Canopy Apparatus with Articulating Arm

Information

  • Patent Application
  • 20130167887
  • Publication Number
    20130167887
  • Date Filed
    December 28, 2012
    11 years ago
  • Date Published
    July 04, 2013
    10 years ago
Abstract
Embodiments of the invention provide a canopy system. The canopy system may include: a canopy that includes a shaft and a canopy ball coupled to the shaft; a double socket arm connected to the canopy via the canopy ball; and a mount, the mount having a mounting ball, the mount connected to the double socket arm via the mounting ball, the canopy system thus configured for a wide range of canopy articulation with respect to the mount. Alternative embodiments are provided for the shaft, double socket arm and mounts.
Description
FIELD OF INVENTION

The invention relates generally to an apparatus that includes a canopy, a/k/a an umbrella or parasol. More specifically, but without limitation, embodiments of the invention include an articulating arm for positioning the canopy and may also include a specially-configured mounting bracket.


BACKGROUND

Canopies can be utilized to shield a user from rain, sun, or other environmental conditions. Known canopies have many disadvantages, however. For instance, fixed canopies often suffer from limited ranges of articulation. They may, for example, only tilt along a single plane. Although patio table stands are common, fixed canopies typically have limited mounting options for other applications. Improved canopy systems are therefore needed.


SUMMARY OF THE INVENTION

Embodiments of the invention solve one or more of the shortcomings described above by affixing a canopy ball onto a shaft of the canopy, and coupling a double- socket arm between the canopy ball and a mounting ball. The double-socket arm provides a wide range of articulation in multiple planes. Embodiments of the invention also provide brackets for the mounting ball that are configured to cooperate with a chair, a bench seat, or other furnishings.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are described with reference to the following drawings, wherein:



FIG. 1 is a perspective view of a canopy system, according to an embodiment of the invention;



FIG. 2 is a perspective view of a canopy system, according to an embodiment of the invention;



FIG. 3A is an exploded assembly view of a portion of a canopy, according to an embodiment of the invention;



FIG. 3B is a perspective view of a canopy ball, according to an embodiment of the invention;



FIG. 4 is an exploded assembly view of a portion of a canopy, according to an embodiment of the invention;



FIG. 5 is a perspective view of a double-socket arm, according to an embodiment of the invention;



FIG. 6 is a perspective view of a double-socket arm, according to an embodiment of the invention;



FIG. 7 is a perspective view of a double-socket arm, according to an embodiment of the invention;



FIG. 8 is a perspective view of a double-socket arm, according to an embodiment of the invention;



FIG. 9 is a perspective view of a chair mounting bracket, according to an embodiment of the invention;



FIG. 10 is a side view of the chair mounting bracket illustrated in FIG. 9;



FIG. 11 is a perspective view of a chair mounting bracket, according to an embodiment of the invention;



FIG. 12 is a perspective view of a chair mounting bracket, according to an embodiment of the invention;



FIG. 13 is a perspective view of a chair mounting bracket, according to an embodiment of the invention;



FIG. 14 is a perspective view of a canopy system coupled to a chair, according to an embodiment of the invention;



FIG. 15 is a perspective view of a bench seat mounting bracket, according to an embodiment of the invention;



FIG. 16 is a side view of the bench seat mounting bracket illustrated in FIG. 15;



FIG. 17 is a perspective view of a bench seat mounting assembly, according to an embodiment of the invention;



FIG. 18 is a side view of the bench seat mounting assembly illustrated in FIG. 17;



FIG. 19 is a perspective view of a canopy system coupled to a bench seat, according to an embodiment of the invention; and



FIG. 20 is a perspective view of a canopy system that includes a mosquito net, according to an embodiment of the invention.





DETAILED DESCRIPTION


FIG. 1 is a perspective view of a canopy system, according to an embodiment of the invention. As illustrated in FIG. 1, a canopy 105 is coupled to a mounting ball 130 on a base 135 via a double-socket arm 125. The canopy 105 includes a cover 110, shaft 115, and a canopy ball 120. The canopy 105 may include vents (not shown) typical in a wind-resistant umbrella. A frame (not shown) of the canopy 105 may be constructed, for example, of metal. A covering on the canopy 105 may be nylon or other fabric as required by application demands. The shaft 115, canopy ball 120, double-socket arm 125, and/or mounting ball 130 may be fabricated using wood, metal, plastic, fiberglass, and/or other rigid material, according to design choice. In embodiments of the invention, the canopy 105 may be collapsible. The shaft 115 may be telescopic.


In use, the double-socket arm 125 retains the canopy ball 120 and the mounting ball 130 to provide an articulated coupling between the base 135 and the canopy 105.



FIG. 2 is a perspective view of a canopy system, according to an embodiment of the invention. As illustrated in FIG. 2, a canopy 205 may include a contoured handle 210 and canopy ball 220 on a shaft 215. The canopy 205 may include vents (not shown) typical in a wind-resistant umbrella. A frame (not shown) of the canopy 205 may be constructed, for example, of metal. A covering on the canopy 205 may be nylon or other fabric as required by application demands. The shaft 215 and/or canopy ball 220 may be fabricated using wood, metal, plastic, fiberglass, and/or other rigid material, according to design choice. In embodiments of the invention, the canopy 205 may be collapsible. The shaft 215 may be telescopic.


Advantageously, the canopy 205 may be used in either portable applications or in fixed applications. In portable applications, a user may grasp the canopy 205 using the contoured handle 210. In fixed applications, the canopy 205 is coupled to the base 135 via the double-socket arm 125.



FIG. 3A is an exploded assembly view of a portion of a canopy 105, according to an embodiment of the invention. As illustrated in FIG. 3A, a portion of the canopy 105 may include a cavity 305 in the shaft 115. The cavity 305 is configured to receive a threaded insert 310. In the illustrated embodiment, the canopy ball 120 includes a neck 315, wrench surfaces 320, and a threaded aperture (not shown). The threaded aperture (not shown) is also configured to cooperate with the threaded insert 310.



FIG. 3B is a perspective view of a canopy ball, according to an embodiment of the invention. In the illustrated embodiment the canopy ball 120 includes a threaded aperture 325 but does not include a neck or wrench surfaces.



FIG. 4 is an exploded assembly view of a portion of a canopy 205, according to an embodiment of the invention. As illustrated in FIG. 4, the contoured handle 210 may include a cavity 405. The canopy ball 220 may include a neck 425, wrench surfaces 430, and a threaded aperture (not shown). An insert 410 may include a smooth portion 415 and a threaded portion 420. The smooth portion 415 of the insert 410 is configured to be inserted into the cavity 405. The treaded portion 420 is configured to be inserted into the threaded aperture in the canopy ball 220.


Variations to the configurations illustrated in FIGS. 3A and 4 are possible. For instance, the threaded insert 310 could be substituted for the insert 410 in FIG. 4. Likewise, the insert 410 could be substituted for the threaded insert 310 in the embodiment illustrated in FIG. 3A. Moreover, the canopy ball 120 illustrated in FIG. 3B could be substituted for the canopy ball 120 illustrated in FIG. 3A or the canopy ball 220 illustrated in FIG. 4, according to design choice.



FIGS. 5 through 8 illustrate alternative embodiments for the double-socket arm 125.



FIG. 5 is a perspective view of a double-socket arm, according to an embodiment of the invention. As illustrated in FIG. 5, a front panel 505 may be coupled to a rear panel 510 via a threaded shaft 520. One end of the threaded shaft 520 is coupled to a “T” handle 515 and an opposite end of the shaft 520 is affixed to a retainer 525. In operation, the “T” handle 515 may be rotated about an axis 530 (the longitudinal axis of the threaded shaft 520). Tightening the “T” handle 515 draws the front panel 505 closer to the rear panel 510, reducing the size of sockets 535 and 540.



FIG. 6 is a perspective view of a double-socket arm, according to an embodiment of the invention. As illustrated in FIG. 6, the “T” handle 515 may be replaced with a lever handle 605. In use, the lever handle 605 may be rotated about the axis 530. Tightening the lever handle 605 draws the front panel 505 closer to the rear panel 510, reducing the size of sockets 535 and 540.



FIG. 7 is a perspective view of a double-socket arm, according to an embodiment of the invention. As illustrated in FIG. 7, the “T” handle 515 illustrated in FIG. 5 may be replaced with a cam lever 705. In operation, the cam lever 705 may first be extended along the axis 530. Rotating the cam lever 705 about the axis 530 provides initial tightening. Final tightening may be achieved by rotating the cam lever 705 about the axis 710 into the final closed position illustrated in FIG. 7. The axis 710 may be defined by the pivot point 715. Tightening the cam lever 705 draws the front panel 505 closer to the rear panel 510, reducing the size of sockets 535 and 540.



FIG. 8 is a perspective view of a double-socket arm, according to an embodiment of the invention. As illustrated in FIG. 8, a front panel 805, a middle panel 815, and a rear panel 810 are be retained by a threaded shaft 825. One end of threaded shaft 825 is coupled to a cam lever 820. An opposite end of the threaded shaft 825 is coupled to a retainer 830. In operation, the cam lever 820 may be rotated about axis 835. Axis 835 is defined according to pivot point 840. Tightening the cam lever 820 draws the front panel 805 closer to the rear panel 810, reducing the size of sockets 535 and 540.


Variations to the double-socket arms illustrated in FIGS. 5-8 are possible. For instance, in alternative embodiments, the retainer 525 could be integrated into the rear panel 510. Similarly, the retainer 830 could be integrated into the rear panel 810. Moreover, any of the embodiments described with reference to FIGS. 5-8 could also include pivot points and/or springs between opposing panels.


U.S. Pat. No. 5,845,885 issued to Carnevali on Dec. 8, 1998 is hereby incorporated by reference for its description of a universally positionable mounting device that is consistent with a variant of the double-socket arm embodiment illustrated in FIG. 5. U.S. Pat. No. 7,090,181 issued to Biba et al. on Aug. 15, 2006 is incorporated by reference for its description of a ball and socket mounting assembly that is consistent with a variant of the double-socket arm embodiment illustrated in FIG. 8.



FIG. 9 is a perspective view of a chair mounting bracket, according to an embodiment of the invention. As illustrated in FIG. 9, one end of a chair mounting bracket 905 is configured to receive the mounting ball 130. In addition, the chair mounting bracket 905 has a mounting portion 910 that includes mounting holes 915. The chair mounting bracket 905 is configured to cooperate with a chair. Alternative chair mounting brackets are discussed below with reference to FIGS. 11-13. FIG. 10 is a side view of the chair mounting bracket 905 illustrated in FIG. 9.



FIG. 11 is a perspective view of a chair mounting bracket 1105 that includes a pedestal mount portion 1110, according to an embodiment of the invention. FIG. 12 is a perspective view of a chair mounting bracket 1205 that includes a swivel plate 1210, according to an embodiment of the invention. The swivel plate 1210 is configured to rotate about a normal axis passing through a center of the swivel plate 1210, such rotation being with respect to other portions of the chair mounting bracket 1205. FIG. 13 is a perspective view of a chair mounting bracket 1305 that includes a locking pin 1310, according to an embodiment of the invention. The locking pin 1310 is configured to cooperate with a base plate (not shown) such that the chair mounting bracket 1305 can swivel about a longitudinal axis of the locking pin 1310. The locking pin 1310 is also configured to be suitably retained in the base plate (not shown) during use..



FIG. 14 is a perspective view of a canopy system coupled to a chair, according to an embodiment of the invention. As illustrated in FIG. 11, a canopy 105 is coupled to the chair mounting bracket 1105 via the double socket arm 125. A canopy 205 could be substituted in place of the canopy 105. A portion of the chair mounting bracket 1105 is disposed between a floor of the dinghy 1410 and the chair 1405. In alternative embodiments, chair mounting brackets 905, 1205 or 1305 could be used instead of the chair mounting bracket 1105.



FIG. 15 is a perspective view of a bench seat mounting bracket 1505, according to an embodiment of the invention. As illustrated in FIG. 15, a bench seat mounting bracket 1505 is configured to receive a mounting ball 130. In addition, the bench seat mounting bracket 1505 has a mounting portion 1515 that includes mounting holes 1515. FIG. 16 is a side view of the bench seat mounting bracket 1505 illustrated in FIG. 15.



FIG. 17 is a perspective view of a bench seat mounting assembly 1705, according to an embodiment of the invention. The arm 1710 includes through-holes 1715 and is configured to receive the mounting ball 130. A retaining plate 1720 includes threaded holes 1725. Handle screws 1730 are configured to cooperate with the through holes 1715 and the threaded holes 1725. In use, a portion of a bench seat (not shown in FIG. 17) is disposed between the arm 1710 and the retaining plate 1720. FIG. 18 is a side view of the bench seat mounting assembly illustrated in FIG. 17.



FIG. 19 is a perspective view of a canopy system coupled to a bench seat, according to an embodiment of the invention. As illustrated in FIG. 19, a canopy 105 may be coupled to a bench seat mounting assembly 1705 via a double socket arm 125. A canopy 205 could be substituted in place of the canopy 105. The bench seat mounting assembly 1705 is affixed to bench seat 1905 as described above with reference to FIG. 17. In an alternative embodiment, the bench seat mounting bracket 1505 could be used instead. As FIG. 19 illustrates, bench seat 1905 is consistent with seats found, for example, in a canoe 1910. Bench seats may also be found in kayaks or other small watercraft. In embodiments of the invention, bench seat mounting bracket 1505 and/or bench seat mounting assembly 1705 may also be applicable to patio benches, lawn chairs, or other types of furnishings.



FIG. 20 is a perspective view of a canopy system that includes a mosquito net, according to an embodiment of the invention. As illustrated in FIG. 20, a mosquito net 2005 can be connected to the cover 110, for instance by stitching, snaps, zipper or other suitable fastener. Such mosquito netting could be included with any of the canopy systems disclosed herein.


In conclusion, embodiments of the invention provide, among other things, a canopy with an articulating arm. Alternative mounting brackets are also disclosed. Those skilled in the art can readily recognize that numerous variations and substitutions may be made in the invention, its use and its configuration to achieve substantially the same results as achieved by the embodiments described herein. Accordingly, there is no intention to limit the invention to the disclosed exemplary forms. In addition, although references are made to embodiments of the invention, all embodiments disclosed herein need not be separate embodiments. In other words, many of the features disclosed herein can be utilized in combinations not expressly illustrated or described.

Claims
  • 1. A canopy system comprising: a canopy that includes a shaft and a canopy ball coupled to the shaft;a double socket arm connected to the canopy via the canopy ball; anda mount, the mount having a mounting ball, the mount connected to the double socket arm via the mounting ball, the canopy system thus configured for a wide range of canopy articulation with respect to the mount.
  • 2. The canopy system of claim 1, wherein the shaft does not include a contoured handle.
  • 3. The canopy system of claim 2, wherein the canopy includes a threaded insert configured to retain the canopy ball to the shaft, a first portion of the threaded insert being disposed in the shaft, a second portion of the threaded insert being disposed in the canopy ball.
  • 4. The canopy system of claim 1, wherein the shaft includes a contoured handle,
  • 5. The canopy system of claim 4, wherein the canopy includes an insert configured to retain the canopy ball to the shaft, an unthreaded portion of the insert being disposed in and affixed to the handle, a threaded portion of the insert being disposed in the canopy ball.
  • 6. The canopy system of claim 1, wherein the double socket arm includes a T handle.
  • 7. The canopy system of claim 1, wherein the double socket arm includes a lever handle.
  • 8. The canopy system of claim 1, wherein the double socket arm includes a cam lever.
  • 9. The canopy system of claim 1, wherein the mount includes a chair mounting bracket.
  • 10. The canopy system of claim 9, wherein the chair mounting bracket includes a pedestal.
  • 11. The canopy system of claim 9, wherein the chair mounting bracket includes a swivel plate.
  • 12. The canopy system of claim 9, wherein the chair mounting bracket includes a locking pin.
  • 13. The canopy system of claim 1, wherein the mount is a bench seat mounting bracket.
  • 14. The canopy system of claim 1, wherein the mount is a bench seat mounting assembly that includes: an arm having at least one through hole and the mounting ball;a retaining plate having at least one threaded hole; andat least one handle screw configured to cooperate with the at least one through hole and the at least one threaded hole to couple the arm and the retaining plate, the bench seat mounting bracket thus configured to clamp a portion of a bench seat between a portion of the arm and the retaining plate.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/581,612, filed Dec. 29, 2011.

Provisional Applications (1)
Number Date Country
61581612 Dec 2011 US