CANID MICROBIOME MONITORING TOOLS AND DIAGNOSTIC METHODS

Information

  • Patent Application
  • 20220119864
  • Publication Number
    20220119864
  • Date Filed
    January 20, 2020
    4 years ago
  • Date Published
    April 21, 2022
    2 years ago
Abstract
Methods for assessing a canid's microbiome health are provided. The methods include, inter alia, detecting at least four bacterial taxa in a sample obtained from the canid.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to UK Patent Application No. 1900744.2, filed on Jan. 18, 2019, the contents of which are incorporated herein by reference in its entirety.


TECHNICAL FIELD

This present disclosure is in the field of monitoring tools and diagnostic methods for determining the health of a canid's microbiome.


BACKGROUND TO THE INVENTION

The understanding of the microbiome and its impact on health has increased significantly in recent years. Changes in the microbiome, and its interaction with the immune, endocrine and nervous systems are correlated with a wide array of illnesses, ranging from inflammatory bowel disease [1-3] to cancer [4] and to behavioral aspects of host health [5;6].


The establishment of the microbiome occurs at the same time as immune system maturation and plays a role in intestinal physiology and regulation. The initial establishment of the gut microbiota is an essential step in neonatal development, influencing immunological development in infancy and health throughout life. As such in humans and many mammals a rapid increase in diversity occurs in the early establishment phase of gut microbiome development [7].


The adult gut microbiome can be resilient to large shifts in community structure. In humans and other mammals, it is considered to be relatively stable throughout adult life. This “adult microbiome” is considered to represent a healthy gut microbiome for dogs with enhanced resilience compared to other lifestages. In early lifestages, puppies have an undeveloped gut barrier, which includes the gastrointestinal microbiome as well as histological and gut associated immune functions. Puppies and young dogs are therefore are more prone to gastrointestinal illnesses such as diarrhoea and sickness, etc. Senior and geriatric dogs are also more prone to diarrhoea and gastrointestinal complications, which can occur in part as a result of a deterioration in the gut microbiome.


Given the importance of the microbiome to health and wellbeing, it is important to find ways to determine the health of the microbiome of an animal.


SUMMARY OF THE INVENTION

The presently disclosed subject matter provides novel developed methods which allow the determination of the health of a canid's microbiome. The methods of the present disclosure can achieve this with high accuracy, as shown in the examples.


In one aspect, the present disclosure provides a method of determining the health of a canid's microbiome, comprising quantitating four or more bacterial species to determine their abundance; and comparing the abundance to the abundance of the same species in a control data set; wherein an increase or decrease in the abundance of the four or more bacterial species relative to the control data set is indicative of an unhealthy microbiome. As discussed above, an unhealthy microbiome is associated with a number of health conditions and it is therefore desirable to monitor the health of the gut microbiome or to diagnose an unhealthy microbiome.


In another aspect, the present disclosure features a method of determining the health of a canid's microbiome, comprising detecting at least four bacterial taxa in a sample obtained from the canid; wherein the presence of at least four bacterial taxa is indicative of a healthy microbiome.


In another aspect, the present disclosure features a method of determining the health of a canid's microbiome by a method comprising the steps of calculating the diversity index for the species within the canid's microbiome and comparing the diversity index to the diversity index of a control data set.


In another aspect, the present disclosure provides a method of monitoring a canid, comprising a step of determining the health of the canid's microbiome by a method of the present disclosure on at least two time points. This is particularly useful where a canid is receiving treatment to shift the microbiome as it can monitor the progress of the therapy. It is also useful for monitoring the health of the canid.


In some embodiments, the methods of the present disclosure comprise a further step of changing the composition of the microbiome. This can be achieved through a dietary change or a functional food or supplement and/or through administration of a nutraceutical or pharmaceutical composition comprising bacteria. This will usually be done where the microbiome is deemed to require or benefit from enhancement or where it is unhealthy, but can also be undertaken preemptively.


In another aspect, also provided is a method of monitoring the health of the microbiome in a canid who has undergone a dietary change or who has received a functional food, supplement, nutraceutical or pharmaceutical composition which is able to change the microbiome composition, comprising determining the health of the microbiome by a method according to the present disclosure. Such methods allow a skilled person to determine the success of the treatment. Preferably these methods comprise determining the health of the microbiome before and after treatment as this helps to evaluate the success of the treatment.


In a particular embodiment, the presently disclosed subject matter provides a method of determining the health of a canid's microbiome, comprising detecting at least four bacterial taxa in a sample obtained from the canid; wherein the presence of the at least four bacterial taxa is indicative of a healthy microbiome. In certain embodiments of the method, the bacterial taxa are bacterial species from genera selected from the group consisting of Blautia, Lactobacillus, Faecalibacterium, Terrisporobacter, Lachnospiraceae novel sp., Butyricicoccus, Lachnoclostridium, Clostridium, Holdemanella, Cellulosilyticum, Romboutsia, Lachnospiraceae_NK4A136 group, Peptostreptococcus, Sellimonas, Ruminococcaceae_UCG-014, Finegoldia, and Candidatus Dorea. In another embodiment, the bacterial taxa are species selected from the group consisting of Blautia [Ruminococcus] gnavus, Blautia [Ruminococcus] torques, Blautia [Ruminococcus] torques group sp., Blautia producta, Blautia sp., Butyricicoccus pullicaecorum, Cellulosilyticum sp., Clostridium hiranonis, Dorea massiliensis, Faecalibacterium prausnitzii, Finegoldia sp., Finegoldia magna, Fusobacterium mortiferum, gauvreauii group Clostridium sp., Holdemanella [Eubacterium] biforme, Lachnoclostridium sp., Lachnospiraceae novel sp., Lachnospiraceae_NK4A136 group sp., Lactobacillus ruminis, Lactobacillus sp., Romboutsia sp., Roseburia faecis, Ruminococcaceae_UCG-015 sp., Sellimonas sp., Clostridium sp., Lactobacillus saerimneri, Terrisporobacter sp. SN1, Terrisporobacter sp. SN9, Terrisporobacter glycolicus, Terrisporobacter mayombei, Terrisporobacter petrolearius, Terrisporobacter sp., and Terrisporobacter sporobacter. In a particular embodiment, the bacterial taxa have a 16 S rDNA with at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% or 100% identity to the sequence of any one of SEQ ID NOs 6, 7, 11, 12, 14, 16, 21, 23, 24, 28, 29, 30, 32, 37, 39, 41-43, 46-49, 52, 55-57, 61, 67, 71, 75, 77, 78 and 80.


The presently disclosed subject matter also provides a method of determining the health of a canid's microbiome, comprising quantitating four or more bacterial species in a sample obtained from the canid to determine their abundance; and comparing the abundance to the abundance of the same species in a control data set; wherein an increase or decrease in the abundance of the four or more bacterial species relative to the control data set is indicative of an unhealthy microbiome. In one embodiment of the claimed method, the bacterial species are from genera selected from the group consisting of Absiella [Eubacterium], Anaerostipes, Anaerotruncus, Bifidobacterium, Blautia, Blautia [Ruminococcus] torques group, Butyricicoccus, Candidatus, Dorea, Cellulosilyticum, Clostridium, Clostridium sensu_stricto 1, Collinsella, Enterococcus, Erysipelatoclostridium, Faecalibacterium, Finegoldia, Flavonifractor, Fusobacterium, Holdemanella [Eubacterium], Lachnoclostridium, Lachnospiraceae novel sp., Lachnospiraceae_NK4A136 group, Lactobacillus, Megamonas, Peptostreptococcus, Romboutsia, Roseburia, Ruminococcaceae, Ruminococcaceae_UCG-O14, Ruminococcus, Sellimonas, Terrisporobacter, Turicibacter, and Lachnospiraceae. In another embodiment, the bacterial species are selected from the group consisting of Absiella [Eubacterium] dolichum, Anaerostipes caccae, Anaerostipes indolis, Anaerostipes rhamnosivorans, Anaerotruncus sp., Bifidobacterium sp., Blautia [Ruminococcus] gnavus, Blautia [Ruminococcus] torques, Blautia [Ruminococcus] torques group sp., Blautia producta, Blautia sp., Butyricicoccus pullicaecorum, Butyricicoccus sp., Cellulosilyticum sp., Clostridium hiranonis, Clostridium sp., Clostridium sp., Collinsella sp., Dorea massiliensis, Enterococcus sp., Erysipelatoclostridium sp., Faecalibacterium prausnitzii, Finegoldia magna, Finegoldia sp., Fusobacterium sp., Holdemanella [Eubacterium] biforme, Lachnoclostridium sp., Lachnoclostridium [Clostridium] sp., Lachnoclostridium hylemonae, Lachnoclostridium leptum, Lachnoclostridium sp., Lachnospiraceae novel sp., Lachnospiraceae sp., Lachnospiraceae_NK4A136 group sp., Lactobacillus animalis, Lactobacillus apodemi, Lactobacillus faecis, Lactobacillus murinus, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus ruminis, Lactobacillus saerimneri, Lactobacillus sp., Megamonas funiformis, Megamonas sp., Megamonas rupellensis, Pseudoflavonifractor capillosus; Pseudoflavonfractor sp., Romboutsia sp., Roseburia faecis, Roseburia sp., Ruminococcaceae novel sp., Ruminococcaceae_UCG-015 sp., Sellimonas sp., Terrisporobacter glycolicus, Terrisporobacter mayombei, Terrisporobacter petrolearius, Terrisporobacter sp., Terrisporobacter sp. SN1, Terrisporobacter sp. SN9, Terrisporobacter sporobacter, Turicibacter sanguinis, and Turicibacter sp.


In certain embodiments of the claimed methods, a decrease in abundance relative to the control data set is indicative of an unhealthy microbiome. In a specific embodiment of the claimed methods, the bacterial species is Fusobacterium mortiferum. In certain embodiments of the claimed methods, an increase in abundance relative to the control data set is indicative of an unhealthy microbiome.


In a particular embodiment of the claimed methods, the bacterial taxa have a 16 S rDNA sequence selected from the group consisting of SEQ ID Nos: 3-85.


In certain embodiments of the claimed methods, the control data set comprises microbiome data of a canid at the same life stage.


In a particular embodiment of the claimed methods, the canid is a puppy.


In yet another embodiment of the claimed methods, the bacterial taxa are species from the genera selected from the group consisting of Ruminococcus, Clostridiales sp., Paraprevotella, Adlercreutzia, Allobaculum, Allobaculum/Dubosiella, Bacteroides, Bifidobacterium, Blautia, Clostridales, Clostridium, Collinsella, Dorea, Enterococcus, Erysipelotrichaceae, Faecalibacterium, Fusobacterium, Holdemanella [Eubacterium], Lachnoclostridium, Lactobacillus, Megamonas, Megasphaera, Peptostreptococcus, Phascolarctobacterium, Prevotella, Sarcina, Terrisporobacter, and Turicibacter.


In a specific embodiment, the bacterial taxa have a 16 s rDNA with at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% or 100% identity to the sequence of any one of SEQ ID NOs: 86-166.


In particular embodiments of the claimed methods, the canid is an adult, senior or geriatric canid.


In certain embodiments of the claimed methods, the methods further comprise a step of changing the microbiome composition of the canid. In other embodiments of the claimed methods, the method further comprises a step of changing the diet of the canid and/or administering a pharmaceutical composition or a nutraceutical composition to the canid.


In yet another embodiment, the disclosed subject matter provides a method of determining the health of a canid's microbiome, comprising calculating the diversity index for the species within the canid's microbiome and comparing the diversity index to the diversity index of a control data set.


In particular embodiments of the claimed methods, the canid is a pre-weaned puppy and the microbiome is considered healthy if the diversity index falls in the range of about 0.123 to about 1.744. In particular embodiments of the claimed methods, the canid is a post-weaned puppy and the microbiome is considered healthy if the diversity index falls in the range of about 1.294 to about 2.377. In particular embodiments of the claimed methods, the canid is an adult and the microbiome is considered healthy if the diversity index falls in the range of about 1.83 to about 3.72. In particular embodiments of the claimed methods, the canid is a senior and the microbiome is considered healthy if the diversity index falls in the range of about 1.24 to about 3.55. In particular embodiments of the claimed methods, the canid is geriatric and the microbiome is considered healthy if the diversity index falls in the range of about 2.16 to about 3.47.


In another embodiment, the disclosed subject matter provides a method of monitoring a canid, comprising a step of determining the health of the canid's microbiome by the method of any preceding claim on at least two time points. In certain embodiments, the two time points are at least 6 months apart.


In certain embodiments of the claimed methods, the sample is from the gastrointestinal tract. In certain embodiments, the sample is a faecal sample, an ileal sample, a jejunal sample, a duodenal sample or a colonic sample.


In certain embodiments of the claimed methods, the methods further comprise a step of changing the composition of the microbiome. In particular embodiments, the step of changing the microbiome composition comprises the administration of a pharmaceutical composition, a nutraceutical composition, a functional food, a supplement or a step of changing the canid's diet.


In another embodiment, the disclosed subject matter provides a method of monitoring the microbiome health in a canid who has received a pharmaceutical composition, a nutraceutical composition, a functional food, a supplement which is able to change the microbiome composition or who has undergone a step of changing the canid's diet that can change the microbiome composition, comprising determining the health of the microbiome by the method of any preceding claim. In particular embodiments, the health of the microbiome is determined before and after administration of the pharmaceutical composition. In certain embodiments, the pharmaceutical composition comprises bacteria.


In another embodiment of the claimed methods, the bacterial species is detected by means of DNA sequencing, RNA sequencing, protein sequence homology or another biological marker indicative of the bacterial species.


In the embodiments of the claimed methods, the canid is a dog.





BRIEF DESCRIPTION OF DRAWINGS


FIGS. 1A and 1B: Each of FIGS. 1A and 1B each depict multigroup principal components (PCA) and t-distributed stochastic neighbour embedding (t-SNE) data visualisation of the bacterial community composition characteristics in faeces of puppies with advancing age.



FIGS. 2A and 2B: FIG. 2A provides a summary phylum level taxon represented in faeces from puppies (mean proportion of the total OTUs for the cohort, with age in days post-partum). FIG. 2B provides the Shannon diversity (mean and 95% CI) of the microbial content in faeces puppies of puppies with age (in days) after birth.



FIG. 3: FIG. 3 provides the Shannon diversity (mean and 95% CI) of the microbial content in faeces puppies of puppies with age (in days) after birth.



FIG. 4: FIG. 4 provides the Shannon diversity of the faecal microflora in adult Beagle dogs by life stage group.



FIGS. 5A and 5B: FIGS. 5A and 5B provide Phylum level summary data, showing changes in phylum level microbial proportions across time from birth for two independent studies of the puppy faecal microbiota.



FIGS. 6A-6H: FIGS. 6A through 6H provide stacked bar plots detailing the genus level faecal microbial composition of adult dogs prior to, during and following antibiotic treatment with metronidazole. Data from from eight representative dogs within the cohort of 22 dogs are shown demonstrating the distribution in the abundant taxonomic groups (genera) at each sampling point. Each of FIGS. 6A-6H represent a different set of data for an individual dog.



FIG. 7: FIG. 7 is a partial least Square discriminate analysis (PLS-DA) correlation plot based on likeness in bacterial abundance data for the 25 OTUs displaying the greatest influence on clustering of the samples (variable importance in projection scores>1).



FIG. 8 corresponds to Table 1.1, which provides the bacterial taxa that are detected in faeces from puppies.



FIG. 9 corresponds to Table 1.3, which provides the bacterial taxa that are indicative of a healthy microbiome in puppies and their abundance in the microbiome.



FIG. 10 corresponds to Table 2.1, which provides the bacterial taxa that are detected in faeces from adult, senior, and geriatric dogs.



FIG. 11 corresponds to Table 2.3, which provides the bacterial taxa that are indicative of a healthy microbiome in mature canids and their abundance in the microbiome.



FIG. 12 corresponds to Table 3.1, which provides the Shannon diversity of the microbiota in faeces from puppies prior to and throughout the weaning period.



FIG. 13 corresponds to Table 4, which provides the bacterial taxa that are detected in the gut following treatment with antibiotics.





DETAILED DESCRIPTION
The Health of the Microbiome

The methods of the present disclosure can be used to determine the health of a canid's microbiome. This can be achieved by quantitating four or more bacterial species in a sample obtained from the canid to determine their abundance; and comparing the abundance to the abundance of the same species in a control data set. Differences in the abundance of at least four bacterial species, compared to a control data set, suggest that the microbiome is unhealthy or can be becoming unhealthy, and that the canid will benefit from an intervention (e.g., a treatment) to bring the microbiome back to its healthy state or alternatively that health can be better than the control data set.


The presently disclosed subject matter provides that bacterial species from certain bacterial taxa are indicative of a healthy microbiome in canids. These taxa are shown in FIG. 9 and FIG. 11 (Tables 1.3 and 2.3) for puppies and mature canids, respectively. Tables 7 and 8 (below) also show bacterial taxa indicative of a healthy microbiome. As will be apparent to a skilled person, the abundance of these taxa in the microbiome will vary between different healthy individuals, but can generally be found within the range shown in FIGS. 9 and 11 (Tables 1.3 and 2.3) and Table 8. Thus, a bacterial taxa will be considered within a healthy range if it falls within the range shown in FIGS. 9 and 11 (Tables 1.3 and 2.3) and Table 8. In such embodiments, the abundance of the bacterial taxa which is analysed will be compared to the “90%” value shown in FIG. 9 (Table 1.3) for the same bacterial taxa. For example, when bacteria of the genus Anaerostipes are analysed, they will be deemed to be in a healthy range if they are in the range shown for Anaerostipes in FIG. 9 (Table 1.3), i.e., 0-0.0004. Thus, the abundance of bacterial genus or family can be increased or decreased relative to the abundance shown in FIG. 9 (Table 1.3). Furthermore, in some embodiments, when there are different ranges across a genus in FIG. 9 (Table 1.3), the ranges specific to a particular OTU is used in the methods disclosed herein, rather than using the values for the genus.


In some cases, the abundance of the bacterial species will fall outside these ranges. The presently disclosed subject matter, however, provides that a bacterial species' abundance can still be considered to be indicative of a healthy microbiome if its abundance is increased or decreased relative to the ranges shown in FIG. 9 (Table 1.3). Thus, a particular species within a puppy's microbiome will still be considered within a healthy range if its abundance is above or below the range indicated in FIG. 9 (Table 1.3), as indicated in the table.


For example, an abundance which is above the range shown in FIG. 9 (Table 1.3) is still considered healthy for species from a genus selected from the group consisting of Absiella [Eubacterium], Anaerostipes, Anaerotruncus, Bifidobacterium, Blautia, Butyricicoccus, Clostridium_sensu_stricto_1, Collinsella, Enterococcus, Erysipelatoclostridium, Flavonifractor, Fusobacterium, Lachnoclostridium, Lachnospiraceae_NK4A136 group, Lactobacillus, Megamonas, Romboutsia, Roseburia, Ruminococcaceae, and Lachnospiraceae. In some embodiments, the bacterial species are selected from the group consisting of Absiella [Eubacterium] dolichum, Anaerostipes caccae, Anaerostipes indolis, Anaerostipes rhamnosivorans, Anaerotruncus sp., Bifidobacterium sp., Blautia [Ruminococcus] gnavus, Blautia [Ruminococcus] torques, Blautia [Ruminococcus] torques group sp., Blautia producta, Blautia sp., Butyricicoccus pullicaecorum, Butyricicoccus sp., Cellulosilyticum sp., Clostridium hiranonis, Clostridium sp., Clostridium sp., Collinsella sp., Dorea massiliensis, Enterococcus sp., Erysipelatoclostridium sp., Faecalibacterium prausnitzii, Finegoldia magna, Finegoldia sp., Fusobacterium sp., Holdemanella [Eubacterium] biforme, Lachnoclostridium sp., Lachnoclostridium [Clostridium] sp., Lachnoclostridium hylemonae, Lachnoclostridium leptum, Lachnoclostridium sp., Lachnospiraceae novel sp., Lachnospiraceae sp., Lachnospiraceae_NK4A136_group sp., Lactobacillus animalis, Lactobacillus apodemi, Lactobacillus faecis, Lactobacillus murinus, Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus ruminis, Lactobacillus saerimneri, Lactobacillus sp., Megamonas funiformis, Megamonas sp., Megamonas rupellensis, Pseudoflavonifractor capillosus; Pseudoflavonifractor sp., Romboutsia sp., Roseburia faecis, Roseburia sp., Ruminococcaceae novel sp., Ruminococcaceae_UCG-015 sp., Sellimonas sp., Terrisporobacter glycolicus, Terrisporobacter mayombei, Terrisporobacter petrolearius, Terrisporobacter sp., Terrisporobacter sp. SN1, Terrisporobacter sp. SN9, Terrisporobacter sporobacter, Turicibacter sanguinis, and Turicibacter sp.


In contrast, a decrease in abundance compared to the range indicated in FIG. 9 (Table 1.3) is considered healthy for a species from the genus Fusobacterium, in particular Fusobacterium mortiferum.


In some embodiments, the methods of the present disclosure do not comprise a step of testing for a bacterial species from the genera selected from the group consisting of Lactobacillus, Enterococcus, Turicibacter and/or Streptococcus.


Likewise, FIG. 11 (Table 2.3) indicates the range of abundance for various bacterial species which is considered healthy for a mature (i.e., an adult, senior or geriatric) canid. The abundance of the particular species can fall within the upper and lower 5% range shown in FIG. 11 (Table 2.3). Similar to the situation in puppies, a decrease in the abundance of a particular species can still be considered healthy provided it does not decrease below the “notification point” shown in FIG. 11 (Table 2.3). The microbiome will be deemed unhealthy if one or more species (e.g., 2, 3, 4, 5, 10, 13, 15, 18, 20, 22, or more) fall below this point. In some embodiments, the microbiome will be deemed unhealthy if one-fifth to one-third of the species from FIG. 11 (Table 2.3) falls below the “notification” point shown in FIG. 11 (Table 2.3). For such animals, it can be beneficial to seek veterinary advice and to consider an intervention (e.g., a treatment). In some embodiments, preferred species for detecting a mature canid's health are from genera selected from the group consisting of Adlercreutzia, Allobaculum, Bacteroides, Bifidobacterium, Blautia, Clostridiales sp., Collinsella, Dorea, Enterococcus, Erysipelotrichaceae, Faecalibacterium, Fusobacterium, Holdemanella [Eubacterium], Lachnoclostridium, Lactobacillus, Megamonas, Megasphaera, Phascolarctobacterium, Prevotella, Ruminococcus, Sarcina, Terrisporobacter, and Turicibacter.


In addition, or alternatively, the methods of the present disclosure can be practised using genera selected from the group consisting of Prevotella, Allobaculum, Blautia and Paraprevotella. It has been found that these taxa are particularly useful for determining the health of a canid's microbiome. Thus, in some embodiments, the methods of the present disclosure comprise a step of testing for a bacterial species from the genus Prevotella. In further embodiments, a method of the present disclosure comprises a step of testing for a bacterial species selected from at least one, at least two, at least three or at least four of the genera Prevotella, Allobaculum, Blautia and Paraprevotella. The exception for Prevotella is if the Prevotella species is Prevotella copri (for reasons stated below). If the only Prevotella identified is Prevotella copri, then Prevotalla should not be considered as a health indicator.


In additional embodiments, the methods of the present disclosure can include testing for a bacterial species selected from the group consisting of a bacterial species of Lactobacillus, a bacterial species of Ruminococcaceae, a bacterial species of Megamonas, a bacterial species of Holdemanella, a bacterial species of Lachnospiraceae, a bacterial species of Turicibacter, a bacterial species of Dorea, a bacterial species of Enterococcus, a bacterial species of Bifdobacterium, and bacterial species of Butyricicoccus, Clostridium hiranonis and Ruminococcus gauvreauii.


In additional embodiments, the methods of the present disclosure can involve testing selected bacterial sequence types from within a bacterial genus representing markers of the microbiome health in dogs across all lifestages from puppy through youth, adult senior and geriatric animals. Table 8 indicates the range of relative abundance or proportion of the sequences within the 90% range for various bacterial genera which are considered healthy or signs of dysbiosis across all lifestages for a canid. The abundance of the particular genus can fall within the upper and lower 5% range of the relative proportions shown in Table 8. A decrease or increase in the abundance of a particular species can still be considered to demonstrate that the animal's microbiome is healthy provided it does not decrease below the “notification point” shown in Table 8 (i.e., below the ‘Lower 5% range’ or above the ‘Upper 5% range’). The microbiome will be deemed unhealthy if four or more genera (e.g., 5, 10, 13, 15, 18, 20, 22 or more) fall below or above these points. In some embodiments, the microbiome is deemed unhealthy if one-fifth to one-third of the species from Table 8 falls above or below the “notification” points shown in Table 8. For such animals, it can be beneficial to seek veterinary advice and/or to consider an intervention (e.g., a treatment) such as a dietary intervention or treatment prescribed by a veterinary professional.


In addition, or alternatively, a method of the present disclosure can include a step of testing bacterial species from taxa selected from the group consisting of Enterobacteriaceae, Escherichia/Shigella, Mogibacterium, Fusobacterium, Lachnoclostridium, and Prevotella copri. Prevotella copri is an exception to the general finding that the Prevotella genus is a health indicator. Prevetella copri, specifically, is thought to be associated with RA (arthritis and particularly reactive arthritis/rheumatoid arthritis). It has been found that the abundance of bacteria from these genera is increased in dysbiosis. Thus, preferably, the abundance of such species falls within the range indicated in FIG. 9 (Table 1.3), FIG. 11 (Table 2.3), or Table 8 as discussed above.


In addition, or alternatively, the canid's microbiome health can be assessed by determining the diversity of bacterial species within a canid's microbiome. To this end, the diversity index of the bacterial species within the canid's microbiome is determined and compared to the diversity index of a control data set. For a healthy pre-weaned puppy, the diversity index will generally be in the range of about 0.123 to about 1.744; for a post-weaned puppy, the healthy range is from about 1.294 to about 2.377; for a healthy adult, the mean range of the diversity index is from about 2.3755 to about 3.1534; for a healthy senior canid, the average range is from about 2.1971 to about 2.8263; and for a healthy geriatric canid, the average range is from about 2.3339 to about 3.3273. Where the microbiome diversity index falls outside these ranges, the microbiome will be considered less healthy. However, it may not always be necessary to seek treatment. This will generally be useful, however, where the diversity index falls above or below a certain “intervention point”. These intervention points are listed in Table 1.0-A below:











TABLE 1.0-A






Lower intervention
Upper intervention


Life stage
point
point

















Pre-weaned puppy
<0.2059
>2.0240


Post-weaned puppy
<0.6351
>2.8786


Adult
<1.83
>3.72


Senior
<1.24
>3.55


Geriatric
<2.16
>3.47









In some embodiments, when the diversity index falls outside the range discussed above, the method can comprise a further step of changing the composition of the microbiome, as discussed below. This is particularly preferred where the diversity index falls above or below the notification point, as shown above.


The Control Data Set

The abundance of the bacterial species is compared to a control data set from a canid with a similar chronological age or lifestage, e.g. a puppy, an adult canid, a senior canid or a geriatric canid. FIGS. 9 and 11 (Tables 1.3 and 2.3) provide suitable control data sets against which the microbiome composition from the canid can be compared.


Alternatively, or in addition, a control data set can be prepared. To this end, the microbiome of two or more (e.g., 3, 4, 5, 10, 15, 20 or more) healthy canids can be analysed for the abundance of the species contained in the microbiome. A healthy canid in this context is a canid who has not been diagnosed with a disease that is known to affect the microbiome. Examples of such diseases include irritable bowel syndrome, ulcerative colitis, Crohn's and inflammatory bowel disease. The two or more canids will generally be from a particular life stage. For example, they can be puppies, adult canids, senior canids or geriatric canids. This is useful because the microbiome changes in a canid's lifetime and the microbiome therefore needs to be compared to a canid at the same lifestage. Where the canid is a dog, the control data set can further be from a dog of the same breed or, where the dog is a mongrel, the same breed as one of the direct ancestors (parents or grandparents) of the dog.


The control data set can also from the same canid who is diagnosed or monitored by a method of the present disclosure. For example, the microbiome of the canid can be analysed and the data can subsequently be used as a control data set to evaluate whether the dog's microbiome health has changed.


Specific steps to prepare the control data set can comprise analysing the microbiome composition of at least two (e.g., 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or more) puppies, and/or at least two (e.g., 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or more) adult canids, and/or at least two (e.g., 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or more) senior canids and/or at least two (e.g., 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or more) geriatric canids; determining the abundance of bacterial species (in particular those discussed above); and compiling these data into a control data set.


For embodiments where the diversity index of the microbiome is determined, the control data set can be prepared in a similar manner. In particular, the diversity index can be determined in two or more (e.g., 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or more) healthy canids at a particular life stage (puppy, adult, senior or geriatric). The results can then be used to identify the mean range for the diversity index in a canid at that life stage.


It will be understood that the control data set does not need to be prepared every time the method of the present disclosure is performed. Instead, a skilled person can rely on an established control set.


In addition to those described herein, techniques which allow a skilled person to detect and quantitate bacterial taxa are well known in the art. These include, for example, polymerase chain reaction (PCR), quantitative PCR, 16 S rDNA amplicon sequencing, shotgun sequencing, metagenome sequencing, Illumina sequencing, and nanopore sequencing. Preferably, the bacterial taxa are determined by sequencing the 16 s rDNA sequence. Other methods would include shotgun sequencing to determine characteristic non-16 SrDNA gene sequences or other metabolites and biomarkers for identification of the species.


In some embodiments, the bacterial taxa are determined by sequencing the V4-V6 region, for example using Illumina sequencing. These methods can use the primers 319F: CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT (SEQ ID NO: 1) and 806R: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACG ACGCTCTTCCGATCT (SEQ ID NO: 2).


The bacterial species can also be detected by other means known in the art such as, for example, RNA sequencing, protein sequence homology or other biological marker indicative of the bacterial species.


The sequencing data can then be used to determine the presence or absence of different bacterial taxa in the sample. For example, the sequences can be clustered at about 98%, about 99% or 100% identity and abundant taxa (e.g., those representing more than 0.001 of the total sequences) can then be assessed for their relative proportions. Suitable techniques are known in the art and include, for example, logistic regression, partial least squares discriminate analysis (PLSDA) or random forest analysis and other multivariate methods.


The Canid

The methods of the present disclosure can be used to determine the microbiome health of a canid. This genus comprises domestic dogs (Canis lupus familiaris), wolves, coyotes, foxes, jackals, dingoes and the present disclosure can be used for all these animals. In some embodiments, the subject is a domestic dog, herein referred to simply as a dog.


In some embodiments, the canid is healthy. “Healthy,” as used herein, refers to a canid who has not been diagnosed with a disease that is known to affect the microbiome. Examples of such diseases include, but are not limited to, irritable bowel syndrome, ulcerative colitis, Crohn's and inflammatory bowel disease. Preferably, the canid does not suffer from dysbiosis. Dysbiosis refers to a microbiome imbalance inside the body, resulting from an insufficient level of keystone bacteria (e.g., bifidobacteria, such as B. longum subsp. infantis) or an overabundance of harmful bacteria in the gut. Methods for detecting dysbiosis are well known in the art.


One advantage of the methods of the present disclosure is that they allow a skilled person to determine whether the canid's microbiome is healthy, taking into account the canid's lifestage.


There are numerous different breeds of domestic dogs, which show a diverse habitus. Different breeds also have different life expectancies with smaller dogs generally being expected to live longer than bigger breeds. Accordingly, different breeds are considered to be puppies, adult, senior or geriatric at different time points in their life. A summary of the different life stages is provided in Table 1.0-B below.














TABLE 1.0-B







Youth
Adult
Senior
Geriatric





















Toy
Up to 7 years
8-11
years
12-13 years
14+ years


Small
Up to 7 years
8-11
years
12-13 years
14+ years


Medium
Up to 5 years
6-9
years
10-13 years
14+ years


Large
Up to 5 years
6-9
years
10-11 years
12+ years









The distinction between toy, small, medium and large breeds is known in the art. In particular, toy breeds comprise distinct breeds including but not limited to Affenpinscher, Australian Silky Terrier, Bichon Frise, Bolognese, Cavalier King Charles Spaniel, Chihuahua, Chinese Crested, Coton De Tulear, English Toy Terrier, Griffon Bruxellois, Havanese, Italian Greyhound, Japanese Chin, King Charles Spaniel, Lowchen (Little Lion Dog), Maltese, Miniature Pinscher, Papillon, Pekingese, Pomeranian, Pug, Russian Toy and Yorkshire Terrier.


Small breeds are larger on average than toy breeds with an average body weight of up to about 10 kg. Non-limiting exemplary breeds include French Bulldog, Beagle, Dachshund, Pembroke Welsh Corgi, Miniature Schnautzer, Cavalier King Charles Spaniel, Shih Tzu, and Boston Terrier.


Medium dog breeds have an average weight of about 11 kg to about 26 kg. These dog breeds include, but are not limited to, Bulldog, Cocker Spaniel, Shetland Sheepdog, Border Collie, Basset Hound, Siberian Husky and Dalmatian.


Large breed are those with an average body weight of at least about 27 kg. Non-limiting examples include Great Dane, Neapolitan mastiff, Scottish Deerhound, Dogue de Bordeaux, Newfoundland, English mastiff, Saint Bernard, Leonberger and Irish Wolfhound.


Cross-breeds can generally be categorised into toy, small, medium and large dogs depending on their body weight.


The Sample

According to the methods of the present disclosure, the sample from which the bacterial species are analysed can be, in some embodiments, a fecal sample or a sample from the gastrointestinal lumen of the canid. Fecal samples are convenient because their collection is non-invasive, and it also allows for easy repeated sampling of individuals over a period of time. However, other samples can also be used in the methods disclosed herein, including, but not limited to, ileal, jejunal, duodenal samples and colonic samples.


In some embodiments, the sample is a fresh sample. In further embodiments, the sample is frozen or is stabilised by other means, such as addition to preservation buffers, or by dehydration using methods such as freeze drying, before use in the methods of the present disclosure.


Before use in the disclosed methods, in some embodiments, the sample is processed to extract DNA. Methods for isolating DNA are well known in the art, as reviewed in reference [8], for example. These methods include, for example, the Qiagen DNeasy Kit™, the MoBio PowerFecal Kit™, Qiagen QIAamp Cador Pathogen Mini Kit™, the Qiagen QIAamp DNA Stool Mini Kit™ as well as Isopropanol DNA Extraction. A further useful tool to use with the methods of the present disclosure is the QIAamp Power Faecal DNA kit (Qiagen).


Changing the Microbiome

In some embodiments, the methods of the present disclosure comprises a further step of changing the composition of the microbiome. The composition of the microbiome can be changed by administering to the canid a dietary change, a functional food, a supplement, or a nutraceutical or pharmaceutical composition that is capable of changing the composition of the microbiome. Such functional foods, nutraceuticals, live biotherapeutic products (LBPs) and pharmaceutical compositions are well known in the art and comprise bacteria [9]. They can comprise single bacterial species selected from the group consisting of Bifidobacterium sp. such as B. animalis (e.g., B. animalis subsp. animalis or B. animalis subsp. lactis), B. bifidum, B. breve, B. longum (e.g., B. longum subsp. infantis or B. longum subsp. longum), B. pseudolongum, B. adolescentis, B. catenulatum, or B. pseudocatanulatum; single bacterial species of Lactobacillus, such as L. acidophilus, L. antri, L. brevis, L. casei, L. coleohominis, L. crispatus, L. curvatus, L. fermentum, L. gasseri, L. johnsonii, L. mucosae, L. pentosus, L. plantarum, L. reuteri, L. rhamnosus, L. sakei, L. salivarius, L. paracasei, L. kisonensis, L. paralimentarius, L. perolens, L. apis, L. ghanensis, L. dextrinicus, L. shenzenensis, L. harbinensis; or single bacterial species of Pediococcus, such as P. parvulus, P. loii, P. acidilactici, P. argentinicus, P. claussenii, P. pentosaceus, or P. stilesii; or similarly species of Enterococcus such as E. faecium, or Bacillus species such as Bacillus subtilis, B. coagulans, B. indicus, or B. clausii. Additionally, combinations of these and other bacterial species can be used. The amount of the dietary change, the functional food, the supplement, the nutraceutical composition, or the pharmaceutical composition that is administered to the canid can be an amount that is effective to effect a change in the composition of the microbiome.


The further step of changing the composition of the microbiome can be performed in instances where a canid's biological microbiome is found to be unhealthy. In that case, it can be highly desirable to make a dietary change and/or to administer a nutraceutical or pharmaceutical composition to shift the microbiome back to a healthy state, as determined by a method of the present disclosure.


The methods of the present disclosure can also be used to assess the success of a treatment as described above. To this end, a canid can undergo a dietary change and/or receive a nutraceutical or pharmaceutical composition, which is capable of changing the composition of the microbiome. Following commencement of the treatment (e.g., administration of the pharmaceutical composition), for example, after about 1 day, 2 days, 5 days, 1 week, 2 weeks, 3 weeks, 1 month, etc., the health of the microbiome can be assessed using any of the methods of the present disclosure. Preferably, the health of the microbiome is determined before and after administration of the pharmaceutical or nutraceutical composition.


Monitoring

In some embodiments, the methods described herein are performed once to determine a canid's microbiome health. In other embodiments, the methods of the present disclosure are performed more than once, for example, two times, three times, four times, five times, six times, seven times, or more than seven times. This allows the biological age of the microbiome to be monitored over time. This can be useful, for example, where a canid is receiving treatment to shift the microbiome. The first time the method is performed, the health of the microbiome is determined and, following a dietary change or administration of a nutraceutical or pharmaceutical composition, the method is repeated to assess the influence of the pharmaceutical composition on the health of the microbiome. The health of the microbiome can also be determined for the first time after the canid has received treatment, and the method repeated afterwards, to assess whether there is a change in the health of the microbiome.


The methods described herein can be repeated about one week, two weeks, three weeks, one month, two months, three months, four months, five months, six months, 12 months, 18 months, 24 months, 30 months, 36 months, or more than 36 months apart.


Treatment

In some embodiments, the methods of the present disclosure can also relate to methods for treating a canid having an unhealthy microbiome. In some embodiments, the methods for treating include: (i) identifying the canid as requiring treatment by determining the unhealthy status of the microbiome according to any of the methods disclosed herein, and (ii) administering to the canid a dietary change, a functional food, a supplement, a nutraceutical, or a pharmaceutical composition as disclosed herein that is capable of changing the composition of the microbiome. The amount of the dietary change, the functional food, the supplement, the nutraceutical composition, or the pharmaceutical composition that is administered to the canid can be an amount that is effective to effect a change in the composition of the microbiome, or to improve any symptoms relating to the canid having an unhealthy microbiome status. Optionally, in some embodiments, the method further includes determining the microbiome health of the canid following the administration of the dietary change, the functional food, the supplement, the nutraceutical, or the pharmaceutical composition to evaluate the effectiveness of the treatment.


General

The terms used in this specification generally have their ordinary meanings in the art, within the context of this invention and in the specific context where each term is used. Certain terms are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner in describing the methods and compositions of the invention and how to make and use them.


The practice of the present disclosure will employ, unless otherwise indicated, conventional methods of chemistry, biochemistry, molecular biology, immunology and pharmacology, within the skill of the art. Such techniques are explained fully in the literature. See, e.g., references [10-17], etc.


References to a percentage sequence identity between two nucleotide sequences means that, when aligned, that percentage of nucleotides are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in section 7.7.18 of ref [18]. A preferred alignment is determined using the BLAST (basic local alignment search tool) algorithm or the Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 2, BLOSUM matrix of 62. The Smith-Waterman homology search algorithm is disclosed in ref. [19]. The alignment can be over the entire reference sequence, i.e. it can be over 100% length of the sequences disclosed herein.


Definitions

As used herein, the use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification can mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” Still further, the terms “having,” “containing,” and “comprising” are interchangeable, and one of skill in the art is cognizant that these terms are open ended terms. Further, the term “comprising” encompasses “including” as well as “consisting,” e.g., a composition “comprising” X can consist exclusively of X or can include something additional, e.g., X+Y.


The term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, “about” can mean within 3 or more than 3 standard deviations, per the practice in the art. Alternatively, “about” can mean a range of up to 20%, preferably up to 10%, more preferably up to 5%, and more preferably still up to 1% of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. In certain embodiments, the term “about” in relation to a numerical value x is optional and means, for example, x±10%.


The term “effective treatment” or “effective amount” of a substance means the treatment or the amount of a substance that is sufficient to effect beneficial or desired results, including clinical results, and, as such, an “effective treatment” or an “effective amount” depends upon the context in which it is being applied. In the context of administering a composition (e.g., a dietary change, a functional food, a supplement, a nutraceutical composition, or a pharmaceutical composition) to change the composition of a microbiome in a feline having an unhealthy microbiome, the effective amount is an amount sufficient to bring the health status of the microbiome back to a healthy state, which is determined according to one of the methods disclosed herein. In certain embodiments, an effective treatment as described herein can also include administering a treatment in an amount sufficient to decrease any symptoms associated with an unhealthy microbiome. The decrease can be an about 0.01%, about 0.1%, about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 98% or about 99% decrease in severity of symptoms of an unhealthy microbiome. An effective amount can be administered in one or more administrations. A likelihood of an effective treatment described herein is a probability of a treatment being effective, i.e., sufficient to alter the microbiome, or treat or ameliorate a digestive disorder and/or inflammation, as well as decrease the symptoms.


As used herein, and as well-understood in the art, “treatment” is an approach for obtaining beneficial or desired results, including clinical results. For purposes of this subject matter, beneficial or desired clinical results include, but are not limited to, alleviation or amelioration of one or more symptoms, diminishment of extent of a disorder, stabilized (i.e., not worsening) state of a disorder, prevention of a disorder, delay or slowing of the progression of a disorder, and/or amelioration or palliation of a state of a disorder. In certain embodiments, the decrease can be an about 0.01%, about 0.1%, about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, about 98% or about 99% decrease in severity of complications or symptoms. “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment.


The word “substantially” does not exclude “completely”, e.g., a composition which is “substantially free” from Y can be completely free from Y. Where necessary, the word “substantially” can be omitted from the definition of the present disclosure.


Unless specifically stated, a process or method comprising numerous steps can comprise additional steps at the beginning or end of the method, or can comprise additional intervening steps. Also, steps can be combined, omitted or performed in an alternative order, if appropriate.


Various embodiments of the methods of the present disclosure are described herein. It will be appreciated that the features specified in each embodiment can be combined with other specified features, to provide further embodiments. In particular, embodiments highlighted herein as being suitable, typical or preferred can be combined with each other (except when they are mutually exclusive).


EXAMPLES

The presently disclosed subject matter will be better understood by reference to the following Example, which is provided as exemplary of the invention, and not by way of limitation.


Example 1: Assessment of Microbiome Characteristics in Dogs
Background

Changes in the gut microbiota occur during the period between birth and maturity, with an increase in diversity and stability seen in the human faecal microbiota until maturity [20; 21]. Perturbations in the neonatal gut microbiota during this period, either through birth [22], introduction of novel foods [20], or disease [23] can change the course of microbiota development and composition of the microbiota and microbiome at maturity, with the potential to affect the long term health of the host [24,25]. By comparison, the mature microbial community in humans appears to be stable over time and more resilient to challenge [26].


The initial establishment of the gut microbiota is an essential step in neonatal development, influencing immunological development in infancy and health throughout life. In human studies, there is some evidence that this initial microbial colonisation of the infant gut can occur via prenatal inoculation in utero [27]. Bacteria and bacterial DNA have been identified in the amniotic fluid [28], placenta, and in the meconium of the neonate [29,30,31]. Initial colonisation can therefore occur through ingestion of amniotic fluid [32] or through placental transfer and translocation though the maternal blood supply. Evidence also exists for the direct inoculation of the infant gut via colostrum and maternal milk in human infants [33]. Recent studies indicate that human milk contains a diverse microbiota that is reflected in the early colonisers found in the infant gut [34,35].


Human studies have demonstrated that within the first days of life, Bacteroides and Bifidobacterium species become the most abundant genera in the gut of breastfed infants [36,37]. These initial colonising species can provide favorable conditions to enable other microbes to establish through production of an anaerobic environment and provision of substrates for bacterial growth [38]. Few bacteria can gain access to the energetic content of maternal milk as it is presented in the colon, but species of both Bacteroides and Bifidobacterium are able to utilize human milk oligosaccharides (HMOs) as an energy source [39]. In particular, Bifidobacterium longum subspecies infantis (B. infantis) is unique among gut bacteria in its capacity to digest and consume any HMO structure, and has been shown to predominate in the intestinal microbiota throughout the first year of life in human breast-fed infants with potential long term effects on the health of the host [40]. In vitro studies have demonstrated that B. infantis grows more rapidly than other bacterial strains in the presence of HMOs, and demonstrates a number of beneficial effects, including promoting anti-inflammatory activity in premature intestinal cells, and decreasing intestinal permeability [41,40].


Given that early inoculation of the gastrointestinal tract of dogs can also occur prior to birth in utero, the early neonate microbiota can be enriched for species giving an evolutionary advantage to the infant, and hence can be enriched for bacterial species actively transferred to the infant from the mother via biological processes evolved to conferred an advantage to the survival of the offspring. Such organisms could therefore be enriched in the first days following birth and associated with health over the lifetime of the animal. To investigate this hypothesis the gut microbiota was assessed in a cohort of puppies in the days immediately following birth. Data on the faecal microbiota was derived by analysis of the microbiota in freshly produced faecal samples from 39 puppies with samples taken at 12 time points. These time points were grouped into, early postpartum puppyhood—2, 4, 6, 8, 10, 12 days; mid puppyhood (during-weaning) 17, 24 and 31 days and later (rapid growth phase of) puppyhood (post-weaning) late 38, 45 and 52 days.


Study Cohort

A cohort of 6 litters of puppies bred by Canine Companions for Independence (CCI) were recruited to the study and were housed in volunteer homes during birth, early development and weaning including the period throughout the sample collection. Puppy faecal samples were collected on days 2, 4, 6, 8, 10, 12, 17, 24, 31 and 38 post parturition. All puppies were maintained by their maternal dam who was fed on Eukanuba Premium Performance throughout gestation and lactation. Puppies were weaned onto Eukanuba Large Breed Puppy starting at day 28. Diet details are provided in Table 5 and below.









TABLE 5







Diet Details


Guaranteed Nutritional Analyses










Eukanuba Premium
Eukanuba Large


Nutrient
Performance
Breed Puppy












Crude Protein
30.00%
26.0%


Crude Fat
20.00%

14%



Crude Fibre
4.00%
 5.0.%


Moisture
10.00%
10.0%


Ash
7.60%



Vitamin E
140 IU/kg



Omega-3-Fatty Acids
0.89%
0.39%


Omega-6-Fatty Acids
3.18%
1.93%


Calcium
1.30%
0.65%


Phosphorus
1.10%
0.55%









Ingredients

Eukanuba Premium Performance


Chicken, Chicken By-Product Meal (Natural source of Chondroitin Sulfate and Glucosamine), Corn Meal, Brewers Rice, Ground Whole Grain Sorghum, Chicken Fat (preserved with mixed Tocopherols, a source of Vitamin F), Dried Beet Pulp, Chicken Flavor, Fish Meal, Dried Egg Product, Fish Oil (preserved with mixed Tocopherols, a source of Vitamin F), Brewers Dried Yeast, Potassium Chloride, Fructooligosaccharides, Salt, Sodium Hexametaphosphate, Choline Chloride, Minerals (Ferrous Sulfate, Zinc Oxide, Manganese Sulfate, Copper Sulfate, Manganous Oxide, Potassium Iodide, Cobalt Carbonate), Calcium Carbonate, Vitamins (Ascorbic Acid, Vitamin A Acetate, Calcium Pantothenate, Biotin, Thiamine Mononitrate (source of vitamin B1), Vitamin B12 Supplement, Niacin, Riboflavin Supplement (source of vitamin B32), Inositol, Pyridoxine Hydrochloride (source of vitamin B6), Vitamin D3 Supplement, Folic Acid), DL-Methionine, Vitamin E Supplement, L-Carnitine, Beta-Carotene, Rosemary Extract.


Eukanuba Large Breed Puppy


Chicken, Corn Meal, Chicken By-Product Meal (Natural source of Chondroitin Sulfate and Glucosamine), Ground Whole Grain Sorghum, Brewers Rice, Dried Beet Pulp, Chicken Flavor, Dried Egg Product, Fish Oil (preserved with mixed Tocopherols, a source of Vitamin E), Brewers Dried Yeast, Fish Meal, Potassium Chloride, Chicken Fat (preserved with mixed Tocopherols, a source of Vitamin E), Salt, Calcium Carbonate, Choline Chloride, Fructooligosaccharides, Minerals (Ferrous Sulfate, Zinc Oxide, Manganese Sulfate, Copper Sulfate, Manganous Oxide, Potassium Iodide, Cobalt Carbonate), DL-Methionine, Vitamins (Ascorbic Acid, Vitamin A Acetate, Calcium Pantothenate, Biotin, Thiamine Mononitrate (source of vitamin B1), Vitamin B12 Supplement, Niacin, Riboflavin Supplement (source of vitamin B2), Inositol, Pyridoxine Hydrochloride (source of vitamin B6), Vitamin D3 Supplement, Folic Acid), Vitamin E Supplement, Marigold, Beta-Carotene, Rosemary Extract.


Methods

Following DNA extraction from the freshly produced faeces samples, Illumina sequencing of the V4-V6 region was conducted on amplicons generated from the faecal DNA using primer sequences (319F: CAAGCAGAAG ACGGCATACG AGATGTGACT GGAGTTCAGA CGTGTGCTCT TCCGATCT and 806R: AATGATACGG CGACCACCGA GATCTACACT CTTTCCCTAC ACGACGCTCT TCCGATCT). The resulting DNA sequences were clustered at 98% identity, representing approximately species level bacterial clusters, and abundant taxa (representing>0.001 of the total sequences) were then assessed for their relative proportions. The taxonomic groups of bacteria represented by the sequences detected were determined by interrogation of the Greengenes or Silva v132 16 S rDNA databases. Comparison of the taxonomic group to organisms associated with health and disease in other mammals was utilised to highlight bacterial taxa present in the dog and representative of health of the microbiome.


Analysis of each taxa or OTU was performed first using a generalised linear mixed effects model with the OTU count+2 and sample total+4 as the response variable, age as a factor and an intercept as fixed effects and a random effect of puppy nested within dam. These models were used to determine the mean proportion by age of each OTU and to statistically compare the all consecutive ages and 2 vs. 45 weeks, as by 45 weeks all puppies had been weaned. Contrasts were performed by permuting testing, permuting ages within each litter 1,000 times. All contrasts were corrected to have a false discovery rate of 5% using the Benjamini-Hochberg procedure.


Mann-Whitney tests were also performed on data for each taxon/OTU. This test was used to compare proportions of all consecutive ages and 2 vs. 45 weeks. This is a non-parametric alternative to a t-test with fewer requirements, such as normally distributed errors. As with the generalised linear model the Benjamini-Hochberg procedure was used to correct the p-values. Due to the high proportion of 0 s in the data, and in spite of the +2/+4 proportion calculation, the generalised linear model permutation test is known to be more conservative than the non-parametric Mann-Whitney test due to issues with the error distribution assumption. The Mann-Whitney test on the other hand avoids the error distribution assumption however requires independent samples. For the majority of compared time points, especially the earlier ones, this assumption was valid as few puppies had a complete set of samples.


All analyses were performed using R version 3.3.3 and the lme4, mixOmics and multcomp libraries.


Results

16 SrDNA was isolated from 271 samples, describing a total of 12559 OTUs before data cleaning. After identifying rares/noise, 141 OTUs remained (with the final group comprised of all rares/noise combined). The resulting OTU table is provided in Table 6. Variation in the microbial taxa (OTUs) was observed over development (time after birth) within faecal samples from the puppy cohort by multigroup principal components (PCA) and t-distributed stochastic neighbour embedding (t-SNE) data visualisation (FIG. 1).









TABLE 6







OTU Table








OTU
Taxa





denovo46
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae;



Lachnospiraceae_NK4A136_group; uncultured_bacterium


denovo115
Bacteria; Firmicutes; Clostridia; Clostridiales; Peptostreptococcaceae; Romboutsia;



uncultured_bacterium


denovo200
Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus;



uncultured_bacterium


denovo275
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Tyzzerella;



uncultured_bacterium


denovo475
Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales; Pasteurellaceae;



Pasteurella; uncultured_bacterium


denovo579
Bacteria; Firmicutes; Clostridia; Clostridiales; Peptostreptococcaceae; Paeniclostridium;



uncultured_Eubacterium_sp.


denovo654
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Lachnoclostridium;



uncultured_bacterium


denovo657
Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides;



uncultured_bacterium


denovo683
Bacteria; Firmicutes; Bacilli; Lactobacillales; Enterococcaceae; Enterococcus;



unidentified_marine_bacterioplankton


denovo886
Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae;



Proteus; Proteus_mirabilis


denovo920
Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae_1; Clostridium_sensu_stricto _1;



uncultured_bacterium


denovo959
Bacteria; Firmicutes; Erysipelotrichia; Erysipelotrichales; Erysipelotrichaceae;



Turicibacter; uncultured_bacterium


denovo989
Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae;



Klebsiella; uncultured_bacterium


denovo991
Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae_1; Clostridium_sensu_stricto_1;



uncultured_bacterium


denovo1000
Bacteria; Firmicutes; Negativicutes; Selenomonadales; Veillonellaceae; Megamonas;



uncultured_bacterium


denovo1022
Bacteria; Fusobacteria; Fusobacteriia; Fusobacteriales; Fusobacteriaceae; Fusobacterium;



uncultured_organism


denovo1074
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae;



[Ruminococcus]_torques_group; uncultured_bacterium


denovo1135
Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Lactobacillus;



uncultured_bacterium


denovo1178
Bacteria; Actinobacteria; Actinobacteria; Bifidobacteriales; Bifidobacteriaceae;



Bifido bacterium; Bifidobacterium_saeculare_DSM_6531_=_LMG_14934


denovo1192
Bacteria; Firmicutes; Negativicutes; Selenomonadales; Veillonellaceae; Megamonas;



uncultured_bacterium


denovo1220
Bacteria; Firmicutes; Clostridia; Clostridiales; Peptostreptococcaceae; Romboutsia;



uncultured_bacterium


denovo1327
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; uncultured;



uncultured_bacterium


denovo1402
Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides;



uncultured_bacterium


denovo1404
Bacteria; Actinobacteria; Actinobacteria; Bifidobacteriales; Bifidobacteriaceae;



Bifidobacterium; uncultured_bacterium


denovo1476
Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae_1; Clostridium_sensu_stricto_1;



uncultured_Clostridium_sp.


denovo1484
Bacteria; Firmicutes; Negativicutes; Selenomonadales; Veillonellaceae; Veillonella;



Veillonella_magna


denovo1488
Bacteria; Firmicutes; Clostridia; Clostridiales; Family_XI; Anaerococcus;



uncultured_bacterium


denovo1678
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Epulopiscium;



uncultured_bacterium


denovo1696
Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Flavonifractor;



uncultured_bacterium


denovo1802
Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae_1; Candidatus_Arthromitus;



uncultured_bacterium


denovo1830
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Lachnoclostridium;



uncultured_bacterium


denovo1987
Bacteria; Firmicutes; Erysipelotrichia; Erysipelotrichales; Erysipelotrichaceae;



Erysipelatoclostridium; uncultured_bacterium


denovo2011
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Blautia;



uncultured_bacterium


denovo2050
Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae_1; Clostridium_sensu_stricto_1;



uncultured_bacterium


denovo2108
Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus;



Streptococcus_canis


denovo2116
Bacteria; Firmicutes; Clostridia; Clostridiales; Peptostreptococcaceae; Peptoclostridium;



[Clostridium]_hiranonis


denovo2124
Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae;



Escherichia-Shigella; uncultured_bacterium


denovo2203
Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae_1; Clostridium_sensu_stricto_1;



uncultured_bacterium


denovo2226
Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Anaerotruncus;



uncultured_bacterium


denovo2292
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; uncultured;



uncultured_organism


denovo2529
Bacteria; Firmicutes; Clostridia; Clostridiales; Peptostreptococcaceae; Romboutsia;



uncultured_bacterium


denovo2580
Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus;



uncultured_bacterium


denovo2584
Bacteria; Firmicutes; Negativicutes; Selenomonadales; Veillonellaceae; Veillonella;



uncultured_bacterium


denovo2648
Bacteria; Firmicutes; Erysipelotrichia; Erysipelotrichales; Erysipelotrichaceae;



Holdemanella; uncultured_bacterium


denovo2834
Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae;



Escherichia-Shigella; uncultured_bacterium


denovo2910
Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae; Alloprevotella;



uncultured_bacterium


denovo2928
Bacteria; Firmicutes; Negativicutes; Selenomonadales; Veillonellaceae; Megamonas;



uncultured_bacterium


denovo2930
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Tyzzerella_3;



[Clostridium]_colinum


denovo3055
Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae_1; Clostridium_sensu_stricto_1;



uncultured_bacterium


denovo3073
Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae;



Escherichia-Shigella; uncultured_bacterium


denovo3119
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Cellulosilyticum;



uncultured_bacterium


denovo3179
Bacteria; Firmicutes; Clostridia; Clostridiales; Peptostreptococcaceae; Romboutsia;



uncultured_organism


denovo3403
Bacteria; Proteobacteria; Epsilonproteobacteria; Campylobacterales; Campylobacteraceae;



Campylobacter; uncultured_bacterium


denovo3694
Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales; Pasteurellaceae;



Haemophilus; uncultured_bacterium


denovo3749
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Lachnoclostridium;



uncultured_bacterium


denovo3887
Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Lactobacillus;



Lactobacillus_saerimneri


denovo3912
Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides;



uncultured_bacterium


denovo4020
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; uncultured;



uncultured_bacterium


denovo4069
Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae_1; Clostridium_sensu_stricto_1;



uncultured_bacterium


denovo4100
Bacteria; Actinobacteria; Coriobacteriia; Coriobacteriales; Coriobacteriaceae; Eggerthella;



Eggerthella_lenta


denovo4324
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Tyzzerella_4;



uncultured_bacterium


denovo4476
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Lachnoclostridium;



uncultured_bacterium


denovo4638
Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae;



Prevotellaceae_Ga6A1_group; uncultured_bacterium


denovo4692
Bacteria; Proteobacteria; Epsilonproteobacteria; Campylobacterales; Helicobacteraceae;



Helicobacter; Helicobacter_genosp._FL56


denovo4759
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae;



[Ruminococcus]_gnavus_group; uncultured_bacterium


denovo4770
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Blautia;



uncultured_bacterium


denovo4820
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Sellimonas;



uncultured_bacterium


denovo5010
Bacteria; Firmicutes; Clostridia; Clostridiales; Peptostreptococcaceae; Peptoclostridium;



uncultured_bacterium


denovo5029
Bacteria; Firmicutes; Clostridia; Clostridiales; Peptostreptococcaceae; Intestinibacter;



uncultured_bacterium


denovo5065
Bacteria; Fusobacteria; Fusobacteriia; Fusobacteriales; Fusobacteriaceae;



Fusobacterium; uncultured_organism


denovo5077
Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Lactobacillus;



uncultured_bacterium


denovo5125
Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae;



Ruminococcaceae_UCG-014; uncultured_bacterium


denovo5198
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Blautia;



uncultured_bacterium


denovo5255
Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae_1; Clostridium_sensu_stricto_1;



uncultured_bacterium


denovo5282
Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Alcaligenaceae;



Parasutterella; uncultured_bacterium


denovo5343
Bacteria; Firmicutes; Negativicutes; Selenomonadales; Veillonellaceae; Megamonas;



uncultured_bacterium


denovo5401
Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae;



Ruminococcaceae_UCG-014; uncultured_bacterium


denovo5480
Bacteria; Firmicutes; Negativicutes; Selenomonadales; Veillonellaceae; Veillonella;



Veillonella_sp._oral_clone_VeillE3


denovo5706
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Tyzzerella;



uncultured_organism


denovo5855
Bacteria; Firmicutes; Clostridia; Clostridiales; Peptostreptococcaceae; Romboutsia;



uncultured_bacterium


denovo5873
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Anaerostipes;



uncultured_bacterium


denovo6118
Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae;



Providencia; uncultured_bacterium


denovo6511
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; uncultured;



uncultured_organism


denovo6738
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Roseburia;



uncultured_organism


denovo6823
Bacteria; Firmicutes; Clostridia; Clostridiales; Peptostreptococcaceae; uncultured;



uncultured_bacterium


denovo6858
Bacteria; Actinobacteria; Coriobacteriia; Coriobacteriales; Coriobacteriaceae; Collinsella;



uncultured_bacterium


denovo6879
Bacteria; Actinobacteria; Actinobacteria; Bifidobacteriales; Bifidobacteriaceae;



Bifidobacterium; uncultured_bacterium


denovo7211
Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae;



Klebsiella; Shigella_dysenteriae


denovo7257
Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales; Pasteurellaceae;



Haemophilus; uncultured_bacterium


denovo7291
Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus;



uncultured_bacterium


denovo7373
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; uncultured;



unidentified


denovo7504
Bacteria; Firmicutes; Bacilli; Bacillales; Staphylococcaceae; Staphylococcus;



uncultured_bacterium


denovo7649
Bacteria; Firmicutes; Clostridia; Clostridiales; Family_XI; Finegoldia;



uncultured_Finegoldia_sp.


denovo7915
Bacteria; Firmicutes; Clostridia; Clostridiales; Family_XI; Peptoniphilus;



uncultured_bacterium


denovo7972
Bacteria; Actinobacteria; Actinobacteria; Bifidobacteriales; Bifidobacteriaceae;



Bifidobacterium; uncultured_actinobacterium


denovo8295
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Roseburia;



uncultured_organism


denovo8302
Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Lactobacillus;



uncultured_bacterium


denovo8443
Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae_1; Clostridium_sensu_stricto_1;



uncultured_bacterium


denovo8456
Bacteria; Firmicutes; Negativicutes; Selenomonadales; Veillonellaceae; Veillonella;



uncultured_bacterium


denovo8600
Bacteria; Fusobacteria; Fusobacteriia; Fusobacteriales; Fusobacteriaceae; Fusobacterium;



uncultured_bacterium


denovo8725
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Lachnoclostridium;



uncultured_bacterium


denovo8737
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; uncultured; unidentified


denovo8845
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Tyzzerella_3;



uncultured_bacterium


denovo8862
Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Alcaligenaceae; Sutterella;



uncultured_bacterium


denovo8911
Bacteria; Firmicutes; Negativicutes; Selenomonadales; Veillonellaceae; Veillonella;



uncultured_bacterium


denovo8973
Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus;



uncultured_bacterium


denovo9448
Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Pediococcus;



uncultured_organism


denovo9465
Bacteria; Firmicutes; Erysipelotrichia; Erysipelotrichales; Erysipelotrichaceae; Turicibacter;



uncultured_bacterium


denovo9596
Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales; Pasteurellaceae;



Haemophilus; Haemophilus_haemoglobinophilus


denovo10082
Bacteria; Firmicutes; Negativicutes; Selenomonadales; Veillonellaceae; Megamonas;



uncultured_bacterium


denovo10107
Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Butyricicoccus;



uncultured_bacterium


denovo10120
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae;



[Ruminococcus]_torques_group; uncultured_bacterium


denovo10185
Bacteria; Firmicutes; Negativicutes; Selenomonadales; Veillonellaceae; Veillonella;



uncultured_bacterium


denovo10268
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Lachnoclostridium;



unculturedbacterium


denovo10279
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Blautia;



uncultured_bacterium


denovo10356
Bacteria; Firmicutes; Bacilli; Lactobacillales; Enterococcaceae; Enterococcus;



uncultured_bacterium


denovo10534
Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Lactobacillus;



uncultured_bacterium


denovo10565
Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus;



Streptococcus_sp._C8I9


denovo10566
Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae_1; Clostridium_sensu_stricto_1;



uncultured_bacterium


denovo10663
Bacteria; Fusobacteria; Fusobacteriia; Fusobacteriales; Fusobacteriaceae; Fusobacterium;



uncultured_bacterium


denovo10707
Bacteria; Fusobacteria; Fusobacteriia; Fusobacteriales; Fusobacteriaceae; Fusobacterium;



uncultured_Clostridium_sp.


denovo10831
Bacteria; Fusobacteria; Fusobacteriia; Fusobacteriales; Fusobacteriaceae; Fusobacterium;



uncultured_organism


denovo11006
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Blautia;



uncultured_bacterium


denovo11009
Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales; Pasteurellaceae;



Haemophilus; Pasteurellaceae_bacterium_canine_oral_taxon_272


denovo11016
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae;



Lachnospiraceae_NK4A136_group; uncultured_bacterium


denovo11369
Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Lactobacillus;



uncultured_bacterium


denovo11380
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Blautia;



uncultured_bacterium


denovo11572
Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae; Prevotella_9;



uncultured_bacterium


denovo11581
Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; uncultured;



uncultured_bacterium


denovo11693
Bacteria; Fusobacteria; Fusobacteriia; Fusobacteriales; Fusobacteriaceae; Fusobacterium;



uncultured_bacterium


denovo11744
Bacteria; Firmicutes; Erysipelotrichia; Erysipelotrichales; Erysipelotrichaceae;



[Clostridium]_innocuum_group; uncultured_bacterium


denovo11790
Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Faecalibacterium;



uncultured_bacterium


denovo11942
Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae_1;



Clostridium_sensu_stricto_1; uncultured_bacterium


denovo12042
Bacteria; Firmicutes; Clostridia; Clostridiales; Peptostreptococcaceae; Terrisporobacter;



uncultured_bacterium


denovo12057
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae;



[Ruminococcus]_gauvreauii_group; uncultured_bacterium


denovo12145
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Blautia;



uncultured_bacterium


denovo12176
Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus;



Streptococcus_minor


denovo12209
Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; uncultured;



uncultured_bacterium


denovo12346
Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales; Pasteurellaceae;



Frederiksenia; uncultured_bacterium


denovo12377
Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Butyricicoccus;



uncultured_Clostridiales_bacterium


denovo12400
Bacteria; Proteobacteria; Gammaproteobacteria; Oceanospirillales; Halomonadaceae;



uncultured_Halomonas_sp.









To further investigate the bacterial taxa (OTUs) detected in the puppy microbiota immediately after birth and during the receipt of colostrum and maternal milk postpartum, samples from puppies 2 days after birth were assessed for taxonomic designations in the faecal microbiota. These analyses demonstrated a high proportion of taxa in terms of species richness, that have previously been detected in healthy controls from studies of the microbiota in other mammals and hence can be considered to be associated with health in puppies (see FIG. 8 (Table 1.1) and Table 1.2 (below)). Out of a total of 141 taxa (OTUs) representing individual species, 61 (43%) were identified as bacterial species (mostly novel species) of genera associated with health in mammals or other animals.


Graphical representations of the phyla represented in faeces suggested an apparent shift in the proportions of phyla detected and Shannon diversity of the faecal microbiota (FIGS. 2A and 2B). Similarly to humans the major shift in the microbiota in puppies was observed at weaning (days 19-35). The mean abundance and range of those taxa associated with health in humans and other mammals was assessed, to determine whether significant contrasts in the relative abundances were observed between day 2 (pre-weaning, earliest timepoint after birth and during receipt of colostrum/lactation) and day 45 (post weaning; see FIG. 8 (Table 1.1); see Figures). The direction of contrast and size/degree of contrasts are considered indicative of biologically relevant differences in population abundance. The magnitude of contrasts in these timepoints gives context for shifts or differences between individuals in these taxa that can have implications for health in puppies and young adult dogs.


CONCLUSIONS

Taken together, the identification of a high proportion of taxa closely related to those associated with healthy controls across various conditions in other mammals (FIG. 8 (Table 1.1)) and additionally the observed progression of the puppy microbiota over time from birth to a more diverse community structure (FIG. 2B) are suggestive of the compositional factors associated with health in dogs. The compositional characteristics and degree of change occurring over time in the bacterial species making up the microbiome of healthy puppies, can be used in the context of health associated taxa in other mammals to inform optimal levels of both bacterial taxa and measures of diversity in puppies and in dogs post-weaning as described below in the methods of the present disclosure.


Methods

The method involves the extraction of DNA from a freshly produced faecal sample by a means such as the QIAamp Power Faecal DNA kit (Qiagen) and subsequently the use of molecular biology techniques to assess the detection rate and abundance of the combination of the bacterial taxa or DNA sequences described below and in FIG. 8 (Table 1.1) and Table 1.2 (below) as well as biomarkers for those organisms compared to standardised healthy control samples from animals of the same (microbiome) lifestage according to the results of these studies (preweaned puppies days 2-24 post-partum or weaned puppies 24-52 days post-partum). Comparison can also be made to animals of the same ‘microbiome lifestage’ with chronic gastrointestinal enteropathy, IBD, acute diarrhoea and chronic diarrhoea. The interpretation of health status is then made based on the combination and relative abundance of the health associated organisms detected in the faeces of the dogs allow the assessment of health status of the microbiome and indicate how the health of the microbiome can be enhanced in terms of the direction and magnitude of change in the gut microbiota (See FIG. 9 (Table 1.3); see Figures).


Assessment of the microbiome components observed in the faeces of the dog can be undertaken at an individual point in time for assessment against healthy and unhealthy clinical controls in the same lifestage to receive a description of the health of the microbiome at a specific timepoint. Alternatively, the gastrointestinal health of the dog can be monitored over time by assessment of the gut microbiome periodically at intervals such as 6 monthly or one yearly tests/assessments or following particular events such as gastrointestinal upset or travel. The results of detection and relative abundance of the microbial species associated with health (or with the disease condition) can then be compared with the previous results or cumulative (averaged) results from the previous assessments of the microbiome from the individual dog. In the case of longitudinal assessment of an individual over time, adjustments must be made as the animal crosses from one microbiome lifestage to the next by additional comparisons to control cohorts such as provided within the data reported here.


After DNA extraction from freshly produced faeces and sequencing of the DNA by techniques such as 16 S rDNA amplicon, shotgun, metagenome, Illumina, nanopore or other DNA sequencing techniques, the resulting DNA sequences are clustered to species (>98% ID) level. Assessment of the relative abundance of the sequences descriptive of the organisms in table 1.1 or DNA sequences within 95% identical to those in Table 1.2 or of other DNA, RNA or protein sequences or biomarkers of those species specified in FIG. 8 (Table 1.1) and Table 1.2 is made. Briefly, sequence data obtained from the test sample is clustered into groups of sequences with from about 98% to 100% identity and a reference sequence from the clusters which represent>0.001% of the total sequences is then used to either 1) assign taxonomy or function through database homologues or to determine the nature of the biomarker through homology searches of DNA databases such as the Greengenes or Silva or the NCBI non-redundant nucleotide sequence database for comparison to known DNA sequences for species held within the databases or 2) compared to the DNA sequences given in Table 1.2.


The number and abundance of the organisms, sequences or biomarkers identified from within the bacterial combinations described in FIG. 8 (Table 1.1) and Table 1.2 are then used to compare to the same data number of organisms and abundance of the individual and total load of the health associated species described in FIG. 8 (Table 1.1) or possessing DNA sequences within 97% Identity to those in Table 1.2, according to the parameters described in FIG. 9 (Table 1.3).


Example 2: Species for Detecting the Health of the Gut Microbiome in Adult and Senior Dogs
Summary

The faecal microbiota was assessed in a cohort of 41 adult Beagle dogs aged between 3.8 and 15.0 years to determine the characteristics of the gut microbiota in healthy adult and mature dogs. The study cohort included 13 animals assigned to the adult group (aged 3.8-6.2 years), 20 dogs assigned to the senior group (aged 8.2-12.9 years) and 8 dogs assigned to the geriatric group (aged 14.6-15.0 years).


BACKGROUND

The gastrointestinal (GI) microbiota is linked to the development of ‘normal’ gut histology during growth and development, whilst an altered gut histology has been reported in aging pets including in dogs and rodents. Aging is associated with an increased incidence of GI pathologies including infection, neoplasia, or other inflammatory conditions. Reported physiological alterations in digestive function associated with advancing age includes slower GI transit, altered enzymatic activity and reduced bile secretions [42]. Histological changes also occur in the gut with aging including reduced duodenal villus surface area, lower jejunal villus height, and greater colonic crypt depth [43]. Whether the full range of age-related changes in digestion and absorption of nutrients recognized in humans [44] also affects pet animals remains unclear.


Similarly to the understanding of gastrointestinal physiology in aging, human research conducted over the last decade has uncovered associations between aging and alterations in the gut microflora. More recently high-throughput sequencing (HTS) and specialised DNA array technologies have yielded further evidence of links between the microbiome and healthy longevity. The most noticeable feature in the microbiota of elderly humans is an alteration in the relative proportions of the Firmicutes and the Bacteroidetes, with the elderly having a higher proportion of Bacteroidetes while young adults have higher proportions of Firmicutes [45]. Significant decreases in bifidobacteria, Bacteroides, and Clostridium cluster XIV have also been reported to be associated with aging in humans [46]. Changes occurring in the microbiota during aging can be related to the health of the host and van Tongeren et al. (2005) [47] studied the relationship between microbial diversity and frailty scores in elderly humans.


The relationship between diet, host health, environment, and the gut microbiota in humans was studied by Claesson et al. (2012) [48] and associations were observed between microbial diversity, the functional independence measure (FIM), the Barthel index (used to evaluate performance in daily routine activities) and nutrition. Decreased microbial diversity correlated with increased frailty, decreased diet diversity and health parameters, and with increased levels of inflammatory markers. Individuals living in the community had the most diverse microbiota and were ‘healthier’ as compared to those in short- or long-term residential care. This reduced diversity associated with aging was also identified by Biagi et al., (2010) [49] in centenarians, though Bacteroidetes and Firmicutes remained the dominant phyla, with enrichment for potentially pathogenic Proteobacteria in older subjects.


The objective of this study was to determine whether differences exist in the microbiota of healthy adult, senior and geriatric dogs. The primary endpoints of interest for the analysis were microbial diversity and community composition as measured by relative taxon abundance at species level (98% 16 S rDNA sequence identity) across life stage groups.


Methods
Study Design

A cross-sectional study employing contrasts between groups to assess the composition of faecal bacterial populations as a marker of the gut microbiota was conducted in a cohort of 41 Beagle dogs aged between 3.8 and 15.0 years. The study was conducted at the Mars Inc. Pet Health and Nutrition Centre (PHNC, Lewisburg, Ohio, USA). Animals were assigned to one of three groups. Animal assignment to group was based on age with specific groups determined through evidence-based aging research, in which data from Banfield hospital visits and the resulting veterinary diagnoses were analysed and correlations between diagnoses and the age of the attending dogs were investigated (Salt and Saito, submitted; see also Table 5). Life stage groups were defined as adult (target age range 3-6 years), senior (target age range 9.5-12 years) and geriatric (target age range 14+ years) dogs. All Beagle dogs were fed a consistent commercial dry kibble diet (Royal Canin medium adult 7+ dog; BO189205) for a period of 30 days and freshly defaecated faecal samples were collected from each individual dog at days 21, 24 and 28 producing biological triplicate samples. Animals were housed in pen pairs overnight and were maintained in social paddock groups during the day.


Animals

All animals received a veterinary health check to determine suitability for inclusion prior to the start of the study. The cohort of 41 adult pure-bred Beagle dogs that were assigned to the study were aged between 3.8 and 15.0 years. The study cohort included 13 animals assigned to the adult group (aged 3.8 to 6.2 years), 20 dogs assigned to the senior group (aged 8.2 to 12.9 years) and 8 dogs assigned to the geriatric group (aged 14.6 to 15.0 years). Dogs were provided with access to fresh drinking water at all times and were socialised and exercised consistently throughout the study according to standard practices for the PHNC facility.


Diet

During the 30 days of the study all dogs received the same dry kibble commercially available mainmeal diet (Royal Canin medium adult 7+ dog; BO189205) that met AAFCO minimum standards. Additionally a 10 g bolus of wet dog food (Royal Canin;—BO188237) was fed daily to all dogs within the cohort to facilitate feeding of pills/medication in those dogs with active veterinary prescriptions. Dogs were fed at energy levels (mean energy requirements; MER) to maintain a healthy body condition score (BCS) and bodyweight. The aim was to restrict any fluctuations in bodyweight to within +/−5% throughout the study. Food portions were offered to a total of 100% of the animal's daily MER with treats offered from the main meal diet portion and with the remaining diet fed in two approximately equal (˜50% MER) portions twice a day in the morning and the afternoon.


Wellbeing

Dogs were familiarised to study personnel and continued with their normal routine, activities and management protocols throughout the study. Animals were housed, received paddock exercise and were exercised outside of paddocks within their study cohorts. Habituation and training procedures followed the standard PHNC care package and animals were socialised with human carers for a minimum of 1 hour each day. Unsupervised meet and greets with other Beagle dogs were incorporated into activities during the whole duration of the study as standard for PHNC. Veterinary prescribed medications were given to the dogs as per standard husbandry procedures and in line with the appropriate prescription within the 10 g wet food bolus.


Data Collection

During the study, data on the following co-variates were collected for inclusion in analyses to establish whether any contrasts existed between groups (i.e., were associated with adult, senior or geriatric life stages).

    • Daily and overnight faeces scores per pair*
    • Daily food intake
    • Bodyweight and body condition score


      *All collected faeces were scored using the WALTHAM 17-point faeces quality scale and incidences of poor faeces (outside of the acceptable range 1.5-3.75) were recorded.


Faeces Sample Collection and Processing

Fresh faecal samples were collected with the samples collected frequently representing the first defaecation of the day to ensure the sample was secured. The majority of samples were freshly produced in grass paddocks. Samples were collected immediately, no more than 15 minutes after defecation. Following collection, faeces were portioned into 6 aliquots of 400 mg faeces in sterile 2 ml Lo-Bind Eppendorf tubes. Samples were stored at −80 degrees centigrade.


A 100 mg portion of the faeces was removed and DNA extraction was conducted using the QIAamp Power Faecal DNA kit (Qiagen, UK) according to the manufacturer's instructions. Following DNA extraction, DNA yields achieved per sample were determined by standard nanodrop DNA quantification methods. Faecal DNA was then diluted 1:10 prior to preparation of Illumina high throughput DNA sequencing libraries by PCR amplification of the 16 SrDNA locus (V4-6 region; Fadrosh et al., 2014) using dual indexed primers (319F: CAAGCAGAAG ACGGCATACG AGATGTGACT GGAGTTCAGA CGTGTGCTCT TCCGATCT and 806R: AATGATACGG CGACCACCGA GATCTACACT CTTTCCCTAC ACGACGCTCT TCCGATCT).


DNA sequencing of the amplified DNA libraries was conducted by Eurofins Applied Genomics Laboratory (Eurofins Genomics; Anzinger Str. 7a; 85560 Ebersberg; Germany) using a Miseq Illumina system (chemistry v.3; 2×300 bp paired end sequencing) at a depth of 160 samples/run. DNA libraries were provided in 30 ul volumes to Eurofins. Samples were quantified by Eurofins Genomics and pooled prior to loading, library pool concentrations were determined prior to processing to optimise Illumina channel loading. Data were supplied electronically.


The resulting DNA sequences were clustered into operational taxonomic units at 98% identity approximately representative of species and abundant taxa (representing>0.001 of the total sequences) were then assessed for their relative proportions. The taxonomic groups of bacteria represented by the sequences detected were determined by interrogation of the Greengenes or Silva v132 16 S rDNA databases. Comparison of the taxonomic group to organisms associated with health and disease in other mammals was utilised to highlight bacterial taxa present in the dog and representative of health of the microbiome.


Quality thresholds of a minimum of 1,000 sequence reads per sample were defined and where sequence data did not reach this level it was removed from the analysis. Sequence data was de-noised to remove chimeras and was clustered into putative taxa based on 98% sequence identity using the WALTHAM bioinformatics analysis pipeline. The resulting operational taxonomic unit (OTU) data was reduced to the non-rare portion through the removal of taxa representing<0.05% of the sequences in <2 animals from any one group. Following reduction to the non-rare portion of the population, the identification of OTUs based on a single taxon reference sequence selected as the most representative sequence of the cluster was analysed again through the WALTHAM bioinformatics analysis pipeline. Through the pipeline taxon reference sequences were used to interrogate the curated Greengenes (McDonald et al., 2012) and Silva (release 132; Yilmaz et al., 2014) databases to identify sequences in these databases with similarity criteria within 98% identity compared to the non-rare taxon reference sequences. Taxonomic assignments were then made based on sequence identity to the top database hit having first assessed the top hit against the top 10 hits resulting from database searches for each reference sequence. Greengenes taxonomic assignments were considered to be the most accurate (Personal communication Z. Lonsdale/A. Cawthrow) and hence in the case of discrepancies between searches the Greengenes assignments were used. Additionally OTU reference sequences were used to interrogate Greengenes and Silva (R 132) databases for entries with a 98% identity threshold such that only entries apparently representing the same species were returned as results.


Statistical Methods

Preliminary exploratory analyses were performed using principal components analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE) to reduce the dimension of the data and visually represent groups. Shannon diversity was calculated for each sample and modelled using a linear mixed effects model with a fixed effect of age group and random intercept of pet. Pairwise comparisons of the life stage groups were performed with a controlled familywise error rate of 5%.


Prior to individual modelling of the bacterial OTUs which approximately represented individual species, rare OTUs were identified as those with a mean proportion of less than 0.05% and present in two or fewer samples from a single age group. After identification, rare OTUs were combined to create a single group. The relative abundance compared to the sample total for each clustered OTU, and for the combined rare group, was analysed individually using a generalised linear mixed effects model (GLMM) with a binomial distribution and logit link function. In the model, counts and total counts represented the response variables including life stage group as a fixed effect, with a random intercept of dog to account for the repeated measurements. All pairwise comparisons were performed between life stage groups using a permutation test permuting the group indicator for each pet. A familywise error rate of 5% was maintained using multiple comparisons correction. The associated primary measures were analysed with linear and generalised linear models, with random effects in the cases where repeated measures were taken per pet. A supervised dimension reduction and regression method, partial least squares discriminate analysis (PLS-DA) was used to relate these primary measures to the taxon abundance data.


Results

Clustering of DNA sequences representative of bacterial taxa at 98% identity resulted in the identification of 10,872 species level OTUs. This total was reduced to 119 species level OTUs after removal of the rare OTUs to a pseudo group of ‘rare taxa’. Individual analysis of rare OTUs was not conducted since these taxa represented less than 0.05% of the sequences in less than two individuals from any single group.


Interrogation of the Greengenes database with reference sequences representing each of the OTUs resulted in 1898 blast results and supported species assignment to 31 of the 119 common taxa (26%). For the 31 OTUs identified these were utilised as the most complete and accurate designation of taxonomy. By comparison, interrogation of the Silva database resulted in 2638 entries relevant to 70 of the 119 common taxa (58.8%). These species designations were used as secondary descriptors for the 39 species not identified by interrogation of the Greengenes database. Taxonomic designations of bacterial species (OTUs) detected in faeces from adult senior and geriatric dogs revealed microbial taxa associated with health in humans and other mammals (FIG. 10 (Table 2.1) and Table 2.2)). Out of a total of 141 taxa representing individual species, 61 (43%) were identified as bacterial species associated with health in non-canid mammals.


Method

The method involves the extraction of DNA from a freshly produced faecal sample by a means such as the QIAamp Power Faecal DNA kit (Qiagen) and subsequently the use of molecular biology techniques to assess the detection rate and abundance of the bacterial taxa or DNA, RNA or protein sequences characteristic of those described below (FIG. 10 (Table 2.1) and Table 2.2) as well as biomarkers for those organisms compared to standardised healthy control samples and to animals with chronic gastrointestinal enteropathy, IBD, acute diarrhoea and chronic diarrhoea. The interpretation of health status is then made based on the combination and relative abundance of the health associated organisms detected in the faeces of the dogs of the same microbiome lifestage to allow the assessment of health status of the microbiome in the individual and indicate how the health of the microbiome can be enhanced.


Assessment of the microbiome components observed in the faeces or GI sample from the dog can be undertaken at an individual point in time for assessment against healthy and/or clinical controls in the same lifestage, to receive a description of the relative health of the microbiome at a specific timepoint. Alternatively, the gastrointestinal health of the dog can be monitored over time by assessment of the gut microbiome periodically at intervals such as 6 monthly or one yearly tests/assessments or following particular events such as gastrointestinal upset, or travel. The results of detection and relative abundance of the microbial species associated with health (or with the disease condition) can then be compared with the previous results or cumulative (averaged) results from the previous assessments of the microbiome from the individual dog. In the case of longitudinal assessment of an individual over time, adjustments must be made as the animal crosses from one microbiome lifestage to the next by additional comparisons to control cohorts such as provided within the data reported here.


After DNA extraction from freshly produced faeces and sequencing of the DNA by techniques such as 16 S rDNA amplicon, shotgun, metagenome, Illumina, nanopore or other DNA sequencing techniques, the resulting DNA sequences are clustered to species (>98% ID) level. Assessment of the relative abundance of the sequences descriptive of the organisms in FIG. 10 (Table 2.1) or DNA sequences within 95% identical to those in Table 2.2 or other DNA, RNA or protein sequences or biomarkers of those species specified in FIG. 10 (Table 2.1) and Table 2.2 is made. Briefly, sequence data obtained from the test sample is clustered into groups of sequences with about 98%-100% identity and a reference sequence from the clusters which represent>0.001% of the total sequences is then used to either 1) assign taxonomy or gene function through database homologues or to determine the nature of the biomarker through homology searches of DNA databases such as the Greengenes or Silva or the NCBI non-redundant nucleotide sequence database for comparison to known DNA sequences of species held within the databases or 2) compared to the DNA sequences given in Table 2.2.


The number and abundance of the organisms, sequences or biomarkers described within FIG. 10 (Table 2.1) and Table 2.2 are then used to compare to the same data number of organisms and abundance of the individual and total load of the health associated species described in FIG. 11 (Table 2.3). Should the bacterial content or abundance in the faeces or GI sample fall below the notification point listed for the organisms of all of the organisms from a genus this is indicative that the animal can benefit from an intervention to support that bacterial genus to through interventions such as dietary manipulation, supplementation, or other supportive means.


Example 3: A Method of Detecting Health in the Canine Gut Microbiome Based on Diversity
Background

Diversity in the gastrointestinal microbiota in humans has been associated with race/ethnicity, nutritional status, dietary diversity and with host health [50;51]. The human infant gut microbiota increases in diversity as it matures, becoming more stable over time, until the community resembles an adult-like state at around three years old [52; 22]. Bacterial species succession in human infants during development is unique to each individual, influenced by host genetics, and susceptible to the influence of multiple factors in post-natal care [22;53]. The early colonization and subsequent maturation including the development of diversity of the microbiome is reported to have long-term health implications for the human host with possible implications on immune function and allergic disease incidence impacting health in later life. The relationships are however complex with C-section birth and formula feeding reported to effect diversity compared to natural modes of birth and breast feeding [54;50;55;56]. The modes of birth and postnatal nutrition delaying the development of diversity appear to be associated with longer term health effects in humans [55].


Data in kittens fully weaned at 5 weeks of age suggest that the microbiota is compositionally similar to the adult feline as early as week 8, demonstrated by a largely stable microbiota over the period from 8 to 16 weeks [57]. Adult dogs have also been shown, similarly to humans and cats to have a highly diverse microbiota which is relatively stable over time [58;59]. The developing microbiota in puppies remains relatively undescribed and hence, research to investigate the developing microbiota in early life and throughout weaning was conducted to understand the composition and diversity of the microbiota in early development and through weaning in growing puppies.


Methods

The same methods used in Examples 1 and 2 are followed in Example 3.


Results

Assessment of Shannon diversity in microbiota analyses of faeces from puppies prior to and throughout the weaning period yielded diversity estimates at each time point suggested low diversity in the puppy faecal microbiota for the first 24 days with an increase after 31 days (during weaning) up to the end of the study (FIG. 4, FIG. 12 (Table 3.1), and Table 3.2). Statistically significant differences were observed between day 4 and days 31, 38, 45 and 52.


In a second study of a cohort of 48 adult Beagle dogs including 20 adult dogs and 28 in mature life stages, relative consistency was observed in the Shannon diversity of faecal bacterial content across the cohort (FIGS. 5A and 5B).


Method

The method involves the extraction of DNA from a freshly produced faecal sample by a means such as the QIAamp Power Faecal DNA kit (Qiagen) and subsequently the use of molecular biology techniques to detect the 16 S rDNA or rRNA present or other genetic features thus determining the bacterial abundance and taxon or species richness of the microbial community in faeces or other gastrointestinal sample. After DNA extraction from freshly produced faeces and sequencing of the DNA by techniques such as 16 S rDNA amplicon, shotgun, metagenome, Illumina, nanopore or other DNA sequencing techniques, the resulting DNA sequences are clustered to species (>98% ID) level and the relative abundance of the taxa is determined for the individual OTUs as a proportion of the total sequences. The total number of OTUs and relative abundance data is used to calculate Shannon diversity which accounts for both abundance and evenness of the species detected. Shannon Diversity can be calculated by the following method:







Shannon





Index






(
H
)


=

-




i
=
1

s




p
i






ln






p
i








After determination of the diversity of the microbiota using functions such as alpha diversity including Shannon diversity index and total OTU numbers with the sample, diversity can be compared to standardised samples from healthy control populations within the same lifestage (see FIG. 12 (Table 3.1), Table 3.2, and Table 3.3) and to animals of similar age with chronic gastrointestinal enteropathy, IBD, acute or chronic diarrhoea or other gastrointestinal symptoms.


The interpretation of health status is then made based on the level of the diversity detected in the faeces of the dog in context of the animals lifestage (puppy, adult, senior or geriatric lifestage) to allow the assessment of microbiome health and to indicate how gastrointestinal health can be enhanced in terms of the direction and magnitude of change in the gut microbial diversity.


Assessment of the microbiome components observed in the faeces of the puppy or adult or aged dog can be undertaken at an individual point in time for assessment against healthy and unhealthy clinical controls of a similar age as described above to receive a description of the health of the microbiome at a specific timepoint. Alternatively, the gastrointestinal health of an individual dog can be monitored over time by testing/assessment of the gut microbiome periodically at intervals such as 6 monthly or annual or following particular events such as gastrointestinal upset, or travel. The results of assessment of the microbial diversity can then be compared with the previous results or cumulative (averaged) results from the previous assessments of the microbiome from the individual dog.









TABLE 1.2







DNA sequences for bacterial taxa associated with health in mammals and detected in


puppies










SEQ



OTU
ID
16SrDNA partial DNA sequence





Pu_denovo1000
 3
CCCGTTCGCTACCCTAGCTTTCGAGCCTCAGCGTCAGTTACAGTCCAGAAAGC




CGCCTTCGCCACTGGTGTTCTTCCCAATATCTACGCATTTCACCGCTACACTGG




GAATTCCGCTTTCCTCTCCTGCACTCAAGAAAACCAGTTCGGACCCCATCACG




GGGTTGAGCCCCGCACTTTTAAGATCCGCTTAGTTTCCCGCCTGCGCTCCCTTT




ACGCCCAATAATTCCGGACAACGCTTGCCGCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGTGGCTTCCTCGTTAGGTACCGTCAAATAAAAACCTTAT




TATGATTCTTACCCTTCGTCCCTAACAACAGAACTTTACGATCCTAAGACCTTC




ATCGTTCACGCGGCGTTGCTCCGTCAGGCTTTCGCCCATTGCGGAAGATTCCCC




A





Pu_denovo10082
 4
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAGTCCAGAGAGTC




GCCTTCGCCACTGGTGTTCTTCCTAATCTCTACGCATTTCACCGCTACACTAGG




AATTCCACTCTCCTCTCCTGCACTCAAGAAAACCAGTTCGGACCCCATCACGG




GGTTGAGCCCCGCACTTTTAAGATCCGCTTAGTTTCCCGCCTGCGCTCCCTTTA




CGCCCAATAATTCCGGACAACGCTTGCCGCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGTGGCTTCCTCGTTAGGTACCGTCAAATAAAAACCTTATT




ATGATTCTTACCCTTCGTCCCTAACAACAGAACTTTACGATCCTAAGACCTTCA




TCGTTCACGCGGCGTTGCTCCGTCAGGCTTTCGCCCATTGCGGAAGATTCCCCA





Pu_denovo10107
 5
CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGCGTCAGTTAATGTCCAGCAGGCC




GCCTTCGCCACTGGTGTTCCTCCCAATATCTACGCATTTCACCGCTACACTGGG




AATTCCGCCTGCCTCTCCATCACTCAAGACCCGCAGTTTTGAAAGCAGTTTGG




GGGTTAAGCCCCCAGATTTCACTTCCAACTTACAGGCCCGCCTACACGCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCTCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGAGCTTATTCTTTAGGTACCGTCATTTGTTTCGTCCCTA




ATTAAAGATTTTTACAATCCGAAGACCTTCTTCAATCACGCGGCGTTGCTGCGT




CAGGGTTGCCCCCATTGCCGAAGATTCCCTA





Pu_denovo10120
 6
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACTGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTTACCTCTCCAGCACTCTAGATGAACAGTTTCCAATGCAGTCCCGG




GGTTGAGCCCCGGGTTTTCACATCAGACTTGCCCATCCGTCTACGCTCCCTTTA




CACCCAGTAAATCCGGATAACGCTTGCACCATACGTATTACCGCGGCTGCTGG




CACGTATTTAGCCGGTGCTTCTTAGTCAGGTACCGTCATTATCTTCCCTGCTGA




TAGAGCTTTACATACCGAAATACTTCATCGCTCACGCGGCGTCGCTGCATCAG




GGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo10268
 7
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACTGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTTACCTCTCCAGCACTCTAGCAACACAGTTTCCAAAGCAGTCCCA




GGGTTGAGCCCTGGGTTTTCACTTCAGACTTGCATCGCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCTTGTTTCTTCCCTGCT




GATAGAGCTTTACATACCGAAATACTTCTTCGCTCACGCGGCGTCGCTGCATC




AGGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo10356
 8
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAGACCAGAGAGC




CGCCTTCGCCACTGGTGTTCCTCCATATATCTACGCATTTCACCGCTACACATG




GAATTCCACTCTCCTCTTCTGCACTCAAGTCTCCCAGTTTCCAATGACCCTCCC




CGGTTGAGCCGGGGGCTTTCACATCAGACTTAAGAAACCGCCTGCGCTCGCTT




TACGCCCAATAAATCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCT




GGCACGTAGTTAGCCGTGGCTTTCTGGTTAGATACCGTCAAGGGATGAACAGT




TACTCTCATCCTTGTTCTTCTCTAACAACAGAGTTTTACGATCCGAAAACCTTC




TTCACTCACGCGGCGTTGCTCGGTCAGACTTTCGTCCATTGCCGAAGATTCCCT




A


Pu_denovo10534
 9
CCTGTTTGCTACCCACGCTTTCGAACCTCAGCGTCAGTTACAGACCAGAGAGC




CGCTTTCGCCACTGGTGTTCTTCCATATATCTACGCATTTCACCGCTACACATG




GAGTTCCACTCTCCTCTTCTGCACTCAAGTCTCCCAGTTTCCAATGCACTACTC




CGGTTAAGCCGAAGGCTTTCACATCAGACTTAAAAGACCGCCTGCGTTCCCTT




TACGCCCAATAAATCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCT




GGCACGTAGTTAGCCGTGGCTTTCTGGTTAGATACCGTCGAAACGTGAACAGT




TACTCTCACGCACTTTCTTCTCTAACAACAGGGTTTTACGATCCGAAGACCTTC




TTCACCCACGCGGCGTTGCTCCATCAGGCTTTCGCCCATTGTGGAAGATTCCCT




A





Pu_denovo10707
10
CCTGTTTGCTACCCACGCTTTCGCGCTTTAGCGTCAGTATCTGTCCAGTGGGCT




GGCTTCCCCATCGGCCTTCCTACAAATATCTACGAATTTCACCTCTACACTTGT




AGTTCCGCCCACCTCTCCAGTACTCTAGTTAAGCAGTTTCCAACGCAATACGG




AGTTGAGCCCCGCATTTTCACATCAGACTTACAAAACCGCCTAGACGCGCTTT




ACGCCCAATAAATCCGGATAACGCTTGCGACATACGTATTACCGCGGCTGCTG




GCACGTATTTAGCCGTCGCTTCTTCTGTTAGTACCGTCACTTACTTCGTCCCAA




CTGAAAGCACTTTACATTCCGAAAAACTTCATCGTGCACACAGAATTGCTGGA




TCAGACTTTTGGTCCATTGTCCAATATTCCCCA





Pu_denovo1074
11
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCCAATATCTACGCATTTCACCGCTACACTGGG




AATTCCGCTTACCTCTCCGGCACTCTAGATACACAGTTTCCAAAGCAGTCCCG




GGGTTGAGCCCCGGGCTTTCACTTCAGACTTGCACATCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTG




ATAGAGCTTTACATACCGAAATACTTCTTCGCTCACGCGGCGTCGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo11006
12
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCGGCACTCGAGTATCACAGTTTCCAATGCAGTCCAGG




GGTTGAGCCCCCGCCTTTCACATCAGACTTGCAACACCGTCTACGCTCCCTTTA




CACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGA




TAGAAGTTTACATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCAG




GGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo11016
13
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCTTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCGGCACTCTAGCTAAACAGTTTCCAAAGCAGTCCCG




GCGTTGAGCACCGGGCTTTCACTTCAGACTTGCCTTGCCGTCTACACTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTATTCAGGTACCGTCACTTTCTTCCCTGCTG




ATAGAGCTTTACATACCGAAATACTTCTTCACTCACGCGGCGTCGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo1135
14
CCTGTTTGCTACCCACGCTTTCGAACCTCAGCGTCAGTTACAGACCAGAGAGC




CGCTTTCGCCACTGGTGTTCTTCCATATATCTACGCATTCCACCGCTACACATG




GAGTTCCACTGTCCTCTTCTGCACTCAAGTCGCCCGGTTTCCGATGCACTTCTT




CGGTTAAGCCGAAGGCTTTCACATCAGACCTAAGCAACCGCCTGCGCTCGCTT




TACGCCCAATAAATCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCT




GGCACGTAGTTAGCCGTGGCTTTCTGGTTAGATACCGTCGAAACGTGAACAGT




TACTCTCACGCACTTTCTTCTCTAACAACAGGGTTTTACGATCCGAAGACCTTC




TTCACCCACGCGGCGTTGCTCCATCAGGCTTTCGCCCATTGTGGAAGATTCCCT




A





Pu_denovo11369
15
CCTGTTCGCTACCCATGCTTTCGAGCCTCAGCGTCAGTTGCAGACCAGACAGC




CGCCTTCGCCACTGGTGTTCTTCCATATATCTACGCATTCCACCGCTACACATG




GAGTTCCACTGTCCTCTTCTGCACTCAAGTCGCCCGGTTTCCGATGCACTTCTT




CGGTTAAGCCGAAGGCTTTCACATCAGACCTAAGCAACCGCCTGCGCTCGCTT




TACGCCCAATAAATCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCT




GGCACGTAGTTAGCCGTGACTTTCTGGTTGGATACCGTCACTGCGTGAACAGT




TACTCTCACGCACGTTCTTCTCCAACAACAGAGCTTTACGAGCCGAAACCCTTC




TTCACTCACGCGGTGTTGCTCCATCAGGCTTGCGCCCATTGTGGAAGATTCCCT




A





Pu_denovo11380
16
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCCCTCCGGCACTCAAGCCTGGCAGTTTCCAATGCAGTCCAG




GAGTTGAGCCCCTGCCTTTCACATCAGACTTGCCATGCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTATCTTCCCTGCTG




ATAGAAGTTTACATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo115
17
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGTTACAGTCCAGAGAGCC




GCCTTCGCAACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTCTCCTCTCCTGCACTCAAGTCTTACAGTTTCAAAAGCTTACTACG




GTTGAGCCGTAGCCTTTCACTTCTGACTTGAAAGACCGCCTACGCACCCTTTAC




GCCCAGTAATTCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGC




ACGTAGTTAGCCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGAC




AGAGCTTTACGACCCGAAAACCTTCATCACTCACGCGGCGTTGCTGCATCAGG




GTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo11581
18
CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGCGTCAGTTAATGTCCAGCAGGCC




GCCTTCGCCACTGGTGTTCCTCCCAATATCTACGCATTTCACCGCTACACTGGG




AATTCCGCCTGCCTCTCCATCACTCAAGATCCGCAGTTTTGAAAGCAGTTTGGG




GGTTGAGCCCCCAGATTTCACTCCCAACTTACAGACCCGCCTACACGCCCTTTA




CACCCAGTAAATCCGGATAACGCTTGCTCCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGGAGCTTATTCTTTAGGTACCGTCATTTTTTTCGTCCCTAA




TTAAAGATTTTTACAATCCGAAGACCTTCTTCAATCACGCGGCGTTGCTGCGTC




AGGGTTGCCCCCATTGCGCAATATTCCCCA





Pu_denovo11744
19
CCTATTTGCTCCCCACGCTTTCGTGCCTCAGTGTCAGTTACAGACCAGGCGACC




GCCTTCGCCACTGGTGTTCCTCCATATATCTACGCATTTTACCGCTACACATGG




AATTCCATCGCCCTCTTCTGCACTCTAGCATACCAGTTTCCATAGCTTACAATG




GTTGAGCCATTGCCTTTTACTACAGACTTAGTACGCCACCTACGCACCCTTTAC




GCCCAATGATTCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGC




ACGTAGTTAGCCGTGGCTTTCTGGTAAGCTACCGTCACTCCCATAGCATTTCCT




CTATGAGCCGTTCTTCACTTACAACAGAGCTTTACGATCCGAAGACCTTCTTCA




CTCACGCGGCATTGCTCGTTCAGGGTTTCCCCCATTGACGAAAATTCCCTA





Pu_denovo1178
20
CCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCAGTAACGGCCCAGAGACCT




GCCTTCGCCATTGGTGTTCTTCCCGATATCTACACATTCCACCGTTACACCGGG




ATTCCAGTCTCCCCTGCCGCACTCCAGCCCGCCCGTACCCGGCGCAGATCCA




CCGTTAAGCGATGGACTTTCACACCAGACGCGACGAACCGCCTACGAGCCCTT




TACGCCCAATAAATCCGGATAACGCTTGCACCCTACGTATTACCGCGGCTGCT




GGCACGTAGTTAGCCGGTGCTTATTCAACGGGTACACTCACTCTCGCTTGCTCC




CCGATAAAAGCGGTTTACAACCCGAAGGCCTCCATCCCGCACGCGGCGTCGCT




GCGTCAGGCTTTCGCCCATTGCGCAATATTCCCCA





Pu_denovo11790
21
CCTGTTTGCTACCCACACTTTCGAGCCTCAGCGTCAGTTGGTGCCCAGTAGGCC




GCCTTCGCCACTGGTGTTCCTCCCGATATCTACGCATTCCACCGCTACACCGGG




AATTCCGCCTACCTCTGCACTACTCAAGAAAAACAGTTTTGAAAGCAGTTTAT




GGGTTGAGCCCATAGATTTCACTTCCAACTTGTCTTCCCGCCTGCGCTCCCTTT




ACACCCAGTAATTCCGGACAACGCTTGTGACCTACGTTTTACCGCGGCTGCTG




GCACGTAGTTAGCCGTCACTTCCTTGTTGGGTACCGTCATTATCTTCCCCAACA




ACAGGAGTTTACAATCCGAAGACCTTCTTCCTCCACGCGGCGTCGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo1192
22
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTGGG




AATTCCGCTTTCCTCTCCTGCACTCAAGAAAACCAGTTCGGACCCCATCACGG




GGTTGAGCCCCGCACTTTTAAGATCCGCTTAGTTTCCCGCCTGCGCTCCCTTTA




CGCCCAATAATTCCGGACAACGCTTGCCGCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGTGGCTTCCTCGTTAGGTACCGTCAAATAAAAACCTTATT




ATGATTCTTACCCTTCGTCCCTAACAACAGAACTTTACGATCCTAAGACCTTCA




TCGTTCACGCGGCGTTGCTCCGTCAGGCTTTCGCCCATTGCGGAAGATTCCCCA





Pu_denovo12042
23
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGTGTCAGTTACAGTCCAGAAAGCC




GCCTTCGCTACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTTTCCTCTCCTGCACTCAAGTTTCCCAGTTTCAAGAGCTTACTACG




GTTGAGCCGTAGCCTTTCACTCCTGACTTAAGAAACCACCTACGCACCCTTTAC




GCCCAGTAAATCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGC




ACGTAGTTAGCCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGAC




AGAGTTTTACGACCCGAAGGCCTTCATCACTCACGCGGCGTTGCTGCATCAGG




CTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo12057
24
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTATCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTTACCCCTCCGACACTCTAGACTGACAGTTTCCAATGCAGTCCCGG




GGTTGAGCCCCGGGTTTTCACATCAGACTTGCCAGTCCGTCTACGCTCCCTTTA




CACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGA




TAGAGCTTTACATACCGAAATACTTCTTCGCTCACGCGGCGTCGCTGCATCAG




GGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo12145
25
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCGGCACTCTAGAAAAACAGTTTCCAATGCAGTCCTG




GGGTTAAGCCCCAGCCTTTCACATCAGACTTGCTCTTCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTG




ATAGAAGTTTACATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo12145
26
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCGGCACTCTAGAAAAACAGTTTCCAATGCAGTCCTG




GGGTTAAGCCCCAGCCTTTCACATCAGACTTGCTCTTCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTG




ATAGAAGTTTACATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo1220
27
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGCGTCCGTTACAGTCCAGAGAGTC




GCCTTCGCACCTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTCTCCTCTCCTGCACTCAAGTCTTACAGTTTCAAAAGCTTACTACG




GTTGAGCCGTAGCCTTTCACTTCTGACTTGAAAGACCACCTACGCACCCTTTAC




GCCCAGTAATTCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGC




ACGTAGTTAGCCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGAC




AGAGCTTTACGACCCGAAGGCCTTCATCGCCCACGCGGCGTTGCTGCATCAGG




CTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo12209
28
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACAGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCTGCACTCCAGCAGCACAGTTTCCAAAGCAGTCCGC




GGGGTTGAGCCCCGGGCTTTCACTTCAGACTTGCACCGCCGTCTACGCTCCCTT




TACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCT




GGCACGTAGTTAGCCGGGGCTTCTTAGTCAAGTACCGTCATTTTCTTCCTTGCT




GATAGACCTTTACATACCGAAATACTTCTTCAGTCACGCGGCGTCGCTGCATC




AGGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo12377
29
CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGCGTCAGTTAATGTCCAGCAGGCC




GCCTTCGCCACTGGTGTTCCTCCCAATATCTACGCATTTCACCGCTACACTGGG




AATTCCGCCTGCCTCTCCATCACTCAAGACTCGCAGTTTTGAAAGCAGTTTCGG




GGTTAAGCCCCGAGATTTCACTTCCAACTTGCAAGCCCGCCTACACGCCCTTTA




CACCCAGTAAATCCGGATAACGCTTGCTCCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGGAGCTTATTCTTCAGGTACCGTCATTTTCTTCGTCCCTGA




TTAAAGATTTTTACAATCCGAAGACCTTCATCAATCACGCGGCGTTGCTGCGTC




AGGGTTGCCCCCATTGCGCAATATTCCCCA





Pu_denovo1327
30
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACTGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTTACCTCTCCAGCACTCTAGCAAAACAGTTTCCAAAGCAGTCCCG




GGGTTAAGCCCCGGGCTTTCACTTCAGACTTGCTTCGCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTG




ATAGAGCTTTACATACCGAAATACTTCTTCACTCACGCGGCGTTGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo1696
31
CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGCGTCAGTTACTGTCCAGCAATCC




GCCTTCGCCACTGGTGTTCCTCCGTATATCTACGCATTTCACCGCTACACACGG




AATTCCGATTGCCTCTCCAGCACTCAAGAACTACAGTTTCAAATGCAGGCTGG




AGGTTGAGCCCCCAGTTTTCACATCTGACTTGCAATCCCGCCTACACGCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGTGGCTTATTCGTCAGGTACCGTCATTTGTTTCGTCCCCG




ACAAAAGAAGTTTACAACCCGAAAGCCTTCTTCCTTCACGCGGCGTTGCTGGG




TCAGGCTTGCGCCCATTGCCCAATATTCCCCA





Pu_denovo1830
32
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTATCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTTACCTCTCCGACACTCTAGCAAAACAGTTTCCAAAGCAGTCCCA




GGGTTGAGCCCTGGGTTTTCACTTCAGACTTGCTTCGCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTG




ATAGAGCTTTACATACCGAAATACTTCTTCACTCACGCGGCGTCGCTGCATCA




GGCTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo1987
33
CCTATTTGCTCCCCACGCTTTCGGGACTGAGCGTCAGTTGCAGGCCAGATCGTC




GCCTTCGCCACTGGTGTTCCTCCATATATCTACGCATTTCACCGCTACACATGG




AATTCCACGATCCTCTCCTGCACTCTAGCTGCCTGGTTTCTATGGCTTACTGAA




GTTAAGCTTCAGGCTTTCACCACAGACCCTTGCTGCCGCCTGCTCCCTCTTTAC




GCCCAATAATTCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGC




ACGTAGTTAGCCGTGGCTTTCTAATAAAGTACCGTCACTCGGCTACCATTTCCT




GTAGCCGCCGTTCTTCCTTTATAACAGAAGTTTACAATCCGAAAACCTTCTTCC




TTCACGCGGCGTTGCTCGGTCAGGGTTTCCCCCATTGCCGAAAATTCCCTA





Pu_denovo2011
34
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCGGCACTCTAGATGGACAGTTTCCAAAGCAGTCCAG




GGGTTGAGCCCCTGCCTTTCACTTCAGACTTGCCCGTCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTGTCTTCCCTGCTG




ATAGAAGTTTACATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCTA





Pu_denovo2011
35
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCGGCACTCTAGATGGACAGTTTCCAAAGCAGTCCAG




GGGTTGAGCCCCTGCCTTTCACTTCAGACTTGCCCGTCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTGTCTTCCCTGCTG




ATAGAAGTTTACATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCTA





Pu_denovo2050
36
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAGTCCAGAGAGTC




GCCTTCGCCACTGGTGTTCTTCCTAATCTCTACGCATTTCACCGCTACACTAGG




AATTCCACTCTCCTCTCCTGCACTCTAGATAATCAGTTTGGAATGCAGCCCCCA




GGTTGAGCCTGAGTATTTCACATCCCACTTAATTATCCGCCTACGCTCCCTTTA




CGCCCAATAATTCCGGATAACGCTCGCCACCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGTGGCTTCCTCCTTGGGTACCGTCATTATCGTCCCCAAAGA




CAGAGCTTTACAATCCGAAGACCGTCATCACTCACGCGGCGTTGCTGCATCAG




GGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo2116
37
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGTTACAGTCCAGAAAGCC




GCCTTCGCTACTGGTGTTCCTCCCAATATCTACGCATTTCACCGCTACACTGGG




AATTCCGCTTTCCTCTCCTGCACTCAAGTCAGACAGTATCAGGAGCTTACTACG




GTTGAGCCGTAGCCTTTAACTCCTGACTTGAAAGACCGCCTACGCACCCTTTAC




GCCCAGTAAATCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGC




ACGTAGTTAGCCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGAC




AGAGCTTTACGACCCGAAGGCCTTCATCGCTCACGCGGCGTTGCTGCATCAGG




CTTGCGCCCATTGTGCAATATTCCCCA





Pu_denovo2226
38
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTAAAGCCCAGCAGGC




CGCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAG




GAATTCCGCCTGCCTCTACTTCACTCAAGAACGGCAGTTTAGAACGCAGCCAC




CGGTTGAGCCGATGGATTTAACATTCTACTTGCCATCCCGCCTACGCTCCCTTT




ACACCCAGTAATTCCGGACAACGCTTGCTCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGAGCTTCCTCTTTGGGTACCGTCATTTTCTTCCCCAAAG




ACAGAGGTTTACAATCCGAAGACCGTCTTCCCTCACGCGGCGTCGCTGCATCA




GGCTTTCGCCCATTGTGCAATATCCCCCA





Pu_denovo2292
39
CCTGTTCGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTTCAGTCCAGAAAGCC




GCCTTCGCCACCGGTGTTCTTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTTCCTCTCCTGTACTCTAGCTTGATAGTTTAAAATGCAATCCTCG




GGTTAAGCCCAAGGCTTTCACATCTTACTTACCATGCCGCCTACGCTCCCTTTA




CACCCAGTAATTCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGGGGCTTCTTATTTGGGTACCGTCATTCTTTTCTTCCCCAT




CGATAGAAGTTTACAATCCGAAAACCGTCTTCCTTCACGCGGCGTTGCTGCAT




CAGGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo2529
40
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTCTCCTCTCCTGCACTCAAGTCTTACAGTTTCAAAAGCTTACTACG




GTTGAGCCGTAGCCTTTCACTTCTGACTTGAAAGACCGCCTACGCACCCTTTAC




GCCCAGTAATTCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGC




ACGTAGTTAGCCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGAC




AGAGCTTTACGACCCGAAGGCCTTCATCGCTCACGCGGCGTTGCTGCATCAGG




CTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo2648
41
CCTATTTGCTCCCCACGCTTTCGTGCTTCAGTGTCAGAATCCAGACCAGACGGC




CGCCTTCGCCACCGGTGTTCTTCCATATATCTACGCATTTTACCGCTACACATG




GAGTTCCGCCGTCCTCTTCTGTTCTCTAGCTGATCAGTTTCCAGAGCAAGTACG




GGTTGAGCCCATACCTTTTACTCCAGACTTGATCTGCCACCTACGCACCCTTTA




CGCCCAATCATTCCGGATAACGCTCGCCACCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGTGACTTTCTGGTAAGATACCATCACTCACTCATCATTCCC




TATGAGTGCCGTTTTTCTCTTACAACAGAGCTTTACGATCCGAAGACCTTCCTC




ACTCACGCGGCATTGCTCGTTCAGGGTTCCCCCCATTGACGAAAATTCCCTA





Pu_denovo3119
42
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGTTATGGTCCAGAAAGCC




GCCTTCGCTACTGGTGTTCCTTTGAATCTCTACGCATTTCACCGCTACACTCAA




AGTTCCACTTTCCTCTCCCACACTCTAGCCTCTCAGTTTCGGTAGCAGCTCCGG




GGTTGAGCCCCGAAATTTCACTTCCGACTTAAAAGGCCGCCTACGCACCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCTCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGAGCTTCTTAGTCAGGTACCGTCATTTCTTCTTCCCTGC




TGATAGAAGTTTACAATCCGAAGACCTTCTTCCTTCACGCGGCGTTGCTGCATC




AGGCTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo3179
43
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGTGTCAGTTACAGTCCAGAGAGCC




GCCTTCGCAACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTCTCCTCTCCTGCACTCAAGTTTATCAGTTTCAAAAGCTTACTATG




GTTAAGCCATAGCCTTTCACTTCTGACTTGATAAACCACCTACGCACCCTTTAC




GCCCAGTAATTCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGGC




ACGTAGTTAGCCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGAC




AGAGTTTTACGACCCTAAGGCCTTCTTCACTCACGCGGCGTTGCTGCATCAGG




CTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo3749
44
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTATCGTCCAGTAAGCC




GCCTTCGCCACTGATGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCGACACTCTAGAAGCACAGTTTCCAAAGCAGTCACG




GGGTTGAGCCCCGGGCTTTCACTTCAGACTTGCACTTCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTG




ATAGAAGTTTACATACCGAAATACTTCTTCCTTCACGCGGCGTCGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo3749
45
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTATCGTCCAGTAAGCC




GCCTTCGCCACTGATGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCGACACTCTAGAAGCACAGTTTCCAAAGCAGTCACG




GGGTTGAGCCCCGGGCTTTCACTTCAGACTTGCACTTCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTG




ATAGAAGTTTACATACCGAAATACTTCTTCCTTCACGCGGCGTCGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo3887
46
CCTGTTCGCTACCCACGCTTTCGAACCTCAGCGTCAGTTACAGACCAGAGAGC




CGCTTTCGCCACTGGTGTTCTTCCATATATCTACGCATTTCACCGCTACACATG




GAGTTCCACTCTCCTCTTCTGCACTCAAGTTCCCCAGTTTCCAATGCACATCTT




CGGTTAAGCCGAAGGCTTTCACATCAGACTTAAAGAACCGCCTGCGTTCCCTT




TACGCCCAATAAATCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCT




GGCACGTAGTTAGCCGTGACTTGCTGGTTAGATACCGTCAACAGGTGAACAGT




TACTCTCACCCGTGTTCTTCTCTAACAACAGAGTTTTACGATCCGAAGACCTTC




TTCGCTCACGCGGCGTTGCTCCATCAGACTTGCGTCCATTGTGGAAGATTCCCT




A





Pu_denovo4020
47
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACTGTCCAGCAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTGCCTCTCCAGCACTCTAGCCCAACAGTTTCCAAAGCAGTTCCCG




GGTTGAGCCCGGGGATTTCACTTCAGACTTGCTGTGCCGTCTACGCTCCCTTTA




CACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCACTTTCTTCCCTGCTGA




TAGAGCTTTACATACCGAAATACTTCTTCACTCACGCGGCGTTGCTGCATCAG




GGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo4476
48
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTCATCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTTACCTCTCCGACACTCTAGAAAAACAGTTTCCAATGCAGTCCCG




GGGTTGAGCCCCGGGTTTTCACATCAGACTTGCCTCTCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCACCATACGTATTACCGCGGCTGCTG




GCACGTATTTAGCCGGTGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTG




ATAGAGCTTTACATACCGAAATACTTCATCGCTCACGCGGCGTCGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo46
49
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCTTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCGGCACTCTAGCTAAACAGTTTCCAAAGCAGTCCCG




GCGTTGAGCACCGGGCTTTCACTTCAGACTTGCCTTGCCGTCTACACTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTG




ATAGAAGTTTACATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCA




GAGTTTCCTCCATTGTGCAATATTCCCCA





Pu_denovo4759
50
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTCATCGTCCAGAAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTTCCTCTCCGACACTCTAGCCTGACAGTTCCAAATGCAGTCCCGG




GGTTGAGCCCCGGGCTTTCACATCTGGCTTGCCATGCCGTCTACGCTCCCTTTA




CACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGA




TAGAGCTTTACATACCGAAATACTTCATCGCTCACGCGGCGTCGCTGCATCAG




GGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo4770
51
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCGGCACTCAAGATGGACAGTTTCCAATGCAGTCCCG




GGGTTAAGCCCCGGGCTTTCACATCAGACTTGCCCGTCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTG




ATAGAAGTTTACATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCA




GAGTTTCCTCCATTGTGCAATATTCCCCA





Pu_denovo4820
52
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTCACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCGGCACTCCAGATCTGCAGTTTCCAAAGCAGTCCCAG




GGTTGAGCCCTGGGTTTTCACTCCAGACTTGCCTATCCGTCTACGCTCCCTTTA




CACCCAGTAAATCCGGATAACGCTTGCACCATACGTATTACCGCGGCTGCTGG




CACGTATTTAGCCGGTGCTTCTTACTCAGGTACCGTCATCTTCTTCCCTGCTGA




TAGAAGTTTACATACCGAAATACTTCTTCCTTCACGCGGCGTCGCTGCATCAG




GGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo5010
53
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGTTACAGTCCAGAGAGCC




GCCTTCGCAACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTCTCCTCTCCTGCACTCAAGTCTCCCAGTTTCAAGAGCTTACTACG




GTTGAGCCGTAGCCTTTCACTCCTGACTTGAAAGACCGCCTACGCACCCTTTAC




GCCCAGTAAATCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGC




ACGTAGTTAGCCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGAC




AGAGTTTTACGACCCGAAGGCCTTCATCACTCACGCGGCGTTGCTGCATCAGG




CTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo5010
54
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGTTACAGTCCAGAGAGCC




GCCTTCGCAACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTCTCCTCTCCTGCACTCAAGTCTCCCAGTTTCAAGAGCTTACTACG




GTTGAGCCGTAGCCTTTCACTCCTGACTTGAAAGACCGCCTACGCACCCTTTAC




GCCCAGTAAATCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGC




ACGTAGTTAGCCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGAC




AGAGTTTTACGACCCGAAGGCCTTCATCACTCACGCGGCGTTGCTGCATCAGG




CTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo5029
55
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGTGTCAGTTACAGTCCAGAGAGCC




GCCTTCGCAACTGGTATTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCTACTCTCCTCTCCTGCACTCAAGTTTCTCAGTTTCAAAGGCTTACTACG




GTTGAGCCGTAGCCTTTCACCTCTGACTTAAGAAACCACCTACGCACCCTTTAC




GCCCAGTAATTCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGC




ACGTAGTTAGCCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGAC




AGAGCTTTACGACCCGAAGGCCTTCATCGCTCACGCGGCGTTGCTGCATCAGG




CTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo507756

CCTGTTTGCTACCCACGCTTTCGAACCTCAGCGTCAGTTACAGACCAGAGAGC




CGCTTTCGCCACTGGTGTTCTTCCATATATCTACGCATTTCACCGCTACACATG




GAGTTCCACTCTCCTCTTCTGCACTCAAGTCTTCCAGTTTCCAATGCACTACTT




CGGTTAAGCCGAAGGCTTTCACATCAGACTTAAAAGACCGCCTGCGTTCCCTT




TACGCCCAATAAATCCGGACAACGCTCGCCACCTACGTATTACCGCGGCTGCT




GGCACGTAGTTAGCCGTGGCTTTCTGGTCAGATACCGTCAATACGTGAACAGT




TACTCTCACGCACGTTCTTCTCTGACAACAGAATTTTACGACCCGAAGGCCTTC




TTCATTCACGCGGCGTTGCTCCATCAGACTTTCGTCCATTGTGGAAGATTCCCT




A





Pu_denovo5125
57
CCTGTTTGCTCCCCACACTTTCGTGCCTCAACGTCAGTTACTGTCCAGAAAGTC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTTTCCTCTCCAGCACTCAAGAAATATAGTTTTGGTTGCAATTCCTC




GGTTGAGCCGAGGGATTTCACAACCAACTTGCATTCCCGTCTACGCACCCTTT




ACACCCAATAAATCCGGATAACGCTTGCTCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGAGCTTATTCTACAGGTACTGTCTTGTTTCTTCCCTGTC




TAAAGCAGTTTACAATCCGAAAACCTTCTTCCTGCACGCGGCGTCACTGCGTC




AGAGTTTCCTCCATTGCGCAATATTCCCGA





Pu_denovo5198
58
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCGGTACTCAAGATCAACAGTTTCCAATGCAGTCCAG




GGGTTGAGCCCCTGCCTTTCACATCAGACTTGCTGCTCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTG




ATAGAAGTTTACATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo5343
59
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAGACCAGAGAGC




CGCTTTCGCCACCGGTGTTCCTCCATATATCTACGCATTTCACCGCTACACTGG




GAATTCCGCTTTCCTCTCCTGCACTCAAGAAAACCAGTTCGGACCCCATCACG




GGGTTGAGCCCCGCACTTTTAAGATCCGCTTAGTTTCCCGCCTGCGCTCCCTTT




ACGCCCAATAATTCCGGACAACGCTTGCCGCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGTGGCTTCCTCGTTAGGTACCGTCAAATAAAAACCTTAT




TATGATTCTTACCCTTCGTCCCTAACAACAGAACTTTACGATCCTAAGACCTTC




ATCGTTCACGCGGCGTTGCTCCGTCAGGCTTTCGCCCATTGCGGAAGATTCCCC




A





Pu_denovo5343
60
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAGACCAGAGAGC




CGCTTTCGCCACCGGTGTTCCTCCATATATCTACGCATTTCACCGCTACACTGG




GAATTCCGCTTTCCTCTCCTGCACTCAAGAAAACCAGTTCGGACCCCATCACG




GGGTTGAGCCCCGCACTTTTAAGATCCGCTTAGTTTCCCGCCTGCGCTCCCTTT




ACGCCCAATAATTCCGGACAACGCTTGCCGCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGTGGCTTCCTCGTTAGGTACCGTCAAATAAAAACCTTAT




TATGATTCTTACCCTTCGTCCCTAACAACAGAACTTTACGATCCTAAGACCTTC




ATCGTTCACGCGGCGTTGCTCCGTCAGGCTTTCGCCCATTGCGGAAGATTCCCC




A





Pu_denovo5401
61
CCTGTTTGCTCCCCACACTTTCGTGCCTCAACGTCAGTTGCTGTCCAGAAAGTC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTTTCCTCTCCAGCACTCAAGAAAAGCAGTTTTAGTCGCAGTTCCTC




AGTTGAGCCGAGGGATTTCACAACTAACTTACCTTCCCGTCTACGCACCCTTTA




CACCCAATAAATCCGGATAACGCTTGCTCCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGGAGCTTATTCTACAAGTACTGTCTTGTTTCTTCCTTGTCT




AAAATGGTTTACAATCCGAAAACCTTCTTCCCATACGCGGCGTCACTGCGTCA




GAGTTTCCTCCATTGCGCAATATTCCCGA





Pu_denovo579
62
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGTTACAGTCCAGAGAGCC




GCCTTCGCTACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTCTCCTCTCCTGCACTCAAGTCCTACAGTTCCAAAAGCTTACTACG




GTTGAGCCGTAGCCTTTCACTTCTGGCTTGAAAGACCGCCTACGCACCCTTTAC




GCCCAGTAATTCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGC




ACGTAGTTAGCCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGAC




AGAGCTTTACGACCCGAAGGCCTTCATCGCTCACGCGGCGTTGCTGCATCAGG




CTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo579
63
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGTTACAGTCCAGAGAGCC




GCCTTCGCTACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTCTCCTCTCCTGCACTCAAGTCCTACAGTTCCAAAAGCTTACTACG




GTTGAGCCGTAGCCTTTCACTTCTGGCTTGAAAGACCGCCTACGCACCCTTTAC




GCCCAGTAATTCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGC




ACGTAGTTAGCCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGAC




AGAGCTTTACGACCCGAAGGCCTTCATCGCTCACGCGGCGTTGCTGCATCAGG




CTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo5855
64
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAGACCAGAGAGC




CGCTTTCGCCACCGGTGTTCCTCCATATATCTACGCATTTCACCGCTACACTAG




GAATTCCACTCTCCTCTCCTGCACTCAAGTCTTACAGTTTCAAAAGCTTACTAC




GGTTGAGCCGTAGCCTTTCACTTCTGACTTGAAAGACCGCCTACGCACCCTTTA




CGCCCAGTAATTCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGA




CAGAGCTTTACGACCCGAAGGCCTTCATCGCTCACGCGGCGTTGCTGCATCAG




GCTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo5855
65
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAGACCAGAGAGC




CGCTTTCGCCACCGGTGTTCCTCCATATATCTACGCATTTCACCGCTACACTAG




GAATTCCACTCTCCTCTCCTGCACTCAAGTCTTACAGTTTCAAAAGCTTACTAC




GGTTGAGCCGTAGCCTTTCACTTCTGACTTGAAAGACCGCCTACGCACCCTTTA




CGCCCAGTAATTCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGA




CAGAGCTTTACGACCCGAAGGCCTTCATCGCTCACGCGGCGTTGCTGCATCAG




GCTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo5873
66
CCTGTTTGCTCCCCACGCTTTCGTGCATCAGTGTCAGTGACAGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCTGCACTCCAGCATGACAGTTTCAAAAGCAGTCCCG




GGGTTAAGCCCCGGGCTTTCACTTCTGACTTACCATGCCACCTACGCACCCTTT




ACACCCAGTAATTCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCTGTTTTCTTCCCTGCT




GATAGAGCTTTACATACCGAAATACTTCTTCACTCACGCGGCGTCGCTGCATC




AGGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo6511
67
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACTGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTTACCTCTCCAGCACTCTAGCAGAACAGTTTCCAAAGCAGTCCCG




GGGTTGAGCCCCGGGCTTTCACTTCAGACTTGCTCCGCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTG




ATAGAAGTTTACATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo654
68
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACTGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCAGCACTCCAGCTTAACAGTTTCCAAAGCAGTCCCGG




GGTTGAGCCCCGGGCTTTCACTTCAGACTTGCTAAGCCGTCTACGCTCCCTTTA




CACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTCTCTTCCCTGCTGA




TAGAGCTTTACATACCGAAATACTTCTTCACTCACGCGGCGTCGCTGCATCAG




GGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo6738
69
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCGGCACTCCAGGCCCGCAGTTTCCAATGCACTCCCGG




GGTTGGGCCCCGGGTTTTCACATCAGACTTGCTGGCCCGTCTACGCTCCCTTTA




CACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGA




TAGAAGTTTACGTACCGAAATACTTCATCCTTCACGCGGCGTCGCTGCATCAG




GGTTCCCCCCATTGTGCAATATTCCCCA





Pu_denovo6738
70
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTACCTCTCCGGCACTCCAGGCCCGCAGTTTCCAATGCACTCCCGG




GGTTGGGCCCCGGGTTTTCACATCAGACTTGCTGGCCCGTCTACGCTCCCTTTA




CACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGA




TAGAAGTTTACGTACCGAAATACTTCATCCTTCACGCGGCGTCGCTGCATCAG




GGTTCCCCCCATTGTGCAATATTCCCCA





Pu_denovo6823
71
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGTGTCAGTTACAGTCCAGAGAGCC




GCCTTCGCAACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTCTCCTCTCCTGCACTCAAGTTTATCAGTTTCAAAAGCTTACTATG




GTTGAGCCGTAGCCTTTCACTTCTGACTTGAAAGACCGCCTACGCACCCTTTAC




GCCCAGTAATTCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGC




ACGTAGTTAGCCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGAC




AGAGCTTTACGACCCGAAGGCCTTCATCGCTCACGCGGCGTTGCTGCATCAGG




CTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo683
72
CCTGTTTGCTCCCCACGCTTTCGCACCTGAGCGTCAGTTACAGACCAGAGAGC




CGCCTTCGCCACTGGTGTTCCTCCATATATCTACGCATTTCACCGCTACACATG




GAATTCCACTCTCCTCTTCTGCACTCAAGTCTCCCAGTTTCCAATGACCCTCCC




CGGTTGAGCCGGGGGCTTTCACATCAGACTTAAGAAACCGCCTGCGCTCGCTT




TACGCCCAATAAATCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCT




GGCACGTAGTTAGCCGTGGCTTTCTGGTTAGATACCGTCAGGGGACGTTCAGT




TACTAACGTCCTTGTTCTTCTCTAACAACAGAGTTTTACGATCCGAAAACCTTC




TTCACTCACGCGGCGTTGCTCGGTCAGACTTTCGTCCATTGCCGAAGATTCCCT




A





Pu_denovo6858
73
CCTGTTCGCTCCCCCAGCTTTCGCGCCTCAGCGTCGGTCTCGGCCCAGAGGGCC




GCCTTCGCCACCGGTGTTCCACCCGATATCTGCGCATTCCACCGCTACACCGG




GTGTTCCACCCTCCCCTACCGGACCCGAGCCCGGCGGTTCAGGGGGCGGGACG




GGGTTGAGCCCCGCCATTTGACCCCCTGCCTGCCGGGCCGCCTACGCGCGCTT




TACGCCCAATGAATCCGGATAACGCTCGCCCCCTACGTATTACCGCGGCTGCT




GGCACGTAGTTAGCCGGGGCTTCTTCTGCAGGTACCGTCTTGTCTCATCCCTGC




TGAAAGCGGTTTACGACCCGAGGGCCTTCGTCCCGCACGCGGCGTCGCTGCGT




CAGGGTTCCCCCCATTGCGCAAGATTCCCCA





Pu_denovo7373
74
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTATCGTCCAGCAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCGCTTGCCTCTCCGACACTCCAGCTGCACAGTTTCCAAAGCAGTCCCG




GGGTTGAGCCCCGGGCTTTCACTTCAGACTTGCACTGCCGTCTACGCTCCCTTT




ACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTG




ATAGAAGTTTACATACCGAAATACTTCATCCTTCACGCGGCGTCGCTGCATCA




GGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo7649
75
CCTGTTTGCTCCCCACGCTTTCGTACCTCAGCGTCAGTTTGTGTCCAGAAAGTC




GCCTTCGCTACTGGTATTCCTCCTAATATCTACGTATTTCACCACTACACTAGG




AATTCCACTTTCCTCTCCACTACTCAAGTTTATCAGTTTCCAATGCTTTACGGG




GTTGAGCCCCGATCTTTAACATTCGACTTATTAAACCGCCTGCGTACCCTTTAC




GCCCAATAATTCCGGACAACGCTCGCTCCATACGTATTACCGCGGCTGCTGGC




ACGTATTTAGCCGGAGCTTTCTTCTATGGTACTGTCATTATCTTCCCATAGGAC




AGAACTTTACGATACGAATACCTTCTTCGTTCACGCGGCGTCGCTGCATCAGG




GTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo7972
76
CCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCAGTAACGGCCCAGAGACCT




GCCTTCGCCATTGGTGTTCTTCCCGATATCTACACATTCCACCGTTACACCGGG




AATTCCAGTCTCCCCTACCGCACTCAAGCCCGCCCGTACCCGGCGCGGATCCA




CCGTTAAGCGATGGACTTTCACACCGGACGCGACGAACCGCCTACGAGCCCTT




TACGCCCAATAATTCCGGATAACGCTTGCACCCTACGTATTACCGCGGCTGCT




GGCACGTAGTTAGCCGGTGCTTATTCAACGGGTAAACTCACTCTCGCTTGCTCC




CCGATAAAAGAGGTTTACAACCCGAAGGCCTCCATCCCTCACGCGGCGTCGCT




GCATCAGGCTTGCGCCCATTGTGCAATATTCCCCA





Pu_denovo8295
77
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTCATCGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTTACCCCTCCGACACTCTAGTCCGACAGTTTCCAATGCAGTACCGG




GGTTGAGCCCCGGGCTTTCACATCAGACTTGCCGTACCGCCTGCGCTCCCTTTA




CACCCAGTAAATCCGGATAACGCTTGCACCATACGTATTACCGCGGCTGCTGG




CACGTATTTAGCCGGTGCTTCTTAGTCAGGTACCGTCATTTCTTCTTCCCTGCT




GATAGAGCTTTACATACCGAAATACTTCTTCGCTCACGCGGCGTCGCTGCATC




AGGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo8302
78
CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGTGTCAGTTACAGACCAGGAAGCC




GCCTTCGCCACTGGTGTTCCTCCATATCTCTACGCATTTCACCGCTACACATGG




AGTTCCACTCTCCTCTTCTGCACTCAAGTCTCCCAGTTTCCAATGCACTACTCC




GGTTAAGCCGAAGGCTTTCACATCAGACTTAAAAGACCGCCTGCGTTCCCTTT




ACGCCCAATAAATCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGTGGCTTTCTGGTTAGATACCGTCGAAACGTGAACAGTT




ACTCTCACGCACTTTCTTCTCTAACAACAGGGTTTTACGATCCGAAGACCTTCT




TCACCCACGCGGCGTTGCTCCATCAGGCTTTCGCCCATTGTGGAAGATTCCCTA





Pu_denovo8600
79
CCTGTTTGCTACCCACGCTTTCGCGCTTTAGCGTCAGTATCTGTCCAGTAGGCT




GGCTTCCCCATCGGCATTCCTACAAATATCTACGAATTTCACCTCTACACTTGT




AGTTCCGCCTACCTCTCCAGTACTCTAGTTTGGCAGTTTCCAACGCAATACGGA




GTTGAGCCCCGCATTTTCACATCAGACTTACCAAACCGCCTAGACGCGCTTTA




CGCCCAATAAATCCGGATAACGCTTGCGACATACGTATTACCGCGGCTGCTGG




CACGTATTTAGCCGTCGCTTCTTCTGTTGGTACCGTCACTTTCTTCTTCCCAACT




GAAAGCACTTTACATTCCGAAAAACTTCATCGTGCACACAGAATTGCTGGATC




AGACTTTTGGTCCATTGTCCAATATTCCCCA





Pu_denovo8725
80
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTCACTGTCCAGTAAGCC




GCCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGG




AATTCCACTTACCTCTCCAGCACTCTAGCTATACAGTTTCCAAAGCAGTCCCGG




GGTTGAGCCCCGGGCTTTCACTTCAGACTTGCACAGCCGTCTACGCTCCCTTTA




CACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGA




TAGAAGTTTACATACCGAAATACTTCATCCTTCACGCGGCGTCGCTGCATCAG




GCTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo8737
81
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAGACCAGAGAGC




CGCTTTCGCCACCGGTGTTCCTCCATATATCTACGCATTTCACCGCTACACTAG




GAATTCCGCTTGCCTCTCCGACACTCCAGCTGCACAGTTTCCAAAGCAGTCCC




GGGGTTGAGCCCCGGGCTTTCACTTCAGACTTGCACTGCCGTCTACGCTCCCTT




TACACCCAGTAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCT




GGCACGTAGTTAGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCT




GATAGAAGTTTACATACCGAAATACTTCATCCTTCACGCGGCGTCGCTGCATC




AGGGTTTCCCCCATTGTGCAATATTCCCCA





Pu_denovo920
82
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAGTCCAGAAAGG




CGCCTTCGCCACTGGTATTCTTCCTAATCTCTACGCATTTCACCGCTACACTAG




GAATTCTCCTTTCCTCTCCTGCACTCTAGATATCCAGTTTGGAATGCAGCACTC




AAGTTGAGCCCGAGTATTTCACATCCCACTTAAACATCCGCCTACGCTCCCTTT




ACGCCCAGTAAATCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTG




GCACGTAGTTAGCCGTGGCTTCCTCCTCAGGTACCGTCATTATCGTCCCTGAAG




ACAGAGTTTTACAACCCGAAGGCCGTCATCACTCACGCGGCGTTGCTGCATCA




GGCTTTCGCCCATTGTGCAATATTCCCCA





Pu_denovo9465
83
CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGTGTCAGTTACAGACCAGGAAGCC




GCCTTCGCCACTGGTGTTCCTCCATATCTCTACGCATTTCACCGCTACACATGG




AATTCCACTTCCCTCTTCTGCACTCAAGTCGACCAGTTTCCAATGACCCTCCAC




GGTTAAGCCGTGGGCTTTCACATCAGACTTAATCAACCACCTGCGCGCTCTTTA




CGCCCAATAATTCCGGATAACGCTCGCCACCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGTGGCTTTCTCATAAGGTACCGTCACACTCTAGCCATTTCC




TACTAAAGTCGTTCTTCCCTTATAACAGAATTTTACAACCCGAAGGCCTTCATC




ATTCACGCGGCGTTGCTCGGTCAGGCTTTCGCCCATTGCCGAAGATTCCCTA





Pu_denovo9465
84
CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGTGTCAGTTACAGACCAGGAAGCC




GCCTTCGCCACTGGTGTTCCTCCATATCTCTACGCATTTCACCGCTACACATGG




AATTCCACTTCCCTCTTCTGCACTCAAGTCGACCAGTTTCCAATGACCCTCCAC




GGTTAAGCCGTGGGCTTTCACATCAGACTTAATCAACCACCTGCGCGCTCTTTA




CGCCCAATAATTCCGGATAACGCTCGCCACCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGTGGCTTTCTCATAAGGTACCGTCACACTCTAGCCATTTCC




TACTAAAGTCGTTCTTCCCTTATAACAGAATTTTACAACCCGAAGGCCTTCATC




ATTCACGCGGCGTTGCTCGGTCAGGCTTTCGCCCATTGCCGAAGATTCCCTA





Pu_denovo959
85
CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGTGTCAGTTGCAGACCAGGAAGCC




GCCTTCGCCACTGGTGTTCCTCCATATCTCTACGCATTTCACCGCTACACATGG




AATTCCACTTCCCTCTTCTGCACTCAAGTCAACCAGTTTCCAATGACCCTCCAC




GGTTAAGCCGTGGGCTTTCACATCAGACTTAATTAACCACCTGCGCGCTCTTTA




CGCCCAATAATTCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGG




CACGTAGTTAGCCGTGGCTTTCTCATAAGGTACCGTCAATTGATAGTCATTTCC




TCCTATCACCTTTCTTCCCTTATAACAGAATTTTACAACCCGAAGGCCTTCTTC




ATTCACGCGGCGTTGCTCGGTCAGGCTTTCGCCCATTGCCGAAGATTCCCTA
















TABLE 2.2







DNA sequences for bacterial taxa associated with health in mammals and detected in


adult and mature dogs









OTU_ID
SEQ ID
16SrDNA partial DNA sequence





Ad_denovo40
 86
CCCGTTCGCTACCCTGGCTTTCGCATCTCAGCGTCAGACACAGTCCAGAAAGGCG




CCTTCGCCACTGGTGTTCCTCCCAATATCTACGCATTTCACCGCTACACTGGGAAT




TCCCCTTTCCTCTCCTGCACTCAAGTCTCCCAGTATCCAGAGCCATACGGGGTTGA




GCCCCGCATTTTCACTCCAGACTTAAGAAACCGCCTACATGCTCTTTACGCCCAAT




AATTCCGGACAACGCTCGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGGCTTATTCGTTTACTACCGTCATTACAAATAATTATTCACAATCTGCACA




TTCGTCATAAACAAAAGAGTTTTACGGAACGAATTCCTTCATCACTCACGCGGCA




TTGCTCCGTCAGGCTTTCGCCCATTGCGGAAGATTCCCCA





Ad_denovo75
 87
CCTGTTTGATACCCGCACTTTCGAGCATCAGCGTCAGTTACGGTCCAGCAAGCTG




CCTTCGCAATCGGAGTTCTTCGTGATATCTAAGCATTTCACCGCTACACCACGAAT




TCCGCCTGCCTTTACCGCACTCAAGAACTCCAGTATCAACTGCAATTTTACGGTTG




AGCCGCAAACTTTCACAACTGACTTAAAATTCCGCCTACGCTCCCTTTAAACCCA




ATAAATCCGGATAACGCTCGGATCCTCCGTATTACCGCGGCTGCTGGCACGGAGT




TAGCCGATCCTTATTCATACGGTACATACAAAAAGCCACACGTGGCTAACTTTAT




TCCCGTATAAAAGAAGTTTACAACCCATAGGGCAGTCATCCTTCACGCTACTTGG




CTGGTTCAGACTCTCGTCCATTGACCAATATTCCTCA





Ad_denovo237
 88
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCCGC




CTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCGCTTACCTCTCCGGCACTCGAGTATCACAGTTTCCAATGCAGTCCAGGGGTTG




AGCCCCCGCCTTTCACATCAGACTTGCAACACCGTCTACGCTCCCTTTACACCCAG




TAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTT




AGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGATAGAAGTTTAC




ATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTG




TGCAATATTCCCCA





Ad_denovo323
 89
CCTATTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGGTACAGGCCAGGCGGCCG




CCTTCGCCGCTGGTGTTCTTCCACATCTCTACGCATTTTACCGCTACACATGGAGT




TCCACCGCCCTCTCCTGTCCTCAAGCCGTGCAGTTTCCAAAGCCTGAACCGGTTGA




GCCGGTCCCTTTTACTTCAGACTTGCACAGCCGCCTGCGCACCCTTTACGCCCAAT




CATTCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGGCTTTCTGGCCGGGTACCATCAAACAGTCAGCTTTCCACTCTGGCTGTCC




TTTGTCCCCGGCAACAGGGCTTTACAATCCGAAGACCGTCTTCACCCACGCGGCA




TTGCTCGTTCAGGCTTGCGCCCATTGACGAAAATTCCCTA





Ad_denovo648
 90
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAGTCCAGAGAATCGC




CTTCGCCACTGGTGTTCTTCCTAATCTCTACGCATTTCACCGCTACACTAGGAATT




CCATTCTCCTCTCCTGCACTCTAGATACCCAGTTTGGAATGCAGCTCCCAGGTTAA




GCCCAGGTATTTCACATCCCACTTAAGTATCCGCCTACGCTCCCTTTACGCCCAGT




AAATCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGGCTTCCTCCTTAGGTACCGTCATTATCGTCCCTAAAGACAGAGCTTTACA




ATCCGAAGACCTTCATCACTCACGCGGCGTTGCTGCATCAGGGTTTCCCCCATTGT




GCAATATTCCCCA





Ad_denovo871
 91
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCCGC




CTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCGCTTACCCCTCCGGCACTCAAGCCTGGCAGTTTCCAATGCAGTCCAGGAGTTG




AGCCCCTGCCTTTCACATCAGACTTGCCATGCCGTCTACGCTCCCTTTACACCCAG




TAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTT




AGCCGGGGCTTCTTAGTCAGGTACCGTCATTATCTTCCCTGCTGATAGAAGTTTAC




ATACCGAAATACTTCATCGCTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTG




TGCAATATTCCCCA





Ad_denovo957
 92
CCTATTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGTCACAGGCCAGGCGGCCGC




CTTCGCCACTGGTGTTCTTCCATATCTCTGCGCATTTTACCGCTACACATGGAGTT




CCACCGCCCTCTCCTGTCCTCAAGTCTGCCAGTTTCTGAATCATGAATGAGTTGAG




CTCATCCCTTTGCCTTCAGACTTAACAGACCGCCTGCGCACCCTTTACGCCCAATC




ATTCCGGATAACGCTCGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAG




CCGTGGCTTTCTGGCCGGGTACCATCCATGAAATGCCATTTCCTGCATTCCCTCTT




TTTCCCCGGCAACAGAGCTTTACAATCCGAAGACCTTCTTCACTCACGCGGCATTG




CTCGTTCAGGCTTGCGCCCATTGACGAAAATTCCCTA





Ad_denovo1210
 93
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACTGTCCAGTAAGCCGC




CTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCACTTACCTCTCCAGCACTCTAGATGAACAGTTTCCAATGCAGTCCCGGGGTTG




AGCCCCGGGTTTTCACATCAGACTTGCCCATCCGTCTACGCTCCCTTTACACCCAG




TAAATCCGGATAACGCTTGCACCATACGTATTACCGCGGCTGCTGGCACGTATTT




AGCCGGTGCTTCTTAGTCAGGTACCGTCATTATCTTCCCTGCTGATAGAGCTTTAC




ATACCGAAATACTTCATCGCTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTG




TGCAATATTCCCCA





Ad_denovo1428
 94
CCTATTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGTAACAGTCCAGGCGGCCGC




CTTCGCAACTGGTGTTCTTCCATATATCTACGCATTTTACCGCTACACATGGAGTT




CCACCGCCCTCTCCTGTCCTCGAGCGCGCCAGTTTCCAAAGCCTGCACAGGTTGA




GCCTGTACCTTTTACTTCAGACTTGACGCGCCGCCTGCGCACCCTTTACGCCCAAT




CATTCCGGATAACGCTCGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGACTTTCTGGCGGGGTACCATCAAAAGCAGACCATTTCCTTTCTGCTTCCT




TTTTCCCCCGCAACAGAGCTTTACGATCCGAAGACCTTCCTCACTCACGCGGCATT




GCTCGTTCAGGCTTGCGCCCATTGACGAAAATTCCCTA





Ad_denovo1613
 95
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAGACCAGAAAGCCG




CCTTCGCCACTGGTGTTCCTCCATATATCTACGCATTTCACCGCTACACATGGAAT




TCCGCTTTCCTCTTCTGCACTCAAGTCTCCCAGTTTCCAATGACCCTCCCCGGTTA




AGCCGGGGGCTTTCACATCAGACTTAAAAGACCGCCTGCGCTCGCTTTACGCCCA




ATAAATCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGT




TAGCCGTGGCTTTCTGGTTAGATACCGTCAAGGGATGAACTTTCCACTCTCATCCT




TGTTCTTCTCTAACAACAGAGTTTTACGATCCGAAAACCTTCTTCACTCACGCGGC




GTTGCTCGGTCAGACTTGCGTCCATTGCCGAAGATTCCCTA





Ad_denovo1767
 96
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAGACCAGAGAGCCG




CCTTCGCCACTGGTGTTCCTCCATATATCTACGCATTTCACCGCTACACATGGAAT




TCCACTCTCCTCTTCTGCACTCAAGTCTCCCAGTTTCCAATGACCCTCCCCGGTTG




AGCCGGGGGCTTTCACATCAGACTTAAGAAACCGCCTGCGCTCGCTTTACGCCCA




ATAAATCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGT




TAGCCGTGGCTTTCTGGTTAGATACCGTCAAGGGATGAACAGTTACTCTCATCCTT




GTTCTTCTCTAACAACAGAGTTTTACGATCCGAAAACCTTCTTCACTCACGCGGCG




TTGCTCGGTCAGACTTTCGTCCATTGCCGAAGATTCCCTA





Ad_denovo1838
 97
CCTGTTTGCTACCCACGCTTTCGAGCCTCAGCGTCAGTTAAAGCCCAGCAGGCCG




CCTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAAT




TCCGCCTGCCTCTACTTCACTCAAGAAAAACAGTTTTGAAAGCAGCTCATGGGTT




GAGCCCATGCATTTCACTTCCAACTTGCTTTCCCGCCTACGCTCCCTTTACACCCA




GTAATTCCGGACAACGCTCGCTCCCTACGTATTACCGCGGCTGCTGGCACGTAGT




TAGCCGGAGCTTCCTTCTTCGGTACCGTCACTTTCTTCGTCCCGAATGACAGAGGT




TTACAACCCGAAGGCCGTCTTCCCTCACGCGGCGTCGCTGCATCAGGCTTTCGCCC




ATTGTGCAATATCCCCCA





Ad_denovo2183
 98
CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGTGTCAGTTACAGACCAGGAAGCCGC




CTTCGCCACTGGTGTTCCTCCATATCTCTACGCATTTCACCGCTACACATGGAATT




CCACTTCCCTCTTCTGCACTCAAGTCGACCAGTTTCCAATGACCCTCCACGGTTAA




GCCGTGGGCTTTCACATCAGACTTAATCAACCACCTGCGCGCTCTTTACGCCCAAT




AATTCCGGATAACGCTCGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGGCTTTCTCATAAGGTACCGTCACACTCTAGCCATTTCCTACTAAAGTCGT




TCTTCCCTTATAACAGAATTTTACAACCCGAAGGCCTTCATCATTCACGCGGCGTT




GCTCGGTCAGGCTTTCGCCCATTGCCGAAGATTCCCTA





Ad_denovo2510
 99
CCTGTTTGCTACCCACACTTTCGAGCCTCAGCGTCAGTTGGTGCCCAGTAGGCCGC




CTTCGCCACTGGTGTTCCTCCCGATATCTACGCATTCCACCGCTACACCGGGAATT




CCGCCTACCTCTGCACTACTCAAGAAAAACAGTTTTGAAAGCAGTTTATGGGTTG




AGCCCATAGATTTCACTTCCAACTTGTCTTCCCGCCTGCGCTCCCTTTACACCCAG




TAATTCCGGACAACGCTTGTGACCTACGTTTTACCGCGGCTGCTGGCACGTAGTTA




GCCGTCACTTCCTTGTTGGGTACCGTCATTATCTTCCCCAACAACAGGAGTTTACA




ATCCGAAGACCTTCTTCCTCCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTGT




GCAATATTCCCCA





Ad_denovo2718
100
CCTATTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGTAACAGGCCAGGCGGCCG




CCTTCGCCACTGGTGTTCTTCCATATATCTACGCATTTTACCGCTACACATGGAGT




TCCACCGCCCTCTCCTGTCCTCCAGCCTGCCAGTTTCCAAAGCCTGTACCGGTTGA




GCCGGTACCTTTCACTTCAGACTTAACAGGCCGCCTACGCACCCTTTACGCCCAAT




CATTCCGGATAACGCTCGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGACTTCCTCGAAAGGTAATATCACTTCACCAGCATTTCCTCTGGTGTTCCT




TTTTCCCTCTCAACAGAACTTTACGATCCGAAGACCTTCCTCGTTCACGCGGCATT




GCTCGTTCAGGCTTGCGCCCATTGACGAAAATTCCCTA





Ad_denovo2798
101
CCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCAGTAACGGCCCAGAGACCTGC




CTTCGCCATTGGTGTTCTTCCCGATATCTACACATTCCACCGTTACACCGGGAATT




CCAGTCTCCCCTACCGCACTCAAGCCCGCCCGTACCCGGCGCGGATCCACCGTTA




AGCGATGGACTTTCACACCGGACGCGACGAACCGCCTACGAGCCCTTTACGCCCA




ATAAATCCGGATAACGCTTGCACCCTACGTATTACCGCGGCTGCTGGCACGTAGT




TAGCCGGTGCTTATTCGAACAATCCACTCAACACGGCCAAAGACCGTGCCTTGCC




CTTGAACAAAAGCGGTTTACAACCCGAAGGCCTCCATCCCGCACGCGGCGTCGCT




GCATCAGGCTTGCGCCCATTGTGCAATATTCCCCA





Ad_denovo2806
102
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAGTCCAGAGAATCGC




CTTCGCCACTGGTGTTCTTCCTAATCTCTACGCATTTCACCGCTACACTAGGAATT




CCATTCTCCTCTCCTGCACTCTAGACTTCCAGTTTGAAATGCAGCACCCAAGTTGA




GCCCGGGTATTTCACATCTCACTTAAAAGTCCGCCTACGCTCCCTTTACGCCCAGT




AAATCCGGACAACGCTCGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGGCTTCCTCCTCAGGTACCGTCATTATCGTCCCTGAAGACAGAGCTTTACA




ACCCGAAGGCCGTCATCACTCACGCGGCGTTGCTGCATCAGGGTTTCCCCCATTG




TGCAATATTCCCCA





Ad_denovo2900
103
CCTGTTTGATACCCGCACTTTCGAGCCTCAGCGTCAGTTACACTCCAGATACCTGC




CTTCGCGATCGGAGTTCCTCATGATATCTGAGCATTTCACCGCTACACCATGAATT




CCAGTATCTCTGCGTGTACTCAAGACTCCCAGTATCAACTGCAGTCCGACGGTTG




AGCCGCCGTATTTCACAACTGACTTAAGAGTCCGCCTGCGCTCCCTTTAAACCCA




ATAAATCCGGATAACGCCTGGACCTTCCGTATTACCGCGGCTGCTGGCACGGAAT




TAGCCGGTCCTTTTTCTGATGGTACATACAAAACGGTACACGTACCGCACTTTATT




CCCAACTAAAAGCAGTTTACAACCCAGAGGGCCGTCATCCTGCACGCTACTTGGC




TGGTTCAGACTTCCGTCCATTGACCAATATTCCTCA





Ad_denovo3016
104
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTATCGTCCAGTAAGCCGC




CTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCACTTACCCCTCCGACACTCTAGACTGACAGTTTCCAATGCAGTCCCGGGGTTG




AGCCCCGGGTTTTCACATCAGACTTGCCAGTCCGTCTACGCTCCCTTTACACCCAG




TAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTT




AGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGATAGAGCTTTAC




ATACCGAAATACTTCTTCGCTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTG




TGCAATATTCCCCA





Ad_denovo3299
105
CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGTGTCAGTTGCAGACCAGGAAGCCGC




CTTCGCCACTGGTGTTCCTCCATATCTCTACGCATTTCACCGCTACACATGGAATT




CCACTTCCCTCTTCTGCACTCAAGTCAACCAGTTTCCAATGACCCTCCACGGTTAA




GCCGTGGGCTTTCACATCAGACTTAATTAACCACCTGCGCGCTCTTTACGCCCAAT




AATTCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGGCTTTCTCATAAGGTACCGTCAATTGATAGTCATTTCCTCCTATCACCTT




TCTTCCCTTATAACAGAATTTTACAACCCGAAGGCCTTCTTCATTCACGCGGCGTT




GCTCGGTCAGGCTTTCGCCCATTGCCGAAGATTCCCTA





Ad_denovo3427
106
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGTTACAGTCCAGAAAGCCGC




CTTCGCTACTGGTGTTCCTCCCAATATCTACGCATTTCACCGCTACACTGGGAATT




CCGCTTTCCTCTCCTGCACTCAAGTCAGACAGTATCAGGAGCTTACTACGGTTGAG




CCGTAGCCTTTAACTCCTGACTTGAAAGACCGCCTACGCACCCTTTACGCCCAGTA




AATCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAG




CCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGACAGAGCTTTACGA




CCCGAAGGCCTTCATCGCTCACGCGGCATTGCTCGTTCAGGCTTGCGCCCATTGAC




GAAAATTCCCTA





Ad_denovo3603
107
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCCGC




CTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCGCTTACCTCTCCGGTACTCAAGATCAACAGTTTCCAATGCAGTCCGGGGGTTG




AGCCCCCGCCTTTCACATCAGACTTGCTGCTCCGTCTACGCTCCCTTTACACCCAG




TAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTT




AGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGATAGAAGTTTAC




ATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTG




TGCAATATTCCCCA





Ad_denovo3746
108
CCTGTTCGCTCCCCCAGCTTTCGCGCCTCAGCGTCGGTCTCGGCCCAGAGGGCCGC




CTTCGCCACCGGTGTTCCTCCCGATATCTGCGCATTCCACCGCTACACCGGGAATT




CCACCCTCCCCTACCGGACCCGAGCCGCGGGGTTCGGGGGGCGGACCGGGGTTG




AGCCCCGGGATTTGACCCCCCGCCTACGCGGCCGCCTACGCGCGCTTTACGCCCA




ATGAATCCGGATAACGCTCGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGT




TAGCCGGGGCTTCTTCTGCAGGTACCGTCTTGACTCGTCCCTGCTGAAAGCGGTTT




ACGACCCGAAGGCCTTCGTCCCGCACGCGGCGTCGCTGCGTCAGGGTTGCCCCCA




TTGCGCAAGATTCCCCA





Ad_denovo3795
109
CCTGTTTGCTCCCCATGCTTTCGCGCTTCAGCGTCAGTATCTGTCCAGTGAGCTGA




CTTCTCTATCGGCATTCCTACAAATATCTACGAATTTCACCTCTACACTTGTAGTT




CCGCCCACCTCTCCAGTACTCTAGTCTGGCAGTTTCCAACGCAATACGGAGTTGA




GCCCCGCATTTCCACATCAGACTTACCAGACCGCCTAGACGCGCTTTACGCCCAA




TAAATCCGGATAACGCTTGCGACATACGTATTACCGCGGCTGCTGGCACGTATTT




AGCCGTCGCTTCTTCTGTTGGTACCGTCACTTTCTTCTTCCCAACTGAAAGCACTTT




ACATTCCGAAAAACTTCATCGTGCACACAGAATTGCTGGATCAGACTTTTGGTCC




ATTGTCCAATATTCCCCA





Ad_denovo3807
110
CCTATTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGCAACAGGCCAGGCGGCCG




CCTTCGCCACTGGTGTTCTTCCATATATCTACGCATTTTACCGCTACACATGGAGT




TCCACCGCCCTCTCCTGCTCTCCAGTCCTCCAGTTTCCAAAGCCATGCATGAGTTG




AGCTCATGCGTTTCACTCCAGACTTGCAGGACCGCCTGCGCACCCTTTACGCCCA




ATCATTCCGGATAACGCTCGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGT




TAGCCGTGACTTTCTGGCGGGGCACCATCAGTCAGCACCCATTTCCTGATGCTGCC




TTTTTTCCCCCGCAACAGAGCTTTACGACCCGAAGGCCTTCTTCACTCACGCGGCA




TCGCTCGTTCAGGCTTGCGCCCATTGACGAAAATTCCCTA





Ad_denovo3832
111
CCTGTTTGCTCCCCATGCTTTCGCGCTTCAGCGTCAGTATCTGTCCAGTGAGCTGA




CTTCTCTATCGGCATTCCTACAAATATCTACGAATTTCACCTCTACACTTGTAGTT




CCGCCCACCTCTCCAGTACTCTAGTCTGGCAGTTTCCAACGCAATACGGAGTTGA




GCCCCGCATTTCCACATCAGACTTACCAGACCGCCTAGACGCGCTTTACGCCCAA




TAAATCCGGATAACGCTTGCGACATACGTATTACCGCGGCTGCTGGCACGTATTT




AGCCGTCGCTTCTTCTATCGGTACCATCACTTTCTTTTTCCCGATTGAAAGCACTTT




ACAATCCTAAGACCGTCATCGTGCACACAGAATTGCTGGATCAGACTTTTGGTCC




ATTGTCCAATATTCCCCA





Ad_denovo4316
112
CCTGTTCGCTCCCCCAGCTTTCGCGCCTCAGCGTCAGTGGCGGCCCAGCAGGCTG




CCTTCGCCATCGGTGTTCTTCCCGATATCTGCGCATTCCACCGCTACACCGGGAAT




TCCGCCTGCCTCTACCGCACTCGAGCCGCCCAGTCCGGAACCCGGCCCGAGGTTG




AGCCCCGGGATTAGAGGTTCCGCTTAGGCGGCCGCCTACGCGCGCTTTACGCCCA




ATGAATCCGGATAACGCTCGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGT




TAGCCGGAGCTTCTTCTGCAGGTACCGTCTATGTCTTCCCTGCTGAAAGCGGTTTA




CAACCCGAAGGCCTTCGTCCCGCACGCGGCGTTGCTGCGTCAGGGTTTCCCCCAT




TGCGCAAAATTCCCCA





Ad_denovo4538
113
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTCATCGTCCAGTAAGCCGC




CTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCACTTACCTCTCCGACACTCTAGAAAAACAGTTTCCAATGCAGTCCCGGGGTTG




AGCCCCGGGTTTTCACATCAGACTTGCCTCTCCGTCTACGCTCCCTTTACACCCAG




TAAATCCGGATAACGCTTGCACCATACGTATTACCGCGGCTGCTGGCACGTATTT




AGCCGGTGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGATAGAGCTTTAC




ATACCGAAATACTTCATCGCTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTG




TGCAATATTCCCCA





Ad_denovo4688
114
CCTGTTTGCTCCCCACGCTTTCGCGCCTCAGCGTCAGTTGTCGTCTAGAAAGTCGC




CTTCGCCACCGGTGTTCTTCCTAATCTCTACGCATTTCACCGCTACACTAGGAATT




CCACTTTCCCCTCCGACACTCCAGCCCTGCAGTTTCCATCCCCTCATGGGGTTAAG




CCCCACGCTTTTAAGATGGACTTGCACGGCCGCCTGCGCGCGCTTTACGCCCAAT




AATTCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGGCTTGCTTTTCCGGTACCGTCAACATCAATCAATGTTCTCAATCAATGCC




TTCGTCCCGGATCACAGAACTTTACAATCCGAAGACCTTCATCGTTCACGCGGCG




TTGCTCCGTCAGACTTTCGTCCATTGCGGAAGATTCCCCA





Ad_denovo5389
115
CCTGTTTGATACCCGCACTTTCGAGCCTCAGCGTCAGTTGCACCCCGGATACCTGC




CTTCGCGATCGGAGTTCTTCATGATATCTGAGCATTTCACCGCTACACCATGAATT




CCAGCATCCCTGTGTGCACTCAAGACTCCCAGTATCAACTGCAGTCCGACGGTTG




AGCCGCCGTATTTCACAACTGACTTAAGAGTCCGCCTGCGCTCCCTTTAAACCCA




ATAAATCCGGATAACGCCTGGACCTTCCGTATTACCGCGGCTGCTGGCACGGAAT




TAGCCGGTCCTTTTTCTGATGGTACATACAAAACAGCTCACGAGCTGCACTTTATT




CCCAACTAAAAGCAGTTTACAACCCGGAGGGCCGTCATCCTGCACGCTACTTGGC




TGGTTCAGACTTGCGTCCATTGACCAATATTCCTCA





Ad_denovo5707
116
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCCGC




CTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCGCTTACCTCTCCGGCACTCTAGAAAAACAGTTTCCAATGCAGTCCTGGGGTTA




AGCCCCAGCCTTTCACATCAGACTTGCTCTTCCGTCTACGCTCCCTTTACACCCAG




TAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTT




AGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGATAGAAGTTTAC




ATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTG




TGCAATATTCCCCA





Ad_denovo5908
117
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCCGC




CTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCGCTTACCCCTCCGGTACTCAAGACTGACAGTTTCCAATGCAGTCCAGGGGTTG




AGCCCCTGCCTTTCACATCAGACTTGCCATTCCGTCTACGCTCCCTTTACACCCAG




TAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTT




AGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGATAGAAGTTTAC




ATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTG




TGCAATATTCCCCA





Ad_denovo5931
118
CCTGTTTGCTACCCACGCTTTCGAGCCTCAGCGTCAGTTACAGCCCAGTAGGCCGC




CTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCGCCTACCTCTACTGCACTCAAGAGTGGCAGTTTTGAACGCGACTATCAGTTGA




GCCGATAGTTTAGACATTCAACTTGCCTCCCCGCCTACGCTCCCTTTACACCCAGT




AATTCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGGCTTCCTCCTCGGGTACCGTCATTTATTCGTCCCCGAAGACAGAGGTTTA




CAACCCGAAGGCCGTCTTCCCTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATT




GTGCAATATCCCCCA





Ad_denovo5988
119
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGTTACAGTCCAGAAAGCCGC




CTTCGCTACTGGTGTTCCTCCCAATATCTACGCATTTCACCGCTACACTGGGAATT




CCGCTTTCCTCTCCTGCACTCAAGTCAGACAGTATCAGGAGCTTACTACGGTTGAG




CCGTAGCCTTTAACTCCTGACTTGAAAGACCGCCTACGCACCCTTTACGCCCAGTA




AATCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAG




CCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGACAGAGCTTTACGA




CCCGAAGGCCTTCATCGCTCACGCGGCGTTGCTGCATCAGGCTTGCGCCCATTGT




GCAATATTCCCCA





Ad_denovo5998
120
CCCGTTTGCTCCCCTGGCTTTCGCGCCTCAGCGTCAGTTGTCGTCCAGAAAGCCGC




TTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCGCTTTCCTCTCCGATACTCTAGCATCGCAGTTTCGGTCCCCTCACGGGGTTAAG




CCCCGCACTTTTAAGACCGACTTACGACGCCGCCTGCGCGCCCTTTACGCCCAAT




AATTCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGGCTTTCTCTTACGGTACCGTCACTCGTAACGGGTATTGACCGCTACGCCA




TTCGTCCCGTATAACAGAACTTTACAACCCGAAGGCCGTCATCGTTCACGCGGCG




TTGCTCCGTCAGACTTTCGTCCATTGCGGAAGATTCCCCA





Ad_denovo6087
121
CCTGTTTGCTACCCACGCTTTCGAACCTCAGCGTCAGTTACAGACCAGAGAGCCG




CTTTCGCCACTGGTGTTCTTCCATATATCTACGCATTTCACCGCTACACATGGAGT




TCCACTCTCCTCTTCTGCACTCAAGTCTTCCAGTTTCCAATGCACTACTTCGGTTAA




GCCGAAGGCTTTCACATCAGACTTAAAAGACCGCCTGCGTTCCCTTTACGCCCAA




TAAATCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTT




AGCCGTGGCTTTCTGGTCAGATACCGTCAATACGTGAACAGTTACTCTCACGCAC




GTTCTTCTCTGACAACAGAATTTTACGACCCGAAGGCCTTCTTCATTCACGCGGCG




TTGCTCCATCAGACTTTCGTCCATTGTGGAAGATTCCCTA





Ad_denovo6281
122
CCTGTTTGATACCCGCACTTTCGAGCATCAGCGTCAGTTACGGTCCAGTAAGCTGC




CTTCGCAATCGGAGTTCTTCGTGATATCTAAGCATTTCACCGCTACACCACGAATT




CCGCCTACCTATACCGCACTCAAGAAATCCAGTATCAACTGCAATTTTACGGTTG




AGCCGCAAACTTTCACAACTGACTTAAACTTCCGCCTACGCTCCCTTTAAACCCAA




TAAATCCGGATAACGCTCGGATCCTCCGTATTACCGCGGCTGCTGGCACGGAGTT




AGCCGATCCTTATTCATACGGTACATACAAAAAAGCACACGTGCTTCACTTTATTC




CCGTATAAAAGAAGTTTACAACCCATAGGGCAGTCATCCTTCACGCTACTTGGCT




GGTTCAGACTCTCGTCCATTGACCAATATTCCTCA





Ad_denovo6301
123
CCTGTTCGCTCCCCCGGCTTTCGCGCCTCAGCGTCAGTGTCGGCCCAGCAGGCTGC




CTTCGCCATCGGTGTTCCTCCCGATATCTGCGCATTCCACCGCTACACCGGGAATT




CCACCTGCCCCTACCGCACTCGAGCCGCCCAGTTCGGAACCCGGCCGCGGGGTTG




AGCCCCGGGATTAGAGGTTCCGCTTAGGCGGCCGCCTACGCGCGCTTTACGCCCA




ATGAATCCGGATAACGCTCGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGT




TAGCCGGGGCTTCTTCTGCAGGTACCGTCTCGGTTCTTCCCTGCTGAAAGCGGTTT




ACAACCCGAAGGCCTTCGTCCCGCACGCGGCGTTGCTGCGTCAGGGTTGCCCCCA




TTGCGCAAAATTCCCCA





Ad_denovo6304
124
CCTATTTGCTCCCCACGCTTTCGGGACTGAGCGTCAGTTATGCGCCAGATCGTCGC




CTTCGCCACTGGTGTTCCTCCATATATCTACGCATTTCACCGCTACACATGGAATT




CCACGATCCTCTCACACACTCTAGCTCTACGGTTTCCATGGCTTACCGAAGTTAAG




CTTCGATCTTTCACCACAGACCCTTAGTGCCGCCTGCTCCCTCTTTACGCCCAATA




ATTCCGGATAACGCTCGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAG




CCGTGGCTTTCTTATAGAGTACCGTCACTTGGATATCATTCCCTATATCCACCGTT




CTTCCTCTATGACAGAAGTTTACATAACGAATTACTTCTTCCTTCACGCGGCGTTG




CTCGGTCAGGGTTTCCCCCATTGCCGAAAATTCCCTA





Ad_denovo6399
125
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTCATCGTCCAGAAAGCCGC




CTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCGCTTTCCTCTCCGACACTCTAGCCTGACAGTTCCAAATGCAGTCCCGGGGTTGA




GCCCCGGGCTTTCACATCTGGCTTGCCATGCCGTCTACGCTCCCTTTACACCCAGT




AAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGATAGAGCTTTACA




TACCGAAATACTTCATCGCTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTGT




GCAATATTCCCCA





Ad_denovo6610
126
CCTATTTGCTCCCCACGCTTTCGTGCTTCAGTGTCAGAATCCAGACCAGACGGCCG




CCTTCGCCACCGGTGTTCTTCCATATATCTACGCATTTTACCGCTACACATGGAGT




TCCGCCGTCCTCTTCTGTTCTCTAGCTGATCAGTTTCCAGAGCAAGTACGGGTTGA




GCCCATACCTTTTACTCCAGACTTGATCTGCCACCTACGCACCCTTTACGCCCAAT




CATTCCGGATAACGCTCGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGACTTTCTGGTAAGATACCATCACTCACTCATCATTCCCTATGAGTGCCGT




TTTTCTCTTACAACAGAGCTTTACGATCCGAAGACCTTCCTCACTCACGCGGCATT




GCTCGTTCAGGGTTCCCCCCATTGACGAAAATTCCCTA





Ad_denovo6718
127
CCTATTTGCTCCCCACGCTTTCGTGCCTGAGCGTCAGTAACAGTCCAGGCGGCCGC




CTTCGCCACTGGTGTTCTTCCATATATCTACGCATTTTACCGCTACACATGGAGTT




CCACCGCCCTCTCCTGTCCTCGAGCGTGACAGTTTCCAAAGCCTGTACAGGTTGA




GCCCGTACCTTTCACTTCAGACTTGCCACGCCGCCTGCGCACCCTTTACGCCCAAT




CATTCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGACTTTCTGGCAGGTTACTATCAAAAGAAAAGCATTTCCTCTTCCCTTCTT




TTCTGACCTGCAACAGAGCTTTACGATCCGAAGACCTTCCTCACTCACGCGGCATT




GCTCGTTCAGGCTTGCGCCCATTGACGAAAATTCCCTA





Ad_denovo6781
128
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTCATCGTCCAGCAAGCCGC




CTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCGCTTGCCTCTCCGACACTCTAGCTGCACAGTTTCCAAAGCAGTCCCGGGGTTG




AGCCCCGGGCTTTCACTTCAGACTTGCACTGCCGTCTACGCTCCCTTTACACCCAG




TAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTT




AGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGATAGAAGTTTAC




ATACCGAAATACTTCATCCTTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTG




TGCAATATTCCCCA





Ad_denovo6861
129
CCTGTTCGCTACCCATGCTTTCGAGCCTCAGCGTCAGTTGCAGACCAGACAGCCG




CCTTCGCCACTGGTGTTCTTCCATATATCTACGCATTCCACCGCTACACATGGAGT




TCCACTGTCCTCTTCTGCACTCAAGTCGCCCGGTTTCCGATGCACTTCTTCGGTTA




AGCCGAAGGCTTTCACATCAGACCTAAGCAACCGCCTGCGCTCGCTTTACGCCCA




ATAAATCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGT




TAGCCGTGACTTTCTGGTTGGATACCGTCACTGCGTGAACAGTTACTCTCACGCAC




GTTCTTCTCCAACAACAGAGCTTTACGAGCCGAAACCCTTCTTCACTCACGCGGTG




TTGCTCCATCAGGCTTGCGCCCATTGTGGAAGATTCCCTA





Ad_denovo6887
130
CCTGTTTGCTACCCACGCTTTCGCGCTTTAGCGTCAGTATCTGTCCAGTAGGCTGG




CTTCCCCATCGGCATTCCTACAAATATCTACGAATTTCACCTCTACACTTGTAGTT




CCGCCTACCTCTCCAGTACTCTAGTTTGGCAGTTTCCAACGCAATACGGAGTTGAG




CCCCGCATTTTCACATCAGACTTACCAAACCGCCTAGACGCGCTTTACGCCCAAT




AAATCCGGATAACGCTTGCGACATACGTATTACCGCGGCTGCTGGCACGTATTTA




GCCGTCGCTTCTTCTGTTGGTACCGTCACTTTCTTCTTCCCAACTGAAAGCACTTTA




CATTCCGAAAAACTTCATCGTGCACACAGAATTGCTGGATCAGACTTTTGGTCCA




TTGTCCAATATTCCCCA





Ad_denovo7322
131
CCCGTTCGCTACCCTAGCTTTCGAGCCTCAGCGTCAGTTACAGTCCAGAAAGCCG




CCTTCGCCACTGGTGTTCTTCCCAATATCTACGCATTTCACCGCTACACTGGGAAT




TCCGCTTTCCTCTCCTGCACTCAAGAAAATCAGTTCGGACCCCCTCACGAGGTTGA




GCCCCGCACTTTTAAGATCCGCTTAATTTCCCGCCTGCGCTCCCTTTACGCCCAAT




AATTCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGGCTTCCTCGTTAAGTACCGTCAAATACTTACTGTATTATAATAAGCATCC




TTCGCCCTTAACAACAGAACTTTACGATCCGAAGACCTTCTTCGTTCACGCGGCGT




TGCTCCGTCAGGCTTTCGCCCATTGCGGAAGATTCCCCA





Ad_denovo7447
132
CCCGTTCGCTACCCTGGCTTTCGCATCTCAGCGTCAGACACAGTCCAGAAAGGCG




CCTTCGCCACTGGTGTTCCTCCCAATATCTACGCATTTCACCGCTACACTGGGAAT




TCCCCTTTCCTCTCCTGCACTCAAGTCTTCCAGTATCCAGAGCCATACGGGGTTGA




GCCCCGCATTTTCACTCCAGACTTAAAAAACCGCCTACATGCTCTTTACGCCCAAT




AATTCCGGACAACGCTCGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGGCTTCCTCGTCTACTACCGTCATTACACGTCATTGTTCACAACATGCACA




TTCGTCATAGACAACAGAGCTTTACGGGACGAATCCCTTCATCACTCACGCGGCA




TTGCTCCGTCAGGCTTTCGCCCATTGCGGAAGATTCCCCA





Ad_denovo7591
133
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCCGC




CTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCGCTTACCCCTCCGGCACTCAAGTATGACAGTTTCCAATGCAGTCCACAGGTTG




AGCCCATGCCTTTCACATCAGACTTGCCACACCGTCTACGCTCCCTTTACACCCAG




TAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTT




AGCCGGGGCTTCTTAGTCAGGTACCGTCACTATCTTCCCTGCTGATAGAAGTTTAC




ATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTG




TGCAATATTCCCCA





Ad_denovo7849
134
CCTGTTCGATACCCGCACTTTCGAGCTTCAGCGTCAGTTGCGCTCCAGTGAGCTGC




CTTCGCAATCGGAGTTCTTCGTGATATCTAAGCATTTCACCGCTACACCACGAATT




CCGCCCACTTTGTGCGTACTCAAGGAAACCAGTTCGCGCTGCAGTGCAGACGTTG




AGCGTCTACATTTCACAACACGCTTAATCTCCGGCCTACGCTCCCTTTAAACCCAA




TAAATCCGGATAACGCCCGGACCTTCCGTATTACCGCGGCTGCTGGCACGGAATT




AGCCGGTCCTTATTCATAAGGTACATGCAAAAAGAGTCACGACTCCCACTTTATT




CCCTTATAAAAGCAGTTTACAACCCATAGGGCCGTCATCCTGCACGCTACTTGGC




TGGTTCAGACTCTCGTCCATTGACCAATATTCCTCA





Ad_denovo8147
135
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGTGTCAGTTACAGTCCAGAGAGCCGC




CTTCGCAACTGGTATTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CTACTCTCCTCTCCTGCACTCAAGTTTCTCAGTTTCAAAGGCTTACTACGGTTGAG




CCGTAGCCTTTCACCTCTGACTTAAGAAACCACCTACGCACCCTTTACGCCCAGTA




ATTCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAG




CCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGACAGAGCTTTACGA




CCCGAAGGCCTTCATCGCTCACGCGGCGTTGCTGCATCAGGCTTTCGCCCATTGTG




CAATATTCCCCA





Ad_denovo8324
136
CCTATTTGCTCCCCACGCTTTCGTGCCTGAGCGTCAGCAACAGTCCAGGCGGCCG




CCTTCGCCACTGGTGTTCTTCCATATATCTACGCATTTTACCGCTACACATGGAGT




TCCACCGCCCTCTCCTGTCCTCGAGCGCGCCAGTTTCCAAAGCCTGTACAGGTTGA




GCCTGTACCTTTCACTTCAGACTTGACGCGCCGCCTGCGCACCCTTTACGCCCAAT




CATTCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGACTTTCTGGCGGGGTACCATCAAGAAGAAATCATTTCCTCTTCCTTCCCT




TTTTCCCCCGCAACAGAGCTTTACGATCCGAAGACCTTCCTCACTCACGCGGCATT




GCTCGTTCAGGCTTGCGCCCATTGACGAAAATTCCCTA





Ad_denovo8360
137
CCTGTTTGCTCCCCACGCTTTCGTGCCTCAGTGTCAGTTACAGTCCAGAAAGCCGC




CTTCGCTACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCACTTTCCTCTCCTGCACTCAAGTTTCCCAGTTTCAAGAGCTTACTACGGTTAAG




CCGTAGCCTTTCACTCCTGACTTAAGAAACCACCTACGCACCCTTTACGCCCAGTA




AATCCGGATAACGCTAGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAG




CCGGGGCTTCCTCCTCAAGTACCGTCATTATCTTCCTTGAGGACAGAGTTTTACGA




CCCGAAGGCCTTCATCACTCACGCGGCGTTGCTGCATCAGGCTTTCGCCCATTGTG




CAATATTCCCCA





Ad_denovo8450
138
CCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCAGTGACGGCCCAGAGACCTGC




CTTCGCCATTGGTGTTCTTCCCGATATCTACACATTCCACCGTTACACCGGGAATT




CCAGTCTCCCCTACCGCACTCCAGCCCGCCCGTACCCGGCGCAGATCCACCGTTA




GGCGATGGACTTTCACACCGGACGCGACGAACCGCCTACGAGCCCTTTACGCCCA




ATAAATCCGGATAACGCTCGCACCCTACGTATTACCGCGGCTGCTGGCACGTAGT




TAGCCGGTGCTTATTCGAACAATCCACTCAACACGGCCCGAAGCCGTGCCTTGCC




CTTGAACAAAAGCGGTTTACAACCCGAAGGCCTCCATCCCGCACGCGGCGTCGCT




GCATCAGGCTTGCGCCCATTGTGCAATATTCCCCA





Ad_denovo8723
139
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCCGC




CTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCGCTTACCTCTCCGGCACTCTAGAAGCACAGTTTCCAATGCAGTCCCGTGGTTGA




GCCTCGGGTTTTCACATCAGACTTGCACTTCCGTCTACGCTCCCTTTACACCCAGT




AAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGGGGCTTCTTACTCAGGTACCGTCATTTTCTTCCCTGCTGATAGAAGTTTACA




TACCGAAATACTTCATCCTTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTGT




GCAATATTCCCCA





Ad_denovo8889
140
CCTATTTGCTCCCCACGCTTTCGTGCCTCAGCGTCAGATGCAGGCCAGACGGCCG




CCTTCGCCACCGGTGTTCTTCCATATATCTACGCATTTTACCGCTACACATGGAGT




TCCACCGTCCTCTCCTGCTCTCCAGCCGGACAGTTTCCGCAGCCCCTGAAGGTTGA




GCCTCCAGTTTTTACTGCGGACTTGCCCGGCCGCCTGCGCACCCTTTACGCCCAAT




CATTCCGGATAACGCTCGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTA




GCCGTGACTTCCTCGCCGGGTACCATCACTCAGAAAGCTTTCCACTCTTTCTGCCT




TTTGTCCCCGGCAACAGAGCTTTACGATCCGAAGACCTTCCTCGCTCACGCGGCA




TTGCTCGTTCAGGGTTCCCCCCATTGACGAAAATTCCCTA





Ad_denovo8939
141
CCTGTTCGCTACCCATGCTTTCGAGCCTCAGCGTCAGTTGCAGACCAGAGAGCCG




CCTTCGCCACTGGTGTTCTTCCATATATCTACGCATTCCACCGCTACACATGGAGT




TCCACTCTCCTCTTCTGCACTCAAGAAAAACAGTTTCCGATGCAGTTCCTCGGTTA




AGCCGAGGGCTTTCACATCAGACTTATTCTTCCGCCTGCGCTCGCTTTACGCCCAA




TAAATCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTT




AGCCGTGACTTTCTGGTTGATTACCGTCAAATAAAGGCCAGTTACTACCTCTATCC




TTCTTCACCAACAACAGAGCTTTACGATCCGAAAACCTTCTTCACTCACGCGGCGT




TGCTCCATCAGACTTTCGTCCATTGTGGAAGATTCCCTA





Ad_denovo9276
142
CCCGTTCGCTACCCTAGCTTTCGAGCCTCAGCGTCAGTTACAGTCCAGAAAGCCG




CCTTCGCCACTGGTGTTCTTCCCAATATCTACGCATTTCACCGCTACACTGGGAAT




TCCGCTTTCCTCTCCTGCACTCAAGAAAACCAGTTCGGACCCCATCACGGGGTTG




AGCCCCGCACTTTTAAGATCCGCTTAGTTTCCCGCCTGCGCTCCCTTTACGCCCAA




TAATTCCGGACAACGCTTGCCGCCTACGTATTACCGCGGCTGCTGGCACGTAGTT




AGCCGTGGCTTCCTCGTTAGGTACCGTCAAATAAAAACCTTATTATGATTCTTACC




CTTCGTCCCTAACAACAGAACTTTACGATCCTAAGACCTTCATCGTTCACGCGGCG




TTGCTCCGTCAGGCTTTCGCCCATTGCGGAAGATTCCCCA





Ad_denovo9283
143
CCTGTTCGCTCCCCCAGCTTTCGCGCCTCAGCGTCGGTCTCGGCCCAGAGGGCCGC




CTTCGCCACCGGTGTTCCACCCGATATCTGCGCATTCCACCGCTACACCGGGTGTT




CCACCCTCCCCTACCGGACCCGAGCCCGGCGGTTCAGGGGGCGGGACGGGGTTG




AGCCCCGCCATTTGACCCCCTGCCTGCCGGGCCGCCTACGCGCGCTTTACGCCCA




ATGAATCCGGATAACGCTCGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGT




TAGCCGGGGCTTCTTCTGCAGGTACCGTCTTGTCTCATCCCTGCTGAAAGCGGTTT




ACGACCCGAGGGCCTTCGTCCCGCACGCGGCGTCGCTGCGTCAGGGTTCCCCCCA




TTGCGCAAGATTCCCCA





Ad_denovo9495
144
CCTGTTCGCTACCCATGCTTTCGAGCCTCAGCGTCAGTTGCAGACCAGAGAGCCG




CCTTCGCCACTGGTGTTCTTCCATATATCTACGCATTCCACCGCTACACATGGAGT




TCCACTCTCCTCTTCTGCACTCAAGTTCAACAGTTTCTGATGCAATTCTCCGGTTG




AGCCGAAGGCTTTCACATCAGACTTATTGAACCGCCTGCACTCGCTTTACGCCCA




ATAAATCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGT




TAGCCGTGACTTTCTAAGTAATTACCGTCAAATAAAGGCCAGTTACTACCTCTATC




TTTCTTCACTACCAACAGAGCTTTACGAGCCGAAACCCTTCTTCACTCACGCGGCG




TTGCTCCATCAGACTTTCGTCCATTGTGGAAGATTCCCTA





Ad_denovo9530
145
CCTGTTTGCTCCCCACGCTTTCGCACCTGAGCGTCAGTCTTCGTCCAGGGGGCCGC




CTTCGCCACCGGTATTCCTCCAGATCTCTACGCATTTCACCGCTACACCTGGAATT




CTACCCCCCTCTACGAGACTCAAGCTTGCCAGTATCAGATGCAGTTCCCAGGTTG




AGCCCGGGGATTTCACATCTGACTTAACAAACCGCCTGCGTGCGCTTTACGCCCA




GTAATTCCGATTAACGCTTGCACCCTCCGTATTACCGCGGCTGCTGGCACGGAGTT




AGCCGGTGCTTCTTCTGCGGGTAACGTCAATGAGCAAAGGTATTAACTTTACTCC




CTTCCTCCCCGCTGAAAGTACTTTACAACCCGAAGGCCTTCTTCATACACGCGGCA




TGGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCCCA





Ad_denovo9818
146
CCTATTTGCTCCCCACGCTTTCGTGCCTGAGCGTCAGTTACAGGCCAGGCGGCCGC




CTTCGCCACTGGTGTTCTTCCACATCTCTACGCATTTTACCGCTACACGTGGAGTT




CCACCGCCCTCTCCTGTCCTCGAGCATACCAGTTTCCAAAGCCTGTACAGGTTGAG




CCCGTACCTTTCACTTCAGACTTGATATGCCGCCTGCGCACCCTTTACGCCCAATC




ATTCCGGATAACGCTCGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAG




CCGTGACTTTCTGGCGAGGTACCATCAAAAGAGAATCATTCCCTCTTCTCTTCCTT




TTTCCCTCGCAACAGAGCTTTACGATCCGAAGACCTTCTTCACCCACGCGGCATTG




CTCGTTCAGGCTTGCGCCCATTGACGAAAATTCCCTA





Ad_denovo10042
147
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCCGC




CTTCGCCACTGGTGTTCCTCCTAATATCTACGCATTTCACCGCTACACTAGGAATT




CCGCTTACCTCTCCGGCACTCTAGATGGACAGTTTCCAAAGCAGTCCAGGGGTTG




AGCCCCTGCCTTTCACTTCAGACTTGCCCGTCCGTCTACGCTCCCTTTACACCCAG




TAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTT




AGCCGGGGCTTCTTAGTCAGGTACCGTCATTGTCTTCCCTGCTGATAGAAGTTTAC




ATACCGAGATACTTCTTCCTTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTG




TGCAATATTCCCTA





Ad_denovo10124
148
CCTGTTTGCTACCCACGCTTTCGAACCTCAGCGTCAGTTACAGACCAGAGAGCCG




CTTTCGCCACTGGTGTTCTTCCATATATCTACGCATTTCACCGCTACACATGGAGT




TCCACTCTCCTCTTCTGCACTCAAGTCTCCCAGTTTCCAATGCACTACTCCGGTTA




AGCCGAAGGCTTTCACATCAGACTTAAAAGACCGCCTGCGTTCCCTTTACGCCCA




ATAAATCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGT




TAGCCGTGGCTTTCTGGTTAGATACCGTCGAAACGTGAACAGTTACTCTCACGCA




CTTTCTTCTCTAACAACAGGGTTTTACGATCCGAAGACCTTCTTCACCCACGCGGC




GTTGCTCCATCAGGCTTTCGCCCATTGTGGAAGATTCCCTA





Ad_denovo10761
149
CCTGTTTGCTCCCCACGCTTTCGAGCCTCAACGTCAGTTACCGTCCAGTAAGCCGC




CTTCGCCACTGGTGTTCCTCCCAATATCTACGCATTTCACCGCTACACTGGGAATT




CCGCTTACCTCTCCGGCACTCTAGATACACAGTTTCCAAAGCAGTCCCGGGGTTG




AGCCCCGGGCTTTCACTTCAGACTTGCACATCCGTCTACGCTCCCTTTACACCCAG




TAAATCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTT




AGCCGGGGCTTCTTAGTCAGGTACCGTCATTTTCTTCCCTGCTGATAGAGCTTTAC




ATACCGAAATACTTCTTCGCTCACGCGGCGTCGCTGCATCAGGGTTTCCCCCATTG




TGCAATATTCCCCA






Prevotella sp.

150
GAGTTTGATC CTGGCTCAGG ATGAACGCTA GCTACAGGCT TAACACATGC


canine oral

AAGTCGAGGGGCATCATGCA GGTTGCTTGC GATCTGTGAT GGCGACCGGC


taxon 195

GCACGGGTGA GTAACGCGTATCCAACCTAC CTTCGGCAGG GGCATAACCC




GGTGAAAGCC GGCCTAATTC CCCATGGTCCCCGTTGATGT CATCTGATTC




GGGGTAAAGG TGTTTTTTCC GGCCGTTGAT GGGGATGCGTCCGATTAGTT




AGTTGGCGGG GTAAAGGCCC ACCAAGACAG TGATCGGTAG




GGGTTCTGAGAGGAAGATCC CCCACATTGG GACTGAGACA CGGCCCAAAC




TCCTACGGGA GGCAGCAGTGAGGAATATTG GTCAATGGGC GTAAGCCTGA




ACCAGCCAAG TAGCGTGGAG GACGACCGCCCTATGGGTTG TAAACTCCTT




TTATGCGGGA ATAAATTTCG GGACGCGTTC CCGTTTTGCATGTACCGCAT




GAATAAGGAC CGGCTAATTC CGTGCCAGCA GCCGCGGTAA




TACGGAAGGTTCCGGTGTTA TCCGGATTTA TTGGGTTTAA AGGGAGCGCG




GACTGCTTGT CAAGCGTGCAGTGAAACGCC GCGGCTCAAC CGCGGTCCTG




CTGCGCGAAC TGGCTTGCTT GAGTGGGCTGTAGGTACGCG GAATTCGTGG




TGTAGCGGTG AAATGCTTAG ATATCACGAG GAACTCCGATTGCGAAGGCA




GCGTACCATA TCCCGACTGA CGTTTATGCT CGAAGGTGCG




GGTATCAAACAGGATTAGAT ACCCTGGTAG TCCGCACTGT AAACGATGGA




TGCTCGCTGT CGGCGACATATTGCCGGTGG CCCAGCGAAA GCGTTAAGCA




TCCCACCTGG GGAGTACGCC GGCAACGGTGAAACTCAAAG GAATTGACGG




GGGCCCGCAC AAGCGGAGGA ACATGTGGTT TAATTCGATGATACGCGAGG




AACCTTACCC GGGCTTGAAT TGCAGGAGAA CGATACAGAG




ATGTTGAGGCCTTTCGGGGC TCCTGTGAAG GTGCTGCATG GTTGTCGTCA




GCTCGTGCCG TGAGGTGTCGGCTTAAGTGC CATAACGAGC GCAACCCCTT




TGCGTAGTTG CCATCGGGTG ATGCCGGGCACTCTTCGCAT ACTGCCACCG




CAAGGTGTGA GGAAGGTGGG GATGACGTCA AATCAGCACGGCCCTTACGT




CCGGGGCTAC ACACGTGTTA CAATGGTGGG TACAGAGTGT




TGTTCGTGCGCAAGCACGTT CCAATCACAA AATCCCTCCT CAGTTCGGAC




TGGGGTCTGC AACCCGACCCCACGAAGCTG GATTCGCTAG TAATCGCGCA




TCAGCCATGG CGCGGTGAAT ACGTTCCCGGGCCTTGTACA CACCGCCCGT




CAAGCCATGA AAGCCGGGGG CGCCTGAAGT CCGTGACCGCGAGGGTCGGC




CTAGGGCGAA ACCGGTGATT GGGGCTAAGT CGTAACAAGG T






Prevotella sp.

151
GAGTTTGATC CTGGCTCAGG ATGAACGCTA GCTACAGGCT TAACACATGC


canine oral

AAGTCGAGGG GCAGCATGAA GTCAGCTTGC TGACTTTGAT GGCGACCGGC


taxon 226

GCACGGGTGC GTAACGCGTA TCAAACCTGC CGCATACTCG GGGATAGCCT




TGCGAAAGTA AGATTAATAC CCGATGTTAT TATGCCCTCG CATGAGGGTA




TAATCAAAGA TTTTATCGGT ATGCGATGGT GATGCGTCTG ATTAGGTAGT




AGGCGGGGTA ACGGCCCACC TAGCCAACGA TCAGTAGGGG TTCTGAGAGG




AAGGTCCCCC ACACTGGAAC TGAGACACGG TCCAGACTCC TACGGGAGGC




AGCAGTGAGG AATATTGGTC AATGGACGGA AGTCTGAACC AGCCAAGTAG




CGTGCAGGAT GACGGCCCTC CGGGTTGTAA ACTGCTTTTA GTTGGGAATA




ACGGCGGGGA CGCGTCCCCG AAAGGAATGT ACCATCAGAA AAAGGACCGG




CTAATTCCGT GCCAGCAGCC GCGGTAATAC GGAAGGTCCA GGCGTTATCC




GGATTTATTG GGTTTAAAGG GAGCGTAGGC GGGCTATTAA GTCAGCGGTT




AAAGCGTGTG GCTCAACCAT ACATTGCCGT TGAAACTGGT GGTCTTGAGT




GCACACAGGG ATGCTGGAAC TCGTGGTGTA GCGGTGAAAT GCTTAGATAT




CACGATGAAC TCCGATCGCG AAGGCAGGTG TCCGGGGTGC TACTGACGCT




GAGGCTCGAA AGTGTGGGTA TCAAACAGGA TTAGATACCC TGGTAGTCCA




CACAGTAAAC GATGTATACT CGTAGTTTGC GATAGATTGT AAGCTACCAA




GCGAAAGCAT TAAGTATACC ACCTGGGGAG TACGCCGGCA ACGGTGAAAC




TCAAAGGAAT TGACGGGGGC CCGCACAAGC GGAGGAACAT GTGGTTTAAT




TCGATGATAC GCGAGGAACC TTACCCGGGC TTGAACTAGA CAGGACTTAC




CAAGAGATTG GTATTTCTTC GGACCTGTTT AGAGGTGCTG CATGGTTGTC




GTCAGCTCGT GCCGTGAGGT GTCGGCTTAA GTGCCATAAC GAGCGCAACC




CTTCTCCTCG GTTGCCATCA GGTGATGCTG GGCACTCCGT GGACACTGCC




ATCGTAAGAT GTGAGGAAGG TGGGGATGAC GTCAAATCAG CACGGCCCTT




ACGTCCGGGG CTACACACGT GTTACAATGG GGGGTACAGA GGGTCGCTAC




CTGGTGACAG GATGCTAATC TCGAAAACCT CTCTCAGTTC GGATTGGAGT




CTGCAACCCG ACTCCATGAA GCTGGATTCG CTAGTAATCG CGCATCAGCC




ATGGCGCGGT GAATACGTTC CCGGGCCTTG TACACACCGC CCGTCAAGCC




ATGAAAGCCG GGGGTGCCTG AAAGCCGTGA CCGCAAGGGT CGGCCTAGGG




TAAAACTGGT GATTGGGGCT AAGTCGTAAC AAGGTAGCCG TACCGGAAGG




TGCGGCTGGA TCACCTCCTT






Blautia sp.

152
GAGTTTGATC CTGGCTCAGG ATGAACGCTG GCGGCGTGCT TAACACATGC


canine taxon

AAGTCGAACG AAGCACTTGA ATGGAATTCT TCGGAAGGAA GCCCAAGTGA


143

CTGAGTGGCG GACGGGTGAG TAACGCGTGG GTAACCTGCC TCATACAGGG




GGATAACAGT TAGAAATGAC TGCTAATACC GCATAAGCAC ACGTGATCGC




ATGATCGAGT GTGAAAAACT CCGGTGGTAT GAGATGGACC CGCGTCTGAT




TAGCTAGTTG GTGGGGTAAT GGCCCACCAA GGCGACGATC AGTAGCCGGC




CTGAGAGGGT GAACGGCCAC ATTGGGACTG AGACACGGCC CAAACTCCTA




CGGGAGGCAG CAGTGGGGAA TATTGCACAA TGGGGGAAAC CCTGATGCAG




CGACGCCGCG TGAAGGATGA AGTATTTCGG TATGTAAACT TCTATCAGCA




GGGAAGAAAA TGACGGTACC TGACTAAGAA GCCCCGGCTA ACTACGTGCC




AGCAGCCGCG GTAATACGTA GGGGGCAAGC GTTATCCGGA TTTACTGGGT




GTAAAGGGAG CGTAGACGGC AGTGCAAGTC TGAAGTGAAA GCCCGGGGCT




CAACCCCGGG ACTGCTTTGG AAACTGTGCA GCTAGAGTGT CGGAGAGGCA




AGCGGAATTC CTAGTGTAGC GGTGAAATGC GTAGATATTA GGAGGAACAC




CAGTGGCGAA GGCGGCTTGC TGGACGATGA CTGACGTTGA GGCTCGAAAG




CGTGGGGAGC AAACAGGATT AGATACCCTG GTAGTCCACG CCGTAAACGA




TGACTACTAG GTGTCGGGGA GCAAAGCTCT TCGGTGCCGC AGCCAACGCA




ATAAGTAGTC CACCTGGGGA GTACGTTCGC AAGAATGAAA CTCAAAGGAA




TTGACGGGGA CCCGCACAAG CGGTGGAGCA TGTGGTTTAA TTCGAAGCAA




CGCGAAGAAC CTTACCTGCT CTTGACATCC CTCTGACCGC TCTTTAATCG




GAGCTTTCCT TCGGGACAGA GGAGACAGGT GGTGCATGGT TGTCGTCAGC




TCGTGTCGTG AGATGTTGGG TTAAGTCCCG CAACGAGCGC AACCCCTATC




TTCAGTAGCC AGCGGTAAGG CCGGGCACTC TGGAGAGACT GCCAGGGATA




ACCTGGAGGA AGGTGGGGAT GACGTCAAAT CATCATGCCC CTTATGAGCA




GGGCTACACA CGTGCTACAA TGGCGTAAAC AAAGGGAAGC AGAGTCGTGA




GGCCGAGCAA ATCCCAAAAA TAACGTCTCA GTTCGGATTG TAGTCTGCAA




CTCGACTACA TGAAGCTGGA ATCGCTAGTA ATCGCGAATC AGAATGTCGC




GGTGAATACG TTCCCGGGTC TTGTACACAC CGCCCGTCAC ACCATGGGAG




TCAGTAACGC CCGAAGTCAG TGACCCAACC GCAAGGAGGG AGCTGCCGAA




GGTGGGACCG ATAACTGGGG TGAAGTCGTA ACAAGGTAGC CGTATCGGAA




GGTGCGGCTG GATCACCTCC TT






Blautia sp.

153
GAGTTTGATC CTGGCTCAGG ATGAACGCTG GCGGCGTGCT TAACACATGC


canine taxon

AAGTCGAACG AAGCACTGGA AACGGAATTC TTCGGAAGGA AGTATTTAGT


337

GACTGAGTGG CGGACGGGTG AGTAACGCGT GGGTAACCTG CCTCATACAG




GGGGATAACA GTTAGAAATA GCTGCTAATA CCGCATAAGA CCACAGAGTC




GCATGACTCA GTGGGAAAAA CTCCGGTGGT ATGAGATGGA CCCGCGTCTG




ATTAGCTAGT TGGTAAGGTA ACGGCTTACC AAGGCGACGA TCAGTAGCCG




ACCTGAGAGG GTGACCGGCC ACATTGGGAC TGAGACACGG CCCAAACTCC




TACGGGAGGC AGCAGTGGGG AATATTGCAC AATGGGGGAA ACCCTGATGC




AGCGACGCCG CGTGAGTGAT GAAGTATTTC GGTATGTAAA GCTCTATCAG




CAGGGAAGAA AATGACGGTA CCTGACTAAG AAGCCCCGGC TAACTACGTG




CCAGCAGCCG CGGTAATACG TAGGGGGCAA GCGTTATCCG GATTTACTGG




GTGTAAAGGG AGTGTAGACG GTGATGTAAG TCTGATGTGA AAATTTGGGG




CTCAACCCCA AAACTGCATT GGAAACTATG TCACTAGAGT GTCGGAGAGG




TAAGTGGAAT TCCTAGTGTA GCGGTGAAAT GCGTAGATAT TAGGAGGAAC




ACCAGTGGCG AAGGCGGCTT ACTGGACGAT GACTGACGTT GAGGCTCGAA




AGCGTGGGGA GCAAACAGGA TTAGATACCC TGGTAGTCCA CGCCGTAAAC




GATGAATACT AGGTGTCGGG TGGCAAAGCC ATTCGGTGCC GTCGCAAACG




CAATAAGTAT TCCACCTGGG GAGTACGTTC GCAAGAATGA AACTCAAAGG




AATTGACGGG GACCCGCACA AGCGGTGGAG CATGTGGTTT AATTCGAAGC




AACGCGAAGA ACCTTACCTG GTCTTGACAT CCCCTTGACA GAGTATGTAA




TGTACTTTTC CTTCGGGACA AGGGAGACAG GTGGTGCATG GTTGTCGTCA




GCTCGTGTCG TGAGATGTTG GGTTAAGTCC CGCAACGAGC GCAACCCCTA




TCTTTAGTAG CCAGCATATG AGGTGGGCAC TCTAGAGAGA CTGCCAGGGA




TAACCTGGAG GAAGGTGGGG ATGACGTCAA ATCATCATGC CCCTTATGAT




CAGGGCTACA CACGTGCTAC AATGGCGTAA ACAAAGGGAA GCGACCCTGT




GAAGGCAAGC AAATCTCAAA AATAACGTCT CAGTTCGGAT TGTAGTCTGC




AACTCGACTA CATGAAGCTG GAATCGCTAG TAATCGCGAA TCAGAATGTC




GCGGTGAATA CGTTCCCGGG TCTTGTACAC ACCGCCCGTC ACACCATGGG




AGTCAGTAAC GCCCGAAGTC AGTGACCCAA CCGAAAGGAG GGAGCTGCCG




AAGGTGGAAC CGATAACTGG GGTGAAGTCG TAACAAGGTA






Allobaculum

154
GATGAACGCT GGCGGCATGC CTAATACATG CAAGTCGAAC GAGCTACTTC



stercoricanis


GGTAGCTAGT GGCGAACGGG TGAGTAACAC GTAGATAACC TGCCCATACC


DSM 13633

CGGGGGATAC GCTTTGGAAA CGAAGTCTAA AACCCCATAG GAAGATTTAA




GGCATCTTAA ATTTTTGAAA TAAGCTTTGG CTTAGGGGAT GGATGGATCT




GCGGTGCATT AGCTAGTTGG TGAGGTAACA GCTCACCAAG GCGATGATGC




ATAGCCGGCC TGAGAGGGCG ATCGGCCACA CTGGGACTGA GACACGGCCC




AGACTCCTAC GGGAGGCAGC AGTAGGGAAT TTTCGTCAAT GGGCGCAAGC




CTGAACGAGC AATGCCGCGT GGGTGAAGAA GGTCTTCGGA TCGTAAAGCT




CTGTTGCGAG GGAAAAAGGA AGAGAAGAGG GAATGATTCT CTTTTGATGG




TACCTCGCCA GAAAGTCACG GCTAACTACG TGCCAGCAGC CGCGGTAATA




CGTAGGTGGC GAGCGTTATC CGGAATGATT GGGCGTAAAG GGTGCGCAGG




CGGCATATCA AGTCTGAAGT GAAAGGTACG GGCTCAACCT GTACAGGCTT




TGGAAACTGG TATGCTCGAG GACAGGAGAG GGCGGTGGAA CTCCACGTGT




AGCGGTAAAA TGCGTAGAGA TGTGGAAGAA CACCAGTGGC GAAGGCGGCC




GCCTGGCCTG TAACTGACGC TCAGGCACGA AAGCGTGGGG AGCAAATAGG




ATTAGATACC CTAGTAGTCC ACGCCCTAAA CGATGAGGAG CAGGTGTCGG




GGGTAGTACC TCGGTGCCGA AGCTAACGCA ATGACTCCTC CGCCTGGGGA




GTATGCACGC AAGTGTGAAA CTCAAAGGAA TTGACGGGGG CCCGCACAAG




CGGTGGAGTA TGTGGTTTAA TTCGAAGCAA CGCGAAGAAC CTTACCAGGC




CTTGACATCC CGAGCAAAGA CATAGAGATA TGTTAGAGGT TATCTCGGTG




ACAGGTGGTG CATGGTTGTC GTCAGCTCGT GTCGTGAGAT GTTCAGTTAA




GTCTGGCAAC GAGCGCAACC CTCGTGATGT GTTACTACCA TTCAGTTGAG




GACTCACATC AGACTGCCGG TGACAAACCG GAGGAAGGCG GGGATGACGT




CAAATCATCA TGCCCCTTAT GGCCTGGGCT ACACACGTAC TACAATGGCA




TCTACAGACG GAAGCGAACC TGTGAAGGCA AGCCAATCCG AGAAAAGATG




TCCCAGTTCG GATTGAAGTC TGCAACTCGA CTTCATGAAG TTGGAATCGC




TAGTAATCGC GGATCAGCAT GCCGCGGTGA ATACGTTCCC GGGCCTTGTA




CACACCGCCC GTCAAACCAT GGAAGCCGGT AACGCCCGAA GCCGATGGCA




TAACCCGTAA GGGAGTGAGT CGTCGAAGGC GGGACCGATG ACTGGGGTTA




AGTCGTAACA AGGTATCCCT ACGGGAACG






Clostridium

155
GAGTTTGATC CTGGCTCAGG ATGAACGCTG GCGGCGTGCC TAACACATGC



hiranonis


AAGTCGAGCG ATTCTCTTCG GAGAAGAGCG GCGGACGGGT GAGTAACGCG




TGGGTAACCT GCCCTGTACA CACGGATAAC ATACCGAAAG GTATGCTAAT




ACGGGATAAT ATATAAGAGT CGCATGACTT TTATATCAAA GATTTTTCGG




TACAGGATGG ACCCGCGTCT GATTAGCTTG TTGGCGGGGT AACGGCCCAC




CAAGGCGACG ATCAGTAGCC GACCTGAGAG GGTGATCGGC CACATTGGAA




CTGAGACACG GTCCAAACTC CTACGGGAGG CAGCAGTGGG GAATATTGCA




CAATGGGCGC AAGCCTGATG CAGCAACGCC GCGTGAGCGA TGAAGGCCTT




CGGGTCGTAA AGCTCTGTCC TCAAGGAAGA TAATGACGGT ACTTGAGGAG




GAAGCCCCGG CTAACTACGT GCCAGCAGCC GCGGTAATAC GTAGGGGGCT




AGCGTTATCC GGATTTACTG GGCGTAAAGG GTGCGTAGGC GGTCTTTCAA




GTCAGGAGTT AAAGGCTACG GCTCAACCGT AGTAAGCTCC TGATACTGTC




TGACTTGAGT GCAGGAGAGG AAAGCGGAAT TCCCAGTGTA GCGGTGAAAT




GCGTAGATAT TGGGAGGAAC ACCAGTAGCG AAGGCGGCTT TCTGGACTGT




AACTGACGCT GAGGCACGAA AGCGTGGGGA GCAAACAGGA TTAGATACCC




TGGTAGTCCA CGCTGTAAAC GATGAGTACT AGGTGTCGGA GGTTACCCCC




TTCGGTGCCG CAGCTAACGC ATTAAGTACT CCGCCTGGGG AGTACGCACG




CAAGTGTGAA ACTCAAAGGA ATTGACGGGG ACCCGCACAA GTAGCGGAGC




ATGTGGTTTA ATTCGAAGCA ACGCGAAGAA CCTTACCTAG GCTTGACATC




CTTCTGACCG AGGACTAATC TCCTCTTTCC CTCCGGGGAC AGAAGTGACA




GGTGGTGCAT GGTTGTCGTC AGCTCGTGTC GTGAGATGTT GGGTTAAGTC




CCGCAACGAG CGCAACCCTT GTCTTTAGTT GCCATCATTA AGTTGGGCAC




TCTAGAGAGA CTGCCAGGGA TAACCTGGAG GAAGGTGGGG ATGACGTCAA




ATCATCATGC CCCTTATGCC TAGGGCTACA CACGTGCTAC AATGGGTGGT




ACAGAGGGCA GCCAAACCGT GAGGTGGAGC AAATCCCTTA AAGCCATTCT




CAGTTCGGAT TGTAGGCTGA AACTCGCCTA CATGAAGCTG GAGTTACTAG




TAATCGCAGA TCAGAATGCT GCGGTGAATG CGTTCCCGGG TCTTGTACAC




ACCGCCCGTC ACACCATGGG AGTTGGAGAC ACCCGAAGCC GACTATCTAA




CCTTTTGGGA GAAGTCGTCG AAGGTGGAAT CAATAACTGG GGTGAAGTCG




TAACAAGGTA GCCGTATCGG AAGGTGCGGC TGGATCACCT CCTT






Pepto-

156
GAGTTTGATC CTGGCTCAGG ATGAACGCTG GCGGCGTGCC TAACACATGC



streptococcus


AAGTCGAGCG CGGTTGTGCT TAGTATTGAG TGTTTTATTG ATATAAAACA


sp. canine

TTGAATTCTA TGCACAACTG AGCGGCGGAC GGGTGAGTAA CGCGTGGGTA


oral taxon 033

ACCTGCCCTA TACACATGGA TAACATACTG AAAAGTTTAC TAATACATGA




TAAAATAGTT TTTCGGCATC GAAGAATTAT CAAAGTGTTT GCGGTATAGG




ATGGACCCGC GTCTGATTAG CTAGTTGGTG AGATAACTGC CCACCAAGGC




GACGATCAGT AGCCGACCTG AGAGGGTGAT CGGCCACATT GGAACTGAGA




CACGGTCCAA ACTCCTACGG GAGGCAGCAG TGGGGAATAT TGCACAATGG




GCGCAAGCCT GATGCAGCAA CGCCGCGTGA ACGATGAAGG TCTTCGGATC




GTAAAGTTCT GTTGCAGGGG AAGATAATGA CGGTACCCTG TGAGGAAGCC




CCGGCTAACT ACGTGCCAGC AGCCGCGGTA ATACGTAGGG GGCTAGCGTT




ATCCGGATTT ACTGGGCGTA AAGGGTGCGT AGGTGGTCTT TCAAGTCGGT




GGTTAAAGGC TACGGCTCAA CCGTAGTAAG CCTCCGAAAC GGTTAGACTT




GAGTGCAGGA GAGGAAAGTG GAATTCCCAG TGTAGCGGTG AAATGCGTAG




ATATTGGGAG GAACACCAGT AGCGAAGGCG GCTTTCTGGA CTGCAACTGA




CACTGAGGCA CGAAAGCGTG GGTAGCAAAC AGGATTAGAT ACCCTGGTAG




TCCACGCCGT AAACGATGAG TACTAGGTGT CGGGGGTTAC CCCCCTCGGT




GCCGCAGCTA ACGCATTAAG TACTCCGCCT GGGGAGTACG CACGCAAGTG




TGAAACTCAA AGGAATTGAC GGGGACCCGC ACAGGTAGCG GAGCATGTGG




TTTAATTCGA AGCAACGCGA AGAACCTTAC CTAAGCTTGA CATCCCTCGG




ACCGGTGTTT AATCACACCT TTCCTTCGGG ACTGAGGAGA CAGGTGGTGC




ATGGTTGTCG TCAGCTCGTG TCGTGAGATG TTGGGTTAAG TCCCGCAACG




AGCGCAACCC TTGTCTTTAG TTGCCATCAT TAAGTTGGGC ACTCTAGAGA




GACTGCCAGG GACAACCTGG AGGAAGGTGG GGATGACGTC AAATCATCAT




GCCCCTTATG CTTAGGGCTA CACACGTGCT ACAATGGGTG GTACAGAGGG




TTGCCAAACC GTGAGGTGGA GCCAATCCCT TAAAGCCACT CTCAGTTCGG




ATTGTAGGCT GAAACTCGCC TACATGAAGC TGGAGTTACT AGTAATCGCA




GATCAGAATG CTGCGGTGAA TGCGTTCCCG GGTCTTGTAC ACACCGCCCG




TCACACCATG GGAGTCGGAA GCACCCGAAG CCGATTATCT AACCGCAAGG




AGGAGATCGT CGAAGGTGGC GTCGATAACT GGGGTGAAGT CGTAACAAGG




TAGCCGTATC GGAAGGTGCG GCTGGATCAC CTCCTT






Pepto-

157
GAGTTTGATC CTGGCTCAGG ATGAACGCTG GCGGCGTGCC TAACACATGC



streptococcus


AAGTCGAGCG CGACTGATTT GATGCTTGCA TCGATGAAAG TTGAGCGGCG


sp. canine

GACGGGTGAG TAACGCGTGG GCAACCTGCC CTGTACACAT GGATAACATA


oral taxon 227

CTGAAAAGTT TACTAATACA TGATAATATA GTTTTTCGGC ATCGAAGAAT




TATCAAAGTG TTAGCGGTAC AGGATGGGCC CGCGTCTGAT TAGCTAGTTG




GTGAGATAAC TGCCCACCAA GGCGACGATC AGTAGCCGAC CTGAGAGGGT




GATCGGCCAC ATTGGAACTG AGACACGGTC CAAACTCCTA CGGGAGGCAG




CAGTGGGGAA TATTGCACAA TGGGCGCAAG CCTGATGCAG CAACGCCGCG




TGAACGATGA AGGTCTTCGG ATCGTAAAGT TCTGTTGCAG GGGAAGACAA




TGACGGTACC CTGTGAGGAA GCCCCGGCTA ACTACGTGCC AGCAGCCGCG




GTAATACGTA GGGGGCTAGC GTTATCCGGA TTTACTGGGC GTAAAGGGTG




CGTAGGTGGT CCTTCAAGTC GGTGGTTAAA GGCTACGGCT CAACCGTAGT




AAGCCTCCGA AACTGTTGGA CTTGAGTGCA GGAGAGGAAA GTGGAATTCC




CAGTGTAGCG GTGAAATGCG TAGATATTGG GAGGAACACC AGTAGCGAAG




GCGGCTTTCT GGACTGCAAC TGACACTGAG GCACGAAAGC GTGGGTAGCA




AACAGGATTA GATACCCTGG TAGTCCACGC TGTAAACGAT GAGTACTAGG




TGTCGGGGGT TACCCCCCTC GGTGCCGCAG CTAACGCATT AAGTACTCCG




CCTGGGGAGT ACGCACGCAA GTGTGAAACT CAAAGGAATT GACGGGGACC




CGCACAAGTA GCGGAGCATG TGGTTTAATT CGAAGCAACG CGAAGAACCT




TACCTAAGCT TGACATCCCT CGGACCGGTG TTTAATCACA CCTTTCCTTC




GGGACTGAGG TGACAGGTGG TGCATGGTTG TCGTCAGCTC GTGTCGTGAG




ATGTTGGGTT AAGTCCCGCA ACGAGCGCAA CCCTTGTCTT TAGTTGCCAT




CATTAAGTTG GGCACTCTAG AGAGACTGCC AGGGATAACC TGGAGGAAGG




TGGGGATGAC GTCAAATCAT CATGCCCCTT ATGCTTAGGG CTACACACGT




GCTACAATGG GTGGTACAGA GGGTTGCCAA ACCGTGAGGT GGAGCTAATC




CCTTAAAGCC ATTCTCAGTT CGGATTGTAG GCTGAAACTC GCCTACATGA




AGCTGGAGTT ACTAGTAATC GCAGATCGGA ATGCTGCGGT GAATGCGTTC




CCGGGTCTTG TACACACCGC CCGTCACACC ATGGGAGTCG GAAACACCCG




AAGCCGATTA TCTAACCGCA AGGAGGAAGT CGTCGAAGGT GGCGTCGATA




ACTGGGGTGA AGTCGTAACA AGGTAGCCGT ATCGGAAGGT GCGGCTGGAT




CACCTCCTT






Pepto-

158
GAGTTTGATC CTGGCTCAGG AGGAACGCTG GCGGCGTGCC TAACACATGC



streptococcaceae


AAGTCGAGCG AGAAATAAAG AAACGGAGAA TTCGTTCAAA GATTCTTTAT



bacterium


GGAAAGCGGC GGACGGGTGA GTAACGCGTA GGCAACCTGC CTCATACAAA


canine taxon

GGGATAGCCT CGGGAAACCG GGATTAAAAC CTTATAAAAC CGAAGGAGCA


066

CATGCTTCAT CGGTCAAAGA TTTATCGGTA TGAGATGGGC CTGCGTCTGA




TTAGCTGGTT GGTGAGGTAA CGGCTCACCA AGGCGACGAT CAGTAGCCGA




CCTGAGAGGG TAAACGGCCA CATTGGAACT GAGACCCGGT CCAAACTCCT




ACGGGAGGCA GCAGTGGGGA ATATTGCACA ATGGGCGAAA GCCTGATGCA




GCAACGCCGC GTGAGTGATG AAGGCCCTTG GGTCGTAAAA CTCTGTTGAG




AGGGAAGAAA AAAATGACGG TACCTCTTGA GGAAGCCCCG GCTAACTACG




TGCCAGCAGC CGCGGTAATA CGTAGGGGGC GAGCGTTATC CGGAATTATT




GGGCGTAAAG AGTGCGTAGG TGGTTATCTA AGCGTGGGGT GAAAGGCAGT




GGCTTAACCA TTGTAAGCCT TGCGAACTGG ATAGCTTGAG TGCAGGAGGG




GAAAGTGGAA TTCCTAGTGT AGCGGTGAAA TGCGTAGATA TTAGGAGGAA




CACCGGTGGC GAAGGCGGCT TTCTGGACTG TAACTGACAC TGAGGCACGA




AAGCGTGGGT AGCAAACAGG ATTAGATACC CTGGTAGTCC ACGCCGTAAA




CGATGAGCAC TAGGTGTTGG GGGGAGAACT CTCAGTGCCG CAGTCAACGC




AATAAGTGCT CCGCCTGGGG AGTACGCACG CAAGTGTAAA ACTCAAAGGA




ATTGACGGGG ACCCGCACAA GCAGCGGAGC ATGTGGTTTA ATTCGAAGCA




ACGCGAAGAA CCTTACCGGG ACTTGACATC CGCCTGACGT CTCCTTAACC




GGAGATTTCT TCGGACAGGC AAGACAGGTG GTGCATGGTT GTCGTCAGCT




CGTGTCGTGA GATGTTGGGT TAAGTCCCGC AACGAGCGCA ACCCTTGTCA




ATAGTTGCCA GCAGTAAGAT GGGCACTCTA TTGAGACTGC CGTGGATAAC




ACGGAGGAAG GTGGGGATGA CGTCAAATCA TCATGCCCCT TATGTTCCGG




GCTACACACG TGCTACAATG GCCGGTACAA CGAGAAGCAA GACCGCAAGG




TGGAGCAAAT CTTAAAAAGC CGGTCCCAGT TCGGATTGTA GGCTGCAACT




CGCCTACATG AAGATGGAGT TGCTAGTAAT CGCAGATCAG AATGCTGCGG




TGAATGCGTT CCCGGGTCTT GTACACACCG CCCGTCACAC CATGGAAGTT




GGGGGTGCCC GAAGTCGGTT AGAAAATAGG CTGCCGAAGG CAAAACCAAT




GACTGGGGTG AAGTCGTAAC AAGGTAGCCG TATCGGAAGG TGCGGCTGGA




TCACCTCCTT






Pepto-

159
GAGTTTGATC CTGGCTCAGG ATGAACGCTG GCGGCGTGCC TAACACATGC



streptococcaceae


AAGTCGAGCG AAAAATCCAT AATCGAATCT TCGGACAAGA GAGTGGATGG



bacterium


AAAGCGGCGG ACGGGTGAGT AACGCGTAGG TAACCTGCCC TGTACAGAGG


canine taxon

GATAGCCACC GGAAACGGTG ATTAATACCT CATAACACCG AAAGTTCACA


139

TGGACAGTCG GTCAAAGATT TATCGGTACA GGATGGACCT GCGTCTGATT




AGTTAGTTGG TGAGGTAACG GCTCACCAAG GCGACGATCA GTAGCCGACC




TGAGAGGGTG ATCGGCCACA TTGGAACTGA GACACGGTCC AAACTCCTAC




GGGAGGCAGC AGTGGGGAAT ATTGCACAAT GGGGGAAACC CTGATGCAGC




AACGCCGCGT GAATGAAGAA GGCCTTTGGG TTGTAAAATT CTGTTCTGAG




GGAAGAAGAA AGTGACGGTA CCTCAGGAGA AAGCCCCGGC TAACTACGTG




CCAGCAGCCG CGGTAATACG TAGGGGGCAA GCGTTGTCCG GAATCATTGG




GCGTAAAGAG TACGTAGGCG GTTTGGCAAG CGTAAGGTTT AAGGCAACAG




CTCAACTGTT GTTCGCCTTG TGAACTGTCA AACTTGAGTG CGGGAGAGGA




AAGCGGAATT CCTGGTGTAG CGGTGAAATG CGTAGATATC AGGAGGAATA




CCGGTGGCGA AGGCGGCTTT CTGGACCGTA ACTGACGCTG AGGTACGAAA




GCGTGGGGAG CAAACAGGAT TAGATACCCT GGTAGTCCAC GCCGTAAACG




ATGAGCACTA GGTGTCGGGG CTTTAGAGCT TCGGTGCCGC AGTTAACGCA




ATAAGTGCTC CGCCTGGGGA GTACGCACGC AAGTGTGAAA CTCAAAGGAA




TTGACGGGGA CCCGCACAAG CAGCGGAGCA TGTGGTTTAA TTCGAAGCAA




CGCGAAGAAC CTTACCAGGG CTTGACATCC TTCTGACGTA TCCTTAATCG




GATATTTCTA CGGACAGAAG AGACAGGTGG TGCATGGTTG TCGTCAGCTC




GTGTCGTGAG ATGTTGGGTT AAGTCCCGCA ACGAGCGCAA CCCTTGTCAT




TAGTTACTAA CGATATAAGT CGAGGACTTT AATGAGACTG CCGGGGAGAA




CTCGGAGGAA GGTGGGGATG ACGTCAAATC ATCATGCCCC TTATGTTCTG




GGCTACACAC GTGCTACAAT GGTCGGTACA AAGAGAAGCG AGACTGTGAA




GTGGAGCAAA ACTCAAAAGC CGATCCCAGT TCGGACTGTA GGCTGAAACC




CGCCTACACG AAGTCGGAGT TGCTAGTAAT CGTGGATCAG AATGCCACGG




TGAATGCGTT CCCGGGTCTT GTACACACCG CCCGTCACAC CATGGAAGTT




GGGGGCGCCC GAAGTCGGTC GAAAAATAGA CTGCCTAAGG TGAAACCAAT




GACTGGGGTG AAGTCGTAAC AAGGTAGCCG TATCGGAAGG TGCGGCTGGA




TCACCTCCTT
















TABLE 3.2







Estimated Shannon index diversity post-weaning in puppies


expressed as group means with 95% confidence intervals.










Normal range
Outliers for intervention














95%
95%
5th
95th


Age
Mean
Lower
Upper
Percentile
Percentile


(Days)
Diversity
CI
CI
of range
of range





31
1.682
1.351
2.012
0.8595
2.6721


38
1.831
1.473
2.188
0.6351
2.8786


45
2.038
1.699
2.377
1.1738
2.7788


52
1.632
1.294
1.97
0.7218
2.7338


Mean
1.796
1.454
2.137
0.8476
2.7658


Days


31-52


Min
1.632
1.294
1.970
0.6351
2.6721


Max
2.038
1.699
2.377
1.1738
2.8786
















TABLE 3.3







Estimated Shannon index diversity expressed as group means with


95% confidence intervals in adult senior and geriatric dogs.









Outliers for



intervention











Mean range
5th
95th














Age (years)
Mean
95%
95%
Percentile
Percentile














Lifestage
Mean
Range
Diversity
Lower CI
Upper CI
of range
of range

















Adult
5.2
3.8-6.2
2.7644
2.3755
3.1534
1.83
3.72


Senior
10.0
 8.2-12.9
2.5117
2.1971
2.8263
1.24
3.55


Geriatric
14.8
14.6-15.0
2.8306
2.3339
3.3273
2.16
3.47












Mean diversity
2.7022
2.3022
3.1023
1.74
3.58









Example 4: Puppy Microbiota Blautia spp., Clostridium hiranonsis and Megamonas

A recent study of the puppy faecal microbiota described changes in the bacterial communities detected within the faeces of healthy puppies during the first year of life. The microbiota detected within the faeces of healthy puppies during the first year of life demonstrated that in the period before weaning, the most common types of bacteria belong to the Phylum Proteobacteria (FIG. 5). After weaning bacteria from the phylum Firmicutes were the most abundant detected. The diversity of the bacterial community also increased after weaning.


The initial elements of the puppy microbiota are likely from a maternal source and include Staphylococcus aureus and Bifidobacterium longum, which is known to be able to exploit the oligosaccharides present in the maternal milk, and a Clostridium sensu stricto 1 sp., amongst others. The presence of these taxa suggests that they are able to exploit the environment of the neonatal gut, given the availability of a source of nutrients from maternal milk, and the tolerance of various environmental stressors such as an unfavourable pH.


Following weaning, a number of species become more prevalent in the neonatal gut. The most notable examples are Megamonas sp. and Blautia sp. both of which are prolific fermenters of complex carbohydrates and producers of short chain fatty acids. In general, these species are associated with a healthy gut microbiome due to their production of short chain fatty acids, and their decreased abundance in dogs with diarrhoea [60, 61] and canine IBD [62]. Following this a large and sustained increase in Clostridium hiranonsis was observed, such that this becomes the most abundant taxa at all sampling points from Day 52 onwards until the final sampling point at Day 360. This species is also associated with a healthy gut microbiota, being involved in deconjugation of bile acids and decreased in cases of canine chronic enteropathy [22] and having a reported ability to inhibit the pathogen Clostridium difficile via secondary bile acids [23]. Overall, the increased abundance of Blautia spp., Clostridium hiranonsis and Megamonas spp. post-weaning indicate a healthy microbiota in puppies and adult dogs.


Example 5: Allobaculum, Peptostreptococcus and Core Bifidobacterium, Lactobacillus, and Enterococcus

In a study of 22 dogs receiving a course of metronidazole prophylaxis for clinical signs of gastrointestinal dysbiosis, the faecal microbiota was assessed prior to, during, and following treatment. The study aimed to assess the extent, variability, and longevity of metronidazole treatment on the faecal microbiota in dogs. Metronidazole treatment was associated with a reduction in diarrhoea within the cohort. Assessment of the faecal microbiota by 16 S rRNA gene amplicon sequencing revealed reduced Shannon diversity and altered community composition during and immediately following treatment. While the animals received metronidazole, a core microbiota, dominated by OTU (sequence type) assigned to the lactic acid bacteria (Bifidobacterium, Lactobacillus, and Enterococcus) was observed across the cohort. This core microbiota representative of the organisms associated with metronidazole treatment was enriched for operational taxonomic units assigned to the genera Bifidobacterium, Lactobacillus, and Enterococcus. Diversity and species richness of the faecal microbiota increased to a post-treatment plateau around 4 weeks following the cessation of treatment. The increase in microbial diversity was associated with an apparent evolution within the microbial community composition of individuals, characterised by consistent signatures at both the OTU and genus taxonomic levels. Metronidazole treatment was associated with reduced microbial diversity, establishment of a core microbiota, and conserved features indicative of a consistent hierarchy in the evolution of gut microbiota community composition during the re-establishment of microbial diversity across individuals. The core microbiota associated with metronidazole treatment was enriched for sequences assigned to the lactic acid bacteria suggestive of innate resistance and the capability to perform activities essential to gut microbiome function.


The composition of the microbiota during and immediately following treatment was dominated by lactic acid bacteria from the genera Lactobacillus, Bifidobacterium, and Enterococcus. The enhanced relative abundance of these genera, considered to be associated with gastrointestinal health in humans, is therefore likely to be responsible for the clinical resolution of dysbiosis and, by inference from their consistent representation across the cohort, can represent a healthy core microbiota naturally resistant to metronidazole and capable of performing the functions of the microbiome and restoring the gut microbiota and physiology. In the 1-2 weeks following the completion of antibiotic prophylaxis, a change in the genera represented was apparent with sequence types assigned to Allobaculum, Clostridium, and Peptostreptococcus spp. increasing in abundance as well as OTUs assigned to the genera Blautia. These bacteria therefore form the first organisms to recolonise the gut. By visual assessment of stacked plots, the treatment and first recovery time points (t=2 and t=3) dominated by lactic acid bacteria were followed in subsequent time points by the completion of treatment. Peptostreptococcus and Allobaculum genera, before return to a complexity similar to that observed during the baseline phase (FIGS. 6A-6H). This subset of OTUs best describes those most influential in driving the separation of samples into clusters associated with treatment phase based on their relative abundance profiles in faeces samples from the cohort. The subset comprised 9 OTUs assigned to the genus Allobaculum, 3 assigned to Lactobacillus, 3 to S24-7, and individual OTUs from the genera Christensenella, Peptostreptococcus, Romboutsia, Morganella, Adlercreutzia/Asaccharobacter, Enterococcus, and Butyricicoccus as well as 2 OTUs assigned to the family Ruminococcaceae (FIG. 7 and FIG. 13 (Table 4)). During and immediately following metronidazole treatment the relative abundance of three predominant OTUs were influential in the clustering, these were all assigned to the genus Lactobacillus. Additionally, two more minor OTUs detected in less than 30% of samples also influenced the clustering of samples into antibiotic and first sampling 2-3 days post-antibiotic therapy based on VIP score. These OTUs were assigned to the genera Enterococcus and Morganella (Enterobacteriaceae family). All OTUs in the second cluster influential in the early recovery phase during the first two weeks after treatment were prevalent, being detected in greater than 30% of the population. Taxonomic assignment of those OTUs driving the clustering of samples in this early recovery phase following the completion of antibiotic therapy described 2 OTUs from the family Ruminococcaceae and genus Allobaculum and one each from the family Eggerthellaceae and the genera Butyricicoccus, Fusobacterium, Romboutsia, and Peptostreptococcus. Finally, a third cluster defined by PLSDA VIP scores contained samples from the baseline and post-treatment phase 28 days after the completion of antibiotic treatment. OTUs represented at increased abundance within this cluster and prevalent being represented in more than 30% of the sample set included 4 Erysipelotrichaceae sp. assigned to the genus Allobaculum and 2 OTUs from the group S24-7, likely Muribaculaceae sp. A further group of lower prevalence OTUs were detected in less than 30% of the samples and included 3 OTUs assigned to the Erysipelotrichaceae genus Allobaculum/Ileibacterium, and one OTU each assigned to the S24-7 group and Christensenella genus. Clusters 1 and 2 (FIG. 13 (Table 4)) therefore represent basic core microbiota with health associated species associated with the restoration of clinical health.


Detailed Description of FIG. 6A-6H

Stacked bar plots from eight representative dogs within the cohort demonstrating the distribution in the abundant taxonomic groups at each sampling point. Phylogenetic assignment to the genus level is shown as determined by DNA sequence of the 16 S rRNA gene v4 region. Abundance is expressed as a proportion relative to the total sequences for the sample. Sequences not assigned a nearest hit in the Green genes database (version 12_10) were collated into the ‘Unknown’ group; sequences of low abundance for visualisation and those representing less than 0.001% of sequences within the sample were assigned to Other and Rare groups respectively. Pre-treatment phase: t=1—Baseline; Treatment phase: t=2—Antibiotic administered; Recovery phase: t=3—Early week 1; t=4—Late week 1; t=5—week 2; t=6—week 4; t=7—week 6; t=8—week 8; t=9—month 3; t=10—month 4; t=11—month 5; t=12—month 6 Genera designations for the eight taxa that were most abundant throughout the study. Taxa that were observed that were not able to be expressed due to low level abundance were classified as Other; those that are not found as commonly were termed Rare; unclassified genera were Unknown.


Detailed Description of FIG. 7

Partial least Square discriminate analysis (PLS-DA) correlation plot based on likeness in bacterial abundance data for the 25 OTUs displaying the greatest influence on clustering of the samples (variable importance in projection scores>1). Sample and OTU descriptors have been replaced for ease of visualisation with a colour guide (see key for details). Faeces samples are represented in vertical rows while bacterial OTUs are represented by horizontal rows within the heat plot. The heat map results are read in a similar manner to correlations although values are not constrained to (−1, 1). Dark red or blue sections on the heatmap indicate positively and negatively correlated groups of measurements respectively.









TABLE 7







Bacterial species associated with dysbiosis










SEQ



Organism
ID NO
Sequence






Prevotella copri DSM

160
AGAGTTTGAT CCTGGCTCAG GATGAACGCT AGCTACAGGC


18205

TTAACACATG CAAGTCGAGG GGAAACGACA TCGAAAGCTT




GCTTTTGATG GGCGTCGACC GGCGCACGGG TGAGTAACGC




GTATCCAACC TGCCCACCAC TTGGGGATAA CCTTGCGAAA




GTAAGACTAA TACCCAATGA TATCTCTAGA AGACATCTGA




AAGAGATTAA AGATTTATCG GTGATGGATG GGGATGCGTC




TGATTAGCTT GTTGGCGGGG TAACGGCCCA CCAAGGCGAC




GATCAGTAGG GGTTCTGAGA GGAAGGTCCC CCACATTGGA




ACTGAGACAC GGTCCAAACT CCTACGGGAG GCAGCAGTGA




GGAATATTGG TCAATGGGCG AGAGCCTGAA CCAGCCAAGT




AGCGTGCAGG ATGACGGCCC TATGGGTTGT AAACTGCTTT




TATAAGGGAA TAAAGTGAGC CTCGTGAGGC TTTTTGCATG




TACCTTATGA ATAAGGACCG GCTAATTCCG TGCCAGCAGC




CGCGGTAATA CGGAAGGTCC GGGCGTTATC CGGATTTATT




GGGTTTAAAG GGAGCGTAGG CCGGAGATTA AGCGTGTTGT




GAAATGTAGA CGCTCAACGT CTGCACTGCA GCGCGAACTG




GTTTCCTTGA GTACGCACAA AGTGGGCGGA ATTCGTGGTG




TAGCGGTGAA ATGCTTAGAT ATCACGAAGA ACTCCGATTG




CGAAGGCAGC TCACTGGAGC GCAACTGACG CTGAAGCTCG




AAAGTGCGGG TATCGAACAG GATTAGATAC CCTGGTAGTC




CGCACGGTAA ACGATGGATG CCCGCTGTTG GTCTGAACAG




GTCAGCGGCC AAGCGAAAGC ATTAAGCATC CCACCTGGGG




AGTACGCCGG CAACGGTGAA ACTCAAAGGA ATTGACGGGG




GCCCGCACAA GCGGAGGAAC ATGTGGTTTA ATTCGATGAT




ACGCGAGGAA CCTTACCCGG GCTTGAATTG CAGAGGAAGG




ATTTGGAGAC AATGACGCCC TTCGGGGCCT CTGTGAAGGT




GCTGCATGGT TGTCGTCAGC TCGTGCCGTG AGGTGTCGGC




TTAAGTGCCA TAACGAGCGC AACCCCTCTC CTTAGTTGCC




ATCAGGTTAA GCTGGGCACT CTGGGGACAC TGCCACCGTA




AGGTGTGAGG AAGGTGGGGA TGACGTCAAA TCAGCACGGC




CCTTACGTCC GGGGCTACAC ACGTGTTACA ATGGCAGGTA




CAGAGAGACG GTYSTATGYA AATASGATCA AATCCTTAAA




GCCTGTCTCA GTTCGGACTG GGGTCTGCAA CCCGACCCCA




CGAAGCTGGA TTCGCTAGTA ATCGCGCATC AGCCATGGCG




CGGTGAATAC GTTCCCGGGC CTTGTACACA CCGCCCGTCA




AGCCATGAAA GCCGGGGGCG CCTAAAGTCC GTGACCGTAA




GGAGCGGCCT AGGGCGAAAC TGGTAATTGG GGCTAAGTCG




TAACAAGGTA ACC






Mogibacterium COT112

161
GAGTTTGATC CTGGCTCAGG ATGAACGCTG GCGGCGTGCC




TAATACATGC AAGTCGAGCG AGATGTTAGT GCATGAACCT




TCGGGGGATT ATACTAACGG ACAGCGGCGG ACGGGTGAGT




AACGCGTAGG CAACCTGCCC CTGACAGAGG GATAGCCATT




GGAAACGATG ATTAAAACCT CATGACACCG TAGAAGCACA




TGCTTCATCG GTCAAAGATT TATCGGTCGG GGATGGGCCT




GCGTCTGATT AACTAGTTGG TGAGGTAACG GCTCACCAAG




GTGACGATCA GTAGCCGACC TGAGAGGGTG ATCGGCCACA




TTGGAACTGA GACACGGTCC AAACTTCTAC GGAAGGCAGC




AGTAGGGAAT CTTGCACAAT GGGCGAAAGC CTGATGCAGC




AACGCCGCGT GAAGGATGAA GGCCTTCGGG TTGTAAACTT




CTGTTCTAAG GGAAGAAAGA AATGACGGTA CCTTAGGAGC




AAGCCCCGGC TAACTACGTG CCAGCAGCCG CGGTAATACG




TAGGGGGCAA GCGTTATCCG GAATTATTGG GCGTAAAGAG




TGCGTAGGTG GTTACCTAAG CGCAAGGTTT AATTTAGAGG




CTCAACCTCT ACTTGCCTTG CGAACTGGGC TACTTGAGTG




CAGGAGGGGA AAGCGGAATT CCTAGTGTAG CGGTGAAATG




CGTAGATATT AGGAGGAACA CCAGCGGCGA AGGCGGCTTT




CTGGACTGTA ACTGACACTG AGGCACGAAA GCGTGGGTAG




CAAACAGGAT TAGATACCCT GGTAGTCCAC GCCGTAAACG




ATGAGCACTA GGTGTTGGGT CCGTTAGGAC TCAGTGCCGC




AGTTAACGCA ATAAGTGCTC CGCCTGGGGA GTACGCTCGC




AAGAGTAAAA CTCAAAGGAA TTGACGGGGA CCCGCACAAG




CAGCGGAGCA TGTGGTTTAA TTCGAAGCAA CGCGAAGAAC




CTTACCAGGG CTTGACATCC TGCTGACAGG ACTTTAACAG




GTTCCTTCTT CGGACAGCAG AGACAGGTGG TGCATGGTTG




TCGTCAGCTC GTGTCGTGAG ATGTTGGGTT AAGTCCCGCA




ACGAGCGCAA CCCTTGTCGC TAGTTACTAA CATTCAGTTG




AGGACTCTAG CGAGACTGCC GAGGTCAACT CGGAGGAAGG




TGGGGATGAC GTCAAATCAT CATGCCCCTT ATGTTCTGGG




CTACACACGT GCTACAATGG TCGGTACAAT GAGAGGCAAT




ACTGCGAAGT GGAGCGAATC ACCAAAACCG ATCCCAGTTC




GGATTGTAGG CTGCAACTCG CCTACATGAA GTTGGAGTTG




CTAGTAATCG CAGATCAGAA TGCTGCGGTG AATGCGTTCC




CGGGTCTTGT ACACACCGCC CGTCACACCA TGGAAGTTGG




GGGTGCCCAA AGTCGGTTAA TTAATCTATC GCCTAAGGCA




AAACCAATGA CTGGGGTGAA GTCGTAACAA GGTAG






Mogibacterium COT343

162
GAGTTTGATC CTGGCTCAGG ATGAACGCTG GCGGCGTGCC


(timidum)

TAATACATGC AAGTCGAGCG AGAAGCTTGG AAATGACGCT




TCGGTTGATT TTCCAAGCGG ACAGCGGCGG ACGGGTGAGT




AACGCGTAGG CAACCTGCCC CTGACAGAGG GATAGCCATT




GGAAACGATG ATTAAAACCT CATGACACCG TAGTAGCACA




TGCTACATCG GTCAAAGATT TATCGGTCAG GGATGGGCCT




GCGTCTGATT AACTGGTTGG TGAGGTAACG GCTCACCAAG




GTGACGATCA GTAGCCGACC TGAGAGGGTG ATCGGCCACA




TTGGAACTGA GACACGGTCC AAACTTCTAC GGAAGGCAGC




AGTAGGGAAT CTTGCACAAT GGGCGAAAGC CTGATGCAGC




AACGCCGCGT GAAGGATGAA GGCCTTCGGG TTGTAAACTT




CTGTTCTAAG GGAAGAAAGA AATGACGGTA CCTTAGGAGC




AAGCCCCGGC TAACTACGTG CCAGCAGCCG CGGTAATACG




TAGGGGGCAA GCGTTATCCG GAATTATTGG GCGTAAAGAG




TGCGTAGGTG GTTACCTAAG CGCAAGGTTT AAATTAGAGG




CTCAACCTCT ACATGCCTTG CGAACTGGGC TACTTGAGTG




CAGGAGGGGA AAGCGGAATT CCTAGTGTAG CGGTGAAATG




CGTAGATATT AGGAGGAACA CCGGCGGCGA AGGCGGCTTT




CTGGACTGTA ACTGACACTG AGGCACGAAA GCGTGGGTAG




CAAACAGGAT TAGATACCCT GGTAGTCCAC GCCGTAAACG




ATGAGCACTA GGTGTTGGGT CCGTTAGGAC TCAGTGCCGC




AGTTAACGCA ATAAGTGCTC CGCCTGGGGA GTACGCTCGC




AAGAGTAAAA CTCAAAGGAA TTGACGGGGA CCCGCACAAG




CAGCGGAGCA TGTGGTTTAA TTCGAAGCAA CGCGAAGAAC




CTTACCAGGG CTTGACATCC TGCTGACAGA ACCTTAATCG




GCTTTTTCTT CGGACAGCAG AGACAGGTGG TGCATGGTTG




TCGTCAGCTC GTGTCGTGAG ATGTTGGGTT AAGTCCCGCA




ACGAGCGCAA CCCTTGTCGC TAGTTACTAA CATTCAGTTG




AGGACTCTAG CGAGACTGCC GAGGTCAACT CGGAGGAAGG




TGGGGATGAC GTCAGATCAT CATGCCCCTT ATGTTCTGGG




CTACACACGT GCTACAATGG TCGGTACAAT GAGATGCAAT




ACTGCGAAGT GGAGCGAAAC ACCAAAACCG ATCCCAGTTC




GGATTGTAGG CTGCAACTCG CCTACATGAA GTCGGAGTTG




CTAGTAATCG CAGATCAGAA TGCTGCGGTG AATGCGTTCC




CGGGTCTTGT ACACACCGCC CGTCACACCA TGGAAGTTGG




GGGTGCCCAA AGTCGGTTAA TTAATCTATC GCCTAAGGCA




AAACCAATGA CTGGGGTGAA GTCGTAACAA GGTAGCCGTT




CGAGAACGAG CGGCTGGATC ACCTCCTT






Fusobacterium

163
GAGTTTGATC CTGGCTCAGG ATGAACGCTG ACAGAATGCT



canifelinum


TAACACATGC AAGTCTACTT GAATTTGGGT TTTTTAACTT




CGATTTGGGT GGCGGACGGG TGAGTAACGC GTAAAGAACT




TGCCTCACAG CTAGGGACAA CATTTGGAAA CGAATGCTAA




TACCTGATAT TATGATTTTA GGGCATCCTA GAATTATGAA




AGCTATATGC GCTGTGAGAG AGCTTTGCGT CCCATTAGCT




AGTTGGAGAG GTAACGGCTC ACCAAGGCGA TGATGGGTAG




CCGGCCTGAG AGGGTGATCG GCCACAAGGG GACTGAGACA




CGGCCCTTAC TCCTACGGGA GGCAGCAGTG GGGAATATTG




GACAATGGAC CAAGAGTCTG ATCCAGCAAT TCCGTGTGCA




CGATGAAGTT TTTCGGAATG TAAAGTGCTT TCAGTTGGGA




AGAAAAAAAT GACGGTACCA ACAGAAGAAG TGACGGCTAA




ATACGTGCCA GCAGCCGCGG TAATACGTAT GTCACAAGCG




TTATCCGGAT TTATTGGGCG TAAAGCGCGT CTAGGTGGTT




ATGTAAGTCT GATGTGAAAA TGCAGGGCTC AACTCTGTAT




TGCGTTGGAA ACTGTGTAAC TAGAGTACTG GAGAGGTAAG




CGGAACTACA AGTGTAGAGG TGAAATTCGT AGATATTTGT




AGGAATGCCG ATGGGGAAGC CAGCTTACTG GACAGATACT




GACGCTGAAG CGCGAAAGCG TGGGTAGCAA ACAGGATTAG




ATACCCTGGT AGTCCACGCC GTAAACGATG ATTACTAGGT




GTTGGGGGTC GAACCTCAGC GCCCAAGCAA ACGCGATAAG




TAATCCGCCT GGGGAGTACG TACGCAAGTA TGAAACTCAA




AGGAATTGAC GGGGACCCGC ACAAGCGGTG GAGCATGTGG




TTTAATTCGA CGCAACGCGA GGAACCTTAC CAGCGTTTGA




CATCTTAGGA ATGAGACAGA GATGTTTCAG TGTCCCTTCG




GGGAAACCTA AAGACAGGTG GTGCATGGCT GTCGTCAGCT




CGTGTCGTGA GATGTTGGGT TAAGTCCCGC AACGAGCGCA




ACCCCTTTCG TATGTTACCA TCATTAAGTT GGGGACTCAT




GCGATACTGC CTACGATGAG TAGGAGGAAG GTGGGGATGA




CGTCAAGTCA TCATGCCCCT TATACGCTGG GCTACACACG




TGCTACAATG GGTAGTACAG AGAGTCGCAA AGCCGTGAGG




TAGAGCTAAT CTCAGAAAAC TATTCTTAGT TCGGATTGTA




CTCTGCAACT CGAGTACATG AAGTTGGAAT CGCTAGTAAT




CGCGAATCAG CAATGTCGCG GTGAATACGT TCTCGGGTCT




TGTACACACC GCCCGTCACA CCACGAGAGT TGGTTGCACC




TGAAGTAGCA GGCCTAACCG CAAGGAGGGA TGCTCCGAGG




GTGTGATTAG CGATTGGGGT GAAGTCGTAA CAAGGT






Fusobacterium

164
GAGTTTGATC CTGGCTCAGG ATGAACGCTG ACAGAATGCT



necrophorum


TAACACATGC AAGTCGACTC GAGTCTTCGG ACTTGGGTGG




CGCACGGGTG AGTAACGCGT AAAGAACTTG CCTCTTAGAC




CGGGACAACA TCTGGAAACG GATGCTAATA CCGGATATTA




TGGTTTTTTC GCATGGAGGA ATCATGAAAG CTAGATGCGC




TAAGAGAGAG CTTTGCGTCC CATTAGCTAG TTGGTGAGGT




AACGGCCCAC CAAGGCAATG ATGGGTAGCC GGCCTGAGAG




GGTGAACGGC CACAAGGGGA CTGAGACACG GCCCTTACTC




CTACGGGAGG CAGCAGTGGG GAATATTGGA CAATGGACCA




CAAGTCTGAT CCAGCAATTC TGTGTGCACG ATGACGTTTT




TCGGAATGTA AAGTGCTTTC AGTCGGGAAG AAGTCAGTGA




CGGTACCGAC AGAAGAAGCG ACGGCTAAAT ACGTGCCAGC




AGCCGCGGTA ATACGTATGT CGCAAGCGTT ATCCGGATTT




ATTGGGCGTA AAGCGCGTCT AGGCGGCAAG GAAAGTCTGA




TGTGAAAATG CGGAGCTCAA CTCCGTATGG CGTTGGAAAC




TGCCTTACTA GAGTACTGGA GAGGTAGGCG GAACTACAAG




TGTAGAGGTG AAATTCTTAG ATATTTGTAG GAATGCCGAT




GGGGAAGCCA GCCTACTGGA CAGATACTGA CGCTAAAGCG




CGAAAGCGTG GGTAGCAAAC AGGATTAGAT ACCCTGGTAG




TCCACGCTGT AAACGATGAT TACTAGGTGT TGGGGGTCAA




ACCTCAGCGC CCAAGCTAAC GCGATAAGTA ATCCGCCTGG




GGAGTACGTA CGCAAGTATG AAACTCAAAG GAATTGACGG




GGACCCGCAC AAGCGGTGGA GCATGTGGTT TAATTCGACG




CAACGCGAGG AACCTTACCA GCGTTTGACA TCCTACGAAC




GGAGCAGAGA TGCGCCGGTG CCCTTTCGGG GGAACGTAGT




GACAGGTGGT GCATGGCTGT CGTCAGCTCG TGTCGTGAGA




TGTTGGGTTA AGTCCCGCAA CGAGCGCAAC CCCTATCGTA




TGTTACCATC CTTCAGTTGG GGACTCATGC GGTACTGCCT




GCGACGAGCA GGAGGAAGGT GGGGATGACG TCAAGTCATC




ATGCCCCTTA TACGCTGGGC TACACACGTG CTACAATGGG




TAGTACAGAG AGCAGCAAAC CCGCGAGGGG GAGCAAATCT




CAGAAAACTA TTCTTAGTTC GGATTGTACT CTGCGACTCG




AGTACATGAA GTTGGAATCG CTAGTAATCG CAAATCAGCA




ATGTTGCGGT GAATACGTTC TCGGGTCTTG TACACACCGC




CCGTCACACC ACGAGAGTTG GTTGCACCTG AAGTAGCAGG




CCTAACCTTA GGGAAGGATG CTCCGAGGGT GTGGTTAGCG




ATTGGGGTGA AGTCGTAACA AGGT






Fusobacterium

165
GAGTTTGATC CTGGCTCAGG ATGAACGCTG ACAGAATGCT



nucleatum subsp.


TAACACATGC AAGTCAACTT GAATTTGGGT TTTTAACTTA



Animalis


GATTTGGGTG GCGGACGGGT GAGTAACGCG TAAAGAACTT




GCCTCACAGC TAGGGACAAC ATTTAGAAAT GAATGCTAAT




ACCTGATATT ATGATTTTAA GGCATCTTAG AATTATGAAA




GCTATAAGCA CTGTGAGAGA GCTTTGCGTC CCATTAGCTA




GTTGGAGAGG TAACAGCTCA CCAAGGCGAT GATGGGTAGC




CGGCCTGAGA GGGTGAACGG CCACAAGGGG ACTGAGACAC




GGCCCTTACT CCTACGGGAG GCAGCAGTGG GGAATATTGG




ACAATGGACC GAGAGTCTGA TCCAGCAATT CTGTGTGCAC




GATGAAGTTT TTCGGAATGT AAAGTGCTTT CAGTTGGGAA




GAAATAAATG ACGGTACCAA CAGAAGAAGT GACGGCTAAA




TACGTGCCAG CAGCCGCGGT AATACGTATG TCACGAGCGT




TATCCGGATT TATTGGGCGT AAAGCGCGTC TAGGTGGTTA




TGTAAGTCTG ATGTGAAAAT GCAGGGCTCA ACTCTGTATT




GCGTTGGAAA CTGTGTAACT AGAGTACTGG AGAGGTAAGC




GGAACTACAA GTGTAGAGGT GAAATTCGTA GATATTTGTA




GGAATGCCGA TGGGGAAGCC AGCTTACTGG ACAGATACTG




ACGCTAAAGC GCGAAAGCGT GGGTAGCAAA CAGGATTAGA




TACCCTGGTA GTCCACGCTG TAAACGATGA TTACTAGGTG




TTGGGGGTCG AACCTCAGCG CCCAAGCAAA CGCGATAAGT




AATCCGCCTG GGGAGTACGT ACGCAAGTAT GAAACTCAAA




GGAATTGACG GGGACCCGCA CAAGCGGTGG AGCATGTGGT




TTAATTCGAC GCAACGCGAG GAACCTTACC AGCGTTTGAC




ATCTTAGGAA TGAGATAGAG ATATTTCAGT GTCCCTTCGG




GGAAACCTAA AGACAGGTGG TGCATGGCTG TCGTCAGCTC




GTGTCGTGAG ATGTTGGGTT AAGTCCCGCA ACGAGCGCAA




CCCCTTTCGT ATGTTACCAT CATTAAGTTG GGGACTCATG




CGATACTGCC TACGATGAGT AGGAGGAAGG TGGGGATGAC




GTCAAGTCAT CATGCCCCTT ATACGCTGGG CTACACACGT




GCTACAATGG GTAGAACAGA GAGTTGCAAA GCCGTGAGGT




GAAGCTAATC TCAGAAAACT ATTCTTAGTT CGGATTGTAC




TCTGCAACTC GAGTACATGA AGTTGGAATC GCTAGTAATC




GCGAATCAGC AATGTCGCGG TGAATACGTT CTCGGGTCTT




GTACACACCG CCCGTCACAC CACGAGAGTT GGTTGCACCT




GAAGTAGCAG GCCTAACCGT AAGGAGGGAT GCTCCGAGGG




TGTGATTAGC GATTGGGGTG AAGTCGTAAC AAGGT






Escherichia/Shigella

166
GAGTTTGATC ATGGCTCAGA TTGAACGCTG GCGGCAGGCC


COT277

TAACACATGC AAGTCGAACG GTAACAGGAA GAAGCTTGCT




TCTTTGCTGA CGAGTGGCGG ACGGGTGAGT AATGTCTGGG




AAACTGCCTG ATGGAGGGGG ATAACTACTG GAAACGGTAG




CTAATACCGC ATAACGTCGC AAGACCAAAG AGGGGGACCT




TCGGGCCTCT TGCCATCGGA TGTGCCCAGA TGGGATTAGC




TAGTAGGTGG GGTAACGGCT CACCTAGGCG ACGATCCCTA




GCTGGTCTGA GAGGATGACC AGCCACACTG GAACTGAGAC




ACGGTCCAGA CTCCTACGGG AGGCAGCAGT GGGGAATATT




GCACAATGGG CGCAAGCCAG ATGCAGCCAT GCCGCGTGTA




TGAAGAAGGC CTTCGGGTTG TAAAGTACTT TCAGCGGGGA




GGAAGGGAGT AAAGTTAATA CCTTTGCTCA TTGACGTTAC




CCGCAGAAGA AGCACCGGCT AACTCCGTGC CAGCAGCCGC




GGTAATACGG AGGGTGCAAG CGTTAATCGG AATTACTGGG




CGTAAAGCGC ACGCAGGCGG TTTGTTAAGT CAGATGTGAA




ATCCCCGGGC TCAACCTGGG AACTGCATCT GATACTGGCA




AGCTTGAGTC TCGTAGAGGG GGGTAGAATT CCAGGTGTAG




CGGTGAAATG CGTAGAGATC TGGAGGAATA CCGGTGGCGA




AGGCGGCCCC CTGGACGAAG ACTGACGCTC AGGTGCGAAA




GCGTGGGGAG CAAACAGGAT TAGATACCCT GGTAGTCCAC




GCCGTAAACG ATGTCGACTT GGAGGTTGTG CCCTTGAGGC




GTGGCTTCCG GAGCTAACGC GTTAAGTCGA CCGCCTGGGG




AGTACGGCCG CAAGGTTAAA ACTCAAATGA ATTGACGGGG




GCCCGCACAA GCGGTGGAGC ATGTGGTTTA ATTCGATGCA




ACGCGAAGAA CCTTACCTGG TCTTGACATC CACAGAACTT




CCCAGAGATG GATTGGTGCC TTCGGGAACT GTGAGACAGG




TGCTGCATGG CTGTCGTCAG CTCGTGTTGT GAAATGTTGG




GTTAAGTCCC GCAACGAGCG CAACCCTTAT CCTTTGTTGC




CAGCGGTCCG GCCGGGAACT CAAAGGAGAC TGCCAGTGAT




AAACTGGAGG AAGGTGGGGA TGACGTCAAG TCATCATGGC




CCTTACGACC AGGGCTACAC ACGTGCTACA ATGGCGCATA




CAAAGAGAAG CGACCTCGCG AGAGCAAGCG GACCTCATAA




AGTGCGTCGT AGTCCGGATT GGAGTCTGCA ACTCGACTCC




ATGAAGTCGG AATCGCTAGT AATCGTGGAT CAGAATGCCA




CGGTGAATAC GTTCCCGGGC CTTGTACACA CCGCCCGTCA




CACCATGGGA GTGGGTTGCA AAAGAAGTAG GTAGCTTAAC




CTTCGGGAGG GCGCTTACCA CTTTGTGATT CATGACTGGG




GTGAAGTCGT AACAAGGTAA CCGTAGGGGA ACCTGCGGTT




GGATCACCTC CTT
















TABLE 8







Relevant to ranges of bacteria in Examples 1, 2, 4 & 5:




















Sequence type reference





Minimum
Maximum
Upper
Lower
numbers
SEQ




Range in
Range in
5%
5%
(OTU and Sequence ID)
ID


Genus
n=
Abundance
Abundance
range
range
Greengenes V13.5
NO


















Allobaculum

8102
5.62E−06
0.816219869
0.04135299
0.0504309
1105860, 386788,
154








4379961, 4310326,








135952, 130091, 428953,








1108699, 134101, 277143



Bifidobacterium

4354
4.84E−06
0.629647871
0.02062964
0.0268991
4426298, 359098, 72820,








4413347, 822770,








471180, 681370, 519290,








1142029, 559527



Blautia

29338
1.97E−05
0.6373751
0.07062645
0.0779575
364048, 583089, 532203,
152








365455, 367456, 567715,
&








326865, 364824, 328628,
153








292633, 344488, 580087,








351163, 362108, 589313,








696563, 436032,








4429536, 192326,








363507, 191601, 362037,








194384, 357168, 199243,








311712, 297970, 348362,








404292, 525378, 354095,








338626, 293543, 304309,








554160, 302090, 333024,








297529, 587269, 325848,








2035344



Clostridium

7358
1.35E−05
0.844050631
0.18917637
0.20662887
582379, 309107, 356403,
155



hiranonis






351084, 352473,








4414489, 347131



Dorea

12104
3.26E−05
0.760047249
0.02715946
0.03003408
320468, 305313, 293869,








181990, 3172379,








195999, 3409363,








367535, 363232, 357020,








2555599, 317646,








320430, 592933,








1760821, 187338,








342110, 1105552


Enterobacteriaceae
9177
2.90E−06
0.986857172
0.07881779
0.09660931
4425571, 114510,
166








566243, 4111715,








782953, 588216, 470879,








345362, 299267, 295053,








797229, 1111294,








169182, 304641,








1890229, 813217,








525841, 284672, 331697



Enterococcus

4230
1.67E−06
0.995548705
0.02141405
0.03115899
624891, 584241, 295146,








1135616, 3697034,








1111582, 766768,








226338, 590982, 1085646



Fusobacterium

10983
2.32E−06
0.737701238
0.06439895
0.07305165
809380, 572889,
163








1654477, 345114,
&








342025, 1592748,
164








4439398, 4254313,
&








351979, 444857, 828676,
165








4333154, 2825358


Lachnospiraceae
87865
2.20E−05
0.88446714
0.1696669
0.18127336
370098, 298247, 364048,








360015, 546876, 320468,








583089, 305313, 383971,








532203, 3579831,








300716, 518438, 156357,








573110, 184729, 293869,








331150, 360703, 365455,








845273, 586271, 367456,








514272, 567715, 304206,








299858, 578511, 392887,








570049, 326865, 181990,








189817, 364824,








3172379, 328628,








363400, 153965, 196047,








300418, 259772, 195999,








367909, 192291, 528266,








3409363, 759751,








292633, 537661, 344488,








580087, 351163, 295023,








362108, 589313, 696563,








436032, 183288, 367535,








4429536, 185937,








196990, 364034, 136518,








192326, 177930, 363507,








192364, 342397, 363232,








191601, 563803, 362037,








357020, 194384, 352529,








357168, 594227, 199243,








300297, 2555599,








302321, 317646, 190653,








311712, 293330, 297970,








348362, 579452, 404292,








339417, 1105328,








1111191, 360329,








320430, 525378, 510286,








454156, 354095,








1146349, 183045,








571081, 592933, 530973,








338626, 293543, 296516,








3409154, 1760821,








265503, 298536, 304309,








369486, 554160, 187338,








294352, 211354, 342110,








290852, 302090, 333024,








297529, 4415649,








564849, 587269, 325848,








190908, 198251, 183925,








2035344, 1105552,








4379141, 752354



Lactobacillus

10064
1.59E−06
0.984613836
0.05844216
0.07242688
536754, 178213,








4321285, 807795,








298954, 484444, 84709,








318764, 333178, 588197,








593376, 1144153,








622013, 292057, 851733,








549756, 1107027,








354256, 538223, 549991,








338852, 315189, 255367,








716286, 553352, 703741,








134726, 1019465



Megamonas

4031
2.14E−06
0.890949358
0.03239651
0.04267114
2530636, 349065,








223773, 325808, 422878,








219064



Mogibacterium

2239
2.05E−06
0.106604882
0.00314802
0.003875
337327, 207340, 316342,
161








326850, 197505, 331417
&









162



Paraprevotella

7784
2.66E−06
0.570824486
0.03513149
0.04167489
323303, 130336, 423264,








4410807, 4371344,








1106254, 332968,








1136390, 4385760,








4468464



Prevotella

18386
2.24E−06
0.88007735
0.05720068
0.06828211
840914, 326482, 568118,
150








292921, 323303, 130336,
&








588929, 545061, 346938,
151








329650, 423264, 527941,








2075910, 4436552,








4371344, 558839,








332968, 1136390,








336372, 519836,








4385760, 293843,








321743, 4468464,








524891, 513003, 509109,








4370491, 2280817,








525264, 589329, 925131



Prevotella

12327
2.38E−06
0.834618017
0.04030409
0.05127829
840914, 326482, 568118,
160



copri






292921, 588929, 545061,








346938, 329650, 527941,








2075910, 4436552,








558839, 336372, 293843,








321743, 524891, 513003,








509109, 2280817,








589329, 925131


Ruminococcaceae
28332
5.54E−06
0.286589102
0.01773615
0.02003801
3390534, 173942,








523140, 183207, 40798,








325558, 334215, 228199,








361722, 581079, 584978,








1132942, 510295,








367213, 189899, 851865,








332430, 180121, 186881,








304973, 351768, 181035,








537452, 576712,








2781880, 297111,








351095, 535399, 539820,








230421, 291270, 334044,








180235, 591635, 523244,








227565, 574122,








4314258, 363997,








189091, 306315, 186956,








195350, 547114, 165924,








311961, 350373, 738351,








579541, 716984, 192566,








212686, 366143, 208739,








197250, 554303, 199182,








181575, 205241, 591734,








187223, 106786, 298163



Turicibacter

4136
2.49E−06
0.476346943
0.00486555
0.00660719
368490, 214919, 347529









REFERENCES



  • [1] Frank et al. (2007) Proc. Natl. Acad. Sci. USA 104, 13780-13785.

  • [2] Gevers et al. (2014) Cell Host Microbe 15, 382-392.

  • [3] Ni et al. (2017) Sci. Transl. Med. 9, eaah6888.

  • [4] Kostic et al. (2013) Cell Host Microbe 14, 207-215.

  • [5] Johnson and Foster (2018) Nature Reviews Microbiology, October; 16(10):647-655

  • [6] Kirchoff et al. (2018) PeerJ Preprints 6:e26990v1

  • [7] Sharon et al. (2013) Genome research, 23(1), pp. 111-120.

  • [8] Hart et al. (2015) PLoS One. November 24; 10(11):e0143334

  • [9] WO2018/006080

  • [10] Gennaro (2000) Remington: The Science and Practice of Pharmacy. 20th edition, ISBN: 0683306472.

  • [11] Molecular Biology Techniques: An Intensive Laboratory Course, (Ream et al., eds., 1998, Academic Press).

  • [12] Methods In Enzymology (S. Colowick and N. Kaplan, eds., Academic Press, Inc.)

  • [13] Handbook of Experimental Immunology, Vols. I-IV (D. M. Weir and C. C. Blackwell, eds, 1986, Blackwell Scientific Publications)

  • [14] Sambrook et al. (2001) Molecular Cloning: A Laboratory Manual, 3rd edition (Cold Spring Harbor Laboratory Press).

  • [15] Handbook of Surface and Colloidal Chemistry (Birdi, K. S. ed., CRC Press, 1997)

  • [16] Ausubel et al. (eds) (2002) Short protocols in molecular biology, 5th edition (Current Protocols).

  • [17] PCR (Introduction to Biotechniques Series), 2nd ed. (Newton & Graham eds., 1997, Springer Verlag)

  • [18] Current Protocols in Molecular Biology (F. M. Ausubel et al., eds., 1987) Supplement 30

  • [19] Smith & Waterman (1981) Adv. Appl. Math. 2: 482-489.

  • [20] Koenig, J. E., et al., Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA, 2011. 108 Suppl 1: p. 4578-85.

  • [21] Palmer, C., et al., Development of the human infant intestinal microbiota. PLoS Biol, 2007. 5(7): p. e177.

  • [22] Dominguez-Bello, M. G., et al., Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA, 2010. 107(26): p. 11971-5.

  • [23] Gritz, E. C. and V. Bhandari, The human neonatal gut microbiome: a brief review. Front Pediatr, 2015. 3: p. 17.

  • [24] Schulfer, A. and M. J. Blaser, Risks of Antibiotic Exposures Early in Life on the Developing Microbiome. PLoS Pathog, 2015. 11(7): p. e1004903.

  • [25] Gibson, M. K., T. S. Crofts, and G. Dantas, Antibiotics and the developing infant gut microbiota and resistome. Curr Opin Microbiol, 2015. 27: p. 51-6.

  • [26] Martinez, I., C. E. Muller, and J. Walter, Long-term temporal analysis of the human fecal microbiota revealed a stable core of dominant bacterial species. PLoS One, 2013. 8(7): p. e69621.

  • [27] Stinson, L. F., Payne, M. S., & Keelan, J. A. (2017). Planting the seed: Origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit Rev Microbiol, 43(3), 352-369.

  • [28] DiGiulio, D. B., Romero, R., Amogan, H. P., Kusanovic, J. P., Bik, E. M., Gotsch, F, Relman, D. A. (2008). Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One, 3(8), e3056. doi:10.1371/journal.pone.0003056

  • [29] Ardissone, A. N., de la Cruz, D. M., Davis-Richardson, A. G., Rechcigl, K. T., Li, N., Drew, J. C, Neu, J. (2014). Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One, 9(3)

  • [30] Wampach, L., Heintz-Buschart, A., Hogan, A., Muller, E. E. L., Narayanasamy, S., Laczny, C. C., Wilmes, P. (2017). Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life. Front Microbiol, 8, 738

  • [31] Wilczynska, P., Skarzynska, E., & Lisowska-Myjak, B. (2018). Meconium microbiome as a new source of information about long-term health and disease: questions and answers. J Matern Fetal Neonatal Med, 1-6.

  • [32] Chong, C. Y. L., Bloomfield, F. H., & O'Sullivan, J. M. (2018). Factors Affecting Gastrointestinal Microbiome Development in Neonates. Nutrients, 10(3).

  • [33] Fernandez, L., Langa, S., Martin, V., Maldonado, A., Jimenez, E., Martin, R., & Rodriguez, J. M. (2013). The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res, 69(1), 1-10.

  • [34] McGuire, M. K., & McGuire, M. A. (2015). Human milk: mother nature's prototypical probiotic food? Adv Nutr, 6(1), 112-123.

  • [35] Pannaraj, P. S., Li, F., Cerini, C., Bender, J. M., Yang, S., Rollie, A, Aldrovandi, G. M. (2017). Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr, 171(7), 647-654.

  • [36] Mackie, R. I., A. Sghir, and H. R. Gaskins, Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr, 1999. 69(5): p. 10355-10455.

  • [37] Rodriguez, J. M. (2014). The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr, 5(6), 779-784

  • [38] Houghteling, P. D. and W. A. Walker, Why is initial bacterial colonization of the intestine important to infants' and children's health? J Pediatr Gastroenterol Nutr, 2015. 60(3): p. 294-307.

  • [39] Sela, D. A., et al., The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA, 2008. 105(48): p. 18964-9.

  • [40] Underwood, M. A., et al., Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res, 2015. 77(1-2): p. 229-35.

  • [41] Marcobal, A. and J. L. Sonnenburg, Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect, 2012. 18 Suppl 4: p. 12-5.

  • [42] Laflamme, D. and Gunn-Moore, D., 2014. Nutrition of aging cats. Veterinary Clinics: Small Animal Practice, 44(4), pp. 761-774.

  • [43] Kuzmuk, K. N., Swanson, K. S., Tappenden, K. A., Schook, L. B. and Fahey Jr, G. C., 2005. Diet and age affect intestinal morphology and large bowel fermentative end-product concentrations in senior and young adult dogs. The Journal of nutrition, 135(8), pp. 1940-1945.

  • [44] Woudstra, T. and Thomson, A. B., 2002. Nutrient absorption and intestinal adaptation with ageing. Best Practice & Research Clinical Gastroenterology, 16(1), pp. 1-15.

  • [45] Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, Corthier G, Furet J P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009 Jun. 9; 9:123.

  • [46] Zwielehner J, Liszt K, Handschur M, Lassl C, Lapin A, Haslberger A G. Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly. Exp Gerontol. 2009 June-July; 44(6-7):440-6.

  • [47] van Tongeren S P, Slaets J P, Harmsen H J, Welling G W. Fecal microbiota composition and frailty. Appl Environ Microbiol. 2005 October; 71(10):6438-42 [48] Claesson et al., Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012 Aug. 9; 488(7410):178-84.

  • [49] Biagi et al. Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians. PLoS One. 2010; 5(5): e10667.

  • [50] Sordillo, et al. (2017). Factors influencing the infant gut microbiome at age 3-6 months: findings from the ethnically diverse Vitamin D Antenatal Asthma Reduction Trial (VDAART). Journal of Allergy and Clinical Immunology, 139(2), pp. 482-491.

  • [51] Clarke, et al. (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut, pp. gutjnl-2013.

  • [52] Yatsunenko, T., et al., Human gut microbiome viewed across age and geography. Nature, 2012. 486(7402): p. 222-7

  • [53] Goodrich, J. K., et al., Human genetics shape the gut microbiome. Cell, 2014. 159(4): p. 789-99.

  • [54] Jakobsson, et al. 2014. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut, 63(4), pp. 559-566.

  • [55] Abrahamsson, et al. 2014. Low gut microbiota diversity in early infancy precedes asthma at school age. Clinical & Experimental Allergy, 44(6), pp. 842-850.

  • [56] Mueller, et al. 2015. The infant microbiome development: mom matters. Trends in molecular medicine, 21(2), pp. 109-117.

  • [57] Deusch, O., et al., Deep Illumina-based shotgun sequencing reveals dietary effects on the structure and function of the fecal microbiome of growing kittens. PLoS One, 2014. 9(7): p. e101021.

  • [58] Hand et al. Pyrosequencing the canine faecal microbiota: breadth and depth of biodiversity. PLoS One. 2013; 8:

  • [59] Handl et al. Massive parallel 16 S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol Ecol. 2011; 76:301-310.

  • [60] Guard, B. C., et al., Characterization of microbial dysbiosis and metabolomic changes in dogs with acute diarrhea. PLoS One, 2015. 10(5): p. e0127259.

  • [61] Bresciani, F., et al., Effect of an extruded animal protein-free diet on fecal microbiota of dogs with food-responsive enteropathy. J Vet Intern Med, 2018. 32(6): p. 1903-1910.

  • [62] Minamoto, Y., et al., Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes, 2015. 6(1): p. 33-47.



Although the presently disclosed subject matter and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the presently disclosed subject matter, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein can be utilized according to the presently disclosed subject matter. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.


Patents, patent applications, publications, product descriptions and protocols are cited throughout this application the disclosures of which are incorporated herein by reference in their entireties for all purposes.

Claims
  • 1. A method of determining the health of a canid's microbiome, comprising detecting at least four bacterial taxa in a sample obtained from the canid; wherein the presence of the at least four bacterial taxa is indicative of a healthy microbiome.
  • 2. The method of claim 1, wherein the bacterial taxa are bacterial species from genera selected from the group consisting of Blautia, Lactobacillus, Faecalibacterium, Terrisporobacter, Lachnospiraceae novel sp., Butyricicoccus, Lachnoclostridium, Clostridium, Holdemanella, Cellulosilyticum, Romboutsia, Lachnospiraceae_NK4A136_group, Peptostreptococcus, Sellimonas, Ruminococcaceae_UCG-014, Finegoldia, and Candidatus Dorea.
  • 3. (canceled)
  • 4. The method of claim 2, wherein the bacterial taxa have a 16 S rDNA with at least about 95% identity to the sequence of any one of SEQ ID Nos: 6, 7, 11, 12, 14, 16, 21, 23, 24, 28, 29, 30, 32, 37, 39, 41-43, 46-49, 52, 55-57, 61, 67, 71, 75, 77, 78 and 80.
  • 5. A method of determining the health of a canid's microbiome, comprising quantitating four or more bacterial species in a sample obtained from the canid to determine their abundance; and comparing the abundance to the abundance of the same species in a control data set; wherein an increase or decrease in the abundance of the four or more bacterial species relative to the control data set is indicative of an unhealthy microbiome.
  • 6. The method of claim 5, wherein the bacterial species are from genera selected from the group consisting ofAbsiella [Eubacterium], Anaerostipes, Anaerotruncus, Bifidobacterium, Blautia, Blautia [Ruminococcus] torques group, Butyricicoccus, Candidatus, Dorea, Cellulosilyticum, Clostridium, Clostridium_sensu_stricto_1, Collinsella, Enterococcus, Erysipelatoclostridium, Faecalibacterium, Finegoldia, Flavonifractor, Fusobacterium, Holdemanella [Eubacterium], Lachnoclostridium, Lachnospiraceae novel sp., Lachnospiraceae_NK4A136_group, Lactobacillus, Megamonas, Peptostreptococcus, Romboutsia, Roseburia, Ruminococcaceae, Ruminococcaceae_UCG-014, Ruminococcus, Sellimonas, Terrisporobacter, Turicibacter, and Lachnospiraceae.
  • 7. (canceled)
  • 8. The method of claim 6, wherein a decrease in abundance relative to the control data set is indicative of an unhealthy microbiome.
  • 9. The method of claim 5, wherein the bacterial species is Fusobacterium mortiferum, and an increase in abundance relative to the control data set is indicative of an unhealthy microbiome.
  • 10. (canceled)
  • 11. The method of claim 5, wherein the bacterial taxa have a 16 S rDNA sequence selected from the group consisting of SEQ ID Nos: 3-85.
  • 12. The method of claim 5, wherein the control data set comprises microbiome data of a canid at the same life stage.
  • 13. (canceled)
  • 14. The method of claim 5, wherein the bacterial taxa are species from the genera selected from the group consisting of Ruminococcus, Clostridiales sp., Paraprevotella, Adlercreutzia, Allobaculum, Allobaculum/Dubosiella, Bacteroides, Bifidobacterium, Blautia, Clostridales, Clostridium, Collinsella, Dorea, Enterococcus, Erysipelotrichaceae, Faecalibacterium, Fusobacterium, Holdemanella [Eubacterium], Lachnoclostridium, Lactobacillus, Megamonas, Megasphaera, Peptostreptococcus, Phascolarctobacterium, Prevotella, Sarcina, Terrisporobacter, and Turicibacter.
  • 15. The method of claim 14, wherein the bacterial taxa have a 16 s rDNA with at least about 95% identity to the sequence of any one of SEQ ID NOs: 86-166.
  • 16. (canceled)
  • 17. The method of claim 1, further comprising a step of changing the microbiome composition of the canid.
  • 18. The method of claim 17, wherein the method comprises a step of changing the diet of the canid and/or administering a pharmaceutical composition or a nutraceutical composition to the canid.
  • 19. A method of determining the health of a canid's microbiome, comprising calculating the diversity index for the species within the canid's microbiome and comparing the diversity index to the diversity index of a control data set.
  • 20. The method of claim 19, wherein the canid is a pre-weaned puppy and the microbiome is considered healthy if the diversity index falls in the range of about 0.123 to about 1.744.
  • 21. The method of claim 19, wherein the canid is a post-weaned puppy and the microbiome is considered healthy if the diversity index falls in the range of about 1.294 to about 2.377.
  • 22. The method of claim 19, wherein the canid is an adult and the microbiome is considered healthy if the diversity index falls in the range of about 1.83 to about 3.72.
  • 23. The method of claim 19, wherein the canid is a senior and the microbiome is considered healthy if the diversity index falls in the range of about 1.24 to about 3.55.
  • 24. The method of claim 19, wherein the canid is geriatric and the microbiome is considered healthy if the diversity index falls in the range of about 2.16 to about 3.47.
  • 25. (canceled)
  • 26. (canceled)
  • 27. The method of claim 1, wherein the sample is from the gastrointestinal tract.
  • 28. (canceled)
  • 29. (canceled)
  • 30. (canceled)
  • 31. (canceled)
  • 32. (canceled)
  • 33. (canceled)
  • 34. (canceled)
  • 35. (canceled)
Priority Claims (1)
Number Date Country Kind
1900744.2 Jan 2019 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/014292 1/20/2020 WO 00