The present invention concerns novel canister assemblies for cast booster explosives, and cast booster explosives comprising the canister assemblies. Cast booster explosives are typically utilized to detonate normally cap-insensitive explosives such as ammonium nitrate and fuel oil (“ANFO”) bulk explosives.
Cast booster explosives are normally cast with a fuse tunnel and a cap well, the tunnel providing a passageway for a fuse connected to a detonator (“cap”), which is received within the cap well.
The prior art shows canisters for cast booster explosives having fuse tunnels and cap wells as part of a canister body into which a flowable explosive is placed to cure or harden. For example, U.S. Pat. No. 9,115,963, assigned to the assignee of the present application, discloses a plastic canister having a fuse tunnel (22) formed integrally with the canister body (12) and a separate cap well (14) which may be secured within the canister body by means of a cap well mounting fixture (28). U.S. Pat. No. 6,311,621 discloses an electronic circuit assembly in an encapsulation which may be enclosed within, e.g., a metal sleeve. In addition, see U.S. Pat. No. 4,334,476 issued Jun. 15, 1982 to John T. Day et al. for “Primer Cup”, U.S. Pat. No. 3,183,836 issued May 18, 1965 to G. L. Griffith for “Canister For Cast Primer”, U.S. Pat. No. 3,955,504 issued May 11, 1976 to Russell H. Romney for “Explosive Booster Casing”, U.S. Pat. No. 3,407,730 issued on Oct. 29, 1968 to G. L. Griffith for “Retainer For Holding A Detonator In A Detonator Receptacle And Explosive Cartridge Container Containing The Same”, and U.S. Pat. No. 6,112,666 issued on Sep. 5, 2000 to C. M. Murray et al. for “Explosives Booster and Primer”.
U.S. Pat. No. 4,425,849 issued on Jan. 17, 1984 to Gordon K. Jorgenson for “Primer Assembly” discloses an explosive primer assembly which utilizes (
GB Patent Application 2 257 774 A to Hartley Hodgson published on Jan. 20, 1993 discloses a shaped explosive charge 13 (
GB Patent 2 368 626 B to Wenbo Yang et al. published on Sep. 8, 2004 is one of several Schlumberger patent publications showing provision of a shock-absorbing barrier to shield the explosives of well-perforating guns from the shock waves generated by adjacent explosives. Two basic shielding techniques are disclosed. One, as illustrated in
In use, as is well known in the art, cast booster explosives are normally lowered into a borehole, which may be as deep as 10, 20 or 30 feet (3, 6.1 and 9.1 meters, respectively) or deeper. More than one booster may be loaded into a given borehole and in such case the two or more boosters are normally positioned at different depths within a given borehole. The booster explosive(s) are employed to initiate a bulk explosive such as an ANFO slurry or emulsion which is poured into the borehole.
As is also well-known, booster explosives are utilized in blasting systems which may comprise numerous boreholes filled with a suitable cap-insensitive explosive such as an ANFO slurry or emulsion. It is important that the sequence of explosions from borehole to borehole be carefully timed so that each borehole is detonated at an appropriate time in order to maximize blasting efficiency. If a “downstream” borehole is intended to be detonated after an adjacent or nearby “upstream” borehole, it is possible that the shock wave from the detonation of the upstream borehole may damage the detonator in the downstream borehole, so as to prevent the downstream borehole from initiating. The circuitry of electronic delay detonators is particularly vulnerable to damage by the shock waves generated by prior upstream or adjacent explosions. Failure of any borehole to detonate is of course highly undesirable. Detonation failures result in uninitiated explosives in muck piles, present severe safety hazards and greatly reduce the efficiency of the blasting system.
Generally, the present invention provides a canister assembly and a booster explosive comprising the canister assembly. The canister assembly has a cap well which is protected by a shock-absorbing barrier to reduce the possibility of damage to the detonator lodged within the cap well by shock waves generated by prior adjacent explosions. The shock wave protection for the detonator is attained by enclosing a substantial portion of the cap well within a shock-absorbing barrier which may comprise a protective sleeve, while leaving unshielded an active section of the cap well, that is, the section of the cap well which encloses the explosive end section of the detonator. Leaving the explosive end section unshielded facilitates planned initiation by the detonator of the cast booster explosive surrounding the cap well. The protective sleeve may be made of any suitable material such as metal or plastic or a closed cell synthetic polymeric foam, or a combination thereof.
Specifically, in accordance with the present invention there is provided a canister assembly for a cast booster explosive, the canister assembly comprising: a canister body defining a canister interior, and having a canister base, a cap well of generally tubular configuration disposed within the canister interior, the cap well having a length, an outside diameter, an active section terminating in a distal closed end, and a proximal open end, the cap well being configured to receive therewithin a detonator comprising a shell having an explosive end section and a firing train section, such detonator to be disposed within the cap well with at least a portion of such explosive end section disposed in the active section of the cap well. A protective sleeve surmounts the cap well and encloses a major portion of the length of the cap well, the protective sleeve being configured to leave exposed the active section of the cap well.
One aspect of the present invention provides that the active section of the cap well is dimensioned to contain the entire explosive end section of such detonator.
Another aspect of the present invention provides that the protective sleeve has an inside diameter which is greater than the outside diameter of the cap well, which results in an annular cap well space between the inside diameter of the protective sleeve and the outside diameter of the cap well.
Other aspects of the present invention provide one or more of the following features, alone or in any suitable combination: the protective sleeve has a terminal end which terminates adjacent the active section of the cap well, and the canister assembly further comprises a sleeve seal closing the annular cap well space at the terminal end of the protective sleeve; the protective sleeve has a base end opposite the terminal end and the base end of the protective sleeve is mounted on the canister base in order to seal the annular cap well space at the base end of the protective sleeve; and the annular cap well space has a thickness of from about 0.05 inch (0.127 cm) to about 0.08 inch (0.203 cm).
Still other aspects of the present invention provide that the protective sleeve comprises a tube, e.g., a metal tube, the tube having one or more of the following characteristics: a wall thickness of from about 0.05 inch (0.127 centimeter) to about 0.07 inch (0.178 centimeter); a length of from about 2 inches (5.08 centimeters) to about 3 inches (7.62 centimeters); and an outer diameter of from about 0.7 inch (1.78 centimeters) to about 1 inch (2.54 centimeters).
Other aspects of the present invention provide for a canister assembly further comprising one or both of a cast booster explosive disposed within the canister interior and a fused detonator disposed within the cap well.
Referring now to
Contained within the body 12 of the canister assembly is a cast explosive 16, which, as is well known in the art, may be Pentolite or the like. Cast explosive 16 has formed therein a cavity (un-numbered) which is configured to receive cap well 20 and the protective sleeve 28, as more fully described below. Cast explosive 16 has also formed therein a fuse tunnel 22. A detonator 24 has connected to it a fuse 18, which may be shock tube or any other suitable fuse extending from the fuse end (unnumbered) of detonator 24 through base passage 14a, thence through fuse tunnel 22 and outwardly of fuse tunnel 22 at the top 16a of cast explosive 16, in the usual manner. Cap well 20 has a distal closed end 20a and a proximal open end 20b, the latter of which is securely mounted onto cap well mounting fixture 14b. The cap well itself may comprise a synthetic polymeric material (plastic) closed at one end and open at its opposite end to receive the detonator therein, as shown in the canister described in the above-mentioned U.S. Pat. No. 9,115,963. However, any suitable canister and cap well configuration is useable in the present invention. The canister body 12 and canister base 14 and, if present, an optional canister top (not shown) may be made of molded plastic or any suitable material such as waxed or coated cardboard, plastic sheeting, or the like. Detonator 24 is disposed within cap well 20 with the explosive end section 24a of detonator 24 (
Detonator 24, which may be of conventional construction, is positioned within cap well 20 with detonator explosive charge 26 positioned at or immediately adjacent to the distal closed end 20a of cap well 20. A small air head space (not shown) may optionally be left between the tip 24d of detonator 20 and the distal closed end 20a of cap well 20.
Those skilled in the art will understand that the canister assembly and cast booster explosive of the present invention may be made by any suitable manufacturing process. An efficient process is to mold from a suitable synthetic polymeric material canister body 12 integrally with fuse tunnel 22 and to separately mold cap well 20 from the same or a different synthetic polymeric material, as disclosed in the above-mentioned U.S. Pat. No. 9,115,963. Cap well 20, protective sleeve 28 and sleeve seal 34 are then mounted within canister body 12. Thereafter, a flowable explosive is introduced into canister body 12 and hardens into cast explosive 16. Normally, the detonator 24 and its fuse 18 are not inserted until the point of use, for obvious safety reasons.
In
An annular air space is provided between the outside diameter of the cap well and the inside diameter of the protective sleeve. Although the protective sleeve snugly fitted about the exterior of the cap well may serve as the sole shock absorbing barrier, improved shock resistance is attained by a combination of a protective sleeve and an annular air space between the exterior of the cap well and the interior of the protective sleeve. As seen in
The annular air space surrounding the cap well containing the detonator enhances the shock wave protection as compared to the protective sleeve snugly fitted around the cap well. Either arrangement, a snugly-fitted protective sleeve or a protective sleeve which provides an annular air space, is a much poorer transmission medium for explosive shock waves than would be a solid cast explosive such as Pentolite disposed in direct contact with the cap well.
The annular air space 32 should be protected against infiltration by ground water, soil particles, particles of ammonium nitrate from the ANFO, etc., especially if the cast booster explosive is positioned within a borehole for a significant length of time before detonation. Such infiltration will greatly reduce or eliminate the shock-absorbing ability of the annular air space. In order to prevent such infiltration into the annular air space 32, which is formed between the outer wall 20c (
In another embodiment of the present invention, the protective sleeve 28 may be a close fit about the outside wall of cap well 20 so as to substantially eliminate the annular air space 32. This embodiment is obtained by a force-fit of protective sleeve 28 about most of the exterior wall of cap well 20 stopping short of at least the portion of cap well 20 which encloses the explosive end section 24a of detonator 24. In this embodiment the protective sleeve alone is relied upon to provide attenuation of shock waves from prior adjacent explosions.
As noted above, protective sleeve 28 may be made of any suitable material, for example, any suitable metal such as brass or any suitable synthetic polymer (plastic) material, or wood, cardboard, etc., or combinations thereof. Protective sleeve 28, when made of brass, may be a seamless tube having a wall thickness of at least about 0.05 inch (0.127 centimeter), for example, from about 0.05 inch to about 0.06 inch (0.152 centimeter) or from about 0.05 inch to about 0.070 inch (0.178 centimeter). The length of protective sleeve 28 and the other exemplary dimensions given herein may of course vary depending on the specific dimensions of the cap well, the degree of desired shock wave protection, etc. For example, the length of protective sleeve 28 may vary from about 2 inches (5.08 centimeters) to about 3 inches (7.62 centimeters) in length, and the outer diameter of protective sleeve 28 may be from about 0.7 inch (1.78 centimeters) to about 1 inch (2.54 centimeters). While a tube as described above is simple to manufacture, obviously the protective sleeve, whether dimensioned to be a snug, close fit around the cap well or dimensioned to provide an annular air gap, may be of more complex design, e.g., it may comprise a multi-layer tube with layers of different materials, a coated tube, etc.
In other embodiments of the present invention, which may be referred to as “central cap well” embodiments, the cap well may be positioned to extend along the central longitudinal axis of the canister so that the cap well and the detonator contained therein are equidistant from the canister wall in all directions. This results in the same degree of protection from shock waves by the surrounding body of cast explosive regardless of the orientation of the booster explosive to the source of the shock wave, i.e., to the location of a nearby explosive which is to be detonated before the booster charge of the invention.
A series of tests was conducted by suspending prototype test embodiments of booster explosives of the present invention in water spaced apart at different selected distances from a donor explosive charge. The donor explosive charges were suspended in the water at the same depth as the test embodiments, at about 6 feet (1.83 meters) below the surface. The donor charges comprised two 900 gram Pentolite charges, to provide a donor charge of 1,800 grams of Pentolite. Each of the test embodiments was configured so that the distance between the cap well (20,
The test embodiments identified as “SR” in the graph of
Each test embodiment utilized an electronic delay detonator sold under the trademark DigiShot® by Dyno Nobel Inc., and programmed for a 1,500 millisecond delay. The delay detonator was 3.5 inches (8.9 centimeters) in length and had an explosive end about 1 inch (2.54 centimeters) in length which contained about 0.1 gram of lead azide initiator enclosed by a base charge comprised of about 0.8 gram of PETN.
Each test embodiment comprised a booster explosive containing 450 grams of Pentolite in a plastic cylinder measuring about 5 inches (12.7 centimeters) in length and about 2 inches (5.1 centimeters) in diameter.
The results plotted in the graph of
It is seen that while the SR embodiment, having a brass protective sleeve snugly fitted about the cap well, provides protection against shock wave damage, the degree of protection is significantly enhanced by the provision of an annular air space in the SR2 embodiment, using a protective sleeve which was identical to that used in the SR embodiments.
While the invention has been described in detail with reference to specific embodiments, it will be appreciated that numerous variations may be made to the described embodiments, which variations nonetheless lie within the scope of the present invention.
Number | Date | Country | |
---|---|---|---|
62978595 | Feb 2020 | US |