1. Field of the Invention
The field of the invention relates generally to mechanical systems utilizing threaded connectors for coupling components, and more particularly to certain new and useful advances in methods, devices and systems for coupling components using captured threaded connectors, of which the following is a specification.
2. Description of Related Art
Threaded connectors, for e.g., screws, are commonly used to mechanically couple or attach two or more components in a variety of applications. One conventional method for connecting components uses multiple screws with varying thread patterns anchored into threaded channels. In other words, different portions of the channel have to be machined with alternating or varying thread patterns in order to prevent screws from locking together. Another known alternative for coupling components involves screws being placed outside of the components. Specialty screws are another method for coupling multiple components. Typical designs thread one screw of a certain size into the head of another screw of the same size. Yet another conventional method is a single screw of sufficient length that extends through both components being coupled.
These known methods have several disadvantages. For example, although some conventional methods allow screws to connect devices along a single axis, when a single threaded connector is used, multiple screws of varying lengths will have to be employed depending on how many components are being coupled. Moreover, once the components are coupled together, there is no method for removal of one component within the stacked system without uncoupling the other components in the stack. When using conventional methods having multiple connectors along a single channel, currently there are no means for preventing the threaded connectors themselves from binding together. In other words, current systems “permanently” bind components, because if one screw is locked to the other, it is not possible to separate one or more components. In addition, conventional methods do not have a way to prevent the possibility of the screw axis not lining up with the thread axis, which can occur if the components being coupled are slightly tilted), causing cross threading
Thus, systems and methods capable of providing the attachment points of each assembly along the same axis allowing removal of one component, while utilizing the same screw type for repeatability and reduced cost is desired.
The present disclosure describes embodiments of systems and methods for mechanically coupling components, using captured threaded connectors.
In one embodiment, a method for mechanically connecting a system of at least two components, a first component having a first channel located along a first axis, and a second component having a second channel located along a second axis is provided. The first and second axes may be aligned vertically. They axes may also be aligned horizontally or some combination of the two. In one embodiment, the method comprises the steps of orienting the first component adjacent to the second component so that the first and second axes are aligned; engaging a first connector with a driver, the first connector being captive within a pocket located within the first channel; and coupling the first component to the second component with the first connector using the driver, wherein a diameter of at least a portion of the driver is smaller than a diameter of at least a portion of the first channel. In a further embodiment, the first connector is a threaded connector having a head and a shaft. In another embodiment, only the head is held captive within the pocket. In yet another embodiment, the step of coupling the first component to the second component includes anchoring the first connector into female threads located within the second channel. In an additional embodiment, the system being assembled is electrical in nature, wherein at least one of the first and second components is a compute box. In a preferred embodiment, the diameter or width of the pocket is greater than or equal to a diameter of at least the first channel.
The present invention also provides a system having at least two mechanically coupled components. In one embodiment, the system comprises a first component having a first channel positioned along a first axis; a second component having a second channel aligned along the first axis; and a threaded connector having a head and a shaft, the head being captive within a pocket located within the first channel, wherein the shaft of the threaded connector is anchored into corresponding female threads located within the second channel. In a further embodiment, the first axis is a vertical axis. In another embodiment, the system is electrical in nature, and at least one of the first and second components is a compute box. In yet another embodiment, a diameter of the pocket is greater than or equal to a diameter of the first channel.
One of the benefits and advantages of the subject invention is that a user is able to easily disconnect the last component coupled to the system without decoupling the entire system of components. Another benefit of the subject invention is that the same type and size of threaded connectors, corresponding drivers, and channel thread patterns can be used to couple together components an infinite number of times. Yet another benefit of the present invention is that the threaded connectors are provided and held captive within a pocket within the channel of each of the components during initial assembly which ensures that they are not lost. In addition, providing the threaded connectors within the channel, prior to coupling, assists the user with proper alignment of the channels of each component about the center of the common axes as they are coupled together. Because the screws are able to float within a pocket, the channels of the components are able to be aligned such that the screw axis and the thread axis are the same, which eliminates the possibility of cross threading.
Other features and advantages of the disclosure will become apparent by reference to the following description taken in connection with the accompanying drawings.
Reference is now made briefly to the accompanying drawings, in which;
Like reference characters designate identical or corresponding components and units throughout the several views, which are not to scale unless otherwise indicated.
The methods and systems of the subject invention provide mechanical coupling of two or more components using one or more threaded connectors. The components are designed with one more internal columns or channels that house threaded connectors at selected attachment points between the devices. The channels are typically located around the perimeter or outer edge of the components in order to avoid any electrical or other elements within the component. Prior to coupling, threaded connectors are provided within a pocket located within one or more of the channels, such that they are held captive within the pocket and unable to fall out should the components by tilted or inverted. The threaded connectors are able to float and move within the pocket, but remain centered about a central axis within the pocket. Components are coupled by anchoring the shaft of the threaded connector of one component into corresponding female threads within the column of a second component.
The present invention employs drivers to access and engage threaded connectors in order to anchor the threaded connectors between components within a system. The force applied to the driver o anchor the threaded connector may be manual or electric. At least a portion of the driver must have a diameter that is smaller than the channel, because the threaded connectors are pre-positioned within the channel. The pre-positioning of the threaded connectors has the benefit and advantage of preventing angular misalignment of the components as they are being coupled together. The coupling process can be repeated as desired in order to secure additional components to the system, or to utilize additional attachment points between the same components, as desired.
As noted above, the methods and systems of the present invention prevent threaded connectors, for e.g. screws, from falling out of the components and becoming lost by using a pocket embedded within the channel of each component. As a result of the captured threaded connector design, multiple components of various types can be coupled, and decoupling of the “topmost” or last coupled component is permitted without decoupling/disassembly of other components within the system. This is particularly beneficial for systems that include components that are utilized for electrical device applications, such as systems that include compute boxes, displays, adaptor plates, etc.
In addition, putting the screws along the same axis and having them thread into the next successive component, but without allowing them to thread into each other, stops the screws from reaching the screws of the secondary or receiving device. This would otherwise cause the screws to become locked, creating one long screw. Moreover, the pocket prevents a screw from being screwed all the way through a device thus not connecting them at all. Yet another advantage of the present invention is the ability to put the attachment points of each assembly along the same axis. This removes the need to create alternating, or multiple assembly configurations to offset successive thread patterns.
After aligning two components of a system of the present invention, a driver is used to couple them.
The channel 10b having female threads 22 within each component acts as a passageway to get the driver 24 to the head 24a of the threaded connector 24 within, and also acts as the actual anchoring mechanism by which the components are mechanically attached. This is possible because the threaded connectors used in the present invention are all captured along shared axes within a given channel, and the driver for the head of each of the threaded connectors has an outer diameter smaller than the channel or female threaded shaft the driver passes through. The present invention thereby eliminates the need for special thread patterns utilized by conventional methods, which would otherwise be required to allow clearance for the driver for the head of each threaded connector.
While the figures and description herein generally refer to a threaded connector having a shaft and a head, other threaded connector designs are also envisioned and are within the scope of this invention. In a preferred embodiment, identical threaded connectors are used to couple each of the components at each of the attachment points in the system, providing a significant design, manufacturing and assembly savings in time and cost.
The systems and methods of the present invention are suitable for coupling two or more components together. The components need not have the same dimensions, e.g., perimeter, length, width, thickness, etc. However, at least one of the channels of each of the components must be aligned along a shared axis, typically vertical or horizontal, in order to enable the components to be mechanically coupled according to the subject invention. Components may be electrical in nature, and may also be made of a number of materials or combination of materials, such as wood, metal, plastic, etc.
As used herein, an element or function recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural said elements or functions, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the claimed invention should not be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments. Other embodiments will occur to those skilled in the art and are within the scope of the following claims.