The present disclosure relates to compressors and, more particularly, to a capacity modulation system and method for a scroll compressor.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Scroll compressors may be used in a wide variety of industrial and residential applications to circulate refrigerant within a refrigeration, heat pump, HVAC, or chiller system (generically “refrigeration systems”) to provide a desired heating or cooling effect. A scroll compressor may incorporate a pair of intermeshed spiral wraps, or scroll members, one of which orbits with respect to the other so as to define one or more moving chambers which progressively decrease in size as they travel from an outer suction port towards a center discharge port. An electric motor may drive the orbiting scroll member.
Compressor capacity may be modulated according to refrigeration system load to increase compressor efficiency. For example, capacity modulation may be accomplished by a scroll separation system that separates the two scroll members to create a leak path and unload the compressor for predetermined periods of time. The leak path may be created by axial or radial separation of the scroll members. A scroll compressor with a scroll separation system that unloads the compressor by separating the scroll members is described in U.S. Pat. No. 6,213,731, the disclosure of which is incorporated herein by reference.
Capacity modulation may also be accomplished by a delayed suction system that utilizes ports provided at one or more positions which, when opened with valves, allow the initially formed compression chamber between the scroll members to communicate with the suction chamber of the compressor. Opening the ports creates a leak path between the initially formed compression chamber and the suction chamber to unload the compressor. This delays the point at which the sealed compression chambers are formed and, thus, delays the start of compression. A scroll compressor with a delayed suction system that modulates compressor capacity by venting an intermediate pressurized chamber to the suction chamber is described in U.S. Pat. No. 6,821,092, the disclosure of which is incorporated herein by reference.
Capacity modulation may also be accomplished by a refrigerant injection system that injects refrigerant at a higher pressure than the suction pressure into the suction chamber or into one or more intermediate pressurized moving chambers between the scroll members. Compressor capacity may be increased, as compared with normal compressor capacity, by injecting the higher pressure refrigerant. A scroll compressor with a refrigerant injection system is described in U.S. Pat. No. 6,619,936, the disclosure of which is incorporated herein by reference.
Traditional capacity modulation systems, however, may result in inefficient energy usage or consumption. For example, when compressor capacity is decreased with a capacity modulation system, the compressor may continue to consume power while operating during the time the compressor is unloaded. The unloaded compressor may continue to consume power although the unloaded compressor is not compressing or circulating refrigerant.
A method is described including determining a target capacity of a scroll compressor having a motor, operating the motor at a first speed when the target capacity is within a first predetermined capacity range and at a second speed when the target capacity is within a second predetermined capacity range. The method also includes determining a pulse width modulation cyclic ratio based on the target capacity and the first or second speed and periodically separating intermeshing scroll members of the compressor according to the pulse width modulation cyclic ratio to modulate a capacity of the scroll compressor.
In other features, the method is described wherein the second speed is half of the first speed.
In other features, the method is described wherein the first predetermined capacity range is from about fifty percent capacity to about one hundred percent capacity and wherein the second predetermined capacity range is from about five percent capacity to about fifty percent capacity.
In other features, the method includes selectively opening at least one valve to release pressure from at least one intermediate chamber within the intermeshing scroll members of the scroll compressor and to modulate the capacity of said scroll compressor.
In other features, the method is described wherein the first predetermined capacity range and the second predetermined capacity range each include an upper capacity range and a lower capacity range and wherein the selectively opening the at least one valve includes opening the at least one valve when the target capacity is within one of the lower capacity ranges and closing the at least one valve when the target capacity is within one of the upper capacity ranges.
In other features, the method is described wherein the upper portion of the first predetermined capacity range is from about sixty seven percent to about one hundred percent, the lower portion of the first predetermined capacity range is from about fifty percent to about sixty seven percent, the upper portion of said second predetermined capacity range is from about thirty three percent to about fifty percent, and the lower portion of the second predetermined capacity range is from about five percent to about thirty four percent.
In other features, the method includes selectively injecting refrigerant at a higher pressure than a suction pressure of the scroll compressor into an intermediate chamber of the intermeshing scroll members to modulate the capacity of the scroll compressor according to the target capacity.
Another method is described including determining a target capacity of a scroll compressor having intermeshing scroll members and a motor and operating the motor at a first speed when the target capacity is within a first predetermined capacity range and at a second speed when the target capacity is within a second predetermined capacity range, the first predetermined capacity range and the second predetermined capacity range each having an upper capacity range and a lower capacity range. The method also includes determining a first pulse width modulation cyclic ratio based on the target capacity and the first or second speed and periodically opening at least one valve to release pressure from at least one intermediate chamber created by the intermeshing scroll members according to the first pulse width modulation cyclic ratio to modulate a capacity of the scroll compressor when the target capacity is within one of the upper capacity ranges. The method also includes determining a second pulse width modulation cyclic ratio based on the target capacity and the first or second speed, opening the at least one valve, and periodically separating the intermeshing scroll members according to the second pulse width modulation cyclic ratio to modulate the capacity of the scroll compressor when the target capacity is within one of the lower capacity ranges.
In other features, the method is described wherein the second speed is half of the first speed and the first predetermined capacity range is from about fifty percent capacity to about one hundred percent capacity and wherein the second predetermined capacity range is from about five percent capacity to about fifty percent capacity.
In other features, the method is described wherein the upper portion of the first predetermined capacity range is from about sixty seven percent to about one hundred percent, the lower portion of the first predetermined capacity range is from about fifty percent to about sixty seven percent, the upper portion of the second predetermined capacity range is from about thirty three percent to about fifty percent, and the lower portion of the second predetermined capacity range is from about five percent to about thirty four percent.
In other features, the method includes selectively injecting refrigerant at a higher pressure than a suction pressure of the scroll compressor into an intermediate chamber of the intermeshing scroll members to modulate capacity of the scroll compressor according to the target capacity.
A system is described that includes a scroll compressor having intermeshing scroll members and a motor, a scroll separation system that modulates a capacity of the scroll compressor by separating the intermeshing scroll members, and a controller, connected to the motor and the scroll separation system. The controller determines a target capacity of the scroll compressor, operates the motor at a first speed when the target capacity is within a first predetermined capacity range, operates the motor at a second speed when the target capacity is within a second predetermined capacity range, determines a first pulse width modulation cyclic ratio based on the target capacity and the first or second speed, and operates the scroll separation system according to the first pulse width modulation cyclic ratio to modulate the capacity of the scroll compressor.
In other features, the system is described wherein the second speed is half of the first speed and the first predetermined capacity range is from about fifty percent capacity to about one hundred percent capacity and wherein the second predetermined capacity range is from about five percent capacity to about fifty percent capacity.
In other features, the system is described wherein the first predetermined capacity range and the second predetermined capacity range each include an upper capacity range and a lower capacity range and the system further includes a delayed suction system connected to the controller that modulates the capacity of the scroll compressor by selectively opening at least one valve to release pressure from at least one intermediate chamber within the intermeshing scroll members of the scroll compressor. The controller operates the delayed suction system by opening the at least one valve when the target capacity is within one of the lower capacity ranges and closing the at least one valve when the target capacity is within one of the upper capacity ranges.
In other features, the system is described wherein the first predetermined capacity range and the second predetermined capacity range each include an upper capacity range and a lower capacity range and the system further includes a delayed suction system connected to the controller that modulates the capacity of the scroll compressor by selectively opening at least one valve to release pressure from at least one intermediate chamber within the intermeshing scroll members of the scroll compressor. When the target capacity is within one of said lower capacity ranges, the controller opens the at least one valve and operates the scroll separation system according to the first pulse width modulation cyclic ratio. When the target capacity is within one of the upper capacity ranges, the controller determines a second pulse width modulation cyclic ratio based on the target capacity and the first or second speed and periodically opens the at least one valve according to the second pulse width modulation cyclic ratio.
In other features, the system is described wherein the upper portion of the first predetermined capacity range is from about sixty seven percent to about one hundred percent, the lower portion of the first predetermined capacity range is from about fifty percent to about sixty seven percent, the upper portion of the second predetermined capacity range is from about thirty three percent to about fifty percent, and the lower portion of the second predetermined capacity range is from about five percent to about thirty four percent.
In other features, the system further includes a refrigerant injection system connected to the controller that modulates the capacity of the scroll compressor by selectively injecting refrigerant at a higher pressure than a suction pressure of the scroll compressor into an intermediate chamber of the intermeshing scroll members. The controller operates the refrigerant injection system according to the target capacity.
In other features, the system is described wherein the refrigerant injection system includes at least one of a flexible tube that connects an injection fitting of a shell of the scroll compressor with the intermediate chamber and a slidable connector that allows a connection between the injection fitting of the shell with the intermediate chamber.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
a is a flow chart of an operating algorithm for a scroll compressor with a delayed suction system;
b is a flow chart of an operating algorithm for a scroll compressor with a delayed suction system;
a is a flow chart of an operating algorithm for a scroll compressor with a scroll separation system and a delayed suction system;
b is a flow chart of an operating algorithm for a scroll compressor with a scroll separation system and a delayed suction system;
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
As used herein, the terms module, control module, and controller refer to one or more of the following: an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that execute one or more software or firmware programs, a combinational logic circuit, or other suitable components that provide the described functionality. As used herein, computer-readable medium refers to any medium capable of storing data for a computer. Computer-readable medium may include, but is not limited to, memory, RAM, ROM, PROM, EPROM, EEPROM, flash memory, punch cards, dip switches, CD-ROM, floppy disk, magnetic tape, other magnetic medium, optical medium, or any other device or medium capable of storing data for a computer.
With reference to
Electric motor 12 may be a two-pole/four-pole motor which operates at a high speed, such as 3,600 rpm at 60 Hz, in the 2-pole configuration and at a low speed, such as 1,800 rpm at 60 Hz in the 4-pole configuration. Such an electric motor is described in U.S. Pat. No. 6,175,209, the disclosure of which is incorporated herein by reference. Electric motor 12 may be powered by a single-phase or three-phase alternating current power supply. Electric motor 12 may be controlled by a motor control circuit configured to selectively drive electric motor 12 at high or low speed, such as the control circuit for a two-speed motor described in U.S. Pat. No. 5,689,168, the disclosure of which is incorporated herein by reference.
Scroll compressor 10a may include an orbiting scroll member 16 drivingly connected to a crankshaft driven by electric motor 12. A non-orbiting scroll member 14 may be positioned in meshing engagement with orbiting scroll member 16. A shell 18 of scroll compressor 10a may define an interior of scroll compressor 10a. A partition plate 20 may be provided adjacent the upper end of shell 18 to divide the interior into a discharge chamber 22 at an upper end and a suction chamber 24 at a lower end. As orbiting scroll member 16 orbits with respect to non-orbiting scroll member 14, refrigerant may be drawn into suction chamber 24 of shell 18 via a suction fitting 26. From suction chamber 24, refrigerant may be sucked into a suction port 28 provided in non-orbiting scroll member 14. Intermeshing scroll members 14, 16 may define moving pockets which progressively decrease in size as they move radially inward as a result of the orbiting motion of orbiting scroll member 16 thus compressing refrigerant entering via suction port 28. Compressed refrigerant may be discharged into discharge chamber 22 via a discharge port 30 provided in non-orbiting scroll member 14. A pressure responsive discharge valve may be provided seated within discharge port 30.
A scroll separation system 32 may include a piston 36 and a solenoid valve 40. Piston 36 may form a seal with a sleeve 38 within an upper end of discharge chamber 22. Piston 36, sleeve 38, and shell 18 may form a chamber 50. A lower end of piston 36 may include a port fitting 34 that may be threadingly received or otherwise secured within discharge port 30. Piston 36 may include an internal cavity 41 and a plurality of discharge passages 42. Pressurized refrigerant may overcome the biasing load of the discharge valve to open the discharge valve and allow pressurized refrigerant to flow through internal cavity 41, through discharge passages 42, and into discharge chamber 22.
Piston 36 may define a passageway 44 and orifice 46 which may extend through piston 36 to communicatively connect discharge chamber 22 with chamber 50. Chamber 50 may be communicatively connected to solenoid valve 40 by a tube 48.
To load scroll compressor 10a and bias non-orbiting scroll member 14 into sealing engagement with orbiting scroll member 16, solenoid valve 40 may block communication between chamber 50 and suction chamber 24. In this position, chamber 50 is in communication with discharge chamber 22 and pressurized refrigerant at discharge pressure may fill chamber 50. In this position, intermediate pressure within intermediate cavity 43 (also shown in
To unload scroll compressor 10a and separate scroll members 14, 16, solenoid valve 40 may allow direct communication between chamber 50 and suction chamber 24 such that pressure in chamber 50 is released to suction chamber 24. With pressure in chamber 50 released to suction chamber 24, the pressure difference on opposite sides of piston 36 will move non-orbiting scroll member 14 upward to separate the axial end of the tips of each scroll member 14, 16 and higher pressurized pockets will bleed to lower pressurized pockets and eventually to suction chamber 24. By creating a leak path by separation of scroll members 14, 16, scroll compressor 10a may be unloaded. Orifice 46 may control the flow of discharge gas between discharge chamber 22 and chamber 50. When unloading occurs, the discharge valve may move to its closed position thereby preventing backflow of high pressurized refrigerant from discharge chamber 22. In
When compression of refrigerant is to be resumed, solenoid valve 40 may block communication between chamber 50 and suction chamber 24 to allow chamber 50 to be pressurized by discharge pressure from discharge chamber 22 through passageway 44 and orifice 46.
With reference to
In
With reference to
In addition to modulating compressor capacity by axial separation of scroll members 14, 16, controller 302 may also control compressor capacity by modulating electric motor speed to maximize compressor efficiency. Specifically, controller 302 may vary the PWM cyclic ratio of solenoid valve 40 while operating electric motor 12 at high speed to produce a high compressor capacity range. Controller 302 may also vary the PWM cyclic ratio of solenoid valve 40 while operating electric motor 12 at low speed to produce a low compressor capacity range.
With reference to
In step 1308, when TC is greater than fifty percent, controller 302 may set electric motor speed to high. In step 1310, controller 302 may set the PWM cyclic ratio of scroll separation system 32 according to TC. For example, in step 1310 when TC is eighty percent, controller 302 may set the PWM frequency of solenoid valve 40 of scroll separation system 32 to achieve eighty percent capacity.
In step 1312, when TC is not greater than fifty percent, controller 302 may set electric motor speed to low. In step 1314, controller 302 may set the PWM cyclic ratio of scroll separation system 32 according to TC, while accounting for slower electric motor speed. For example, when TC is forty percent, controller 302 may set the PWM cyclic ratio of solenoid valve 40 of scroll separation system 32 to achieve eighty percent capacity. Thus, the lower electric motor speed may account for a decrease in compressor capacity by fifty percent. To further decrease capacity from fifty percent to forty percent, controller 302 may set the PWM cyclic ratio of solenoid valve 40 to eighty percent, i.e., eighty percent of fifty percent is forty percent capacity.
By modulating electric motor speed and adjusting PWM cyclic ratio of scroll separation system 32 accordingly, compressor efficiency is increased as compared with a system that modulates compressor capacity by adjusting PWM cyclic ratio without modulating electric motor speed. Compressor efficiency is particularly increased for operation at less than fifty percent capacity. By decreasing the speed of the electric motor 12 to achieve compressor capacity modulation less than fifty percent, electric power is more efficiently utilized as compared with a system that drives the electric motor 12 and orbiting scroll member 16 at full speed while separating the scroll members 14, 16 for more than half of the operating period.
With reference to
Utilization of a two-pole/four-pole electric motor 12 may allow for speed modulation on-the-fly during operation of the scroll compressor 10a. For example, in four-pole mode, electric motor 12 has a lower locked rotor current, and a lower start current, than in two-pole mode. For this reason, electric motor 12 may be started in four-pole mode to limit the start current. When scroll compressor 10a is unloaded, electric motor 12 may switch to two-pole mode. Further, a rotor of electric motor 12 may be allowed to coast during compressor unloading. Electric power to electric motor 12 may be delivered again prior to the rotor stopping so as to keep the restart electric current low.
With reference to
Scroll compressor 10b shown in
With reference to
Actuation mechanism 124 may include a solenoid. In operation, when capacity modulation is desired, actuation mechanism 124 may provide for linear displacement of an actuation arm 171. More specifically, where actuation mechanism 124 includes a solenoid it may be controlled to allow linear displacement of actuation arm 171. Displacement of actuation arm 171 may cause displacement of annular valve ring 126 in a direction that has both radially outward and tangential components relative to non-orbiting scroll member. More specifically, displacement may cause rotation of annular valve ring 126 about pivot region 132, thereby displacing valve 102 from a first position to a second position radially outward from the first position where chamber 106 is unsealed. Further, rotation of annular valve ring 126 may cause displacement of valve 122 as well.
Activation of delayed suction system 100 may decrease compressor capacity by a percentage depending on the location of the chambers 106 and 108. For example, activation of delayed suction system 100 may decrease or step-down compressor capacity to sixty-seven percent, when the compressor is run at full speed and valves 102, 122 are open. Further, activation of the delayed suction system 100 when the compressor is run at low speed may decrease or step-down compressor capacity to thirty-three percent, i.e., fifty percent of sixty-seven percent is about thirty-three percent.
In addition, delayed suction system 100 may be operated by pulse width modulation including operating actuation mechanism 124 in a pulse width modulation manner. In such case, valves 102, 122 may be periodically opened for a portion of an operating cycle. Depending on the location of chambers 106 and 108, by operating delayed suction system 100 with pulse width modulation, capacity may be varied between one-hundred percent and sixty-seven percent when the compressor is run at full speed and between fifty percent and thirty-three percent when compressor is run at low speed.
With reference to
With reference to
In step 1408, when TC is greater than fifty percent, controller 302 sets electric motor speed to high. In step 1410, controller 302 determines whether TC is greater than a capacity threshold (Thrsh14). For example, Thrsh14 may be sixty-seven percent. In step 1420, when TC is greater than Thrsh14, controller 302 deactivates delayed suction system 100, if it was previously activated, or continues to operate without activation of delayed suction system 100, if it was previously deactivated. Controller 302 may then loop back to step 1402 to receive operating signal(s). In step 1422, when TC is not greater than Thrsh14, controller 302 may activate delayed suction system 100, if it was previously activated, or continue to operate with delayed suction system 100 activated, if it was previously activated. Controller 302 may then loop back to step 1402. For example, if Thrsh14 is sixty-seven percent, and TC is determined to be sixty percent, controller 302 may set electric motor speed to high and activate delayed suction system 100.
In step 1412, when TC is not greater than fifty percent, controller 302 may set electric motor speed to low. In step 1414, controller 302 may determine whether TC is greater than Thrsh14 divided by two. By comparing TC with half of Thrsh14, controller 302 may account for the decrease of compressor capacity due to slower electric motor speed, as set in step 1412. In step 1416, when TC is not greater than half of Thrsh14, controller 302 may activate delayed suction system 100, if it was previously activated, or continue to operate with delayed suction system 100 activated, it if was previously activated. In step 1418, when TC is greater than half of Thrsh14, controller may deactivate delayed suction system 100, if it was previously activated, or continue to operate with delayed suction system 100 deactivated, if it was previously deactivated. Controller may then loop back to step 1402. For example, if Thrsh14 is sixty-seven percent, and TC is determined to be thirty percent, controller 302 may set electric motor speed to low and activate delayed suction system 100.
By modulating electric motor speed and selectively activating delayed suction system 100, compressor efficiency is increased as compared with a system that modulates compressor capacity by activating delayed suction system 100 without modulating electric motor speed. By decreasing electric motor speed to achieve compressor capacity modulation less than fifty percent, electric power is more efficiently utilized as compared with a system that drives electric motor 12 and orbiting scroll member 16 at full speed while releasing pressure from intermediate chambers between orbiting and non-orbiting scroll members 14, 16.
With reference to
In step 1458, when TC is greater than fifty percent, controller 302 sets electric motor speed to high. In step 1460, when TC is less than fifty percent, controller 302 sets the electric motor speed to low.
In step 1462, controller 302 may modulate capacity by pulse width modulating operation of delayed suction system 100 according to TC. For example, with the electric motor speed set to high, controller 302 may use pulse width modulation when TC is between one-hundred percent and a capacity threshold (Thrsh14). As with
By modulating electric motor speed and pulse width modulating activation of delayed suction system 100, TC is more accurately met and compressor efficiency is increased.
With reference to
With reference to
With reference to
In step 1502, controller 302 receives operating signal(s) from refrigeration system sensor(s). For example, controller 302 may receive a discharge temperature, a discharge pressure, a suction temperature, and/or a suction pressure. In step 1504, controller 302 estimates refrigeration system load based on the received signal(s) and determines TC for scroll compressor 10c based on estimated system load. Controller 302 may compare TC with one or more thresholds to determine a subsequent control strategy. As illustrated in
When Thrsh15A is sixty-seven percent, Thrsh15B is fifty percent, and Thrsh15C is thirty-three percent, one of control branch 1550, control branch 1552, control branch 1554, and control branch 1556 may be executed in accordance with the following table:
The above example threshold values are exemplary only. Other values may be used for Thrsh15A, Thrsh15B, and Thrsh15C.
In step 1506, controller 302 may determine whether TC is greater than ThrshA. When TC is greater than ThrshA, controller 302 may execute control branch 1550. Specifically, in step 1508, controller 302 may set electric motor speed to high. In step 1509, controller 302 may deactivate delayed suction system 100, if it was previously activated, or continue to operate with delayed suction system 100 deactivated, if it was previously activated. In step 1510, controller 302 may then modulate capacity of scroll compressor 10c with scroll separation system 32 by periodically separating scroll members 14, 16 to create a leak path. Controller 302 may adjust the PWM cyclic ratio of scroll separation system 32 to modulate compressor capacity according to TC. Controller 302 then returns to step 1502 and receives operating signal(s) again.
In step 1512, controller 302 may determine whether TC is greater than ThrshB. When TC is greater than ThrshB, controller 302 may execute branch 1552. Specifically, in step 1514, controller 302 may set electric motor speed to high. In step 1516, controller may activate delayed suction system 100, if it was previously deactivated, or continue to operate with delayed suction system 100 activated, if it was previously activated. In step 1518, controller 302 may then modulate capacity of scroll compressor 10c with scroll separation system 32 by periodically separating scroll members 14, 16 to create a leak path. Controller 302 may adjust PWM cyclic ratio of scroll separation system 32 to modulate compressor capacity according to TC. Controller 302 then returns to step 1502 and receives operating signal(s) again.
In step 1520, controller 302 may determine whether TC is greater than Thrsh15C. When TC is greater than Thrsh15C, controller 302 may execute branch 1554. Specifically, in step 1522, controller 302 may set electric motor speed to low. In step 1523, controller 302 may deactivate delayed suction system 100, if it was previously activated, or continue to operate with delayed suction system 100 deactivated, if it was previously deactivated. In step 1524, controller 302 may modulate capacity of the scroll compressor 10c with scroll separation system 32 by periodically separating the scroll members 14, 16 to create a leak path. The controller 302 may adjust PWM cyclic ratio of scroll separation system 32 to modulate compressor capacity according to TC. Controller 302 then returns to step 1502 and receives operating signal(s) again.
In step 1520, when TC is not greater than Thrsh15C, controller 302 may execute branch 1556. Specifically, in step 1526, controller may set electric motor speed to high. In step 1528, controller 302 may activate delayed suction system 100, if it was previously deactivated, or continue to operate with delayed suction system 100 activated, if it was previously activated. In step 1530, controller 302 may then modulate capacity of scroll compressor 10c with scroll separation system 32 by periodically separating the scroll members 14, 16 to create a leak path. Controller 302 may adjust PWM cyclic ratio of scroll separation system 32 to modulate compressor capacity according to TC. Controller 302 then returns to step 1502 and receives operating signal(s).
In this way, controller 302 may accurately and efficiently adjust compressor capacity to meet TC by modulating electric motor speed, activation of scroll separation system 32, and delayed suction system 100.
With reference to
In step 1562, controller 302 receives operating signal(s) from refrigeration system sensor(s). For example, controller 302 may receive a discharge temperature, a discharge pressure, a suction temperature, and/or a suction pressure. In step 1563, controller 302 estimates refrigeration system load based on the received signal(s) and determines TC for scroll compressor 10c based on estimated system load. Controller 302 may compare TC with one or more thresholds to determine a subsequent control strategy. As discussed above with reference to
When Thrsh15A is sixty-seven percent, Thrsh15B is fifty percent, and Thrsh15C is thirty-three percent, one of control branch 1580, control branch 1582, control branch 1584, and control branch 1586 may be executed in accordance with the following table:
The above example threshold values are exemplary only. Other values may be used for Thrsh15A, Thrsh15B and Thrsh15C.
In step 1564, controller 302 may determine whether TC is greater than ThrshA. When TC is greater than ThrshA, controller 302 may execute control branch 1580. Specifically, in step 1565, controller 302 may set electric motor speed to high. In step 1566, controller 302 may deactivate scroll separation system 32 such that scroll members 14, 16 are not separated. In step 1567, controller 302 may modulate compressor capacity by adjusting PWM cyclic ratio of delayed suction system 100, according to TC. By pulse width modulating delayed suction system 100, controller 302 may be able to accurately and efficiently meet TC. Controller 302 may then return to step 1562 and receive operating signal(s) again.
In step 1568, controller 302 may determine whether TC is greater than ThrshB. When TC is greater than ThrshB, controller 302 may execute branch 1582. Specifically, in step 1569, controller 302 may set electric motor speed to high. In step 1570, controller may fully activate delayed suction system 100 by opening valves 102, 122. In step 1571, controller 302 may modulate capacity of scroll compressor 10c with scroll separation system 32 by periodically separating scroll members 14, 16 to create a leak path. Controller 302 may adjust PWM cyclic ratio of scroll separation system 32 to modulate compressor capacity according to TC. Controller 302 may then return to step 1562 and receive operating signal(s) again.
In step 1572, controller 302 may determine whether TC is greater than Thrsh15C. When TC is greater than Thrsh15C, controller 302 may execute branch 1584. Specifically, in step 1573, controller 302 may set electric motor speed to low. In step 1574, controller 302 may deactivate scroll separation system 32 such that scroll members 14, 16 are not separated. In step 1575, controller 302 may modulate compressor capacity by adjusting PWM cyclic ratio of delayed suction system 100, according to TC. By pulse width modulating delayed suction system 100, controller 302 may be able to accurately and efficiently meet TC. Controller 302 may then return to step 1562 and receive operating signal(s) again.
In step 1572, when TC is not greater than Thrsh15C, controller 302 may execute branch 1586. Specifically, in step 1576, controller may set electric motor speed to high. In step 1577, controller 302 may fully activate delayed suction system 100, if it was previously deactivated, or continue to operate with delayed suction system 100 by opening valves 122, 102. In step 1578, controller 302 may then modulate capacity of scroll compressor 10c with scroll separation system 32 by periodically separating scroll members 14, 16 to create a leak path. Controller 302 may adjust PWM cyclic ratio of scroll separation system 32 to modulate compressor capacity according to TC. Controller 302 then returns to step 1562 and receives operating signal(s) again.
In this way, controller 302 modulates compressor capacity by switching electric motor speed between high and low, by creating a leak path with scroll separation system 32 and by creating a leak path with delayed suction system 100. By pulse width modulating delayed suction system 100 with electric motor speed set to high, controller 302 may be able to accurately and efficiently meet a first predetermined capacity range. By pulse width modulating scroll separation system 32 with electric motor speed set to high and delayed suction system 100 fully activated, controller may be able to accurately and efficiently meet a second predetermined capacity range. By pulse width modulating delayed suction system 100 with electric motor speed set to low, controller 302 may be able to accurately and efficiently meet a third predetermined capacity range. By pulse width modulating scroll separation system 32 with electric motor speed set to low and delayed suction system 100 fully activated, controller may be able to accurately and efficiently meet a fourth predetermined capacity range.
With reference to
A shell injection fitting 202 extends through shell 18. With reference to
With reference to
With reference to
With reference to
The incorporation of flash tank 350 and the refrigerant injection system 203 allows the compressor capacity to increase above the fixed capacity of scroll compressor 10d/10e. For example, when electric motor 12 is operated at high speed, capacity of scroll compressor 10d/10e may be increased by approximately twenty percent to provide scroll compressor 10d/10e with one hundred and twenty percent of its normal full capacity. When electric motor 12 is operated at low speed, the capacity of the compressor may be increased by approximately ten percent to provide a compressor with sixty percent of its normal full capacity. A solenoid valve 356 or other suitable refrigerant control mechanism may be positioned within piping. The amount of percent increase in the capacity of scroll compressor 10d/10e can be controlled by PWM of the solenoid valve 356. By using refrigerant injection system 203 along with another compressor modulation system, compressor capacity may be provided anywhere between zero percent and one hundred and twenty percent. Controller 302 may also control PWM of solenoid valve 356 to control refrigerant injection.
With reference to
In step 1702, controller 302 receives operating signal(s) from refrigeration system sensor(s). For example, controller 302 may receive a discharge temperature, a discharge pressure, a suction temperature, and/or a suction pressure. In step 1704, controller 302 estimates refrigeration system load based on the received signal(s) and determines TC for compressor based on estimated system load.
In step 1706, controller 302 determines whether TC is greater than one hundred percent. When TC is greater than one hundred percent, controller 302 may set the speed of electric motor 12 to high in step 1708 and may modulate compressor capacity with refrigerant injection system in step 1710. Controller 302 may then return to step 1702 and receive operating signal(s) again.
In step 1712, controller 302 may determine whether TC is greater than sixty percent. When TC is greater than sixty percent, controller 302 may set the speed of electric motor 12 to high in step 1714 and may modulate capacity of scroll compressor 10d/10e with capacity modulation system(s) in step 1716. Controller 302 may then return to step 1702 and receive operating signal(s) again.
In step 1718, controller 302 may determine whether TC is greater than fifty percent. When TC is greater than fifty percent, controller 302 may set the speed of electric motor 12 to low in step 1720 and may modulate compressor capacity with refrigerant injection system in step 1722. Controller 302 may then return to step 1702 and receive operating signal(s) again.
When in step 1718, TC is not greater than fifty percent, controller 302 may set the speed of electric motor 12 to low in step 1724 and may modulate capacity of the scroll compressor 10d/10e with capacity modulation system(s) in step 1726. Controller 302 may then return to step 1702 and receives operating signal(s) again.
In this way, controller 302 may maximize compressor efficiency by modulating compressor capacity with a refrigerant injection system 203, a scroll separation system 32, and/or a delayed suction system 100, to accurately meet TC.
This application claims the benefit of U.S. Provisional Application No. 60/931,022, filed on May 18, 2007. The disclosures of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3978382 | Pfarrer et al. | Aug 1976 | A |
4041542 | Pfarrer et al. | Aug 1977 | A |
4105374 | Scharf | Aug 1978 | A |
4205537 | Dubberley | Jun 1980 | A |
4252506 | Hannibal | Feb 1981 | A |
4277955 | Parker | Jul 1981 | A |
4358254 | Hannibal | Nov 1982 | A |
4396360 | Elson | Aug 1983 | A |
4515539 | Morishita | May 1985 | A |
4818198 | Tamura et al. | Apr 1989 | A |
4946361 | DeBlois et al. | Aug 1990 | A |
5002470 | Gormley et al. | Mar 1991 | A |
5123818 | Gormley et al. | Jun 1992 | A |
5211031 | Murayama et al. | May 1993 | A |
5240389 | Oikawa et al. | Aug 1993 | A |
5328344 | Sato et al. | Jul 1994 | A |
5345785 | Sekigami et al. | Sep 1994 | A |
5385453 | Fogt et al. | Jan 1995 | A |
5609478 | Utter et al. | Mar 1997 | A |
5613841 | Bass et al. | Mar 1997 | A |
5678985 | Brooke et al. | Oct 1997 | A |
5741120 | Bass et al. | Apr 1998 | A |
5800141 | Ceylan et al. | Sep 1998 | A |
5931649 | Caillat et al. | Aug 1999 | A |
6027321 | Shim et al. | Feb 2000 | A |
6047557 | Pham et al. | Apr 2000 | A |
6053715 | Hirano et al. | Apr 2000 | A |
6086335 | Bass et al. | Jul 2000 | A |
6106253 | Sakai et al. | Aug 2000 | A |
6171076 | Gannaway | Jan 2001 | B1 |
6193473 | Mruk et al. | Feb 2001 | B1 |
6196816 | Lifson et al. | Mar 2001 | B1 |
6206652 | Caillat | Mar 2001 | B1 |
6213731 | Doepker et al. | Apr 2001 | B1 |
6264446 | Rajendran et al. | Jul 2001 | B1 |
6267572 | Suefuji et al. | Jul 2001 | B1 |
6280154 | Clendenin et al. | Aug 2001 | B1 |
6290472 | Gannaway | Sep 2001 | B2 |
6293776 | Hahn et al. | Sep 2001 | B1 |
6322339 | Mitsunaga et al. | Nov 2001 | B1 |
6393852 | Pham et al. | May 2002 | B2 |
6408635 | Pham et al. | Jun 2002 | B1 |
6412293 | Pham et al. | Jul 2002 | B1 |
6438974 | Pham et al. | Aug 2002 | B1 |
6449972 | Pham et al. | Sep 2002 | B2 |
6467280 | Pham et al. | Oct 2002 | B2 |
6478550 | Matsuba et al. | Nov 2002 | B2 |
6499305 | Pham et al. | Dec 2002 | B2 |
6519958 | Moon et al. | Feb 2003 | B1 |
6619062 | Shibamoto et al. | Sep 2003 | B1 |
6619936 | Perevozchikov | Sep 2003 | B2 |
6662578 | Pham et al. | Dec 2003 | B2 |
6662583 | Pham et al. | Dec 2003 | B2 |
6672846 | Rajendran et al. | Jan 2004 | B2 |
6679072 | Pham et al. | Jan 2004 | B2 |
6821092 | Gehret et al. | Nov 2004 | B1 |
6884042 | Zili et al. | Apr 2005 | B2 |
6929455 | Dreiman et al. | Aug 2005 | B2 |
6988876 | Ke et al. | Jan 2006 | B2 |
7094043 | Skinner | Aug 2006 | B2 |
7201567 | Wiertz et al. | Apr 2007 | B2 |
RE40554 | Bass et al. | Oct 2008 | E |
RE40830 | Caillat | Jul 2009 | E |
7721562 | Lifson et al. | May 2010 | B2 |
20010002239 | Pham et al. | May 2001 | A1 |
20010045097 | Pham et al. | Nov 2001 | A1 |
20010049942 | Pham et al. | Dec 2001 | A1 |
20020178737 | Pham et al. | Dec 2002 | A1 |
20030033823 | Pham et al. | Feb 2003 | A1 |
20030084672 | Pham et al. | May 2003 | A1 |
20030089119 | Pham et al. | May 2003 | A1 |
20030094004 | Pham et al. | May 2003 | A1 |
20040123612 | Pham et al. | Jul 2004 | A1 |
20040265140 | Sun et al. | Dec 2004 | A1 |
20050244277 | Hurst et al. | Nov 2005 | A1 |
20060280627 | Jayanth | Dec 2006 | A1 |
20060288715 | Pham et al. | Dec 2006 | A1 |
20070022771 | Pham et al. | Feb 2007 | A1 |
20070130973 | Lifson et al. | Jun 2007 | A1 |
20080196445 | Lifson et al. | Aug 2008 | A1 |
20080223057 | Lifson et al. | Sep 2008 | A1 |
20080250812 | Lifson et al. | Oct 2008 | A1 |
20080314057 | Lifson et al. | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
1219648 | Jun 1999 | CN |
1289011 | Mar 2001 | CN |
0747597 | Dec 1996 | EP |
0980978 | Feb 2000 | EP |
1087142 | Mar 2001 | EP |
2246451 | Jan 1992 | GB |
56165701 | Dec 1981 | JP |
573869 | Mar 1982 | JP |
60053601 | Mar 1985 | JP |
0294987 | Nov 1989 | JP |
0201882 | Jan 1990 | JP |
02140477 | May 1990 | JP |
04031689 | Feb 1992 | JP |
04121474 | Apr 1992 | JP |
404121478 | Apr 1992 | JP |
404203489 | Jul 1992 | JP |
05099164 | Apr 1993 | JP |
406002670 | Jan 1994 | JP |
07091385 | Apr 1995 | JP |
8200247 | Aug 1996 | JP |
10037866 | Feb 1998 | JP |
11141483 | May 1999 | JP |
2001099078 | Apr 2001 | JP |
2001518601 | Oct 2001 | JP |
20050088765 | Sep 2005 | KR |
WO-9917066 | Apr 1999 | WO |
2006132638 | Dec 2006 | WO |
2007050063 | May 2007 | WO |
Entry |
---|
International Search Report for International Application No. PCT/US2008/006397 dated Sep. 8, 2008. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/006397 dated Sep. 8, 2008. |
Notification of First Office Action dated Sep. 14, 2007 regarding Application No. 2006100940084, CCPIT Patent and Trademark Office provided the English translation. |
Notification of the Second Office Action dated Aug. 7, 2009 regarding Application No. 200610094008.4. CCPIT Patent and Trademark Law Office provided the English translation. |
European Search Report for App. No. EP 02 25 0369, dated Apr. 9, 2003. |
European Search Report for App. No. EP 04 01 4814, dated Feb. 2, 2006. |
European Search Report for App. No. EP 04 02 3763, dated Mar. 20, 2008. |
European Search Report for App. No. EP 04 02 3764, dated Apr. 17, 2008. |
European Search Report for App. No. EP 04 02 3765, dated Apr. 17, 2008. |
Notice of Reasons for Rejection regarding Japanese Patent Application No. 2001-295,714, dated Mar. 29, 2011. English translation provided by Kanzaki Patent Office. |
Notification of the First Office Action from the State Intellectual Property Office of Peole's Republic of China regarding Chinese Patent Application No. 200880024994.3, dated Jul. 24, 2012. Translation provided by Unitalen Attorneys at Law. |
Seond Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880024994.3, dated Apr. 15, 2013. Translation provided by Unitalen Attorneys at Law. |
Number | Date | Country | |
---|---|---|---|
20080286118 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60931022 | May 2007 | US |