This invention relates to a support for a vane in a turbine engine and, more particularly, to a cantilevered framework for supporting turbine vanes.
Generally, combustion turbines have three main assemblies, including a compressor assembly, a combustor assembly, and a turbine assembly. In operation, the compressor assembly compresses ambient air. The compressed air is channeled into the combustor assembly where it is mixed with a fuel. The fuel and compressed air mixture is ignited creating a heated working gas. The heated working gas is typically at a temperature of between 2500 to 2900° F. (1371 to 1593° C.), and is expanded through the turbine assembly. The turbine assembly generally includes a rotating assembly comprising a centrally located rotating shaft and a plurality of rows of rotating blades attached thereto. A plurality of stationary vane assemblies, each including a plurality of stationary vanes, are connected to a casing of the turbine and are located interposed between the rows of rotating blades. The expansion of the working gas through the rows of rotating blades and stationary vanes or airfoils in the turbine assembly results in a transfer of energy from the working gas to the rotating assembly, causing rotation of the shaft.
The vane assemblies may typically include an outer platform element or shroud segment connected to one end of an airfoil for attachment to the turbine casing and an inner platform element connected to an opposite end of the airfoil for attachment to the compressor diffuser exit structure. The outer platform elements may be located adjacent to each other to define an outer shroud, and the inner platform elements may be located adjacent to each other to define an inner shroud. The outer and inner shrouds define a flow channel therebetween for passage of the hot gases past the stationary airfoils.
The first row of vane assemblies, which typically precedes the first row of rotating blades in the turbine assembly, is subject to the highest temperatures of the working gas, and the support scheme for the first row vanes must provide a fail-safe support structure under an extreme of structural and thermal loading. Typically, the first row vanes have been “simply” supported, where the outer platform elements of the first row vanes are attached to the turbine structure, i.e., to an inner turbine casing, and the inner platform elements are attached to the compressor exit diffuser structure. During transient and steady state operation of the turbine, the axial displacement of the inner and outer support structures is not the same due to differential thermal growth of the two structures. This produces significant differential axial displacements between the inner and outer platform elements of the vane. The differential axial displacements can produce high stresses within the vane. In addition, the differential axial displacements can cause ID-to-OD rocking of the vane between the inner platform element of the vane and the transition duct from the combustor, potentially resulting in substantial gas leakage and loss of efficiency due to the large relative displacement.
One approach to solving the problems associated with the differential thermal displacement is to support the vane entirely at the OD of the turbine, referred to as a cantilevered vane. However, this approach can produce unacceptable stresses in the vane, particularly in heavily loaded vanes of more advanced turbine designs.
Accordingly, it is an object of the present invention to provide support at the vane OD and ID with this support being provided substantially by the OD of the turbine vane carrier, hence greatly reducing the vane rocking associated with transient and steady state differential thermal growth of the turbine.
In accordance with one aspect of the invention, a support is provided for a vane in a turbine engine. The support comprises a framework including an outer vane carrier and an inner vane carrier. A strut structure extends radially inwardly from the outer vane carrier and is rigidly connected to the outer and inner vane carriers. The outer vane carrier includes an outer support member for engaging and supporting an outer flange of a vane, and the inner vane carrier includes an inner support member for engaging and supporting an inner flange of the vane.
In accordance with a further aspect of the invention, a support is provided for a vane in a turbine engine comprising an inner casing. The support comprises a framework mounted to the inner casing and includes an annular outer vane carrier and an annular inner vane carrier. A strut structure comprising a plurality of struts extends radially inwardly from the outer vane carrier and is rigidly connected to the outer and inner vane carriers. The outer vane carrier includes an outer support member for engaging and supporting an outer flange of a vane, and the inner vane carrier includes an inner support member for engaging and supporting an inner flange of the vane to axially locate the inner flange.
In accordance with another aspect of the invention, a vane assembly is provided in a turbine engine comprising an inner casing. The assembly comprises a framework mounted to the inner casing and includes an annular outer vane carrier and an annular inner vane carrier. A strut structure comprises a plurality of struts rigidly connected to the outer and inner vane carriers to support the inner vane carrier in cantilevered relation radially inwardly from the outer vane carrier. A plurality of first row turbine vanes are supported from the outer vane carrier, and the inner vane carrier includes an inner support member for engaging and supporting the turbine vanes from the inner vane carrier for locating the turbine vanes in an axial direction relative to the inner vane carrier.
While the specification concludes with claims particularly pointing out and distinctly claiming the present invention, it is believed that the present invention will be better understood from the following description in conjunction with the accompanying Drawing Figures, in which like reference numerals identify like elements, and wherein:
In the following detailed description of the preferred embodiment, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, and not by way of limitation, a specific preferred embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of the present invention.
Referring to
Referring additionally to
Referring to
Each of the OD and ID rings 34, 36 may be formed as a split ring, where each ring comprises a plurality of sectors joined together. In particular, the OD ring 34 may be formed of four sectors 34a, 34b, 34c, 34d (
Referring to
It should be noted that, within the scope of the present invention, the OD and ID rings 34, 36 may be formed with fewer or more sectors than described herein. Alternatively, some or all of the struts 44, 46 may be formed integrally with one or both of the OD and ID rings 34, 36.
As seen in
Referring to
A U-shaped flexible seal 104 is provided extending between the transition duct 32 and a forward outer lip 106 of the outer shroud segment 26. The flexible seal 104 includes a connecting portion 108 that is fastened to a seal link 110 attached to the inner surface of the OD ring 34 to maintain the radial position of the flexible seal 104 relative to the OD ring 36. The flexible seal 104 provides a sealing connection between the aft edge 112 of the transition duct 32 and the forward outer lip 106 while permitting relative axial movement between the transition duct 32 and the forward outer lip 106. That is, axial movement of the forward outer lip 106 and/or the transition duct 32, such as may occur as a result of thermally induced expansion or contraction of the outer shroud segment 26 and/or the transition duct 32, will be accommodated by the flexible seal 104 to avoid thermally induced axial stresses in the vane 12.
A forward inner mounting element of the vane 12 is shown as a forward inner flange 114 extending radially inwardly from the forward end of the inner shroud segment 24. The inner surface 82 of the ID ring 36 is formed with an inner support member 115 comprising a vane locating channel 116 defined by opposing surfaces 118, 120. The forward inner flange 114 is positioned within the vane locating channel 116, such that forward and rearward faces 122, 124 of the forward inner flange 114 are located adjacent the respective opposing groove surfaces 118, 120. The opposing surfaces 118, 120 act as reaction surfaces for engaging the forward inner flange 114, defining an inner reference mount 126 for the vane 12, to maintain the forward inner flange 114 at a predetermined axial location and prevent pivoting movement of the vane 12 about the outer reference mount 103 defined at the aft outer flange 94. Further, an inner end of the forward inner flange 114 is radially spaced from a bottom surface of the vane locating channel 116 to permit radial movement of the forward inner flange 114 relative to the channel 116 to accommodate thermal movement, i.e., expansion or contraction, of the vane 12 in the radial direction.
A U-shaped flexible seal 128 is provided extending between the transition duct 32 and a forward inner lip 130 of the inner shroud segment 24. The flexible seal 128 includes a connecting portion 132 that is attached to the inner surface 82 of the ID ring 36 to maintain the radial position of the flexible seal 128 relative to the ID ring 36. The flexible seal 128 provides a sealing connection between the aft edge 112 of the transition duct 32 and the forward inner lip 130 while permitting relative axial movement between the transition duct 32 and the forward inner lip 130, such as may occur as a result of thermally induced expansion or contraction of the transition duct 32 and/or the inner shroud segment 24.
An aft inner sealing structure 134 of the vane 12 is shown as an aft inner flange 136 that extends radially inwardly from the inner shroud segment 24 to engage in a groove 138 formed in a seal segment 140. A support segment 142 extending from the compressor exit structure 144 supports the seal segment 140. The seal segment 140 is maintained in position on the support segment 142 by a fastener 146 extending through a slot 148 in the seal segment 140. The slot 148 in the seal segment 140 permits the seal segment 140 to move in an axial direction relative to the support segment 142 to accommodate movement of the aft end of the inner shroud segment 24 relative to the forward end thereof. In addition, an inner end of the aft inner flange 136 is radially spaced from a bottom surface of the groove 138 in the seal segment 140 to permit radial movement of the aft inner flange 136 relative to the groove 138 in order to accommodate thermal movement, i.e., expansion or contraction, of the vane 12 in the radial direction. The present invention is not limited to the particular aft inner sealing structure 134 disclosed herein, and it should be understood that alternative sealing structures may be incorporated in combination with the disclosed framework structure 18 to the extent that the sealing structures permit the described axial and radial movement of the shroud segments 24, 26 in response to thermal expansion and contraction of the vane 12.
The transition duct 32 extends into the framework structure 18, passing between adjacent struts 44, 46 to locate the aft end 112 closely adjacent to and spaced from the forward edges 149, 151 of the outer and inner shroud segments 24, 26 of the vane 12. The transition duct 32 may be provided with positioning structure, such as a radially extending flange 150, engaging the OD ring 34 to maintain the aft end 112 in a predetermined location relative to the framework structure 18 and thus maintain the aft end 112 in spaced relation to the vane 12. Referring to
From the above description, it may be seen that the framework structure 18 comprises a cantilevered structure for supporting both the inner and outer ends of a vane 12. The cantilevered structure preferably provides a single outer reference mount for the vane 12 and a single inner reference mount for the vane 12 for accurately locating the vane 12 within the framework structure 18. The cantilevered struts 44, 46 supporting the ID ring 36 comprise a structure that maintains a substantially constant relative axial position between the outer and inner reference mounts 103, 126, which is substantially unaffected by variations in temperature in the area of the first row vanes 12 of the turbine 10.
Accordingly, the framework structure 18 described herein operates to minimize ID-to-OD rocking of the vanes 12 to reduce thermal stresses in the vanes 12 and improve sealing between the vanes 12 and the transition ducts 32. Further, the disclosed framework structure 18 is uniquely suited to providing support for non-metallic vanes, such as vanes formed of composite matrix ceramic (CMC) materials, and provides a support capable of accommodating thermal expansion mismatch between CMC and metal components.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
3609968 | Mierley, Sr. et al. | Oct 1971 | A |
3670497 | Sheldon | Jun 1972 | A |
4016718 | Lauck | Apr 1977 | A |
4478551 | Honeycutt et al. | Oct 1984 | A |
4503668 | Duncan, III et al. | Mar 1985 | A |
4511306 | Hultgren | Apr 1985 | A |
4566851 | Comeau et al. | Jan 1986 | A |
4948333 | Meer et al. | Aug 1990 | A |
4979872 | Myers et al. | Dec 1990 | A |
5076049 | Von Benken et al. | Dec 1991 | A |
5387082 | Matyscak | Feb 1995 | A |
5441385 | Boyd et al. | Aug 1995 | A |
5494402 | Glezer et al. | Feb 1996 | A |
5630700 | Olsen et al. | May 1997 | A |
Number | Date | Country | |
---|---|---|---|
20080008584 A1 | Jan 2008 | US |