An embodiment of the present invention relates to a lamp with a cap, a socket device, and a luminaire capable of handling the control of dimming or the like.
In the related art, compact fluorescent lamps having a flat, thin structure suitable for narrow spaces, such as lighting for showcases or under-shelf lights, have been used. In recent years, in place of the fluorescent lamps, an LED lamp with a cap having a flat, thin structure, which adopts a light-emitting diode, which is a solid state light-emitting device having a long life and low power consumption, as a light source, has been suggested.
This kind of LED lamp generally has a GX53 type cap and is mounted so as to be attachable to and detachable from a socket device capable of connecting the cap, thus configuring a luminaire. Meanwhile, in this kind of LED lamp, there is a demand for a lamp with a cap and a socket device capable of handling the control of the dimming or the like. In order to stably perform such control, there is a problem regarding how to configure the lamp so that the signal line is not easily influenced by noise from a power source line connected to the socket device. In addition, at the same time, there is a problem regarding how to simplify the wiring of the power source line and the signal line so as not to obstruct the miniaturization of the lamp, the socket device and the luminaire.
The present invention has been made in view of the above problems, and an object thereof is to provide a lamp with a cap, a socket device, and a luminaire which reduce the influence of noise.
A lamp with a cap in an embodiment of the present invention includes a lamp main body which has engaging means mounted so as to be attachable to and detachable from a socket device, and a light-emitting portion is accommodated in the lamp main body. A control device, which lights and controls the light-emitting portion, is accommodated in the lamp main body. A cap member for a power source to be connected to the control device is situated to be adjacent to one side with the engaging means interposed therebetween, and is disposed on a circular track on the lamp main body. A cap member for signaling connected to the control device is situated to be adjacent to the other side with the engaging means interposed therebetween, and is disposed in the circumferential direction of the lamp main body. Moreover, the lamp with the cap includes a thermal conductor which comes into contact with a thermal radiator in the state of being mounted on the socket device.
Furthermore, a socket device in another embodiment of the present invention includes a socket main body having engaging means on which the lamp with the cap is mounted in an attachable and detachable manner. A terminal member for a power source, to which the cap member for the power source of the lamp with the cap is connected, is situated to be adjacent to one side with the engaging means interposed therebetween, and is disposed in the circumferential direction of the socket main body. A terminal member for signaling, to which the cap member for signaling of the lamp with the cap is connected, is situated to be adjacent to the other side with the engaging means interposed therebetween, and is disposed on a circular track of the socket main body.
According to an embodiment of the present invention, it is possible to provide a lamp with a cap, a socket device and a luminaire which reduce the influence of noise.
Hereinafter, embodiments of a lamp with a cap, a socket device, and a luminaire will be described.
Firstly, a configuration of the lamp with the cap will be described. The lamp with the cap of the present embodiment constitutes a lamp with a cap 10 of a flat thin structure provided with a pin-shaped cap member, and, as shown in
The lamp main body 11 forms a dish shape which has a plane shape having a transverse cross-section of a substantial circular shape and is formed of a metal having satisfactory thermal conductivity, in the present embodiment, aluminum, so as to increase the thermal radiation properties. The opening portion 11a of one end portion side is integrally formed with a substrate support portion 11b forming a circular concave step portion. The substrate support portion is formed so that the bottom surface of the concave step portion is a flat surface, and a convex portion 11c forming a ring shape is integrally formed around the substrate support portion. Furthermore, the other end portion side of the lamp main body 11 is integrally formed with a cylindrical protrusion portion 11e in which an inner portion thereof is a concave fitting portion so that an annular support step portion 11d is formed on an outer bottom surface. A thermal conduction surface 11g as a thermal conductor in the present invention formed on the outer bottom surface of the protrusion portion 11e is formed on the flat surface so as to thermally adhere to and support the thermal radiator 34 of the luminaire side. As a result, the lamp main body 11 is projected from a middle portion surrounded by the cap member for power source 14 and the cap member 15 for signaling described later and has a protrusion portion 11e mounted on the socket device 21, and the thermal radiator 34 of the luminaire side comes into surface-contact with the protrusion portion 11e mounted on the socket device 21.
Furthermore, the protrusion size of the protrusion portion 11e is formed to be greater than a hole depth size of a support hole 21a of the socket main body 21 described later, and when mounting the lamp main body 11 to the socket main body 21, the thermal conduction surface 11g of the end surface of the protrusion 11e is configured so as to be projected from the support hole 21a. In addition, by interposing a thermal transmission sheet such as a silicone resin on the plane of the thermal conduction surface 11g of the end surface of the protrusion portion 11e so as to effectively conduct heat from the LED, the thermal radiation effect can be further increased.
Engaging means 11f is formed on the outer peripheral surface of the protrusion portion 11e. The engaging means is means for being mounted on engaging means 21a1 provided in the socket device 20 described later in an attachable and detachable manner, and is formed by integrally projecting the engaging means of the lamp with the cap 10 to the outer peripheral surface of the protrusion portion 11e, in the present embodiment (hereinafter, the engaging means 11f of the lamp with the cap is called an “engaging protrusion 11f”).
As shown in
The light-emitting portion 12 includes the solid state light-emitting device 12a and the substrate 12b with the solid state light-emitting device 12a mounted thereon. The solid state light-emitting device is constituted by a light-emitting diode (hereinafter, referred to as a “LED 12a”) in the present embodiment, and includes a plurality of, in the present embodiment, six SMD type LEDs. In addition, the LED may be a so-called COB form of a type which emits white (including a neutral white, a daylight color, and a bulb color) by a plurality of LED chips and a phosphor excited by the LED chips.
The substrate 12b is formed of a metal having satisfactory thermal conductivity, in the present embodiment, aluminum forming a thin circular plate shape of a flat plate shape, the surface thereof (an upper surface in
The light-emitting portion 12 configured as above draws the electric insulation in the substrate support portion 11b formed on one end portion side of the main body 11, is disposed so as to adhere thereto, and adhere to and is fixed to the bottom surface of the substrate support portion 11b forming the flat surface via the electric insulation sheet or the like (not shown) formed of the silicone resin or the like as necessary using the fixing means 12c such as a screw.
As a result, the light-emitting portion 12 is accommodated on one end portion side of the lamp main body 11, the back of the substrate 12b reliably adheres to the substrate support portion 11b of the lamp main body 11, and the substrate 12b is formed of aluminum having satisfactory thermal conductivity, whereby it is possible to effectively transmit and radiate heat generated from the LED 12a to the lamp main body 11 formed of aluminum. With such configurations, an optical axis y-y of the light-emitting portion 12 constituted by the substrate 12b with the six LEDs 12a mounted thereon substantially mates with the center axis x-x of the lamp main body 11, and the light source portion having a substantially circular light-emitting surface when viewed from the upper surface as a whole is constituted.
As shown in the circuit block diagram of
In addition, in the present embodiment, the electronic component 13c is accommodated in the lamp main body 11 as below. That is, the component involving the heating, for example, a switching transistor 13c1 is separated from the circuit board 13d by the lead wire, and is accommodated in the inner bottom surface of the lamp main body 11 in the adhering state. Furthermore, a relatively large lead component, for example, a current transformer 13c2 is accommodated in a concave fitting portion formed by the protrusion portion 11e of the lamp main body. As a result, heat of the switching transistor 13c1 involving the heating is radiated from the lamp main body 11 formed of aluminum to the outside, and the temperature rise is suppressed. Simultaneously, the large component is accommodated in the protrusion portion 11e, that is, in the concave fitting portion, thereby forming the flat and thin type structure of the lamp main body 11.
The circuit board 13d configured as mentioned above is disposed and supported in the lamp main body 11 via a support leg 13e made of a synthetic resin having thermal resistance and electric insulation properties, in the present embodiment, made of a PBT (polybutylene terephthalate) so that a predetermined gap is formed from the lower part of the substrate 12b of the light-emitting portion 12 and the inner bottom surface of the lamp main body. In
Furthermore, the lighting circuit 13a and the control circuit 13b are configured as shown in the circuit block diagram of
Furthermore, the control device 13 in the present embodiment has the cap member for signaling 15 for inputting the control signal from the dimmer 37 of the outside to the input side of the control circuit 13b. However, the lighting circuit 13a and the control circuit 13b are connected to the power source in parallel, and can be operated even if the signal line is not connected to the cap member for signaling 15. For this reason, when the dimmer 37 is not installed, the device can be operated as a normal lamp with the cap having no dimming function.
As shown in
As a result, as shown in
As shown in
As a result, as shown in
As mentioned above, as mentioned in
When the cap member for power source 14 and the cap member for signaling 15 are situated so as to face each other in the diametrical direction, there is a need to perform the wiring of each electric line in a position separated in the diametrical direction, there is a need to draw each electric line in the lamp main body 11, and thus, there is a need for a space for drawing. For this reason, the wiring operation is complicated, and it is difficult to achieve a reduction in size of the lamp main body.
Furthermore, at the same time, the cap member for power source 14 and the cap member for signaling 15 are situated so as to be separated from each other on both sides of the engaging protrusion 11f-2 by a predetermined size with the engaging protrusion 11f-2 interposed therebetween, and thus the lead wire for signaling and the cap member 15 make it difficult to pickup the noise easily generated from the lead wire for power source and the cap member 14.
The angle dimensions of the cap member for power source 14, the cap member for signaling 15 and three engaging protrusions 11f in the present embodiment, that is, the angle dimension of the lamp with cap 10 side is disposed as below. That is, as shown in the bottom view of the lamp with the cap 10 of
Furthermore, the angle θ1 facing the diametrical direction of one cap member for signaling 15-1 adjacent to the engaging protrusion 11f-2 is 45°, and the angle θ2 formed in the diametrical direction of the other (the other side separated from the engaging protrusion 11f-2) cap member for signaling 15-2 is 95°.
In addition, the respective angles θ1 and θ2 are angles formed between the line a-a passing through the center axis of the respective engaging protrusion 11f and the line b-b passing through the shaft centers of the respective shaft portions 14a and 15a forming the cylindrical shape of the cap member for power source 14 and the cap member for signaling 15. Furthermore, a rotation angle α1 of the lamp with the cap 10 relative to the socket device 20 is 15°. In addition, a diameter φ1 of the shaft portions 14a and 15a forming the cylindrical shape is about 2.5 mm, a protrusion size h1 from the support step portion 11d of the lamp main body 11 is about 6 mm, an outer diameter d1 of the concave fitting portion 11e is about 65 mm. The angle and the size mentioned above are allowed within the range of the manufacturing error. In addition, as mentioned above, the position relationship between the pair of cap member for power sources 14 and the pair of cap members for signalling 15 may be reversed.
Next, as shown in
Next, a configuration of the socket device will be described. The socket device of the present embodiment is electrically connected to the pin-shaped cap member for power source 14 and the cap member for signaling 15 of the lamp with the cap 10, thereby constituting the socket device incorporated into the luminaire 30. Thus, as shown in
The socket main body 21 is formed in a ring shape having a penetrated support hole 21a in the middle portion which has a substantially circular shape of a plane shape of a transverse cross sectional surface formed of the synthetic resin having thermal resistance, weather resistance, satisfactory electric insulation properties, in the present embodiment, PBT. The inner diameter size d2 of the support hole 21a is formed to be slightly greater than the protrusion portion of the support step portion 11d of the lamp main body 11, that is, the diameter size d1 of the outer peripheral surface of the protrusion 11e (d1<d2). Furthermore, the depth size h3 of the support hole 21a is formed to be slightly smaller than the height size h2 of the support step portion 11d of the lamp main body 11 (h2>h3).
Furthermore, on the surface side (the upper surface of
In addition, on the inner peripheral surface of the support hole 21a, the engaging means 21a1 of the socket device 20 is formed. The engaging means is means for mounting the lamp with the cap 10 with respect to the socket device 20 by the rotation operation in an attachable and detachable manner together with the engaging means 11f of the lamp with the cap 10. In the present embodiment, the engaging means of the socket device 20 is constituted by integrally forming the engaging groove 21a1 on the inner peripheral surface of the support hole 21a (hereinafter, the engaging means 21a1 of the socket device is called a “engaging groove 21a1”).
As shown in
Furthermore, on the rear side (the lower surface of
The cylinder 21b1 is formed so as to be integrally erected by the resin molding on the rear side of the surface forming the ring-shaped flange of the socket main body 21, and an end plate 12a4 is locked to the opening end portion of the upper surface of the cylinder 21b1. The tip portion of the bolt 21b2 passes through the end plate, the bolt is provided so as to be vertically moved in the cylinder, the tip of the bolt is projected from the upper surface side of the cylinder 21b1. The socket device 20 is supported on the installation target portion, in the present embodiment, the thermal radiator 34 of the luminaire 30 by the bolt 21b2. The thermal radiator 34 is formed with a screw hole for screwing the bolt 21b2 on the rear side (the lower surface in
In this manner, the socket device 20 supported on the thermal radiator 34 of the luminaire 30 is mounted with the lamp with the cap 10, whereby the flat thermal conduction surface 11g of the protrusion portion 11e of the lamp main body 11 is pressed toward the back of the thermal radiator 34 by elasticity of the spring 21b3. That is, as shown in
In addition, when detaching the lamp with the cap 10 from the socket device 20, the lamp main body 11 is rotated oppositely from the above, the engaging protrusion 11f of the lamp main body 11 is moved along the engaging portion 21a3 of the socket device 20 and is drawn from the insertion portion 21a2, and the protrusion portion 11e of the lamp main body 11 may be drawn from the support hole 21a of the socket device 20. When detaching the lamp with the cap 10 from the socket device 20, as shown in
Next, as shown in
The terminal plate 22b is a member with which the shaft portion 14a of the cap member for power source 14 comes into contact to supply the lamp with the cap 10 with the commercial power source, has constant rigidity and spring characteristics, and is formed of a metal having satisfactory electric conductivity, for example, a copper, a brass, a phosphor bronze or the like, in the present embodiment, the phosphor bronze. The terminal plate 22b has two terminal pieces 22b1 formed by bending the entirety so as to form a substantial U shape, a contact portion 22b2 formed by bending the tip portion of the terminal piece in a substantial “V” shape in a direction facing each other, and a locking piece 22b3 formed in the U-shaped bottom side portion, and is configured as a spring-less SL terminal.
The terminal plate 22b configured as above is fitted into the terminal case 22a integrally formed adjacent to the one side of the engaging groove 21a1-1 on the rear side (
The long hole 22a2 is formed in an arched form having a semi-circular opening on both end portions thereof, and is formed so that the elongated small terminal plate 22b is not dropped from the long hole. Furthermore, the width size is formed to a size by which the cylindrical shaft portion 14a of the cap member for power source 14 in the lamp with the cap 10 can be inserted and moved. Furthermore, the lid 22a3 covers the opening of the rear side of the terminal case 22a and integrally forms the electric wire guide piece 22a4 on the upper surface situated on the electric wire insertion portion 22a1.
A pair of the terminal cases 22a and the terminal plates 22b configured as mentioned above having the same configuration are prepared, and are accommodated in the respective terminal case 22a so that the respective terminal plates 22b face the long hole 22a2. Moreover, the opening of the rear side of the terminal case 22a is closed by the lid 22a3, and is fixed by adhesive formed of the silicone resin, the epoxy resin or the like. As a result, as shown in
Next, the terminal member for signaling 23, to which the cap member for signaling 15 of the lamp with the cap is connected, has the same configuration as that of the terminal member for power source 14, and the detailed descriptions of the configurations of the terminal case 23a and the terminal plate 23b will be omitted by displaying the reference numerals of the respective components in the terminal member for signaling 23 in parenthesis in
With such a configuration, the pair of terminal members for signaling 23-1 and 23-2 is situated adjacent to the engaging groove 21a1-1 of the socket device 20, that is, the other side with the engaging means interposed therebetween, and is disposed on the circular track of the socket main body 21. Furthermore, the circular track, on which the terminal member for signaling 23 is disposed, is disposed on the same circular track as the circular track of the terminal member for power source 22, and is configured so as not to disturb the reduction in size. In addition, the circular track may be disposed on the different circular track within the scope not disturbing the reduction in size.
As mentioned above, as shown in
The angle sizes of the terminal member for power source 22, the terminal member for signaling 23 and the three engaging grooves 21a1, that is, the angle size of the socket device 20 side is disposed as mentioned below. That is, as shown in the top view of the socket device of
Furthermore, the angle θ3 facing the diametrical direction of one terminal member for signaling 23-1 adjacent to the engaging groove 21a1-2 is 25°, and the angle θ4 facing the diametrical direction of the other (the other side separated from the engaging groove 21a1-2) terminal member for signaling 23-2 is 75°.
In addition, the respective angles θ3 and θ4 are angles formed between the line c-c passing through the center axis of the insertion portion 21a2 of the engaging groove 21a1 and the line d-d passing through the center of the respective semi-circular portion of the insertion side (a portion into which the pin-shaped shaft portions 14a and 15a of the lamp with the cap 10 are initially inserted) in the respective long holes 22a2 and 23a2 of the terminal member for power source 22 and the terminal member for signaling 23. Furthermore, a rotation angle α1 of the lamp with the cap 10 relative to the socket device 20 is 15°. In addition, the inner diameter size d2 of the support hole 21a is about 65.5 mm. The angle and the size mentioned above are allowed within the scope of the manufacturing error. In addition, as mentioned above, the position relationship of the pair of terminal member for power sources 22 and the pair of terminal members for signalling 23 may be reversed.
Furthermore, the electric wire for power source w3 is connected to the terminal member for power source 22 configured as mentioned above, and the electric wire for signaling w4 is connected to the terminal member for signaling 23. As shown in
The respective electric wires for power source w3-1 and w3-2 are derived along the upper surface of the terminal member for power source 22-2, are vertically bundled by the electric wire guide piece 22a4 in an overlapping manner, are received in the width size of the rear side of the surface forming the flange shape of the ring of the ring-shaped socket main body 21, and are wired compactly without popping out of the electric wire for power source from the outer peripheral surface of the socket device. Thus, the reduction in size of the socket device 20 can be achieved without a need to increase the outer diameter size of the socket main body in order to conceal the drawn electric wire for power source.
The electric wire for signaling w4 is connected like the electric wire for power source w3. That is, the electric wire for signaling w4-1 connected to the one terminal member for signaling 23-1 adjacent to the engaging groove 21a1-2 is drawn from the electric wire insertion portion 23a1, is derived along the other (the other side separated from the engaging groove 21a1-2) upper surface of the terminal member for signaling 23-2, that is, the upper surface of the lid 23a3, is guided to the electric wire guide piece 23a4, is interposed between the electric wire guide piece 22a4 and the side wall of the socket main body to prevent the falling-out, and is drawn. Furthermore, the electric wire for signaling w4-2 connected to the other (the other side separated from the engaging groove 21a1-2) terminal member for signaling 23-2 is drawn from the electric wire insertion portion 23a1, is vertically bundled together with the electric wire for signaling w4-1 drawn in advance in an overlapping manner, and is drawn.
The respective electric wires for signaling w4-1 and w4-2 are also derived along the upper surface of the terminal member for signaling 23-2, are vertically bundled by the electric wire guide piece 22a4 in an overlapping manner, are received in the width size of the rear side of the surface forming the flange shape of the ring of the ring-shaped socket main body 21, and are wired compactly without popping out of the electric wire for signaling from the outer peripheral surface of the socket device 20. Thus, the reduction in size of the socket device 20 can be achieved.
In addition, the insulation coating of the tip of the respective electric wires w3 and w4 is peeled off, is locked and connected to the locking pieces 22b3 and 23b3 of the SL terminal by being fitted into the electric wire insertion portions 22a1 and 23a1 of the respective terminal cases 22a and 23a. Furthermore, the respective electric wires w3 and w4 drawn from the socket device 20 are connected to terminal boards 35 and 36 of the luminaire 30 described later.
Furthermore, as shown in
When the terminal member for power source 22 and the terminal member for signaling 23 are situated to face each other in the diametrical direction, there is a need to perform the wiring of the respective electric wires w3 and w4 in a position separated in the diametrical direction, and there is a need to draw the respective electric wires in the socket main body 21, and thus there is a need for the space for drawing. For this reason, the wiring operation is complicated, and it is difficult to achieve the reduction in size of the socket main body.
Furthermore, at the same time, the terminal member for power source 22 and the terminal member for signaling 23 are separated from each other and are situated on both sides of the engaging groove 21a1-1 by a predetermined size with the engaging groove 21a1-1 (the engaging means) interposed therebetween. Thus, the electric wire for signaling w4 and the terminal member for signaling 22 can make it possible to pick up the noise easily generated from the electric wire for power source w3 and the terminal member for power source 23.
As mentioned above, the terminal member for power source 22 and the terminal member for signaling 23 are configured. As shown in
As mentioned above, the electric connection between the lamp with the cap 10 and the socket device 20 is performed, and the mechanical holding, that is, the lamp with the cap 10 is mounted on the socket device 20. At this time, by setting the relationship between the engaging means (the engaging protrusion 11f and the engaging groove 21a1) for mounting the lamp with the cap 10 to the socket device 20 in an attachable and detachable manner and the electric connection as below, the half-engaged state when mounting the lamp with the cap 10 to the socket device 20 is avoided.
That is, as shown in
Furthermore, in the rotation operation, by performing a smooth operation, simple operation is realized by the one touch operation, and the half-engaged state of the engaging means and the half-contact state of the electric connection are avoided. That is, the resistance in the rotation operation is received in two stages of the resistance received when the engaging protrusion 11f climbs over the locking protrusion 21a4 and the resistance received when the shaft portions 14a and 15a climb over the mutually opposing “V”-shaped contact portions 22b2 and 23b2 of the terminal plates 22b and 23b. For this reason, a user receives the resistance in two stages in the middle of the rotation operation, whereby a user may confuse that the engagement is made twice and may stop the rotation operation. Particularly, the second resistance is the resistance for performing the electric connection, and when confusing the same to stop the rotation operation, the half-contact state (the state before the shaft portions 14a and 15a climb over the mutually opposing “V” shaped contact portions 22b2 and 23b2 of the terminal plates 22b and 23b) may occur.
In the present embodiment, in order to prevent the state, a configuration was adopted in which the second resistance received when the shaft portions 14a and 15a climb over the mutually opposing “V”-shaped contact portion is reduced compared to the first resistance received when the engaging protrusion 11f climbs over the locking protrusion 21a4. Specifically, when the first resistance is 100%, the second resistance is set to be about equal to or less than 70%.
As a result, in the rotation operation, by the rotational force resisting with the first resistance and inertia of the rotation, the second resistance can be simply climbed over, the rotation operation can be performed only by receiving the first resistance, and the rotation operation by the one touch operation is realized. At the same time, since the second resistance can be simply climbed over, the shaft portions 14a and 15a can climb over the mutually opposing “V”-shaped contact portions 22b2 and 23b2, and it is possible to reliably avoid the electric half-contact state.
Furthermore, the engaging protrusion 11f comes into contact with the end of the engaging portion 21a3 of the engaging groove 21a1, whereby the stop of the rotation operation is performed. At the time of the contact, the engaging protrusion 11f formed of aluminum comes into contact with the engaging groove 21a1 formed of the synthetic resin, whereby the metallic sound “cutch” is generated. As a result, the state where the engaging means is engaged, that is, the state, where the lamp with the cap 10 is completely mounted on the socket device 20, can be easily notified to a user by sound.
Next, a configuration of the luminaire including the lamp with the cap 10 and the socket device 20 configured as above will be described. As shown in
The thermal radiator 34 has a function as the heat sink and is constituted by a block formed of a metal having satisfactory thermal conductivity, in the present embodiment, thick aluminum. A plurality of thermal radiation fins 34a are integrally formed on the outer peripheral surface thereof. Furthermore, the thermal radiator 34 is formed with a screw hole for attaching the socket device 20 on the rear side thereof (the lower surface of
Furthermore, the electric wire for power source w3 drawn from the socket device 20 is connected to the output terminal of the terminal board for power source 35, and the F cable F1 wired in the indoor is connected to the input terminal. Furthermore, the electric wire for signaling w4 drawn from the socket device 20 is connected to the output terminal of the terminal board for signaling 36, and the signal line S1 is connected to the input terminal.
As shown in
In the luminaire 30 configured as mentioned above, the LED mentioned above is used as a light source, the lamp with the cap 10 of the flat thin type structure provided with the pin type cap member for power source 14 and the cap member for signaling 15 is mounted on the socket device 20. As shown in
At this time, the side wall 21f is formed on the surface side of the socket device 20, whereby the pins (the shaft portions 14a and 15a) of one side of the cap member for power source 14 and the cap member for signaling 15 of the lamp with the cap 10 are not erroneously inserted into the terminal member for power source 22 and the terminal member for signaling 23 of the socket device 20, and the occurrence of shock is prevented.
Moreover, the lamp with the cap 10 is rotated in an arrow direction in the drawing by 15°. As a result, as shown in
At this time, the electric connection is configured to be performed after the engaging protrusion 11f climbs over the mountain-shaped locking protrusion 21a4 of the engaging groove 21a1. Thus, in the middle of the rotation operation, a user receives resistance when the engaging protrusion 11f climbs over the locking protrusion 21a4, and there is a concern that they may mistakenly think that the engagement has been performed. However, at this time, since the electric connection has not been performed yet, the lamp is not lit. For this reason, a user knows that the engagement has not been completed yet and performs the rotation operation to the last, and the half-engaged state is avoided.
Furthermore, when the engaging protrusion 11f comes into contact with the end of the engagement portion 21a3, there is a “catching” sound. Thus, a user understands that the lamp with the cap 10 is completely engaged with the socket device 20 and it is further prevented that the engagement enters the half-engaged state or the electric connection enters the half-contact state. As a result, the electric connection between the lamp with the cap 10 and the socket device 20 is performed, and at the same time, the lamp with the cap 10 is mounted on the socket device 20. In addition, the lamp with the cap 10 can be detached from the socket device 20 by rotating the former in the opposite direction.
When mounting the lamp with the cap 10 to the socket device 20 by the engaging means mentioned above, as shown in
When supplying the power source in this state, the power is supplied from the terminal member for power source 22 of the socket device 20 via the cap member for power source 14 of the lamp with the cap 10, the lighting circuit 13a of the control device 13 is operated, and a direct current voltage of 24V is output. The direct current voltage is applied from the control device 13 to each LED 12a, the direct current of the constant current is supplied, and the entire LED is lit simultaneously. The white light emitted from each LED 12a is emitted in a substantially uniform manner toward the entire inner surface of the cover member 16, light is diffused by the milky white globe, and it is possible to perform lighting with predetermined light distribution characteristics.
Furthermore, by operating the dimmer 37 installed on the wall surface by a user, the control signal is transmitted from the terminal member for signaling 23 of the socket device 20 to the control circuit 13b via the cap member for signaling 15 of the lamp with the cap 10, and the required dimming signal is generated by the control circuit and supplied to the lighting circuit 13a. The lighting circuit 13a lights each LED 12a while dimming the same based on the dimming signal. At this time, the lamp with the cap 10 and the socket device 20 hardly picks up the noise easily generated on the power source side, and thus, stable and correct dimming control can be performed.
As mentioned above, when the lamp with the cap 10 is lit, the temperature of the LED 12a rises and heat is generated. As shown in
Furthermore, the heat generated from the electronic component 13c of the control device 13, particularly, the heat generated from the switching transistor 13c1 involving the heating is also transmitted from the bottom surface of the lamp main body 11 in which the switching transistor is accommodated in an adhering manner to the concave fitting portion 11e, and is effectively radiated to the outside via the thermal radiator 34. With the effective thermal radiation action, the temperature rise of the LED 12a and the temperature rise of the electronic component 13c in the control device 13 are suppressed, and reliability is improved.
As mentioned above, according to the lamp with the cap 10 of the present embodiment, the cap member for power source 14 connected to the control device 13 is situated adjacent to one side with the engaging means 13f interposed therebetween, and is disposed on the circular track of the lamp main body 11. The cap member for signaling 15 connected to the control device 13 is situated adjacent to the other side with the engaging means 13f interposed therebetween and is disposed on the circular track of the lamp main body 11, and thus the wiring can be simplified to achieve a reduction in size. Furthermore, it is possible to hardly receive the influence of the noise easily generated on the power source side, whereby it is possible to handle the control of dimming or the like.
Furthermore, according to the socket device 20 of the present embodiment, the terminal member for power source 22, to which the cap member for power source 14 of the lamp with the cap 10 is connected, is situated adjacent to one side with the engaging means 21a1 interposed therebetween and is disposed on the circular track of the socket main body 21. The terminal member for signaling 23, to which the cap member for signaling 15 of the lamp with the cap 10 is connected, is situated adjacent to the other side with the engaging means 21a1 interposed therebetween and is disposed on the circular trance of the socket main body 21. Thus, the wiring can be simplified to achieve a reduction in size, and it is possible to hardly receive the influence of the noise easily generated on the power source side, whereby it is possible to handle the control of dimming or the like.
As mentioned above, in the present embodiment, the lamp with the cap is preferably constituted by a thin, flat lamp. However, as the shape of the lamp, a lamp shape may be configured such as a bulb-shaped lamp with a cap (A type or PS type) similar to the shape of the general incandescent lamp, a ball-shaped lamp with a cap (G type), a circular lamp with a cap (T type), or a reflector type lamp with a cap (R type). Furthermore, the present embodiment can be applied to a lamp with a cap forming other various external forms and applications without being limited to a lamp with a cap similar to the thin, flat lamp or the shape of the general incandescent lamp. In addition, the lamp with the cap preferably has a cover member formed of a globe, a protection cover or the like for diffusing the light or protecting the light-emitting portion, but the member is not a required condition for achieving the object of the present embodiment, and for example, a globe-less lamp with a cap may also be constituted.
In addition, the lamp with the cap may be configured to incorporate the light-emitting portion 12 into the protrusion portion 11e of the lamp main body 11 so as to effectively radiate the heat generated from each LED. That is, as shown in
Furthermore, the control device 13 is divided into a lighting circuit substrate 13a1 constituting the lighting circuit 13a, and a control circuit board 13b1 constituting the control circuit 13b performing the control of dimming or the like, and is constituted by a circuit board forming the respective circuit boards 13a1 and 13b1 in a semi-circular ring shape. The respective ring-shaped circuit boards 13a1 and 13b1 are installed in the main body situated on the inner surface side of the annular support step portion 11d of the lamp main body 11 (
As shown by an alternate long and short dash line in FIG. 13(a), when lighting the lamp with the cap 10 configured as above, the light emitted from each LED 12a is uniformly emitted toward the inner surface of the cover member 16 as mentioned above without being shielded by the electronic component 13c mounted on the respective circuit boards 13a1 and 13b1. Furthermore, the heat generated from the LED 12a is directly transmitted from the back of the substrate 12b to the outer surface of the protrusion portion 11e of the main body case 11, that is, the thermal conduction surface 11g, without passing through the side wall or the like of the main body case, and it is possible to effectively radiate the heat from the thermal radiator 34 of the luminaire side to the outside. As a result, it is possible to employ the LED of high luminance and high output.
Furthermore, as shown in
Moreover, as shown in
Furthermore, the thermal radiator 34 of the luminaire 30 and the thermal conduction surface 11g of the lamp main body 11 may be configured so that the thermal radiator 34 and the thermal conduction surface 11g adhere to each other by allowing the thermal conduction surface 11g of the lamp main body 11 to elastically and vertically slide with respect to the inner and outer portion of the cylindrical protrusion portion 11e not by the elasticity of the spring 21b3 in the support member 21b of the socket main body 21.
Furthermore, in order to increase the thermal radiation properties of the light-emitting portion and the control device, the lamp main body is preferably formed of a metal having satisfactory thermal conductivity, for example, a metal including at least one kind of aluminum (Al), copper (Cu), iron (Fe), or nickel (Ni). However, the lamp main body may be formed of an industrial material such as ceramic including aluminum nitride (AlN) or the like, and silicon carbide (SiC). Moreover, the lamp main body may be formed of a synthetic resin such as high thermal conductive resin. The external shape thereof is preferably configured so that a plane forms a substantially circular dish shape so as to achieve a thin, flat lamp with a cap, but the plane may be a polygonal shape such as a triangle, a quadrangle, or a hexagon, or may be an oval shape or the like. Furthermore, in order to further increase the thermal radiation properties, on the outer peripheral surface of the lamp main body, a plurality of thermal radiation fins, thermal radiation pins or the like projected radially may be integrally formed. Moreover, the outer surface portion exposed to the outside may be formed, for example, in a concave and convex shape or a crepe shape to increase the surface area, or a white painting and a white alumite processing may be performed to increase the thermal radiation ratio of the outer surface portion. Furthermore, in a case of performing the white painting and the white alumite processing, when mounting the lamp with the cap to the luminaire to light the lamp, the reflectance of the outer surface of the lamp main body exposed to the outer surface is increased, the luminaire efficiency can be increased, it is also advantageous in terms of the external form and the design, and the marketability can be increased.
The light-emitting portion is preferably constituted by a solid state light-emitting device which uses a light-emitting diode, a semiconductor laser, an organic EL or the like as a light-emitting source. However, the light-emitting portion may be constituted by a discharge lamp such as a fluorescent light in which a light-emitting tube meanders and is formed in a planar shape. The light-emitting portion is preferably constituted so as to emit white light, but red, blue, green or the like or various colors may be combined and constituted depending on the application of the luminaire. Furthermore, in order to constitute a surface module, the shape of the light-emitting portion may be a plate-like circular shape, and a polygonal shape such as a triangle, a quadrangle or a hexagon, or an oval shape or the like, and any shape for obtaining the optical distribution properties to be targeted is allowed.
The control device performs lighting, light-out and dimming, but may be configured so as to perform toning. In the case of performing toning, toning may be performed by integrating, for example, the LED of the bulb color and the LED of the daylight color as the LED, and switching them.
The socket device may be an independent socket device which can mount the lamp with the cap to the single socket device to constitute the luminaire, for example, like the spot light, and may be a luminaire integration type socket device like a down light in which the socket device is attached to the luminaire main body and the reflection plate and the lamp with the cap is mounted on the socket device integrated in the luminaire to constitute the luminaire.
The socket device is formed of a synthetic resin, but may be formed of a metal having satisfactory thermal conductivity so as to further increase the thermal radiation properties of the light-emitting portion and the control device, for example, a metal including at least a kind of aluminum (Al), copper (Cu), iron (Fe) or nickel (Ni), or an industrial material such as ceramic formed of aluminum nitride (AlN) or silicon carbide (SiC). The external shape thereof is preferably configured so that a plane forms a substantially circular dish shape so as to achieve a thin, flat lamp with a cap, but the plane may be a polygonal shape such as a triangle, a quadrangle, or a hexagon, or may be an oval shape or the like.
The engaging means, which mounts the lamp with the cap and the socket device in an attachable and detachable manner, forms the engaging protrusion in the lamp with the cap and forms the engaging groove in the socket device. However, on the contrary, the engaging groove may be formed in the lamp with the cap, and the engaging protrusion may be formed in the socket device.
The cap member of the lamp with the cap and the terminal member of the socket device are situated and provided on both sides with the engaging means interposed therebetween. However, the cap member for earth and the terminal member for earth may be provided by the use of space in which the cap member and the terminal member are not provided. Furthermore, an earth pin having an elastic body can be provided in a substantially central portion of the thermal conduction surface 11g of the protrusion portion 11e of the lamp main body 11, repulsive force of the elastic body is generated as contact force of the earth pin relative to the thermal radiator 34 of the luminaire side in the mounting state of the lamp main body 11 to the socket main body 21, and durability and continuity of the earth connection may be secured.
As shown in
Furthermore, as the luminaire, a ceiling embedded type, a direct attachment type, a suspension type, a wall surface attachment type or the like are allowed. A globe, a shade, a reflector or the like as a light control body may be attached to the luminaire, and the lamp with the cap, which is a light source, may be exposed. Furthermore, a plurality of lamps with caps may be disposed on the luminaire without being limited to one lamp with a cap. Moreover, a large luminaire or the like for facilities or a business such as an office may be configured.
As mentioned above, although the preferred embodiment of the present invention has been described, the present invention is able to perform various design changes within a scope not departing from the aim of the present invention, without being limited to the embodiment mentioned above.
Number | Date | Country | Kind |
---|---|---|---|
2010-152992 | Jul 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/065346 | 7/5/2011 | WO | 00 | 4/26/2013 |