This application is a 371 U.S. National Stage of International Application No. PCT/GB2009/002524, filed on Oct. 23, 2009, the disclosure of which is herein incorporated by reference in its entirety.
The present invention relates to improvements in capacitive touch panels, in particular, the invention relates to the surface electrodes and connecting edge busbars for use in capacitive touch panels and a method for providing such structures.
Capacitive touch panel technology is in wide use, for example in mobile phones, satellite navigation systems, PDA screens and handheld games consoles.
One particular form of capacitive touch panel is known as projective capacitive touch technology or “PCT”. In PCT devices, an XY array of sensing electrodes is formed in layers of transparent conducting material. In use, capacitance forms between the user's fingers and the projected capacitance from the sensing electrodes. A touch is made, precisely measured and translated into a command which is executed by underlying electronic devices for an appropriate software application. PCT screens enjoy the benefits of responding accurately to both fingers and styli.
One particular form of PCT technology has two separated layers of transparent conducting material (TCM) and it is the changes in the mutual capacitance between the electrodes at the intersection points that are detected. Each TCM layer is divided into a plurality of discrete parallel electrode cells. The electrodes on one layer are aligned in a first direction parallel to one edge of the panel whereas the electrodes on the other layer are aligned in a second direction that is orthogonal to the first direction.
Another form of PCT technology uses a single TCM layer and it is the changes in the self-capacitance between separate areas in this layer that are detected. A convenient way to make such a single layer PCT device is to divide up the TCM layer into electrically separated areas that are then interconnected by means of conducting bridge structures to form sets of orthogonal electrodes. One set of electrodes is aligned in a first direction parallel to one edge of the panel whereas the other set of electrodes are aligned in a second direction that is orthogonal to the first direction.
In both single and double layer devices it is necessary to make electrical connections to the ends of every X electrode and every Y electrode in order to monitor the changes in capacitance between electrodes induced by a touch event on the surface of the touch panel. Since the ends of the X electrodes are at an edge of the panel that is orthogonal to the edge where the Y electrodes end there is a requirement to form connections to external circuitry at both of these edges. For larger touch panels such as are used in notebook PCs it is generally possible to make connections directly to orthogonal edges. In hand held devices however there is usually a strong requirement to extend the usable viewing area of the touch panel close to at least two opposite edges of the device. Consequently, very little border area is available on these edges to make the connections to the electrodes that run perpendicularly to these edges. One solution is to bring all X and Y electrode connections out on one edge of the touch panel leaving available space on other edges of the touch panel. This means that additional conducting structures have to be formed in the TCM layer in the border regions at the side edges of the panel to route electrical connections to the end. Sometimes these border conductors are referred to as busbars
If all X & Y electrodes are accessible at a single edge then a known arrangement for providing electrical connections involves bonding a flexible ribbon type multi way cable to the electrodes. Contacts are made on one or two sides of the panel for the cases of a single layer or a double layer touch panel respectively. Examples of these arrangements and methods for providing them are described in more detail by reference to Figures below.
The performance of a PCT panel depends strongly on the resistance between the electrodes and the integrated circuit (IC) that processes the signals from the electrodes. Since the their width is very small, busbars produced in the TCM layer alone have been found to have excessive resistance. This is conventionally compensated for by the addition of a layer of metal in the edge border regions. This metal layer can be deposited either on top of the deposited TCM or alternatively can be applied to the substrate before the TCM is deposited such that it is situated between the substrate and the TCM. The metal layer is generally applied by a process such as Physical Vapour Deposition (PVD)
Manufacturing processes currently used to form the busbar structures in the metal and TCM layer to the prior known design are slow, complex operations and are both environmentally damaging and expensive. Furthermore, due to the large number of steps involved in the processes and the small size of the structures to be formed, there is a strong likelihood that an error will occur during production leading to a defective product.
The present invention seeks to provide a process for manufacturing a reliable PCT panel which is simple and cost effective compared to prior known methods and which consistently provides a good quality reliable product.
In accordance with the present invention, there is provided; a method for the manufacture of a PCT panel comprising;
Desirably step 1 precedes step 2 such that the PCI layer is on top of the TCM layer but optionally step 2 may precede 1 such that the PCI layer is between the substrate and the TCM layer.
Conveniently the PCI is deposited by means of an inkjet printing process. Other conventional printing processes may also be used in the alternative, for example screen printing.
TCM deposition should follow PCI printing for the case where PCI printing is the first process and the substrate has no TCM layer prior to PCI printing.
Laser ablation is the third process and takes place in a unit that consists of at least one laser, means for holding a transparent substrate which has deposited layers of TCM and PCI, means for focusing the laser beam on the surface of the substrate, means for adjusting the relative positions of the laser beam to the substrate and a controller to control the laser whereby by means of a single laser ablation process, ablating material from the layers of PCI and TCM through to the substrate surface to form fine isolating trenches to create a plurality of discrete electrical busbars and also ablating fine trenches into the remainder of the TCM layer to form a pattern of electrodes
The generic term “transparent conducting material” (TCM) is intended to denote all suitable transparent conductors. One suitable TCM is indium tin oxide (ITO).
It is to be appreciated that multiple PCT panels can be provided on a single, large transparent substrate. Borders will define individual PCT panels and will not necessarily coincide with the outermost borders of the substrate sheet.
In another aspect the invention provides an apparatus for performing the novel method described above, the apparatus comprising a TCM deposition unit, a PCI printing unit and a laser ablation unit. Preferably these three units are all separated but optionally one or more processes may be combined into a single unit. TCM deposition onto the transparent substrate is preferably the first process but optionally may be the second process. TCM deposition may be by a PVD process or alternatively may also use a separate printing process. PCI printing is preferably the second process and in this case takes place onto a transparent substrate that has a TCM layer deposited uniformly on at least one side.
The printing unit consists of at least one ink jet print head, means for holding a TCM coated transparent substrate, means for adjusting the relative position of the ink jet print head to the substrate and a controller to control the ink jet print head whereby to inkjet print PCI to form one or more coarse conductive border regions in selected areas on the substrate.
The laser ablation unit comprises at least one laser, means for holding a transparent substrate which has deposited layers of TCM and PCI, means for focusing the laser beam on the surface of the substrate, means for adjusting the relative positions of the laser beam to the substrate and a controller to control the laser whereby by means of a single laser ablation process, ablating material from the layers of PCI and TCM through to the substrate surface to form fine isolating trenches to create a plurality of discrete electrical busbars and optionally also ablating fine trenches into the remainder of the TCM layer to form a pattern of electrodes
The controller may be same controller as is used to control the inkjet head.
Desirably, the PCI printing apparatus comprises two ink jet print heads mounted together with one behind the other in the moving direction and having a displacement in the direction orthogonal to the moving direction equal to half the pitch of the print head nozzles such that the resolution of the printing process is doubled and the application of a continuous layer of conducting metal ink is possible in a single pass of the printheads over each area of the substrate
Optionally, the ink jet print heads are configured to deposit a PCI which contains metal or other conducting particles. Desirably, the particles are silver. Cabot Conductive Ink 300 containing silver particles has been found to be especially suitable.
One suitable ink jet print head for the novel apparatus is the Konika Minolta KM1024 head.
One suitable laser is a pulsed UV laser configured to operate at 355 nm.
Conveniently, the controller controls movement of a scanner to move the laser beam and/or print head in two orthogonal directions over the substrate_and optionally also to move the substrate in two orthogonal linear axes
In another aspect, the invention provides a PCT panel comprising a layer of transparent conducting material (TCM) deposited onto a transparent substrate and divided into a plurality of electrodes, and a metal border deposited onto the TCM layer by an inkjet printing method and having ablated tracks in both the border and underlying TCM layer to form busbars.
Optionally, the electrodes of the TCM layer are also defined by ablations in the layer.
The transparent substrate may be organic (plastic) or inorganic (glass).
The TCM layer may be formed from inorganic materials, for example, indium tin oxide. Other suitable transparent conducting oxides include, without limitation, Tin oxide (SnO2), doped Zinc oxide (ZnO), etc. Such inorganic TCM layers are generally applied by PVD methods. Alternatively the TCM layer may be of organic conducting material. Examples of organic materials (without limitation) are PEDOT (polyethylenedioxythiophene), polyanilene or polythiophene. Such polymers are selected to achieve coatings with the required optical transmittance (desirably 90% in range 400-800 nm) and surface resistance of typically less than 100 or 200Ω per square. Soluble conducting polymers based on polyanilines,_polythiophenes, polypyrroles or polyisothianaphthenes meet these requirements. Such organic TCMs are generally applied by some type of printing process. TCM layers may also be made using carbon nano-tubes or metal nano-wires. Such materials can also generally be applied by printing methods.
The known prior art and some embodiments of the invention will now be described in more details with reference to the accompanying figures in which;
As can be seen from
In
As can be seen in
As can be seen in
To be effective in terms of reducing the busbar resistance to a satisfactorily low level the thickness of the metal applied is in the range of 100 nm to several 100 nm. As an example of the busbar resistance values obtained with a metal layer consider the case where a 100 nm thick layer of copper is applied by a PVD process. Such a metal layer has a sheet resistance of about 0.35Ω per square so the resistances of 50 mm long busbars with widths of 0.25 and 0.05 mm are 70Ω and 350Ω respectively. For a 350 nm layer of aluminum the sheet resistance is about 0.2Ω per square and 50 mm long tracks with a width of 0.05 mm have a resistance of 200Ω.
At the two patterning stages 2 and 4 in both cases A and B a series of complex lithographic operations have to be carried out involving:
These complex operations are costly, slow and environmentally damaging and due to the large number of steps and the small size of the structures to be formed there is a strong likelihood that an error will occur during production leading to a defective part.
The invention is described in more detail with reference to
One suitable ink jet print head for this application is the Konika Minolta KM1024 head. Each print head has two rows of nozzles on a pitch of 0.141.1 mm (180 dpi) giving a net printing pitch of 0.0705 mm (360 dpi). If two of these heads are mounted adjacent to each other with an offset of 0.0705 mm between the heads in the direction along their length then the net result is that the combination of heads prints droplets onto the surface with a pitch of 0.0353 mm (720 dpi). This droplet resolution has been found to be satisfactory in terms of achieving a uniform layer of PCI on the substrate surface. Several other ink jet print heads are also appropriate for this application.
PCIs containing silver particles are suitable for this application. Cabot Conductive Ink 300 has been found to be especially suitable. This PCI has up to several×10% by weight of silver in an ethanol/ethylene glycol mixture. After curing, the printed ink achieves a resistivity of a few times that of bulk silver. An alternative PCI is TEC IJ-060 by Inktec. This ink contains up to 50% by weight of silver in a methanol/toluene/methoxy benzene mixture. Both inks are formulated to adhere well to ITO if used as the TCM. Both inks also adhere well to glass and PET substrates for the case where the PCI layer is situated between the substrate and the TCM. Both inks can be readily printed to a thickness of a few 100 nm which is required to obtain the desired busbar resistivity.
Many lasers are suitable for this application but one that is particularly appropriate is a pulsed UV laser operating at 355 nm. With such a laser operating at 100 kHz at a power of 2 W breaks through both the PCI and the TCM can be created at writing speeds up to 1 m/sec.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2009/002524 | 10/23/2009 | WO | 00 | 5/8/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/048347 | 4/28/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4124926 | Kupsky et al. | Nov 1978 | A |
4371746 | Pepper, Jr. | Feb 1983 | A |
5070230 | Osada et al. | Dec 1991 | A |
5276382 | Stocker et al. | Jan 1994 | A |
5332946 | Eckersley et al. | Jul 1994 | A |
5637882 | Divigalpitiya et al. | Jun 1997 | A |
5717255 | Haga et al. | Feb 1998 | A |
5872050 | Haga et al. | Feb 1999 | A |
6034335 | Aufderheide et al. | Mar 2000 | A |
6433489 | Tanaka et al. | Aug 2002 | B1 |
6654071 | Chen | Nov 2003 | B2 |
8604547 | Yukawa et al. | Dec 2013 | B2 |
20020098612 | Ahn et al. | Jul 2002 | A1 |
20020135569 | Chen | Sep 2002 | A1 |
20020167621 | Chen | Nov 2002 | A1 |
20020195435 | Nagarkar et al. | Dec 2002 | A1 |
20030029831 | Kawase | Feb 2003 | A1 |
20030197688 | Aufderheide et al. | Oct 2003 | A1 |
20040032638 | Tonar et al. | Feb 2004 | A1 |
20040178006 | Cok | Sep 2004 | A1 |
20050070037 | Robeson et al. | Mar 2005 | A1 |
20050073507 | Richter et al. | Apr 2005 | A1 |
20050083307 | Aufderheide et al. | Apr 2005 | A1 |
20050139398 | Endo | Jun 2005 | A1 |
20050181697 | Ashida et al. | Aug 2005 | A1 |
20060033981 | Chaug et al. | Feb 2006 | A1 |
20060181772 | Byers et al. | Aug 2006 | A1 |
20060193031 | Moore | Aug 2006 | A1 |
20060232180 | Kang et al. | Oct 2006 | A1 |
20070019296 | Bauer et al. | Jan 2007 | A1 |
20070201122 | Dozeman et al. | Aug 2007 | A1 |
20070262312 | Liu et al. | Nov 2007 | A1 |
20080006865 | Liu et al. | Jan 2008 | A1 |
20080049295 | Tonar et al. | Feb 2008 | A1 |
20080053522 | Basol | Mar 2008 | A1 |
20080129317 | Oba | Jun 2008 | A1 |
20080266685 | Byers et al. | Oct 2008 | A1 |
20080289680 | MacFarlane | Nov 2008 | A1 |
20090201268 | Endo et al. | Aug 2009 | A1 |
20090205879 | Halsey, IV et al. | Aug 2009 | A1 |
20090322705 | Halsey, IV | Dec 2009 | A1 |
20090323162 | Fanton et al. | Dec 2009 | A1 |
20100038352 | Byers et al. | Feb 2010 | A1 |
20100060822 | Sun | Mar 2010 | A1 |
20100090597 | Werners et al. | Apr 2010 | A1 |
20100230154 | Naito et al. | Sep 2010 | A1 |
20100265206 | Chen | Oct 2010 | A1 |
20110006999 | Chang et al. | Jan 2011 | A1 |
20110012842 | Lee et al. | Jan 2011 | A1 |
20110109590 | Park | May 2011 | A1 |
20110134075 | Takusa | Jun 2011 | A1 |
20120169664 | Milne | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
WO-2007115032 | Oct 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20120211264 A1 | Aug 2012 | US |