The present invention relates to the field of illumination systems and, more specifically, to the field of illumination systems used in canopy lighting applications, and associated methods.
Canopy lights are commonly used in outdoor service areas of fuel stations and convenience stores. Lighted canopies provide shelter, visibility, and security for consumers, as well as inviting storefronts that increase consumer traffic for businesses.
As applied to canopy lighting systems, digital lighting technologies such as light-emitting diodes (LEDs) offer significant advantages over legacy light sources such as incandescent, high-intensity discharge (HID), and fluorescent lamps. These advantages include, but are not limited to, better lighting quality, longer operating life, and lower energy consumption. Consequently, LED-based lamps increasingly are being used not only in original product designs, but also in products designed to replace legacy light sources in conventional lighting applications such as canopy systems. However, a number of design challenges and costs are associated with replacing traditional lamps with LED illumination devices. These design challenges include manufacturing cost control, installation ease, and thermal management.
Supplying power to LEDs is a key factor in quantifying the total cost of both retrofitting and operating a canopy lighting solution. While many approaches to driving LEDs are known in the art, the complex designs of current LED-based linear illumination devices often suffer from high material and component costs. LEDs are low-voltage light sources, requiring a constant DC voltage or current to operate optimally. More specifically, LEDs require power adapters to convert AC power drawn from a main supply to the proper DC voltage, and to regulate the current flowing through during operation to protect the LEDs from line-voltage fluctuations. To convert and regulate voltage and current, LED devices are commonly supplemented with an individual power adapter connecting to an AC electric power source. Such devices are usually compact enough to fit inside a junction box. However, the requirement to employ multiple converters and regulators with each LED-based lighting device results in higher total cost for system components.
Replacement of legacy lighting solutions may be complicated by the need to adapt LED-based devices to meet legacy form standards. For example, in a commercial lighting system retrofit, disposal of a replaced light's housing in a canopy structure often is impractical. Consequently, retrofit canopy light systems often are designed to adapt to legacy housing, both functionally and aesthetically. Also, legacy wiring used for delivery of electrical service is often reused in current retrofit solutions. The distribution wire carrying voltages of 110V or 220V from the main power supply to the plurality of converting devices must be protected against electric shock for safe use. Because of such safety concerns, a design that uses high-voltage distribution wire may be less desirable than a design that employs low-voltage DC distribution wire. However, the difficulty of quickly and safely installing new wiring without having to replace or cut pathways in existing structures, such as sheetrock or metal siding, leads current designers to instead reuse legacy wiring.
Another challenge inherent to operating LEDs is heat. Thermal management describes a system's ability to draw heat away from the LED, either passively or actively. LEDs suffer damage and decreased performance when operating in high-heat environments. Moreover, when operating in a confined environment, the heat generated by an LED and its attending circuitry itself can cause damage to the LED. Heat sinks are well known in the art and have been effectively used to provide cooling capacity, thus maintaining an LED-based light bulb within a desirable operating temperature. However, heat sinks can sometimes negatively impact the light distribution properties of the light fixture, resulting in non-uniform distribution of light about the fixture. Heat sink designs also may add to the weight of an illumination device, thereby complicating installation, and also may limit available space for other components needed for delivering light.
The lighting industry is experiencing advancements in LED applications, some of which may be pertinent to improving the design of linear illumination devices.
U.S. Pat. No. 5,997,158 to Fischer et al. discloses a retrofit luminaire assembly for mounting to an existing canopy fixture. The assembly includes a planar panel with electrical control elements mounted to a top surface of the panel and a light-emitting lamp mounted to a bottom surface of the panel. However, reliance on oppositely directed pivot members to mechanically support the planar panel when installed limits the size of canopy fixture housings to which the retrofit may be applied. Also, the depth of the electrical control elements presumes recessed mounting within an existing canopy fixture, thereby precluding low-profile flush-mounting applications.
U.S. Pat. No. 8,251,552 to Rooms et al. discloses an LED-based canopy luminaire designed for installation in a pre-existing fixture housing such that retrofitting requires minimum user effort and time. The canopy luminaire comprises a light panel, an external mounting panel, a connector plate, a power control unit, and a driver plate. However, including an expensive on-board power control unit for conversion and conditioning of power sacrifices manufacturing cost for the sake of installation ease. Also, construction and assembly of the many separate components listed above adds to design complexity and cost for the disclosed canopy luminaire.
U.S. Patent Application Publication No. 2012/0051048 by Smit et al. discloses a kit for retrofitting a non-LED canopy or other light fixture for use with LED lamps. The retrofit kit comprises a plurality of LED lamp units configured to attach to a cover replacement unit. However, similar to the Rooms disclosure, each of the LED lamp units is in electrical communication with a respective one of many on-board power supply units. Addition of power supply units not only add manufacturing cost to the retrofit kit, but also limits installation ease by requiring space for a power supply unit to extend through a canopy and into a legacy fixture (as in the Fischer disclosure).
Accordingly, a need exists for a low-profile, LED-based canopy light system that is less expensive to manufacture and assemble, easier and safer to install as a retrofit, and efficient at heat dissipation.
This background information is provided to reveal information believed by the applicant to be of possible relevance to the present invention. No admission is necessarily intended, nor should be construed, that any of the preceding information constitutes prior art against the present invention.
With the foregoing in mind, embodiments of the present invention are related to a low-profile, LED-based canopy light system that may be used advantageously to retrofit a down light fixture of a traditional canopy light. The canopy light system of an embodiment of the present invention may advantageously be less expensive to manufacture and assemble than traditional retrofit canopy light solutions. The canopy light system of an embodiment of the present invention may advantageously be easier and safer to install than traditional retrofit canopy light solutions. The canopy light system of an embodiment of the present invention may advantageously be efficient at heat dissipation.
The canopy light system may comprise a power supply assembly, at least one distribution wire, and at least one luminaire assembly. Each luminaire assembly may be spaced apart from and in electrical communication with the power supply assembly. Each luminaire assembly may be configured to receive an electric current from a respective distribution wire configured to extend from the power supply assembly to the luminaire assembly.
The power supply assembly may be configured to convert an AC input voltage into a DC output voltage. The DC output voltage may be about 12 volts or less. The power supply assembly may be configured to adapt the DC output voltage to a regulated current that may be characterized by a substantially constant current level.
Each distribution wire may be in electrical communication with the power supply assembly and may be configured to conduct the regulated current. Each distribution wire may comprise a wire of a gauge not wider than 20 AWG and a length of at least 10 feet, as well as a protective cover constructed of a weather-resistant material.
Each luminaire assembly may comprise a light source and a low profile heat-dissipating frame. The light source may comprise at least one light-emitting diode (LED) that may be attached to the lower surface of a substantially planar printed circuit board. Each luminaire assembly may comprise an optic positioned to form an optical chamber that may enclose the light source.
The frame may have a bottom portion comprising a central indentation. The light source may be carried within the central indentation in the frame, and may be in thermal contact with the frame. The bottom portion of the frame may include a plurality of heat sink fins. The heat sink fins may be positioned between an edge of the central indentation and a perimeter of the frame, and may be distributed substantially equidistant from each other along the perimeter of the frame. The optic may be mounted to the bottom portion of the frame.
The frame may have a top portion configured for flush mounting with a surface, and that includes a plurality of heat sink bars. The heat sink bars may be distributed substantially equidistant from each other and positioned within at least one recess substantially opposite the central indentation. The top portion of the frame may comprise a mechanism for engaging the top portion of the frame with a canopy fixture adjacent to the substantially flat surface. The engagement mechanism may comprise an integral mounting bracket and/or a combination bolt and support anchor.
At least one low-voltage DC electrical connector may pass through at least one aperture in the top portion of the frame to form an electrical connection between the distribution wire and the light source. The frame may be constructed of a thermally conductive material, such as metals, metal alloys, ceramics, and thermally conductive polymers.
A method aspect according to one embodiment of the present invention is for installing a retrofit canopy light system. The retrofit installation method may comprise mounting the power supply assembly to a surface some distance apart from the canopy fixture to be retrofitted, removing a legacy luminaire from its canopy fixture, connecting the power supply assembly to a first end of one of the plurality of distribution wires, extending a second end of the distribution wire to the vacant canopy fixture, connecting one of the plurality of respective luminaires to the second end of the distribution wire, and mounting the luminaire assembly to cover the existing fixture in the canopy. After the preceding steps are accomplished for all legacy luminaires to be replaced the method step of connecting the power supply assembly to a high-voltage power source may end the retrofit process.
The present invention will now be described fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Those of ordinary skill in the art will realize that the following embodiments of the present invention are only illustrative and are not intended to be limiting in any way. Other embodiments of the present invention will readily suggest themselves to such skilled persons having the benefit of this disclosure.
Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the following embodiments of the invention are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
In this detailed description of the present invention, a person skilled in the art should note that directional terms, such as “above,” “below,” “upper,” “lower,” “front,” “rear,” and other like terms are used for the convenience of the reader in reference to the drawings. Also, a person skilled in the art should notice this description may contain other terminology to convey position, orientation, and direction without departing from the principles of the present invention. Like numbers refer to like elements throughout.
Referring now to
Example systems and methods for a canopy light retrofit solution are described herein below. In the following description, for purposes of explanation, numerous specific details are set forth to provide a thorough understanding of example embodiments. It will be evident, however, to one of ordinary skill in the art that the present invention may be practiced without these specific details and/or with different combinations of the details than are given here. Thus, specific embodiments are given for the purpose of simplified explanation and not limitation.
Referring now to
The canopy light system 100 may be used advantageously as a down light solution suitable for indoor and/or outdoor applications. In addition, the canopy light system 100 may be customizable to advantageously adapt to a number of field configurations. Although the configuration of the canopy light system 100 illustrated in
Luminaire Assembly Configuration
Referring now to
Still referring to
Each light source 210 of the luminaire assembly 130 may comprise at least one light-emitting diode (LED) 230 that may be in mechanical and electrical communication with the lower surface of a substantially planar printed circuit board 240. Those skilled in the art will appreciate that a substantially planar printed circuit board is intended to note that the printed circuit board may have a shape that is planar. Those skilled in the art will also appreciate that shapes of the printed circuit board that are not precisely planar are meant to be included within the scope and spirit of the embodiments of the present invention. The LEDs 230 may be arranged so that each LED 230 points downward towards a target area, resulting in an advantageously inexpensive way to distribute a light pattern that covers the entire target space below the luminaire assembly 130.
Continuing to refer to
For example, and without limitation, the heat-dissipating frame 220 may have a bottom portion comprising a central indentation 310. The light source 210 may be carried within the central indentation 310 in the frame 220, and may be in thermal contact with the frame 220 such that heat generated by one or more light sources 210 within the luminaire assembly 130 may therefore be conducted, or passed, to the heat-dissipating frame 220. The frame 220 may be characterized by a heat dissipation rate that equals or exceeds a combined heat generation rate of the one or more light sources 210.
For example, and without limitation, the frame 220 may be constructed of a thermally conductive material, such as thermoplastic, ceramics, porcelain, aluminum, aluminum alloys, metals, metal alloys, carbon allotropes, thermally conductive polymers, and composite materials. Additional information directed to the use of heat sinks for dissipating heat in an illumination apparatus is found in U.S. Pat. No. 7,922,356 titled Illumination Apparatus for Conducting and Dissipating Heat from a Light Source, and U.S. Pat. No. 7,824,075 titled Method and Apparatus for Cooling a Light Bulb, the entire contents of each of which are incorporated herein by reference. In various implementations, the heat-dissipating frame 220 may be formed as a monolithic unit by molding, casting, or stamping.
For example, and without limitation, a mounting bore 245 may be disposed at a geometric center of the light source 210 to affix the printed circuit board 240 in a position adjacent the central indentation 310. Alternatively, or in addition, thermal coupling of the light source 210 with the frame 220 may be accomplished by any method, including thermal adhesives, thermal pastes, thermal greases, thermal pads, and all other methods known in the art. Where a thermal adhesive, paste, or grease is used, the central indentation 310 may be connected to any part of the printed circuit board 240 as may effectively cause thermal transfer from the LEDs 230 to the heat-dissipating frame 220. Connection point location largely may depend on the heat distribution within the light source 210. For example, the central indentation 310 may be thermally coupled to one or more LEDs 230, to the circuit board 240, or to both so as to increase the thermal dissipation capacity of the luminaire assembly 100. The method of thermal coupling may be selected based on criteria including ease of application/installation, thermal conductivity, chemical stability, structural stability, and constraints placed by the luminaire assembly 100.
Continuing to refer to
In the embodiment of the invention illustrated in
Continuing to refer to
At least one low-voltage DC electrical connector 299 may pass through at least one aperture (not shown) in the top portion of the frame 220 to form a passageway through which electric current may be delivered to the light source 210. In various implementations of the present invention, the luminaire assembly 130 also may be configured as a retrofit to mechanically engage a conventional fixture arrangement. For example, and without limitation, the top portion of the frame 220 may comprise a mechanism for engaging the top portion of the frame 220 with a canopy fixture adjacent to a surface, such as a ceiling or a wall. The engagement mechanism may comprise an integral mounting bracket 280 configured for attachment of the luminaire assembly 130 to a conventional junction box, such as those typically used for legacy downlight systems. Alternatively, or in addition, the engagement mechanism may comprise a combination bolt 290 and support anchor 295.
Each luminaire assembly 130 also may comprise one or more optics (not shown) that may be mounted to the bottom portion of the frame 220 and positioned to form an optical chamber that may enclose the light-emitting elements of the light source 210. For example, in the present embodiment, the optic may be configured to interact with light emitted by the LEDs 230 to refract incident light. Accordingly, the LEDs 230 may be disposed such that light emitted therefrom is incident upon the optic. The optic may be formed in any shape to impart a desired refraction. For example, and without limitation, the optic may have a generally concave geometry. Additionally, the optic may be configured to generally diffuse light incident thereupon, and from a material that refracts or collimates light emitted by the LEDs 230. Furthermore, the optic may be formed of any material with transparent or translucent properties that comport with the desired refraction to be performed by the optic. For example, the optic may include an extruded refractory material. Alternatively, or in addition, an exemplary material for the optic may be an acrylic material, such as cast acrylic or extruded acrylic. In addition, the optic may be formed of cast acrylic with diamond polishing. Acrylic materials may be suitable for the optic due to their excellent light transmission and UV light stability properties.
It is contemplated that a coating may be placed on an optic to convert a wavelength of light emitted by the light source 210 so that the wavelength is defined has having a converted wavelength range. For additional disclosure regarding coatings used to convert a wavelength of a source light, see U.S. Pat. No. 8,408,725 title Remote Light Wavelength Conversion Device and Associated Methods, U.S. patent application Ser. No. 13/234,371 titled Color Conversion Occlusion and Associated Methods, and U.S. patent application Ser. No. 13/357,283 titled Dual Characteristic Color Conversion Enclosure and Associated Methods, the entire contents of each of which are incorporated herein by reference.
Power Supply and Distribution
Referring again to
For example, and without limitation, the power supply assembly 110 may be in the form of a remote power supply unit configured to deliver electrical power to LEDs 230 present in one or more of the luminaire assemblies 130. The remote power supply assembly 110 may have a converter (not shown) that may convert an AC input voltage to a DC output voltage. The on-board power supply unit 110 also may have a regulator (not shown) that may sustain a DC output voltage within a target DC bias range. For example, and without limitation, the DC output voltage may be 12 volts or less.
In one embodiment, the remote power supply assembly 110 may have at least one wire connector (not shown) configured to receive the AC input voltage through conductive coupling to an external power source 410 (as illustrated in
As shown in the embodiment of
This power distribution design may advantageously eliminate the need for power adapter devices deployed on-board each luminaire assembly 130. The power distribution design also may replace the high-voltage distribution wire used to deliver AC power to legacy luminaires in a canopy with a lighter, low-voltage distribution wire 120. Smaller, low-voltage distribution wire 120 may not only advantageously simplify the task of retrofit installation, but also may advantageously reduce risk associated with electrocution. For example, and without limitation, each distribution wire may comprise a wire of a gauge not wider than 20 AWG and a length of at least 10 feet. In some embodiments of the canopy lighting system 100 according to the present invention, the low-voltage distribution wires 120 may be weather-resistant.
Retrofit Installation
Referring now to flow chart 500 of
At Block 520, a legacy luminaire in the canopy structure may be disconnected from its electrical power source and removed from its housing (likely a fixture) in the canopy. For example, and without limitation, the vacated space may present an opening that is coplanar with the ceiling of the canopy (no downward protrusions). Any existing high voltage wiring that may have been used to carry AC power to the legacy luminaire may be disconnected and either removed or left dormant (no power).
At Block 530, a first end of a distribution wire 120 may be connected to one of multiple outputs that may be available on the power supply assembly 110. This connection may be accomplished by any means known in the art, including, not by limitation, use of connectors, couplings, straps, and/or clamps. At Block 540, the unattached second end of the distribution wire 120 may be extended to the fixture that was vacated by the removal of the legacy luminaire. The path for extending the distribution wire 120 may be tailored to the constraints of the particular installation including, but limited to safety, environmental, mechanical, and electrical carrying capacity constraints. The second end of the distribution wire 120 may be electrically connected to a luminaire assembly 130 at Block 550 before the luminaire assembly 130 may be mounted to the ceiling of the canopy (Block 560). For example, and without limitation, the luminaire assembly 130 may be positioned to cover the opening in the canopy vacated by the legacy luminaire.
If at Block 565, it is determined that additional legacy luminaires are to be replaced in the canopy, then the next legacy luminaire may be disconnected and removed at Block 520 in preparation for a retrofit as described above (Blocks 530 through 560). After no more legacy luminaires remain to be replaced (Block 565), then at Block 570 the power supply assembly 110 may be electrically connected to a high-voltage power source 410 (as illustrated in
Some of the illustrative aspects of the present invention may be advantageous in solving the problems herein described and other problems not discussed which are discoverable by a skilled artisan. While the above description contains much specificity, these should not be construed as limitations on the scope of any embodiment, but as exemplifications of the presented embodiments thereof. Many other ramifications and variations are possible within the teachings of the various embodiments. While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. For example, and without limitation, after Block 560, a determination may be made whether or not to add an optic (not shown) external to the luminaire assembly 130 before continuing with the retrofit method as described above. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best or only mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. The scope of the invention should be determined by the appended claims and their legal equivalents, and not by the examples given. Therefore, it is understood that the invention is not to be limited to the specific embodiments disclosed.
This application is a divisional of and claims benefit under 35 U.S.C. 120 of U.S. patent application Ser. No. 13/887,799 titled Canopy Light System and Associated Methods filed May 6, 2013, which in turn claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 61/643,302 titled Canopy Light System and Associated Methods filed May 6, 2012, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5997158 | Fischer et al. | Dec 1999 | A |
6149280 | Quiogue et al. | Nov 2000 | A |
8247821 | Liao | Aug 2012 | B2 |
8251552 | Rooms et al. | Aug 2012 | B2 |
8256919 | Holder | Sep 2012 | B2 |
8672517 | Chia-Tin et al. | Mar 2014 | B2 |
8674616 | Homan et al. | Mar 2014 | B2 |
9441815 | Maxik et al. | Sep 2016 | B2 |
20110175533 | Holman | Jul 2011 | A1 |
20120051048 | Smit et al. | Mar 2012 | A1 |
Entry |
---|
California Department of Transportation, “Wire Sizes and Maximum Length Determination”, Jul. 5, 2007, <http://www.zelatalk.com/energy/tengy10s.pdf> (11 Pages). |
USPTO, Restriction Requirement for U.S. Appl. No. 13/887,799, now U.S. Pat. No. 9,441,815, dated Oct. 27, 2015. (6 Pages). |
Applicant, Response to Restriction Requirement for U.S. Appl. No. 13/887,799, now U.S. Pat. No. 9,441,815, dated Dec. 22, 2015. (3 Pages). |
USPTO, Non-Final Office Action for U.S. Appl. No. 13/887,799, now U.S. Pat. No. 9,441,815, dated Jan. 15, 2016. (6 Pages). |
Applicant, Response to Non-Final Office Action for U.S. Appl. No. 13/887,799, now U.S. Pat. No. 9,441,815, dated Apr. 12, 2016. (8 Pages). |
USPTO, Notice of Allowance for U.S. Appl. No. 13/887,799, now U.S. Pat. No. 9,441,815, dated May 10, 2016. (8 Pages). |
Number | Date | Country | |
---|---|---|---|
20160356482 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
61643302 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13887799 | May 2013 | US |
Child | 15244091 | US |