Cannabis plant named ‘PRIMO CHERRY’

Information

  • Patent Grant
  • PP31724
  • Patent Number
    PP31,724
  • Date Filed
    Tuesday, August 28, 2018
    6 years ago
  • Date Issued
    Tuesday, May 5, 2020
    4 years ago
Abstract
The present invention provides a new and distinct cannabis cultivar designated as ‘PRIMO CHERRY’. Disclosed herein are main terpenes of ‘PRIMO CHERRY’, which are myrcene, alpha-pinene, hexyl butyrate, beta-pinene, limonene, and linalool. Also, the present invention provides the estimated concentration of the THCmax, CBDmax, and CBGmax, about 12.38-15.24%, about 5.40-7.13%, and about 0.22-0.33%, respectively, at the time of assaying metabolites from flower samples of ‘PRIMO CHERRY’.
Description

Latin name of genus and species: Cannabis hybrid.


Variety denomination: ‘PRIMO CHERRY’.


BACKGROUND OF THE INVENTION

The present invention relates to a new and distinct cannabis cultivar designated as ‘PRIMO CHERRY’.


This new cultivar is the result of controlled-crosses between proprietary cultivars made by the inventors. The new cultivar of ‘PRIMO CHERRY’ was asexually reproduced via a stem ‘cutting’ and ‘cloning’ method by the inventors at Salinas, Calif. Asexual clones from the original source have been tested in greenhouses, nurseries, and/or fields. The properties of each cultivar were found to be transmissible by such asexual reproduction. The cultivar is stable and reproduces true to type in successive generations of asexual reproduction.


TAXONOMY AND NOMENCLATURE


Cannabis, more commonly known as marijuana, is a genus of flowering plants that includes at least three species, Cannabis sativa, Cannabis indica, and Cannabis ruderalis as determined by plant phenotypes and secondary metabolite profiles. In practice however, cannabis nomenclature is often used incorrectly or interchangeably. Cannabis literature can be found referring to all cannabis varieties as “sativas” or all cannabinoid producing plants as “indicas”. Indeed the promiscuous crosses of indoor cannabis breeding programs have made it difficult to distinguish varieties, with most cannabis being sold in the United States having features of both sativa and indica species.


Human cultivation history of Cannabis dates back 8000 years (Schultes, R E., 1970, Random thoughts and queries on the botany of Cannabis. Pages 11-38 in: CRB Joyce, and S H Curry eds., THE BOTANY AND CHEMISTRY OF CANNABIS. J. & A. Churchill. London, England). Hemp cloth recovered in Europe dates back 6000 years (Small, E, Beckstead, H D, and Chan, A, 1975, The evolution of cannabinoid phenotypes in Cannabis, ECONOMIC BOTANY 29(3):219-232). The written record of the pharmacologic properties of Cannabis goes back more than 4000 years (Ti, H. 2737 BC. NEI JING SU WEN HUANG TI, Yellow Emperor's Classic on Internal Medicine; referred to without citation in Small et al. 1975 Supra).


The taxonomy and nomenclature of the highly variable genus Cannabis (Emboden, W A, 1974, ECONOMIC BOTANY 28(3):304-310; Small, E and Cronquist, A, 1976, TAXON 25(4):405-435; Small E and Cronquist, A, 1977, TAXON 26(1):110; Hillig, K W and Mahlberg, P G, 2004, American Journal of Botany 91(6):966-975), remains in question. This is in spite of the fact that its formal scientific name, ‘Cannabis sativa L.’, assigned by Carolus Linneaus (Linnaeus, C, 1753, SPECIES PLANTARUM, 2:1027, Salvius, Stockholm, Facsimile edition, 1957-1959, Ray Society, London, U.K.), is one of the oldest established names in botanical history and is still accepted to this day. Another species in the genus, ‘Cannabis indica Lam.’ was formally named somewhat later (de Lamarck, J B, 1785, ENCYCLOPEDIE METHODIQUE DE BOTANIQUE, 1(2):694-695), but is still very old in botanical history. In 1785, Jean-Baptiste Lamarck published a description of a second species of Cannabis, which he named Cannabis indica. Lamarck based his description of the newly named species on plant specimens collected in India. C. indica was described as relatively short, conical, and densely branched, whereas C. sativa was described as tall and laxly branched (Schultes R. E. et al, 1974, Harvard University Botanical Museum Leaflets, 23:337-367). C. indica plants were also described as having short, broad leaflets whereas those of C. sativa were characterized as relatively long and narrow (Anderson L. C., 1980, Harvard University Botanical Museum Leaflets, 28:61-69). C. indica plants conforming to Schultes' and Anderson's descriptions may have originated from the Hindu Kush mountain range. Because of the often harsh and variable (extremely cold winters, and warm summers) climate of those parts, C. indica is well-suited for cultivation in temperate climates.


Three other species names were proposed in the 1800s to distinguish plants with presumably different characteristics (C. macrosperma Stokes, C. chinensis Delile, C. gigantean Vilmorin), none of which are accepted today, although the epithet “indica” lives on as a subspecies of C. sativa (‘C. sativa ssp. indica Lam.’, Small and Cronquist 1976 Supra).


In the 20th century, two new names were added to the liturgy of proposed ‘Cannabis species: C. ruderalis’ Janischevsky and a hybrid, x ‘C. intersita’ Sojak. (Small, E, Jui, P Y, and Lefkovitch, L P, 1976, SYSTEMATIC BOTANY 1(1):67-84; Small and Cronquist 1976 Supra). Further, numerous names have been proposed for horticultural variants of ‘Cannabis’ but as of 1976, “very few of these have been validly published as formal taxa under the International Code of Botanical Nomenclature” (Small and Cronquist 1976 Supra). Moreover, other recent work continues to focus on higher-order evolutionary relationships of the genus. Cannabis has been variously ascribed as belonging to mulberry family (Moraceae) (Engler, H G A, Ulmaceae, Moraceae and Urticaceae, pages 59-118 in: A. Engler and K. Prantl eds., 1889, DIE NATURLICHEN PFLANZENFAMILIEN 3(1). W. Engelmann, Leipzig, Germany; Judd, W S, Sanders, R W, and Donoghue, M J, 1994, HARVARD PAPERS IN BOTANY 5:1-51; Humphries, C J and Blackmore, S, A review of the classification of the Moraceae, pages 267-277 In: Crane and Blackmore 1989 id.); nettle family (Urticaceae) (Berg, C C, Systematics and phylogeny of the Urticales, pages 193-220, in: P. R. Crane and S. Blackmore eds., 1989, EVOLUTION, SYSTEMATIC, AND FOSSIL HISTORY OF THE HAMAMELIDAE, VOL. 2, HIGHER HAMAMELIDAE, Clarendon Press, Oxford, U.K.); and most recently in its own family with hops (Humulus), Cannabaceae, or hemp family (Sytsma, K J, et al, 2002, AMERICAN JOURNAL OF BOTANY 89(9):1531-1546). While the work of Small and Cronquist 1976 Supra, seemed to effectively confine the genus to a single species with 2 subspecies (C. sativa s., C. s. indica), each with two varieties (C. s. s. var. sativa, C. s. s. var. spontanea; C. s. i. var. indica, C. s. i. var. Kafiristanica) largely on the basis of chemotaxonomy and interfertility of all forms, more recent work (Sytsma et al. 2002 Supra), proposes a two-species concept, resurrecting the binomial C. indica Lam. Since Sytsma et al. (2002) provides no key for discriminating between the species, the dichotomous key of Small and Cronquist (1976), which accounts for all forms in nature, whether wild or domesticated, is preferred to classify the characteristics of the plants.


BRIEF SUMMARY OF THE INVENTION

This invention relates to a new and distinctive cannabis cultivar designated as ‘PRIMO CHERRY’.


The objective of the breeding program which produced novel plants disclosed herein was primarily to develop a cannabis cultivar with its unique blend of various cannabinoids and/or terpenes for (a) medicinal effects such as improving appetite and reducing nausea, vomiting and/or chronic pain, as well as neurological and cardiovascular effects, (b) psychoactive effects such as increased motivation and energetic behavior rather than indifference, passiveness and lethargy, and (c) recreational effects with enhanced enjoyment such as food and aroma.


As used herein, the term “cultivar” is used interchangeably with “variety”, “strain”, and/or “clone”.



Cannabis plants produce a unique family of terpeno-phenolic compounds. Cannabinoids, terpenoids, and other compounds are secreted by glandular trichomes that occur most abundantly on the floral calyxes and bracts of female plants. As a drug it usually comes in the form of dried flower buds (marijuana), resin (hashish), or various extracts collectively known as hashish oil. The cannabis plant has at least 545 distinct compounds that span 20 chemical classes including cannabinoids, terpenes, terpenoids, amino acids, nitrogenous compounds, simple alcohols, aldehydes, ketones, esters, lactones, acids, fatty acids, steroids, non-cannabinoid phenols, pigments, flavonoids, vitamins, proteins, enzymes, glycoproteins, and hydrocarbons. Terpenes and/or cannabinoids, in particular, have shown great potential in terms of medicinal value.


Terpenes and/or cannabinoids have been shown to be largely responsible for beneficial effects of a cannabis plant. In fact, each cannabis plant has the varying concentrations of medically viable compounds depending on different strains (genotypes) and their resulting chemotypes. Even a small variation in terpene and/or cannabinoid concentration can cause noticeable differences in the entourage and/or synergistic effects of a cannabis plant, which distinguishes one variety from another. Research shows that it relies heavily on the physiological effects produced by terpenes and/or cannabinoids.


Over 100 different kinds of terpenes have been identified in cannabis plants although not being as well-studied as cannabinoids, they are instrumental in giving rise to the physiological and psychoactive effects in cannabis.


Terpenes are a large and diverse class of organic compounds, produced by a variety of plants. They are often strong smelling and thus may have had a protective function. Terpenes are an important component, not only influencing taste and smell of each cannabis strain but also influencing its effects on the mind and body of a subject such as humans and animals. Terpenes are a classification of organic molecules that are found in a wide variety of plants and animals. These molecules are known for their characteristic scents and flavors. The varying terpene concentrations found in cannabis plants directly influence the resulting taste and smell, as well as the observed effects. Non-limiting examples of terpenes include Hemiterpenes, Monoterpenes, Sesquiterpenes, Diterpenes, Sesterterpenes, Triterpenes, Sesquarterpenes, Tetraterpenes, Polyterpenes, and Norisoprenoids. The main terpenes found in cannabis plants include, but are not limited to, myrcene, limonene, caryophyllene, pinene, terpinene, terpinolene, camphene, terpineol, phellandrene, carene, humulene, pulegone, sabinene, geraniol, linalool, fenchol, borneol, eucalyptol, and nerolidol.


Cannabinoids are the most studied group of the main physiologically active secondary metabolites in cannabis. The classical cannabinoids are concentrated in a viscous resin produced in structures known as glandular trichomes. At least 113 different cannabinoids have been isolated from cannabis plants. The main classes of cannabinoids from cannabis include tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN). Cannabinoid can be at least one of a group comprising tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), cannabinol (CBN) cannabichromene (CBC), cannabinodiol (CBDL), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabigerovarin (CBGV), cannabichromevarin (CBCV), cannabigerol monomethyl ether (CBGM), cannabielsoin (CBE), cannabicitran (CBT), cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabinolic acid (THCA), tetrahydrocannabivarinic acid (THCVA), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA) and cannabinerolic acid.


Most cannabinoids exist in two forms, as acids and in neutral (decarboxylated) forms. The acidic form of cannabinoids is designated by an “A” at the end of its acronym (i.e. THCA). The cannabinoids in their acidic forms (those ending in “-A”) can be converted to their non-acidic forms through a process called decarboxylation when the sample is heated. The phytocannabinoids are synthesized in the plant as acidic forms. While some decarboxylation does occur in the plant, it increases significantly post-harvest and the kinetics increase at high temperatures (Flores-Sanchez and Verpoorte, 2008, Plant Cell Physiol. 49(12): 1767-1782). The biologically active forms for human consumption are the neutral forms. Decarboxylation is usually achieved by thorough drying of the plant material followed by heating it, often by combustion, vaporization, heating, or baking in an oven. Unless otherwise noted, references to cannabinoids in a plant include both the acidic and decarboxylated versions (e.g., CBD and CBDA).


The molecules lose mass through the process of decarboxylation. In order to find the total theoretical active cannabinoids, the acid forms should be multiplied by 87.7%. For example, THCA can be converted to active THC using the formula: THCA×0.877=THC. The maximum THC for the sample is: THCmax=(THCA×0.877)+THC. This method has been validated according to the principles of the International Conference on Harmonization. Similarly, CBDA can be converted to active CBD and the yield is determined using the yield formula: CBDA×0.877=CBD. Also the maximum amount of CBD yielded, i.e. max CBD for the sample is: CBDmax=(CBDA×0.877)+CBD. Additionally, CBGA can be converted to active CBG by multiplying 87.8% to CBGA. Thus, the maximum amount of CBG is: CBGmax=(CBGA×0.878)+CBG.


The biologically active chemicals found in plants, phytochemicals, may affect the normal structure or function of the human body and in some cases treat disease. The mechanisms for the medicinal and psychoactive properties of a cannabis plant, like any medicinal herb, produce the pharmacologic effects of its phytochemicals, and the key phytochemicals for a medical cannabis plant are cannabinoids and terpenes.


Δ9-Tetrahydrocannabinol (THC) is a psychoactive cannabinoid responsible for many of the effects such as mild to moderate pain relief, relaxation, insomnia and appetite stimulation. THC has been demonstrated to have anti-depressant effects. The majority of strains range from 12-21% THC with very potent and carefully prepared strains reaching even higher. While Δ9-Tetrahydrocannabinol (THC) is also implicated in the treatment of disease, the psychotropic activity of THC makes it undesirable for some patients and/or indications.


Tetrahydrocannabinol, THC, is the primary psychoactive and medicinal cannabinoid and is the result of the decarboxylation of tetrahydrocannabinolic acid (THC-A), its acidic precursor. THCA, (6ar,10ar)-1-hydroxy-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6h-benzochromene-2-carboxylic acid, is found in the trichomes of the plant and converted into THC, which actually exists in only minute quantities in the living plant, after harvest and drying.


Cannabidiol (CBD) is one of the principal cannabinoids found in a cannabis plant and is largely considered to the most medically significant. CBD occurs in many strains, at low levels, <1%. In some cases, CBD can be the dominant cannabinoid, as high as 15% by weight. CBD is non-psychoactive, meaning that unlike THC, CBD does not cause a noticeable “high”. CBD has shown potential for medical properties in the treatment of a wide variety of diseases and symptoms, including cancer, nausea, chronic pain, spasms, seizures/epilepsy, anxiety, psoriasis, Crohn's disease, rheumatoid arthritis, diabetes, schizophrenia, post-traumatic stress disorder (PTSD), alcoholism, strokes, multiple sclerosis, and cardiovascular disease. CBD also has been reported to act as a muscle relaxant, antibiotic, anti-inflammatory, and bone stimulant, as well as to improve blood circulation, cause drowsiness, and protect the nervous system. It can provide relief for chronic pain due to muscle spasticity, convulsions and inflammation, as well as effective relief from anxiety-related disorders. It can offer relief for patients with Multiple Sclerosis (MS), Fibromyalgia and Epilepsy. CBD has also been shown to inhibit cancer cell growth when injected into breast and brain tumors in combination with THC.


A cannabis cultivar can be used to achieve the desire of patients to be treated with CBD without the adverse side-effects (e.g., psychoactivity) of THC.


Cannabichromene (CBC) is a rare, non-psychoactive cannabinoid, usually found at low levels (<1%) when present. It has been shown to have anti-depressant effects and to improve the pain-relieving effects of THC. Studies have demonstrated that CBC has sedative effects such as promoting relaxation.


Cannabidiol (CBD) and cannabichromene (CBC) are both non-psychoactive and end products of CBG metabolism, like THC, so that they can be used medically.


Cannabigerol (CBG) is a non-psychoactive cannabinoid. CBG-acid is the precursor to both THC-acid and CBD-acid in the plant usually found at low levels (<1%) when present. It has been demonstrated to have both pain relieving and inflammation reducing effects. CBG reduces intraocular pressure, associated with glaucoma. CBG has been shown to have antibiotic properties and to inhibit platelet aggregation, which slows the rate of blood clotting. While Cannabigerol (CBG), is not considered psychoactive, it is known to block the psychoactive effects of THC and is considered medically active in a variety of conditions. Its precursor, cannabigerolic acid, CBGA, (E)-3-(3,7-Dimethyl-2,6-octadienyl)-2,4-dihydroxy-6-pentylbenzoic acid, is being studied medically.


Cannabinol (CBN) is an oxidative degradation product of THC. It may result from improper storage or curing and extensive processing, such as when making concentrates. It is usually formed when THC is exposed to UV light and oxygen over time. CBN has some psychoactive properties, less strength than THC. CBN is thought to enhance the dizziness and disorientation that users of cannabis may experience. It may cause feelings of grogginess, but has been shown to reduce heart rate.


High potency cannabis plants contain large quantities of specific terpenes as well as various assortments of other terpenes. For instance, a cannabis plant may have a profile with either a high level of, a moderate amount of, or a small amount of various terpenes depending on its cultivar and environmental conditions.


Various cultivars of ‘Cannabis’ species have been cultivated in an effort to create a cultivar best suited to meet the interest of inventors according to their own need. The particular plant disclosed herein was discovered in the area where the inventors were intentionally cross-pollinating and cultivating plants described below using standard Mendelian breeding procedures well known to those of ordinary skill in the art. This resulted in the progenies of the inventors' crosses.


The progenies resulting from any selection stage of either the crossing, selfing or backcrossing versions of the breeding regimes of the present invention were asexually reproduced to fix and maintain the desirable THC content, CBs content, terpenes content, the aroma and flavor(s) typical of the desired class, and the other desirable phenotypic and/or genotypic characteristics. The resultant selected cannabis cultivar is designated as ‘PRIMO CHERRY’ disclosed herein.


The inventors reproduced progenies asexually by stem cutting and cloning. This is the origin of this remarkable new cultivar. The plant has been and continues to be asexually reproduced by stem cutting and cloning at the inventors' greenhouses, nurseries and/or fields in Salinas, Calif., Oakland, Calif., and/or Washington, D.C.


The following are the most outstanding and distinguishing chemical characteristics of this new cultivar when grown under normal conditions in Salinas, Calif. Chemical analyses of the new cannabis variety and the check variety (or the parental varieties) disclosed herein were performed using standard chemical separation techniques well known to those skilled in the art. Samples for assaying were obtained from flower tissues of the cannabis plant disclosed herein. Cannabinoid composition of this cultivar can be determined by assaying the concentration of at least one cannabinoid in a subset (e.g., sample) of the harvested product.


Table 1 includes detailed information of the cannabis plant named ‘PRIMO CHERRY’ including the concentration ranges of terpenes and cannabinoids as tested on flowers at least six different times. The cannabis plant has been tested in a laboratory setting and/or facility to determine cannabinoids and terpenes concentrations in the cannabis plant named ‘PRIMO CHERRY’ according to the procedures provided in Giese et al. (Journal of AOAC International (2015) 98(6):1503-1522).

    • 1) The main terpenes found in ‘PRIMO CHERRY’ are myrcene, alpha-pinene, hexyl butyrate, beta-pinene, limonene, and linalool; and
    • 2) The estimated concentration of the total THCmax, CBDmax, and CBGmax is about 12.38-15.24%, about 5.40-7.13%, and about 0.22-0.33%, respectively, at the time of assaying metabolites from flower samples of ‘PRIMO CHERRY’.


Terpene and cannabinoid profiles of ‘PRIMO CHERRY’ demonstrate that ‘PRIMO CHERRY’ has a phenotypically unique profile, particular insofar as to the level of terpenes and cannabinoids. This data is presented in a tabular form in Table 1.









TABLE 1





Ranges of Active Cannabinoids and Terpenes







Ranges of active Cannabinoids (% by weight)












MAX THC
12.38-
Max CBD
5.40-
Max CBG
0.22-



15.24%

7.13%

0.33%







Ranges of Terpenes (% by weight)












thujene
 0.00%
gamma-
0.00%
hexyl
0.02-




terpinene

hexanoate
0.06%


alpha-
 0.37-
linalool
0.00%
octyl
0.00%


pinene
 0.73%
oxide

butyrate



camphene
 0.01-
terpinolene
0.00%
beta-
0.04-



 0.02%


caryophyllene
0.05%


sabinene
 0.00%
fenchone
0.00%
alpha-
0.02-






humulene
0.06%


beta-pinene
 0.15-
linalool
0.05-
cis-nerolidol
0.00-



 0.33%

0.11%

0.02%


myrcene
 0.19-
fenchol
0.02-
trans-
0.02%



 0.98%

0.04%
nerolidol



alpha-
 0.00%


caryophyllene
0.00-


phellandrene



oxide
0.01%


carene
 0.00%
camphor
0.00%
alpha-
0.01-






bisabolol
0.04%


alpha-
 0.00%
isoborneol
0.00%
nerol
0.00%


terpinene







limonene
 0.10-
(-) borneol
0.00-
geraniol
0.00%



 0.32%

0.02%




beta-
 0.00%
menthol
0.00%
geranyl-
0.00%


phellandrene



acetate



cineole
 0.00%
hexyl
0.09-
methyl-
0.00%




butyrate
0.41%
eugenol



cis-
 0.00%
alpha-
0.03-
Total
1.28-


ocimene

terpineol
0.05%
Terpenes
3.22%


trans-
 0.00%
citronellol
0.00%




ocimene














The cannabis plant named ‘PRIMO CHERRY’ has a complement of terpenes, including but not limited to, relatively high levels of myrcene, alpha-pinene, hexyl butyrate, beta-pinene, limonene, and linalool compared to other terpene compounds. This unique combination of differently concentrated terpenes further distinguishes ‘PRIMO CHERRY’ from other varieties in its odor, its medical qualities, and its effects on mood and mentation.


Asexual Reproduction


Asexual reproduction, also known as “cloning”, is a process well known to those of ordinary skill in the art of cannabis production and breeding and includes the following steps.


The cannabis cultivar disclosed herein is asexually propagated via taking cuttings of shoots and putting them in rock wool cubes. These cubes are presoaked with pH adjusted water and kept warm (˜80° F.). Full trays are covered, left under 18 hours of light and allowed to root (7-14 days). Upon root onset, the plantlets are transplanted into rigid 1 gallon containers filled with a proprietary soil mix A and remain in 18 hours of daylight for another 14-21 days. Once root-bound, plants are transplanted into rigid 3 gallon containers filled with proprietary soil mix B. Immediately, the light cycle is altered to 12/12 and flower initiating begins. The plants remain in 12/12 lighting until harvesting. They undergo a propriety nutrient regimen and grow as undisturbed as possible for 60-70 days depending on chemotype analysis.


All sun leaves are removed and the plant is dismantled to result in approximately 12″ branches covered in inflorescences and trichomes. The goal in harvesting is to actually harvest trichome heads but not ‘buds’. Thus, great care is taken not to disturb the trichome heads and as much of the plant remains intact as possible to promote even and slow drying. Slow drying is followed by a one to two months curing process.


Observation of the all female progenies of the original plant has demonstrated that this new and distinct cultivar has fulfilled the objectives and that its distinctive characteristics are firmly fixed and hold true from generation to generation vegetatively propagated from the original plant.


Under careful observation, the unique characteristics of the new cultivar have been uniform, stable and reproduced true to type in successive generations of asexual reproduction.





DESCRIPTION OF THE DRAWINGS

The accompanying color photographs depict characteristics of the new ‘PRIMO CHERRY’ plants as nearly true as possible to make color reproductions. The overall appearance of the ‘PRIMO CHERRY’ plants in photographs is shown in colors that may differ slightly from the color values described in the detailed botanical description.



FIG. 1 shows an overall view of the ‘PRIMO CHERRY’ plant from the side.



FIG. 2A shows a close view of a single leaf of the check variety BLK03 plant.



FIG. 2B shows a close view of a single leaf of the new variety ‘PRIMO CHERRY’ plant.



FIG. 3A shows top parts (including inflorescence) of the BLK03 plant from the side.



FIG. 3B shows top parts (including inflorescence) of the ‘PRIMO CHERRY’ plant from the side.



FIG. 4 shows a close view of flowers of the ‘PRIMO CHERRY’ plant at the late flowering/mature stage.



FIG. 5 shows another close view of flowers of the ‘PRIMO CHERRY’ plant at the late flowering/mature stage.





DETAILED BOTANICAL DESCRIPTION

‘PRIMO CHERRY’ has not been observed under all possible environmental conditions, and the phenotype may vary significantly with variations in environment. The following observations, measurements, and comparisons describe this plant as grown at Salinas, Calif., when grown in the greenhouse, nursery or field, unless otherwise noted.


Plants for the botanical measurements in the present application are annual plants. In the following description, the color determination is in accordance with The Royal Horticultural Society Colour Chart, 2007 Edition, except where general color terms of ordinary dictionary significance are used.


The cannabis plant disclosed herein was derived from female and male parents that are internally designated as below.


A GNBR internal Code of the cannabis plant named ‘PRIMO CHERRY’ is LC.SF.03. The variety name of ‘PRIMO CHERRY’ is WP01.08.10.B4.P26.36.03. ‘PRIMO CHERRY’ is a fertile hybrid derived from a controlled-cross between two proprietary cultivars; (i) WP01.P08.10 (pollen acceptor; female parent) also known as (P08WP0115.10xP38BX08.10) and (ii) B4.Y3P26.36 (pollen donor; male parent) also known as (B04xY03P26.36). A GNBR Breeding Code of ‘PRIMO CHERRY’ is (P08WP0115.10xP38BX08.10)x(B04xY03P26.36).03. The additional number ‘.03’ was only assigned to an individual plant (i.e. ‘PRIMO CHERRY’) selected from hybrid progenies of the cross event between pollen acceptor (WP01.P08.10) and pollen donor (B4.Y3P26.36). The initial cross between two parental cultivars was made in October 2016. The primary phenotypic criteria used to select the new and distinct cannabis cultivar disclosed herein is as follows: structure score, nose/organoleptic testing, mold susceptibility/resistance, and insect susceptibility/resistance. Also, the first asexual propagation of ‘PRIMO CHERRY’ occurred on Jul. 20, 2017 in Salinas, Calif.


The following traits in combination further distinguish the cannabis cultivar ‘PRIMO CHERRY’ from the check variety ‘BLK03’, which is set as a standard for phenotypic comparison. Tables 2 to 6 present phenotypic traits and/or characteristics of ‘PRIMO CHERRY’ compared to the check variety ‘BLK03’ as follows. All plants were raised together and evaluated when 100 days old (i.e., 25 days in vegetative stage, 15 days in propagation stage, and 60 days in flowering times).









TABLE 2







General Characteristics









Characteristics
New Variety
Check Variety (BLK03)





Plant life forms
An herbaceous
An herbaceous



plant (herb)
plant (herb)


Plant growth
An upright,
An upright,


habit
tap-rooted annual
tap-rooted annual



plant; forming
plant; forming



fibrous roots
fibrous roots



when asexually
when asexually



propagated
propagated


Plant origin
A controlled-cross
A controlled-cross



between pollen
between pollen



acceptor
acceptor



(WP01.P08.10)
(GLD13) and



and pollen donor
pollen donor



(B4.Y3P26.36)
(BSIA)


Plant
Asexually
Asexually


propagation
propagated by
propagated by



cuttings and cloning
cuttings and cloning


Propagation ease
Easy
Moderate


Height
1.5-2.0 m
0.5-2.5 m


Width
184 cm
119.5 cm


Plant vigor
High
Medium


Time to Harvest
11 weeks
8 weeks


(Seed to Harvest)




Resistance to
Resistant to pest
Non-Resistant to two


pests or diseases
as follows; (1)
spotted spider mite or



two-spotted spider
aphids, whitefly, but



mite (Tetranychus
resistant to Lepidoptera




urticae) (Koch);

species



(2) Aphids species




such as: Cannabis




Aphids (Phorodon





cannabis), Green





Peach Aphid (Myzus





persicae) (Sulzer),





Foxglove Aphid




(Aulacorthum





solani), Peach Aphid





(Macrosiphum





euphorbiae), Black





Bean Aphid (Aphis





fabae); (3) Whitefly





(Trialeurodes





vaporariorum; (4)





Lepidoptera species




such as: Armyworm




(Spodoptera





frugiperda), Cabbage





Whites (Pierisrapae),




Painted Lady (Vanessa





cardui), Lepidoptera





sp.; (5) Western




Flower Thrips




(Frankliniella





occidentalis); (6) Leaf





Miner (Liriomyza





sativae) Resistant to





diseases as follows;




Bortytis/Flower Rot




(Botrytiscinerea),




Powdery Mildew




(Podosphaeraxanthii)



Genetically-
NO
NO


modified




organism
















TABLE 3







Leaf/Foliage











Characteristics
New Variety
Check Variety (BLK03)







Leaf
Alternate
Alternate



arrangement





Leaf shape
Palmately compound
Palmately compound



Leaf structure
Linear-lanceolate
Linear-lanceolate




leaflet blades
leaflet blades




with glandular hairs
with glandular hairs



Leaf margins
Dentate, coarsely
Dentate, coarsely




serrated, and
serrated, and




the teeth point
the teeth point




away from the tip
away from the tip



Leaf hairs
Present on both
Present on both




upper and lower
upper and lower




surfaces
surfaces



Leaf length with
36.0 cm
16.6 cm



petiole at





maturity





Leaf width at
12.6-17.8 cm
10.7 cm



maturity





Petiole length at
13.1 cm
6.5 cm



maturity





Petiole color
144D
140C



(RHS No.)





Intensity of
Strong
Medium (vegetative



petiole

stage); very strong



anthocyanin

(later flowering stage)



Stipule length at
0.5 cm
0.7 cm



maturity





Stipule shape
Scale-like-elliptical
Elliptical



Stipule color
134B
149B



(RHS No.)





No. of leaflets
5-7
5-7



Middle largest
22.8 cm
9.8 cm



(longest) leaflet





length





Middle largest
4.7 cm
2.3 cm



(longest) leaflet





width





Middle largest
22.8:4.7
9.8:2.3



(longest) leaflet





length/width





ratio





No. teeth of
31
25



middle leaflet





(average)





Leaf (upper
140B
132A



side) color





(RHS No.)





Leaf (lower
141D
134D



side) color





(RHS No.)





Leaf glossiness
Strong
Strong



Vein/midrib
Obliquely continuous
Obliquely continuous



shape
throughout leaflet
throughout leaflet



Vein/midrib
150C
144C



color (RHS No.)





Aroma
Cherry
Spicy

















TABLE 4







Stem











Characteristics
New Variety
Check Variety (BLK03)







Stem shape
Hollow and ribbed
Hollow, ribbed, textured



Stem diameter
4.5 cm
2.8 cm



at base





Stem color
139C
N144D



(RHS No.)





Depth of main
Medium
Absent



stem





ribs/grooves





Internode length
6.9-12.5 cm
2.4-4.9 cm

















TABLE 5







Inflorescence (Female/Pistillate Flowers)









Characteristics
New Variety
Check Variety (BLK03)





Flowering
Elongated compound
Elongated compound


(blooming)
cymes from 0.5 m-2.3 m
cymes, from 0.5 m-


habit
in length
1.2 m in length


Proportion of
100% pistillate
100% pistillate


female plants




Inflorescence
Above
Even


position




Flower
Overlapping
Cymose (terminal


arrangement

bud matures, while




lateral flowers mature




thereafter)


Number of
78-105 per cyme
80-120 per cyme


flowers per




plant




Flower shape
Calcarate-urceolate
Calcarate-urceolate


Flower
0.7 cm
0.7 cm


(individual




pistillate) length




Flower
7.0 cm
3.8 cm


(compound




cyme) diameter




Corolla size
0.2-0.45 cm
0.08-0.25 cm


Corolla Color
n/a
n/a


(RHS No.)




Bract shape
Urceolate
Urceolate


Bract size
0.2-1.3 cm
0.2-0.8 cm


Bract color
134B
N134C


(RHS No.)




Calyx shape
No defined calyx
No defined calyx


Calyx color
n/a
n/a


(RHS No.)




Stigma shape
Linear-pointed
Acute


Stigma length
1.1 mm
2.2 mm


Stigma color
28C
159D


(RHS No.)




Trichome shape
Capitate-stalked
Capitate-stalked



glandular
glandular


Trichome color
157A before harvest, at
157A at day 40 in


(RHS No.)
approximately day 40 of
flowering



flowering



Other types of
Capitate sessile trichomes
Capitate sessile trichomes


trichomes
are present on the leaves
are present on the leaves



of plants, as well as being
of plants, as well as being



noticed in the flowers
noticed in the flowers



(color: 157A at day 40 in
(color: 157A at day 40 in



flowering). During later
flowering).



flowering, i.e. day 40 to
During later flowering,



day 60 in flowering, the
i.e. day 48 to day 60 in



capitate stalked trichomes
flowering, capitate



are present (color: N30B).
stalked trichomes




are present (color:




N30B). Bulbous




and non-glandular




trichomes are also




present and most




noticeable on




the petioles,




stems, and leaves




(color: 157A)


Terminal bud
Oblong
Oblong


shape




Terminal bud
134B
203C


color (RHS




No.)




Pedicel
Absent
Absent


Staminate shape
No staminate flowers
No staminate flowers



male flower produced
produced naturally;



naturally; however,
however, male flower



(staminate) can be induced
(staminate) can be induced



with chemical compounds
with chemical compounds



(such as silver nitrate and
(such as silver nitrate and



silver thiosulphate
silver thiosulphate



anionic complex).
anionic complex).


Pollen
Absent
Absent


description




Seed shape
Striped, smooth and
Smooth and globular



globular



Seed size/length
1.5-2.3 mm
1.8-2.3 mm


Seed color
177A (when seeds are
n/a


(RHS No.)
properly matured)



Marbling of
Medium
Absent (non-existent)


seed




Petal
Apetalous
Apetalous


description




Max THC
About 12.38-15.24%
About 18.88-19.37%


content




Max CBD
About 5.40-7.13%
0.00%


content




Max CBG
About 0.22-0.33%
About 0.84-0.91%


content





n/a: not available













TABLE 6







Other Characteristics









Characteristics
New Variety
Check Variety (BLK03)





Time period and
7-9 weeks
7-9 weeks


condition of




flowering/




blooming




Hardiness of
Hardy to 25° F.-ambient
Hardy to 25° F.-ambient


plant
temperature
temperature


Breaking action
Flexible, highly resistant to
Strong, non-flexible



breakage



Rooting rate
99%-vigorous
70%-moderate


after




cutting/cloning




Types of
Stem
Stem


Cutting for




Cloning




Shipping quality
High
Moderate


if available




Storage life if
Long (3-8 months with
Medium (2-6 months with


available
minor changes in physical
minor changes in physical



appearance and/or smell/
appearance and/or smell/



taste); minor decrease in
taste)



green coloration



Market use
Medicinal
n/a


Productivity of
Approximately 0.18-0.68
Approximately 0.14-0.45


flower if
kg can be produced per
kg can be produced per


available
plant, dependent on
plant, dependent on



finished
finished



plant size (1.2-2.6 m);
plant size (0.6-1.2 m);



Growing conditions/
Growing conditions/



environment will dictate
environment will dictate



final yield/output
final yield/output





n/a: not available






In general, ‘PRIMO CHERRY’ is larger in height than both parents, (WP01.P08.10) and (B4.Y3P26.36). ‘PRIMO CHERRY’ is more robust in terms of growing performance, time to rooted clones, and time to flower maturity. Also, ‘PRIMO CHERRY’ has greater resistance to pest and disease, stronger branches, thicker stems, greater flexibility, and higher yielding. ‘PRIMO CHERRY’ has larger and more flexible stems including both main and lateral, which allow for producing higher yields under different growing conditions. ‘PRIMO CHERRY’ clearly demonstrates hybrid vigor, and outperforms both parents overall. Chemically, ‘PRIMO CHERRY’ has a higher cannabinoid content, a higher THC:CBD ratio as well as a higher terpene content than either parent.


When ‘PRIMO CHERRY’ is compared to the check variety ‘BLK03’, ‘PRIMO CHERRY’ is wider than ‘BLK03’ in plant width. ‘PRIMO CHERRY’ shows higher plant vigor than ‘BLK03’. In general, ‘PRIMO CHERRY’ has longer and wider leafs than ‘BLK03’ in terms of whole leaf length and width. Also, ‘PRIMO CHERRY’ has longer and wider leaflets than ‘BLK03’ when comparing the middle largest leaflet length and width. Additionally, ‘PRIMO CHERRY’ has more teeth numbers in middle leaflet than ‘BLK03’. ‘PRIMO CHERRY’ has almost twice longer petiole than ‘BLK03’ at maturity, while its stipule length is slightly shorter. Regarding stem diameter at base, ‘PRIMO CHERRY’ is longer than ‘BLK03’. When comparing the compound cyme diameter, ‘PRIMO CHERRY’ is longer than ‘BLK03’. With respect to aroma, ‘PRIMO CHERRY’ smells like cherry, while ‘BLK03’ has a generally spicy smell.


When ‘PRIMO CHERRY’ is compared to the known cannabis plant named ‘ECUADORIAN SATIVA’ (U.S. Pat. No. 27,475), there are several distinctive characteristics. For example, overall form of ‘PRIMO CHERRY’ plant is wider than the ‘ECUADORIAN SATIVA’ plant across at the widest point. ‘PRIMO CHERRY’ plant has a longer middle leaflet (without petiole) and whole leaf (with petiole) length than the ‘ECUADORIAN SATIVA’ plant. Additionally, ‘PRIMO CHERRY’ plant has a longer petiole at maturity than the ‘ECUADORIAN SATIVA’ plant. Also, ‘PRIMO CHERRY’ plant has a wider middle leaflet and whole leaf width than the ‘ECUADORIAN SATIVA’ plant. Regarding stem diameter at base, ‘PRIMO CHERRY’ is longer than ‘ECUADORIAN SATIVA’. While the aroma of ‘ECUADORIAN SATIVA’ is strongly mephitic with hints of limonene, ‘PRIMO CHERRY’ has a cherry smell. When comparing total THC content between ‘PRIMO CHERRY’ and ‘ECUADORIAN SATIVA’, the total THC content of ‘PRIMO CHERRY’ is between 12.38-15.24%, while ‘ECUADORIAN SATIVA’ accumulates 12.45% total THC.

Claims
  • 1. A new and distinct cultivar of Cannabis plant named ‘PRIMO CHERRY’ substantially as shown and described herein.
US Referenced Citations (13)
Number Name Date Kind
9095554 Lewis et al. Aug 2015 B2
9370164 Lewis et al. Jun 2016 B2
PP27475 Kubby Dec 2016 P2
9642317 Lewis et al. May 2017 B2
20140287068 Lewis et al. Sep 2014 A1
20140298511 Lewis et al. Oct 2014 A1
20150359188 Lewis et al. Dec 2015 A1
20150366154 Lewis et al. Dec 2015 A1
20160324091 Lewis et al. Nov 2016 A1
20170202170 Lewis et al. Jul 2017 A1
20180064055 Lewis et al. Mar 2018 A1
20180143212 Lewis et al. May 2018 A1
20180284145 Lewis et al. Oct 2018 A1
Foreign Referenced Citations (5)
Number Date Country
WO 2014145490 Sep 2014 WO
WO 2015065544 May 2015 WO
WO 2016105514 Jun 2016 WO
WO 2016123160 Aug 2016 WO
WO 2018094359 May 2018 WO
Related Publications (1)
Number Date Country
20190183005 P1 Jun 2019 US
Provisional Applications (1)
Number Date Country
62596561 Dec 2017 US