The present invention relates to a thermal insulation apparatus for a capacitor.
Capacitors are used in electronic devices for isolating DC, coupling, and filtering waves, etc. The service life of a capacitor, especially the service life of an electrolytic capacitor is affected severely by temperature. If the temperature increases 10 degrees, the service life of electrolytic capacitor will be reduced by half. More importantly, when temperature increases, the insulation resistance of the electrolytic capacitor will reduce, accordingly, the condenser leakage will become serious such that the electrolytic capacitor will generate heat so rapidly that an electrolytic liquid of the electrolytic capacitor evaporating into gas, causing the electrolytic capacitor might bubble up or pop liquid out.
As the operating speed and power consumption of electronic devices are keeps on increasing, the quantity of heat that electronic devices produce also increases. Capacitors are usually exposed to the circuit board, so the heat given off by electronic devices will directly cause an increase in temperature of the capacitor.
Therefore, what is needed is a thermal insulation apparatus for a capacitor; to isolate the capacitor from external heat sources so as to increase the service life of the capacitor.
A thermal insulation apparatus for a capacitor is provided herein. The thermal insulation apparatus includes a basis, a thermal baffle is stretched upwards from a side wall of the basis, a bracket is connected with the inner wall of the basis. The basis and the thermal baffle form a cavity for receiving a capacitor.
Further features and advantages will be provided or will become apparent in the course of the following detailed description.
Referring to
Furthermore, a bracket 24 is positioned in a middle part of the inner wall of the basis 30. The bracket 24 and the basis 30 thereupon form a cavity 28 to hold the capacitor 10 therein. The bracket 24 defines a pair of through holes 25 for a corresponding foot 14 of a capacitor 10 to pass therethrough. The elastic buckles 23 may wedge into a ring-shaped groove 12 of the capacitor 10 to fix the capacitor 10 vertically. Each elastic buckle 23 has a slanted surface 29 for guiding the capacitor 10 into the cavity 28 of the thermal insulation apparatus 20 (see detailed description below). A width of the buckle slot 26 is slightly greater than a width of the elastic buckle 23, and thus the elastic buckle 23 can be deformed while the capacitor 10 couples to the basis 30.
Generally, thermal sources from the capacitor 10 are distributed out of a side of the capacitor 10. Accordingly, a shape of the thermal baffle 27 adopts a semi-tubular shape, however, the shape of the thermal baffle 27 can vary in accordance with the distribution of thermal sources out of the capacitor 10. The thermal baffle 27 is distributed a plurality of sticks 21 on its inner wall. Further, each stick 21 faces against a corresponding elastic buckle 23. The sticks 21 are capable of fixing the capacitor 10 horizontally and separating the capacitor 10 away from the thermal baffle 27, thereby benefiting the capacitor 10's thermal insulation, aeration, and thermal elimination.
The thermal insulation apparatus 20 can isolate the capacitor 10 from external heat sources, In addition, after assembly a distance is formed between the bracket 24 and the basis 30 of the thermal insulation apparatus 20 so that the capacitor 10 can eliminate heat efficiently.
Moreover, it is to be understood that the invention may be embodied in other forms without departing from the spirit thereof. Thus, the present examples and embodiments are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein.
Number | Date | Country | Kind |
---|---|---|---|
2005 2 0061099 | Jul 2005 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3656035 | Corman et al. | Apr 1972 | A |
5769907 | Fukuda et al. | Jun 1998 | A |
5838532 | Nakata | Nov 1998 | A |
7031141 | Kuriyama | Apr 2006 | B2 |
20060120012 | Tsunezaki et al. | Jun 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070002527 A1 | Jan 2007 | US |