Canopy unit for light harvesting

Information

  • Patent Grant
  • D1028646
  • Patent Number
    D1,028,646
  • Date Filed
    Friday, April 30, 2021
    3 years ago
  • Date Issued
    Tuesday, May 28, 2024
    8 months ago
  • US Classifications
    Field of Search
    • US
    • D99 17
    • D99 18
    • D99 19
    • D99 99
    • D08 1
    • D08 10
    • D08 14
    • D08 349
    • D08 499
    • D11 143
    • D11 148
    • D11 152
    • D11 155
    • D21 840
    • D23 217
    • 135 118000
    • CPC
    • G09F1/10
    • G09F3/206
    • A01G9/122
    • A01G29/00
  • International Classifications
    • 0801
    • Term of Grant
      15Years
Abstract
Description


FIG. 1 is a top, front, right perspective view of a canopy unit for light harvesting, showing our new design;



FIG. 2 is a front elevational view thereof;



FIG. 3 is a back elevational view thereof;



FIG. 4 is a left side elevational view thereof;



FIG. 5 is a right side elevational view thereof;



FIG. 6 is a top plan view thereof; and,



FIG. 7 is a bottom plan view thereof.


The broken lines in the drawings represent portions of the canopy unit for light harvesting that form no part of the claimed design.


Claims
  • The ornamental design for a canopy unit for light harvesting, as shown and described.
US Referenced Citations (199)
Number Name Date Kind
42356 Dubber Apr 1864 A
94742 Hildebrand Sep 1869 A
509966 Strater Dec 1893 A
643524 Newman Feb 1900 A
760069 Hunter May 1904 A
773344 Sanderson Oct 1904 A
820353 Epperson May 1906 A
1036271 Lacy Aug 1912 A
1061888 Von Der Crone May 1913 A
1134837 Fox Apr 1915 A
1165675 Ide Dec 1915 A
1275565 Junek, Jr. Aug 1918 A
1310567 Harbord Jul 1919 A
1396606 Vincent Nov 1921 A
1408865 Cowell Mar 1922 A
1425100 Newton Aug 1922 A
1439601 Boop Dec 1922 A
1568504 Duggan Jan 1926 A
1586676 Heath Jun 1926 A
1660442 Hampton Feb 1928 A
1727195 Black Sep 1929 A
2009867 Ball Jul 1935 A
D103269 Reinsberg Feb 1937 S
2685761 Schlesser Aug 1954 A
2718344 Troster Sep 1955 A
2809468 Eliot Oct 1957 A
2811181 Correll Oct 1957 A
2940219 Schiller Jun 1960 A
3005620 Trunnell Oct 1961 A
3180334 Glenn Apr 1965 A
3206892 Maria et al. Sep 1965 A
D205236 Fitzwilliam Jul 1966 S
3923381 Winston Dec 1975 A
3931695 Widmayer Jan 1976 A
4002499 Winston Jan 1977 A
4003638 Winston Jan 1977 A
D244171 Pearce May 1977 S
D245344 Fisher Aug 1977 S
D248672 Graham Jul 1978 S
4130147 Langlie Dec 1978 A
4170252 Peterson Oct 1979 A
D255102 Ross May 1980 S
4249340 Maes, Jr. et al. Feb 1981 A
D263715 Walter Apr 1982 S
4334557 YaSenka Jun 1982 A
D271215 Hinkle Nov 1983 S
D274208 Hildenbrand Jun 1984 S
4559984 Wycech Dec 1985 A
4589548 Fay May 1986 A
4607451 Jarecki Aug 1986 A
D288059 Fling Feb 1987 S
4642938 Georges Feb 1987 A
4653223 Mori Mar 1987 A
4662106 Mori May 1987 A
4756348 Moller Jul 1988 A
4768238 Kleinberg Sep 1988 A
4856568 Murphy Aug 1989 A
4901514 De Morais Zoio Feb 1990 A
4969288 Mori Nov 1990 A
D313644 Hooks Jan 1991 S
4992917 Earnshaw Feb 1991 A
4997402 Blease Mar 1991 A
5022181 Longstaff Jun 1991 A
5063709 Whittaker Nov 1991 A
5067275 Constance Nov 1991 A
D331865 Parker Dec 1992 S
5233941 Ayliffe, Jr. Aug 1993 A
D341149 Pollak Nov 1993 S
5267412 Bergin Dec 1993 A
5293912 Wildash Mar 1994 A
D346877 Melograno May 1994 S
D348275 Zimmerman Jun 1994 S
5349997 Rial Sep 1994 A
D353186 Browning Dec 1994 S
5372093 Pooshs Dec 1994 A
5412905 Allison May 1995 A
D364540 Wasyln Nov 1995 S
5473838 Denbigh Dec 1995 A
D366632 Gaumer Jan 1996 S
D371601 Markles Jul 1996 S
5535547 Brunengo Jul 1996 A
D375878 Morris Nov 1996 S
5692337 Motz, Jr. Dec 1997 A
D400316 Kolterman Oct 1998 S
D404617 Mick Jan 1999 S
5894695 Stellatos Apr 1999 A
5901497 Bulvin May 1999 A
5953857 Aiga et al. Sep 1999 A
6037535 Yoshino Mar 2000 A
D422674 Chrisco Apr 2000 S
6059758 Padilla May 2000 A
D426283 Hernandez, Jr. Jun 2000 S
6082043 Andrews Jul 2000 A
6110867 Glenn et al. Aug 2000 A
6129049 Rasmussen Oct 2000 A
D436166 Berkey Jan 2001 S
6263613 King et al. Jul 2001 B1
6357172 Risgaard et al. Mar 2002 B1
6387072 Larsson May 2002 B1
6701665 Ton et al. Mar 2004 B1
6739363 Walter May 2004 B2
D499482 Gugliotta Dec 2004 S
D514901 Wang Feb 2006 S
D541116 Upham Apr 2007 S
D559470 Stevens Jan 2008 S
D560105 McKenzie Jan 2008 S
D562091 Ben Shlomo Feb 2008 S
D567038 Carallo Apr 2008 S
D570385 Chuo Jun 2008 S
D576848 Williams Sep 2008 S
D589764 Randolph Apr 2009 S
D596440 Rothberg Jul 2009 S
D599903 Waller Sep 2009 S
D604106 Gold Nov 2009 S
D606373 McCaffery Dec 2009 S
D611781 Sagedy Mar 2010 S
D631578 Barrett Jan 2011 S
D641255 Williams Jul 2011 S
7987816 Walsh Aug 2011 B1
8007492 DiPoto Aug 2011 B2
D649844 Bittner Dec 2011 S
D657637 Gascoine Apr 2012 S
8171668 Lais et al. May 2012 B2
D662654 Trudnowski Jun 2012 S
8261787 Sanford Sep 2012 B2
D668511 Messersmith Oct 2012 S
8307580 Lais et al. Nov 2012 B2
D671810 Densmore Dec 2012 S
D680827 Cetera Apr 2013 S
8458954 Yamada et al. Jun 2013 B2
8522991 Skelton et al. Sep 2013 B2
D715606 West Oct 2014 S
D719402 Khan Dec 2014 S
D734999 Evans Jul 2015 S
9310540 Boonekamp et al. Apr 2016 B2
D803017 Lais et al. Nov 2017 S
10132457 Farkas et al. Nov 2018 B2
D844102 DeAngelo Mar 2019 S
10255670 Wu et al. Apr 2019 B1
D863195 Bidigare Oct 2019 S
10765071 Bottari Sep 2020 B2
10955098 Farkas et al. Mar 2021 B2
D943186 Gao Feb 2022 S
D943551 Chen Feb 2022 S
D980686 Lin Mar 2023 S
D983314 Terrana Apr 2023 S
D984229 Smith, Sr. Apr 2023 S
20020056225 Shahak et al. May 2002 A1
20020170229 Ton et al. Nov 2002 A1
20030029079 Kleinert Feb 2003 A1
20040062023 Elsegood Apr 2004 A1
20040088916 Ton et al. May 2004 A1
20050172549 Allen Aug 2005 A1
20070151149 Karpinski Jul 2007 A1
20080298052 Hurst et al. Dec 2008 A1
20090021934 Chu Jan 2009 A1
20090148931 Wilkerson et al. Jun 2009 A1
20090272029 Aiking et al. Nov 2009 A1
20090300983 Tilford et al. Dec 2009 A1
20100139739 Ashkin Jun 2010 A1
20100299993 Lais et al. Dec 2010 A1
20110041397 Kamahara Feb 2011 A1
20110067692 Dopp et al. Mar 2011 A1
20110197317 Wong Aug 2011 A1
20110211250 Laine et al. Sep 2011 A1
20110226311 Sun et al. Sep 2011 A1
20110265378 Callaway Nov 2011 A1
20120198762 Lee Aug 2012 A1
20130219783 Toye et al. Aug 2013 A1
20130326941 Pickett et al. Dec 2013 A1
20150121753 Jenner May 2015 A1
20150173302 Duncan et al. Jun 2015 A1
20150223402 Krijn et al. Aug 2015 A1
20150223411 Toye et al. Aug 2015 A1
20150313091 Ara et al. Nov 2015 A1
20160000018 Van Elmpt et al. Jan 2016 A1
20160064204 Greenberg et al. Mar 2016 A1
20160130042 Gascoine May 2016 A1
20160157439 Greene et al. Jun 2016 A1
20160174474 Toye et al. Jun 2016 A1
20160302367 Sokhi Oct 2016 A1
20160309659 Guy et al. Oct 2016 A1
20160309660 Duncan et al. Oct 2016 A1
20160314542 Vollmar et al. Oct 2016 A1
20160316643 Guy et al. Nov 2016 A1
20160374275 Galdi Dec 2016 A1
20170188531 Daniels Jul 2017 A1
20170233690 Pickett et al. Aug 2017 A1
20170354097 Hadley Dec 2017 A1
20180014486 Creechley et al. Jan 2018 A1
20180332779 Reach et al. Nov 2018 A1
20190037779 Chirco Feb 2019 A1
20190137060 Farkas et al. May 2019 A1
20200042890 Merrill et al. Feb 2020 A1
20200045895 Shahak et al. Feb 2020 A1
20200344961 Guy et al. Nov 2020 A1
20210315168 Readick et al. Oct 2021 A1
20210388959 Farkas et al. Dec 2021 A1
20220124988 Booth et al. Apr 2022 A1
Foreign Referenced Citations (40)
Number Date Country
1559175 Jan 2005 CN
1582110 Feb 2005 CN
101027794 Aug 2007 CN
101162384 Apr 2008 CN
104520419 Apr 2015 CN
204350751 May 2015 CN
204616588 Sep 2015 CN
105210704 Jan 2016 CN
205357445 Jul 2016 CN
205615105 Oct 2016 CN
107371959 Nov 2017 CN
107509596 Dec 2017 CN
207135703 Mar 2018 CN
0875724 Nov 1998 EP
1370126 Dec 2003 EP
1411757 Apr 2008 EP
2278870 Feb 2011 EP
2874488 May 2015 EP
S613104 Jan 1986 JP
H06205615 Jul 1994 JP
2003304750 Oct 2003 JP
200905120 Feb 2009 TW
201131108 Sep 2011 TW
WO-9608960 Mar 1996 WO
WO-0058849 Oct 2000 WO
WO-0219800 Mar 2002 WO
WO-0235193 May 2002 WO
WO-02084248 Oct 2002 WO
WO-0235193 Oct 2003 WO
WO-2009141287 Nov 2009 WO
WO-2015092799 Jun 2015 WO
WO-2015092800 Jun 2015 WO
WO-2015103310 Jul 2015 WO
WO-2016093397 Jun 2016 WO
WO-2018222923 Dec 2018 WO
WO-2019032648 Feb 2019 WO
WO-2019125882 Jun 2019 WO
WO-2020086763 Apr 2020 WO
WO-2021021916 Feb 2021 WO
WO-2021216655 Oct 2021 WO
Non-Patent Literature Citations (193)
Entry
WNA Comet CP12 Classic Crystal 12 oz. Parfait / Dessert Cup—20/Pack; WebstaurantStore; Feb. 10, 2015; Accessed May 31, 2023; URL:<https://www.webstaurantstore.com/wna-comet-cp12-classic-crystal-12-oz-parfait-dessert-cup-pack/999CP12.html> (Year: 2015).
Ahmadi et al. The effect of greenhouse covering materials on phytochemical composition and antioxidant capacity of tomato cultivars. Journal of the Science of Food and Agriculture 98(12):4427-4435 (2018).
Antignus. Chapter 1: Management of Air-Borne Viruses by “Optical Barriers” in Protected Agriculture and Open-Field Crops. Advances in Virus Research 90:1-33 (2014).
Antignus et al. Ultraviolet-absorbing barriers, an efficient integrated pest management tool to protect greenhouses from insects and virus diseases. In Insect Pest Management. pp. 319-335 (2004).
Bagdonavi{hacek over (c)}ienė et al. Cultivation of sweet pepper (Capsicum annuum L.) transplants under high pressure sodium lamps supplemented by light-emitting diodes of various wavelengths. Acta Sci. Pol. Hortorum Cultus 14:3-14 (2015).
Baranov. Device for Restricting in One Plane the Angular Aperture of a Pencil of Rays from a Light Source. (in Russian). Russian certificate of authorship 200530, published Oct. 31, 1967.
Baranov et al. Study of the illumination characteristics of hollow focons. Soviet Journal of Optical Technology 33:408-411 (1966).
Baranov. Geliotekhnika 2:11-14 [English transl.: Parabolotoroidal mirrors as elements of solar energy concentrators. Appl Sol Energy 2:9-12.] (1966).
Baranov. Properties of parabolic focons. Opt Mekh Prom 6:1-5 (1965).
Bauerle et al. A fiberoptic-based system for integrating photosynthetically active radiation in plant canopies. HortScience 39(5):1027-1029 (2004).
Baylor et al. Light and photon capture in turtle receptors. J Physiol248:433-464 (1975).
Beggs et al. Photocontrol of flavonoid biosynthesis. In: Photomorphogenesis in Plants, pp. 733-751 (1994).
Ben-Yakir et al. Colored shading nets impede insect invasion and decrease the incidences of insect transmitted viral diseases in vegetable crops. Entomol. Exp. et Appl. 144:249-257 (2012).
Ben-Yakir et al. Optical manipulation of insect pests for protecting agricultural crops. Acta Hort 956:609-616 (2012).
Ben-Yakir et al. Photoselective nets and screens can reduce insect pests and diseases in agricultural crops. Acta Hort 1015:95-102 (2014).
Ben-Yakir et al. The effects of UV radiation on arthropods: a review of recent publications (2010-2015). Acta Hortic. 1134: 335-342 (2016).
Bian et al. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. Journal of the Science of Food and Agriculture 95(5):869-877 (2015).
Briggs et al. Photomorphogenesis—from One Photoreceptor to 14: 40 Years of Progress. Mot Plant 5(3):531-532 (2012).
Briggs et al. Photoreceptors in Plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol. 125:85-88 (2001).
Bryla et al. Root respiration in citrus acclimates to temperature and slows during drought. Plant, Cell and Environment 20:1411-1420 (1997).
Buthelezi et al. Spectral quality of photo-selective nets improves phytochemicals and aroma volatiles in coriander leaves (Coriandrum sativum L.) after postharvest storage. Journal of Photochemistry and Photobiology B: Biology 161:328-334 (2016).
Carvalho et al. Green light control of anthocyanin production in microgreens. Acta Hortic. 1134:13-18 (2016).
Carvalho et al. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum). Front. Plant Sci. 7:1-14 (2016).
Chen et al. Growth and nutritional properties of lettuce affected by mixed irradiation of white and supplemental light provided by light-emitting diode. Sci. Hortic. (Amsterdam). 200:111-118 (2016).
Comas et al. Canopy and environmental control of root dynamics in a long-term study of Concord grape. New Phytologist Trust 167(3):829-840 (2005).
Coombe. Visual behaviour of the greenhouse whitefly, Trialeurodes vaporariorum. Physiological Entomology 7:243-251 (1982).
Coombe. Wavelength specific behaviour of the whitefly Trialewodes vaporariorum (Homoptera: Aleyrodidae). J Compl Physiol 144:83-90 (1981).
Demers et al. Effects of supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.) plants and fruit yields. Sci. Hortic. (Amsterdam). 74:295-306 (1998).
Dokoozlian et al. Table grape canopy management and training systems. In: Report of Research for Fresh Table Grapes. Calif. Table Grape Comm., Fresno, CA. (10 pgs) (2001).
Dokoozlian et al. Vine training and trellising systems for table grapes. In: Report of Research for Fresh Table Grapes. Calif. Table Grape Comm., Fresno, CA. (9 pgs) (1993).
Dorais. The use of supplemental lighting for vegetable crop production: Light intensity, crop response, nutrition, crop management, cultural practices. Canadian Greenhouse Conference Oct. 9, 2003 (8 pgs) (2003).
Doring et al. Spectral sensitivity of the green photoreceptor of winged pea aphids. Physiological Entomoly 36(4):392-396 (2011).
Doring et al. Visual ecology of aphids—a critical review on the role of colours in host finding. Arthropod-Plant Interactions 1:3-16 (2007).
D'Souza et al. Application of Light-Emitting Diodes in Food Production, Postharvest Preservation, and Microbiological Food Safety. Compr. Rev. Food Sci. Food Saf. 14:719-740 (2015).
Dueck et al. Efficiency of light energy used by leaves situated in different levels of a sweet pepper canopy. Acta Hortic. 711:201-205 (2006).
Dueck et al. Influence of diffuse glass on the growth and production of tomato. Acta Hort 956:75-82 (2012).
Dufault et al. Enhancing the Productivity and Fruit Quality of Forced “Sweet Charlie” Strawberries Through Manipulation of Light Quality in High Tunnels. International Journal of Fruit Science 9(2):176-184 (2009).
Dzakovich et al. Tomatoes grown with light-emitting diodes or high-pressure sodium supplemental lights have similar fruit-quality attributes. HortScience 50:1498-1502 (2015).
Feuermann et al. High-Concentration Photovoltaic Designs Based on Miniature Parabolic Dishes. Solar Energy 90(5):423-430 (2001).
Fitter et al. Root production and turnover in an upland grassland subjected to artificial soil warming respond to radiation flux and nutrients, not temperature. Oecologia 120(4):575-581 (1999).
Folta et al. Green light: A signal to slow down or stop. J. Exp. Bot. 58(12):3099-3111 (2007).
Folta et al. Light as a Growth Regulator: Controlling Plant Biology with Narrow-bandwidth Solid-state Lighting Systems. Hortscience 43:1957-1964 (2008).
Glenn et al. Particle film: a new technology for agriculture. Hortic. Rev 31:1-43 (2005).
Glenn. Particle Film Mechanisms of Action That Reduce the Effect of Environmental Stress in ‘Empire’ Apple. J Amer Soc Hort Sci 134(3):314-321 (2009).
Gómez et al. Comparison of intracanopy light-emitting diode towers and overhead high-pressure sodium lamps for supplemental lighting of greenhouse-grown tomatoes. Horttechnology 23:93-98 (2013).
Gómez et al. In search of an optimized supplemental lighting spectrum for greenhouse tomato production with intracanopy lighting. Acta Hortic. 1134:57-62 (2016).
Gómez et al. Supplemental lighting for greenhouse-grown tomatoes: Intracanopy LED Towers vs. overhead HPS lamps. Acta Hortic. 1037:855-862 (2014).
Gómez et al. Testing of LEDs for Supplemental Lighting of Greenhouse-grown Tomatoes for a Northern Climate. PowerPoint. Purdue University (27 pgs) (Apr. 6, 2012).
Goldberg et al. Variations in the spectral distribution of daylight at various geographical locations on the earth's surface. Sol. Energy 19:3-13 (1977).
González-Real et al. Influence of fruit sink strength on the distribution of leaf photosynthetic traits in fruit-bearing shoots of pepper plants (Capsicum annuum L.). Environ. Exp. Bot. 66:195-202 (2009).
Gordon et al. Solar Surgery. J. Applied Physics 93(8):4843-4851 (2003).
Gunnlaugsson et al. Interlight and plant density in year-round production of tomato at northern latitudes. Acta Hortic. 711:71-75 (2006).
Guo et al. Effect of LED interlighting combined with overhead HPS light on fruit yield and quality of year-round sweet pepper in commercial greenhouse. Acta Hortic. 1134:71-78 (2016).
Hao et al. LED inter-lighting in year-round greenhouse mini-cucumber production. Acta Hortic. 956:335-340 (2012).
Harper et al. Heat trap: An optimized far infrared field optics system. Appl. Opt. 15:53-60 (1976).
Hasan et al. An Overview of LEDs' Effects on the Production of Bioactive Compounds and Crop Quality. Molecules 22(9):1420 (2017).
Hawley et al. Improving Cannabis Bud Quality and Yield with Subcanopy Lighting. Hort Science 53(11):1593-1599 (2018).
Healey et al. Radiation use efficiency increases when the diffuse component of incident radiation is enhanced under shade. Australian Journal of Agricultural Research 49(4):665-672 (1998).
Hemming et al. Light diffusion improves growth. Flower Tech 10(6):24-25 (2007).
Hemming et al. The Effect of Diffuse Light on Crops. Acta Hort. 801:1293-1300 (2008).
Hemming. Use of Natural and Artificial Light in Horticulture—Interaction of Plant and Technology. Acta Hort 907:25-35 (2011).
Hemming. Use of natural and artificial light in horticulture—interaction of plant and technology, in: Proceedings of the VI International Symposium on Light in Horticulture. pp. 15-19 (2011).
Hernández et al. Tomato seedling growth and morphological responses to supplemental LED lighting red: Blue ratios under varied daily solar light integrals. Acta Hortic. 956:187-194(2012).
Hinterberger et al. Efficient light coupler for threshold Cerenkov counters. Rev Sci Instrum 37:1094-1095 (1966a).
Hinterberger et al. Gas Cerenkov counter with optimized light-collecting efficiency. Proc Int Conf Instrum High Energy Phys. pp. 205-206 (1966b).
Horváth et al. Polarization Pattern of Freshwater Habitats Recorded by Video Polarimetry in Red, Green and Blue Spectral Ranges and Its Relevance for Water Detection by Aquatic Insects. The Journal of Experimental Biology 200:1155-1163 (1997).
Hovi et al. Interlighting improves production of year-round cucumber. Sci. Hortic. (Amsterdam). 102:283-294 (2004).
Hovi-Pekkanen et al. Increasing productivity of sweet pepper with interlighting. Acta Hortic. 711:165-170 (2006).
Jacovides et al. Global photosynthetically active radiation and its relationship with global solar radiation in the Eastern Mediterranean basin. Theor. Appl. Climatol. 74:227-233 (2003).
Johkan et al. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ. Exp. Bot. 75:128-133 (2012).
Jokinen et al. Improving sweet pepper productivity by led interlighting. Acta Hort 956:59-66 (2012).
Karpinski et al. Light perception in plant disease defense signaling. Current Opinion in Plant Biology 6:390-396 (2003).
Kasperbauer. Light and plant development. In: Plant-environment Interactions, pp. 83-123 (1994).
Katterer et al. Fine-root dynamics, soil moisture and soil carbon content in a Eucalyptus globulus plantation under different irrigation and fertilisation regimes. Forest Ecology and Management 74(1-3):1-12 (1995).
Kim et al. Green-light supplementation for enhances lettuce growth under red- and blue-light-emitting diodes. HortScience 39:1617-1622 (2004).
Kirchner et al. Evidence for trichromacy in the green peach aphid, Myzus persicae (Sulz.) (Hemiptera: Aphididae). Journal of Insection Physiology 51(11):1255-1260 (2005).
Kong et al. Pearl netting affects postharvest fruit quality in ‘Vergasa’ sweet pepper via light environment manipulation. Scientia Hort 150:290-298 (2012).
Korczynski et al. Mapping monthly distribution of daily light integrals across the contiguous United States. Horttechnology 12:12-16 (2002).
Kozai. Plant factory in Japan—Current situation and perspectives. Chronica Horticulturae 53(2):8-10 (2013).
Kriska et al. Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection-polarization signals. Proc. Biol. Sci. 273(1594):1667-1671 (2006).
Landis et al. Light Emitting Diodes (LED)—Applications in Forest and Native Plant Nurseries. Forest Nursery Notes Summer 2013 (9 pgs).
Li et al. Effects of light-emitting diode supplementary lighting on the winter growth of greenhouse plants in the yangtze river delta of China. Bot. Stud. 57:2 (2016).
Li et al. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 67:59-64 (2009).
Lin. Plant blue-light receptors. Trends Plant Sci 5:337-342 (2000).
Lu et al. Effects of Supplemental Lighting with Light-Emitting Diodes (LEDs) on Tomato Yield and Quality of Single-Truss Tomato Plants Grown at High Planting Density. Environ. Control Biol. 50:63-74 (2012).
Marcelis et al. Flower and fruit abortion in sweet pepper in relation to source and sink strength. J. Exp. Bot. 55:2261-2268 (2004).
Massa et al. Plant productivity in response to LED lighting. HortScience 43:1951-1956 (2008).
Mathejczyk et al. Sensing Polarized Light in Insects. Oxford Research Encyclopeida of Neuroscience (34 pgs) (2017).
Mellor et al. Spectral efficiency of the glasshouse whitefly Trialeurodes vaporariorum and Encarsia formosa its hymenopteran parasitoid. Entomol Exp Appl 83:11-20 (1997).
Mercado et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014-1017 (2009).
Mitchell. Academic Research Perspective of LEDs for the Horticulture Industry. HortScience 50:1293-1296 (2015).
Mitchell et al. Chapter 1: Light-Emitting Diodes in Horticulture. Hortic. Rev. (Am. Soc. Hortic. Sci). 43:1-88 (2015).
Mohr. Coaction between pigment systems. In: Photomorphogenesis in Plants, pp. 353-373 (1994).
Morrow. LED lighting in horticulture. HortScience 43:1947-1950 (2008).
Mortensen et al. Effects of selective screening of the daylight spectrum, and of twilight on plant growth in greenhouses. Acta Hort. 305:103-108 (1992).
Muneer et al. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Int. J. Mol. Sci. 15:4657-4670 (2014).
Nelson et al. Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. PLoS One 9(6):e99010 (2014).
Nissim-Levi et al. Light-scattering shade net increases branching and flowering in ornamental pot plants. J Hort Sci Biotech 83:9-14 (2008).
Olle et al. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric. Food Sci. 22:223-234 (2013).
Oren-Shamir et al. Coloured shade nets can improve the yield and quality of green decorative branches of Pittosporum variegatum. J Hort Sci Biotech 76:353-361 (2001).
Ouzounis et al. Spectral effects of artificial light on plant physiology and secondary metabolism. Hortscience 50:1128-1135 (2015).
PCT/US2014/072837 International Search Report and Written Opinion dated Apr. 20, 2015.
PCT/US2018/065343 International Search Report and Written Opinion dated Mar. 5, 2019.
PCT/US2019/057727 International Search Report and Written Opinion dated Jan. 16, 2020.
PCT/US2020/044046 International Search Report and Written Opinion dated Dec. 22, 2020.
PCT/US2021/028322 International Search Report and Written Opinion dated Sep. 9, 2021.
Peacock. Directing Vine Physiology towards Production. In: Proceedings San Joaquin Valley Table Grape Seminar. Calif. Table Grape Comm., Fresno, CA. (4 pgs) (2005).
Peacock et al. Canopy management and trellising systems for Thompson Seedless table grapes. In: Report of Research for Fresh Table Grapes. Calif. Table Grape Comm., Fresno, CA. (4 pgs) (1996).
Peacock et al. Research Sheds Light on Bud Fruitfulness and Berry Set. In: UCCE Tulare County Grape Notes, vol. 2, Issue 2, W.L. Peacock, Ed. Tulare, CA. (2005).
Peacock et al. Response of Flame Seedless table grapes to leaf removal at various stages of fruit development. In: Proc. Table Grape Seminar, N.C. Dokoozlian, Ed. UC Coop. Ext., UC Kearney Research and Extension Center, Parlier, CA. (1994).
Peacock et al. Training-trellis systems and canopy management of table grapes in California. International Symposium on Table Grape Production. JoAnne M. Rantz, Ed. Am. Soc. Enol. Vitic. pp 191-194. (1994).
Peacock. Vine Physiology and Table Grape Production. In: Proceedings San Joaquin Valley Table Grape Seminar. Calif. Table Grape Comm., Fresno, CA. (7 pgs) (2006).
Pepin et al. Beneficial effects of using a 3-D LED interlighting system for organic greenhouse tomato grown in Canada under low natural light conditions, in: Acta Horticulturae. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp. 239-246 (2014).
Ploke. Axially Symmetrical Light Guide Arrangement. German Patent Application #14722679 (1969).
Ploke. Lichtfuhrungseinrichtungen mit starker Konzentrationswirkung [English Trans. Light guide means with a strong concentration effect]Optik 25:31-43 (1967) (English Abstract).
Pregitzer et al. Responses of tree fine roots to temperature. New Phytologist, 147(1):105-115 (2000).
Rabe. Citrus tree spacing and tree shape: Concept, effect on early production profile and fruit quality aspects—An overview. Int. Soc. Citriculture 1:297-301 (2004).
Rabl et al. Ideal concentrators for finite sources and restricted exit angles. Appl. Opt. 15:2880-2883 (1976).
Rajapakse et al. Chapter 12: Light quality manipulation by horticulture industry. In: Light and Plant Development, pp. 290-312 (2007).
Rajapakse et al. Influence of spectral filters on growth and postharvest quality of potted miniature roses. Scientia Hort 56:245-255 (1994).
Rajapakse et al. Plant height control by photoselective filters: current status and future prospects. Hortechnology 9:618-624 (1999).
Rajapakse et al. Spectral filters and growing season influence growth and carbohydrate status of Chrysanthemum. J Amer Soc Hort Sci 120:78-83 (1995).
Runkle et al. Specific functions of red, far-red, and blue light in flowering and stem extension of long-day plants. J Am Soc Hortic Sci 126:275-282 (2001).
Samuoliene et al. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 134:1494-1499 (2012).
Shahak et al. ColorNets: A new approach for light manipulation in fruit trees. Acta Hort. 636:609-616 (2004).
Shahak et al. ColorNets: crop protection and light-quality manipulation in one technology. Acta Hort. 659(1):143-151 (2004).
Shahak et al. Improving solar energy utilization, productivity and fruit quality in orchards and vineyards by photoselective netting. Acta Hort. 772:65-72 (2008).
Shahak et al. The wonders of yellow netting. Acta Hortic. 1134:327-334 (2016).
Shahak. Photoselective netting: an overview of the concept, R&D and practical implementation in agriculture. Acta Hort 1015:155-162 (2014).
Shahak. Photoselective netting for improved performance of horticultural crops. A review of ornamental and vegetable studies carried in Israel. Acta Hort 770:161-168 (2008).
Shashar et al. Migrating locusts can detect polarized reflections to avoid flying over the sea. Biology Letters 1:472-475 (2015).
Shifriss et al. Variation in flower abscission of peppers under stress shading conditions. Euphytica 78:133-136 (1994).
Sinclair et al. Variation in Crop Radiation-Use Efficiency with Increased Diffuse Radiation. Crop Sci. 32:1281-1284 (1992).
Singh et al. LEDs for energy efficient greenhouse lighting. Renew. Sustain. Energy Rev. 49:139-147 (2015).
Smith et al. Don't ignore the green light: exploring diverse roles in plant processes. J. Exp. Bot. 68:2099-2110 (2017).
Snowden et al. Sensitivity of seven diverse species to blue and green light: Interactions with photon flux. PLoS One 11:1-32 (2016).
Song et al. Polychromatic Supplemental Lighting from underneath Canopy Is More Effective to Enhance Tomato Plant Development by Improving Leaf Photosynthesis and Stomatal Regulation. Front. Plant Sci. 7:1832 (2016).
Spalding et al. Illuminating topics in plant photobiology. Plant Cell Environ 28:39-53 (2005).
Straw et al. Influence of Sticky Trap Color and Height Above Ground on Capture of Alate Elatobium abietinum (Hemiptera: Aphididae) in Sitka Spruce Plantations. Environmental Entomology 40(1):120-125 (2011).
Tatineni et al. Effectiveness of plant growth regulators under photoselective greenhouse covers. J Amer Soc Hort Sci 125:673-778 (2000).
Tewolde et al. Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer. Front. Plant Sci. 7:448 (2016).
The Secret Gift of Polarized Vision. Insect P-Ray Vision. The Secret in the Eye. Available at https://www.polarization.com/eyes/eyes.html (Downloaded Sep. 30, 2019) (6 pgs).
Thimijan et al. Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. HortScience 18:818-822 (1983).
Thomas. Specific effects of blue light on plant growth and development. (Literature review). In: Plants and the daylight spectrum, pp. 443-459 (1981).
Thompson et al. Patterns of gas exchange, photosynthate allocation, and root growth during a root growth capacity test. Canadian Journal of Forest Research 22(2):248-254 (1992).
Tierney et al. Environmental control of fine root dynamics in a northern hardwood forest. Global Change Biology 9(5):670-679 (2003).
Trouwborst et al. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiol. Plant. 138:289-300 (2010).
Turner et al. Dry Matter Assimilation and Partitioning in Pepper Cultivars Differing in Susceptibility to Stress-induced Bud and Flower Abscission. Ann. Bot. 73(6):617-622 (1994).
U.S. Appl. No. 15/109,218 Office Action dated Mar. 27, 2018.
U.S. Appl. No. 16/116,435 Office Action dated Feb. 18, 2020.
U.S. Appl. No. 16/116,435 Office Action dated Jul. 22, 2020.
U.S. Appl. No. 16/116,435 Office Action dated Jun. 19, 2019.
U.S. Appl. No. 16/526,790 Office Action dated Dec. 22, 2020.
U.S. Appl. No. 16/526,790 Office Action dated Jun. 16, 2021.
Vaishampayan et al. Spectral Specific Responses In The Visual Behavior Of The Greenhouse Whitefly, Trialeurodes Vaporariorum (Homoptera: Aleyrodidae). Entomologia Experimentalis et Applicata 18(3):344-356 (1975).
Vaishampayan et al. Visual And Olfactory Responses In Orientation To Plants By The Greenhouse Whitefly, Trialeurodes Vaporariorum (Homoptera: Aleyrodidae). Entomologia Experimentalis et Applicata 18(4):412-422 (1975).
Van Haeringen. The development of solid spectral filters for the regulation of plant growth. Photochem. Photobiol. 67:407-413 (1998).
Vernon et al. Spectral Responsiveness of Frankliniella occidentalis (Thysanoptera: Thripidae) Determined by Trap Catches in Greenhouses. Environmental Entomology 19(5): 1229-1241 (1990).
Warrington et al. The influence of blue- and red-biased light spectra on the growth and development of plants. Agric. Meteorol. 16: 247-262 (1976).
Wehner. Polarized-light navigation by insects. Scientific American 23(1):106-115 (1976).
Williamson. Cone channel condenser optics. J Opt Soc Am 42:712-715 (1952).
Winston et al. Principles of cylindrical concentrators for solar energy. Sol. Energy 17:255-258 (1975).
Winston. Light collection within the framework of geometrical optics. J. Opt. Soc. Am. 60:245-247 (1970).
Winston. Principles of solar concentrators of a novel design. Sol. Energy 16:89-95 (1974).
Witte. Cone channel optics. Infrared Phys. 5:179-185 (1965).
Wubs et al. Abortion of reproductive organs in sweet pepper ( Capsicum annuum L.): a review. J. Hortic. Sci. Biotechnol. 84:467-475 (2009).
Yaku et al. Thrips see red—flower colour and the host relationships of a polyphagous anthophilic thrips. Ecological Entomology 32(5):527-535 (2007).
Zhou et al. Effects of photoselective netting on root growth and development of young grafted orange trees under semi-arid climate. Scientia Horticulturae 238:272-280 (2018).
Zhu et al. From lab to field, new approaches to phenotyping root system architecture. Current Opinion in Plant Biology 14:(3):310-317 (2011).
PCT/US2014/072837 International Preliminary Report on Patentability Chapter II dated Apr. 26, 2016.
U.S. Appl. No. 16/526,790 Non-Final Office Action dated Dec. 10, 2021.
EP Application No. 20207285.6 Extended European Search Report dated May 10, 2021.
Ben-Yakir et al. Chapter12. Optical Manipulations: An advance Approach for Controlling Sucking Insect Pests. In: Advanced Technologies for Managing Insect, pp. 249-267 (2012).
Senthilkumar et al. Design and Development of a Three Dimensional Compound Parabolic Concentrator and Study of Optical and Thermal Performance. Intl J Energy Sci 2(2):64-68 (2012).
Ballare: Illuminated behaviour: phytochrome as a key regulator of light foraging and plant anti-herbivore defence. Plant Cell Environ. 32(6):713-725 doi:10.1111/j.1365-3040.2009.01958.x (2009).
Basile et al.: Regulation of the vegetative growth of kiwifruit vines by photo-selective anti-hail netting. Scientia Horticulturae 172:300-307 doi:10.1016/j.scienta.2014.04.011 (2014).
Bettiga: Comparison of bilateral cordon training methods on the development and productivity of Chardonnay and Pinot noir grapevines. In Proceeding of the 20th International Meeting of the Group of International Experts of Vitivinicultural Systems for CoOperation (GiESCO) 20:576-581 [English Abstract Only] (2017).
Chen at el.: Light signal transduction in higher plants. Annu Rev Genet 38:87-117 doi:10.1146/annurev.genet.38.072902.092259 (2004).
Decoteau et al.: Mulch surface color affects yield of fresh-market tomatoes. J Am Soc Hortic Sci. 114(2):216-219 doi:10.21273/JASHS.114.2.216 (1989).
Freeman et al.: Influence of Windbreaks and Climatic Region on Diurnal Fluctuation of Leaf Water Potential, Stomatal Conductance, and Leaf Temperature of Grapevines. Am J Enol Vitic. 33:233-236 [English Abstract Only] (1982).
Grechi et al.: Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine. Environmental and Experimental Botany 59(2):139-149 (2007).
Hendrickson et al.: Low temperature effects on grapevine photosynthesis: The role of inorganic phosphate. Functional Plant Biology 31(8):795-801 DOI:10.1071/FP04037 (2004).
Kasperbauer: Strawberry yield over red versus black plastic mulch. Crop Sci 40(1): 171-174 doi:10.2135/cropsci2000.401171x (2000).
Kong et al.: Response of photosynthetic parameters of sweet pepper leaves to light quality manipulation by photoselective shade nets. 7th International Symposium on Light in Horticultural Systems. Acta Hortic. 956:501-506 doi:10.17660/ActaHortic.2012.956.59 [English Abstract Only] (2012).
Lichtenhaler et al.: Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol Biochem. 45(8):577-588 doi:10.1016/j.plaphy.2007.04.006 [English Abstract Only] (2007).
Martinez-Luscher et al.: Partial Solar Radiation Exclusion with Color Shade Nets Reduces the Degradation of Organic Acids and Flavonoids of Grape Berry (Vitis vinifera L.) J Agric Food Chem. 65(49):10693-10702 doi:10.1021/acs.jafc.7b04163 (2017).
Opti-Harvest Inc., website: URL: https://opti-harvest.com/ [retrieved online Oct. 4, 2022].
Ovadia et al.: Coloured shade-nets influence stem length, time to flower, flower number and inflorescence diameter in four ornamental cut-flower crops. J Hort Sci Biotech. 84(2):161-166 84(2):161-166 (2009).
Poorter et al.: The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Functional Plant Biology 27(6):1-15 DOI:10.1071/PP99173_CO (2000).
Poorter: Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Functional Ecology 15(1):113-123 (2001).
U.S. Appl. No. 16/526,790 Final Office Action dated Jun. 13, 2022.
U.S. Appl. No. 17/152,972 Non-Final Office Action dated Oct. 6, 2022.
Wang et al.: Contributions of green light to plant growth and development. Am J Bot. 100(1):70-78 doi:10.3732/ajb.1200354 (2013).