1. Field of the Invention
The present invention relates to orthopedic surgery, and in particular to devices, systems and methods for minimally invasive access into the bone and particularly minimally invasive access to the vertebral body for biomaterial delivery and fixation of the spine. More particularly, the present invention provides a cannulated screw access system to facilitate the delivery of materials into the vertebral body, the screw head being attachable or adaptable to connection to a spinal rod or other appliance for the fixation of the spine.
2. Background of the Technology
Spinal fixation implants and instrument are widely employed in surgical procedures for correcting spinal injuries and diseases. The need to improve patient outcome and decrease patient length of stay has led to minimally invasive surgical procedures. Minimally invasive procedures are typically governed by a very small skin incision allowing for far less exposure of the patient thereby decreasing the risk of infection and decreasing the amount of general trauma due to the procedure.
Before spinal fixation can occur, the injured or diseased anatomy must be addressed. Typically, a single level spin fusion requires the partial or complete removal of the disc between two vertebrae in a procedure called a discectomy. The void created by the discectomy is then filled with an implant, bone graft, artificial bone graft, artificial bone graft or some combination therein. A series of bone screws and rods or other apparatus are used to stabilize the area until the fusion occurs.
When disease or injury, such as osteoporosis, results in damage to a vertebral body a means to repair the bone structures is required. Various procedures and apparatus have been developed to address the damaged vertebral body and are described below.
Vertebroplasty is a procedure whereby the vertebra is structurally reinforced using “bone cement,” a compound of polymethylmethacrylate (PMMA). PMMA is injected into the vertebral body which has become more porous typically due to disease. The PMMA fills the voids in the vertebra thereby reinforcing it. In some cases, additional cancellous bone, the bone inside the vertebra, may need to be removed thereby creating a void which can then be filled with PMMA. In other cases, it is the removal of a tumor that creates the void.
Kyphoplasty is a procedure similar to vertebroplasty whereby a balloon is inserted into the vertebral body and inflated to restore height to the bone if it has collapsed, most likely because of a fracture. After a space has been created the balloon is removed and the void is filled with PMMA. Other bio-compatible materials have also been clinically used and are under evaluation for filling these voids such as calcium sulfates and bone pastes.
Vertebroplasty and kyphoplasty are both typically performed using minimally invasive approaches and have been very successful for treating fractures and providing immediate pain relief. Unfortunately patients requiring such procedures often present with Adjacent Level Syndrome at a later date. In the case of vertebroplasty and kyphoplasty, adjacent vertebrae are typically subject to the same degenerative mechanisms which gave rise to the initial procedure. Since more than one vertebral body has now been affected, the need for spinal fixation, in addition to another vertebroplasty or kyphoplasty, might be necessary.
For this reason, it is undesirable to perform a subsequent procedure on the initially addressed vertebrae. Prior methods and devices for treating vertebral bodies or fixating the spine, only address either the delivery of the material into the bone or the fixation of the bone. Even though prior methods and devices are minimally invasive they require following each step of that procedure. By employing a device that is multi-functional, many steps can be eliminated while improving the likelihood for a successful outcome.
Thus, there is a need to provide improved surgical implants, instrumentation and minimally invasive methods for accessing a vertebral body, preparing the vertebral body by removing the damaged or diseased portions, delivering biomaterials and finally fixating a portion of the spine at the same time or as a subsequent action.
The present invention is a unique minimally invasive surgical system and method for introducing instruments and/or biomaterial into the interior of a bone, particularly the interior of a vertebral body, using a unique cannulated screw that is sized and configured to penetrate the cortical bone and thereby provide access to the interior of the bone through the integral cannula of the screw. That same screw having a screw head that is then adaptable to employ a connector for securely holding a connecting device, such as a spinal rod or plate that can then be used to fix bones or bone fragments together. This unique system eliminates the need for a patient to undergo two separate procedures: first, that of penetrating the bone for the purpose of introducing biomaterials, such as bone cement, into the bone; and second, undergoing a separate procedure that introduces a separate bone screw into the bone so as to attach a connecting rod to the bone. The unique system and device of the present invention permits the procedures to be sequentially accomplished as a combined procedure with less trauma for the patient in a shorter surgical time period.
Thus, it is an object of the present invention to provide a minimally invasive method and device to address vertebral bodies of the spine and to access the interior of the vertebral bodies to correct injury and disease through the use of a unique cannulated bone screw.
It is further an object of the present invention to provide a screw having an integral cannula that has a diameter that is adequate in size to permit the introduction of at least one other instrument or device through the cannulation into the interior of the bone.
It is further an object of the present invention to provide a screw having an integral cannula wherein a portion of the length of the cannula lumen is provided with an opening through a portion of the screw shaft such that in that portion no screw threads are provided thus providing an opening from the lumen of the cannula to the exterior of the screw.
It is further an object of the present invention to provide a screw having an integral cannula that has a diameter that is adequate in size to permit the introduction of at least one other instrument or device through the cannulation, the cannulation having a portion that opens through the shaft of the screw to provide an opening from the lumen of the cannula to the exterior of the screw that is of adequate size and configuration to permit the at least one other instrument to pass out of the lumen of the cannula and to the exterior of the screw.
It is further an object of the present invention to provide a cannulated screw having an interior lumen of adequate size and configuration to permit through passage of at least one other instrument and having a screw head of low profile so as to not interfere with surround tissues in the body of the subject in which the screw is used.
It is further an object to provide the cannulated screw of the present invention having a screw head that is adapted to accept and hold a connection element such as a connection rod or plate.
It is further an object to provide the cannulated screw of the present invention wherein the head of the screw is capable of being connected to a spinal rod connector that in turn can be connected to a spinal rod or plate.
It is further an object of the present invention to provide a system for providing a minimally invasive method for accessing a vertebral body, preparing the vertebral body by removing the damaged or diseased portions, delivering biomaterials and finally fixating a portion of the spine using a unique cannulated bone screw.
Also provided is a method of using the novel cannulated screw of the present invention wherein the surgical method permits the use of the cannulated screw for penetrating and attaching to a bone for the purpose of introducing instruments or materials into the interior of the bone and subsequently attaching that same screw to a connecting device such as a spinal rod.
It is further an object of the present invention to provide a kit for use in accessing the interior of a bone for the purpose of introducing at least one instrument through the cannula of a unique cannulated bone screw and using that same cannulated bone screw as an element in the sequential method of fixing that same bone to a connecting device, such as a connecting rod or plate.
The foregoing and other features of the present invention will become apparent to one skilled in the art to which the present invention relates upon consideration of the following description of the invention with reference to the accompanying drawings, wherein:
Detailed embodiments of the present invention are disclosed herein; however, it is understood that the following description is provided as being exemplary of the invention, which may be embodied in various forms without departing from the scope of the claimed invention. Thus, the specific structural and functional details provided in the description are non-limiting, but serve merely as a basis for the invention defined by the claims provided herewith.
As shown in
The cannulated screw 12 includes a screw shaft 24 having threads 26, which are sufficient to penetrate and be securely fixed into bone, specifically the pedicle of a vertebral body, as demonstrated in
The screw shaft 24 defines the lower portion of the cannula lumen 14, the upper portion of which extends through the screw head 18 to a cannula lumen ingress portal 28 defined by the screw head 18. As best shown in
As best shown in
As best shown in
As shown in
The screw head 18 of the cannulated screw 12 is provided with gripping surfaces 42 that can be such that a standard tightening or loosening tool such as one having a hex or square drive can be attached to drive the cannulated screw 12 into or out of the bone. Any other configuration for the screw head gripping surfaces 42 can be employed provided they have a geometry complementary to that of the tightening or loosening tool used by the surgeon. The screw head 18, when fully inserted into the bone has a very low profile so as to not excessively protrude or interfere with surrounding anatomy and tissue. As best shown in
A surgeon using the present invention can position a guide element 16, such as a guide wire or cannula, at the surgical site prior to inserting the cannulated screw 12 along the pathway of the guide element 16 to facilitate proper trajectory of the cannulated screw insertion process. The use of a guide element 16 may not be required in all cases. Once properly positioned at the surgery site, the surgeon can apply force to the screw head 18 of the cannulated screw so as to enable penetration of the threaded screw shaft 24 through the cortical bone and into the interior of the bone. If the surgeon has employed a core element 36 to inhibit obstruction of the lumen 14 of the cannulated screw 12, it can be removed to permit the surgeon to insert at least one instrument or to insert material into the interior of the bone as needed. Upon completion of the surgeon's treatment of the bone, a head adaptor 20 can be attached to the screw head 18, if desired. Using the head adaptor 20, the surgeon can then attach any of a wide variety of devices to the securely anchored screw 12. As a non-limiting example, a spinal rod or plate can be attached to the head adaptor 20.
The materials used to construct the present invention are those which have sufficient strength, resiliency, and biocompatability as is well known in the art for such devices. Methods of manufacture of such surgical implant devices is also well known in the art.
It is within the concept of the present invention to provide the cannulated screw access system 10 as part of a kit for use in a surgical process, the kit comprising at least one of the screws 10 and at least some of the associated tools for using the screws to connect a surgical rod to adjacent bones or bone fragments. In addition, the kit can contain surgical rods, such as, for example, spinal rods. Additional devices such as cross-connectors or links can also be included in the kit.
Each of the embodiments described above are provided for illustrative purposes only and it is within the concept of the present invention to include modifications and varying configurations without departing from the scope of the invention that is limited only by the claims included herewith.
Number | Date | Country | |
---|---|---|---|
60695083 | Jun 2005 | US |