1. Field of the Invention
This invention relates to a capacitor, more particularly to a capacitor with a geometrical layout of a grid of first conductive posts and a plurality of second conductive posts disposed respectively in lattices of the grid.
2. Description of the Related Art
The conventional capacitor is disadvantageous in that enlarging the areas of the first and second external electrodes 11, 12 for increasing the capacitance of the capacitor results in an undesired increase in the size of the capacitor, which contradicts the current trend in the manufacturing industry for miniaturization of electronic or electrical devices, and that reducing the distance between the first and second external electrodes 11, 12 for increasing the capacitance of the capacitor results in a complex manufacturing process and a considerable increase in manufacturing cost.
The object of the present invention is to provide a capacitor with a geometrical layout that can overcome the aforesaid drawbacks of the prior art.
According to this invention, a capacitor comprises: a first level structure including an array of first conductive units and an array of second conductive units. Each of the first conductive units includes a hollow first conductive post that has a plurality of lateral sides. The first conductive posts of the first conductive units are interconnected to form a grid that defines a plurality of lattices. Each of the second conductive units includes a second conductive post that is disposed in a respective one of the lattices and that has a plurality of lateral sides that are surrounded by the lateral sides of the first conductive post of a respective one of the first conductive units. The first conductive post of each of the first conductive units and the second conductive post of the respective one of the second conductive units cooperatively define a charge space therebetween. A dielectric material fills the charge space.
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments of the invention, with reference to the accompanying drawings, in which:
Before the present invention is described in greater detail, it should be noted that same reference numerals have been used to denote like elements throughout the specification.
The capacitor includes: an array of first conductive units 21, each of which has a plurality of first sides 211, at least an adjacent pair of the first sides 211 being joined to each other and forming an angle (α) less than 180 degree; an array of second conductive units 22, each of which has a plurality of second sides 221 that are surrounded by the first sides 211 of a respective one of the first conductive units 21, each of the second sides 221 being spaced apart from and confronting a respective one of the first sides 211 of the respective first conductive unit 21, at least an adjacent pair of the second sides 221 being joined to each other and forming an angle (β) less than 180 degree, the adjacent pair of the second sides 221 confronting respectively the adjacent pair of the first sides 211 of the respective first conductive unit 21, each of the first conductive units 21 and the respective one of the second conductive units 22 cooperatively defining a charge space 23 therebetween, the charge space 23 surrounding the second sides 221; and a dielectric material 24 filling the charge space 23.
In this embodiment, each of the first conductive units 21 includes a hollow first conductive post 21′ that is rectangular in cross-section and that has top and bottom ends 213′, 215′ and four lateral sides 211′ extending from the top end 213′ to the bottom end 215′ and defining the first sides 211 of the first conductive unit 21. The first conductive posts 21′ are interconnected to form a grid 200 that defines a plurality of rectangular lattices 201. Each of the second conductive units 22 includes a second conductive post 22′ that is disposed in a respective one of the lattices 201, that is rectangular in cross-section, and that has top and bottom ends 223′, 225′ and four lateral sides 221′ extending from the top end 223′ of the second conductive post 22′ to the bottom end 225′ of the second conductive post 22′ and defining the second sides 221 of the second conductive unit 22. Note that each lattice 201 of the grid 200 can be triangular, hexagonal, polygonal, etc. in other embodiments of this invention. The cross-section of each of the second conductive posts 22′ preferably has a shape corresponding to that of the corresponding lattice 201 of the grid 200.
FIGS. 4 to 8 illustrate the second preferred embodiment of the capacitor according to this invention. The capacitor of this embodiment includes a multi-level structure that has first and second level structures 2, 4, and a middle structure 3 interposed between the first and second level structures 2, 4. In this embodiment, the first and second level structures 2, 4 have a configuration similar to that of the first embodiment.
The first level structure 2 includes: an array of the first conductive units 21 and an array of the second conductive units 22 similar to those of the previous embodiment, each of the first conductive units 21 and the respective one of the second conductive units 22 cooperatively defining a first level charge space 23 therebetween; and a first level dielectric material 24 filling the first level charge space 23.
The second level structure 4 is disposed below the first level structure 2, and includes: an array of third conductive units 41 and an array of fourth conductive units 42 similar to the first and second conductive units 21, 22 of the previous embodiment, each of the third conductive units 41 and the respective one of the fourth conductive units 42 cooperatively defining a second level charge space 43 therebetween; and a second level dielectric material 44 filling the second level charge space 43.
The middle level structure 3 includes: a conductive first connecting unit 31 that is connected electrically to the first and fourth conductive units 21, 42; and a conductive second connecting unit 32 that is connected electrically to the second and third conductive units 22, 41.
In this embodiment, each of the first conductive units 21 includes a hollow first conductive post 21′ similar to that of the previous embodiment. The first conductive posts 21′ are interconnected to form a first level grid 200 that defines a plurality of rectangular first level lattices 201. Each of the second conductive units 22 includes a second conductive post 22′ that is similar to that of the previous embodiment and that is disposed in a respective one of the first level lattices 201 of the first level grid 200. Each of the third conductive units 41 includes a hollow third conductive post 41′ similar to the first conductive post 21′ of the previous embodiment. The third conductive posts 41′ are interconnected to form a second level grid 400 that defines a plurality of rectangular second level lattices 401. Each of the fourth conductive units 42 includes a fourth conductive post 42′ that is similar to the second conductive post 22′ of the previous embodiment and that is disposed in a respective one of the second level lattices 401 of the second level grid 400. Note that the first and third conductive units 21, 41 and/or the second and fourth conductive units 22, 42 can have different configurations.
Each of the first and second level grids 200, 400 defines a plurality of intersections 202, 402. Each intersection 202 of the first level grid 200 is vertically aligned with a center of a respective one of the lattices 401 of the second level grids 400. Each intersection 402 of the second level grid 400 is vertically aligned with a center of a respective one of the lattices 201 of the first level grids 200.
The first connecting unit 31 includes a plurality of conductive first connecting posts 31′ that interconnect electrically and respectively the intersections 202 of the first level grid 200 (see
Since each second conductive post 22 has a plurality of faces 221′ surrounded by one or more first conductive posts 21 in the capacitor of this invention, the electrode areas of the capacitor are considerably enlarged, thereby eliminating the aforesaid drawbacks associated with the prior art.
While the present invention has been described in connection with what is considered the most practical and preferred embodiments, it is understood that this invention is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretations and equivalent arrangements.