Captive soft-point bullet

Information

  • Patent Grant
  • 6530328
  • Patent Number
    6,530,328
  • Date Filed
    Friday, September 7, 2001
    23 years ago
  • Date Issued
    Tuesday, March 11, 2003
    21 years ago
Abstract
A bullet comprised of a jacket of malleable metal having a closed nose portion and a rear end portion defined by a cylindrical wall, the closed nose portion having wall-weakening areas encapsulating a forward core made of a deformable material which promptly deforms, collapses axially, and expands radially to a substantial extent along with the weakened wall areas, when the bullet strikes a target. The wall weakened areas of the nose portion are ruptured by the core material to produce a collapsing and readily expanding action. These weakened wall areas are in the form of longitudinally extending, deep, internal or external, circumferentially spaced grooves with underlying web areas which are ruptured by the core material, to produce the collapsing and expanding action. This core is preferably made mainly of rubber, urethane, silicone, or one of a substantial number of plastics, such as fluorocarbons, polycarbonates, polypropylenes, polystyrenes, polyethylenes, PVC™, silicone rubber, Nylon™, and vinyl acetate, each of which has a hardness within a range of Shore A-20 to Rockwell R-122. A second core, made mainly of metal such as tungsten, lead, zinc, copper, tin, iron or alloys thereof or hard plastic, is seated, under pressure, behind the nose core and within the rear end portion of the jacket. The advantages of the bullet result from the fact that it collapses axially and expands widely and quickly, upon striking a target, and yet penetrates an adequate distance, without losing an appreciable amount of weight, and without passing through the entire body of the target, to thereby provide an adequate penetration, optimum expansion bullet.
Description




BACKGROUND OF THE INVENTION




This invention relates to the development of a metal-jacketed, non-hollow point bullet intended for law enforcement use which exhibits optimum penetration and more reliable and consistent expansion than hollow point bullets when fired through dry materials such as wallboard, plywood and heavy clothing, while maintaining 100% weight retention.




In December of 1988, the Federal Bureau of Investigation Academy Firearms Training Unit designed and implemented a special test protocol for evaluating the effectiveness of modern ammunition using various types of bullets. Each cartridge and bullet type submitted for testing was used in eight different test events. All of the tests ultimately entailed the penetration of blocks of 10% ballistic gelatin, with and without intermediate barriers in front of the gelatin. These tests included firing bullets into bare gelatin at a distance of 10 feet and through the following materials placed in front of the gelatin; heavy clothing, sheet steel, wallboard (gypsum board), plywood, automobile glass, heavy clothing at 20 yards, and automobile glass at 20 yards.




The FBI does not have a specific requirement for bullet expansion. The criterion is the volume of the wound. However, wound volume is a direct result of the rate and extent of bullet expansion. That volume is measured as the product of the extent of penetration and the frusto area resulting from the expansion. They grade sample ammunition, and the wound volume is one of the parameters used in reaching a purchasing decision. Ammunition with less than twelve (12) inches of penetration is usually not purchased. Penetration beyond eighteen (18) inches is not utilized in calculating the wound volume.




The FBI protocol is the most stringent test protocol ever devised. Many of the ammunition manufacturers soon discovered that the hollow point bullets, which they had at that time, produced very poor results in gelatin after passing through dry barriers. In an attempt to increase the robustness of their bullets, manufacturers developed bullet-weakening features to enhance post-dry-barrier expansion. These efforts were met with minimal success because ultimately, performance was still severely limited by the hollow point concept itself. Even today, many of the best hollow point bullets available perform only marginally well when tested using the FBI protocol.




Hollow point bullets rely on simple hydraulic action to initiate radial expansion. This hydraulic action occurs as fluid enters and fills the bullet's nose cavity upon impact with a fluid-based target. Because of its dependence on fluid and the actual filling of its nose cavity with fluid, a hollow point bullet expands poorly, if at all, when impacting dry, intermediate targets such as wallboard, plywood and heavy fabric. In short, without the immediate presence of fluid, the hollow point bullet's nose cavity will clog severely after encountering almost any dry media. The material producing the worst effect on hollow point bullet performance is wallboard. This is because the gypsum dust has a tendency to pack tightly into the nose cavity which essentially transforms the bullet into a solid-nosed projectile which will, at best, exhibit minimal expansion due to the inherent strength of the core metal comprising its cavity wall. Essentially, when a dry media is substituted for fluid in its cavity, the hollow point bullet is unable to take advantage of simple hydraulics. By utilizing a completely different expansion technology, the bullet described hereinafter overcomes the inherent limitations of hollow point bullets.




BRIEF SUMMARY OF THE INVENTION




The design of our bullet is characterized by a collapsible nose portion. This type of bullet provides a limited but adequate degree of expansion while penetrating to the degree demanded by the FBI. While doing so, it retains substantially 100% of its weight.




The above bullet is comprised of a jacket of malleable metal, such as one formed predominantly of copper, and has a closed conventionally tapered nose portion and a rearward cylindrically shaped sidewall which is preferably open at its rear end. The nose portions have circumferentially spaced weakened areas, which extend axially of its nose-defining wall and are preferably formed by deep internal scoring, although external scoring may be utilized. Compressed within the closed forward end of the jacket and bearing against the interior surface thereof is a soft rubber or other polymer core, the rear portion of which terminates at, ahead of, or rearward of the inflection point. This inflection point is located at the juncture of the tapered nose portion and the forward end portion of the cylindrical wall of the jacket. Mounted within the cylindrical wall of the jacket is a metal core which bears against the rear end of the rubber core in compressing relation thereto. Preferably, the rear end of the metal core terminates adjacent the rear end of the cylindrical wall of the jacket, and the terminal portion of said wall thereat is crimped inwardly to lock the metal core therewithin in compressing relation to the rubber core. The forward end surface of the metal core is preferably recessed with a concave or dished out configuration. The metal core is preferably made of pure lead or some other metal which is softer than the metal of which the jacket is made. Another suitable material would be metals mixed with polymer binders, such as a tungsten/polymer mixture. This core may also be made of a polymeric material of suitable hardness.




When the above-described bullet strikes and penetrates a target which is of soft to medium hardness, the nose portion collapses axially, which increases the pressure upon the rubber core. This causes the latter to rupture the nose-defining portions at the scored or otherwise weakened areas, and to separate along the scoring lines. As this occurs, the metal of the nose portion and the rubber core expand substantially in a radial direction, while the cylindrical wall and the metal core therewithin remain directly therebehind, and retain substantially 100% of their weight.




The above bullet will penetrate such materials at least twelve (12) inches and the nose portion will expand radially in excess of 50%, while retaining its weight at approximately 100%. Actual measurements show the radial expansion as great as 70%. Both the metal core and the rubber core will remain encapsulated by the metal jacket.




Our bullet will penetrate ten (10) layers of heavy denim cloth and still expand adequately in 10% ballistic gelatin. No conventional hollow-point bullet extant can duplicate or exceed this type of performance.




The front core is preferably made of rubber, urethane, silicone, or one of a substantial number of plastics, such as fluorocarbons, polycarbonates, polypropylenes, polystyrenes, polyethylenes, PVC™, silicone rubber, Nylon™, or vinyl acetate, each of which has a hardness within a range of Shore A-20 to Rockwell R-122.




The rear core is preferably formed of a metal which is softer than that from which the jacket is made. Pure lead is the preferred material. Other suitable metals are copper, zinc, iron, steel, tin, lead, tungsten, copper, bismuth, green or sintered powdered metals, or alloys thereof. Another suitable material would be metals mixed with polymer binders, such as a tungsten/polymer mixture. This core may also be made of polymeric material of suitable hardness.




The bullet ogive can be frusto-conical in shape or it may comprise a curving ogive.




It is a general object of our invention to provide a captive soft-point bullet which will overcome the disadvantages of a hollow-point bullet and will thereby out-perform all extant hollow or soft-point bullets with respect to uniform, reliable expansion and adequate penetration when fired into soft to medium hard targets after first having passed through dry intermediate barriers such as wallboard or heavy clothing.




A further object is to provide a captive soft-point bullet which will expand radially to a relatively large diameter when fired into soft to medium hard targets and still penetrate to a depth of at least twelve (12) inches.




Another object is to provide a captive soft-point bullet which, when fired into soft to medium hard targets, will penetrate to at least twelve (12) inches while expanding radially to at least a 50-70% extent.




A still further object is to provide a captive soft-point bullet which provides 100% weight retention after first passing through intermediate barriers and thereafter impacting a soft is to medium hard target.











BRIEF DESCRIPTION OF THE DRAWINGS




These and other objects and advantages of the invention will more fully appear from the following description, made in connection with the accompanying drawings, wherein like reference characters refer to the same or similar parts throughout the several views, and in which:





FIG. 1

is a perspective view of the bullet jacket incorporated in the invention;





FIG. 2

is a side elevational view of the jacket shown in

FIG. 1

prior to seating of the rubber core therein, with a nose portion and a portion of the cylindrical wall broken away and shown in vertical section;





FIG. 3

is a side elevational view of the preferred form of the invention in its final form;





FIG. 4

is a side elevational view of the bullet shown in

FIG. 3

, with a portion of the cylindrical sidewall broken away and a portion shown in vertical section and showing the thin web radially opposite and outside of the internal score;





FIG. 5

is a side elevational view of a modified version of the bullet in which portions are broken away to show the nose portion in section, the forward end of the metal core is concaved and the rubber core extends rearwardly to a point behind the inflection point;





FIG. 6

is a perspective view of our preferred bullet after it has struck and penetrated a target which included a back-up consisting of a block of 10% gelatin;





FIG. 7

is a side elevational view of our bullet with the near wall of the jacket broken away to show the interior in longitudinal section and with the rubber core extending rearwardly and terminating ahead of the inflection point;





FIG. 8

is a vertical sectional view, with portions shown in elevation, of a similar jacket in which the scoring is external.





FIG. 9

is a side elevational view of a bullet of our invention, showing the plastic nose core in section and a plastic rear core partially in section.











DETAILED DESCRIPTION OF THE INVENTION




As described above, a number of variations of our invention are shown in

FIGS. 1-9

, inclusive. The jackets which are shown are all made of the same or similar material, and the forward end of the scoring may start at the closed end of the bullet or rearward thereof, and may terminate ahead of, at, or rearwardly of the inflection point which is at the rear end of the nose-defining portions. Very narrow slits may be utilized in lieu of or in combination with the scoring. Basically, the narrow slits or the scoring constitute weakened areas of the nose portion of the bullet.




As shown in

FIG. 2

, the jacket


10


as shown, has cylindrical wall


11


which tapers inwardly in nose-defining wall


12


, which in turn terminates in a flat solid end plate


13


. Internal scoring


14


extends rearwardly from the flat nose end plate


13


and terminates ahead of the inflection point


15


. The scoring


14


which we utilize is deep, so as to leave only a very thin web


16


directly opposite and outwardly of the valley made by the scoring.




In

FIG. 4

, as shown, the nose-defining wall


12


of the jacket


10


encapsulates a rubber core


17


, which occupies the nose portion behind the end plate


13


and extends rearwardly beyond to the inflection point


15


. The scores


14


extend rearwardly to the inflection point


15


. Disposed immediately behind the rubber core


17


is a soft metal core


18


which fills the entire cavity of the cylindrical wall


11


from the rear end


19


thereof, to the rear end of the rubber core


17


. As described hereinafter, the metal core


18


in each of the variations shown herein is disposed tightly across and against the rear end of the rubber core


17


so as to urge the same against the inner surface of the end plate


13


and against the interior surface of the nose-defining portions


12


. As shown, the flat forward end


20


of the soft metal core engages and is compressed against the rear surface of the rubber core.




The jacket


10


is substantially the same in

FIG. 5

as that shown in

FIG. 4

, except that the scoring


22


extends rearwardly from the inner surface of the nose plate


13


and terminates rearwardly of the inflection point


15


. The forward surface


24


of the rubber core


21


is compressed against the inner surface of the nose plate


13


by the concave forward end


25


of the metal core


23


which terminates at and bears against the rear surface of the rubber core


21


. The bullet shown in

FIG. 5

is the preferred form of our invention.




It will be noted that the forward end of the metal core


23


is generally concaved or dished out to a depth of about 0.150″ to 0.300″, and the cavity thereof is filled with the rear end portion of the rubber core


21


. We have found that this combination facilitates the expansion of the nose-defining portions and the rubber core


21


.




As shown at the rear end of the bullet, the rear end portion


11




a


of the cylindrical wall


11


is crimped inwardly around the rear end of the soft metal core


23


to effectively hold the metal core


23


in pressure-bearing relation against the rubber core


21


, thereby locking the metal core


23


within the jacket. As shown, the crimped portion


11




a


is embedded by the swaging actions utilized in forming the bullet, after the rubber and soft metal cores have been positioned as shown.





FIG. 6

shows one of our bullets after it has been fired through a soft to medium hard target and penetrated through 10% gelatin a distance of approximately twelve (12) inches. It can be seen that the jacket


10


retained the metal core and the rubber core completely encapsulated. The nose portion is collapsed entirely, with the split jacket sections


30


thereof widely separated, and showing the axially collapsed and radially expanded sections


31


of the rubber core visible therebetween in confined relation. The flat end plate remains intact in support of the expanded sections


30


and


31


. As a consequence, the bullet has retained 100% of its original weight.





FIG. 7

shows another form of our invention in which the scoring is located in a slightly different position. The portions of the jacket which are the same as those shown in the other views are identified by the same numerals wherever they are the same or highly similar in construction.

FIG. 7

shows scoring


27


which extends rearwardly to a point forward of the inflection point


15


. Since it is deep, as is the case in each of the bullets shown herein, such deep scoring leaves only a very thin web


28


, which is disposed radially outwardly and directly opposite the bottom of the individual scores. It will be seen that the scores


27


originate at or near the inner surface of the nose or end plate


13


. As is also shown, the rear end surface of the rubber core


26


terminates forwardly of the inflection point


15


. The flat forward end of the soft metal core


29


bears against the rear end surface of the rubber core


26


, and compresses the same tightly against the inner surface of the nose plate


13


and the nose defining portion


12


, as well as the web


28


.





FIG. 8

shows a bullet similar to that shown in

FIG. 7

except that the scoring is external, instead of internal. In view thereof, the elements of

FIG. 8

are identified with some of the same numerals as those shown in

FIG. 7

, with the exception of the external scoring


32


and the web


33


created thereby, in lieu of the outwardly disposed web


28


of FIG.


7


. The length of the scoring is the same, as is the depth thereof. If desired, a retaining disc


34


may be secured behind the metal core by the inwardly crimped rear end


35


of the side wall


36


, but we have found this disc to be non-essential.




The jacket thickness can vary substantially, since the captive soft-point bullet described herein may be used for low velocity pistol applications, high velocity pistol applications, and certain rifle applications. The latter have very high velocity characteristics. For pistol bullets, the thickness range of the jacket is approximately 0.007″ to 0.040″. For rifle bullets, the usable range would be approximately between 0.010″-0.090″. It should be noted that although the is jacket wall may be uniform originally in thickness, there is a substantial degree of wall taper in most pistol and rifle jackets which may be utilized in the formation of the jacket of our bullet. An example of the above is a typical pistol jacket which may have a thickness of 0.015 ″ near the radius of its closed end plate, and a jacket wall thickness of 0.009″ at its open mouth end.




The jackets shown herein are comprised of copper or a gilding metal. These are the most common (and popular) jacket materials used in the industry. A mild steel jacket, if thin enough and malleable enough might be another alternative.




Gilding metal is a commonly used term of the art and is comprised of a copper-zinc alloy commonly used for bullet jackets. Gilding metal usually contains either 95% copper and 5% zinc or 90% copper and 10% zinc. The range of copper content is about 80% to 95%. The more zinc, the harder and less malleable will be a jacket formed thereof.




In arriving at our invention, we were looking for relatively large expansion and adequate or sufficient penetration. When a bullet achieves deep penetration, it is usually at the cost of expansion, in that the bullet fails to expand to a sufficiently large diameter. The opposite is equally true—if the bullet expands to a large degree, penetration is compromised. The captive soft-point bullet which we have developed, along with all others, remains locked into certain terminal ballistic parameters. However, our captive soft-point bullet produces relatively large expanded diameters and adequate penetration in soft to medium hard targets.




The forward nose or end plate


13


of our bullet is solid and closed. As a consequence, both the rubber and soft metal cores are encapsulated by the jacket upon and after impact, since the nose plate is flat and closed.




The optimum number of scores appears to be six (6). The number of scores may be either even or odd. We have found that with three (3) scores the expansion is somewhat limited, due to the additional strength provided by the extra width of the individual jacket sections


30


. A greater velocity of approximately fourteen hundred (1400) feet per second or more is required to sufficiently expand such a bullet with only three (3) scores. The greater the depth of the scores the weaker the bullet nose and thus, the more rapidly it expands on impact. The greater the length of the scores, the weaker the bullet will be and the more rapidly it will expand on impact. Score length also regulates the diameter of expansion since the longer the scores, the larger the expansion.




The external scores, like the internal scores, can commence at or near the nose of the jacket and terminate forward of, at, or behind the inflection point


15


. Like the internal scores, the external scores extend longitudinally of the nose-defining portions


12


and their length can be varied similarly. The depth of the external scores is similar in depth to that of the internal scores and as a consequence, the thickness of the web, which is left after the scoring is accomplished, is substantially the same as that resulting from the internal scoring. If desired, both the internal and external scoring can be made to such a depth that the thickness of the web approaches zero or, as a further alternative, a very narrow slit may be formed. Wherever hereinafter reference is made to the webs, it is intended to include a very narrow slit as an alternative for the web.




The pistol bullets described above have been tested by firing the same through various layers of denim. The greatest number of denim layers in any federal government test protocol is four (4). Our tests show that an expanding pistol bullet, made in accordance with the above, will expand markedly while passing through ten (10) layers of denim and yet will provide adequate penetration as it enters 10% back-up gelatin. There is no extant pistol bullet which will match this performance. The rubber core of the above bullets expands while penetrating the denim layers to a very substantial extent, prior to contacting the gelatin target which is disposed immediately behind the various layers of denim. The expansion occurs very rapidly in the denim, and the bullet continues expanding in the gelatin.




During the initial stages of our development of the above bullet, upon impact and depending on the degree of inertia generated, the rear core would sometimes slide forward within the jacket. However, recent prototypes have been developed to a point where we have nearly eliminated all forward-relative movement of the rear core at impact. Thus, the rear end portions of the rear core remain relatively flush with the base of the bullet. We have found that if the front portion of the metal core


23


is concaved, as shown in

FIG. 5

, the front portion of the soft metal core


23


will expand and stretch the jacket material behind the inflection point


15


. This adds to the overall expanded diameter of the bullet as it reaches its maximum penetration.




It should be understood that upon impact, the scores allow the nose portion of the jacket to split. Immediately thereafter, the nose-defining portions commence to collapse axially and, in doing so, the bullet expands radially. In doing so, the jacket material behind the inflection point may stretch and tear. These tears originate from the rearmost terminus of each score. In essence, they become in-line extensions of the scores and travel into the unscored area of the jacket. This additional split-length in the unscored area adds to the diameter of the expanded bullet.




As shown in

FIGS. 1-4

,


7


, and


8


, the forward end of the metal core of our bullet may have a flat solid forward portion or, as shown in

FIG. 5

, it can contain a hollow-forward portion. The shape and size of the hollow point may vary. It may appear as shown in

FIG. 5

, or it may have a deeper cavity or a cavity comprising a compound angle.

FIG. 5

depicts the recess as being merely concave in form.




The actual rubber core may have a length within the range of 0.050″-0.350″.




We have found that a web having a thickness of 0.002″ is very effective. Webs which measure less than 25% of the jacket wall will function adequately at handgun velocities. The preferred thickness of the web approximates 20% of the jacket wall thickness, but it may be reduced to zero.




The preferred thickness of the cylindrical wall is 0.011 ″. It will be seen by reference to the drawings that the front end


13


of the nose portion is thicker than the side wall of said portions and exceeds the thickness of the cylindrical wall slightly. This is a natural result of the forming of the jacket from a conventional bullet jacket having one closed end and the other end being open.




The bullets described hereinabove, as shown in the drawings hereof, have been found to be highly effective, particularly for law enforcement purposes. In law enforcement operations, a bullet frequently must pass through soft to medium hard materials before engaging the true or ultimate target, and thereafter penetrate the body of the true or ultimate target. This ultimate target will frequently include at least one or more layers of clothing before the bullet enters the flesh of the ultimate target which is relatively soft, much like 10% gelatin. Frequently, bones are encountered by the bullet and for that reason substantial penetration is desired. Also, the expanded bullet conveys substantial shock. The bullets shown and described hereinabove have been found to be unusually effective for such law enforcement purposes. As indicated above, these bullets will penetrate as many as ten (10) layers of denim, and still sufficiently penetrate the target therebehind, while continuing to expand a substantial distance radially to provide substantial shock and wound volume to the ultimate target. As indicated above, we have found that these bullets will expand radially as much as 50-70% and yet penetrate to a distance of approximately 12″ or more. For these reasons, these bullets for use against soft to medium hard targets are much more effective than any extant bullet.




Since the filing of the parent patent application, U.S. Ser. No. 09/256,861, filed Feb. 24, 1999 and entitled “CAPTIVE SOFT-POINT BULLET,” (U.S. Pat. No. 6,178,890, issued Jan. 31, 2001) we have confirmed that a number of additional compositions can be successfully utilized in our above bullet. In view thereof, and in view of the fact that the assignee hereof desired an early issuance of the patent on our above parent application, the continuation-in-part application, Ser. No. 09/597,017 (allowed) was filed for the purpose of widening the scope of the protection as claimed in said parent application, and to enumerate and claim the specific additional materials which may be utilized in lieu of the materials disclosed and claimed in said parent application Ser. No. 09/256,861.





FIG. 9

is a side elevational view of a bullet in which portions are broken away to show the plastic nose core in section, and a plastic rear core partially in section.




We have added

FIG. 9

in order to meet the requirement to show everything which is claimed in application Ser. No. 09/597,017.

FIG. 9

is similar to

FIG. 5

of the parent application, Ser. No. 09/256,861, but differs in that plastic material is shown in the nose core


37


in lieu of rubber, and the rear core


38


is shown in a harder plastic form.




The rear plastic core


38


must be sufficiently harder than the plastic nose core


37


so as to cause the latter to collapse and expand radially when the bullet strikes a target, without significantly deforming the rear core


38


and adversely affecting the performance of the bullet. If desired, a core comprised mainly by weight of metal may be utilized in lieu of plastic core


38


.




Listed below are some materials which may be utilized in the nose core


17


. We have obtained the hardness ranges listed below from Matweb, which is a website on the Internet.


















Preferred Material




Acceptable Hardness






Material Tested




Hardness




Range











Rubber




Shore A-50




Shore A-20 to A-90






Silicone Rubber




Shore A-50




Shore A-20 to A-80






Low Density Polyethylene




Shore D-45




Shore D-45 to D-60






(LDPE)






High Density Polyethylene




Shore D-66




Shore D-66 to D-73






(HDPE)






Nylon ™




R-94




R-94 to R-120






Urethane




Shore A-50




Shore A-20 to A-70






PVC (Flexchem) ™




Shore A-50




Shore A-35 to A-65






Ethylene Vinyl Acetate




Shore A-58




Shore A-58 to D-93






Polypropylene




R-80




R-80 to R-102






Polystyrene




R-75




R-75 to R-110






Polycarbonate




R-108




R-108 to R-122














As suggested above, we have since determined that silicone rubber is an excellent material from which to make the soft nose core


17


. Silicone rubber has an acceptable hardness range of Shore A-20 to A-80. The preferred hardness is Shore A-50. It has certain physical properties which lend themselves to produce a highly effective, collapsible nose portion which collapses axially and then expands extensively in a radial direction as sections


30


, along with the expanded metal sections


31


of the nose section of the jacket. It compares favorably with the rubber of our above parent application, which has a hardness range of Shore A-20 to A-80, and a preferred hardness of Shore A-50, and is substantially equivalent in price.




We also contemplate the use of PVC, which is sold on the market under the trademark Flexchem™, since it has properties which would make a similar bullet having a soft nose core similar to the rubber nose core


17


, which will function in an equally satisfactory manner.




Ethylene vinyl acetate also has hardness properties which will cause it to function as an adequate substitute for rubber in the soft nose core


14


. We have also found that Nylon™ will function adequately when the soft nose core of our invention is formed from that material. Also, low-density and high-density polyethylene have been tested and found to function in a suitable manner as a material from which the relatively soft nose core may be formed.




We have also determined that desirable results can be obtained by using our invention in rifles, particularly at the higher velocities. We have found that, if the velocities are increased, and the thickness of the cylindrical wall of the jacket is increased so as to avoid rupture of the cylindrical sidewall, very desirable results are obtained, because the nose portion will collapse axially and expand radially upon the bullet striking the target, in the same manner as that produced with a rubber nose core and a thinner side wall at the lower velocities.




The typical low-velocity bullets (pistol) travel at a speed of about 600 fps to 1800 fps. The typical medium-velocity rifle bullets, travel at a velocity of about 1800 fps to 2500 fps. The typical high-velocity range for rifle bullets is about 2500 fps to 4000 fps. The nose core durometer range for the low to medium velocity bullets is about Shore A-20 to Shore D-73. The nose core durometer range for the high-velocity rifle bullets in our invention is about Shore A-20 to Rockwell R-122. The preferred jacket thickness for the medium-to-high velocity rifle bullets in our invention is from about 0.010″ to 0.090″. The preferred jacket wall thickness for the low velocity (pistol) bullet is about 0.011″-0.015″. The preferred range of thickness of the webs is about 0.002″-0.008″.




Some chemical compounds which will function as described above when used as nose cores in rifle bullets at the above-described velocities include polypropylene, fluorocarbons, polystyrene, and polycarbonate. Although they have higher measures of hardness than the rubbers, they will collapse axially and expand radially and quickly, upon the bullet striking a target.




The polypropylene has a hardness of R-80 to R-102 and the preferred hardness is R-80.




The polystyrene will function well when used as a nose core within a hardness range of R-75 to R-110. The preferred hardness measure of this plastic for use in high velocity bullets is about R-75.




The polycarbonate also functions well when used as a nose core in high-velocity bullets if the hardness thereof is within the range of R-108 to R-122. The preferred hardness level of the polycarbonates for use as nose cores in high-velocity bullets for rifles is about R-108.




Each of the other materials previously described as being suitable for use in nose cores, such as cores


14


and


27


, will function to collapse and expand radially upon the bullet striking a target, as described above.




Thus rubber, urethane, silicone, or one of a substantial number of plastics, such as fluorocarbons, polycarbonates, polypropylenes, polystyrenes, polyethylenes, PVC™, silicone rubber, Nylon™, or vinyl acetate, each of which has a hardness within a range of Shore A-20 to Rockwell R-122, will each function well in high, as well as in the low, velocity bullets.




The metal cores may be comprised of lead, tungsten, copper, zinc, or tin. Other suitable materials are iron, steel, bismuth, green or sintered powdered metals, or alloys thereof. Another suitable material would be metals mixed with polymer binders, such as a tungsten/polymer mixture. This core may also be made of a polymeric material of suitable hardness.




The most satisfying material from which to manufacture the nose core of our captive soft-point bullet, that we have found to date, is silicone rubber.




We have found that low-velocity bullets having a nose core comprised of silicone rubber function very well, in that the bullet nose, upon the bullet striking the target, will penetrate said target, and the nose portion will thereafter quickly collapse axially, and expand radially in all directions to a substantial extent. As a consequence, the bullet imparts substantial shock to the target, which is desirous. The bullet will continue in a relatively straight path within the target and will lodge within the interior of the same without any appreciable weight loss, which is desirous. By maintaining substantially 100% of its initial weight, such a bullet transmits maximum shock value to the target.




Similar effects as described above can be accomplished if it is desired to obtain the same at rifle velocities. The higher the rifle bullet velocities being used, the harder the nose core material which may be used within the nose core to obtain results similar to those described above. We have found, however, that considerable variance is permissible in the selection from the various plastics which have durometer readings extending over a substantial range.




In general, nose cores manufactured of all of the materials identified as suitable for that purpose will function adequately at the higher velocities, but the plastic materials having the high hardness durometer values will not function well at the lower velocities.




The preceding portions of this specification are essentially duplicates of the corresponding paragraphs of the entire specification of the allowed Continuation-in-Part (CIP) application, Ser. No. 09/597,017 filed Jun. 20, 2000 and allowed Jun. 15, 2001, entitled Captive Soft-Point Bullet.




The dictionary provides a meaning of “mainly” as being “for the most part”. The Applicants have adopted this term and have defined the phrase “mainly metal”, in their claims hereinafter, as meaning that the metal care is comprised mainly (in excess of 50% by weight) of metal. The term “mainly by weight,” as so defined, is utilized hereinafter to distinguish over volume, to thereby preclude avoidance of the patent claims by an accused infringer by utilizing, for example, a combination of a core comprised of 49% by volume of metal and 51% by volume of polymeric material.




The dictionary fails to specify a definition of “primarily” in terms of percentages, but suggests “principally” as a synonym. The dictionary, in turn, suggests “mainly” as a synonym for “principally” and provides “for the most part” as a definition for “mainly.” In view thereof, the Applicants have adopted the term “mainly metal” to indicate a core which is comprised of a minimum of at least 50% by weight of metal. Wherever hereinafter, or in the claims, the term “mainly metal by weight” is used, it is intended to connote that the core is made of metal in an amount of at least 50% by weight, when measured on a weight basis.




Since filing application Ser. No. 09/597,017 we have confirmed that the list of metals from which the mainly metal cores


18


and


29


may be made, and is hereby expanded to include copper, zinc, iron, steel, tin, lead, tungsten, copper, bismuth, and green or sintered powdered metal. These metals are all examples from which the soft malleable rear metal core


18


and


29


may be produced. We have also confirmed that a mixture of tungsten and a polymer, both in heated powdered form, in which the polymer functions as a binder and the mixture is mainly tungsten, provides an effective metal core which functions well as cores


18


and


29


.




It will, of course, be understood that various changes may be made in the form, details, arrangement and proportions of the parts without departing from the scope of the invention which comprises the matter shown and described herein and set forth in the appended claims.



Claims
  • 1. An adequate penetration, optimum expansion bullet for use against targets of soft to medium hardness comprising:(a) a jacket formed of a malleable metal and having a generally cylindrical sidewall, a nose portion disposed forwardly of said cylindrical sidewall, a closed forward end, and a rear end portion; (b) said nose portion having a nose-defining wall extending between said cylindrical sidewall and said closed forward end; (c) said nose-defining wall having circumferentially spaced wall-weakening scores formed therein and extending axially of said nose portion; (d) a mainly polymeric core disposed in part at least within said nose-defining wall and against said closed forward end, said mainly polymeric core having a hardness or durometer within a range of Shore A-20 to Rockwell R-122; (e) a mainly metal core seated behind said mainly polymeric core and within said generally cylindrical sidewall in close-fitting relation and extending rearwardly to a position adjacent said rear end portion of said generally cylindrical jacket sidewall; and (f) said nose-defining wall being weakened by said scores sufficiently to cause said nose-defining wall, upon the bullet striking and penetrating a target, to rupture along said scores and thereafter to expand substantially in a radial direction.
  • 2. The bullet defined in claim 1, wherein the polymer of said mainly polymeric core is taken from a group of polymers including polypropylene, polystyrene, polycarbonate, fluorocarbons, polyethylene, urethanes, Nylon™, PVC™, ethylene vinyl acetate, and silicone rubber.
  • 3. The bullet defined in claim 1, wherein said mainly metal core is taken from a group of metals which include lead, zinc, tin, tungsten, copper, bismuth, iron, steel, or combinations or alloys thereof, green or sintered powdered metal.
  • 4. The bullet defined in claim 1, wherein the polymer of said mainly polymeric core is mainly polypropylene.
  • 5. The bullet defined in claim 1, wherein said mainly polymeric core is comprised mainly of polyethylene.
  • 6. The bullet defined in claim 1, wherein said mainly metal core is comprised mainly of lead.
  • 7. The bullet defined in claim 1, wherein said mainly metal core is comprised mainly of tungsten.
  • 8. The bullet defined in claim 1, wherein said nose portion of the jacket of the bullet expands in a radial direction, together with said mainly polymeric core.
  • 9. An adequate penetration, optimum expansion bullet for use against targets of soft to medium-hardness comprising:(a) a jacket formed of a malleable metal and having a generally cylindrical sidewall, a nose portion disposed forwardly of said cylindrical sidewall, a closed forward end, and a rear end portion; (b) said nose portion having a nose-defining wall extending between said cylindrical sidewall and said closed forward end; (c) said nose-defining wall having circumferentially spaced wall-weakening scores formed therein and extending axially of said nose portion; (d) a polymeric core disposed in part at least within said nose-defining wall and against said closed forward end, said polymeric core having a hardness or durometer within a range of Shore A-20 to Rockwell R-122; (e) a core which is mainly metal by weight seated behind said polymeric core and within said generally cylindrical sidewall in close-fitting relation and extending rearwardly to a position adjacent said rear end portion of said generally cylindrical jacket sidewall; and (f) said nose-defining wall being weakened by said scores sufficiently to cause said nose-defining wall, upon the bullet striking and penetrating a target, to rupture along said scores and thereafter to expand substantially in a radial direction.
  • 10. The bullet defined in claim 9, wherein said polymeric core is taken from a group of polymers which include polyethylene, polypropylene, polystyrene, polycarbonate, fluorocarbon, natural rubber, rubber elastomers, silicone rubber, Nylon™, PVC™, urethanes, and ethylene vinyl acetate, each of which has a hardness within a range of Shore A-20 to Rockwell R-122.
  • 11. The bullet defined in claim 9, wherein the polymer of said polymeric core is comprised of polypropylene.
  • 12. The bullet defined in claim 9, wherein the polymer of said polymeric core is comprised of silicone rubber.
  • 13. The bullet defined in claim 9, wherein said mainly metal core is taken from a group of metals which include lead, zinc, tin, tungsten, copper, bismuth, iron, steel, or combinations or alloys thereof, green or sintered powdered metal, or tungsten and polymer mixtures.
  • 14. The bullet defined in claim 9, wherein the metal of said mainly metal core is comprised of lead.
  • 15. The bullet defined in claim 9, wherein the metal of said mainly metal core is comprised of tungsten.
  • 16. The bullet defined in claim 9, wherein the polymer of said polymeric core is comprised of polyethylene.
  • 17. An adequate penetration, optimum expansion bullet for use against targets of soft to medium-hardness comprising:(a) a jacket formed of a malleable metal and having a generally cylindrical sidewall, a nose portion disposed forwardly of said cylindrical sidewall, a closed forward end and a rear end portion; (b) said nose portion having a nose-defining wall extending between said cylindrical sidewall and said closed forward end; (c) said nose-defining wall having circumferentially spaced wall-weakening scores formed therein and extending axially of said nose portion; (d) a mainly polymeric core disposed in part at least within said nose defining wall and against said closed forward end, said mainly polymeric core having a hardness or durometer within a range of Shore A-20 to Rockwell R-122 (e) a mainly metal core seated behind said mainly polymeric core and within said generally cylindrical sidewall in close-fitting relation and extending rearwardly to a position adjacent K said rear end portion of said generally cylindrical jacket sidewall; and (f) said nose-defining wall being weakened by said scores sufficiently to cause said nose-defining wall, upon the bullet striking and penetrating a target, to rupture along said scores and thereafter to expand substantially in a radial direction.
  • 18. The bullet defined in claim 17, wherein said mainly polymeric core is comprised mainly of polyethylene.
  • 19. The bullet defined in claim 17, wherein said mainly polymeric core is taken from a group of polymers which include polyethylene, natural rubber, rubber elastomers, silicone rubber, Nylon™, PVC™, urethanes and ethylene vinyl acetate.
  • 20. The bullet defined in claim 17, wherein said mainly polymeric core includes polyethylene as a polymeric component.
  • 21. The bullet defined in claim 17, wherein said mainly polymeric core is comprised of more than one polymer.
  • 22. The bullet defined in claim 17, wherein the metal of said mainly metal core is taken from a group of metals which includes lead, zinc, tungsten, copper, iron, steel, tin and alloys thereof.
  • 23. The bullet defined in claim 17, wherein the metal of said mainly metal core includes lead.
  • 24. The bullet defined in claim 17, wherein the metal of said mainly metal core includes tungsten.
  • 25. The bullet defined in claim 17, wherein the metal of said mainly metal core includes zinc.
  • 26. The bullet defined in claim 17, wherein the metal of said mainly metal core includes tin.
  • 27. The bullet defined in claim 17, wherein said jacket is comprised mainly of copper.
  • 28. The bullet defined in claim 17, wherein said mainly core is disposed primarily within said cylindrical side wall.
  • 29. An adequate penetration, optimum expansion bullet for use against targets of soft to medium-hardness comprising:(a) a jacket formed of a malleable metal and having a generally cylindrical sidewall, a nose portion disposed forwardly of said cylindrical sidewall, a closed forward end, and a rear end portion; (b) said nose portion having a nose-defining wall extending between said cylindrical sidewall and said closed forward end; (c) said nose-defining wall having circumferentially spaced wall-weakening scores formed therein and extending axially of said nose portion; (d) a core disposed forwardly in part at least within said nose-defining wall and being made mainly of a polymeric material having a hardness durometer within the range of Shore A-20 to Rockwell R-122 and being deformable under pressure; (e) a mainly metal by weight rear core seated behind said forwardly disposed core and within said generally cylindrical sidewall; and (f) said nose-defining wall being weakened by said scores sufficiently to cause said nose-defining wall, upon the bullet striking and penetrating a target, to rupture along said scores and thereafter to expand substantially in radial directions.
  • 30. The bullet defined in claim 29, wherein said rear core is comprised of a metal in which at least 50% thereof is tungsten.
  • 31. The bullet defined in claim 29, wherein said rear core is comprised mainly by weight of tungsten.
  • 32. The bullet defined in claim 29, wherein said rear core is comprised in part at least of a mixture of tungsten and a polymer.
  • 33. The bullet defined in claim 29, wherein said rear core is comprised mainly by weight of a metal taken from a group of metals including copper, lead, iron, zinc, tin, steel, tungsten and alloys thereof.
  • 34. The bullet defined in claim 29, wherein said rear core is comprised mainly by weight of lead.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Continuation-in-Part of application Ser. No. 09/597,017, filed Jun. 20, 2000 now U.S. Pat. No. 6,305,292, (allowed Jun. 15, 2001), which is a Continuation-in-Part of application Ser. No. 09/256,861, filed Feb. 24, 1999, U.S. Pat. No. 6,178,890, issued Jan. 30, 2001, said applications also entitled “Captive Soft-Point Bullet.”

US Referenced Citations (23)
Number Name Date Kind
594119 Field Nov 1897 A
1135357 Clyne Apr 1915 A
1328334 Newton Jan 1920 A
1967416 Leussler Jul 1934 A
2682224 Braverman Jun 1954 A
3357357 Voss Dec 1967 A
3714896 Young Feb 1973 A
3791303 Sweeney et al. Feb 1974 A
3972286 Canon Aug 1976 A
4108074 Billing, Jr. et al. Aug 1978 A
4142466 Ballreich et al. Mar 1979 A
4338862 Kwatnoski et al. Jul 1982 A
5012743 Denis et al. May 1991 A
5105744 Petrovich Apr 1992 A
5214237 McArthur May 1993 A
5450795 Adelman Sep 1995 A
5454325 LeBlanc Oct 1995 A
5652407 Carbone Jul 1997 A
5834683 Benvegnu Nov 1998 A
6016754 Enlow et al. Jan 2000 A
6158351 Mravic et al. Dec 2000 A
6178890 Burczynski et al. Jan 2001 B1
6305292 Burczynski et al. Oct 2001 B1
Foreign Referenced Citations (7)
Number Date Country
547096 Oct 1957 CA
2028238 Dec 1971 DE
2344 Dec 1893 GB
1469809 Apr 1977 GB
2003033 Nov 1993 RU
WO 9500815 Jan 1995 WO
WO 9720185 Jun 1997 WO
Continuation in Parts (2)
Number Date Country
Parent 09/597017 Jun 2000 US
Child 09/948198 US
Parent 09/256861 Feb 1999 US
Child 09/597017 US