The invention relates generally to a touch panel and, more particularly, to a capacitive touch panel having an improved response.
Turning to
In operation, the interface 106 (which is usually controlled by the control circuit 108) selects and excites columns of electrodes (e.g., electrode 103) and “scans through” the rows of row electrodes (e.g., electrode 105) so that a touch position from a touch event can be resolved. As an example, interface 204 can excite two adjacent columns through terminals X-j and X-(j+1) with excitation signals EXCITE[j] and EXCITE[j+1], and interface 106 receives a measurement signal from a row associated with terminal Y-i. When an object (e.g., finger) is in proximity to the touch panel (which is generally considered to be a touch event), there is a change in capacitance due at least in part to the arrangement of electrodes (e.g., electrodes 103 and 105), and the controller 108 is able to resolve the position of the touch event.
Most conventional touch panels (e.g., touch panel 102) can become less sensitive, depending on its environment. For low ground impendence (e.g., device being held in the hand), sensitivity of the touch panels (e.g., touch panel 102) is based on self-capacitance between the sensor electrodes and “human ground” and mutual capacitance between the electrodes. However, for high ground impedances (e.g., device set on a table), the self-capacitance (i.e., with “human ground”) will contribute a negative signal, which can decrease sensitivity by as much as two times. Therefore, there is a need for a touch panel that has better sensitivity, irrespective of its environment.
Some examples of other conventional systems are: U.S. Pat. No. 6,188,391; U.S. Patent Pre-Grant Publ. No. 2006/0097991; U.S. Patent Pre-Grant Publ. No. 2009/0091551; U.S. Patent Pre-Grant Publ. No. 2010/0149108; U.S. Patent Pre-Grant Publ. No. 2010/0156810; U.S. Patent Pre-Grant Publ. No. 2010/0321326; U.S. Patent Pre-Grant Publ. No. 2011/0095996; U.S. Patent Pre-Grant Publ. No. 2011/0095997; U.S. Patent Pre-Grant Publ. No. 2011/0102361; U.S. Patent Pre-Grant Publ. No. 2011/0157079; U.S. Patent Pre-Grant Publ. No. 2012/0056664; PCT Publ. No. WO2009046363; and PCT Publ. No. WO2011018594.
An embodiment of the present invention, accordingly, provides an apparatus. An apparatus comprises a substrate; a cover plate that is substantially transparent to visible spectrum light; a sensor layer formed on at least one of the substrates and the cover plate, wherein the sensor layer includes: a plurality of row electrodes; a plurality of column electrodes interleaved with the plurality of row electrodes, wherein each row electrode and each column electrode is formed of a plurality of stair-stepped diamonds; and an insulator that electrically isolates the plurality of row electrodes and the plurality of column electrodes, wherein the insulator is substantially transparent to visible spectrum light; and a bridge layer formed over the sensor layer and having a plurality of bridges, wherein each bridge is coupled between two adjacent stair-stepped diamonds from at least one of the column electrodes or the row electrodes.
In accordance with the present invention, the conductive layer is formed on the cover plate.
In accordance with the present invention, the conductive layer is formed on the substrate.
In accordance with the present invention, the plurality of bridges further comprises a plurality of set of bridges, wherein each set of bridges is associated with at least one of the column electrodes.
In accordance with the present invention, the plurality of bridges further comprises a plurality of set of bridges, wherein each set of bridges is associated with at least one of the row electrodes.
In accordance with the present invention, each stair-stepped diamond is formed of a conductive trace.
In accordance with the present invention, each bridge and each conductive trace is substantially transparent to visible spectrum light.
In accordance with the present invention, the sensor layer further comprises a plurality of floating regions, wherein each floating region is substantially transparent to visible spectrum light, and wherein each floating region is located within at least one of the stair-stepped diamonds.
In accordance with the present invention, each bridge is substantially transparent to visible spectrum light, and wherein each stair-stepped diamond is formed of a conductive pad.
In accordance with the present invention, an apparatus is provided. The apparatus comprises a touch panel having: a substrate; a cover plate that is substantially transparent to visible spectrum light; a sensor layer formed on at least one of the substrate and the cover plate, wherein the sensor layer includes: a plurality of row electrodes; a plurality of column electrodes interleaved with the plurality of row electrodes, wherein each row electrode and each column electrode is formed of a plurality of stair-stepped diamonds; and an insulator that electrically isolates the plurality of row electrodes and the plurality of column electrodes, wherein the insulator is substantially transparent to visible spectrum light; and a bridge layer formed over the sensor layer and having a plurality of bridges, wherein each bridge is coupled between two adjacent stair-stepped diamonds from at least one of the column electrodes or the row electrodes; an interconnect that is coupled to each row electrode and each column electrode; and a touch panel controller that is coupled to the interconnect.
In accordance with the present invention, an apparatus is provided. The apparatus comprises a touch panel having: a display; a substrate that is secured to the display, wherein the substrate is substantially transparent to visible spectrum light; a sensor layer formed over the substrate, wherein the sensor layer includes: a plurality of row electrodes formed over the substrate, wherein each row electrode is formed of a first set of stair-stepped diamonds; a plurality of column electrodes formed over the substrate, wherein each column electrode is formed of a second set of stair-stepped diamonds that are coupled together; and an first insulator that is formed over the substrate, wherein the first insulator is substantially transparent to visible spectrum light, and wherein the first insulator electrically isolates the plurality of row electrodes and the plurality of column electrodes; a bridge layer formed over the sensor layer, wherein the bridge layer includes: a plurality of sets of bridge conductors, wherein each set of bridge conductors is associated with at least one of the row electrodes so as to couple each stair-stepped diamond in each row electrode together; and a second insulator formed over the sensor layer, wherein the second insulator is substantially transparent to visible spectrum light; a cover plate that is secured to the bridge layer, wherein the cover plate is substantially transparent to visible spectrum light; an interconnect that is coupled to each column electrode and each row electrode; and a touch panel controller having: an interface that is coupled to the interconnect; and a control circuit that is coupled to the interface.
In accordance with the present invention, the sensor layer further comprises a plurality of floating regions, wherein each floating region is located within at least one of the stair-stepped diamonds.
In accordance with the present invention, the plurality of row electrodes, the plurality of column electrodes, and the plurality of bridge conductors are formed of indium tin oxide (ITO).
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Refer now to the drawings wherein depicted elements are, for the sake of clarity, not necessarily shown to scale and wherein like or similar elements are designated by the same reference numeral through the several views.
Turning to
In
Turning to
Alternatively, shapes of the stair-stepped diamond patterns can be varied in several ways, examples of which can be seen in
As a result of using the configurations shown in
Having thus described the present invention by reference to certain of its preferred embodiments, it is noted that the embodiments disclosed are illustrative rather than limiting in nature and that a wide range of variations, modifications, changes, and substitutions are contemplated in the foregoing disclosure and, in some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.