The present invention refers to a capsule having different elements incorporated to a high pressure high temperature machine with the aim to, by means of the temperature gradient diamond growth method, effect the synthesis of type Ib, IIa and IIb diamond monocrystals inside it.
Generally, diamonds obtained by synthesis at high pressure and high temperature are those known as type Ib and contain hundreds of ppm of nitrogen in their crystalline lattice. Due to the structural nitrogen content, the color of the diamond crystals ranges from light yellow to dense yellow, a limitation that usually is reflected in their having a lower value for the jewelry industry.
On the other hand, this color can be extracted by introducing a nitrogen scavenger in the reaction area mixed with the solvent. In this manner, the solvent is free of the dissolved nitrogen, since the nitrogen reacts with the scavenger, forming compounds such as nitrides, carbides, various intermediate compounds and their combinations thereof. The effect of this competition for nitrogen between the scavenger and the carbon is that less nitrogen enters the diamond crystalline network that is growing, providing crystals that are substantially free of nitrogen.
These crystals are of the type known as type IIa, due to the rarity of said crystals in nature, since they are colorless, their excellent properties of thermal conductivity and hardness making them highly valued in the market.
The inconvenience of these crystals is that their production is extraordinarily difficult, especially because the competition reaction caused by the nitrogen scavenger produces many compounds that remain in suspension, making possible their entry into the monocrystals, during the growth process, as metallic inclusions. This fact makes obtaining large size and pure type IIa crystals difficult. Also, achieving the elimination of nitrogen from the crystalline lattice of the diamond implies that during the process, other type of impurities may enter, such as is the case with boron. Diamond crystals with boron impurities are known as type IIb diamonds and are blue colored.
The present invention consists in obtaining a favorable vertical gradient of diamond growth with the capsule object of the invention, that prevails over any radial gradient by means of heating discs placed at the ends of the heating area, which implies having a considerable control over the growth conditions, more specifically, over the growth rate. This rigorous control over the growth rate makes possible a better control of the quality of large crystals. Another important novelty is using a source of carbon of a special design formed by cylindrical and conical hollows (graphite, amorphous carbon, diamond or other) with a solvent metal having a number of gases that are introduced in the capsule.
Also, a nitrogen scavenger is used to avoid the formation of nitrides, carbides, oxides that are harmful for the growth, that as important novelty is placed outside of the reaction area, that is, without coming into direct contact with the solvent used. In this manner, the solvent and the nitrogen scavenger not having come into direct contact, the inclusion problem and the problem of formation of reaction compounds between the nitrogen, the carbon and the scavenger are then avoided. These compounds are produced, and they are kept outside the diamond growth area, and therefore their inclusion inside the monocrystal is extremely difficult. This is possible because the nitrogen inside the reaction chamber has, usually, a great mobility by diffusion, entering into contact with the scavenger, that acts as a nitrogen trap, fixing it around the area where it is at and preventing that it re-enters the growth area.
Another important novelty of the present invention is the design of the frame-shaped seal joints.
Based on the above information, the list of advantages of the present invention in relation to the state of the prior art are the following:
The high pressure high temperature capsule object of the invention intended to attain the synthesis of a confined monocrystals subject to high pressure has the following elements as determined by:
1. A wolframium carbide (WC) punch
2. A high pressure seal joint
3. The capsule's casing
4. Upper and lower perforated tablet
5. Molybdenum element
6. Upper heating element
7. Lower heating element
8. Graphite tube
9. Carbon source
10. Solving metal
11. Synthesized crystal
12. Diamond seed
13. Insulation
Heating discs 6 and 7 that permit obtaining a vertical gradient for the growth of diamonds are located on both ends of the heating area. Said gradient prevails over any radial gradient.
The heating discs contain the following elements:
a. 50-40
b. 5-20 (as specified in
c. 50-40
The optimum gradient is obtained with the following variables:
The nitrogen scavenger (Al, Ti, Hf and others) is used outside of the diamond's growth area. The nitrogen is sequestered by the scavenger or getter outside the area of the diamond's growth, avoiding thus the formation of nitrides, carbides, oxides or any other undesirable phases for diamond growth.
The sequence is as follows:
All the examples have been carried out according to the following general scheme:
For the growth of type Ib yellow crystals the capsule shown in
1. Wolframium carbide punch
2. high pressure seal joint
3. capsule casing
4. lower perforated cover
5. molybdenum electrode
8. graphite tube
9. carbon source
10. metal solvent
12. diamond seed
13. insulation
17. upper heating disc
18. lower heating disc
19. matrix disc
20. platinum plate
21. molybdenum disc
The temperature gradient is adjusted between 10 and 50° C., graphite is used as the source of carbon. The results obtained are shown in Table 1.
All the crystals are characterized by their yellow color and their octahedral or cubeoctahedral shape. The nitrogen concentration is between 50 and 150 ppm. The metallic inclusions are concentrated in the initial seed area.
Powdered synthetic diamond is used as the carbon source. The conditions are the same as those described for Example 1. After 85 hours of maintaining them, a 3.6 carat crystal with a nitrogen concentration of 120 ppm is obtained.
To grow slightly colored crystals the capsule shown in
8. Graphite tube
9. Carbon source
10. Solvent metal
12. Diamond seed
13. Insulation
17. Upper heating disc
18. Lower heating disc
21. Molybdenum disc
22. Permeable membrane of H height
23. Lower surface
24. Platinum plate
The temperature gradient is adjusted between 10 and 40° C., crystalline graphite is used as the source of carbon. The color of the diamond crystals is regulated by the thickness, H, of membrane 22 and the amount of scavenger present in the mixture 23.
Crystals of up to 5′5 carats in weight and different colorations have been obtained. There are metal inclusions in all the crystals in the area of the seed. Said inclusions do not prevent their commercial application. The capsule is that shown in
The results obtained are shown in Table 2.
To grow white crystals the capsule shown in
The temperature gradient is adjusted between 10 and 30° C. and crystalline graphite is used as the source of carbon.
The color of the diamond crystals is regulated by the thickness H of membrane 22 and the amount of scavenger present in the mixture 23. Ti and Al have been the scavenger used. The growth rate has been adjusted between 2 and 8 mg/h. White crystals of up to 1′8 carats valid for decorative purposes have been obtained. There are metallic inclusions in all the crystals in the seed area. The results obtained are shown in Table 3.
To grow blue crystals the capsule shown in
Number | Date | Country | Kind |
---|---|---|---|
P200500386 | Feb 2005 | ES | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/ES2005/000462 | 8/16/2005 | WO | 00 | 12/2/2009 |