1. Field of the Invention
The present invention relates generally to capacitors, and more specifically to capacitor systems.
2. Discussion of the Related Art
Capacitors have a wide range of uses. Further, high voltage high energy capacitors can be employed in a large number of applications. For example, some high voltage high energy capacitors are used to rapidly discharge and to deliver power to a corresponding system.
Several embodiments of the invention advantageously address the needs above as well as other needs by providing capacitor system, comprising a capacitor; a switch; and an internal dump resistor coupled with the switch, such that the switch when activated couples the internal dump resistor with the capacitor to drain a charge from the capacitor.
Other embodiments provide a capacitor device, comprising a capacitor; dump resistance electrically coupled with the capacitor; a case, where the capacitor and the dump resistance are housed within the casing; a first electrode extending from the casing and coupling with a first lead of the capacitor; a second electrode extending from the casing and coupling with a second lead of the capacitor; and a switch coupled between the capacitor and the dump resistance, where the switch, when activated, couples the dump resistance with the capacitor to discharge a charge on the capacitor.
Still other embodiments provide methods of discharging a capacitor. Some of these methods detect a command to switch in an internal dump resistor; activate a switch to couple the internal dump resistor with a capacitor; and discharge, through the internal dump resistor, a charge from the capacitor.
The features and advantages of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
Corresponding reference characters indicate corresponding components throughout the several views of the drawings. Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention.
The following description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be determined with reference to the claims.
Reference throughout this specification to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
The present embodiments provide capacitor discharge circuitry and/or resistors where the discharge circuitry comprises one or more internal resistors that can be switched or optionally coupled with the capacitance to discharge the capacitance.
Some capacitors include a permanently connected and continuously discharging resistance. Some standards require that a discharge resistor be connected to the capacitor that will bleed or discharge the voltage down to less than 50 volts in 60 seconds for capacitors under 600 volts or in less than 300 seconds for capacitors over 600 volts. On large capacitors typically used in high energy discharge applications, a permanently connected discharge resistor of these types require significant energy to hold voltage on the capacitor due to the current that will flow through the discharge resistor. Another consideration is the heat that is continuously generated by these permanently connected discharge resistors because the heat typically decreases the life expectancy of the capacitor. This becomes a significant factor with high voltage applications, including pulse power systems that use large capacitance and wattage, and the amount of current that the dump resistors have to pass the heat generated is significant.
Some applications to the problem of discharging large pulse power capacitors can include adding an external dump resistor that is switched into the circuit when it is desirable to dump the energy stored in the capacitor. The dump resistor is externally mounted and must have an adequate thermal mass to handle multiple energy dumps.
The present embodiments provide capacitors with internal dump or discharge resistance or circuitry that can be switched into the circuit with an internal or external switch. The switch typically isolates the dump resistance from the circuit and can connect the dump resistance across the capacitor when it is desirable to dump or discharge the capacitor. The advantage of having internal dump circuitry or resistor(s), at least in part, is that the thermal mass of the capacitor can be used to absorb the energy that is turned into heat when the electrical energy in the capacitor is dumped. This, at least in part, makes relatively small dump resistors practical. Also, a dump resistor mounted internal to the capacitor is in an environment that can make it more tolerant of shock, vibration and/or other such factors that may degrade or damage the resistor. Still further, the internal dump resistance can take advantage of the electrical insulation provided by the capacitor insulation.
Referring to
Also shone in
As described above, the internal dump resistor 200 can comprise one or more resistors coupled in cooperation across the one or more capacitors making up the capacitor 100, which in many implementations provides a high voltage high energy capacitance. For example, a capacitor system 300 can include one, five, ten, twenty or more resistors cooperatively coupled within the case 104 to form the internal dump resistor 200. The one or more resistors making up the internal dump resistor 200 can be coupled in series which are then coupled in parallel across the internal capacitor 100. In other embodiments, redundancy and/or circuit protection can be provided by configuring the internal dump resistor with one or more resistors coupled in parallel with one or more other resistors. For example, some embodiments include a first plurality of resistors coupled in series and a second plurality of resistors coupled in series, with the first plurality of resistors being coupled in parallel with the second plurality of resistors.
In some embodiments, an internal control circuit 402 is included where an external electrical signal, radio signal or optical signal is used to control switch 400. The internal control circuit 402 can additionally include a receiver/transmitter 412 that allows the control circuit 402 to receive wireless communications. An optional window or port 410 can additionally or alternatively be provided in the case 104 to allow for the detection and/or transmission of optical signals.
The wiring or ribbon 205 included in the resistor 200 is made of sufficient material to withstand the applied voltages and currents intended to be discharged from the capacitor 100. Typically, the wire or ribbon 205 is constructed of a metal or metal alloy providing the discharging of the capacitor. In some embodiments, one or more heat sinks or coolants can be included to aid in dissipating heat from the resistor 200. For example, the resistor 200 can be surrounded by a coolant or oil, such as the dielectric fluid of the capacitor, that can dissipate heat. In some implementations, for example, the wiring 205 can be 3.5 lbs of Chromel-C wire allowing the resistor to readily dissipate approximately 5×12.5 kJ while maintaining a surface temperature of the resistor 200 at about or below 100° C. The wire or ribbon 205 can be constructed of other materials providing the desired resistance while providing sufficient heat dissipation, such as but not limited to a nickel or nickel alloy (e.g., a nickel-chromium alloy).
As representative examples, the wire can be a 20 gauge wire, be formed by a 1 mil×5 mil ribbon and other such wiring or ribbon. Again, however, the present embodiments are not restricted to a wound ribbon or wire and other configurations can be employed. Further, the configuration of the wire, ribbon or other structure can be implemented to achieve the desired RC time constant while achieving a desired thermal time constant. A surrounding oil, coolant or other heat sink can additionally be employed, such as a fluid dielectric of the capacitor, to allow for heat dissipation and allow for repeated discharging. Additionally in some instances, the heat dissipated through the fluid allows the dump resistor to be constructed with reduced amounts of material. As a further example, the wiring can be wound around a first PET electrically insulating tape with this cooperation being further sandwiched between two wider tapes of insulation. Again, the material and structure of the wire, ribbon or the like in making up the internal dump resistor 200 can be selected to provide a desired thermal time constant. In some implementations, the internal dump resistor 200 is constructed to have a relatively low thermal time constant relative to the energy supplied to the internal dump resistor and as such the wire or ribbon cools off faster than the energy supplied can heat the wire or ribbon. However, longer or shorter thermal time constants can be employed.
The present embodiments can be employed with wet or dry capacitors. With wet capacitors, the dump resistance can take advantage of the dielectric fluid as a coolant to further dissipate heat. Other methods can additionally or alternatively be employed to dissipate head from the dump resistance.
Some embodiments provide capacitor devices that comprise a capacitor, a dump resistance electrically coupled with the capacitor, a case, where the capacitor and the dump resistance are housed within the casing, a first electrode extending from the casing and coupling with a first lead of the capacitor, a second electrode extending from the casing and coupling with a second lead of the capacitor, and a switch coupled between the capacitor and the dump resistance, where the switch, when activated, couples the dump resistance with the capacitor to discharge a charge on the capacitor. In some instances, the capacitor device can further comprise a control circuit coupled with the switch to control the activation of the switch to connect the capacitor with the dump resistance. Further, the switch and the control circuit can be enclosed within the case. Additionally, the control circuit can comprise a wireless receiver to wirelessly receive instructions to control the switch. Further still, the dump resistance of the capacitor device can comprise a first resistor and a second resistor coupled in parallel.
In some implementations, the capacitor device can further include a third electrode extending from the casing and coupling with the first lead of the capacitor, and a fourth electrode extending from the casing and coupling with the second lead of the capacitor, such that the third and fourth leads are used to charge the capacitor; and a fifth electrode extending from the casing, where a first lead of the first resistor and a first lead of the second resistor couple with a first lead of the capacitor, and a second lead of the first resistor and a second lead of the second resistor electrically couple with the fifth lead; where the switch couples between the fourth electrode and the fifth electrode to connect the first and second resistors across the capacitor, when the switch is activated, to discharge the capacitor. Additionally or alternatively, the dump resistance of the capacitor device can comprise a first resistor, where a first lead of the first resistor electrically couples with the first lead of the capacitor coupled with the first electrode, and a second lead of the first resistor electrically couples with the switch; wherein the switch couples between the first resistor and a second lead of the capacitor to connect the first resistor across the capacitor, when the switch is activated, to discharge the capacitor.
The present embodiments provide large capacitors with internal and dump discharge circuitry that can be switched into or out of the circuit. The dump resistance, in some implementations, comprises one or more resistors that are switched into the circuit upon activation of a switch to discharge the capacitors. The discharge circuitry, at least in part, provides for the safe discharging of one or more capacitors in a relatively short time prior to the equipment being accessed by personnel. The dump or discharge circuitry provided by the present embodiments can be utilized with various types and capacities of capacitors. For example, the discharge circuitry can be utilized with capacitors rated at 10K VDC, 1000 μF, storing 50,000 Joules of energy.
Other embodiments can be employed with a typical defibrillator capacitor rated at 2,000 VDC, 100 μF, and storing 5-200 Joules or more, including 300K Joules, 1 M Joules and larger capacitance. Many capacitors, including the defibrillator capacitor and larger capacitors can pose a significant safety concern when the capacitors are charged. The present embodiments provide for the discharging of these capacitors.
While the invention herein disclosed has been described by means of specific embodiments and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims.
This application claims the benefit of U.S. Provisional Application No. 61/223,680, filed Jul. 7, 2009, entitled CAPACITOR WITH AN INTERNAL DUMP RESISTANCE, for Frederick W. MacDougall, which is incorporated in its entirety herein by reference; and this application is a continuation-in-part of U.S. application Ser. No. 12/821,072, filed Jun. 22, 2010, entitled CHARGED CAPACITOR WARNING SYSTEM AND METHOD, for MacDougall et al., which claims the benefit of U.S. Provisional Application No. 61/219,357, filed Jun. 22, 2009, entitled CHARGED CAPACITOR WARNING SYSTEM AND METHOD, for MacDougall et al., the benefit of U.S. Provisional Application No. 61/255,446, filed Oct. 27, 2009, entitled CHARGED CAPACITOR WARNING SYSTEM AND METHOD, for MacDougall et al., and the benefit of U.S. Provisional Application No. 61/223,680, filed Jul. 7, 2009, entitled CAPACITOR WITH AN INTERNAL DUMP RESISTANCE, for Frederick W. MacDougall, all of which are incorporated in their entirety herein by reference.
Number | Date | Country | |
---|---|---|---|
61219357 | Jun 2009 | US | |
61255446 | Oct 2009 | US | |
61223680 | Jul 2009 | US | |
61223680 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12821072 | Jun 2010 | US |
Child | 12831955 | US |