Engines operating on gaseous fuels, such as natural gas, are commonly supplied with a lean fuel mixture, which is a mixture of air and fuel containing excess air beyond that which is stoichiometric for combustion. In some engines, multiple chambers within the igniter plug can allow more efficient combustion of lean fuel mixtures. However, bulk flow and turbulence in the vicinity of the flame kernel can tend to extinguish the flame kernel. Bulk flow and turbulence can increase the chance of misfires or failed ignition events. In some cases, electrode quenching can be a problem for combustion stability when using lean mixtures with a prechamber-type igniter plug.
Like reference symbols in the various drawings indicate like elements.
The concepts herein relate to igniting an air/fuel mixture in a combustion chamber of an engine using an igniter with a shielding cap.
The example internal combustion engine 100 includes an intake passage 108 with intake valve 110 and an exhaust passage 112 with exhaust valve 114. The passages 108, 112 are in the head 102 adjacent to the combustion chamber 106, and the valves 110, 114 form part of the walls of the combustion chamber 106. During engine operation, the intake valve 110 opens to let a fresh charge of air/fuel mixture flow from the intake passage 108 into the combustion chamber 106. In other instances, the intake valve 110 admits only air and an in-combustion chamber fuel injector admits fuel to form the air/fuel mixture in the combustion chamber 106. After combustion, the exhaust valve 114 opens to exhaust combustion residuals out of the combustion chamber 106 and into the exhaust passage 112. Although the concepts herein are described herein with respect to a reciprocating internal combustion engine, the concepts could be applied to other internal combustion engine configurations.
The example internal combustion engine 100 includes an example carrier 116 and an igniter plug 123. The carrier 116 is located in the head 102 and is threadingly and/or otherwise coupled to the head 102. In some instances, the carrier 116 can extend into the combustion chamber 106, be flush with a wall of combustion chamber 106, or be recessed from a wall of combustion chamber 106. The example igniter plug 123 is received inside the example carrier 116 and is coupled to the carrier 116 threadingly and/or otherwise. The carrier 116 thus defines an outer enclosure around the igniter plug 123.
The igniter plug 123 is a device configured to initiate a flame kernel to ignite the charge in the combustion chamber 106, such as a spark plug, laser igniter, and/or other type of igniter. The igniter plug 123 resides generally around a center longitudinal axis. The example igniter plug 123 includes a first ignition body and a second ignition body adjacent the first ignition body to define a flame kernel initiation gap. In some cases, the first ignition body and second ignition body are centered about the center longitudinal axis. The example igniter plug 123 includes a plug body 124 and an example shielding cap 130 at the end of the plug body 124. The cap 130 is a body that shields the flame kernel initiation gap from air/fuel mixture flows directed generally in the direction of the center longitudinal axis that would otherwise impinge on the gap and tend to extinguish the flame kernel.
The example igniter plug 123 and carrier 116 of
The example carrier 116 includes diverging jet apertures 118. The jet apertures 118 include external ends, which terminate at the exterior of the carrier 116 and are nominally located inside the combustion chamber 106. The internal ends of the jet apertures 118 converge to a central passage 126 that opens into the antechamber 120 through the internal nozzle portion 128. The jet apertures 118 can number one or more and can be located on the carrier 116 in a symmetric or asymmetric pattern, diverging from the central passage 126. In some cases, at least one of the jet apertures 118 is parallel (precisely or substantially) to the center longitudinal axis or perpendicular (precisely or substantially) to the center longitudinal axis. In some cases, one of the jet apertures 118 coincides with the center longitudinal axis. In some cases, at least one of the jet apertures 118 are not parallel or perpendicular to the center longitudinal axis. The jet apertures 118 allow charge, flame, and residuals to flow between the antechamber 120 and the combustion chamber 106. The jet apertures 118 and central passage 126 operate as jet passages to nozzle combusting air/fuel mixture from the antechamber 120 into divergent flame jets that reach into the combustion chamber 106 and ignite the charge in the combustion chamber 106. The jet apertures 118 and central passage 126 also direct fresh air/fuel mixture from the combustion chamber 106 into the igniter plug body 124. The central passage 126 directs the flow into a consolidated stream through the internal nozzle portion 128 along the center of the antechamber 120 toward the igniter plug 123.
In operation of the engine 100, the compressive action of the piston 104 forces a portion of the cool (relative to residual combustion gasses), fresh air/fuel mixture to flow from the combustion chamber 106 into the central passage 126 through the jet apertures 118. The central passage 126 receives the incoming air/fuel mixture, converges air/fuel mixture into a consolidated stream, and directs the flow into the internal nozzle portion 128 of the antechamber 120. The internal nozzle portion 128 nozzles the incoming cool, fresh charge into a central high-velocity consolidated stream primarily directed toward the cap 130 of the igniter plug 123. The antechamber 120 receives all of its air/fuel mixture from the main combustion chamber 106. In other instances, the antechamber 120 can have a fuel feed that supplies a portion of the received fuel or air/fuel mixture into the antechamber 120.
The cap 130 is configured to shield the flame kernel initiation gap from incoming longitudinal flow.
The cap 130 provides a transverse shielding surface. The cap 130 has a radial 132 that extends radially from the center of the cap 130 to the perimeter of the cap 130. In some implementations, the cap 130 has a frustoconical shape with a radial 132 perpendicular (precisely or substantially) to the center longitudinal axis. In some implementations, the radial 132 of cap 130 is at a non-zero, non-90 degree angle with respect to the center longitudinal axis. The cap 130 can also have a disc shape, dome shape, cylindrical shape, conical shape, prismatic shape, polyhedral shape, irregular shape, or another shape or combination of shapes. In some implementations, the cap 130 is not apertured. In some cases, the transverse diameter D1 (an example shown in
In some cases, the cap 130 is shaped to generate, re-enforce, or enhance the incoming flow of air/fuel mixture to be aerodynamically directed lateral to the center longitudinal axis. The incoming air/fuel mixture can be redirected from the cap 130 laterally into the antechamber 120. A portion of the redirected air/fuel mixture enters the region around the flame kernel initiation gap 135 through peripheral opening 139 (described below), where it is ignited. Another portion of the redirected air/fuel mixture can circulate in a toroidal vortex around the outer perimeter of the antechamber 120. For example, the antechamber 120 walls can guide the circulating flow to re-enter the flow from the internal nozzle portion 128 orthogonally (precisely and/or substantially) to the primary direction of flow or generally in the primary direction of the flow from the internal nozzle portion 128 (i.e., not counter to the primary direction of flow). Recombining the flow in this manner does not substantially counter the incoming flow, and thus substantially maintains the flow velocity from the internal nozzle portion 128 to the igniter plug 123 that sweeps residuals in front of the igniter plug 123. The resulting circulation creates a toroidal vortex of flow in the antechamber 120 that provides a controlled degree of turbulence within the antechamber 120. The turbulence from the circulating flow sweeps the flame out of the flame initiation region and into the antechamber 120 to mix in the antechamber 120 and ignite the air/fuel mixture in the antechamber 120. Also, as the central flow and the vortex flow meet, the mixing of the flows creates turbulence which can accelerate combustion. Finally, the toroidal vortex confines residual combustion gasses within the circulation in the antechamber 120, away from the flame kernel initiation gap 135.
The example support 137 connecting the cap 130 to the plug body 124 includes two legs 138a-b extending between the cap 130 and the plug body 124. The example legs 138a-b are radially offset from the center longitudinal axis. In other implementations, the support 137 can include another number of legs, e.g., one leg, three legs, six legs, or another number. In some implementations, the support 137 includes multiple radially offset legs. For example, the support 137 can include multiple legs which are circumferentially spaced apart. In some implementations, different legs can have different positions or shapes. For example, the legs can be spaced evenly apart or have different spacings between adjacent legs. Different legs can also be connected to the cap 130 and/or the plug body 124 at different radial positions. A leg can be curved, angled, straight, or have an irregular shape. A leg can be parallel (precisely or substantially) to the center longitudinal axis or angled with respect to the center longitudinal axis.
The support 137 defines a peripheral opening 139 around a perimeter of the cap 130. For example, the support 137 shown in
The example ignition system 250 shown in
A number of examples have been described. Nevertheless, it will be understood that various modifications may be made. Accordingly, other examples are within the scope of the following claims.
This application is a continuation of and claims the benefit of priority to U.S. patent application Ser. No. 14/664,431, filed on Mar. 20, 2015, the contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
892296 | Oberhansli | Jun 1908 | A |
1009867 | Terry | Nov 1911 | A |
1242375 | Robinson | Oct 1917 | A |
1253570 | Berry | Jan 1918 | A |
1320115 | Bloomhuff et al. | Oct 1919 | A |
1322493 | Little | Nov 1919 | A |
1325439 | Dinger | Dec 1919 | A |
1360294 | Hill | Nov 1920 | A |
1361347 | Nighswander | Dec 1920 | A |
1361580 | Herz | Dec 1920 | A |
1538750 | Scognamillo | May 1925 | A |
1594773 | French | Aug 1926 | A |
1596240 | Dikeman | Aug 1926 | A |
1611856 | Farnsworth | Dec 1926 | A |
1700603 | Vreeland et al. | Jan 1929 | A |
1732827 | Adam | Oct 1929 | A |
1748338 | Georgias | Feb 1930 | A |
1963801 | O'Marra | Jun 1934 | A |
2047575 | Burtnett | Jul 1936 | A |
2127513 | Harper, Jr. | Aug 1938 | A |
2153598 | Steward | Apr 1939 | A |
2208030 | Holmes | Jul 1940 | A |
2231173 | Starr | Feb 1941 | A |
2299924 | Ost | Oct 1942 | A |
2314128 | Coldwell | Mar 1943 | A |
2416107 | Litton | Feb 1947 | A |
2456080 | Wu Pe | Dec 1948 | A |
2487535 | Fernandez | Nov 1949 | A |
2497862 | Chuy | Feb 1950 | A |
2509538 | Sues | May 1950 | A |
2586864 | Rose | Feb 1952 | A |
2614546 | Schwarz | Oct 1952 | A |
2673554 | Thaheld | Mar 1954 | A |
2758576 | Schlamann | Aug 1956 | A |
2776394 | Cuny et al. | Jan 1957 | A |
2843780 | Harper, Jr. | Jul 1958 | A |
2895069 | Davis | Jul 1959 | A |
2899585 | Dollenberg | Aug 1959 | A |
2957099 | Dutterer | Oct 1960 | A |
3230939 | Abramovich | Jan 1966 | A |
3270722 | Springer | Sep 1966 | A |
3300672 | Fisher | Jan 1967 | A |
3665902 | Bloomfield | May 1972 | A |
3710764 | Jozlin | Jan 1973 | A |
3718425 | Weyl et al. | Feb 1973 | A |
3911874 | Vincent | Oct 1975 | A |
3911878 | Hofbauer et al. | Oct 1975 | A |
3958144 | Franks | May 1976 | A |
4004413 | Ueno | Jan 1977 | A |
4091772 | Heater | May 1978 | A |
4092558 | Yamada | May 1978 | A |
4096832 | Casull | Jun 1978 | A |
4098232 | Gleiter | Jul 1978 | A |
4123998 | Heintzelman | Nov 1978 | A |
4124000 | Genslak | Nov 1978 | A |
4125094 | Noguchi et al. | Nov 1978 | A |
4143627 | Noguchi | Mar 1979 | A |
4170968 | Noguchi | Oct 1979 | A |
4218993 | Blackburn | Aug 1980 | A |
4232638 | Takahashi | Nov 1980 | A |
4242990 | Scherenberg | Jan 1981 | A |
4248189 | Barber et al. | Feb 1981 | A |
4248192 | Lampard | Feb 1981 | A |
4372264 | Trucco | Feb 1983 | A |
4398513 | Tanasawa | Aug 1983 | A |
4406260 | Burley | Sep 1983 | A |
4416228 | Benedikt et al. | Nov 1983 | A |
4424780 | Trucco | Jan 1984 | A |
4429669 | Burley | Feb 1984 | A |
4441469 | Wilke | Apr 1984 | A |
4452189 | Latsch et al. | Jun 1984 | A |
4490122 | Tromeur | Dec 1984 | A |
4509476 | Breuser et al. | Apr 1985 | A |
4532899 | Lorts | Aug 1985 | A |
4612888 | Ishida | Sep 1986 | A |
4641616 | Lampard | Feb 1987 | A |
4646695 | Blackburn | Mar 1987 | A |
4744341 | Hareyama et al. | May 1988 | A |
4765293 | Gonzalez | Aug 1988 | A |
4795937 | Wagner et al. | Jan 1989 | A |
4854281 | Hareyama et al. | Aug 1989 | A |
4901688 | Kashiwara et al. | Feb 1990 | A |
4930473 | Dietrich | Jun 1990 | A |
4963784 | Niessner | Oct 1990 | A |
4987868 | Richardson | Jan 1991 | A |
5014656 | Leptich et al. | May 1991 | A |
5051651 | Kashiwara et al. | Sep 1991 | A |
5067458 | Bailey | Nov 1991 | A |
5076229 | Stanley | Dec 1991 | A |
5085189 | Huang | Feb 1992 | A |
5091672 | Below | Feb 1992 | A |
5105780 | Richardson | Apr 1992 | A |
5107168 | Friedrich et al. | Apr 1992 | A |
5222993 | Crane | Jun 1993 | A |
5224450 | Paul et al. | Jul 1993 | A |
5239959 | Loth et al. | Aug 1993 | A |
5245963 | Sabol et al. | Sep 1993 | A |
5271365 | Oppenheim | Dec 1993 | A |
5369328 | Gruber et al. | Nov 1994 | A |
5408961 | Smith | Apr 1995 | A |
5421300 | Durling et al. | Jun 1995 | A |
5430346 | Johnson | Jul 1995 | A |
5454356 | Kawamura | Oct 1995 | A |
5554908 | Kuhnert et al. | Sep 1996 | A |
5555862 | Tozzi | Sep 1996 | A |
5555867 | Freen | Sep 1996 | A |
5555868 | Neumann | Sep 1996 | A |
5560326 | Merritt | Oct 1996 | A |
5612586 | Benedikt et al. | Mar 1997 | A |
5619959 | Tozzi | Apr 1997 | A |
5623179 | Buhl | Apr 1997 | A |
5632253 | Paul et al. | May 1997 | A |
5647444 | Williams | Jul 1997 | A |
5662181 | Williams et al. | Sep 1997 | A |
5678517 | Chen | Oct 1997 | A |
5715788 | Tarr | Feb 1998 | A |
5791374 | Black et al. | Aug 1998 | A |
5799637 | Cifuni | Sep 1998 | A |
5803026 | Merritt | Sep 1998 | A |
5821675 | Suzuki | Oct 1998 | A |
5829407 | Watson | Nov 1998 | A |
5892319 | Rossi | Apr 1999 | A |
5947076 | Srinivasan et al. | Sep 1999 | A |
6013973 | Sato | Jan 2000 | A |
6060822 | Krupa et al. | May 2000 | A |
6064144 | Knoll et al. | May 2000 | A |
6095111 | Ueda | Aug 2000 | A |
1962496 | Uitenbroek | Oct 2000 | A |
6129152 | Hosie et al. | Oct 2000 | A |
6130498 | Shimizu et al. | Oct 2000 | A |
6198209 | Baldwin et al. | Mar 2001 | B1 |
6279550 | Bryant | Aug 2001 | B1 |
6302067 | Merritt | Oct 2001 | B1 |
6305346 | Ueda et al. | Oct 2001 | B1 |
6318335 | Tomczyk | Nov 2001 | B2 |
6326719 | Boehler et al. | Dec 2001 | B1 |
6340013 | Britton | Jan 2002 | B1 |
6460506 | Nevinger | Oct 2002 | B1 |
6463890 | Chomiak | Oct 2002 | B1 |
6495948 | Garret, III | Dec 2002 | B1 |
6554016 | Kinder | Apr 2003 | B2 |
6574961 | Shiraishi | Jun 2003 | B2 |
6595182 | Oprea | Jul 2003 | B2 |
6611083 | LaBarge et al. | Aug 2003 | B2 |
6670740 | Landon, Jr. | Dec 2003 | B2 |
6749172 | Kinder | Jun 2004 | B2 |
6830017 | Wolf et al. | Dec 2004 | B2 |
6913092 | Bourgoyne et al. | Jul 2005 | B2 |
7004444 | Kinder | Feb 2006 | B2 |
7007661 | Warlick | Mar 2006 | B2 |
7007913 | Kinder | Mar 2006 | B2 |
7025036 | Lampard | Apr 2006 | B2 |
7086376 | McKay | Aug 2006 | B2 |
7100567 | Bailey et al. | Sep 2006 | B1 |
7104245 | Robinet et al. | Sep 2006 | B2 |
7367307 | Lampard | May 2008 | B2 |
7370626 | Schubert | May 2008 | B2 |
7408293 | Francesconi et al. | Aug 2008 | B2 |
7409933 | Nino | Aug 2008 | B2 |
7438043 | Shiraishi | Oct 2008 | B2 |
7615914 | Francesconi et al. | Nov 2009 | B2 |
7628130 | Johng | Dec 2009 | B2 |
7659655 | Tozzi et al. | Feb 2010 | B2 |
7743753 | Fiveland | Jun 2010 | B2 |
7762320 | Williams | Jul 2010 | B2 |
7848871 | Onishi | Dec 2010 | B2 |
7856956 | Inoue et al. | Dec 2010 | B2 |
7891426 | Williams | Feb 2011 | B2 |
7922551 | Tozzi | Apr 2011 | B2 |
7950364 | Nerheim | May 2011 | B2 |
8033335 | Orbell et al. | Oct 2011 | B2 |
8143772 | Francesconi | Mar 2012 | B2 |
8181617 | Kuhnert et al. | May 2012 | B2 |
8261711 | Shimoda | Sep 2012 | B2 |
8286734 | Hannegan et al. | Oct 2012 | B2 |
8313324 | Bulat et al. | Nov 2012 | B2 |
8322432 | Bailey et al. | Dec 2012 | B2 |
8353337 | Bailey et al. | Jan 2013 | B2 |
8387587 | Ogata | Mar 2013 | B2 |
8499854 | Mitchell et al. | Aug 2013 | B2 |
8584648 | Chiera et al. | Nov 2013 | B2 |
8733331 | McAlister | May 2014 | B2 |
8757129 | Hill | Jun 2014 | B1 |
8800536 | Plata | Aug 2014 | B2 |
8839762 | Chiera et al. | Sep 2014 | B1 |
8857405 | Attard | Oct 2014 | B2 |
8890396 | Ernst | Nov 2014 | B2 |
8924136 | Nakamoto | Dec 2014 | B2 |
8925518 | Riley | Jan 2015 | B1 |
9172216 | Ernst | Oct 2015 | B2 |
20030196634 | Lausch | Oct 2003 | A1 |
20040061421 | Morita et al. | Apr 2004 | A1 |
20040100179 | Boley et al. | May 2004 | A1 |
20040123849 | Bryant | Jul 2004 | A1 |
20040177837 | Bryant | Sep 2004 | A1 |
20050000484 | Schultz et al. | Jan 2005 | A1 |
20050092285 | Klonis et al. | May 2005 | A1 |
20050172929 | Strauss | Aug 2005 | A1 |
20050211217 | Boley et al. | Sep 2005 | A1 |
20050224606 | Dingle | Oct 2005 | A1 |
20050279321 | Crawford | Dec 2005 | A1 |
20060005803 | Robinet et al. | Jan 2006 | A1 |
20060278195 | Hotta | Dec 2006 | A1 |
20070069617 | Tozzi et al. | Mar 2007 | A1 |
20070151540 | Takahashi et al. | Jul 2007 | A1 |
20070169737 | Gong et al. | Jul 2007 | A1 |
20070236122 | Borror | Oct 2007 | A1 |
20070261672 | Lippert | Nov 2007 | A1 |
20080017165 | Schubert | Jan 2008 | A1 |
20080168963 | Gagliano | Jul 2008 | A1 |
20080257301 | Hotta | Oct 2008 | A1 |
20090236144 | Todd et al. | Sep 2009 | A1 |
20090241896 | Fiveland | Oct 2009 | A1 |
20090309475 | Tozzi | Dec 2009 | A1 |
20100132660 | Nerheim | Jun 2010 | A1 |
20100133977 | Kato | Jun 2010 | A1 |
20100147259 | Kuhnert et al. | Jun 2010 | A1 |
20100192909 | Ikeda | Aug 2010 | A1 |
20110036638 | Sokol et al. | Feb 2011 | A1 |
20110062850 | Tozzi | Mar 2011 | A1 |
20110065350 | Burke | Mar 2011 | A1 |
20110089803 | Francesconi | Apr 2011 | A1 |
20110148274 | Ernst | Jun 2011 | A1 |
20110297121 | Kraus et al. | Dec 2011 | A1 |
20110308489 | Herden | Dec 2011 | A1 |
20110320108 | Morinaga | Dec 2011 | A1 |
20120000664 | Nas et al. | Jan 2012 | A1 |
20120013133 | Rios, III et al. | Jan 2012 | A1 |
20120064465 | Borissov et al. | Mar 2012 | A1 |
20120103302 | Attard | May 2012 | A1 |
20120118262 | Johnson | May 2012 | A1 |
20120125279 | Hampson et al. | May 2012 | A1 |
20120125287 | Chiera et al. | May 2012 | A1 |
20120125636 | Linde et al. | May 2012 | A1 |
20120299459 | Sakakura | Nov 2012 | A1 |
20120310510 | Imamura | Dec 2012 | A1 |
20130000598 | Tokuoka | Jan 2013 | A1 |
20130042834 | Chiera et al. | Feb 2013 | A9 |
20130047954 | McAlister | Feb 2013 | A1 |
20130055986 | Tozzi et al. | Mar 2013 | A1 |
20130099653 | Ernst | Apr 2013 | A1 |
20130139784 | Pierz | Jun 2013 | A1 |
20130160734 | Redtenbacher et al. | Jun 2013 | A1 |
20130179050 | Munshi | Jul 2013 | A1 |
20130192896 | Bailey et al. | Aug 2013 | A1 |
20130206122 | Chiera et al. | Aug 2013 | A1 |
20130220269 | Woo et al. | Aug 2013 | A1 |
20140026846 | Johnson | Jan 2014 | A1 |
20140076274 | Tozzi et al. | Mar 2014 | A1 |
20140083391 | Gruber | Mar 2014 | A1 |
20140102404 | Sotiropoulou et al. | Apr 2014 | A1 |
20140137840 | McAlister | May 2014 | A1 |
20140144406 | Schock | May 2014 | A1 |
20140165980 | Chiera et al. | Jun 2014 | A1 |
20140190437 | Chiera et al. | Jul 2014 | A1 |
20140209057 | Pouring | Jul 2014 | A1 |
20140261294 | Thomassin | Sep 2014 | A1 |
20150020769 | Huang | Jan 2015 | A1 |
20150040845 | Chiera et al. | Feb 2015 | A1 |
20150068489 | Bunce | Mar 2015 | A1 |
20150075506 | Ishida | Mar 2015 | A1 |
20150128898 | Osaka | May 2015 | A1 |
20150260131 | Riley | Sep 2015 | A1 |
20150267631 | Miyamoto | Sep 2015 | A1 |
20150354481 | Geckler | Dec 2015 | A1 |
20160010538 | Suzuki | Jan 2016 | A1 |
20160017845 | Huang | Jan 2016 | A1 |
20160024994 | Engineer | Jan 2016 | A1 |
20160047323 | Suzuki | Feb 2016 | A1 |
20160053668 | Loetz | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
410007 | Jan 2003 | AT |
509876 | Dec 2011 | AT |
1010329 | May 1977 | CA |
2320415 | Mar 2001 | CA |
2825995 | Oct 2006 | CN |
31 20 007 | Dec 1982 | DE |
3230793 | Feb 1984 | DE |
3913665 | Oct 1990 | DE |
4422939 | Jan 1996 | DE |
19624965 | Jan 1998 | DE |
10143209 | Jun 2002 | DE |
101 44 976 | Apr 2003 | DE |
102010004851 | Jun 2011 | DE |
102011006597 | Mar 2012 | DE |
102012021842 | Sep 2014 | DE |
0216027 | Apr 1987 | EP |
0 675 272 | Oct 1995 | EP |
0971107 | Jan 2000 | EP |
1026800 | Aug 2000 | EP |
1028506 | Aug 2000 | EP |
0937196 | Sep 2000 | EP |
1265329 | Dec 2002 | EP |
1556592 | Oct 2003 | EP |
1556932 | Jul 2005 | EP |
1701419 | Sep 2006 | EP |
121759 | Mar 2011 | FI |
122501 | Feb 2012 | FI |
577766 | Sep 1924 | FR |
764079 | May 1934 | FR |
985788 | Jul 1951 | FR |
2071129 | Sep 1971 | FR |
2131938 | Nov 1972 | FR |
2131938 | Aug 1979 | FR |
2846042 | Apr 2004 | FR |
588074 | May 1947 | GB |
50077738 | Jun 1975 | JP |
S5252013 | Apr 1977 | JP |
57-018283 | Jan 1982 | JP |
58162719 | Sep 1983 | JP |
H02148588 | Dec 1990 | JP |
03-011575 | Jan 1992 | JP |
4133281 | May 1992 | JP |
4262388 | Sep 1992 | JP |
08-260970 | Oct 1996 | JP |
09166024 | Jun 1997 | JP |
2008-504649 | Feb 2006 | JP |
2116474 | Jul 1998 | RU |
968493 | Oct 1982 | SU |
1370269 | Jan 1988 | SU |
WO 198707777 | Dec 1987 | WO |
WO 199106142 | May 1991 | WO |
WO 199202718 | Feb 1992 | WO |
WO 2004036013 | Apr 2004 | WO |
WO 2004036709 | Apr 2004 | WO |
WO 2004107518 | Dec 2004 | WO |
WO 2006011950 | Feb 2006 | WO |
WO 2009060119 | May 2009 | WO |
WO 2009109694 | Sep 2009 | WO |
WO 2009130376 | Oct 2009 | WO |
WO 2010072519 | Jul 2010 | WO |
WO 2011031136 | Mar 2011 | WO |
WO 2011085853 | Jul 2011 | WO |
WO 2011101541 | Aug 2011 | WO |
WO 2011128190 | Oct 2011 | WO |
WO 2011151035 | Dec 2011 | WO |
WO 201221914 | Feb 2012 | WO |
WO 2012091739 | Jul 2012 | WO |
WO2014201030 | Dec 2014 | WO |
Entry |
---|
Fino Scholl et al., “Development and Analysis of a Controlled Hot Surface Ignition System for Lean Burn Gas Engines” Proceedings of the ASME 2012 Internal Combustion Engine Division Spring Technical Conference ICES2012, May 6-9, 2012 (12 pages). |
Sachin Joshi et al., “On Comparative Performance Testing of Prechamber and Open Chamber Laser Ignition” Journal of Engineering for Gas Turbines and Power, Dec. 2011, vol. 133, pp. 122801-1 to 122801-5. |
McIntyre, Dustin L., et al., “Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-Switched Laser Spark Plug” U.S. Department of Energy, National Energy Technology Laboratory, 2008, 14 pages. |
Dale, J.D. et al., “Enhanced Ignition for I. C. Engines With Premixed Charge,” Lawrence Berkeley Laboratory, Society of Automotive Engineers Annual Congress, Oct. 1980, 52 pages. |
“New Spark Plug Concepts for Modern-Day Gasoline Engines,” Beru Aktiengesellschaft, MTZ vol. 68, Feb. 2007, 8 pages. |
BorgWarner BERU Systems Pre-Chamber Technology, 1 page. |
BorgWarner BERU Systems, BERU Industrial Spark Plugs, Feb. 2012, 48 pages. |
Maria-Emmanuella McCoole, M.Sc.E.E. et al.; Solutions for Improving Spark Plug Life in High Efficiency, High Power Density, Natural Gas Engines; Proceedings of ICES2006; ASME Internal Combustion Engine Division 2006 Spring Technical Conference; May 8-10, 2006, Aachen, Germany; ICES2006-1417; pp. 1-8. |
Dr. Luigi Tozzi et al.; Advanced Combustion System Solutions for Increasing Thermal Efficiency in Natural Gas Engines While Meeting Future Demand for Low NOx Emissions; Proceedings of JRCICE2007; 2007 ASME/IEEE Joint Rail Conference & Internal Combustion Engine Spring Technical Conference; Mar. 13-16, 2006, Pueblo, Colorado USA; JRCICE2007-40026; pp. 1-7. |
Jessica Adair et al; Knock Characterization Using Ionization Detection; GMRC Gas Machinery Conference; Oklahoma City, Oklahoma; Oct. 2006; pp. 1-23. |
Hironori Osamura, Development of Long Life and High Ignitability iridium Spark Plug, Technical Paper, Seou1 2000 FISITA World Automotive Congress; Jun. 12-15, 2000 Seoul, Korea; 6 pages. |
Hironori Osamura, Development of New Iridium Alloy for Spark Plug Electrodes; SAE Technical Paper Series; 1999-01-0796; SI Engine Components and Technology (SP-1437); International Congress and Exposition Mar. 1-4, 1999; 14 pages. |
“Wartsila 34SG Engine Technology for Compressor Drive,” Wartsila Engines, Wartsila Corporation 2009, 16 pages. |
Federal Mogul, Champion® Bridge Iridium Spark Plug, Industrial Gas Stationary Engines—High Demand/Premium Market, Jun. 2012, 1 page. |
Bosch, Spark Plugs Technical Information, published on or before Nov. 28, 2014, 28 pages. |
Written Opinion of the International Preliminary Examining Authority issued in International Application No. PCT/US2016/022559 dated Mar. 7, 2017; 5 pages. |
International Preliminary Report on Patentability issued in International Application No. PCT/US2016/022559 dated Jul. 28, 2017; 18 pages. |
PCT International Search Report and Written Opinion of the International Searching Authority, PCT/US2016/022559, dated Jun. 24, 2016, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20170163012 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14664431 | Mar 2015 | US |
Child | 15439552 | US |