A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
The present disclosure relates generally to antenna apparatus for use in electronic devices such as wireless or portable radio devices, and more particularly in one exemplary aspect to space-efficient grounding apparatus and methods of manufacturing and use.
Internal antennas are commonly found in most modern radio devices, such as mobile computers, tablets, mobile phones, Blackberry® devices, smartphones, personal digital assistants (PDAs), or other personal communication devices (PCD). Typically, these antennas comprise a planar radiating plane and a ground plane parallel thereto, which are connected to each other by a short-circuit conductor in order to achieve the matching of the antenna. The structure is configured so that it functions as a resonator at the desired operating frequency. It is also a common requirement that the antenna operate in more than one frequency band (such as dual-band, tri-band, or quad-band mobile phones), in which case two or more resonators are used.
Recent advances in the development of affordable and power-efficient display technologies for mobile applications (such as liquid crystal displays (LCD), light-emitting diodes (LED) displays, organic light emitting diodes (OLED), thin film transistors (TFT), etc.) have resulted in a proliferation of mobile devices featuring large displays, with screen sizes of up to 180 mm (7 inches) in some tablet computers and up to 500 mm (20 inches) in some laptop computers.
Furthermore, current trends increase the demand for thinner mobile communications devices with large displays that are often used for user input (touch screen). This in turn requires a rigid structure to support the display assembly, particularly during the touch-screen operation, so as to make the interface robust and durable, and mitigate movement or deflection of the display. A metal body or a metal frame is often utilized to provide a better support for the display in the mobile communication device consistent with these requirements.
The use of metal enclosures/chassis and smaller thickness of the device enclosure create new challenges for radio frequency (RF) antenna implementations. Typical antenna solutions (such as monopole, PIFA antennas) require a ground clearance area and sufficient height from the ground plane in order to operate efficiently in multiple frequency bands. These antenna solutions are often inadequate for the aforementioned thin devices with metal housings and/or chassis, as the vertical distance required to separate the radiator from the ground plane is no longer available. Portions of the metal housing may be connected to the device ground through the use of galvanic contacts, and thus factored into the antenna performance. However, the use of numerous galvanic contacts increases material and manufacturing costs, and consumes board space.
Accordingly, there is a salient need for a wireless solution for e.g., a portable radio device with a small form factor metal body and/or chassis that offers a lower cost and complexity, and provides for space-efficient grounding apparatus, and methods of manufacturing and use of the same.
The present disclosure satisfies the foregoing needs by providing, inter cilia, space-efficient grounding apparatus and methods of use.
In a first aspect, a mobile wireless device is disclosed. In one embodiment, the mobile wireless device includes: one or more antenna elements, a main body portion that includes a metalized surface, and a back cover portion that is at least partly capacitively coupled to a device ground of the mobile wireless device.
In one variant, the at least metalized surface is connected to the device ground via one or more galvanic contacts.
In another variant, the back cover portion is at least partly capacitively coupled to the device ground via the metalized surface.
In a second aspect, an antenna apparatus is disclosed. In one embodiment, the antenna apparatus includes: at least one radiator element that includes a feed point, and a conductive element coupled to the feed point, a dielectric substrate having a plurality of surfaces and further including at least one radiator element and a metal surface, and a ground plane coupled to a ground of a host device, where the metal surface is configured to capacitively couple at least a portion a back cover of the host device to the ground of the host device.
In one variant, the outer metal surface is coupled to the ground of the host device via one or more galvanic contacts.
In yet another variant the metal surface is configured so that performance of the at least one radiator element is substantially independent of the back cover.
In a third aspect, a method for grounding one or more components of a mobile wireless device is disclosed. In one embodiment, the method includes: metalizing at least an exterior portion of a main body of the mobile wireless device, connecting the metalized exterior portion to a ground of the mobile wireless device using at least one galvanic contact, and capacitive coupling at least a portion of a back cover of the mobile wireless device to the metalized exterior portion, the capacitive coupling configured to ground the metalized exterior portion to the ground of the mobile wireless device.
In one variant, the method further includes forming at least one galvanic contact by metalizing an interior portion of the main body.
In another variant, the capacitive coupling is configured to reduce a number of galvanic contacts otherwise required to achieve a performance of grounding of the back cover to the ground of the mobile wireless device.
In a fourth aspect, a method of manufacturing an antenna apparatus is disclosed.
Further features of the present disclosure, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description.
The features, objectives, and advantages of the disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:
All Figures disclosed herein are © Copyright 2013 Pulse Finland Oy. All rights reserved.
Reference is now made to the drawings, wherein like numerals refer to like parts throughout.
As used herein, the terms “antenna,” “antenna system,” “antenna assembly”, and “multi-band antenna” refer without limitation to any system that incorporates a single element, multiple elements, or one or more arrays of elements that receive/transmit and/or propagate one or more frequency bands of electromagnetic radiation. The radiation may be of numerous types, e.g., microwave, millimeter wave, radio frequency, digital modulated, analog, analog/digital encoded, digitally encoded millimeter wave energy, or the like. The energy may be transmitted from location to another location, using, or more repeater links, and one or more locations may be mobile, stationary, or fixed to a location on earth such as a base station.
As used herein, the terms “board” and “substrate” refer generally and without limitation to any substantially planar or curved surface or component upon which other components can be disposed. For example, a substrate may comprise a single or multi-layered printed circuit board (e.g., FR4), a semi-conductive die or wafer, or even a surface of a housing or other device component, and may be substantially rigid or alternatively at least somewhat flexible.
The terms “frequency range”, “frequency band”, and “frequency domain” refer without limitation to any frequency range for communicating signals. Such signals may be communicated pursuant to one or more standards or wireless air interfaces.
The terms “near field communication” and “NFC” refer without limitation to a short-range high frequency wireless communication technology which enables the exchange of data between devices over short distances such as described by ISO/IEC 18092/ECMA-340 standard and/or ISO/ELEC 14443 proximity-card standard. As used herein, the terms “portable device”, “mobile device”, “client device”, “portable device”, and “end user device” include, but are not limited to, personal computers (PCs) and minicomputers, whether desktop, laptop, or otherwise, set-top boxes, personal digital assistants (PDAs), handheld computers, personal communicators, tablet computers, portable navigation aids, J2ME equipped devices, cellular telephones, smartphones, personal integrated communication or entertainment devices, or literally any other device capable of interchanging data with a network or another device.
Furthermore, as used herein, the terms “radiator,” “radiating plane,” and “radiating element” refer without limitation to an element that can function as part of a system that receives and/or transmits radio-frequency electromagnetic radiation; e.g., an antenna.
The terms “RF feed,” “feed,” “feed conductor,” and “feed network” refer without limitation to any energy conductor and coupling element(s) that can transfer energy, transform impedance, enhance performance characteristics, and conform impedance properties between an incoming/outgoing RF energy signals to that of one or more connective elements, such as for example a radiator.
As used herein, the terms “top”, “bottom”, “side”, “up”, “down”, “left”, “right”, and the like merely connote a relative position or geometry of one component to another, and in no way connote an absolute frame of reference or any required orientation. For example, a “top” portion of a component may actually reside below a “bottom” portion when the component is mounted to another device (e.g., to the underside of a PCB).
As used herein, the term “wireless” means any wireless signal, data, communication, or other interface including without limitation Wi-Fi, Bluetooth, 3G (e.g., 3GPP, 3GPP2, and UMTS), HSDPA/HSUPA, TDMA, CDMA (e.g., IS-95A, WCDMA, etc.), FHSS, DSSS, GSM, PAN/802.15, WiMAX (802.16), 802.20, narrowband/FDMA, OFDM, PCS/DCS, Long Term Evolution (LTE) or LTE-Advanced (LTE-A), analog cellular, CDPD, satellite systems such as GPS, millimeter wave or microwave systems, optical, acoustic, and infrared (i.e., IrDA).
Furthermore, while primarily discussed in terms of manufacturing using methods such as laser direct structuring (LDS), it is recognized that the antenna embodiments discussed herein may be readily manufactured from other known methods including, for example: (1) flexible substrates; (2) sheet metal fabrication techniques; (3) fluid or vapor deposition; (4) “2-shot” molding; (5) pad printing; and (6) print deposition can be used to manufacture the various components as applicable, such techniques and structures being readily determined by those of ordinary skill when given the present disclosure.
Overview
In one salient aspect, the present disclosure provides improved grounding apparatus, and methods of manufacturing and using the same. In one embodiment, an outer metallized surface of a mobile device is configured to capacitively couple a metal back cover to the device ground. Specifically, in one implementation, an exterior surface of the mobile device is metalized and coupled to the device ground via galvanic contacts. The exterior metalized surface is configured to be capacitively coupled a metal back cover of a mobile device to the device ground when the back cover is installed on the mobile device. By capacitively coupling the back cover to the device ground via the exterior metalized surface, the need to otherwise ground the back cover through the use of galvanic contacts is obviated, thereby reducing the number of components needed. Furthermore, as the exterior metalized surface is configured to implement capacitive coupling to ground via galvanic contacts (as compared to galvanic contacts connected directly to the back cover), the placement of galvanic contacts connected to the exterior metalized surface may be moved to more suitable locations that would have otherwise been dictated by physical constraints between the mobile device and the back cover.
In addition, as no direct physical contact between the back cover and the device ground is necessary, reliability of the grounding is improved, since the back cover grounding is not subject to failures such as failure of metal-to-metal joint bonding of the galvanic contacts between the back cover and the mobile device ground.
In one implementation, the exterior metalized surface is configured to achieve antenna performance substantially independent of the material composition of the back cover of the mobile device. Accordingly, one salient advantage provided by the exemplary embodiments of the grounding apparatus is the provision of enhanced design freedom of the back cover, without effecting antenna (electrical) performance or that of the host mobile device.
Detailed descriptions of the various embodiments and variants of the apparatus and methods of the present disclosure are now provided. While primarily discussed in the context of mobile devices, the various apparatus and methodologies discussed herein are not so limited. In fact, many of the apparatus and methodologies described herein are useful in any number of complex antennas, whether associated with mobile or fixed devices that can benefit from the grounding methodologies and apparatus described herein.
Exemplary Mobile Device Configuration
Referring now to
In one implementation, the outer metalized surface 106 is formed on the device body 102 using a laser direct structuring (LDS) process. Specifically, advances in manufacturing processes have enabled the construction of metallized structures directly onto the surface of a specialized material (e.g., a thermoplastic material that is doped with a metal additive). The doped metal additive is activated by means of a laser, which enables the construction of metallized component features onto more complex three-dimensional geometries. A laser is then used to activate areas of the (thermoplastic) material that are to be subsequently plated. An electrolytic copper bath followed by successive additive layers (such as nickel or gold) can then be added if needed to complete the construction of the metallized structures. LDS processes are well known to those of ordinary skill in the art, and accordingly are not described further herein.
In another implementation deposition of the conductive fluid for the outer metalized surface 106 is accomplished using the techniques described in co-owned and co-pending U.S. patent application Ser. No. 13/782,993 filed Mar. 1, 2013 and entitled “DEPOSITION ANTENNA APPARATUS AND METHODS”, incorporated herein by reference in its entirety, although it will be appreciated that other approaches may be used in place of or in conjunction with the foregoing.
The device body 102 is further configured with a plurality of galvanic grounding elements 108 which are in electrical connection with the outer metallized surface 106. The device body 102 further comprises a cavity 110 to contain at least a battery component (not shown). However, any number of physical features may be formed into the device body 102 depending on device application as would be readily apparent to a person of skill. In one implementation, the back cover 104 is composed at least partly of metal, which is grounded to the outer metallized surface 106 via capacitive coupling. The outer metallized surface 106 coupled to the back cover 104 defines the top lip of the electrical “box” of the mobile device 100 useful in maintaining consistent antenna performance of the mobile device 100.
Referring now to
Within device body 102, a main board 206 and display component 208 are contained, although numbers other types of components may be housed with the device body 102, as would be recognizable by a person of skill. In one variant, the display component 208 comprises a display-only device configured only to display content or data. In another embodiment, the display component 208 is a touch screen display (e.g., capacitive, resistive, or other technology) that allows for user input into the device via the display component 208. The display component 208 may comprise, for example, a liquid crystal display (LCD), light-emitting diode (LED) display, organic light emitting diode (OLED) display, or TFT-based device. It is appreciated by those skilled in the art that methodologies of the present disclosure are equally applicable to any future display technology, provided the display module is generally mechanically compatible with configurations such as those described in
In one embodiment, the middle deck 202 comprises one or more antenna elements 210. The main board 206 comprises a printed circuit board containing various components of the mobile device 100. Additionally, the one or more antenna elements 210 and main board 206 are configured to be in electrical contact via one or more antenna contacts 212. In one variant, the one or more antenna elements 210 are affixed to the mobile device 100 via a conductive “sponge” (i.e., conductive foam material) at the ground coupling point, and to the feed point via antenna contact 212. In another variant, both above connections are effected via solder joints. In yet another variant, both connections are effected via a conductive sponge. Other electrical coupling methods are useable with embodiments of the present disclosure including, but not limited to, c-clips, pogo pins, heat staking, etc. Additionally, a suitable adhesive or mechanical retaining means (e.g., snap fit) may be used if desired to affix an antenna element 210 to the mobile device 100 housing.
In one embodiment, each antenna element 210 is configured to operate in a separate frequency band (e.g., one antenna element 210 in a lower frequency band, and one antenna element 210 in an upper frequency band), although it will be appreciated that less or more and/or different bands may be formed based on varying configurations and/or numbers of antenna elements 210.
In one implementation, the lower frequency band (i.e., that associated with one of the two radiating elements operating at lower frequency) comprises a sub-GHz Global System for Mobile Communications (GSM) band (e.g., GSM710, GSM750, GSM850, GSM810, GSM900), while the higher band comprises a GSM1900, GSM1800, or PCS-1900 frequency band (e.g., 1.8 or 1.9 GHz).
In another implementation, the low or high band comprises the Global Positioning System (GPS) frequency band, and the antenna is used for receiving GPS position signals for decoding by e.g., an internal GPS receiver. In one variant, a single upper band antenna assembly operates in both the GPS and the Bluetooth frequency bands.
In another variant, the high-band comprises a Wi-Fi (IEEE Std. 802.11) or Bluetooth frequency band (e.g., approximately 2.4 GHz), and the lower band comprises GSM1900, GSM1800, or PCS1900 frequency band.
In yet another variant, two or more antennas elements, configured in accordance with the principles of the present disclosure, operate in the same frequency band thus providing, inter alia, diversity for Multiple In Multiple Out (MIMO) or for Multiple In Single Out (MISO) applications.
In another implementation, one of the frequency bands comprises a frequency band suitable for Near Field Communications applications, e.g., ISM 13.56 MHz band.
Other variants are configured the one or more antenna elements to cover LTE/LTE-A (e.g., 698 MHz-740 MHz, 900 MHz, 1800 MHz, and 2.5 GHz-2.6 GHz), WWAN (e.g., 824 MHz-960 MHz, and 1710 MHz-2170 MHz), and/or WiMAX (2.3, and 2.5 GHz) frequency bands.
In one embodiment, a portion of the middle deck 202 comprises the metalized outer surface 106. The middle deck 202 further comprises galvanic grounding elements 108, at least a portion of which are in electrical connection with the outer metalized surface 106. In one implementation, the galvanic grounding elements 108 comprise metallized portions of the middle deck 202. The metalized portions of the galvanic grounding elements 108 may be achieved via an LDS or similar plating process, via deposition (e.g., conductive fluid deposition as previously referenced), or other. The size and shape of the underlying structures of the galvanic grounding elements 108 may be configured based on a specific implementation so that the galvanic grounding elements 108 form contact with internal structures and components of the mobile device 100.
In another implementation, the galvanic grounding elements 108 are of separate construction from the middle deck 202. For example, the galvanic grounding elements 108 may comprise plated screw towers to ground the middle deck 202 to various components of the mobile device 100.
The galvanic grounding elements 108 are connected to various grounding contacts of various components housed within device body 102, such as grounding contact pads 214, 216 on the main board 206 and/or the display component 208.
In one embodiment, the back cover 104 is at least partly comprised of a metal. The metalized outer surface 106, in conjunction with the galvanic grounding elements 108, are configured to capacitively couple with at least a portion of the metal portion of the back cover 104 in order to ground the back cover 104. As the metal portions of the back cover 104 are coupled to the same ground of the metalized outer surface, the effect of the capacitively coupled metal portions impact on antenna performance can be made negligible in comparison to metalized outer surface 106. The amount of capacitive coupling between the back cover 104 and the outer metalized surface 106 is controllable by one or more of the size of the metal portion of the back cover 104, the size of the outer metalized surface 106, the distance between the back cover 104 and the outer metalized surface 106, and the dielectric material separating the metal portions of the back cover 104 and outer metalized surface 106 (such as non-conductive paint, air, etc.), or any combination thereof as would be recognizable by a person of ordinary skill. Salient advantages of a back cover 104 comprised of metal are improved strength of the mobile device 100 in addition to providing enhanced aesthetics. In one implementation, the surface area size of the metalized outer surface and the back cover 104 is substantially the same. One salient advantage of the capacitive coupling of the back cover 104 to ground is obviation of use of galvanic contacts to otherwise ground the back cover 104. Thus, reliability of the ground is increased due to a not requiring a direct physical connection to ground. In addition, reducing the number of galvanic contacts reduces manufacturing cost, and the amount of board space needed on main board or within the mobile device 100. Furthermore, as the galvanic grounding elements 108 are in electrical connection with the outer metallized surface 106, the galvanic grounding elements 108 may be physically located relatively freely with respect to the physical configuration of the back cover 104, which would otherwise be limited by physical constraints of grounding the back cover 104 physically directly to the mobile device 100. Thus, placement of the galvanic grounding elements 108 may be moved to more suitable locations given other design constraints such as, for example, main board size, internal component placement design, etc. For example, the galvanic grounding elements 108 may be moved to locations suitable for defining the electrical “box” of the mobile device 100, such as being located at the corner(s) and/or side edge(s). However, the galvanic grounding elements 108 may be located at a middle portion of the mobile device 100.
In one implementation, the back cover 104 is solely grounded via capacitive coupling with the outer metallized surface 106. In another variant, the back cover 104 is grounded through both the use of capacitively coupling with the outer metallized surface 106, and one or more galvanic contacts in direct physical connection with the back cover 104 and the device ground. Thus, the use of the capacitive coupling can be used to reduce the number of galvanic contacts of the back cover which may have otherwise been necessary to achieve similar performance, thereby reducing component cost while improving design freedom with regards to placement of the one or more galvanic contacts.
In one implementation, the metalized outer surface 106 is configured with a metallized surface that improves antenna performance, even in the instances where the back cover material has poor conductivity. Thus, the antenna performance, such as the antenna's resonance frequency, is not dependent on the back cover 104 being attached or removed from mobile device 100 thereby improving stability of the antenna performance in view of various back cover configurations. Accordingly, the back cover 104 may be constructed out of a variety of materials such as, for example, stainless steel, gold, aluminum, plastic, leather, etc., affording great design freedom. In one implementation, the back cover 104 can be configured to provide wireless charging to the mobile device 100 such as by the use of, for example, inductive charging technology with a respective charging apparatus.
While the various exemplary embodiments have been presented with respect to capacitive coupling a back cover 104 to ground of a mobile device 100, the present disclosure is not so limited. The present disclosure is equally applicable to capacitive grounding of any portions of the mobile device 100, including other exterior surfaces of the mobile devices 100, in addition to internal components of the mobile device 100. This approach benefits from replacing at least a portion of the galvanic contacts with the capacitive coupled ground, as would be recognized by a person of ordinary skill in the art.
Exemplary Method of Manufacture
Referring now to
As illustrated, the method 400 includes forming the mobile device body elements (e.g., front portion 204, middle deck 202, and back cover 104) of the mobile device body via a molding or other process per step 402. In one embodiment, the middle deck 202 is formed from a specially selected polymer capable of supporting an LDS process (e.g., which is doped and which can be subsequently laser activated for LDS element formation). In one implementation, the middle deck 202 is formed with structures to be used to form galvanic grounding elements 108.
Next, per step 404, the various portions of the mobile device body elements are activated, such as via laser energy, in preparation for metallic layer deposition via LDS.
Then, per step 406, the activated portions are “plated” via the LDS process, so as to form any or all of the outer metallized surface 106 and the galvanic grounding elements 108, as dictated by the design.
Per step 408, the device body 102 is assembled. In one embodiment, the device body 102 is assembled by connecting the middle deck 202 and front body portion 204 along with inserting any internal component(s) of the mobile device 100 (e.g. main board 204, display component 206, fasteners, wires, etc.).
Lastly, the back cover 204 is installed, as well as any other remaining components (e.g., battery component) onto the device body 102 by affixing back cover 104 per step 410. The mobile device 100 may then be tested, labeled, and/or otherwise prepared if/as desired.
Performance
Referring now to
Exemplary data for the lower frequency bands show comparable performance of the main and divisional antenna components of the mobile device in the low band between the galvanic connected metal back plate (502, 504, 506, 508) and the capacitive coupled back cover 104 (510, 512, 514, 516).
It will be recognized that while certain aspects of the disclosure are described in terms of a specific sequence of steps of a method, these descriptions are only illustrative of the broader methods of the present disclosure, and may be modified as required by the particular application. Certain steps may be rendered unnecessary or optional under certain circumstances. Additionally, certain steps or functionality may be added to the disclosed embodiments, or the order of performance of two or more steps permuted. All such variations are considered to be encompassed within the disclosure as discussed and claimed herein.
While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the invention. The foregoing description is of the best mode presently contemplated of carrying out the invention. This description is in no way meant to be limiting, but rather should be taken as illustrative of the general principles of the invention. The scope of the invention should be determined with reference to the claims.
Number | Name | Date | Kind |
---|---|---|---|
2745102 | Norgorden | May 1956 | A |
3938161 | Sanford | Feb 1976 | A |
4004228 | Mullett | Jan 1977 | A |
4028652 | Wakino et al. | Jun 1977 | A |
4031468 | Ziebell et al. | Jun 1977 | A |
4054874 | Oltman | Oct 1977 | A |
4069483 | Kaloi | Jan 1978 | A |
4123756 | Nagata et al. | Oct 1978 | A |
4123758 | Shibano et al. | Oct 1978 | A |
4131893 | Munson et al. | Dec 1978 | A |
4201960 | Skutta et al. | May 1980 | A |
4255729 | Fukasawa et al. | Mar 1981 | A |
4313121 | Campbell et al. | Jan 1982 | A |
4356492 | Kaloi | Oct 1982 | A |
4370657 | Kaloi | Jan 1983 | A |
4423396 | Makimoto et al. | Dec 1983 | A |
4431977 | Sokola et al. | Feb 1984 | A |
4546357 | Laughon et al. | Oct 1985 | A |
4559508 | Nishikawa et al. | Dec 1985 | A |
4625212 | Oda et al. | Nov 1986 | A |
4652889 | Bizouard et al. | Mar 1987 | A |
4661992 | Garay et al. | Apr 1987 | A |
4692726 | Green et al. | Sep 1987 | A |
4703291 | Nishikawa et al. | Oct 1987 | A |
4706050 | Andrews | Nov 1987 | A |
4716391 | Moutrie et al. | Dec 1987 | A |
4740765 | Ishikawa et al. | Apr 1988 | A |
4742562 | Kommrusch | May 1988 | A |
4761624 | Igarashi et al. | Aug 1988 | A |
4800348 | Rosar et al. | Jan 1989 | A |
4800392 | Garay et al. | Jan 1989 | A |
4821006 | Ishikawa et al. | Apr 1989 | A |
4823098 | DeMuro et al. | Apr 1989 | A |
4827266 | Sato et al. | May 1989 | A |
4829274 | Green et al. | May 1989 | A |
4835538 | McKenna et al. | May 1989 | A |
4835541 | Johnson et al. | May 1989 | A |
4862181 | PonceDeLeon et al. | Aug 1989 | A |
4879533 | De Muro et al. | Nov 1989 | A |
4896124 | Schwent | Jan 1990 | A |
4907006 | Nishikawa et al. | Mar 1990 | A |
4954796 | Green et al. | Sep 1990 | A |
4965537 | Kommrusch | Oct 1990 | A |
4977383 | Niiranen | Dec 1990 | A |
4980694 | Hines | Dec 1990 | A |
5016020 | Simpson | May 1991 | A |
5017932 | Ushiyama et al. | May 1991 | A |
5043738 | Shapiro et al. | Aug 1991 | A |
5047739 | Kuokkanen | Sep 1991 | A |
5053786 | Silverman et al. | Oct 1991 | A |
5057847 | Vaeisaenen | Oct 1991 | A |
5061939 | Nakase | Oct 1991 | A |
5097236 | Wakino et al. | Mar 1992 | A |
5103197 | Turunen | Apr 1992 | A |
5109536 | Kommrusch | Apr 1992 | A |
5155493 | Thursby et al. | Oct 1992 | A |
5157363 | Puurunen | Oct 1992 | A |
5159303 | Flink | Oct 1992 | A |
5166697 | Viladevall et al. | Nov 1992 | A |
5170173 | Krenz et al. | Dec 1992 | A |
5203021 | Repplinger et al. | Apr 1993 | A |
5210510 | Karsikas | May 1993 | A |
5210542 | Pett et al. | May 1993 | A |
5220335 | Huang | Jun 1993 | A |
5229777 | Doyle | Jul 1993 | A |
5239279 | Turunen | Aug 1993 | A |
5278528 | Turunen | Jan 1994 | A |
5281326 | Galla | Jan 1994 | A |
5298873 | Ala-Kojola | Mar 1994 | A |
5302924 | Jantunen | Apr 1994 | A |
5304968 | Ohtonen | Apr 1994 | A |
5307036 | Turunen | Apr 1994 | A |
5319328 | Turunen | Jun 1994 | A |
5349315 | Ala-Kojola | Sep 1994 | A |
5349700 | Parker | Sep 1994 | A |
5351023 | Niiranen | Sep 1994 | A |
5354463 | Turunen | Oct 1994 | A |
5355142 | Marshall et al. | Oct 1994 | A |
5357262 | Blaese | Oct 1994 | A |
5363114 | Shoemaker | Nov 1994 | A |
5369782 | Kawano et al. | Nov 1994 | A |
5382959 | Pett et al. | Jan 1995 | A |
5386214 | Sugawara | Jan 1995 | A |
5387886 | Takalo | Feb 1995 | A |
5394162 | Korovesis et al. | Feb 1995 | A |
RE34898 | Turunen | Apr 1995 | E |
5408206 | Turunen | Apr 1995 | A |
5418508 | Puurunen | May 1995 | A |
5432489 | Yrjola | Jul 1995 | A |
5438697 | Fowler et al. | Aug 1995 | A |
5440315 | Wright et al. | Aug 1995 | A |
5442366 | Sanford | Aug 1995 | A |
5444453 | Lalezari | Aug 1995 | A |
5467065 | Turunen | Nov 1995 | A |
5473295 | Turunen | Dec 1995 | A |
5506554 | Ala-Kojola | Apr 1996 | A |
5508668 | Prokkola | Apr 1996 | A |
5510802 | Tsuru et al. | Apr 1996 | A |
5517683 | Collett et al. | May 1996 | A |
5521561 | Yrjola | May 1996 | A |
5526003 | Ogawa et al. | Jun 1996 | A |
5532703 | Stephens et al. | Jul 1996 | A |
5541560 | Turunen | Jul 1996 | A |
5541617 | Connolly et al. | Jul 1996 | A |
5543764 | Turunen | Aug 1996 | A |
5550519 | Korpela | Aug 1996 | A |
5557287 | Pottala et al. | Sep 1996 | A |
5557292 | Nygren et al. | Sep 1996 | A |
5566441 | Marsh et al. | Oct 1996 | A |
5570071 | Ervasti | Oct 1996 | A |
5585771 | Ervasti | Dec 1996 | A |
5585810 | Tsuru et al. | Dec 1996 | A |
5589844 | Belcher et al. | Dec 1996 | A |
5594395 | Niiranen | Jan 1997 | A |
5604471 | Rattila | Feb 1997 | A |
5627502 | Ervasti | May 1997 | A |
5649316 | Prodhomme et al. | Jul 1997 | A |
5668561 | Perrotta et al. | Sep 1997 | A |
5675301 | Nappa | Oct 1997 | A |
5689221 | Niiranen | Nov 1997 | A |
5694135 | Dikun et al. | Dec 1997 | A |
5696517 | Kawahata et al. | Dec 1997 | A |
5703600 | Burrell et al. | Dec 1997 | A |
5709832 | Hayes et al. | Jan 1998 | A |
5711014 | Crowley et al. | Jan 1998 | A |
5717368 | Niiranen | Feb 1998 | A |
5731749 | Yrjola | Mar 1998 | A |
5734305 | Ervasti | Mar 1998 | A |
5734350 | Deming et al. | Mar 1998 | A |
5734351 | Ojantakanen | Mar 1998 | A |
5739735 | Pyykko | Apr 1998 | A |
5742259 | Annamaa | Apr 1998 | A |
5757327 | Yajima et al. | May 1998 | A |
5760746 | Kawahata | Jun 1998 | A |
5764190 | Murch et al. | Jun 1998 | A |
5767809 | Chuang et al. | Jun 1998 | A |
5768217 | Sonoda et al. | Jun 1998 | A |
5777581 | Lilly et al. | Jul 1998 | A |
5777585 | Tsuda et al. | Jul 1998 | A |
5793269 | Ervasti | Aug 1998 | A |
5797084 | Tsuru et al. | Aug 1998 | A |
5812094 | Maldonado | Sep 1998 | A |
5815048 | Ala-Kojola | Sep 1998 | A |
5822705 | Lehtola | Oct 1998 | A |
5852421 | Maldonado | Dec 1998 | A |
5861854 | Kawahata et al. | Jan 1999 | A |
5874926 | Tsuru et al. | Feb 1999 | A |
5880697 | McCarrick et al. | Mar 1999 | A |
5886668 | Pedersen et al. | Mar 1999 | A |
5892490 | Asakura et al. | Apr 1999 | A |
5903820 | Hagstrom | May 1999 | A |
5905475 | Annamaa | May 1999 | A |
5920290 | McDonough et al. | Jul 1999 | A |
5926139 | Korisch | Jul 1999 | A |
5929813 | Eggleston | Jul 1999 | A |
5936583 | Maeda et al. | Aug 1999 | A |
5943016 | Snyder, Jr. et al. | Aug 1999 | A |
5952975 | Pedersen et al. | Sep 1999 | A |
5959583 | Funk | Sep 1999 | A |
5963180 | Leisten | Oct 1999 | A |
5966097 | Fukasawa et al. | Oct 1999 | A |
5970393 | Khorrami et al. | Oct 1999 | A |
5977710 | Kuramoto et al. | Nov 1999 | A |
5986606 | Kossiavas et al. | Nov 1999 | A |
5986608 | Korisch et al. | Nov 1999 | A |
5990848 | Annamaa | Nov 1999 | A |
5999132 | Kitchener et al. | Dec 1999 | A |
6005529 | Hutchinson | Dec 1999 | A |
6006419 | Vandendolder et al. | Dec 1999 | A |
6008764 | Ollikainen | Dec 1999 | A |
6009311 | Killion et al. | Dec 1999 | A |
6014106 | Annamaa | Jan 2000 | A |
6016130 | Annamaa | Jan 2000 | A |
6023608 | Yrjola | Feb 2000 | A |
6031496 | Kuittinen et al. | Feb 2000 | A |
6034637 | McCoy et al. | Mar 2000 | A |
6037848 | Alila | Mar 2000 | A |
6043780 | Funk et al. | Mar 2000 | A |
6052096 | Tsuru et al. | Apr 2000 | A |
6072434 | Papatheodorou | Jun 2000 | A |
6078231 | Pelkonen | Jun 2000 | A |
6091363 | Komatsu et al. | Jul 2000 | A |
6091365 | Derneryd et al. | Jul 2000 | A |
6097345 | Walton | Aug 2000 | A |
6100849 | Tsubaki et al. | Aug 2000 | A |
6112108 | Crowley et al. | Aug 2000 | A |
6121931 | Levi et al. | Sep 2000 | A |
6133879 | Grangeat et al. | Oct 2000 | A |
6134421 | Lee et al. | Oct 2000 | A |
6140966 | Pankinaho | Oct 2000 | A |
6140973 | Annamaa | Oct 2000 | A |
6147650 | Kawahata et al. | Nov 2000 | A |
6157819 | Vuokko | Dec 2000 | A |
6177908 | Kawahata | Jan 2001 | B1 |
6185434 | Hagstrom | Feb 2001 | B1 |
6190942 | Wilm et al. | Feb 2001 | B1 |
6195049 | Kim et al. | Feb 2001 | B1 |
6204826 | Rutkowski et al. | Mar 2001 | B1 |
6215376 | Hagstrom | Apr 2001 | B1 |
6246368 | Deming et al. | Jun 2001 | B1 |
6252552 | Tarvas et al. | Jun 2001 | B1 |
6252554 | Isohatala | Jun 2001 | B1 |
6255994 | Saito | Jul 2001 | B1 |
6268831 | Sanford | Jul 2001 | B1 |
6281848 | Nagumo et al. | Aug 2001 | B1 |
6295029 | Chen et al. | Sep 2001 | B1 |
6297776 | Pankinaho | Oct 2001 | B1 |
6304220 | Herve et al. | Oct 2001 | B1 |
6308720 | Modi | Oct 2001 | B1 |
6316975 | O'Toole et al. | Nov 2001 | B1 |
6323811 | Tsubaki | Nov 2001 | B1 |
6326921 | Egorov et al. | Dec 2001 | B1 |
6337663 | Chi-Minh | Jan 2002 | B1 |
6340954 | Annamaa et al. | Jan 2002 | B1 |
6342859 | Kurz et al. | Jan 2002 | B1 |
6343208 | Ying | Jan 2002 | B1 |
6346914 | Annamaa | Feb 2002 | B1 |
6348892 | Annamaa | Feb 2002 | B1 |
6353443 | Ying | Mar 2002 | B1 |
6366243 | Isohatala | Apr 2002 | B1 |
6377827 | Rydbeck | Apr 2002 | B1 |
6380905 | Annamaa | Apr 2002 | B1 |
6396444 | Goward | May 2002 | B1 |
6404394 | Hill | Jun 2002 | B1 |
6417813 | Durham et al. | Jul 2002 | B1 |
6421014 | Sanad | Jul 2002 | B1 |
6423915 | Winter | Jul 2002 | B1 |
6429818 | Johnson et al. | Aug 2002 | B1 |
6452551 | Chen | Sep 2002 | B1 |
6452558 | Saitou et al. | Sep 2002 | B1 |
6456249 | Johnson et al. | Sep 2002 | B1 |
6459413 | Tseng et al. | Oct 2002 | B1 |
6462716 | Kushihi | Oct 2002 | B1 |
6469673 | Kaiponen | Oct 2002 | B2 |
6473056 | Annamaa | Oct 2002 | B2 |
6476767 | Aoyama et al. | Nov 2002 | B2 |
6476769 | Lehtola | Nov 2002 | B1 |
6480155 | Eggleston | Nov 2002 | B1 |
6483462 | Weinberger | Nov 2002 | B2 |
6498586 | Pankinaho | Dec 2002 | B2 |
6501425 | Nagumo | Dec 2002 | B1 |
6515625 | Johnson | Feb 2003 | B1 |
6518925 | Annamaa | Feb 2003 | B1 |
6529168 | Mikkola | Mar 2003 | B2 |
6529749 | Hayes et al. | Mar 2003 | B1 |
6535170 | Sawamura et al. | Mar 2003 | B2 |
6538604 | Isohatala | Mar 2003 | B1 |
6538607 | Barna | Mar 2003 | B2 |
6542050 | Arai et al. | Apr 2003 | B1 |
6549167 | Yoon | Apr 2003 | B1 |
6552686 | Ollikainen et al. | Apr 2003 | B2 |
6556812 | Pennanen et al. | Apr 2003 | B1 |
6566944 | Pehlke | May 2003 | B1 |
6580396 | Lin | Jun 2003 | B2 |
6580397 | Lindell | Jun 2003 | B2 |
6600449 | Onaka | Jul 2003 | B2 |
6603430 | Hill et al. | Aug 2003 | B1 |
6606016 | Takamine et al. | Aug 2003 | B2 |
6611235 | Barna et al. | Aug 2003 | B2 |
6614400 | Egorov | Sep 2003 | B2 |
6614401 | Onaka et al. | Sep 2003 | B2 |
6614405 | Mikkonen | Sep 2003 | B1 |
6634564 | Kuramochi | Oct 2003 | B2 |
6636181 | Asano | Oct 2003 | B2 |
6639564 | Johnson | Oct 2003 | B2 |
6646606 | Mikkola | Nov 2003 | B2 |
6650295 | Ollikainen et al. | Nov 2003 | B2 |
6657593 | Nagumo et al. | Dec 2003 | B2 |
6657595 | Phillips et al. | Dec 2003 | B1 |
6670926 | Miyasaka | Dec 2003 | B2 |
6677903 | Wang | Jan 2004 | B2 |
6680705 | Tan et al. | Jan 2004 | B2 |
6683573 | Park | Jan 2004 | B2 |
6693594 | Pankinaho et al. | Feb 2004 | B2 |
6717551 | Desclos et al. | Apr 2004 | B1 |
6727857 | Mikkola | Apr 2004 | B2 |
6734825 | Guo et al. | May 2004 | B1 |
6734826 | Dai et al. | May 2004 | B1 |
6738022 | Klaavo et al. | May 2004 | B2 |
6741214 | Kadambi et al. | May 2004 | B1 |
6753813 | Kushihi | Jun 2004 | B2 |
6759989 | Tarvas et al. | Jul 2004 | B2 |
6765536 | Phillips et al. | Jul 2004 | B2 |
6774853 | Wong et al. | Aug 2004 | B2 |
6781545 | Sung | Aug 2004 | B2 |
6801166 | Mikkola | Oct 2004 | B2 |
6801169 | Chang et al. | Oct 2004 | B1 |
6806835 | Iwai | Oct 2004 | B2 |
6819287 | Sullivan et al. | Nov 2004 | B2 |
6819293 | De Graauw | Nov 2004 | B2 |
6825818 | Toncich | Nov 2004 | B2 |
6836249 | Kenoun et al. | Dec 2004 | B2 |
6847329 | Ikegaya et al. | Jan 2005 | B2 |
6856293 | Bordi | Feb 2005 | B2 |
6862437 | McNamara | Mar 2005 | B1 |
6862441 | Ella | Mar 2005 | B2 |
6873291 | Aoyama | Mar 2005 | B2 |
6876329 | Milosavljevic | Apr 2005 | B2 |
6882317 | Koskiniemi | Apr 2005 | B2 |
6891507 | Kushihi et al. | May 2005 | B2 |
6897810 | Dai et al. | May 2005 | B2 |
6900768 | Iguchi et al. | May 2005 | B2 |
6903692 | Kivekas | Jun 2005 | B2 |
6911945 | Korva | Jun 2005 | B2 |
6922171 | Annamaa | Jul 2005 | B2 |
6925689 | Folkmar | Aug 2005 | B2 |
6927729 | Legay | Aug 2005 | B2 |
6937196 | Korva | Aug 2005 | B2 |
6950065 | Ying et al. | Sep 2005 | B2 |
6950066 | Hendler et al. | Sep 2005 | B2 |
6950068 | Bordi | Sep 2005 | B2 |
6950072 | Miyata et al. | Sep 2005 | B2 |
6952144 | Javor | Oct 2005 | B2 |
6952187 | Annamaa | Oct 2005 | B2 |
6958730 | Nagumo et al. | Oct 2005 | B2 |
6961544 | Hagstrom | Nov 2005 | B1 |
6963308 | Korva | Nov 2005 | B2 |
6963310 | Horita et al. | Nov 2005 | B2 |
6967618 | Ojantakanen | Nov 2005 | B2 |
6975278 | Song et al. | Dec 2005 | B2 |
6980158 | Iguchi et al. | Dec 2005 | B2 |
6985108 | Mikkola | Jan 2006 | B2 |
6992543 | Luetzelschwab et al. | Jan 2006 | B2 |
6995710 | Sugimoto et al. | Feb 2006 | B2 |
7023341 | Stilp | Apr 2006 | B2 |
7031744 | Kuriyama et al. | Apr 2006 | B2 |
7034752 | Sekiguchi et al. | Apr 2006 | B2 |
7042403 | Colburn et al. | May 2006 | B2 |
7053841 | Ponce De Leon et al. | May 2006 | B2 |
7054671 | Kaiponen et al. | May 2006 | B2 |
7057560 | Erkocevic | Jun 2006 | B2 |
7061430 | Zheng et al. | Jun 2006 | B2 |
7081857 | Kinnunen et al. | Jul 2006 | B2 |
7084831 | Takagi et al. | Aug 2006 | B2 |
7099690 | Milosavljevic | Aug 2006 | B2 |
7113133 | Chen et al. | Sep 2006 | B2 |
7119749 | Miyata et al. | Oct 2006 | B2 |
7126546 | Annamaa | Oct 2006 | B2 |
7129893 | Otaka et al. | Oct 2006 | B2 |
7136019 | Mikkola | Nov 2006 | B2 |
7136020 | Yamaki | Nov 2006 | B2 |
7142824 | Kojima et al. | Nov 2006 | B2 |
7148847 | Yuanzhu | Dec 2006 | B2 |
7148849 | Lin | Dec 2006 | B2 |
7148851 | Takaki et al. | Dec 2006 | B2 |
7170464 | Tang et al. | Jan 2007 | B2 |
7176838 | Kinezos | Feb 2007 | B1 |
7180455 | Oh et al. | Feb 2007 | B2 |
7193574 | Chiang et al. | Mar 2007 | B2 |
7205942 | Wang et al. | Apr 2007 | B2 |
7215283 | Boyle | May 2007 | B2 |
7218280 | Annamaa | May 2007 | B2 |
7218282 | Humpfer et al. | May 2007 | B2 |
7224313 | McKinzie, III et al. | May 2007 | B2 |
7230574 | Johnson | Jun 2007 | B2 |
7233775 | De Graauw | Jun 2007 | B2 |
7237318 | Annamaa | Jul 2007 | B2 |
7256743 | Korva | Aug 2007 | B2 |
7274334 | O'Riordan et al. | Sep 2007 | B2 |
7283097 | Wen et al. | Oct 2007 | B2 |
7289064 | Cheng | Oct 2007 | B2 |
7292200 | Posluszny et al. | Nov 2007 | B2 |
7319432 | Andersson | Jan 2008 | B2 |
7330153 | Rentz | Feb 2008 | B2 |
7333067 | Hung et al. | Feb 2008 | B2 |
7339528 | Wang et al. | Mar 2008 | B2 |
7340286 | Korva et al. | Mar 2008 | B2 |
7345634 | Ozkar et al. | Mar 2008 | B2 |
7352326 | Korva | Apr 2008 | B2 |
7355270 | Hasebe et al. | Apr 2008 | B2 |
7358902 | Erkocevic | Apr 2008 | B2 |
7375695 | Ishizuka et al. | May 2008 | B2 |
7381774 | Bish et al. | Jun 2008 | B2 |
7382319 | Kawahata et al. | Jun 2008 | B2 |
7385556 | Chung et al. | Jun 2008 | B2 |
7388543 | Vance | Jun 2008 | B2 |
7391378 | Mikkola | Jun 2008 | B2 |
7405702 | Annamaa et al. | Jul 2008 | B2 |
7417588 | Castany et al. | Aug 2008 | B2 |
7423592 | Pros et al. | Sep 2008 | B2 |
7432860 | Huynh | Oct 2008 | B2 |
7439929 | Ozkar | Oct 2008 | B2 |
7443344 | Boyle | Oct 2008 | B2 |
7468700 | Milosavlejevic | Dec 2008 | B2 |
7468709 | Niemi | Dec 2008 | B2 |
7498990 | Park et al. | Mar 2009 | B2 |
7501983 | Mikkola | Mar 2009 | B2 |
7502598 | Kronberger | Mar 2009 | B2 |
7589678 | Perunka et al. | Sep 2009 | B2 |
7616158 | Mark et al. | Nov 2009 | B2 |
7633449 | Oh | Dec 2009 | B2 |
7663551 | Nissinen | Feb 2010 | B2 |
7679565 | Sorvala | Mar 2010 | B2 |
7692543 | Copeland | Apr 2010 | B2 |
7710325 | Cheng | May 2010 | B2 |
7724204 | Annamaa | May 2010 | B2 |
7760146 | Ollikainen | Jul 2010 | B2 |
7764245 | Loyet | Jul 2010 | B2 |
7786938 | Sorvala | Aug 2010 | B2 |
7800544 | Thornell-Pers | Sep 2010 | B2 |
7830327 | He | Nov 2010 | B2 |
7843397 | Boyle | Nov 2010 | B2 |
7889139 | Hobson et al. | Feb 2011 | B2 |
7889143 | Milosavljevic | Feb 2011 | B2 |
7901617 | Taylor | Mar 2011 | B2 |
7903035 | Mikkola et al. | Mar 2011 | B2 |
7916086 | Koskiniemi et al. | Mar 2011 | B2 |
7963347 | Pabon | Jun 2011 | B2 |
7973720 | Sorvala | Jul 2011 | B2 |
8049670 | Jung et al. | Nov 2011 | B2 |
8098202 | Annamaa et al. | Jan 2012 | B2 |
8179322 | Nissinen | May 2012 | B2 |
8193998 | Puente Baliarda et al. | Jun 2012 | B2 |
8378892 | Sorvala | Feb 2013 | B2 |
8466756 | Milosavljevic et al. | Jun 2013 | B2 |
8473017 | Milosavljevic et al. | Jun 2013 | B2 |
8564485 | Milosavljevic et al. | Oct 2013 | B2 |
8629813 | Milosavljevic | Jan 2014 | B2 |
20010050636 | Weinberger | Dec 2001 | A1 |
20020183013 | Auckland et al. | Dec 2002 | A1 |
20020196192 | Nagumo et al. | Dec 2002 | A1 |
20030146873 | Blancho | Aug 2003 | A1 |
20040090378 | Dai et al. | May 2004 | A1 |
20040137950 | Bolin et al. | Jul 2004 | A1 |
20040145525 | Annabi et al. | Jul 2004 | A1 |
20040171403 | Mikkola | Sep 2004 | A1 |
20050057401 | Yuanzhu | Mar 2005 | A1 |
20050159131 | Shibagaki et al. | Jul 2005 | A1 |
20050176481 | Jeong | Aug 2005 | A1 |
20060071857 | Pelzer | Apr 2006 | A1 |
20060192723 | Harada | Aug 2006 | A1 |
20070042615 | Liao | Feb 2007 | A1 |
20070082789 | Nissila | Apr 2007 | A1 |
20070152881 | Chan | Jul 2007 | A1 |
20070188388 | Feng | Aug 2007 | A1 |
20080055164 | Zhang et al. | Mar 2008 | A1 |
20080059106 | Wight | Mar 2008 | A1 |
20080088511 | Sorvala | Apr 2008 | A1 |
20080266199 | Milosavljevic | Oct 2008 | A1 |
20090009415 | Tanska | Jan 2009 | A1 |
20090135066 | Raappana et al. | May 2009 | A1 |
20090174604 | Keskitalo | Jul 2009 | A1 |
20090196160 | Crombach | Aug 2009 | A1 |
20090197654 | Teshima | Aug 2009 | A1 |
20090231213 | Ishimiya | Sep 2009 | A1 |
20100220016 | Nissinen | Sep 2010 | A1 |
20100244978 | Milosavljevic | Sep 2010 | A1 |
20100309092 | Lambacka | Dec 2010 | A1 |
20110133994 | Korva | Jun 2011 | A1 |
20120119955 | Milosavljevic et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
1316797 | Oct 2007 | CN |
10104862 | Aug 2002 | DE |
10150149 | Apr 2003 | DE |
0 208 424 | Jan 1987 | EP |
0 376 643 | Apr 1990 | EP |
0 751 043 | Apr 1997 | EP |
0 807 988 | Nov 1997 | EP |
0 831 547 | Mar 1998 | EP |
0 851 530 | Jul 1998 | EP |
1 294 048 | Jan 1999 | EP |
1 014 487 | Jun 2000 | EP |
1 024 553 | Aug 2000 | EP |
1 067 627 | Jan 2001 | EP |
0 923 158 | Sep 2002 | EP |
1 329 980 | Jul 2003 | EP |
1 361 623 | Nov 2003 | EP |
1 406 345 | Apr 2004 | EP |
1 453 137 | Sep 2004 | EP |
1 220 456 | Oct 2004 | EP |
1 467 456 | Oct 2004 | EP |
1 753 079 | Feb 2007 | EP |
20020829 | Nov 2003 | FI |
118782 | Mar 2008 | FI |
2553584 | Oct 1983 | FR |
2724274 | Mar 1996 | FR |
2873247 | Jan 2006 | FR |
2266997 | Nov 1993 | GB |
2360422 | Sep 2001 | GB |
2389246 | Dec 2003 | GB |
59-202831 | Nov 1984 | JP |
60-206304 | Oct 1985 | JP |
61-245704 | Nov 1986 | JP |
06-152463 | May 1994 | JP |
07-131234 | May 1995 | JP |
07-221536 | Aug 1995 | JP |
07-249923 | Sep 1995 | JP |
07-307612 | Nov 1995 | JP |
08-216571 | Aug 1996 | JP |
09-083242 | Mar 1997 | JP |
09-260934 | Oct 1997 | JP |
09-307344 | Nov 1997 | JP |
10-028013 | Jan 1998 | JP |
10-107671 | Apr 1998 | JP |
10-173423 | Jun 1998 | JP |
10-209733 | Aug 1998 | JP |
10-224142 | Aug 1998 | JP |
10-322124 | Dec 1998 | JP |
10-327011 | Dec 1998 | JP |
11-004113 | Jan 1999 | JP |
11-004117 | Jan 1999 | JP |
11-068456 | Mar 1999 | JP |
11-127010 | May 1999 | JP |
11-127014 | May 1999 | JP |
11-136025 | May 1999 | JP |
11-355033 | Dec 1999 | JP |
2000-278028 | Oct 2000 | JP |
2001-053543 | Feb 2001 | JP |
2001-267833 | Sep 2001 | JP |
2001-217631 | Oct 2001 | JP |
2001-326513 | Nov 2001 | JP |
2002-319811 | Oct 2002 | JP |
2002-329541 | Nov 2002 | JP |
2002-335117 | Nov 2002 | JP |
2003-060417 | Feb 2003 | JP |
2003-124730 | Apr 2003 | JP |
2003-179426 | Jun 2003 | JP |
2004-112028 | Apr 2004 | JP |
2004-363859 | Dec 2004 | JP |
2005-005985 | Jan 2005 | JP |
2005-252661 | Sep 2005 | JP |
20010080521 | Oct 2001 | KR |
20020096016 | Dec 2002 | KR |
511900 | Dec 1999 | SE |
WO 9200635 | Jan 1992 | WO |
WO 9627219 | Sep 1996 | WO |
WO 9801919 | Jan 1998 | WO |
WO 9930479 | Jun 1999 | WO |
WO 0120718 | Mar 2001 | WO |
WO 0129927 | Apr 2001 | WO |
WO 0133665 | May 2001 | WO |
WO 0161781 | Aug 2001 | WO |
WO 2004017462 | Feb 2004 | WO |
WO 2004057697 | Jul 2004 | WO |
WO 2004100313 | Nov 2004 | WO |
WO 2004112189 | Dec 2004 | WO |
WO 2005062416 | Jul 2005 | WO |
WO 2007012697 | Feb 2007 | WO |
WO 2010122220 | Oct 2010 | WO |
Entry |
---|
“An Adaptive Microstrip Patch Antenna for Use in Portable Transceivers”, Rostbakken et al., Vehicular Technology Conference, 1996, Mobile Technology for the Human Race, pp. 339-343. |
“Dual Band Antenna for Hand Held Portable Telephones”, Liu et al., Electronics Letters, vol. 32, No. 7, 1996, pp. 609-610. |
“Improved Bandwidth of Microstrip Antennas using Parasitic Elements,” IEE Proc. vol. 127, Pt. H. No. 4, Aug. 1980. |
“A 13.56MHz RFID Device and Software for Mobile Systems”, by H. Ryoson, et al., Micro Systems Network Co., 2004 IEEE, pp. 241-244. |
“A Novel Approach of a Planar Multi-Band Hybrid Series Feed Network for Use in Antenna Systems Operating at Millimeter Wave Frequencies,” by M.W. Elsallal and B.L. Hauck, Rockwell Collins, Inc., 2003 pp. 15-24, waelsall@rockwellcollins.com and blhauck@rockwellcollins.com. |
Abedin, M. F. and M. Ali, “Modifying the ground plane and its erect on planar inverted-F antennas (PIFAs) for mobile handsets,” IEEE Antennas and Wireless Propagation Letters, vol. 2, 226-229, 2003. |
C. R. Rowell and R. D. Murch, “A compact PIFA suitable for dual frequency 900/1800-MHz operation,” IEEE Trans. Antennas Propag., vol. 46, No. 4, pp. 596-598, Apr. 1998. |
Cheng- Nan Hu, Willey Chen, and Book Tai, “A Compact Multi-Band Antenna Design for Mobile Handsets”, APMC 2005 Proceedings. |
Endo, T., Y. Sunahara, S. Satoh and T. Katagi, “Resonant Frequency and Radiation Efficiency of Meander Line Antennas,” Electronics and Commu-nications in Japan, Part 2, vol. 83, No. 1, 52-58, 2000. |
European Office Action, May 30, 2005 issued during prosecution of EP 04 396 001.2-1248. |
Examination Report dated May 3, 2006 issued by the EPO for European Patent Application No. 04 396 079.8. |
F.R. Hsiao, et al. “A dual-band planar inverted-F patch antenna with a branch-line slit,” Microwave Opt. Technol. Lett., vol. 32, Feb. 20, 2002. |
Griffin, Donald W. et al., “Electromagnetic Design Aspects of Packages for Monolithic Microwave Integrated Circuit-Based Arrays with Integrated Antenna Elements”, IEEE Transactions on Antennas and Propagation, vol. 43, No. 9, pp. 927-931, Sep. 1995. |
Guo, Y. X. and H. S. Tan, “New compact six-band internal antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 3, 295-297, 2004. |
Guo, Y. X. and Y.W. Chia and Z. N. Chen, “Miniature built-in quadband antennas for mobile handsets”, IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 30-32, 2004. |
Hoon Park, et al. “Design of an Internal antenna with wide and multiband characteristics for a mobile handset”, IEEE Microw. & Opt. Tech. Lett. vol. 48, No. 5, May 2006. |
Hoon Park, et al. “Design of Planar Inverted-F Antenna With Very Wide Impedance Bandwidth”, IEEE Microw. & Wireless Comp., Lett., vol. 16, No. 3, pp. 113-115-, Mar. 2006. |
Hossa, R., A. Byndas, and M. E. Bialkowski, “Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane,” IEEE Microwave and Wireless Components Letters, vol. 14, 283-285, 2004. |
I. Ang, Y. X. Guo, and Y. W. Chia, “Compact internal quad-band antenna for mobile phones” Micro. Opt. Technol. Lett., vol. 38, No. 3 pp. 217-223 Aug. 2003. |
International Preliminary Report on Patentability for International Application No. PCT/FI2004/000554, date of issuance of report May 1, 2006. |
Jing, X., et al.; “Compact Planar Monopole Antenna for Multi-Band Mobile Phones”; Microwave Conference Proceedings, 4.-7.12.2005.APMC 2005, Asia-Pacific Conference Proceedings, vol. 4. |
Kim, B. C., J. H. Yun, and H. D. Choi, “Small wideband PIFA for mobile phones at 1800 MHz,” IEEE International Conference on Vehicular Technology, 27(29, Daejeon, South Korea, May 2004. |
Kim, Kihong et al., “Integrated Dipole Antennas on Silicon Substrates for Intra-Chip Communication”, IEEE, pp. 1582-1585, 1999. |
Kivekas., O., J. Ollikainen, T. Lehtiniemi, and P. Vainikainen, “Bandwidth, SAR, and eciency of internal mobile phone antennas,” IEEE Transactions on Electromagnetic Compatibility, vol. 46, 71(86, 2004. |
K-L Wong, Planar Antennas for Wireless Communications, Hoboken, NJ: Willey, 2003, ch. 2. |
Lindberg., P. and E. Ojefors, “A bandwidth enhancement technique for mobile handset antennas using wavetraps,” IEEE Transactions on Antennas and Propagation, vol. 54, 2226{2232, 2006. |
Marta Martinez-Vazquez, et al., “Integrated Planar Multiband Antennas for Personal Communication Handsets”, IEEE Trasactions on Antennas and propagation, vol. 54, No. 2, Feb. 2006. |
P. Ciais, et al., “Compact Internal Multiband Antennas for Mobile and WLAN Standards”, Electronic Letters, vol. 40, No. 15, pp. 920-921, Jul. 2004. |
P. Ciais, R. Staraj, G. Kossiavas, and C. Luxey, “Design of an internal quadband antenna for mobile phones”, IEEE Microwave Wireless Comp. Lett., vol. 14, No. 4, pp. 148-150, Apr. 2004. |
P. Salonen, et al. “New slot configurations for dual-band planar inverted-F antenna,” Microwave Opt. Technol., vol. 28, pp. 293-298, 2001. |
Papapolymerou, Ioannis et al., “Micromachined Patch Antennas”, IEEE Transactions on Antennas and Propagation, vol. 46, No. 2, pp. 275-283, Feb. 1998. |
Product of the Month, RFDesign, “GSM/GPRS Quad Band Power Amp Includes Antenna Switch,” 1 page, reprinted Nov. 2004 issue of RF Design (www.rfdesign.com), Copyright 2004, Freescale Semiconductor, RFD-24-EK. |
S. Tarvas, et al. “An internal dual-band mobile phone antenna,” in 2000 IEEE Antennas Propagat. Soc. Int, Symp. Dig., pp. 266-269, Salt Lake City, UT, USA. |
Wang, F., Z. Du, Q. Wang, and K. Gong, “Enhanced-bandwidth PIFA with T-shaped ground plane,” Electronics Letters, vol. 40, 1504-1505, 2004. |
Wang, H.; “Dual-Resonance Monopole Antenna with Tuning Stubs”; IEEE Proceedings, Microwaves, Antennas & Propagation, vol. 153, No. 4, Aug. 2006; pp. 395-399. |
Wong, K., et al.; “A Low-Profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets”; IEEE Transactions on Antennas and Propagation, Jan. '03, vol. 51, No. 1. |
X.-D. Cai and J.-Y. Li, Analysis of asymmetric TEM cell and its optimum design of electric field distribution, IEE Proc 136 (1989), 191-194. |
X.-Q. Yang and K.-M. Huang, Study on the key problems of interaction between microwave and chemical reaction, Chin Jof Radio Sci 21 (2006), 802-809. |
Chiu, C.-W., et al., “A Meandered Loop Antenna for LTE/WWAN Operations in a Smartphone,” Progress in Electromagnetics Research C, vol. 16, pp. 147-160, 2010. |
Lin, Sheng-Yu; Liu, Hsien-Wen; Weng, Chung-Hsun; and Yang, Chang-Fa, “A miniature Coupled loop Antenna to be Embedded in a Mobile Phone for Penta-band Applications,” Progress in Electromagnetics Research Symposium Proceedings, Xi'An, China, Mar. 22-26, 2010, pp. 721-724. |
Zhang, Y.Q., et al. “Band-Notched UWB Crossed Semi-Ring Monopole Antenna,” Progress in Electronics Research C, vol. 19, 107-118, 2011, pp. 107-118. |
Joshi, Ravi K., et al., “Broadband Concentric Rings Fractal Slot Antenna”, XXVIIIth General Assembly of International Union of Radio Science (URSI). (Oct. 23-29, 2005), 4 Pgs. |
Singh, Rajender, “Broadband Planar Monopole Antennas,” M.Tech credit seminar report, Electronic Systems group, EE Dept, IIT Bombay, Nov. 2003, pp. 1-24. |
Gobien, Andrew, T. “Investigation of Low Profile Antenna Designs for Use in Hand-Held Radios,”Ch.3, The Inverted-L Antenna and Variations; Aug. 1997, pp. 42-76. |
See, C.H., et al., “Design of Planar Metal-Plate Monopole Antenna for Third Generation Mobile Handsets,” Telecommunications Research Centre, Bradford University, 2005, pp. 27-30. |
Chen, Jin-Sen, et al., “CPW-fed Ring Slot Antenna with Small Ground Plane,” Department of Electronic Engineering, Cheng Shiu University. |
“LTE—an introduction,” Ericsson White Paper, Jun. 2009, pp. 1-16. |
“Spectrum Analysis for Future LTE Deployments,” Motorola White Paper, 2007, pp. 1-8. |
Chi, Yun-Wen, et al. “Quarter-Wavelength Printed Loop Antenna With an Internal Printed Matching Circuit for GSM/DCS/PCS/UMTS Operation in the Mobile Phone,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 9m Sep. 2009, pp. 2541-2547. |
Wong, Kin-Lu, et al. “Planar Antennas for WLAN Applications,” Dept. of Electrical Engineering, National Sun Yat-Sen University, 2002 09 Ansoft Workshop, pp. 1-45. |
“λ/4 printed monopole antenna for 2.45GHz,” Nordic Semiconductor, White Paper, 2005, pp. 1-6. |
White, Carson, R., “Single- and Dual-Polarized Slot and Patch Antennas with Wide Tuning Ranges,” The University of Michigan, 2008. |
Extended European Search Report dated Jan. 30, 2013 issued by the EPO for EP Patent Application No. 12177740.3. |
Number | Date | Country | |
---|---|---|---|
20150138021 A1 | May 2015 | US |