The present invention relates generally to a capping apparatus for applying closures to containers at high speed, and more particularly to a capping apparatus including a nitrogen dosing system for dispensing nitrogen into a head space of each of the containers prior to closure application by the apparatus.
Injection or “dosing” of nitrogen (N2) into containers has come into increasingly widespread practice in packaging of non-carbonated contents in order to increase package rigidity (by increasing internal pressure), as well as for enhancing shelf life, flavor, and freshness of a container's contents. Nitrogen injection systems typically employ liquid nitrogen, which gasifies attendant to container dosing.
While current nitrogen dispensing systems typically provide accurate dispensing of nitrogen, process parameters apart from the injection system create variability which acts to limit the effectiveness of traditional injection systems. Typically, injection systems employed heretofore introduce nitrogen into a container, such as on a bottling line, well in advance of the point at which a closure is applied to a container, sealing it. In such arrangements, the nitrogen, which may be in liquid form, comes to rest on top of the product being packaged, and depending on the fill level, distance from point of closure application, and amount of product spillage that occurs as the package is placed in a position to be sealed, the effectiveness of the nitrogen dose can vary. In total, all of these variables undesirably act to reduce the effectiveness and reliability of current nitrogen dosing systems.
The present invention is directed to a capping apparatus including a nitrogen dosing system which has been specifically configured to overcome shortcomings associated with previously known arrangements by effecting injection of nitrogen, or a like inert gas, into containers just prior to application of a closure to each container by the apparatus.
A capping and nitrogen dosing apparatus embodying the principles of the present invention includes a rotary capping machine including a rotatably driven turret for serially receiving a plurality of containers, typically bottles. The apparatus of the present invention includes a nitrogen dosing system including a dispensing nozzle which is positioned to direct nitrogen, typically in liquid form, directly through the mouth of each container as the container moves through the capping machine past the dispensing nozzle. By this arrangement, nitrogen dissipation is desirably minimized, enhancing operating efficiency. In the preferred form, operation of the dosing system is electronically coordinated with operation of the capping machine to facilitate consistent operation, permitting the dosing system to be operated either continually, or intermittently, as desired.
In accordance with the illustrated embodiment, the rotary capping machine of the apparatus includes a plurality of capping heads for applying closures to respective ones of the containers as the containers are moved about a generally circular path by the rotary turret of the capping machine. The capping machine may be of a generally conventional configuration, with associated rotary conveyors, or starwheels, operatively associated with the capping machine for supplying filled, but unsealed containers to the machine, and for receiving filled and sealed containers from the machine.
The nitrogen dosing system of the present invention is configured for dispensing nitrogen, typically in liquid form, into a head space of each of the containers received by the capping machine prior to application of a respective closure thereto. As is known by those familiar with the art, the head space of a container is that upper region of a container which is unfilled with the typically liquid contents of the container. Injection of nitrogen into this region of containers having non-carbonated contents desirably acts to enhance package rigidity (by internal pressurization) for more secure handling, stacking, and dispensing (such as from vending machines) of products, and desirably acts to enhance the freshness and flavor of the package contents.
Significantly, the present apparatus is configured to effect nitrogen injection at, or in close relationship to, the so-called transfer point of the capping machine, that is, the theoretical point at which the package is positioned for closure application. As will be appreciated, this is in significant distinction from systems employed heretofore, where nitrogen has typically been injected into containers well before closure application, typically before the containers were even received by a capping machine.
To this end, the nitrogen dosing system of the present apparatus includes a generally elongate dispensing nozzle which intersects the circular path about which the containers are moved by the capping machine, at a position between each container and the respective one of the closures held by one of the capping heads. The dosing system includes a control valve to selectively permit intermittent or continuous dispensing of nitrogen, with a control system provided for coordinating operation of the dosing system with operation of the capping machine.
The dispensing nozzle of the dosing system defines a downwardly opening discharge outlet at a free end portion thereof, positionable between each container and a respective one of the closures. In a preferred form, the free end portion of the dispensing nozzle is configured to provide clearance with the capping heads of the capping machine. By this configuration of the dispensing nozzle, nitrogen is directed downwardly through the open mouth of each container as it is being moved by the capping machine, with closure application initiated very shortly after each container is moved passed the dispensing nozzle, that is, after the capping heads clear the dispensing nozzle. Dissipation of the nitrogen as can occur attendant to container movement is desirably minimized to enhance consistent product dosing.
A method of capping containers, including dosing of each container with nitrogen, is also disclosed.
Other features and advantages of the present invention will become readily apparent from the following detailed description, the accompanying drawings, and the appended claims.
While the present invention is susceptible of embodiment in various forms, there is shown in the drawings, and will hereinafter be described, a presently preferred embodiment, with the understanding that the present disclosure is to be considered as an exemplification of the invention, and is not intended to limit the invention to the specific embodiment illustrated.
With reference to
The nitrogen dosing system of the present apparatus may also be generally configured in accordance with known nitrogen dosing systems, such as available from VBS Industries, Inc., of Campbell Calif. See, for example, U.S. Pat. No. 6,182,715, hereby incorporated by reference. In distinction from arrangements known heretofore, the dosing system of the present system has been integrated with the capping machine to facilitate injection of nitrogen, or another inert gas, into each of the containers being filled just prior to application of the closure to the container. In accordance with the present invention, this is effected by providing the dosing system with a dispensing nozzle which is positioned to extend generally into and intersect the circular path about which the filled containers are moved by the capping machine.
With further reference to
As the containers C are moved about the circular path by the capping machine 12, the closures, designated CL in
As containers C are handled by the capping machine 12, the containers each move along the generally circular path defined by the capping machine from an input point shown by line I to an output point shown by line O (
In accordance with the present invention, dosing of an inert gas, typically nitrogen (N2) in liquid form, is effected as close to the transfer point as possible to facilitate consistent dosing of the containers C by minimizing dissipation of the nitrogen as can occur attendant to container movement and product spillage. To this end, the present invention includes a nitrogen dosing system 16 positioned in operative association with the capping machine 12. The dosing system 16 receives a supply of inert gas, typically nitrogen in liquid form via a supply conduit 17, with the nitrogen delivered to a vacuum insulated reservoir 18, and then to dispensing nozzle 20 configured and positioned in accordance with the principles of the present invention.
As illustrated in
In accordance with the present invention, the dosing system 16 can be operated to continuously dispense nitrogen from the dispensing nozzle 20, or can be operated to intermittently dispense nitrogen from the dispensing nozzle, in coordination with movement of container C past the dispensing nozzle by the rotating turret of the capping machine 12. In the preferred form of the present invention, electronic controls 28 are provided which are operatively connected with the electronic controls of the capping machine for accurate timing of the nitrogen dosing system. Dispensing nozzle 20 can be provided with a suitable fitting 38 which permits a suitable device to be positioned within the nozzle such as for controlling and monitoring operation of the system. By electronically controlling the dosing system, and coordinating its operation with the capping machine 12, the present apparatus provides more accurate dosing throughout the entire speed range of the capping machine, with discrete dosing at higher speeds desirably eliminating the continuous stream which has heretofore frequently been required for properly injecting nitrogen into various types of packages typically used today. Intermittent operation in this fashion desirably results in substantial cost savings, which can be realized by reducing the amount of liquid nitrogen used, in comparison to a continuous stream process. Coordinating operation of the dosing system with the capping machine desirably permits accurate, intermittent dosing even attendant to modulation in the speed of the capping machine 12.
From the foregoing, numerous modifications and variations can be effected without departing from the true spirit and scope of the novel concept of the present invention. It is to be understood that no limitation with respect to the specific embodiment illustrated herein is intended or should be inferred. The disclosure is intended to cover, by the appended claims, all such modifications as fall within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3837137 | Yatsushiro et al. | Sep 1974 | A |
4588000 | Malin et al. | May 1986 | A |
4848419 | Damen | Jul 1989 | A |
4865088 | Stearns | Sep 1989 | A |
4870801 | Mizandiian et al. | Oct 1989 | A |
4998400 | Suzuki et al. | Mar 1991 | A |
5009901 | Byrne | Apr 1991 | A |
5396934 | Moench | Mar 1995 | A |
5517804 | Lynch | May 1996 | A |
5802812 | Heudecker | Sep 1998 | A |
6182715 | Ziegler et al. | Feb 2001 | B1 |
6189299 | Brown et al. | Feb 2001 | B1 |
6199350 | Brechel et al. | Mar 2001 | B1 |
6379731 | Brown et al. | Apr 2002 | B1 |
6502369 | Andison et al. | Jan 2003 | B1 |
6584781 | Bishop et al. | Jul 2003 | B2 |
20040000127 | Joshi et al. | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
0 798 263 | Oct 1997 | EP |
59001899 | Jan 1984 | JP |
62124398 | Jun 1987 | JP |
Number | Date | Country | |
---|---|---|---|
20050028487 A1 | Feb 2005 | US |