather than of limitation. All patents, published patent applications, and other references disclosed herein are incorporated herein by reference in their entirety. The various components of the various candle assemblies described herein may be packaged as an assembled unit, as an unassembled kit including all or a portion of the components, as individual components, and/or in any combination thereof. Different and various combinations of the herein-mentioned components of the various candle assemblies can also be used in the apparatuses, methods, kits, and combinations herein described.
The candle assemblies disclosed herein may be used to support a votive-type candle, such as the fuel element described herein. Sound and/or light features may be added to provide a pleasing experience for the user and can be controlled.
Numerous modifications will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is illustrative only.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/485,585, filed Jul. 12, 2006, which is a continuation-in-part of U.S. patent application Ser. No. 11/355,585, filed Feb. 16, 2006, which is a continuation-in-part of U.S. patent application Ser. No. 10/780,028, filed Feb. 17, 2004, now U.S. Pat. No. 7,247,017 which is continuation-in-part of U.S. patent application Ser. No. 09/747,525, filed Dec. 20, 2000, now U.S. Pat. No. 6,802,707, which is a continuation-in-part of U.S. patent application Ser. No. 09/468,970, filed Dec. 21, 1999. This application is also a continuation-in-part of U.S. patent application Ser. No. 11/140,683, filed May 31, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 10/780,028, filed Feb. 17, 2004, now U.S. Pat. No. 7,247,017 and U.S. patent application Ser. No. 10/978,744, filed Nov. 1, 2004, now U.S. Pat. No. 7,229,280 which is a continuation-in-part of U.S. patent application Ser. No. 10/938,434, filed Sep. 10, 2004. This application is also a continuation-in-part of U.S. patent application Ser. No. 11/291,280, filed Dec. 1, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 10/938,453, filed Sep. 10, 2004, now U.S. Pat. No. 7,413,435 U.S. patent application Ser. No. 11/123,372, filed May 6, 2005, now U.S. Pat. No. 7,467,945 U.S. patent application Ser. No. 11/124,313, filed May 6, 2005, now U.S. Pat. No. 7,318,724 and U.S. patent application Ser. No. 11/123,461, filed May 6, 2005, now U.S. Pat. No. 7,442,036 which are continuations-in-part of U.S. patent application Ser. No. 10/978,744, filed Nov. 1, 2004 now U.S. Pat. No. 7,229,280. This application is also a continuation-in-part of U.S. patent application Ser. No. 10/938,453, filed Sep. 10, 2004 now U.S. Pat. No. 7,413,435. This application is also a continuation-in-part of U.S. patent application Ser. No. 11/096,753, filed Mar. 31, 2005. This application is also a continuation-in-part of U.S. patent application Ser. No. 11/185,174, filed Jul. 20, 2005 now U.S. Pat. No. 7,497,685. This application also claims the benefit of U.S. provisional application Ser. No. 60/754,088, filed Dec. 21, 2005. This application claims the benefit of all such previous applications, and such applications are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
574376 | Baumer | Jan 1897 | A |
1226850 | Booty | May 1917 | A |
1309545 | Reicher | Jul 1919 | A |
1390389 | Rosenfeld | Sep 1921 | A |
2462440 | Tierney | Feb 1949 | A |
2494995 | Gardner | Jan 1950 | A |
2630297 | Hunz | Mar 1953 | A |
3117763 | Musser | Jan 1964 | A |
3183688 | Sobelson | May 1965 | A |
3741711 | Bryant | Jun 1973 | A |
3749904 | Graff | Jul 1973 | A |
3761702 | Andeweg | Sep 1973 | A |
3762857 | Andeweg | Oct 1973 | A |
3767910 | Harrigan | Oct 1973 | A |
3890085 | Andeweg | Jun 1975 | A |
3910753 | Lee | Oct 1975 | A |
3994502 | Lombardi | Nov 1976 | A |
4206500 | Neil | Jun 1980 | A |
4224017 | Kayne | Sep 1980 | A |
4477249 | Ruzek et al. | Oct 1984 | A |
4551794 | Sandell | Nov 1985 | A |
4566055 | Klees et al. | Jan 1986 | A |
4568269 | Lin | Feb 1986 | A |
4686425 | Havel | Aug 1987 | A |
4734619 | Havel | Mar 1988 | A |
4755135 | Kwok | Jul 1988 | A |
4804323 | Kim | Feb 1989 | A |
4804890 | Havel | Feb 1989 | A |
4845481 | Havel | Jul 1989 | A |
4887074 | Simon et al. | Dec 1989 | A |
4929866 | Murata et al. | May 1990 | A |
4983119 | Lin | Jan 1991 | A |
4992704 | Stinson | Feb 1991 | A |
5015175 | Lee | May 1991 | A |
5057005 | Kwok | Oct 1991 | A |
5069617 | Lin | Dec 1991 | A |
D325077 | Kearnes | Mar 1992 | S |
5134387 | Smith et al. | Jul 1992 | A |
5194854 | Havel | Mar 1993 | A |
5226723 | Chen | Jul 1993 | A |
5298871 | Shimohara | Mar 1994 | A |
5363590 | Lee | Nov 1994 | A |
5569983 | McGuire et al. | Oct 1996 | A |
5619182 | Robb | Apr 1997 | A |
5656935 | Havel | Aug 1997 | A |
D393910 | Chambers et al. | Apr 1998 | S |
D394910 | Volker | Jun 1998 | S |
5791774 | Briles | Aug 1998 | A |
5797739 | Lioi | Aug 1998 | A |
5807096 | Shin et al. | Sep 1998 | A |
5808592 | Mizutani et al. | Sep 1998 | A |
5812105 | Van de Ven | Sep 1998 | A |
5851063 | Doughty et al. | Dec 1998 | A |
5890790 | Osawa | Apr 1999 | A |
5894196 | McDermott | Apr 1999 | A |
5921767 | Song | Jul 1999 | A |
5924784 | Chliwnyi et al. | Jul 1999 | A |
5939005 | Materna | Aug 1999 | A |
5952680 | Strite | Sep 1999 | A |
5955958 | Lu | Sep 1999 | A |
6016038 | Mueller et al. | Jan 2000 | A |
6017139 | Lederer | Jan 2000 | A |
6033209 | Shin et al. | Mar 2000 | A |
6050812 | Chuang | Apr 2000 | A |
6062847 | Pappas | May 2000 | A |
6074199 | Song | Jun 2000 | A |
D433168 | Cousins | Oct 2000 | S |
6153981 | Thomas et al. | Nov 2000 | A |
6211626 | Lys et al. | Apr 2001 | B1 |
RE37168 | St. Louis | May 2001 | E |
6241362 | Morrison | Jun 2001 | B1 |
6267584 | Zou | Jul 2001 | B1 |
6270339 | Zou | Aug 2001 | B1 |
6273710 | Zou | Aug 2001 | B1 |
6285140 | Ruxton | Sep 2001 | B1 |
D450865 | Bellenger et al. | Nov 2001 | S |
6328935 | Buccellato | Dec 2001 | B1 |
6354710 | Nacouzi | Mar 2002 | B1 |
6361311 | Smith | Mar 2002 | B1 |
D455486 | Makino | Apr 2002 | S |
6377164 | Fulmer | Apr 2002 | B1 |
6398544 | Wright et al. | Jun 2002 | B2 |
6439471 | Ehrlich et al. | Aug 2002 | B2 |
6454561 | Colthar et al. | Sep 2002 | B1 |
6468071 | Zou | Oct 2002 | B2 |
6488494 | Lee | Dec 2002 | B2 |
6491516 | Tal et al. | Dec 2002 | B1 |
D469893 | Shen | Feb 2003 | S |
6520770 | Zou | Feb 2003 | B2 |
6533828 | Calzada | Mar 2003 | B1 |
6543268 | Wright et al. | Apr 2003 | B2 |
6544303 | Calzada | Apr 2003 | B2 |
6554448 | Carpenter et al. | Apr 2003 | B2 |
6575613 | Brown et al. | Jun 2003 | B2 |
6577080 | Lys et al. | Jun 2003 | B2 |
6595771 | Chu | Jul 2003 | B2 |
6616308 | Jensen et al. | Sep 2003 | B2 |
6627857 | Tanner et al. | Sep 2003 | B1 |
6628249 | Kamikawa et al. | Sep 2003 | B1 |
6648631 | Wright et al. | Nov 2003 | B2 |
6676284 | Wynne Willson | Jan 2004 | B1 |
6690120 | Oskorep et al. | Feb 2004 | B2 |
6716026 | Beougher | Apr 2004 | B1 |
6719443 | Gutstein et al. | Apr 2004 | B2 |
6733279 | Thigpen et al. | May 2004 | B2 |
6744223 | Laflamme et al. | Jun 2004 | B2 |
6747420 | Barth et al. | Jun 2004 | B2 |
6780382 | Furner et al. | Aug 2004 | B2 |
6799965 | Gaudioso | Oct 2004 | B1 |
6800996 | Nagai et al. | Oct 2004 | B2 |
6802707 | Furner et al. | Oct 2004 | B2 |
6805452 | Okuyama et al. | Oct 2004 | B2 |
6808388 | Lee | Oct 2004 | B2 |
6822403 | Horiuchi et al. | Nov 2004 | B2 |
6827466 | Tsai | Dec 2004 | B2 |
6827474 | Clapper | Dec 2004 | B2 |
6836081 | Swanson et al. | Dec 2004 | B2 |
6858870 | Lee | Feb 2005 | B2 |
6863525 | Byrd | Mar 2005 | B2 |
6888322 | Dowling et al. | May 2005 | B2 |
6897489 | Peng et al. | May 2005 | B1 |
6897622 | Lister | May 2005 | B2 |
6909234 | Chen | Jun 2005 | B2 |
6923639 | Pesu et al. | Aug 2005 | B2 |
6933680 | Oskorep et al. | Aug 2005 | B2 |
6946805 | Segan et al. | Sep 2005 | B2 |
6949892 | Horiuchi et al. | Sep 2005 | B2 |
6954039 | Lin et al. | Oct 2005 | B2 |
6960076 | Yu | Nov 2005 | B2 |
6963175 | Archenhold et al. | Nov 2005 | B2 |
6963180 | Rose | Nov 2005 | B2 |
6964498 | Wu | Nov 2005 | B2 |
6967448 | Morgan et al. | Nov 2005 | B2 |
7014819 | Hart et al. | Mar 2006 | B2 |
7015825 | Callahan | Mar 2006 | B2 |
7023147 | Colby et al. | Apr 2006 | B2 |
7052161 | Lichtenstein et al. | May 2006 | B2 |
7063526 | Ham et al. | Jun 2006 | B2 |
7064498 | Dowling et al. | Jun 2006 | B2 |
7067772 | Tanner et al. | Jun 2006 | B2 |
7098600 | Li et al. | Aug 2006 | B2 |
7121686 | Chu | Oct 2006 | B1 |
20010031438 | Hannington et al. | Oct 2001 | A1 |
20020093834 | Yu et al. | Jul 2002 | A1 |
20020119413 | Cheng | Aug 2002 | A1 |
20030027091 | Brandt | Feb 2003 | A1 |
20030134246 | Gray et al. | Jul 2003 | A1 |
20040029061 | Dibnah et al. | Feb 2004 | A1 |
20040033463 | Pesu et al. | Feb 2004 | A1 |
20040037069 | Blackbourn | Feb 2004 | A1 |
20040052076 | Mueller et al. | Mar 2004 | A1 |
20040128879 | Lu | Jul 2004 | A1 |
20040160764 | Lee | Aug 2004 | A1 |
20040229180 | Furner | Nov 2004 | A1 |
20050007035 | Sloan et al. | Jan 2005 | A1 |
20050037306 | Nakatsu | Feb 2005 | A1 |
20050111217 | Feng | May 2005 | A1 |
20050204372 | Lee | Sep 2005 | A1 |
20050208447 | Kubicek et al. | Sep 2005 | A1 |
20050214704 | Pappas et al. | Sep 2005 | A1 |
20050227190 | Pappas | Oct 2005 | A1 |
20050231133 | Lys | Oct 2005 | A1 |
20050271994 | Furner | Dec 2005 | A1 |
20060002102 | Leonard | Jan 2006 | A1 |
20060018786 | Tolman et al. | Jan 2006 | A1 |
20060084020 | Nakatsu et al. | Apr 2006 | A1 |
20060084021 | Kubicek | Apr 2006 | A1 |
20060120080 | Sipinski et al. | Jun 2006 | A1 |
20060172239 | Tsai | Aug 2006 | A1 |
20060176703 | Cayton et al. | Aug 2006 | A1 |
20060177786 | Hu | Aug 2006 | A1 |
20060272199 | Licciardello | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
2208145 | Dec 1998 | CA |
3302591 | Aug 1984 | DE |
34 03 604 | Aug 1985 | DE |
201 09 808 | Nov 2001 | DE |
102004011919 | Jun 2005 | DE |
0146247 | Jun 1985 | EP |
1359373 | May 2003 | EP |
1 336 799 | Aug 2003 | EP |
2628825 | Mar 1988 | FR |
161342 | Apr 1921 | GB |
2 230 888 | Oct 1990 | GB |
62-220594 | Sep 1987 | JP |
6212189 | Aug 1994 | JP |
08185710 | Jul 1996 | JP |
2003-213292 | Jul 2003 | JP |
WO 0146618 | Jun 2001 | WO |
WO 0148420 | Jul 2001 | WO |
WO 0233315 | Apr 2002 | WO |
WO 2004083718 | Oct 2003 | WO |
WO 2004008026 | Jan 2004 | WO |
WO 2004090417 | Oct 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070292812 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11485585 | Jul 2006 | US |
Child | 11821002 | US | |
Parent | 11355585 | Feb 2006 | US |
Child | 11485585 | US | |
Parent | 10780028 | Feb 2004 | US |
Child | 11355585 | US | |
Parent | 09747525 | Dec 2000 | US |
Child | 10780028 | US | |
Parent | 09468970 | Dec 1999 | US |
Child | 09747525 | US | |
Parent | 11821002 | US | |
Child | 09747525 | US | |
Parent | 11140683 | May 2005 | US |
Child | 11821002 | US | |
Parent | 10780028 | US | |
Child | 11140683 | US | |
Parent | 10978744 | Nov 2004 | US |
Child | 10780028 | US | |
Parent | 10938434 | Sep 2004 | US |
Child | 10978744 | US | |
Parent | 11821002 | US | |
Child | 10978744 | US | |
Parent | 11291280 | Dec 2005 | US |
Child | 11821002 | US | |
Parent | 10938453 | Sep 2004 | US |
Child | 11291280 | US | |
Parent | 11123372 | May 2005 | US |
Child | 10938453 | US | |
Parent | 11124313 | May 2005 | US |
Child | 11123372 | US | |
Parent | 11123461 | May 2005 | US |
Child | 11124313 | US | |
Parent | 10978744 | Nov 2004 | US |
Child | 11123461 | US | |
Parent | 11821002 | US | |
Child | 11123461 | US | |
Parent | 10938453 | US | |
Child | 11821002 | US | |
Parent | 11096753 | Mar 2005 | US |
Child | 10938453 | US | |
Parent | 11185174 | Jul 2005 | US |
Child | 11096753 | US |