This invention relates to a cannula used for endoscopic surgery, and more particularly to a cannula and method for maintaining a clear visual field for an endoscope housed with the cannula.
Endoscopic surgery allows a surgeon to perform safe and successful procedures because of the surgeon's ability to view the surgical site through the endoscope lens. For some surgical procedures, such as dissection, the cannula housing the endoscope has a transparent blunt dissection tip through which the surgeon views the surgical site. The blunt dissection tip protects the endoscope lens from being smeared by blood or fatty tissue present at the surgical site, or from being fogged due to the moist subcutaneous environment. However, many surgical procedures cannot be performed using a blunt dissection tip. When side branches and vessel ends of a vessel must be transected to harvest the vessel, the end of the cannula must be open to allow the surgical tools to extend from the cannula. When the cannula end is open, the endoscope lens is subject to the adverse conditions described above. The surgeon is forced to repeatedly remove the cannula from the body to clean the endoscope lens. This increases the length and risks of the operation.
Some conventional schemes for cleaning an endoscope lens rely upon an endoscope with a cleaning system built within it. However, having a cleaning system within the endoscope restricts the angle of incidence at which the cleaning fluid may be propelled toward the lens to almost parallel to the lens. This results in a less effective cleansing action. Also, since the spray is being directed parallel to the lens, the surgeon cannot see the spray source and it is therefore difficult to adjust the direction of the spray. Thus, with these systems, the endoscope must still be removed on occasion for manual cleaning where the proper angle of incident spray can be obtained manually. Additionally, in procedures using gas insufflation, the gas may dry out a target vessel or other surgical site. In these situations, it is often necessary to irrigate the vessel to prevent the vessel from drying out. However, conventional endoscope washing systems are not capable of providing both endoscope lens cleaning and remote surgical site irrigation. Therefore, a remote endoscopic washing system would be desirable for more effectively cleansing the endoscope lens during a surgical procedure by allowing the surgeon to control the angle at which cleansing fluid is sprayed as well as allowing the surgeon to use the same apparatus to irrigate the surgical site itself.
In accordance with the present invention, a retractor is positioned within a cannula with a dissection cradle end of the retractor positioned at the distal end of the cannula. The retractor includes a first portion that has an axis approximately parallel to a central axis of the cannula, and a second portion that has an axis which is at an angle with respect to the central axis of the cannula. The dissection cradle is located at the distal end of the second portion of the retractor. In another embodiment, the retractor includes two legs having substantially parallel axes that selectively protrude from the distal end of the cannula. The protruding legs support the dissection cradle formed in the shape of a partial loop that is positioned in a plane skewed relative to the axes of the legs, with a bottom of the loop directed away from the cannula. Thus, in operation, when the surgeon locates a vein and side branch of interest, the surgeon extends the retractor to cradle the vein in the dissection cradle. Once cradled, the retractor may be fully extended, displacing the vein away from the axis of the cannula, causing the side branch to be isolated and exposed to a surgical tool. The surgical tool may then be extended from within the cannula to operate on the isolated and exposed side branch.
In accordance with one embodiment of the present invention, a remote irrigation system is built into the cannula. In one embodiment, one of the legs which comprise the retractor of the present invention is hollow, and is attached to a spray nozzle disposed in the distal end of the retractor. The proximal end of the hollow leg is attached to a fluid input tube which selectively provides irrigation fluid under pressure for washing the endoscope lens. When extended slightly beyond the distal end of the cannula, the spray nozzle is positioned to direct the spray of irrigation fluid at an angle approximately normal to the endoscope lens. This provides for an extremely effective cleaning action, and minimizes the need for removal of the endoscope during surgical procedures for manual cleaning. Additionally, if the surgical site itself requires irrigation, the retractor is extended out of the cannula toward the area requiring irrigation, and an irrigation fluid can be sprayed directly on the site. Finally, as the spray is directed back toward the lens, the surgeon can visually adjust the extension of the retractor to accurately direct the spray toward the lens or surgical site.
In a further embodiment, the hollow leg moves within a lumen in the cannula in fluid-resistant sliding engagement, and the fluid input tube is coupled to this lumen. In this embodiment, the maximal outer dimension of a region of the hollow leg is slightly less than a maximal inner dimension of the lumen. The slip-fit, fluid-resistant coupling of the hollow leg within the lumen allows irrigation fluid to be introduced at the proximal end of the lumen by the fluid input tube without significant leakage past the sliding juncture of the hollow leg within the lumen.
In an alternate embodiment, the hollow leg includes a semi-rigid plastic tubing, and fits within an irrigation tube which lines the inside of the lumen. The fluid input tube attaches to the irrigation tube and extends out of the cannula handle for receiving irrigation fluid. The use of flexible, semi-rigid plastic tubes provides fluid seals throughout the irrigation system to minimize leakage. In a third embodiment, the cannula contains a separate irrigation lumen which has a spray nozzle disposed in a fixed position at its distal end. The spray nozzle is positioned within the cannula to allow the proper angle of incidence for the spray to effectively clean the lens. Finally, in another embodiment, the dissection cradle is supported by only one leg, and the lumen which previously held the second leg instead is fitted with a spray nozzle directed toward the endoscope lens. An embodiment is also disclosed in which a nozzle tube situated within a cannula lumen is selectively extensible responsive to the application of hydraulic pressure.
a is a cut-away side view of retractor 112 and cannula 100.
b is a top view of retractor 112.
a is a perspective side view of cannula 100 with a saphenous vein positioned within the cradle 116.
b is a perspective side view of the distal end 122 of cannula 100 in an embodiment in which an endoscope 126 and a surgical tool 120 are present and partially extended.
c is a front view of the distal end 122 of cannula 100 in which the surgical tool 120 and the retractor 116 are partially extended, and an endoscope 126 is present.
a is a cut-away top view of cannula 100.
b is a cut-away side view of cannula 100.
a is a cut-away view of a sliding tube embodiment of cannula 100 in a first position.
b is a cut-away view of the sliding tube embodiment of
a is a cut-away view of an embodiment of cannula 100 having an angling device 140.
b is a cut-away side view of the apparatus illustrated in
c is a cut-away side view of the angling device embodiment in which the angling device 140 is in a separate lumen from the retractor 112.
a is a cut-away side view of a twistable retractor 112 in a straight position.
b is a side view of the retractor 112 of
c is a cut-away side view of twistable retractor 112 in a crossed position.
d is a side view of the retractor 112 of
a is a cut-away side view of the handle 104.
b is a cut-away side view of an alternate embodiment of handle 104.
a is a side view of cradle 116.
b illustrates a first alternate embodiment of cradle 116.
c illustrates multiple views of a second alternate embodiment of cradle 116.
d illustrates multiple views of a third alternate embodiment of cradle 116.
e illustrates multiple views of a fourth alternate embodiment of cradle 116.
f illustrates multiple views of a fifth alternate embodiment of cradle 116.
g illustrates multiple views of an embodiment of cradle 116 having a spur.
a illustrates a top view of an embodiment of the cradle 116 of
b illustrates a side view of the cradle 116 of
c illustrates a top view of the cradle 116 of
d illustrates a side view of the cradle 116 of
a illustrates a perspective side view of a cannula 100 including an irrigation system integrated with the retractor 112.
b is a cut-away view of a retractor 112 of
c is a cut-away view of a modified retractor 112 and endoscope 126 situated in a cannula 100.
d is an alternate embodiment of the cannula-based irrigation system of
a is a perspective front view of a single leg irrigation system.
b is a perspective side view of the single leg irrigation system.
a is a cut-away side view of an alternate embodiment of a cannula-based irrigation system in accordance with the present invention.
b illustrates the embodiment of
The distal end of the cannula houses a retractor 112, and optionally an endoscope 126 and a surgical tool 120, described below.
b illustrates the retractor 112 formed with two legs. The legs 141, 142 of the retractor 112 at the distal end form the dissection cradle 116 in a loop or “U” shape, as shown in
a illustrates a perspective view of the cannula 100 in accordance with the present invention with the retractor fully extended, holding a saphenouss vein 118, and also illustrates an external surgical tool 120 disposed adjacent the cannula 100 for performing a surgical operation, for example, severing a tributary or side branch of the vein 118. The vein is positioned within the side arches 128 of the cradle 116. The dissection cradle 116 may be used to cradle a vein, vessel, tissue or organ of interest, and surgical tool 120 may be any surgical tool suitable for performing a surgical procedure near the dissection cradle 116.
b illustrates a perspective view of cannula 100 in an embodiment in which the surgical tool 120 is positioned within the cannula 100, and an endoscope 126 is present. In this embodiment, cradle 116 preferably overlays the endoscope 126 with sufficient clearance to facilitate relative movements thereof. However, the endoscope may also be located adjacent the surgical tool 120. In one embodiment, endoscope 126 is positioned with cannula 100 to allow a clear field of view upon extension of the retractor 112. Surgical tool 120 is illustrated as cauterizing scissors, used to sever a tributary or side branch of a saphenouss vein 118. In this embodiment, surgical tool 120 is maximally displaced from the cradle 116 at the cannula end 122. More specifically, as shown in
a is a cut-away top view of cannula 100. The retractor 112 is slidably positioned within minor lumens 113 along the length of the cannula 100 within close tolerances in order to position the retractor 112 stably within the cannula 100. For example, in one embodiment retractor legs 141, 142 are approximately 0.045 inches in diameter and the lumens 113 encasing the legs 141, 142 are approximately 0.080 inches in diameter, as friction between the legs of the retractor 112 and the lumens 113 holds the retractor stably within the cannula. This configuration restricts rotational movement of the retractor to provide more stable retraction as compared with conventional retractors. The legs 141, 142 of the retractor 112 are formed of flexible, resilient material and are retained within the lumen 113 in substantially straight or flat orientation, but may return to a material bend or curve, as illustrated in
The leg 141 of the retractor 112 passes through a sliding gas or fluid seal 130 at the proximal end of the lumen 113. The leg 141 of the retractor 112 passes out of the cannula 100 and into handle 104 for attachment to a slider button 106 for facilitating translational movement of the retractor 112 from the proximal or handle end of the cannula 100. However, other types of control devices such as knobs, grips, finger pads, and the like may be linked in conventional ways to the retractor 112 in order to manually control the translational movement of retractor 112. In one configuration, the proximal end of leg 141 is bent relative to the axis of the cannula, and the button 106 is attached to the bent position of the leg 141 to facilitate moving the button 106 and the retractor 112 translationally under manual control. The button 106 preferably includes lateral grooves to prevent finger or thumb slippage during sliding manipulation of the retractor 112.
Thus, in the operation of a preferred embodiment, a user actuates the slider button 106 to extend retractor 112 out of the lumen 113 at the distal end of the cannula 100. In one embodiment, the resilient retractor 112 is formed in a smooth bend, as shown in
In an alternate embodiment as illustrated in
To extend the sliding tube 100, button 107 is pushed down. As illustrated in
Another embodiment employs a retractor 112 which has a naturally straight shape. As illustrated in
Upon extending the retractor 112 using button 106, the angling device 140 is extended with the retractor 112. The angling device 140 is coupled to a handle 145 at the proximal end of the cannula 100 to facilitate establishing an angle in the retractor 112 by pulling with a backward force on the angling device 140. As illustrated in
a illustrates another embodiment of cannula 100 in which the retractor 112 is pre-formed with one leg 141 of the retractor 112 bent at an angle at its proximal end skewed to the axis of the distal end of the other leg 142. The bent portion of the leg 141 may be linked to a sliding knob 147 for convenient manual manipulation of this embodiment of the invention. Upon sliding the knob 147, the leg 142 coupled to knob 147 is twisted rotationally. The two legs 141, 142 of retractor 112 are coupled together via cradle 116. The axis of the second portion of the retractor 112 in the first position is at a first angle 117 to the axis of the cannula 100, as shown in
a illustrates a cut-away side view of button 106 on the handle 104 of cannula 100, with an endoscope 126 positioned within cannula 100. As mentioned above, button 106 is coupled to one leg 141 of the proximal end of retractor 112. Sliding the button 106 in groove 146 translationally moves the retractor 112. Groove 146 is preferably minimally wider than the shaft of button 106 to minimize excessive horizontal movement of button 106 while still allowing smooth translational movement of button 106. As illustrated in
a illustrates a top view of cradle 116 in an embodiment in which the cradle 116 is formed by two legs 141, 142 of retractor 112. The distal end of the legs form “U”-shaped side guides. The top 144 of the distal portion of the “U” is preferably flattened. This provides atraumatic support for the target vessel retained within cradle 116. Additionally, by minimizing the thickness of distal portion 144, contact with other devices in close proximity with retractor 112 is minimized.
The cradle 116 may have other effective shapes, for example, as illustrated in
Referring back to
a illustrates a perspective side view of a cannula 100 and an irrigation effector 1150 for cleaning an endoscope lens 1108 and wetting a surgical site. In the embodiment of
If the surgical site requires irrigation, the dissection cradle 116 is extended out of the cannula 100, as shown in
As shown in
d illustrates an embodiment of the single-leg irrigation system in which a wire 141 is present within the hollow leg 1100 in lumen 113. The presence of wire 141 provides support and rigidity to the retractor 112 while retaining the ability of the hollow leg 1100 to be used to conduct irrigation fluid to the irrigation nozzle 1104.
a is a perspective front view of a single leg irrigation system and shows the distal end of the cannula 100 housing the cradle 116 and the endoscope 126. In this embodiment, the dissection cradle 116 is supported by one leg 141 (shown in
If the surgical site has not been reached, the surgeon determines 1508 whether the lens 1108 is clean. In response to the lens 1108 becoming obscured with blood, fatty tissue, or the like, the irrigation system is activated 1512 in situ to wash the lens 1108. In one embodiment as described above, the retractor 112 is extended until the angle of the spray is approximately normal to the surface of the endoscopic lens 1108, and therefore effectively washes the lens 1108. Next, the surgeon determines 1514 whether the lens 1108 has been cleaned satisfactorily. If not, the retractor and thereby the irrigation nozzle 1104 is selectively positioned 1516 via extension or retraction of the retractor 112 under endoscopic visualization to direct the spray toward the lens 1108 at a more effective angle. The surgeon can continue to reposition the retractor 112 until the spray nozzle is directed at an effective angle toward the lens 1108.
a shows a cut-away side view of another embodiment of a cannula-based irrigation system. In this embodiment, a nozzle tube 1600 is extendable from within a lumen 113 in the cannula 100. The proximal end of the nozzle tube 1600 is attached to a distal end of a tension spring 1604, whose proximal end is stably attached on the side of the lumen 113 or at the proximal end of the cannula 100. The tension spring 1604 biases the nozzle tube 1600 in a retracted state. Upon exposure to hydraulic water pressure, as shown in
Thus, the irrigation systems described above provide an effective method of cleaning an endoscope lens 1108 without requiring the removal of the endoscope from a surgical site. Additionally, the washing system described above is more effective due to the use of a spray nozzle external to the endoscope, which allows the angle of spray to be directly projected against the endoscope lens 1108. In an embodiment in which the irrigation nozzle 1104 is disposed on the cradle 116 or on the hollow leg 1100, a surgeon can visually adjust the angle of incidence of the spray, and can also irrigate a surgical site by adjusting the extension of the retractor 112 out of the cannula 100.
This application is a continuation of application Ser. No. 10/174,404, filed on Jun. 17, 2002 now abandoned, which is a continuation of application Ser. No. 09/634,132, filed on Aug. 8, 2000 now U.S. Pat. No. 6,406,425 which is a continuation of application Ser. No. 09/227,244 filed on Jan. 8, 1999 now issued as U.S. Pat. No. 6,176,825, which is a continuation-in-part application of application Ser. No. 09/102,723 filed on Jun. 22, 1998, now issued as U.S. Pat. No. 5,895,353.
Number | Name | Date | Kind |
---|---|---|---|
4557255 | Goodman | Dec 1985 | A |
5843121 | Yoon | Dec 1998 | A |
5857961 | Vanden Hoek et al. | Jan 1999 | A |
5913870 | DeFonzo et al. | Jun 1999 | A |
5957936 | Yoon et al. | Sep 1999 | A |
6520975 | Branco | Feb 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
Parent | 10174404 | Jun 2002 | US |
Child | 10773770 | US | |
Parent | 09634132 | Aug 2000 | US |
Child | 10174404 | US | |
Parent | 09227244 | Jan 1999 | US |
Child | 09634132 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09102723 | Jun 1998 | US |
Child | 09227244 | US |