1. Field of the Invention
The present invention relates, in general, to dermal tissue lancing devices and, in particular, to caps for dermal tissue lancing devices and associated methods.
2. Description of the Related Art
Lancets in conventional use generally have a rigid body and a sterile needle that can be cocked and fired so as to briefly protrude from one end of the lancet. In a conventional lancing device, a lancet is mounted within a longitudinal housing and is movable along a longitudinal axis relative to the housing. Typically the lancet is spring loaded and driven along the longitudinal axis on release of the spring to puncture (i.e., “lance” or cut) dermal tissue. A blood sample can then be expressed from the punctured dermal tissue by squeezing (i.e., “milking”) the finger, or other area of the body, that has been punctured for sample collection.
The lancet is used to pierce dermal tissue, thereby enabling the production of a fluid sample, typically blood, from the puncture and collection of the fluid sample for testing for an analyte, such as glucose. The blood is then transferred to a test collection device (e.g., a test strip). This test collection device may be part of a completely separate sample collection and metering system or it may form part of a combined lancet and metering system, such as that disclosed in International Application No. PCT/GB02/03772 (published as WO 03/015627 on Feb. 27, 2003), which is hereby fully incorporated by reference.
Blood samples are most commonly taken from the fingertips, where there is generally an abundant supply due to the presence of capillary blood vessels. However, the nerve density in the fingertips can cause significant pain in many patients. Sampling on alternative sites, such as earlobes, palms, limbs and the abdomen, is sometime practiced since these alternative sites may be less sensitive. However, these alternative sites are also less likely than a fingertip to provide sufficient blood volume. Use of these alternative sites also makes blood transfer directly to test devices difficult, particularly when a combined lancet and metering device is employed.
After puncturing dermal tissue, conventional lancing devices are put to one side and the user squeezes blood from the puncture wound. This technique requires a clean storage site for the lancing device and a two-handed, two-step operation. Once a drop of blood is expressed from the lancing site, the user transfers the blood to a test strip or suitable meter.
Conventional lancing devices are available from, for example, LifeScan, Inc. of Milpitas, Calif., Palco Laboratories of Santa Cruz, Calif., Therasense of Alameda, Calif. and Amira Medical of Scotts Valley, Calif. Conventional lancing devices are described in U.S. Pat. No. 5,730,753 to Morita, U.S. Pat. No. 6,045,567 to Taylor et al. and U.S. Pat. No. 6,071,250 to Douglas et al., each of which is incorporated fully herein by reference.
Furthermore, typical lancing devices often include a cap that engages the dermal tissue and through which the lancet protrudes on firing. The cap will, therefore, have an aperture (i.e., opening), through which the lancet will pass on firing. Typically, a distal end of the cap will be placed in contact with the dermal tissue immediately prior to firing.
When a dermal tissue lancing device with a conventional cap is placed in contact with dermal tissue, a small amount of pressure is typically applied by a user prior to launch of the lancet. This pressure forces the cap down upon the dermal tissue in a direction generally perpendicular to the surface of the dermal tissue. A small amount of dermal tissue can pass through the aperture and form a bulge, into which the lancet is launched and a puncture formed. Nevertheless, typically no blood is visible on removal of the cap and lancing device from the dermal tissue. In order to produce a blood drop that is large enough for introduction onto a test strip and subsequent measurement by a metering device, the area surrounding the puncture must be squeezed by the user.
Obtaining a blood sample in excess of 0.5 μl using a lancing needle without subsequent manipulation of the skin adjacent to the lanced cut can be problematic. To obtain larger amounts of blood, pressure (such as a pumping or milking action) is usually applied to the skin adjacent to the lanced cut, in order to force additional blood out through the cut. Some devices combine lancing and transfer to a test cell of the blood produced on lancing into an integral unit without repositioning the device. One such device is a blood glucose measuring meter that is positioned on the dermal tissue over the site to be tested. These devices do not expose the test site adequately for efficient pumping action. Vacuum at the cut has been used but is difficult to implement reliably.
This means that a user has to lay aside the metering device to squeeze the puncture area and produce blood before picking up a metering device and placing this in contact with the newly formed drop of blood.
Still needed in the field, therefore, is a cap for a dermal tissue lancing device that enables a user to obtain a fluid sample (e.g., a blood sample) without subsequent manipulation (e.g., squeezing and/or milking) of a lanced area. In addition, the cap should be compatible with use on a variety of testing sites (e.g., fingertips, limbs and abdomen).
Embodiments of the present invention include a cap for use with a dermal tissue lancing device that enables a user to obtain a fluid sample (e.g., a blood sample) without such subsequent manipulation as squeezing and/or milking of a lanced area. Caps in accordance with embodiments of the present invention are compatible with use on a variety of testing sites (e.g., fingertips, limbs and abdomen). Other embodiments of the present invention include methods for collecting a fluid sample using a dermal tissue lancing device that do not require such manipulation of squeezing and/or milking of a lanced area subsequent to a lancing step.
A cap according to an exemplary embodiment of the present invention is adapted for use with a dermal tissue lancing device that includes a housing and a lancet. The lancet is movable with respect to the housing. The cap includes a proximal end for engaging with the housing, a distal end for engaging with dermal tissue and an opening (i.e., aperture) for a portion of the lancet to pass through. The distal end of the cap includes at least first and second portions for engaging dermal tissue. These first and second portions are resiliently deformable such that, when the cap contacts and is urged towards dermal tissue, the portions deform resiliently to engage the dermal tissue and approach theretogether.
A method for the collection of a fluid sample (e.g., a blood sample) from dermal tissue according to an exemplary embodiment of the present invention includes first providing a dermal tissue lancing device. The dermal tissue lancing device thus provided includes a housing, a lancet that is moveable with respect to the housing and a cap. The cap itself includes a proximal end for engaging with the housing, a distal end for engaging with dermal tissue and an opening (i.e., aperture) for a portion of the lancet to pass through. Furthermore, the distal end of the cap includes at least first and second resiliently deformable portions for engaging dermal tissue.
The cap of the dermal tissue lancing device is then contacted with the dermal tissue (e.g., dermal tissue of a fingertip, limb, abdomen or other site from which a fluid sample is to be collected) such that the at least first and second portions engage the dermal tissue. Subsequently, the cap is urged towards the dermal tissue (using, for example, a predetermined force) such that the at least first and second portions deform resiliently and approach theretogether. Such an approach creates a bulge in the dermal tissue by, for example, decreasing the size of the dermal tissue lancing device opening. The bulge is then lanced, using the lancet, to create a puncture in the bulge, from which a fluid sample is collected.
A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings in which like numerals indicate like elements, objects and forces, of which:
Cap body 4 includes an opening 10 (that is defined by inner edge 26 of cap body 4) and dermal tissue engaging features 14. Retainer 6 includes a stem 8. Other features of cap body 4 and retainer 6 are described below in conjunction with
Cap 2 is configured to facilitate the flow of a bodily fluid sample (e.g., a blood sample) out of a lancet cut (e.g., a puncture) in dermal tissue without such manipulation of squeezing and/or milking of the dermal tissue subsequent to lancing. In the embodiment of
In the embodiment of
Retainer 6 includes an optional stem 8 for connecting cap 2 to a housing (not shown) of a dermal tissue lancing device. Stem 8 may, if desired, be threaded to mate with a corresponding thread on the housing. Alternative connecting mechanisms may be used, including, but not limited to, a snap fit connection and a telescoping connection. Indeed, stem 8 may be fixably connected to the housing, although a degree of controlled movement of cap 2 with respect to the housing along the direction of lancing will allow control of the position of the opening 10 in cap body 4 with respect to the lancet in a rest position.
In the embodiment of
Cap body 4 includes dermal tissue engaging features 14 in the form of a plurality of concentric protruding ridges that surround opening 10. Alternative dermal tissue engaging features, such as a roughened surface, other forms of protrusion, recesses, etc., can be envisaged by those skilled in the art once they are apprised of the present disclosure.
Opening 10 of cap 2 is typically circular. Alternative suitable opening shapes, such as square, triangular, rectangular, hexagonal, octagonal or any suitable shape for engaging skin can be envisaged by those skilled in the art, as can the use of a cap that includes separate segments (i.e., separate portions) or fingers, the ends of which essentially define at least a part of the opening and that resiliently deform under pressure to urge the formation of a target site bulge for lancing within the opening.
Referring to
Movement of inner edge 26 and dermal tissue engaging features 14 radially inwards causes skin, blood and sub-dermal tissue beneath the skin into a bulge within the circumference of the opening (i.e., aperture). Such movement is speculated to result in an increased (relatively high) pressure within the bulge.
On compression, cap body 4 pivots inwards about circular ridge point A so that second internal surface 20 becomes a base (i.e., the proximal end of cap body 4 closest to the lancing device). Second internal surface 20 changes from a frusto-conical shape into a disc-like shape. Likewise, internal surface 22 loses its cylindrical shape and becomes frusto-conical in shape. The diameter 12b of opening 10 reduces compared to diameter 12a (i.e., portions of inner edge 26 and dermal tissue engaging features 14 approach one another as the opening reduces in size).
It is speculated without being bound that the following discussion provides an explanation of the effect of caps according to the present invention on lancing. The force applied by a user in a direction generally perpendicular to a plane of opening 10 is translated into a force acting radially inwardly on the dermal tissue by the action of the retainer 6 on the cap body 4. This can be seen more clearly in
Typically, force 41 can result from the reaction of the cap body 4 acting radially outward on the retainer 6 during its resilient deformation. The term “resiliently deformable” means that on release from an external force (e.g., force 41), the cap body at least partially and in some embodiments wholly resumes its original shape (optionally within the confines of a retainer in the circumstance that such a retainer is provided). For the purpose of explanation only, retainer 6 is illustrated as circular and continuous in
The provision of a distinct sharply curved inwardly facing inner edge 26 on opening 10 is speculated to enable pressure from the resiliently deformed cap to be exerted directly onto the skin that has passed through the opening. This urges the formation of a bulge and constricting of the dermal tissue as blood and sub-dermal tissue are forced into the bulge whilst limiting return slippage of the skin past the internal edge. Furthermore, once blood and sub-dermal tissue are forced into the bulge within the opening, portions of the inner edge are believed to provide a higher pressure region and/or pinch points limiting the ability of the blood and sub-dermal tissue below the skin to exit the bulge despite the exertion of pressure to do so from surface tension caused by the constriction of the skin forming the bulge. It is further speculated without being bound that compression of the cap body 4 occurs in two stages. In an initial stage, the cap body 4 serves to apply a ring of pressure approximately perpendicular to the skin surface that constricts the flow of blood into and out of the ringed area. In a second stage, the diameter of the inner ring in contact with the skin decreases so that blood that is already constrained by the cap body is brought further into the center of the ringed area and compressed.
Bulge 32 can be centered within the target area of the lancing needle. Furthermore, due to the presence of a bulge, when a lancet (e.g., a needle-type lancet) punctures the dermal tissue, the resulting blood flow is larger than from the lanced cut made by a conventional lancing device without using caps according to embodiments of the present invention.
Materials other than elastomeric materials can be used to form a cap according to embodiments of the present invention as long as, for example, a force essentially perpendicular to the dermal tissue results in deflection of the material and hence deflection of the skin (i.e., dermal tissue) in such a way as to force the blood beneath the skin into a bulge. For example, a cap body 4 can be made of deformable polystyrene. Thus, on initial compression, such a cap would compress the skin to form a bulge as herein described, but further compression could result in permanent deformation of the cap body. Thus the cap body is prevented from being re-used more than once. This can be an advantage by reducing the risk of infection from a cap becoming contaminated with body fluid during a first lancing operation and then being re-used for a later lancing operation. The following description is given by way of speculative explanation but is not intended to be limiting.
Rotation or pivoting of cap body 4 can be seen in
It can be seen in this diagram that diameter 12a of opening 10 in a relaxed state is greater than diameter 12b of opening 10 in a compressed state. It can also be seen in
A stop surface 34 (also referred to simply as a “stop”) is provided to limit the compression of cap body 4 in a longitudinal direction (i.e., generally perpendicular to a plane containing opening 10) with respect to the lancing device. Typically the lance also extends and retracts along this direction, although it may act at an angle to this direction.
Within a lancing device, the use of a stop enables a lancet rest and cocked position to be determined with respect to the stop and therefore with respect to a bulge of dermal tissue of nominal size protruding within the opening. Therefore, it is possible to determine or estimate for a nominal bulge size the depth a lancet will penetrate on launch, as long as the cap body is deformed sufficiently to have reached the stop position. Thus, by controlling the location of the lance with respect to the stop and/or the cap with respect to the stop, the depth of penetration of the lance into the dermal tissue can be controlled. By trial and error, the user will be able to determine for each particular location about the body what settings of lance with respect to stop and/or cap with respect to stop is required to produce a suitably sized drop of blood with the least or an acceptable amount of discomfort.
Furthermore, it will be appreciated by those skilled in the art that as a user pushes (presses) cap body 4 down onto the dermal tissue, the base region of cap body 4 (closest to the lancing device) will travel radially outwards and could be limited by the inner surface of retainer 6. Thus, it is speculated without being bound that retainer 6 may provide a reaction force so that further compression of cap body 4 causes radially inward travel of inner edge 26 of opening 10, rather than radially outward travel of pivoting ring A. This particular form of cap body is especially suitable for relatively hard dermal tissue such as the fingers, although it can be used elsewhere on a body.
A lip 117 is fixably mounted to retainer 106, as shown in
Comparison of Performance of a Conventional Rigid Cap with a Cap According to the Present Invention (referred to as a “Soft Cap”):
A comparative study between a conventional rigid cap (i.e., rigid cap #1) and a cap according to the present invention (referred to as a “Soft Cap”) was conducted using a 30 gauge lancet (i.e., an Ultra-Fine II lancet™) available from Beckton Dickinson of Franklin Lakes, N.J. As can be seen from the results listed in Table 1, the average amount of blood produced in the comparative study was significantly greater using a Soft Cap than the conventional cap. The minimum amount of blood produced using a Soft Cap was 0.8 μl, an amount that was significantly greater than that produced by the conventional rigid cap. The overall success rate in terms of the percentage number of lancing events giving greater than 1 μl of blood (typically the minimum volume required to give an accurate assessment of an analyte, such as glucose, in blood) is 92% for the Soft Cap compared to 25% with the conventional rigid cap.
Table 2 below illustrates the results of a comparative study that was conducted in a similar manner to that described above bit that employed an alternative conventional lancet with a second type of conventional rigid cap (i.e., rigid cap #2).
Comparison of Performance with Different Embodiments of the Cap Design
In this study, the embodiment shown in
The method comprised pressing the cap body onto the site to be lanced, lancing with a 30-gauge needle, holding the cap body in place for 5 seconds releasing the cap body and collecting blood by a calibrated glass capillary pipette. Multiple opening diameters (before use), needle depth and lancing locations were tested. The needle depth, a higher number corresponds to a greater lance needle depth. Consequently, the greater the lance depth, the more pain the user experiences. In some instances, the thumb was used to aid in obtaining a sample (i.e., some squeeze assist). Success was defined as obtaining more than 1 μl of blood.
The results in Table 3 for User 1 indicate that the design shown in
No thumb squeeze assist was required when cap L2 was used, regardless of needle depth. The results for User 2 with the cap design L2 were also superior to those with cap design L1. As with User 1, the design L2 required thumb squeeze assist in order to obtain sufficient blood from the side of the finger, whereas design L2 did not. These results indicate that design L2 is more versatile and can be used in multiple locations. This may be due to the fact that design L2 collapses in on itself (i.e., it folds inwards) when a certain predetermined force is applied to it.
Study of Caps According to the Present Invention Formed of Various Materials
Four different cap materials were tested with the embodiment shown in FIGS. 1 to 4, (device L1) and the results are shown in table 4. Two types of silicone (of hardness 40 A and 60 A on the Shore Index) and two types of polyurethane (30 A and 50 A in the Shore Index) were used. Blood volume obtained upon lancing was measured and the pain was assessed for 32 participants. Each participant received two finger sticks with each cap design on the same finger of both hands for a total of eight finger sticks per participant. The blood volume was measured with calibrated capillary pipettes and the pain scale is given below table 4.
Success was defined as obtaining more than 1 μl of blood. As is shown in Table 4, blood volume with each type of cap was greater than 1 μl. Pain was barely noticeable with each material. Use of all but the silicone 60A resulted in a success rate greater than 90%. The greatest blood volume, highest pain rating and highest success rate was obtained with the silicone 40A cap. It will thus be appreciated by those skilled in the art that a variety of materials which are resiliently deformable can be used in caps according to the present invention.
Pain Scale:
0 = could not feel
2 = barely noticeable
4 = slightly painful
6 = somewhat painful
8 = painful
10 = very painful
Study of Lancet Adjustment Versus Needle Depth into the Dermal Tissue
Table 5 contains a graph illustrating the approximate needle depth penetration into the skin in millimeters versus the number of clicks (1-7) providing depth adjustment in a conventional lancing device fitted with a conventional rigid cap. The conventional lancing device employed in collecting the data of Table 5 was a Penlet® Plus lancing device, which is commercially available from LifeScan, Inc. of Milpitas, Calif., USA. Thus, point 404 illustrates that at depth setting 5, lancet penetration into the dermal tissue for the Penlet® Plus is 2 mm.
Table 5 also illustrates the variation in needle penetration (in millimeters) into the dermal tissue versus position of the retainer 6 relative to a fixed point on the lancet housing (for example, threaded portion 206 or rear housing portion 208). These data were collected for device L1 (
As will be appreciated by those skilled in the art, caps, lancet devices incorporating a cap and combined lancet and metering devices incorporating caps according to the present invention greatly facilitate the production of a fluid sample (e.g., a blood sample) at a puncture (lancing) site without requiring a subsequent squeezing/milking action. This facilitates in-situ testing of a fluid sample by means of a fluid collection device (such as a test strip) that is introduced at the puncture site just after a lancet has been retracted. Such a device allows the user to easily undertake two actions (i.e., placing a device over a suitable portion of dermal tissue and launching the device), thereby simplifying the collection of a sample and rending it more convenient for a user.
Referring to
Next, as set forth in step 420, the cap of the dermal tissue lancing device is contacted with the dermal tissue (e.g., dermal tissue of a fingertip, limb, abdomen or other site from which a fluid sample is to be collected) such that the at least first and second portions engage the dermal tissue.
The cap is then urged towards the dermal tissue such that the at least first and second portions deform resiliently and approach theretogether, as set forth in step 430. The approaching of the first and second portions, which may or may not occur in a synchronized fashion, creates a bulge in the dermal tissue. The urging together of the first and second portions can create the bulge by, for example, decreasing the size of the dermal tissue lancing device opening. Optionally, the cap can be held for a predetermined time period in such a way that a bulge is maintained in the dermal tissue (i.e., pre-lance pressure).
The bulge is then lanced, using the lancet, to create a puncture in the bulge, as set forth in step 440. Optionally, the cap can be held for a predetermined time period in such a way that a bulge is maintained in the dermal tissue subsequent to the lance (i.e., post-lance pressure). Preferred time duration for the post-lance pressure is approximately 5 seconds. A fluid sample is then collected from the puncture, as set forth in step 450. One skilled in the art will recognize that method 400 can be modified to employ any of cap, lancing device or combined lancing and metering device according to the present invention.
Cap 502 includes a retainer 510 and a flexible cap body 512. Retainer 510 has an inwardly facing recess 514 for receiving flexible cap body 512. Retainer 510 also has an inwardly protruding rim 516, and a base surface 518.
Flexible cap body 512 has an opening 520 configured to allow a lancet (not shown) to pass therethrough, an outer surface (rebate) 522, a lower rim 524 and an upper rim 526.
Retainer 510 rests on spring 504, which in turn rests on an upper housing (not shown) of lancing device 500. Inwardly protruding rim 516 of retainer 510 is configured to operatively cooperate (as described below) with outer surface 522 of flexible cap body 512. Lower rim 524 of flexible cap body 512 provides for contact between the flexible cap body 512 and base surface 518 of retainer 510.
During use of lancing device 500, upper rim 526 (also referred to as the distal end) of flexible cap body 512 is pushed against a target site (e.g., dermal tissue) by movement of the lancing device towards the target site, causing flexible main cap body 512 to compress and rotate about protruding rim 516 of retainer 510. Lower rim 524 (also referred to as the proximal end) of flexible cap body 512 slides outwards along base surface 518 of retainer 510. Meanwhile, upper rim 526 grips (or slides then grips) the target site, causing the target site to bulge. During compression, outer surface 522 travels over, and pivots with respect to, protruding rim 516 of retainer 510. In addition, during use, flexible cap body 512 travels within inwardly facing recess 514 in the direction of arrow “A”.
From the foregoing description, one skilled in the art will recognize that flexible cap body 512 of lancing device 500 can be considered as including two portions (i.e., first and second symmetric portions with one of the portions being depicted in
During use, there is a potential for caps to embodiments of the present invention to come into contact with blood or other bodily fluid. Such contact can conceivably lead to contamination of the cap with undesirable micro-organisms (e.g., bacteria or fungi). Therefore, it can be beneficial for caps according to embodiments of the present invention to be formed, at least partially, of an anti-microbial material, anti-fungal material and/or anti-viral material, for example, anti-microbial plastic, anti-microbial resin and/or anti-microbial silicone. Suitable anti-microbial materials include anti-microbial compounds that include trichloro-phenol group, such as 2,4,4-trichloro-2-hydroxy diphenol ether. The anti-microbial compound can be, for example, a coating of the cap or incorporated directly in the cap.
Theoretical Mechanical Analyses of an Exemplary Cap
Insight into the use (i.e., compressive operation) of caps according to embodiments of the present invention was obtained through a theoretical mechanical analysis of an exemplary cap configuration.
Cap 702 has six sides, 712, 714, 716, 718, 720 and 722. In addition, the internal angles of the cross section of cap 702 are shown as angles p, q, r, s, t and u. Furthermore, the angle between sides 712 and 716 is angle α, while the angle between side 716 and RS2 is angle β. Angle α and angle β determine the final position of cap 702 after compression. For example, a relatively small angle α can result in cap 702 moving further from point B upon compression than would be the case with a relatively large angle α.
In the positioning of
Since caps are generally not compressed between two parallel rigid plates during use, one skilled in the art will recognize the above analysis, and related
It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
Number | Date | Country | |
---|---|---|---|
60426683 | Nov 2002 | US |