This invention relates to a process for controlling the capacitance value of an electrical sheath provided on an electrical cable, by extruding and depositing an electrically insulating compound onto the said electrical cable.
This invention also relates to:
The invention concerns more specifically, but not exclusively, a method for controlling the capacitance value of a sheath of foamed insulation compound extruded on a metallic wire.
The invention preferably, but not exclusively, applies to a capacitance control method for a sheath of foamed material, which is extruded onto a metallic wire.
A main object of the invention is to control precisely the capacitance value of an electrical sheath provided on an electrical cable.
To achieve this object, the invention has as it subject matter a process for controlling the capacitance value of a tubular sheath formed by extrusion of an insulation compound on a electrical cable in an extrusion head, a foaming agent being introduced in the insulation compound in such a way as to improve the capacitance value of the tubular insulation sheath,
this process being characterised in that:
The invention also relates to an extrusion line which functions according to the above-mentioned process.
The invention also relates to an electrical cable comprising a tubular sheath formed by extrusion of an insulation compound on this electrical cable and which capacitance value is controlled according to the above-mentioned process.
The invention will be better understood from reading the following description, given by way of non-limiting example, with reference to the attached figures:
Referring to
This extrusion line at least comprises a main extruder 18, including an extrusion head 4, the function of this extrusion head being to put foam insulation at least around the cable 3.
Preferably, but not exclusively, such an extrusion line comprises:
In this extrusion line a so-called pay-off apparatus could be used instead of the two machines which are the wire-drawing machine 14 and the annealer machine 15. In such an extrusion line a cold fix tough could be placed between the hot water tank 21 and the capstan 22.
Referring to
The capacitance value of the tubular sheath 1 depends on the dielectric value of the insulation compound 2. The said dielectric value is modified when the insulation compound is foamed by making use of a foaming agent 200 which is introduced in the insulation compound before extrusion (chemical foaming or physical foaming). For example, the foaming agent 200 is a gas, namely, nitrogen. Preferably, but not exclusively, the extrusion line comprises a high pressure nitrogen injection unit which is connected to the main extruder 18.
An optional auxiliary extruder 17, could also be used in order to put a first skin insulation around the cable 3 with the object to improve the physical foaming adherence (it is not used with chemical foaming, and is optional but recommended with physical foaming).
Another optional auxiliary extruder 18, could also be used in order to put a second skin insulation around the insulation compound (for example a coloured skin).
According to the process of the invention:
In one embodiment, taking into account the atmospheric pressure as a reference, the gas pressure 110 applied on at least a portion of a face 100, 101 of the insulation compound 2, extruded by the extrusion head 4, is negative.
In an embodiment variant, taking into account the atmospheric pressure as a reference, the gas pressure 110 applied on at least a portion of a face 100, 101 of the insulation compound 2, extruded by the extrusion head 4, is positive.
Referring to
The main extruder 18 which comprises the extrusion head 4, also comprises a device 13 for measuring the capacitance value C1 of the tubular insulation sheath 1 formed around the electrical cable 3.
Noteworthy is that:
Noteworthy is that:
One skilled in the art is able to find the most appropriate suction device 11 to obtain the required depression.
These technical features make it possible to control the capacitance value of an electrical sheath provided on an electrical cable without modifying the composition of the compound.
The process is characterised by the steps of:
way as to correct the value of the capacitance C1 of the tubular sheath 1 formed around the cable 3.
Referring to the drawing, one sees that the tubular sheath 1 is formed by extrusion of an insulation compound 2 on an electrical cable 3 of diameter D1, referred to as the first diameter.
The nozzle 5 has a front face 6 into which come out:
This insulation compound 2 takes the form of a conical wall 10, which covers the electrical cable at a predetermined distance from the front face 6 of the nozzle 5 in such a way as to form a tubular sheath 1 around said cable of a fourth diameter D4, thus constituting a tubular insulation sheath 1 having a measurable capacitance value C1.
According to the process of the invention, the fourth diameter D4 is adjusted to a predetermined value by controlling the speed of the electric cable 3 and the tubular sheath 1 formed by extrusion of an insulation compound on the electric cable 3.
Referring to the drawings, one sees that, the insulation compound 2 emerges out of the annular orifice 8 at a predetermined linear speed which depends on the rotational speed of an extrusion screw which is used in the extrusion head 4.
For example, the fourth diameter D4 is adjusted to a predetermined value by controlling the rotational speed of an extrusion screw in the extruder 18 comprising the extrusion head 4 out of which the insulation compound 2 emerges.
Capacitance and diameter are linked together, but a modification of the vacuum will have an effect on the diameter but this effect is very limited and almost insignificant for the process.
Number | Date | Country | Kind |
---|---|---|---|
01810597 | Jun 2001 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH02/00298 | 6/6/2002 | WO | 00 | 11/24/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/103717 | 12/27/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3681510 | Lemieux | Aug 1972 | A |
3972970 | Taylor | Aug 1976 | A |
4278624 | Kornylak | Jul 1981 | A |
4585603 | Furuta et al. | Apr 1986 | A |
5900198 | Hori | May 1999 | A |
6613983 | Shukushima et al. | Sep 2003 | B1 |
Number | Date | Country |
---|---|---|
2 130 763 | Jun 1984 | GB |
A 5-20944 | Jan 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20040145857 A1 | Jul 2004 | US |