The present invention is related to an image sensor including a plurality of heterogeneous imagers, more specifically to an image sensor with a plurality of wafer-level imagers having custom filters, sensors and optics of varying configurations.
Image sensors are used in cameras and other imaging devices to capture images. In a typical imaging device, light enters through an opening (aperture) at one end of the imaging device and is directed to an image sensor by an optical element such as a lens. In most imaging devices, one or more layers of optical elements are placed between the aperture and the image sensor to focus light onto the image sensor. The image sensor consists of pixels that generate signals upon receiving light via the optical element. Commonly used image sensors include CCD (charge-coupled device) image sensors and CMOS (complementary metal-oxide-semiconductor) sensors.
Filters are often employed in the image sensor to selectively transmit lights of certain wavelengths onto pixels. A Bayer filter mosaic is often formed on the image sensor. The Bayer filter is a color filter array that arranges one of the RGB color filters on each of the color pixels. The Bayer filter pattern includes 50% green filters, 25% red filters and 25% blue filters. Since each pixel generates a signal representing strength of a color component in the light and not the full range of colors, demosaicing is performed to interpolate a set of red, green and blue values for each image pixel.
The image sensors are subject to various performance constraints. The performance constraints for the image sensors include, among others, dynamic range, signal to noise (SNR) ratio and low light sensitivity. The dynamic range is defined as the ratio of the maximum possible signal that can be captured by a pixel to the total noise signal. Typically, the well capacity of an image sensor limits the maximum possible signal that can be captured by the image sensor. The maximum possible signal in turn is dependent on the strength of the incident illumination and the duration of exposure (e.g., integration time, and shutter width). The dynamic range can be expressed as a dimensionless quantity in decibels (dB) as:
Typically, the noise level in the captured image influences the floor of the dynamic range. Thus, for an 8 bit image, the best case would be 48 dB assuming the RMS noise level is 1 bit. In reality, however, the RMS noise levels are higher than 1 bit, and this further reduces the dynamic range.
The signal to noise ratio (SNR) of a captured image is, to a great extent, a measure of image quality. In general, as more light is captured by the pixel, the higher the SNR. The SNR of a captured image is usually related to the light gathering capability of the pixel.
Generally, Bayer filter sensors have low light sensitivity. At low light levels, each pixel's light gathering capability is constrained by the low signal levels incident upon each pixel. In addition, the color filters over the pixel further constrain the signal reaching the pixel. IR (Infrared) filters also reduce the photo-response from near-IR signals, which can carry valuable information.
These performance constraints of image sensors are greatly magnified in cameras designed for mobile systems due to the nature of design constraints. Pixels for mobile cameras are typically much smaller than the pixels of digital still cameras (DSC). Due to limits in light gathering ability, reduced SNR, limits in the dynamic range, and reduced sensitivity to low light scenes, the cameras in mobile cameras show poor performance.
Camera arrays, imaging devices including a camera array and/or a method for capturing an image that employ a plurality of imagers where each imager includes a plurality of sensor elements, and lens stack arrays that can be utilized in camera arrays in accordance with embodiments of the invention are disclosed. The plurality of imagers can include at least a first imager and a second imager, where the first imager and the second imager may have the same imaging characteristics or different imaging characteristics.
In one embodiment, the first imaging characteristics and the second imager have different imaging characteristics. The imaging characteristics may include, among others, the size of the imager, the type of pixels included in the imager, the shape of the imager, filters associated with the imager, exposure time of the imager, aperture size associated with the imager, the configuration of the optical element associated with the imager, gain of the imager, the resolution of the imager, and operational timing of the imager.
In one embodiment, the first imager includes a filter for transmitting a light spectrum. The second imager also includes the same type of filter for transmitting the same light spectrum as the first imager but captures an image that is sub-pixel phase shifted from an image captured by the first imager. The images from the first imager and the second imager are combined using a super-resolution process to obtain images of higher resolution.
In one embodiment, the first imager includes a first filter for transmitting a first light spectrum and the second imager includes a second filter for transmitting a second light spectrum. The images from the first and second imagers are then processed to obtain a higher quality image.
In one embodiment, lens elements are provided to direct and focus light onto the imagers. The lens elements form lens stacks that create optical channels, and each lens stack focuses light onto one imager. Because each lens element is associated with one imager, each lens element may be designed and configured for a narrow light spectrum. Further, the thickness of the lens element may be reduced, decreasing the overall thickness of the camera array. In such an embodiment, the lens elements may be made using any suitable fabrication technique, such as, for example using wafer level optics (WLO) technology, injection molding, and/or glass molding.
In one embodiment, the plurality of imagers include at least one near-IR imager dedicated to receiving near-IR (Infrared) spectrum. An image generated from the near-IR imager may be fused with images generated from other imagers with color filters to reduce noise and increase the quality of the images. In another such embodiment, imagers covering other spectrum ranges including far-IR and UV spectra may be included as well.
In one embodiment, the plurality of imagers may be associated with lens elements that provide a zooming capability. In one such embodiment, different imagers may be associated with lenses of different focal lengths to have different fields-of-views and provide different levels of zooming capability. Different fields-of-view can also be achieved using imagers having different sensor sizes/formats by means of different pixel sizes or different numbers of pixels/light sensing elements. A mechanism may be provided to provide smooth transition from one zoom level to another zoom level.
In one or more embodiments, the plurality of imagers is coordinated and operated to obtain at least one of a high dynamic range image, a panoramic image, a hyper-spectral image, distance to an object and a high frame rate video.
An imaging device in accordance with one embodiment of the invention includes at least one imager array, and each imager in the array comprises a plurality of light sensing elements and a lens stack including at least one lens surface, where the lens stack is configured to form an image on the light sensing elements, control circuitry configured to capture images formed on the light sensing elements of each of the imagers, and a super-resolution processing module configured to generate at least one higher resolution super-resolved image using a plurality of the captured images.
In a further embodiment of the invention, a spectral filter is provided within each imager and is configured to pass a specific spectral band of light, and spectral filters that pass different spectral bands are provided within at least two of the imagers.
In another embodiment of the invention, the spectral filter is selected from the group consisting of an organic color filter, an absorptive material, a dielectric coating, an interference filter, a multilayer coating, and combinations thereof.
In a still further embodiment of the invention, at least one of the imagers further comprises a polarizing filter.
In still another embodiment of the invention, the construction of the lens stack within an imager differs based upon the specific spectral band of light passed by the spectral filter within the imager such that chromatic aberrations are reduced.
In a yet further embodiment of the invention, the prescription of at least one surface of the lens stack within an imager is a function of the specific spectral band of light passed by the spectral filter within the imager.
In yet another embodiment of the invention, the at least one surface of the lens stack is configured so that the back focal length of each lens stack in the imager array are the same independent of the spectral band.
In a further embodiment again of the invention, a combination of high and low Abbe number materials is used in the construction of each of the lens stacks to reduce chromatic aberrations.
In another embodiment again of the invention, each lens stack includes at least one aperture stop positioned in front of the light sensing element, and the spectral filter is positioned in proximity to the aperture stop.
In a further additional embodiment of the invention, the at least one aperture stop is formed by a light blocking material selected from the group consisting of metal materials, oxide materials, black particle filled photoresists and combinations thereof.
In another additional embodiment of the invention, at least one lens surface in the optical stack of an imager differs based upon the specific spectral band of light passed by the spectral filter within the imager, and each lens surface is selected from the group consisting of diffractive, Fresnel, refractive and combinations thereof.
In a still yet further embodiment of the invention, the radii of curvature of the lens surfaces differ based upon the specific spectral band of light passed by the spectral filter within the imager.
In still yet another embodiment of the invention, the lens stacks of each of the imagers have the same back focal length.
In a still further embodiment again of the invention, the light sensing elements are disposed to detect an image in a backside imaging mode.
In still another embodiment again of the invention, a separate negative lens element is disposed in close proximity to the light sensing elements of an imager and in optical alignment with the lens stack of the imager so that the field curvature of the lens stack is corrected.
In a still further additional embodiment of the invention, a separate negative lens element is disposed in close proximity to the light sensing elements of an imager and in optical alignment with the lens stack of the imager so that the field curvature of the lens stack is corrected.
In still another additional embodiment of the invention, at least two of the imagers in the imager array have different fields of view so that different scene sizes can be captured by the imagers.
In a yet further embodiment again of the invention, the lens stacks of the at least two imagers have different focal lengths.
In yet another embodiment again of the invention, the light sensing elements in each of at least two imagers have different sizes.
In a yet further additional embodiment of the invention, the at least two imagers include different numbers of light sensing elements.
Yet another additional embodiment of the invention also includes a mechanical zoom mechanism within the lens stack of an imager for smoothly transitioning between different fields of view.
In a further additional embodiment of the invention again, at least one of the imagers is designed to image light in the near-infrared spectrum.
In another additional embodiment of the invention again, at least one imager is configured to take a measurement of the visible light spectrum, and wherein the control circuitry is configured to use said measurement to control the imaging characteristics of the other imagers in said imaging device.
In a still yet further additional embodiment of the invention, the imaging device includes at least two camera arrays.
In still yet another additional embodiment of the invention, the at least two camera arrays operate in conjunction during imaging to provide stereo images.
In a still yet further embodiment of the invention again, the at least two camera arrays are spatially separated one from the other in at least one plane.
In still yet another embodiment of the invention again, each of the camera arrays include a different combination of imagers each combination of imagers having different imaging characteristics.
In a yet further additional embodiment of the invention again, at least one camera array comprises an N×M array of imagers, where at least one of N and M is greater than 2, and each of said imagers comprising at least two light sensing elements.
In yet another additional embodiment of the invention again, the control circuitry is configured to control the imaging characteristics of each imager.
In another further embodiment of the invention, the controllable imaging characteristics include exposure time, gain, and black level offset.
In still another further embodiment of the invention, the control circuitry is configured to trigger each of said imagers in accordance with a desired sequence.
In yet another further embodiment of the invention, the control circuitry operates the imagers in a staggered sequence.
In another further additional embodiment of the invention, an initial master setting for the imaging characteristics of each imager is set by the control circuitry, predefined deviations from the initial master settings are also set by the control circuitry, and the deviations include functions selected from the group consisting of ISO settings, high dynamic range, gain settings, integration time settings, exposure settings, digital processing settings and combinations thereof.
In another further embodiment of the invention again, the camera arrays are fabricated using techniques consisting of wafer level optics techniques, injection molding, glass molding and combinations thereof.
In still yet another further embodiment of the invention, each of the plurality of imagers are optically separated from each other.
In still another further additional embodiment of the invention, each of the imagers is optically separated from the other imagers by at least two opaque surfaces located in front of the light sensing elements and having openings arranged in axial alignment with the lens stack of the imager.
In still another further embodiment of the invention again, the imagers are optically separated from each other by opaque walls disposed at the boundaries between the imagers.
In yet another further additional embodiment of the invention, the opaque walls are cavities between the imagers filled with light blocking material.
In yet another further embodiment of the invention again, the lens stack includes spacers, and the spacers are constructed from an opaque material.
In another further additional embodiment of the invention again, the lens stack includes spacers, and the spacers are coated with an opaque material.
In still yet another further additional embodiment of the invention, the control circuitry is configured to perform normalization of a captured low resolution image using a one dimensional space filling curve to describe a normalization plane.
In still yet another further embodiment of the invention again, the one dimensional space filling curve is expressed as the coefficients of a polynomial.
In yet another further additional embodiment of the invention again, the control circuitry is configured to capture multiple low resolution images using different imagers having different exposure times.
In still yet another further additional embodiment of the invention again, the light sensing elements of at least one of the imagers used to capture an image are high dynamic range light sensing elements.
In an additional embodiment of the invention, at least one of the imagers used to capture a low resolution image is configured to capture a near-IR low resolution image.
In an additional embodiment of the invention again, the super-resolution module is configured to generate a depth map for the super-resolution image.
In a number of embodiments of the invention, the super-resolution module is configured to select at least one distance as a focal plane and to apply blurring to pixels with depths that are not proximate a focal plane.
In a further embodiment of the invention, the super-resolution processing module is configured to perform temperature normalization with respect to the captured images.
In a still further embodiment of the invention, the point spread functions of the lens stacks vary with temperature, and the super-resolution processing module is configured to perform temperature normalization by selecting a point spread functions from temperature calibration data corresponding to the point spread functions of the lens stacks during the capture of the images.
In still another embodiment of the invention, the super-resolution processing module is configured to computationally correct color differences between the captured images.
In a yet further embodiment of the invention, the super-resolution processing module is configured to computationally correct geometric distortion differences between the captured images.
The features and advantages described in the specification are not all inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter.
Embodiments of the invention are now described with reference to the figures where like reference numbers indicate identical or functionally similar elements. Also in the figures, the left most digits of each reference number corresponds to the figure in which the reference number is first used.
Many embodiments relate to using a distributed approach to capturing images using a plurality of imagers of different imaging characteristics. Each imager may be configured in such a manner that each imager captures an image that is shifted by a sub-pixel amount with respect to the image captured by other imagers having similar imaging characteristics. Each imager may also include separate optics with different filters and operate with different operating parameters (e.g., exposure time). Distinct images generated by the imagers are processed to obtain an enhanced image. In many embodiments, the separate optics incorporated into each imager are implemented using a lens stack array. The lens stack array can include one or more optical elements fabricated using wafer level optics (WLO) technology.
A sensor element or pixel refers to an individual light sensing element in an imager. The light sensing element can be, but is not limited to, traditional CIS (CMOS Image Sensor), CCD (charge-coupled device), high dynamic range pixel, multispectral pixel and various alternatives thereof.
A sensor refers to a two dimensional array of pixels used to capture an image formed on the sensor by the optics of the imager. The sensor elements of each sensor have similar physical properties and receive light through the same optical component. Further, the sensor elements in the each sensor may be associated with the same color filter.
A camera array refers to a collection of imagers designed to function as a unitary component. The camera array may be fabricated on a single chip for mounting or installing in various devices.
An array of camera arrays refers to an aggregation of two or more camera arrays. Two or more camera arrays may operate in conjunction to provide extended functionality over a single camera array, such as, for example, stereo resolution.
Image characteristics of an imager refer to any characteristics or parameters of the imager associated with capturing of images. The imaging characteristics may include, among others, the size of the imager, the type of pixels included in the imager, the shape of the imager, filters associated with the imager, the exposure time of the imager, aperture size associated with the imager, the configuration of the optical element associated with the imager (such as the number of elements, the shapes, profiles and sizes of the lens surfaces, including the radii of curvature, aspheric coefficients, focal lengths and FOVs of the objectives, color correction, F/#s, etc.), the gain of the imager, the resolution of the imager, and operational timing of the imager.
Structure of Camera Array
The camera array may include two or more types of heterogeneous imagers, each imager including two or more sensor elements or pixels. Each one of the imagers may have different imaging characteristics. Alternatively, there may be two or more different types of imagers where the same type of imager shares the same imaging characteristics.
In one embodiment, each imager 1A through NM has its own filter and/or optical element (e.g., lens). Specifically, each of the imagers 1A through NM or a group of imagers may be associated with spectral color filters to receive certain wavelengths of light. Example filters include a traditional filter used in the Bayer pattern (R, G, B or their complements C, M, Y), an IR-cut filter, a near-IR filter, a polarizing filter, and a custom filter to suit the needs of hyper-spectral imaging. Some imagers may have no filter to allow reception of both the entire visible spectra and near-IR, which increases the imager's signal-to-noise ratio. The number of distinct filters may be as large as the number of imagers in the camera array. Further, each of the imagers 1A through NM or a group of imagers may receive light through lenses having different optical characteristics (e.g., focal lengths) or apertures of different sizes.
In one embodiment, the camera array includes other related circuitry. The other circuitry may include, among others, circuitry to control imaging parameters and sensors to sense physical parameters. The control circuitry may control imaging parameters such as exposure times, gain, and black level offset. The sensor may include dark pixels to estimate dark current at the operating temperature. The dark current may be measured for on-the-fly compensation for any thermal creep that the substrate may suffer from. Alternatively, compensation of thermal effects associated with the optics, e.g., because of changes in refractive index of the lens material, may be accomplished by calibrating the PSF for different temperatures.
In one embodiment, the circuit for controlling imaging parameters may trigger each imager independently or in a synchronized manner. The start of the exposure periods for the various imagers in the camera array (analogous to opening a shutter) may be staggered in an overlapping manner so that the scenes are sampled sequentially while having several imagers being exposed to light at the same time. In a conventional video camera sampling a scene at N exposures per second, the exposure time per sample is limited to 1/N seconds. With a plurality of imagers, there is no such limit to the exposure time per sample because multiple imagers may be operated to capture images in a staggered manner.
Each imager can be operated independently. Entire or most operations associated with each individual imager may be individualized. In one embodiment, a master setting is programmed and deviation (i.e., offset or gain) from such master setting is configured for each imager. The deviations may reflect functions such as high dynamic range, gain settings, integration time settings, digital processing settings or combinations thereof. These deviations can be specified at a low level (e.g., deviation in the gain) or at a higher level (e.g., difference in the ISO number, which is then automatically translated to deltas for gain, integration time, or otherwise as specified by context/master control registers) for the particular camera array. By setting the master values and deviations from the master values, higher levels of control abstraction can be achieved to facilitate a simpler programming model for many operations. In one embodiment, the parameters for the imagers are arbitrarily fixed for a target application. In another embodiment, the parameters are configured to allow a high degree of flexibility and programmability.
In one embodiment, the camera array is designed as a drop-in replacement for existing camera image sensors used in cell phones and other mobile devices. For this purpose, the camera array may be designed to be physically compatible with conventional image sensors of approximately the same resolution although the achieved resolution of the camera array may exceed conventional image sensors in many photographic situations. Taking advantage of the increased performance, the camera array in accordance with embodiments of the invention may include fewer pixels to obtain equal or better quality images compared to conventional image sensors. Alternatively, the size of the pixels in the imager may be reduced compared to pixels in conventional image sensors while achieving comparable results.
In order to match the raw pixel count of a conventional image sensor without increasing silicon area, the logic overhead for the individual imagers is preferably constrained in the silicon area. In one embodiment, much of the pixel control logic is a single collection of functions common to all or most of the imagers with a smaller set of functions applicable to each imager. In this embodiment, the conventional external interface for the imager may be used because the data output does not increase significantly for the imagers.
In one embodiment, the camera array including the imagers replaces a conventional image sensor of M megapixels. The camera array includes N×N imagers, each sensor including pixels of
Each imager in the camera array also has the same aspect ratio as the conventional image sensor being replaced. Table 1 lists example configurations of camera arrays according to the present invention replacing conventional image sensor.
The Super-Resolution Factors in Table 1 are estimates and the Effective Resolution values may differ based on the actual Super-Resolution factors achieved by processing.
The number of imagers in the camera array may be determined based on, among other factors, (i) resolution, (ii) parallax, (iii) sensitivity, and (iv) dynamic range. A first factor for the size of imager is the resolution. From a resolution point of view, the preferred number of the imagers ranges from 2×2 to 6×6 because an array size of larger than 6×6 is likely to destroy frequency information that cannot be recreated by the super-resolution process. For example, 8 Megapixel resolution with 2×2 imager will require each imager to have 2 Megapixels. Similarly, 8 Megapixel resolution with a 5×5 array will require each imager to have 0.32 Megapixels. In many embodiments, the number of imagers in the array is determined based upon the requirements of a specific application.
A second factor that may constrain the number of imagers is the issue of parallax and occlusion. With respect to an object captured in an image, the portion of the background scene that is occluded from the view of the imager can be referred to as the “occlusion set.” When two imagers capture the object from two different locations, the occlusion set of each imager is different. Hence, there may be scene pixels captured by one imager but not the other. To resolve this issue of occlusion, it is desirable to include a certain minimal set of imagers for a given type of imager and to distribute the imagers symmetrically around the central axis of the camera array.
A third factor that may put a lower bound on the number of imagers is the issue of sensitivity in low light conditions. To improve low light sensitivity, imagers for detecting near-IR spectrum may be needed. The number of imagers in the camera array may need to be increased to accommodate such near-IR imagers.
A fourth factor in determining the size of the imager is dynamic range. To provide dynamic range in the camera array, it is advantageous to provide several imagers of the same filter type (chroma or luma). Each imager of the same filter type may then be operated with different exposures simultaneously. The images captured with different exposures may be processed to generate a high dynamic range image.
Based on these factors, the preferred number of imagers is 2×2 to 6×6. 4×4 and 5×5 configurations are more preferable than 2×2 and 3×3 configurations because the former are likely to provide sufficient number of imagers to resolve occlusion issues, increase sensitivity and increase the dynamic range. In addition, rectangular arrays can also be preferred. At the same time, the computational load required to recover resolution from these array sizes will be modest in comparison to that required in the 6×6 array. Arrays larger than 6×6 may, however, be used to provide additional features such as optical zooming and multispectral imaging. Although only square imagers are described here, as will be discussed in greater detail later, such imagers may have different x- and y-dimensions.
Another consideration is the number of imagers dedicated to luma sampling. By ensuring that the imagers in the array dedicated to near-IR sampling do not reduce the achieved resolution, the information from the near-IR images is added to the resolution captured by the luma imagers. For this purpose, at least 50% of the imagers may be used for sampling the luma and/or near-IR spectra. In one embodiment with 4×4 imagers, 4 imagers samples luma, 4 imagers samples near-IR, and the remaining 8 imagers sample two chroma (Red and Blue). In another embodiment with 5×5 imagers, 9 imagers sample luma, 8 imagers sample near-IR, and the remaining 8 imagers sample two chroma (Red and Blue). Further, the imagers with these filters may be arranged symmetrically within the camera array to address occlusion due to parallax. In a further embodiment with 5×5 imager, 17 imagers sample luma, 4 images sample Red, and 4 imagers sample Blue.
In one embodiment, the imagers in the camera array are spatially separated from each other by a predetermined distance. By increasing the spatial separation, the parallax between the images captured by the imagers may be increased. The increased parallax is advantageous where more accurate distance information is important. Separation between two imagers may also be increased to approximate the separation of a pair of human eyes. By approximating the separation of human eyes, a realistic stereoscopic 3D image may be provided to present the resulting image on an appropriate 3D display device.
In one embodiment, multiple camera arrays are provided at different locations on a device to overcome space constraints. One camera array may be designed to fit within a restricted space while another camera array may be placed in another restricted space of the device. For example, if a total of 20 imagers are required but the available space allows only a camera array of 1×10 imagers to be provided on either side of a device, two camera arrays each including 10 imagers may be placed on available space at both sides of the device. Each camera array may be fabricated on a substrate and be secured to a motherboard or other parts of a device. In addition, such imagers do not have to be homogenous in size, and may have different x- and y-dimensions. The images collected from multiple camera arrays may be processed to generate images of desired resolution and performance.
A design for a single imager may be applied to different camera arrays each including other types of imagers. Other variables in the camera array such as spatial distances, color filters and combination with the same or other sensors may be modified to produce a camera array with differing imaging characteristics. In this way, a diverse mix of camera arrays may be produced while maintaining the benefits from economies of scale.
Wafer Level Optics Integration
In one embodiment, the camera array employs wafer level optics (WLO) technology. Although in many embodiments, similar optical channels can be constructed using any of a variety of techniques including but not limited to injection molding, glass molding, and/or combinations of these techniques with other techniques including WLO techniques. WLO itself is a technology that encompasses a number of processes, including, for example, molding optics (such as arrays of lens modules and arrays of those lens arrays) on glass wafers, stacking of those wafers (including wafers having lenses replicated on either side of the substrate) with appropriate spacers, at either a wafer or die-level, followed by packaging of the optics directly with the imager into a monolithic integrated module.
The WLO procedure may involve, among other procedures, using a diamond-turned mold to create each polymer lens element on a glass substrate. More specifically, the process chain in WLO generally includes producing a diamond turned lens master (both on an individual and array level), then producing a negative mold for replication of that master (also called a stamp or tool), and then finally forming a polymer replica on a glass substrate, which has been structured with appropriate supporting optical elements, such as, for example, apertures, light blocking materials, filters, etc.
In the embodiment of
Optical Crosstalk Suppression
As discussed above, the camera array assembly 250 is composed of multiple imagers, each of which, as shown in
The optical crosstalk suppressing vertical opaque walls may be made using any suitable technique that provides for the introduction of an opaque surface or material between the optical channels 284 of the camera array assembly 286. In one embodiment, the vertical opaque walls are formed by fully or partially introducing grooves into the lens stack 288 of the camera array assembly 286. It is preferable not to cut the grooves fully through the lens stack to preserve the mechanical integrity of the camera array assembly. Such grooves may be introduced by any suitable technique, such as, for example, by dicing into the front or backside of the lens array stack 286 using a wafer dicer (disk/blade), or by laser cutting, or water-jet cutting. Once the grooves are formed, they are filled with a light blocking material. Alternatively, the inner side walls of the grooves may be coated with a light blocking material and the remainder of the groove filled with another material with low shrinkage properties. As discussed above, a light blocking material is any opaque material, such as, for example, a metal material, a metal oxide, dark silicon, or a black particle filled photoresist like a black matrix polymer.
In another embodiment, shown schematically in
In a further embodiment shown schematically in
Lens Properties
Specifically, one of the issues raised in camera design is how to correct for field curvature. An image projected through a lens is not planar, but has an inherently curved surface. One way to correct this field curvature is to position a thick negative lens element 312 close to or directly on the imager surface 314. The negative lens element planarizes the various angled beams of light 316 from the image, thereby addressing the field curvature problem. Such field flattened images provide superior image performance, allow for the manufacture of array cameras with relaxed TTL requirements, and deliver very homogeneous MTF. However, one problem with this approach is that this field flattening approach intrinsically requires a high CRA. This makes the technique unsuitable for most cameras; however, camera arrays in accordance with embodiments of the invention allow for the use of backside imaging (BSI). Positioning the image sensor behind the substrate relaxes the CRA angle requirement, thereby allowing for the use of the negative lens element field flattening approach shown in
Another advantage of the array camera relates to chromatic aberrations. Specifically, in a conventional polychromatic lens, the lens has to be corrected for chromatic aberrations, because the focal length through the lens is different for different wavelengths of light. As a result, it is necessary to compromise the performance of the lens for some of the color wavelengths to get acceptable overall color performance. By making each optical channel narrow spectral band, color aberration is reduced and/or prevented, and each lens may be optimized to a specific color wavelength. For example, an imager receiving visible or near-IR spectrum may have a lens element specifically optimized for this spectral band of light. For imagers detecting other light spectrum, the lens element may be constructed with different properties, such as radii of curvature, so that a constant focal length across all wavelengths of light is achieved so that, in turn, the focal plane is the same for different spectral bands of light. The matching of the focal plane across different wavelengths of light increases the sharpness of image captured at the imager and reduces longitudinal chromatic aberration. Because each lens element may be designed to direct a narrow band of light, the concomitant lack of color aberration means that the lens elements can be subject to less rigorous design constraints, yet produce better or equivalent performance compared to a conventional lens element covering a wide light spectrum. In particular, there is no need to undertake costly aberration balancing correction. What is more, simple lenses generally have better MTF and lower F #(higher sensitivity). It should be noted that although the lenses used in these array cameras have much smaller color aberrations when compared to conventional polychromatic lenses, each lens is still designed to focus a certain wavelength-bandwidth. Accordingly, in one embodiment each of these “monochromatic” lenses can be optimally color corrected by using combinations of high and low Abbe number materials (different optical dispersions).
Light of different wavelengths having different focal lengths (longitudinal color aberration) is not the only type of aberration that occurs in polychromatic optical systems. The refractive index of a lens is dependent on the wavelength of light passing through the lens. As a result, a lens will impart different magnification to colors of different wavelengths. For example, the red wavelength band might have a slightly smaller magnification than green, and green may in turn have a slightly smaller magnification than blue. If the images obtained from these different wavelengths of light are then overlaid without correction, the image will lose resolution because the different colors will not overlap correctly. Based on the properties of the material, the differential lateral distortions of the color magnification can be determined and then corrected. Correction can be accomplished by restricting the profiles of the lenses so that each color has the same magnification, but this reduces the possible degrees of freedom available for lens manufacture, and reduces the ability to optimize MTF. Accordingly, lateral distortion can be permitted optically, and then corrected after imaging computationally. The electronic correction of the lateral color of the lens can actually provide improvements to system performance above and beyond simply correcting for the original distortion, because such correction directly improves the resolution of the system in terms of polychromatic MTF. In particular, lateral color aberrations in a lens can be seen as a color dependent distortion of the lens. By mapping all differently distorted single color images of an object back to the same rectangle, perfect overlap can be achieved in the full color image resulting in the polychromatic MTF being the same as the monochromatic one (not only due to the individual color channel color-blur correction, but also as a result of the exact superposition of the different colors).
Yet another advantage to using many lenses, each optimized for use with a narrow band of light, is that the there is no restriction on the type of lens that may be used. In particular, the array camera allows for the use of diffractive, refractive, Fresnel lenses, or combinations of these types of lenses. Diffractive lenses are attractive because they allow for the creation of complex wavefronts with an essentially flat optical element, and they are also relatively simple to manufacture. In conventional cameras it is not possible to use diffractive lenses because having a single imager means that the lens must be able to efficiently transmit a wide spectrum of light, and while diffractive lenses are very efficient at transmitting narrow wavelength bands of light, there is a steep drop-off in performance for wavelengths of light outside of this optimized range. Because each array of the current camera may be focused on a narrow wavelength of light, the narrow optimized wavelength band of these diffractive lenses is not a limiting factor.
Other advantages of smaller lens elements include, among others, reduced cost, reduced amount of materials, and the reduction in the manufacturing steps. By providing n2 lenses that are 1/n the size in x and y dimension (and thus 1/n thickness), the wafer size for producing the lens element may also be reduced. This reduces the cost and the amount of materials considerably. Further, the number of lens substrates is reduced, which results in a reduced number of manufacturing steps and reduced attendant yield costs. The placement accuracy required to register the lens array to the imagers is typically no more stringent than in the case of a conventional imager because the pixel size for the camera array according to the present invention may be substantially the same as a conventional image sensor. In addition, monochromatic aberrations scale with lens diameter. Because array cameras are able to use smaller lenses, any aberrations that exist are smaller so it is possible to use lenses with simpler profiles. This results in a system that is simultaneously better and less costly to fabricate. Smaller sized lenses also have a lower volume, which results in lower sag or shrinkage during manufacture. Shrinkage is bad for replication because it deforms the desired lens profile, and results in the need for the fabricator to precompensate for the predicted level of sag so that the final lens shape will be correct. This precompensation is difficult to control. With lower sag/shrinkage it is not necessary to have these tight fabrication controls, again lowering the overall cost of the manufacture of the lenses.
In one embodiment, the WLO fabrication process includes: (i) incorporating lens element stops by plating the lens element stops onto the substrate before lens molding, and (ii) etching holes in the substrate and performing two-sided molding of lenses through the substrate. The etching of holes in the substrate is advantageous because index mismatch is not caused between plastic and substrate. In this way, light absorbing substrate that forms natural stops for all lens elements (similar to painting lens edges black) may be used.
In one embodiment, filters are part of the imager. In another embodiment, filters are part of a WLO subsystem. In an embodiment including a filter, it is preferred to dispose the filter (whether CFA, IR and/or VIS) into or close to the aperture stop surface and not at the imager sensor surface, because when positioned at a distance from the imager sensor small defects in those filter layers are averaged out over all entrance pupil positions, and are therefore less visible.
Imaging System and Processing Pipeline
The controller 440 is hardware, software, firmware or a combination thereof for controlling various operation parameters of the camera array 410. The controller 440 receives inputs 446 from a user or other external components and sends operation signals 442 to control the camera array 410. The controller 440 may also send information 444 to the image processing pipeline module 420 to assist processing of the images 412.
The image processing pipeline module 420 is hardware, firmware, software or a combination for processing the images received from the camera array 410. The image processing pipeline module 420 processes multiple images 412, for example, as described below in detail with reference to
The address and phase offset calibration module 554 is a storage device for storing calibration data produced during camera array characterization in the manufacturing process or a subsequent recalibration process. In several embodiments, the calibration data can indicate mapping between the addresses of physical pixels 572 in the imagers and the logical addresses 546, 548 of an image. In other embodiments, a variety of calibration data appropriate to a specific application can be utilized in the address and phase offset calibration module.
The address conversion module 530 performs normalization based on the calibration data stored in the address and phase offset calibration module 554. Specifically, the address conversion module 530 converts “physical” addresses of the individual pixels in the image to “logical” addresses 548 of the individual pixels in the imagers or vice versa. In order for super-resolution processing to produce an image of enhanced resolution, the phase difference between corresponding pixels in the individual imagers needs to be resolved. The super-resolution process may assume that for each pixel in the resulting image the set of input pixels from each of the imager is consistently mapped and that the phase offset of the image captured by each imager is already known with respect to the position of the pixel in the resulting image. Alternatively, the pixel offsets can be estimated prior to the superresolution process. The address conversion module 530 resolves such phase differences by converting the physical addresses in the images 412 into logical addresses 548 of the resulting image for subsequent processing.
The images 412 captured by the imagers 540 are provided to the upstream pipeline processing module 510. The upstream pipe processing module 510 may perform one or more of normalization of the color planes, Black Level calculation and adjustments, fixed noise compensation, optical PSF (point spread function) deconvolution, noise reduction, lateral color correction and crosstalk reduction.
In one embodiment, the upstream pipeline processing module also performs temperature normalization. Temperature normalization corrects for changes in the refractive index of the optical components through which the imagers receive light that result from changes in the temperature of the camera during use. In several embodiments, the temperature normalization process involves determining the temperature of the camera array by measuring the dark current of one or an average of a number of the camera array's imagers. Using this measurement, a refractive index normalization is performed by picking the correct point spread function from temperature calibration data. Different point spread functions may be obtained during a temperature dependent refractive index characterization of the camera during manufacture, and stored in the imaging system for use in the temperature normalization process.
After the image is processed by the upstream pipeline processing module 510, an image pixel correlation module 514 performs calculation to account for parallax that becomes more apparent as objects being captured approach the camera array. Specifically, the image pixel correlation module 514 aligns portions of images captured by different imagers to compensate for the parallax. In one embodiment, the image pixel correlation module 514 compares the difference between the average values of neighboring pixels with a threshold and flags the potential presence of parallax when the difference exceeds the threshold. The threshold may change dynamically as a function of the operating conditions of the camera array. Further, the neighborhood calculations may also be adaptive and reflect the particular operating conditions of the selected imagers.
The image is then processed by the parallax confirmation and measurement module 518 to detect and meter the parallax. In one embodiment, parallax detection is accomplished by a running pixel correlation monitor. This operation takes place in logical pixel space across the imagers with similar integration time conditions. When the scene is at practical infinity, the data from the imagers is highly correlated and subject only to noise-based variations. When an object is close enough to the camera, however, a parallax effect is introduced that changes the correlation between the imagers. Due to the spatial layout of the imagers, the nature of the parallax-induced change is consistent across all imagers. Within the limits of the measurement accuracy, the correlation difference between any pair of imagers dictates the difference between any other pair of imagers and the differences across the other imagers. This redundancy of information enables highly accurate parallax confirmation and measurement by performing the same or similar calculations on other pairs of imagers. If parallax is present in the other pairs, the parallax should occur at roughly the same physical location of the scene taking into account the positions of the imagers. The measurement of the parallax may be accomplished at the same time by keeping track of the various pair-wise measurements and calculating an “actual” parallax difference as a least squares (or similar statistic) fit to the sample data. Other methods for detecting the parallax may include detecting and tracking vertical and horizontal high-frequency image elements from frame-to-frame.
The parallax compensation module 522 processes images including objects close enough to the camera array to induce parallax differences larger than the accuracy of the phase offset information required by super resolution process. The parallax compensation module 522 uses the scan-line based parallax information generated in the parallax detection and measurement module 518 to further adjust mapping between physical pixel addresses and logical pixel addresses before the super-resolution process. There are two cases that occur during this processing. In a more common case, addressing and offsetting adjustment are required when the input pixels have shifted positions relative to the image-wise-corresponding pixels in other imagers. In this case, no further processing with respect to parallax is required before performing super-resolution. In a less common case, a pixel or group of pixels are shifted in such a way that exposes the occlusion set. In this case, the parallax compensation process generates tagged pixel data indicating that the pixels of the occlusion set should not be considered in the super-resolution process.
After the parallax change has been accurately determined for a particular imager, the parallax information 524 is sent to the address conversion module 530. The address conversion module 530 uses the parallax information 524 along with the calibration data 558 from the address and phase offset calibration module 554 to determine the appropriate X and Y offsets to be applied to logical pixel address calculations. The address conversion module 530 also determines the associated sub-pixel offset for a particular imager pixel with respect to pixels in the resulting image 428 produced by the super-resolution process. The address conversion module 530 takes into account the parallax information 524 and provides logical addresses 546 accounting for the parallax.
After performing the parallax compensation, the image is processed by the super-resolution module 526 to obtain a high resolution synthesized image 422 from low resolution images, as described below in detail. The synthesized image 422 may then be fed to the downstream color processing module 564 to perform one or more of the following operations: focus recover, white balance, color correction, gamma correction, RGB to YUV correction, edge-aware sharpening, contrast enhancement and compression.
The image processing pipeline module 420 may include components for additional processing of the image. For example, the image processing pipeline module 420 may include a correction module for correcting abnormalities in images caused by a single pixel defect or a cluster of pixel defects. The correction module may be embodied on the same chip as the camera array, as a component separate from the camera array or as a part of the super-resolution module 526.
Super-Resolution Processing
In one embodiment, the super-resolution module 526 generates a higher resolution synthesized image by processing low resolution images captured by the imagers 540. The overall image quality of the synthesized image is higher than images captured from any one of the imagers individually. In other words, the individual imagers operate synergistically, each contributing to higher quality images using their ability to capture a narrow part of the spectrum without sub-sampling. The image formation associated with the super-resolution techniques may be expressed as follows:
yk=Wk·x+nk,∀k=1 . . . p equation (2)
where Wk represents the contribution of the HR scene (x) (via blurring, motion, and sub-sampling) to each of the LR images (yk) captured on each of the k imagers and nk is the noise contribution.
Imager Configurations
The embodiment of
The use of polychromatic imagers and near-IR imagers is advantageous because these sensors may capture high quality images in low lighting conditions. The images captured by the polychromatic imager or the near-IR imager are used to denoise the images obtained from regular color imagers. However, as discussed above, these polychromatic lenses require that an associated color correction technique be used to address color aberrations inherent in a single lens trying to capture all wavelengths of light and deliver it to the same focal plane. Any conventional color correction technique may be utilized with the proposed array cameras.
Imager Layout
The premise of increasing resolution by aggregating multiple low resolution images relies upon the different low resolution images representing slightly different viewpoints of the same scene. If the LR images are all shifted by integer units of a pixel, then each image contains essentially the same information. Therefore, there is no new information in the LR images that can be used to create a HR image. In camera arrays according to embodiments of the invention, the layout of the imagers in the array may be preset and controlled so that each imager in a row or a column captures an image that is shifted a fixed sub-pixel distance relative to the images captured by its neighboring imagers. Ideally, the images captured by each imager are spatially offset from the other imagers in such a way as to provide uniform sampling of the scene or the light field and the uniformity of sampling is such that the LR images captured by each of the imagers yields non-redundant information about the sampled scene (light field). Such non-redundant information about the scene can be utilized by subsequent signal processing processes to synthesize a single HR image.
A sub-pixel shift between the images captured by two imagers is not, however, sufficient to ensure uniformity of sampling. The uniformity of sampling or sampling diversity of two imagers is a function of object distance. The sampled space by pixels of a pair of imagers is illustrated in
Referring back to the camera array structures illustrated in
The main lens associated with each imager maps the points in the object space to points in the image space such at that the mapping is bijective (onto-to-one and onto). Each microlens samples a finite extent of the sensor irradiance light field. The sensor irradiance light field is continuous and is the result of a bijective mapping from the object space. Thus, the microlens sampling of a finite extent of the sensor irradiance light field is also a sampling of a corresponding finite extent of the scene radiance light field in object space.
Moving the microlens by a small amount δ laterally along the plain of the imager pixels changes the sampled object space at a certain distance zk by a correspondingly appropriate factor 6. With an n×n (n>2) array camera, we can choose a baseline microlens shift can be determined by the main lens profile (for example, the chief ray angle) for a baseline imager. For each of the other imagers that sample the same wavelength as the baseline imager, the microlenses of each of the pixels in the imager are shifted by a sub-pixel amount to sample a different part of the scene radiance light field. Thus for a set of imagers arranged in an n×n grid, the sub-pixel shift for a imager that images the same wavelengths as the baseline imager (1,1) at a grid location (i,j) (1≤i,j≤n) is governed by (δx, δy) where,
Many camera arrays in accordance with embodiments of the invention include significantly more Green imagers than Red and Blue imagers. For example, the array camera illustrated in
The sub-pixel shifts discussed above are determined relative to a baseline imager located at the corner of the grid, many embodiments of the invention utilize radial sub-pixel shifts from a baseline imager located at the center of the sensor array. In several embodiments, the radial sub-pixel shifts are chosen so the sub-pixel shifts are evenly distributed to enable the greatest sampling diversity.
The constraints on microlens sub-pixel shifts defined above achieve the highest increases in diversity and can enable the greatest increases in resolution through superresolution processing. Sub-pixel shifts that do not satisfy the constraints, but still provide an increase in sampling diversity can also be used to enable some increase in resolution through superresolution processing. Therefore, embodiments of the invention are not limited to microlens shifts that result in the greatest increases in diversity and in many instances utilize a variety of different microlens shift configurations that provide at least some increase in sampling diversity and that are satisfactory for the requirements of a specific application.
Symmetry of Imager Placement in Camera Array
An issue of separating the spectral sensing elements into different imagers is parallax caused by the physical separation of the imagers. By ensuring that the imagers are symmetrically placed, at least two imagers can capture the pixels around the edge of a foreground object. In this way, the pixels around the edge of a foreground object may be aggregated to increase resolution as well as avoiding any occlusions. In the absence of a symmetrical distribution, a pixel around the edge of a foreground object that is visible to a first imager, for example a Red imager, may be occluded to a second imager that captures different wavelengths, for example a blue imager. Accordingly, color information for the pixel cannot be accurately reconstructed. By symmetrically distributing the sensors, the likelihood that a foreground object will occlude pixels is significantly reduced.
Pixel occlusion caused by an asymmetric distribution of Red and Blue imagers in a simple array is illustrated in
An array that includes a symmetric distribution of Red and Blue imagers in accordance with an embodiment of the invention is illustrated in
The symmetrical arrangement of the simple embodiment illustrated in
The effects of parallax on the sampling of color can also be reduced by using parallax information in polychromatic imagers to improve the accuracy of the sampling of color from the color filtered imagers.
Use of Near-IR Imagers to Obtain Improved High Resolution Images
In one embodiment, near-IR imagers are used to determine relative luminance differences compared to a visible spectra imager. Objects have differing material reflectivity results in differences in the images captured by the visible spectra and the near-IR spectra. At low lighting conditions, the near-IR imager exhibits a higher signal to noise ratios. Therefore, the signals from the near-IR sensor may be used to enhance the luminance image. The transferring of details from the near-IR image to the luminance image may be performed before aggregating spectral images from different imagers through the super-resolution process. In this way, edge information about the scene may be improved to construct edge-preserving images that can be used effectively in the super-resolution process. The advantage of using near-IR imagers is apparent from equation (2) where any improvement in the estimate for the noise (i.e., n) leads to a better estimate of the original HR scene (x).
Generation of High Resolution Images
Then it is determined 728 if the lighting condition is better than a preset parameter. If the lighting condition is better than the parameter, the process proceeds to normalize 730 a super-resolved near-IR image with respect to a super-resolved luma image. A focus recovery is then performed 742. In one embodiment, the focus recovery is performed 742 using PSF (point spread function) deblurring per each color channel. Then the super-resolution is processed 746 based on near-IR images and the luma images. A synthesized image is then constructed 750.
If it is determined 728 that the lighting condition is not better than the preset parameter, the super-resolved near-IR images and luma images are aligned 734. Then the super-resolved luma images are denoised 738 using the near-IR super-resolved images. Then the process proceeds to performing focus recovery 742 and repeats the same process as when the lighting condition is better than the preset parameter. Then the process terminates.
Normalization of Color Planes
The relative response of each of the Red, Green, Blue imagers across the imaging planes varies. The variance can be the result of many factors including the optical alignment of the lens and asymmetrical sensor light path geometry. For a given lens and imager, the variance can be compensated for by calibration and normalization. Without compensation, the variance can give rise to artifacts such as color shading.
A process for normalizing a imager with respect to a baseline imager, which is typically a Green imager located in the center of the camera array, in accordance with an embodiment of the invention is discussed below with reference to the normalization of a Red imager with respect to a baseline Green imager. A similar process can be used to normalize Blue imagers with respect to a baseline Green imager. In many embodiments, the process is applied to normalize each Red and Blue imager in a camera array.
A normalization surface can be calibrated by first capturing a scene with flat reflectance, and calculating a color ratio surface to serve as the basis for normalization. An ideal normalization surface is uniform and can be described as:
Color Ratio G/R=G(i,j)/R(i,j)=K=Gcenter/Rcenter
where (i,j) describe the pixel position, K is a constant, and Gcenter, and Rcenter, describe the pixel value at the center position.
The output pixel values of the calibration scene contain the ideal pixel values plus noise plus black level offset, and can be described as follows:
SR(i,j)=R(i,j)+Noise R(i,j)+black offset
SG(i,j)=G(i,j)+Noise G(i,j)+black offset
where SR, and SG are the output pixel values from each imager.
A process for calibrating the sensor in accordance with an embodiment of the invention is illustrated in
Norm R=G(i,j)/(R(i,j)×(Gcenter/Rcenter))
where Gcenter, and Rcenter, are the pixel values at the center position.
Following the calculation of the normalization plane, an averaging filter can be applied (768) and the values of the Norm R plane are stored (770).
The cost of carrying all of the normalization data for each of the sensors in a sensor array can be quite high. Therefore, many embodiments scan the Norm R plane using a space filling curve to form a one dimensional array. The resultant one dimensional array can be modeled in a variety of different ways including being modeled as a polynomial with suitable order. In several embodiments, the polynomials of the fitted polynomial are stored (810) as parameters that are used during calibration to reconstruct the two dimensional normalization plane. The construction of a space filling curve in accordance with several embodiments of the invention is discussed further below.
In several embodiments, a space filling curve is used to form a one dimensional array describing a normalization plane. A space filling curve, which is constructed using a spiral scan, is illustrated in
The data value along each side exhibits a fixed geometric relationship. The optical path to the focal point of the lens is shorter for the cells near the center line. The base sensitivity can be thought of as a one dimensional center cut of the calibration surface and approximated by a low order polynomial. The sensitivity polynomial can be either stored as a machine constant (i.e., common to all devices with the same design), or stored along with the scan polynomial to provide additional flexibility. Accordingly, many embodiments of the invention adjust the pixel value based upon the distance factor as follows. For each side scan, one of the coordinates will be a constant, i.e., constant cy′ for horizontal scan and constant ‘x’ for vertical scan. For each pixel in the side scan, the sensitivity factor is adjusted towards the constant ‘x’ or y distance.
By way of example, for a horizontal scan the base value can be found by evaluating the sensitivity polynomial based on the distance y from the center. In many embodiments, a suitable polynomial is a fourth order polynomial. Although other polynomials and/or other functions can be utilized in accordance with the requirements of a specific application. For each pixel in the scan path, the distance from the surface origin is used to find the corresponding sensitivity from the polynomial in the same manner. The pixel value is multiplied by an adjustment factor and then stored in the scanned data array. This adjustment factor is calculated by dividing the base value with the current sensitivity value. For the vertical scan a similar method can be applied. Although the example uses a polynomial based sensitivity adjustment, other sensitivity functions and/or adjustments can be utilized depending upon the requirements of a specific application in accordance with various embodiments of the invention.
Once calibration data has been obtained for an imager, the calibration data can be used in the normalization of pixel information captured by the imager. The process typically involves retrieving the stored calibration data, removing the black offset from the captured image and multiplying the resultant values with the normalization plane. When the normalization plane is expressed as a polynomial in the manner outlined above, the polynomial is used to generate a one-dimensional array and an inverse scan of the one-dimensional array is used to form the two dimensional normalization plane. Where a sensitivity adjustment was applied during calibration, an adjustment factor is calculated that is the reciprocal of the adjustment factor applied during the calibration scan and the adjustment factor is applied to the values in the one dimensional array during the inverse scan. When other space filling curves, representations of the resulting one dimensional data array, and/or sensitivity adjustments are performed during the calibration process, the normalization process is adjusted accordingly.
As can be readily appreciated, calibration and normalization processes in accordance with embodiments of the invention can be applied to each of the Red and Blue imagers in the camera array. In many embodiments, a Green imager located in the center of the camera array is used when performing the calibration. In other embodiments, a different Green imager and/or multiple Green imagers can be utilized in the calibration of the Red and Blue imagers in the camera array.
Image Fusion of Color Images with Near-IR Images
The spectral response of CMOS imagers is typically very good in the near-IR regions covering 650 nm to 800 nm and reasonably good between 800 nm and 1000 nm. Although near-IR images having no chroma information, information in this spectral region is useful in low lighting conditions because the near-IR images are relatively free of noise. Hence, the near-IR images may be used to denoise color images under the low lighting conditions.
In one embodiment, an image from a near-IR imager is fused with another image from a visible light imager. Before proceeding with the fusion, a registration is performed between the near-IR image and the visible light image to resolve differences in viewpoints. The registration process may be performed in an offline, one-time, processing step. After the registration is performed, the luminance information on the near-IR image is interpolated to grid points that correspond to each grid point on the visible light image.
After the pixel correspondence between the near-IR image and the visible light image is established, a denoising and detail transfer process may be performed. The denoising process allows transfer of signal information from the near-IR image to the visible light image to improve the overall SNR of the fusion image. The detail transfer ensures that edges in the near-IR image and the visible light image are preserved and accentuated to improve the overall visibility of objects in the fused image.
In one embodiment, a near-IR flash may serve as a near-IR light source during capturing of an image by the near-IR imagers. Using the near-IR flash is advantageous, among other reasons, because (i) the harsh lighting on objects of interest may be prevented, (ii) ambient color of the object may be preserved, and (iii) red-eye effect may be prevented.
In one embodiment, a visible light filter that allows only near-IR rays to pass through is used to further optimize the optics for near-IR imaging. The visible light filter improves the near-IR optics transfer function because the light filter results in sharper details in the near-IR image. The details may then be transferred to the visible light images using a dual bilateral filter as described, for example, in Eric P. Bennett et al., “Multispectral Video Fusion,” Computer Graphics (ACM SIGGRAPH Proceedings) (Jul. 25, 2006), which is incorporated by reference herein in its entirety.
Dynamic Range Determination by Differing Exposures at Imagers
An auto-exposure (AE) algorithm is important to obtaining an appropriate exposure for the scene to be captured. The design of the AE algorithm affects the dynamic range of captured images. The AE algorithm determines an exposure value that allows the acquired image to fall in the linear region of the camera array's sensitivity range. The linear region is preferred because a good signal-to-noise ratio is obtained in this region. If the exposure is too low, the picture becomes under-saturated while if the exposure is too high the picture becomes over-saturated. In conventional cameras, an iterative process is taken to reduce the difference between measured picture brightness and previously defined brightness below a threshold. This iterative process requires a large amount of time for convergence, and sometimes results in an unacceptable shutter delay.
In one embodiment, the picture brightness of images captured by a plurality of imagers is independently measured. Specifically, a plurality of imagers are set to capturing images with different exposures to reduce the time for computing the adequate exposure. For example, in a camera array with 5×5 imagers where 8 luma imagers and 9 near-IR imagers are provided, each of the imagers may be set with different exposures. The near-IR imagers are used to capture low-light aspects of the scene and the luma imagers are used to capture the high illumination aspects of the scene. This results in a total of 17 possible exposures. If exposure for each imager is offset from an adjacent imager by a factor of 2, for example, a maximum dynamic range of 217 or 102 dB can be captured. This maximum dynamic range is considerably higher than the typical 48 dB attainable in a conventional camera with 8 bit image outputs.
At each time instant, the responses (under-exposed, over-exposed or optimal) from each of the multiple imagers are analyzed based on how many exposures are needed at the subsequent time instant. The ability to query multiple exposures simultaneously in the range of possible exposures accelerates the search compared to the case where only one exposure is tested at once. By reducing the processing time for determining the adequate exposure, shutter delays and shot-to-shot lags may be reduced.
In one embodiment, the HDR image is synthesized from multiple exposures by combining the images after linearizing the imager response for each exposure. The images from the imagers may be registered before combining to account for the difference in the viewpoints of the imagers.
In one embodiment, at least one imager includes HDR pixels to generate HDR images. HDR pixels are specialized pixels that capture high dynamic range scenes. Although HDR pixels show superior performances compared to other pixels, HDR pixels show poor performance at low lighting conditions in comparison with near-IR imagers. To improve performance at low lighting conditions, signals from the near-IR imagers may be used in conjunction with the signal from the HDR imager to attain better quality images across different lighting conditions.
In one embodiment, an HDR image is obtained by processing images captured by multiple imagers by processing, as disclosed, for example, in Paul Debevec et al., “Recovering High Dynamic Range Radiance Maps from Photographs,” Computer Graphics (ACM SIGGRAPH Proceedings), (Aug. 16, 1997), which is incorporated by reference herein in its entirety. The ability to capture multiple exposures simultaneously using the imager is advantageous because artifacts caused by motion of objects in the scene can be mitigated or eliminated.
Hyperspectral Imaging by Multiple Imagers
In one embodiment, a multi-spectral image is rendered by multiple imagers to facilitate the segmentation or recognition of objects in a scene. Because the spectral reflectance coefficients vary smoothly in most real world objects, the spectral reflectance coefficients may be estimated by capturing the scene in multiple spectral dimensions using imagers with different color filters and analyzing the captured images using Principal Components Analysis (PCA).
In one embodiment, half of the imagers in the camera array are devoted to sampling in the basic spectral dimensions (R, G, and B) and the other half of the imagers are devoted to sampling in a shifted basic spectral dimensions (R′, G′, and B′). The shifted basic spectral dimensions are shifted from the basic spectral dimensions by a certain wavelength (e.g., 10 nm).
In one embodiment, pixel correspondence and non-linear interpolation is performed to account for the sub-pixel shifted views of the scene. Then the spectral reflectance coefficients of the scene are synthesized using a set of orthogonal spectral basis functions as disclosed, for example, in J. P. S. Parkkinen, J. Hallikainen and T. Jaaskelainen, “Characteristic Spectra of Munsell Colors,” J. Opt. Soc. Am., A 6:318 (August 1989), which is incorporated by reference herein in its entirety. The basis functions are eigenvectors derived by PCA of a correlation matrix and the correlation matrix is derived from a database storing spectral reflectance coefficients measured by, for example, Munsell color chips (a total of 1257) representing the spectral distribution of a wide range of real world materials to reconstruct the spectrum at each point in the scene.
At first glance, capturing different spectral images of the scene through different imagers in the camera array appears to trade resolution for higher dimensional spectral sampling. However, some of the lost resolution may be recovered. The multiple imagers sample the scene over different spectral dimensions where each sampling grid of each imager is offset by a sub-pixel shift from the others. In one embodiment, no two sampling grid of the imager overlap. That is, the superposition of all the sampling grids from all the imagers forms a dense, possibly non-uniform, montage of points. Scattered data interpolation methods may be used to determine the spectral density at each sample point in this non-uniform montage for each spectral image, as described, for example, in Shiaofen Fang et al., “Volume Morphing Methods for Landmark Based 3D Image Deformation” by SPIE vol. 2710, proc. 1996 SPIE Intl Symposium on Medical Imaging, page 404-415, Newport Beach, CA (February 1996), which is incorporated by reference herein in its entirety. In this way, a certain amount of resolution lost in the process of sampling the scene using different spectral filters may be recovered.
As described above, image segmentation and object recognition are facilitated by determining the spectral reflectance coefficients of the object. The situation often arises in security applications wherein a network of cameras is used to track an object as it moves from the operational zone of one camera to another. Each zone may have its own unique lighting conditions (fluorescent, incandescent, D65, etc.) that may cause the object to have a different appearance in each image captured by different cameras. If these cameras capture the images in a hyper-spectral mode, all images may be converted to the same illuminant to enhance object recognition performance.
In one embodiment, camera arrays with multiple imagers are used for providing medical diagnostic images. Full spectral digitized images of diagnostic samples contribute to accurate diagnosis because doctors and medical personnel can place higher confidence in the resulting diagnosis. The imagers in the camera arrays may be provided with color filters to provide full spectral data. Such camera array may be installed on cell phones to capture and transmit diagnostic information to remote locations as described, for example, in Andres W. Martinez et al., “Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis,” Analytical Chemistry (American Chemical Society) (Apr. 11, 2008), which is incorporated by reference herein in its entirety. Further, the camera arrays including multiple imagers may provide images with a large depth of field to enhance the reliability of image capture of wounds, rashes, and other symptoms.
In one embodiment, a small imager (including, for example, 20-500 pixels) with a narrow spectral bandpass filters is used to produce a signature of the ambient and local light sources in a scene. By using the small imager, the exposure and white balance characteristics may be determined more accurately at a faster speed. The spectral bandpass filters may be ordinary color filters or diffractive elements of a bandpass width adequate to allow the number of camera arrays to cover the visible spectrum of about 400 nm. These imagers may run at a much higher frame rate and obtain data (which may or may not be used for its pictorial content) for processing into information to control the exposure and white balance of other larger imagers in the same camera array. The small imagers may also be interspersed within the camera array.
Optical Zoom Implemented Using Multiple Imagers
In one embodiment, a subset of imagers in the camera array includes telephoto lenses. The subset of imagers may have other imaging characteristics that are the same as imagers with non-telephoto lenses. Images from this subset of imagers are combined and super-resolution processed to form a super-resolution telephoto image. In another embodiment, the camera array includes two or more subsets of imagers equipped with lenses of more than two magnifications to provide differing zoom magnifications.
Embodiments of the camera arrays may achieve its final resolution by aggregating images through super-resolution. Taking an example of providing 5×5 imagers with a 3× optical zoom feature, if 17 imagers are used to sample the luma (G) and 8 imagers are used to sample the chroma (R and B), 17 luma imagers allow a resolution that is four times higher than what is achieved by any single imager in the set of 17 imagers. If the number of the imagers is increased from 5×5 to 6×6, an addition of 11 extra imagers becomes available. In comparison with the 8 Megapixel conventional image sensor fitted with a 3× zoom lens, a resolution that is 60% of the conventional image sensor is achieved when 8 of the additional 11 imagers are dedicated to sampling luma (G) and the remaining 3 imagers are dedicated to chroma (R and B) and near-IR sampling at 3× zoom. This considerably reduces the chroma sampling (or near-IR sampling) to luma sampling ratio. The reduced chroma to luma sampling ratio is somewhat offset by using the super-resolved luma image at 3× zoom as a recognition prior on the chroma (and near-IR) image to resample the chroma image at a higher resolution.
With 6×6 imagers, a resolution equivalent to the resolution of conventional image sensor is achieved at 1× zoom. At 3× zoom, a resolution equivalent to about 60% of conventional image sensor outfitted with a 3× zoom lens is obtained by the same imagers. Also, there is a decrease in luma resolution at 3× zoom compared with conventional image sensors with resolution at 3× zoom. The decreased luma resolution, however, is offset by the fact that the optics of conventional image sensor has reduced efficiency at 3× zoom due to crosstalk and optical aberrations.
The zoom operation achieved by multiple imagers has the following advantages. First, the quality of the achieved zoom is considerably higher than what is achieved in the conventional image sensor due to the fact that the lens elements may be tailored for each change in focal length. In conventional image sensors, optical aberrations and field curvature must be corrected across the whole operating range of the lens, which is considerably harder in a zoom lens with moving elements than in a fixed lens element where only aberrations for a fixed focal length need to be corrected. Additionally, the fixed lens in the imagers has a fixed chief ray angle for a given height, which is not the case with conventional image sensor with a moving zoom lens. Second, the imagers allow simulation of zoom lenses without significantly increasing the optical track height. The reduced height allows implementation of thin modules even for camera arrays with zooming capability.
The overhead required to support a certain level of optical zoom in camera arrays according to some embodiments is tabulated in Table 2.
In one embodiment, the pixels in the images are mapped onto an output image with a size and resolution corresponding to the amount of zoom desired in order to provide a smooth zoom capability from the widest-angle view to the greatest-magnification view. Assuming that the higher magnification lenses have the same center of view as the lower magnification lenses, the image information available is such that a center area of the image has a higher resolution available than the outer area. In the case of three or more distinct magnifications, nested regions of different resolution may be provided with resolution increasing toward the center.
An image with the most telephoto effect has a resolution determined by the super-resolution ability of the imagers equipped with the telephoto lenses. An image with the widest field of view can be formatted in at least one of two following ways. First, the wide field image may be formatted as an image with a uniform resolution where the resolution is determined by the super-resolution capability of the set of imagers having the wider-angle lenses. Second, the wide field image is formatted as a higher resolution image where the resolution of the central part of the image is determined by the super-resolution capability of the set of imagers equipped with telephoto lenses. In the lower resolution regions, information from the reduced number of pixels per image area is interpolated smoothly across the larger number of “digital” pixels. In such an image, the pixel information may be processed and interpolated so that the transition from higher to lower resolution regions occurs smoothly.
In one embodiment, zooming is achieved by inducing a barrel-like distortion into some, or all, of the array lens so that a disproportionate number of the pixels are dedicated to the central part of each image. In this embodiment, every image has to be processed to remove the barrel distortion. To generate a wide-angle image, pixels closer to the center are sub-sampled relative to outer pixels are super-sampled. As zooming is performed, the pixels at the periphery of the imagers are progressively discarded and the sampling of the pixels nearer the center of the imager is increased.
In one embodiment, mipmap filters are built to allow images to be rendered at a zoom scale that is between the specific zoom range of the optical elements (e.g., 1× and 3× zoom scales of the camera array). Mipmaps are a precalculated optimized set of images that accompany a baseline image. A set of images associated with the 3× zoom luma image can be created from a baseline scale at 3× down to 1×. Each image in this set is a version of the baseline 3× zoom image but at a reduced level of detail. Rendering an image at a desired zoom level is achieved using the mipmap by (i) taking the image at 1× zoom, and computing the coverage of the scene for the desired zoom level (i.e., what pixels in the baseline image needs to be rendered at the requested scale to produce the output image), (ii) for each pixel in the coverage set, determine if the pixel is in the image covered by the 3× zoom luma image, (iii) if the pixel is available in the 3× zoom luma image, then choose the two closest mipmap images and interpolate (using smoothing filter) the corresponding pixels from the two mipmap images to produce the output image, and (iv) if the pixel is unavailable in the 3× zoom luma image, then choose the pixel from the baseline 1× luma image and scale up to the desired scale to produce the output pixel. By using mipmaps, smooth optical zoom may be simulated at any point between two given discrete levels (i.e., 1× zoom and 3× zoom).
In one embodiment, zooming is achieved by realizing different Fields Of View (FOV)s by electronically switching between different optical channels having different sensor sizes, but fixed Effective Focal Lengths (EFL)s. In one such embodiment, shown schematically in
In another embodiment, as shown in
In another further embodiment, as shown in
Capturing Video Images
In one embodiment, the camera array generates high frame image sequences. The imagers in the camera array can operate independently to capture images. Compared to conventional image sensors, the camera array may capture images at the frame rate up to N time (where N is the number of imagers). Further, the frame period for each imager may overlap to improve operations under low-light conditions. To increase the resolution, a subset of imagers may operate in a synchronized manner to produce images of higher resolution. In this case, the maximum frame rate is reduced by the number of imagers operating in a synchronized manner. The high-speed video frame rates can enables slow-motion video playback at a normal video rate.
In one example, two luma imagers (green imagers or near-IR imagers), two blue imagers and two green imagers are used to obtain high-definition 1080p images. Using permutations of four luma imagers (two green imagers and two near-IR imagers or three green imagers and one near-IR imager) together with one blue imager and one red imager, the chroma imagers can be upsampled to achieve 120 frames/sec for 1080p video. For higher frame rate imaging devices, the number of frame rates can be scaled up linearly. For Standard-Definition (480p) operation, a frame rate of 240 frames/sec may be achieved using the same camera array.
Conventional imaging devices with a high-resolution image sensor (e.g., 8 Megapixels) use binning or skipping to capture lower resolution images (e.g., 1080p30, 720p30 and 480p30). In binning, rows and columns in the captured images are interpolated in the charge, voltage or pixel domains in order to achieve the target video resolutions while reducing the noise. In skipping, rows and columns are skipped in order to reduce the power consumption of the sensor. Both of these techniques result in reduced image quality.
In one embodiment, the imagers in the camera arrays are selectively activated to capture a video image. For example, 9 imagers (including one near-IR imager) may be used to obtain 1080p (1920×1080 pixels) images while 6 imagers (including one near-IR imager) may be used to obtain 720p (1280×720 pixels) images or 4 imagers (including one near-IR imager) may be used to obtain 480p (720×480 pixels) images. Because there is an accurate one-to-one pixel correspondence between the imager and the target video images, the resolution achieved is higher than traditional approaches. Further, since only a subset of the imagers is activated to capture the images, significant power savings can also be achieved. For example, 60% reduction in power consumption is achieved in 1080p and 80% of power consumption is achieved in 480p.
Using the near-IR imager to capture video images is advantageous because the information from the near-IR imager may be used to denoise each video image. In this way, the camera arrays of embodiments exhibit excellent low-light sensitivity and can operate in extremely low-light conditions. In one embodiment, super-resolution processing is performed on images from multiple imagers to obtain higher resolution video imagers. The noise-reduction characteristics of the super-resolution process along with fusion of images from the near-IR imager results in a very low-noise images.
In one embodiment, high-dynamic-range (HDR) video capture is enabled by activating more imagers. For example, in a 5×5 camera array operating in 1080p video capture mode, there are only 9 cameras active. A subset of the 16 cameras may be overexposed and underexposed by a stop in sets of two or four to achieve a video output with a very high dynamic range.
Other Applications for Multiple Imagers
In one embodiment, the multiple imagers are used for estimating distance to an object in a scene. Since information regarding the distance to each point in an image is available in the camera array along with the extent in x and y coordinates of an image element, the size of an image element may be determined. Further, the absolute size and shape of physical items may be measured without other reference information. For example, a picture of a foot can be taken and the resulting information may be used to accurately estimate the size of an appropriate shoe.
In one embodiment, reduction in depth of field is simulated in images captured by the camera array using distance information. The camera arrays according to the present invention produce images with greatly increased depth of field. The long depth of field, however, may not be desirable in some applications. In such case, a particular distance or several distances may be selected as the “in best focus” distance(s) for the image and based on the distance (z) information from parallax information, the image can be blurred pixel-by-pixel using, for example, a simple Gaussian blur. In one embodiment, the depth map obtained from the camera array is utilized to enable a tone mapping algorithm to perform the mapping using the depth information to guide the level, thereby emphasizing or exaggerating the 3D effect.
In one embodiment, apertures of different sizes are provided to obtain aperture diversity. The aperture size has a direct relationship with the depth of field. In miniature cameras, however, the aperture is generally made as large as possible to allow as much light to reach the camera array. Different imagers may receive light through apertures of different sizes. For imagers to produce a large depth of field, the aperture may be reduced whereas other imagers may have large apertures to maximize the light received. By fusing the images from sensor images of different aperture sizes, images with large depth of field may be obtained without sacrificing the quality of the image.
In one embodiment, the camera array according to the present invention refocuses based on images captured from offsets in viewpoints. Unlike a conventional plenoptic camera, the images obtained from the camera array of the present invention do not suffer from the extreme loss of resolution. The camera array according to the present invention, however, produces sparse data points for refocusing compared to the plenoptic camera. In order to overcome the sparse data points, interpolation may be performed to refocus data from the spare data points.
In one embodiment, each imager in the camera array has a different centroid. That is, the optics of each imager are designed and arranged so that the fields of view for each imager slightly overlap but for the most part constitute distinct tiles of a larger field of view. The images from each of the tiles are panoramically stitched together to render a single high-resolution image.
In one embodiment, camera arrays may be formed on separate substrates and mounted on the same motherboard with spatial separation. The lens elements on each imager may be arranged so that the corner of the field of view slightly encompasses a line perpendicular to the substrate. Thus, if four imagers are mounted on the motherboard with each imager rotated 90 degrees with respect to another imager, the fields of view will be four slightly overlapping tiles. This allows a single design of WLO lens array and imager chip to be used to capture different tiles of a panoramic image.
In one embodiment, one or more sets of imagers are arranged to capture images that are stitched to produce panoramic images with overlapping fields of view while another imager or sets of imagers have a field of view that encompasses the tiled image generated. This embodiment provides different effective resolution for imagers with different characteristics. For example, it may be desirable to have more luminance resolution than chrominance resolution. Hence, several sets of imagers may detect luminance with their fields of view panoramically stitched. Fewer imagers may be used to detect chrominance with the field of view encompassing the stitched field of view of the luminance imagers.
In one embodiment, the camera array with multiple imagers is mounted on a flexible motherboard such that the motherboard can be manually bent to change the aspect ratio of the image. For example, a set of imagers can be mounted in a horizontal line on a flexible motherboard so that in the quiescent state of the motherboard, the fields of view of all of the imagers are approximately the same. If there are four imagers, an image with double the resolution of each individual imager is obtained so that details in the subject image that are half the dimension of details that can be resolved by an individual imager. If the motherboard is bent so that it forms part of a vertical cylinder, the imagers point outward. With a partial bend, the width of the subject image is doubled while the detail that can be resolved is reduced because each point in the subject image is in the field of view of two rather than four imagers. At the maximum bend, the subject image is four times wider while the detail that can be resolved in the subject is further reduced.
Offline Reconstruction and Processing
The images processed by the imaging system 400 may be previewed before or concurrently with saving of the image data on a storage medium such as a flash device or a hard disk. In one embodiment, the images or video data includes rich light field data sets and other useful image information that were originally captured by the camera array. Other traditional file formats could also be used. The stored images or video may be played back or transmitted to other devices over various wired or wireless communication methods.
In one embodiment, tools are provided for users by a remote server. The remote server may function both as a repository and an offline processing engine for the images or video. Additionally, applets mashed as part of popular photo-sharing communities such as Flikr, Picasaweb, Facebook etc. may allow images to be manipulated interactively, either individually or collaboratively. Further, software plug-ins into image editing programs may be provided to process images generated by the imaging device 400 on computing devices such as desktops and laptops.
Various modules described herein may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, application specific integrated circuits (ASICs), or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus. Furthermore, the computers referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
While particular embodiments and applications of the present invention have been illustrated and described herein, it is to be understood that the invention is not limited to the precise construction and components disclosed herein and that various modifications, changes, and variations may be made in the arrangement, operation, and details of the methods and apparatuses of the present invention without departing from the spirit and scope of the invention as it is defined in the appended claims.
The current application is a continuation of U.S. Non-Provisional patent application Ser. No. 18/461,318 entitled “Capturing and Processing of Images Including Occlusions Focused on an Image Sensor by a Lens Stack Array”, filed Sep. 5, 2023, which is a continuation of U.S. Non-Provisional patent application Ser. No. 17/817,829 entitled “Capturing and Processing of Images Including Occlusions Focused on an Image Sensor by a Lens Stack Array”, filed Aug. 5, 2022, and issued on Oct. 17, 2023 as U.S. Pat. No. 11,792,538, which is a continuation of U.S. Non-Provisional patent application Ser. No. 16/907,016 entitled “Capturing and Processing of Images Including Occlusions Focused on an Image Sensor by a Lens Stack Array”, filed Jun. 19, 2020, and issued on Aug. 9, 2022 as U.S. Pat. No. 11,412,158, which is a continuation of U.S. Non-Provisional patent application Ser. No. 16/529,522 entitled “Capturing and Processing of Images Including Occlusions Focused on an Image Sensor by a Lens Stack Array”, filed Aug. 1, 2019, and issued on Jun. 23, 2020 as U.S. Pat. No. 10,694,114, which is a continuation of U.S. Non-Provisional patent application Ser. No. 16/199,566 entitled “Capturing and Processing of Images Including Occlusions Focused on an Image Sensor by a Lens Stack Array”, filed Nov. 26, 2018, and issued on Aug. 6, 2019 as U.S. Pat. No. 10,375,319, which is a continuation of U.S. Non-Provisional patent application Ser. No. 15/687,882 entitled “Capturing and Processing of Images Including Occlusions Focused on an Image Sensor by a Lens Stack Array”, filed Aug. 28, 2017, and issued on Nov. 27, 2018 as Patent No. which is a continuation of U.S. Non-Provisional patent application Ser. No. 14/943,009 entitled “Capturing and Processing of Images Using Camera Array Incorporating Bayer Cameras Having Different Fields of View”, filed Nov. 16, 2015 and issued on Aug. 29, 2017 as U.S. Pat. No. 9,749,547, which is a continuation of U.S. Non-Provisional patent application Ser. No. 14/704,920, entitled “Capturing and Processing of Images Including Occlusions Focused on an Image Sensor by a Lens Stack Array”, filed May 5, 2015 and issued on Nov. 17, 2015 as U.S. Pat. No. 9,188,765, which application is a continuation of U.S. Non-Provisional patent application Ser. No. 14/459,288, entitled “Systems and Methods for Normalizing Image Data Captured by Camera Arrays”, filed Aug. 13, 2014 and issued on Jun. 2, 2015 as U.S. Pat. No. 9,049,381, which application is a continuation of U.S. Non-Provisional patent application Ser. No. 12/952,134, entitled “Capturing and Processing of Images Using Monolithic Camera Array with Heterogeneous Imagers”, filed Nov. 22, 2010 and issued on Oct. 21, 2014 as U.S. Pat. No. 8,866,920, which claims priority to U.S. Provisional Patent Application 61/281,662 filed Nov. 20, 2009 and U.S. Provisional Patent Application 61/263,339 filed Nov. 20, 2009, the disclosures of which are hereby incorporated by reference in their entirety. U.S. Non-Provisional patent application Ser. No. 12/952,134 also claims priority as a Continuation-In-Part application to U.S. patent application Ser. No. 12/935,504, entitled “Capturing and Processing of Images Using Monolithic Camera Array With Heterogeneous Imagers”, filed Sep. 29, 2010 and issued on Dec. 2, 2014 as U.S. Pat. No. 8,902,321, which is a national stage application of Patent Cooperation Treaty Application PCT/US2009/044687 filed May 20, 2009, and claims priority to U.S. Provisional Patent Application 61/054,694, filed May 20, 2008, the disclosures of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4124798 | Thompson | Nov 1978 | A |
4198646 | Alexander et al. | Apr 1980 | A |
4323925 | Abell et al. | Apr 1982 | A |
4460449 | Montalbano | Jul 1984 | A |
4467365 | Murayama et al. | Aug 1984 | A |
4652909 | Glenn | Mar 1987 | A |
4888645 | Mitchell et al. | Dec 1989 | A |
4899060 | Lischke | Feb 1990 | A |
4962425 | Rea | Oct 1990 | A |
5005083 | Grage et al. | Apr 1991 | A |
5070414 | Tsutsumi | Dec 1991 | A |
5144448 | Hornbaker et al. | Sep 1992 | A |
5157499 | Oguma et al. | Oct 1992 | A |
5325449 | Burt et al. | Jun 1994 | A |
5327125 | Iwase et al. | Jul 1994 | A |
5463464 | Ladewski | Oct 1995 | A |
5488674 | Burt et al. | Jan 1996 | A |
5629524 | Stettner et al. | May 1997 | A |
5638461 | Fridge | Jun 1997 | A |
5757425 | Barton et al. | May 1998 | A |
5793900 | Nourbakhsh et al. | Aug 1998 | A |
5801919 | Griencewic | Sep 1998 | A |
5808350 | Jack et al. | Sep 1998 | A |
5832312 | Rieger et al. | Nov 1998 | A |
5833507 | Woodgate et al. | Nov 1998 | A |
5880691 | Fossum et al. | Mar 1999 | A |
5911008 | Niikura et al. | Jun 1999 | A |
5933190 | Dierickx et al. | Aug 1999 | A |
5963664 | Kumar et al. | Oct 1999 | A |
5973844 | Burger | Oct 1999 | A |
6002743 | Telymonde | Dec 1999 | A |
6005607 | Uomori et al. | Dec 1999 | A |
6034690 | Gallery et al. | Mar 2000 | A |
6069351 | Mack | May 2000 | A |
6069365 | Chow et al. | May 2000 | A |
6095989 | Hay et al. | Aug 2000 | A |
6097394 | Levoy et al. | Aug 2000 | A |
6124974 | Burger | Sep 2000 | A |
6130786 | Osawa et al. | Oct 2000 | A |
6137100 | Fossum et al. | Oct 2000 | A |
6137535 | Meyers | Oct 2000 | A |
6141048 | Meyers | Oct 2000 | A |
6160909 | Melen | Dec 2000 | A |
6163414 | Kikuchi et al. | Dec 2000 | A |
6172352 | Liu | Jan 2001 | B1 |
6175379 | Uomori et al. | Jan 2001 | B1 |
6205241 | Melen | Mar 2001 | B1 |
6239909 | Hayashi et al. | May 2001 | B1 |
6292713 | Jouppi et al. | Sep 2001 | B1 |
6340994 | Margulis et al. | Jan 2002 | B1 |
6358862 | Ireland et al. | Mar 2002 | B1 |
6373518 | Sogawa | Apr 2002 | B1 |
6419638 | Hay et al. | Jul 2002 | B1 |
6443579 | Myers | Sep 2002 | B1 |
6445815 | Sato | Sep 2002 | B1 |
6476805 | Shume et al. | Nov 2002 | B1 |
6477260 | Shimomura | Nov 2002 | B1 |
6483949 | Yokoyama et al. | Nov 2002 | B1 |
6502097 | Chan et al. | Dec 2002 | B1 |
6525302 | Dowski, Jr. et al. | Feb 2003 | B2 |
6552742 | Seta | Apr 2003 | B1 |
6563537 | Kawamura et al. | May 2003 | B1 |
6571466 | Glenn et al. | Jun 2003 | B1 |
6603513 | Berezin | Aug 2003 | B1 |
6611289 | Yu et al. | Aug 2003 | B1 |
6627896 | Hashimoto et al. | Sep 2003 | B1 |
6628330 | Lin | Sep 2003 | B1 |
6628845 | Stone et al. | Sep 2003 | B1 |
6635941 | Suda | Oct 2003 | B2 |
6639596 | Shum et al. | Oct 2003 | B1 |
6647142 | Beardsley | Nov 2003 | B1 |
6657218 | Noda | Dec 2003 | B2 |
6671399 | Berestov | Dec 2003 | B1 |
6674892 | Melen | Jan 2004 | B1 |
6750904 | Lambert | Jun 2004 | B1 |
6765617 | Tangen et al. | Jul 2004 | B1 |
6771833 | Edgar | Aug 2004 | B1 |
6774941 | Boisvert et al. | Aug 2004 | B1 |
6788338 | Dinev et al. | Sep 2004 | B1 |
6795253 | Shinohara | Sep 2004 | B2 |
6801653 | Wu et al. | Oct 2004 | B1 |
6819328 | Moriwaki et al. | Nov 2004 | B1 |
6819358 | Kagle et al. | Nov 2004 | B1 |
6833863 | Clemens | Dec 2004 | B1 |
6879735 | Portniaguine et al. | Apr 2005 | B1 |
6897454 | Sasaki et al. | May 2005 | B2 |
6903770 | Kobayashi et al. | Jun 2005 | B1 |
6909121 | Nishikawa | Jun 2005 | B2 |
6917702 | Beardsley | Jul 2005 | B2 |
6927922 | George et al. | Aug 2005 | B2 |
6958862 | Joseph | Oct 2005 | B1 |
6985175 | Iwai et al. | Jan 2006 | B2 |
7015954 | Foote et al. | Mar 2006 | B1 |
7085409 | Sawhney et al. | Aug 2006 | B2 |
7161614 | Yamashita et al. | Jan 2007 | B1 |
7199348 | Olsen et al. | Apr 2007 | B2 |
7206449 | Raskar et al. | Apr 2007 | B2 |
7215364 | Wachtel et al. | May 2007 | B2 |
7235785 | Hornback et al. | Jun 2007 | B2 |
7245761 | Swaminathan et al. | Jul 2007 | B2 |
7262799 | Suda | Aug 2007 | B2 |
7292735 | Blake et al. | Nov 2007 | B2 |
7295697 | Satoh | Nov 2007 | B1 |
7333651 | Kim et al. | Feb 2008 | B1 |
7369165 | Bosco et al. | May 2008 | B2 |
7391572 | Jacobowitz et al. | Jun 2008 | B2 |
7408725 | Sato | Aug 2008 | B2 |
7425984 | Chen et al. | Sep 2008 | B2 |
7430312 | Gu | Sep 2008 | B2 |
7471765 | Jaffray et al. | Dec 2008 | B2 |
7496293 | Shamir et al. | Feb 2009 | B2 |
7564019 | Olsen et al. | Jul 2009 | B2 |
7599547 | Sun et al. | Oct 2009 | B2 |
7606484 | Richards et al. | Oct 2009 | B1 |
7620265 | Wolff et al. | Nov 2009 | B1 |
7633511 | Shum et al. | Dec 2009 | B2 |
7639435 | Chiang | Dec 2009 | B2 |
7639838 | Nims | Dec 2009 | B2 |
7646549 | Zalevsky et al. | Jan 2010 | B2 |
7657090 | Omatsu et al. | Feb 2010 | B2 |
7667824 | Moran | Feb 2010 | B1 |
7675080 | Boettiger | Mar 2010 | B2 |
7675681 | Tomikawa et al. | Mar 2010 | B2 |
7706634 | Schmitt et al. | Apr 2010 | B2 |
7723662 | Levoy et al. | May 2010 | B2 |
7738013 | Galambos et al. | Jun 2010 | B2 |
7741620 | Doering et al. | Jun 2010 | B2 |
7782364 | Smith | Aug 2010 | B2 |
7826153 | Hong | Nov 2010 | B2 |
7840067 | Shen et al. | Nov 2010 | B2 |
7912673 | Hébert et al. | Mar 2011 | B2 |
7924321 | Nayar et al. | Apr 2011 | B2 |
7956871 | Fainstain et al. | Jun 2011 | B2 |
7965314 | Miller et al. | Jun 2011 | B1 |
7973834 | Yang | Jul 2011 | B2 |
7986018 | Rennie | Jul 2011 | B2 |
7990447 | Honda et al. | Aug 2011 | B2 |
8000498 | Shih et al. | Aug 2011 | B2 |
8013904 | Tan et al. | Sep 2011 | B2 |
8027531 | Wilburn et al. | Sep 2011 | B2 |
8044994 | Vetro et al. | Oct 2011 | B2 |
8055466 | Bryll | Nov 2011 | B2 |
8077245 | Adamo et al. | Dec 2011 | B2 |
8089515 | Chebil et al. | Jan 2012 | B2 |
8098297 | Crisan et al. | Jan 2012 | B2 |
8098304 | Pinto et al. | Jan 2012 | B2 |
8106949 | Tan et al. | Jan 2012 | B2 |
8111910 | Tanaka | Feb 2012 | B2 |
8126279 | Marcellin et al. | Feb 2012 | B2 |
8130120 | Kawabata et al. | Mar 2012 | B2 |
8131097 | Lelescu et al. | Mar 2012 | B2 |
8149323 | Li et al. | Apr 2012 | B2 |
8164629 | Zhang | Apr 2012 | B1 |
8169486 | Corcoran et al. | May 2012 | B2 |
8180145 | Wu et al. | May 2012 | B2 |
8189065 | Georgiev et al. | May 2012 | B2 |
8189089 | Georgiev et al. | May 2012 | B1 |
8194296 | Compton et al. | Jun 2012 | B2 |
8212914 | Chiu | Jul 2012 | B2 |
8213711 | Tam | Jul 2012 | B2 |
8231814 | Duparre | Jul 2012 | B2 |
8242426 | Ward et al. | Aug 2012 | B2 |
8244027 | Takahashi | Aug 2012 | B2 |
8244058 | Intwala et al. | Aug 2012 | B1 |
8254668 | Mashitani et al. | Aug 2012 | B2 |
8279325 | Pitts et al. | Oct 2012 | B2 |
8280194 | Wong et al. | Oct 2012 | B2 |
8284240 | Saint-Pierre et al. | Oct 2012 | B2 |
8289409 | Chang | Oct 2012 | B2 |
8289440 | Pitts et al. | Oct 2012 | B2 |
8290358 | Georgiev | Oct 2012 | B1 |
8294099 | Blackwell, Jr. | Oct 2012 | B2 |
8294754 | Jung et al. | Oct 2012 | B2 |
8300085 | Yang et al. | Oct 2012 | B2 |
8305456 | McMahon | Nov 2012 | B1 |
8315476 | Georgiev et al. | Nov 2012 | B1 |
8345144 | Georgiev et al. | Jan 2013 | B1 |
8360574 | Ishak et al. | Jan 2013 | B2 |
8400555 | Georgiev et al. | Mar 2013 | B1 |
8406562 | Bassi et al. | Mar 2013 | B2 |
8411146 | Twede | Apr 2013 | B2 |
8416282 | Lablans | Apr 2013 | B2 |
8421846 | Nelson et al. | Apr 2013 | B2 |
8446492 | Nakano et al. | May 2013 | B2 |
8456517 | Spektor et al. | Jun 2013 | B2 |
8493496 | Freedman et al. | Jul 2013 | B2 |
8514291 | Chang | Aug 2013 | B2 |
8514491 | Duparre | Aug 2013 | B2 |
8541730 | Inuiya | Sep 2013 | B2 |
8542933 | Venkataraman et al. | Sep 2013 | B2 |
8553093 | Wong et al. | Oct 2013 | B2 |
8559705 | Ng | Oct 2013 | B2 |
8559756 | Georgiev et al. | Oct 2013 | B2 |
8565547 | Strandemar | Oct 2013 | B2 |
8576302 | Yoshikawa | Nov 2013 | B2 |
8577183 | Robinson | Nov 2013 | B2 |
8581995 | Lin et al. | Nov 2013 | B2 |
8587679 | Knee | Nov 2013 | B2 |
8619082 | Ciurea et al. | Dec 2013 | B1 |
8648918 | Kauker et al. | Feb 2014 | B2 |
8648919 | Mantzel et al. | Feb 2014 | B2 |
8655052 | Spooner et al. | Feb 2014 | B2 |
8682107 | Yoon et al. | Mar 2014 | B2 |
8687087 | Pertsel et al. | Apr 2014 | B2 |
8692893 | McMahon | Apr 2014 | B2 |
8754941 | Sarwari et al. | Jun 2014 | B1 |
8773536 | Zhang | Jul 2014 | B1 |
8780113 | Ciurea et al. | Jul 2014 | B1 |
8804255 | Duparre | Aug 2014 | B2 |
8823813 | Mantzel et al. | Sep 2014 | B2 |
8830375 | Ludwig | Sep 2014 | B2 |
8831367 | Venkataraman et al. | Sep 2014 | B2 |
8831377 | Pitts et al. | Sep 2014 | B2 |
8836793 | Kriesel et al. | Sep 2014 | B1 |
8842201 | Tajiri | Sep 2014 | B2 |
8854462 | Herbin et al. | Oct 2014 | B2 |
8861089 | Duparre | Oct 2014 | B2 |
8866912 | Mullis | Oct 2014 | B2 |
8866920 | Venkataraman et al. | Oct 2014 | B2 |
8866951 | Keelan | Oct 2014 | B2 |
8878950 | Lelescu et al. | Nov 2014 | B2 |
8885059 | Venkataraman et al. | Nov 2014 | B1 |
8885922 | Ito et al. | Nov 2014 | B2 |
8896594 | Xiong et al. | Nov 2014 | B2 |
8896719 | Venkataraman et al. | Nov 2014 | B1 |
8902321 | Venkataraman et al. | Dec 2014 | B2 |
8928793 | McMahon | Jan 2015 | B2 |
8977038 | Tian et al. | Mar 2015 | B2 |
9001226 | Ng et al. | Apr 2015 | B1 |
9019426 | Han et al. | Apr 2015 | B2 |
9025894 | Venkataraman et al. | May 2015 | B2 |
9025895 | Venkataraman et al. | May 2015 | B2 |
9030528 | Pesach et al. | May 2015 | B2 |
9031335 | Venkataraman et al. | May 2015 | B2 |
9031342 | Venkataraman | May 2015 | B2 |
9031343 | Venkataraman | May 2015 | B2 |
9036928 | Venkataraman | May 2015 | B2 |
9036931 | Venkataraman et al. | May 2015 | B2 |
9041823 | Venkataraman et al. | May 2015 | B2 |
9041824 | Lelescu et al. | May 2015 | B2 |
9041829 | Venkataraman et al. | May 2015 | B2 |
9042667 | Venkataraman et al. | May 2015 | B2 |
9047684 | Lelescu et al. | Jun 2015 | B2 |
9049367 | Venkataraman et al. | Jun 2015 | B2 |
9055233 | Venkataraman et al. | Jun 2015 | B2 |
9060120 | Venkataraman et al. | Jun 2015 | B2 |
9060124 | Venkataraman et al. | Jun 2015 | B2 |
9077893 | Venkataraman et al. | Jul 2015 | B2 |
9094661 | Venkataraman et al. | Jul 2015 | B2 |
9100586 | McMahon et al. | Aug 2015 | B2 |
9100635 | Duparre et al. | Aug 2015 | B2 |
9123117 | Ciurea et al. | Sep 2015 | B2 |
9123118 | Ciurea et al. | Sep 2015 | B2 |
9124815 | Venkataraman et al. | Sep 2015 | B2 |
9124831 | Mullis | Sep 2015 | B2 |
9124864 | Mullis | Sep 2015 | B2 |
9128228 | Duparre | Sep 2015 | B2 |
9129183 | Venkataraman et al. | Sep 2015 | B2 |
9129377 | Ciurea et al. | Sep 2015 | B2 |
9143711 | McMahon | Sep 2015 | B2 |
9147254 | Florian et al. | Sep 2015 | B2 |
9185276 | Rodda et al. | Nov 2015 | B2 |
9188765 | Venkataraman et al. | Nov 2015 | B2 |
9191580 | Venkataraman et al. | Nov 2015 | B2 |
9197821 | McMahon | Nov 2015 | B2 |
9210392 | Nisenzon et al. | Dec 2015 | B2 |
9214013 | Venkataraman et al. | Dec 2015 | B2 |
9235898 | Venkataraman et al. | Jan 2016 | B2 |
9235900 | Ciurea et al. | Jan 2016 | B2 |
9240049 | Ciurea et al. | Jan 2016 | B2 |
9253380 | Venkataraman et al. | Feb 2016 | B2 |
9253397 | Lee et al. | Feb 2016 | B2 |
9256974 | Hines | Feb 2016 | B1 |
9264592 | Rodda et al. | Feb 2016 | B2 |
9264610 | Duparre | Feb 2016 | B2 |
9361662 | Lelescu et al. | Jun 2016 | B2 |
9374512 | Venkataraman et al. | Jun 2016 | B2 |
9412206 | McMahon et al. | Aug 2016 | B2 |
9413953 | Maeda | Aug 2016 | B2 |
9426343 | Rodda et al. | Aug 2016 | B2 |
9426361 | Venkataraman et al. | Aug 2016 | B2 |
9438888 | Venkataraman et al. | Sep 2016 | B2 |
9445003 | Lelescu et al. | Sep 2016 | B1 |
9456134 | Venkataraman et al. | Sep 2016 | B2 |
9456196 | Kim et al. | Sep 2016 | B2 |
9462164 | Venkataraman et al. | Oct 2016 | B2 |
9485496 | Venkataraman et al. | Nov 2016 | B2 |
9497370 | Venkataraman et al. | Nov 2016 | B2 |
9497429 | Mullis et al. | Nov 2016 | B2 |
9516222 | Duparre et al. | Dec 2016 | B2 |
9519972 | Venkataraman | Dec 2016 | B2 |
9521319 | Rodda et al. | Dec 2016 | B2 |
9521416 | McMahon et al. | Dec 2016 | B1 |
9536166 | Venkataraman et al. | Jan 2017 | B2 |
9576369 | Venkataraman et al. | Feb 2017 | B2 |
9578237 | Duparre et al. | Feb 2017 | B2 |
9578259 | Molina | Feb 2017 | B2 |
9602805 | Venkataraman et al. | Mar 2017 | B2 |
9633442 | Venkataraman et al. | Apr 2017 | B2 |
9635274 | Lin et al. | Apr 2017 | B2 |
9638883 | Duparre | May 2017 | B1 |
9661310 | Deng et al. | May 2017 | B2 |
9706132 | Nisenzon et al. | Jul 2017 | B2 |
9712759 | Venkataraman et al. | Jul 2017 | B2 |
9733486 | Lelescu et al. | Aug 2017 | B2 |
9741118 | Mullis | Aug 2017 | B2 |
9743051 | Venkataraman et al. | Aug 2017 | B2 |
9749547 | Venkataraman et al. | Aug 2017 | B2 |
9749568 | McMahon | Aug 2017 | B2 |
9754422 | McMahon et al. | Sep 2017 | B2 |
9766380 | Duparre et al. | Sep 2017 | B2 |
9769365 | Jannard | Sep 2017 | B1 |
9774789 | Ciurea et al. | Sep 2017 | B2 |
9774831 | Venkataraman et al. | Sep 2017 | B2 |
9787911 | McMahon et al. | Oct 2017 | B2 |
9794476 | Nayar et al. | Oct 2017 | B2 |
9800856 | Venkataraman et al. | Oct 2017 | B2 |
9800859 | Venkataraman et al. | Oct 2017 | B2 |
9807382 | Duparre et al. | Oct 2017 | B2 |
9811753 | Venkataraman et al. | Nov 2017 | B2 |
9813616 | Lelescu et al. | Nov 2017 | B2 |
9813617 | Venkataraman et al. | Nov 2017 | B2 |
9826212 | Newton et al. | Nov 2017 | B2 |
9858673 | Ciurea et al. | Jan 2018 | B2 |
9864921 | Venkataraman et al. | Jan 2018 | B2 |
9888194 | Duparre | Feb 2018 | B2 |
9898856 | Yang et al. | Feb 2018 | B2 |
9917998 | Venkataraman et al. | Mar 2018 | B2 |
9924092 | Rodda et al. | Mar 2018 | B2 |
9936148 | McMahon | Apr 2018 | B2 |
9955070 | Lelescu et al. | Apr 2018 | B2 |
9986224 | Mullis | May 2018 | B2 |
10009538 | Venkataraman et al. | Jun 2018 | B2 |
10019816 | Venkataraman et al. | Jul 2018 | B2 |
10027901 | Venkataraman et al. | Jul 2018 | B2 |
10089740 | Srikanth | Oct 2018 | B2 |
10091405 | Molina | Oct 2018 | B2 |
10119808 | Venkataraman | Nov 2018 | B2 |
10122993 | Venkataraman et al. | Nov 2018 | B2 |
10127682 | Mullis | Nov 2018 | B2 |
10142560 | Venkataraman et al. | Nov 2018 | B2 |
10182216 | Mullis et al. | Jan 2019 | B2 |
10187560 | Chen et al. | Jan 2019 | B2 |
10225543 | Mullis | Mar 2019 | B2 |
10250871 | Ciurea et al. | Apr 2019 | B2 |
10261219 | Duparre et al. | Apr 2019 | B2 |
10275676 | Venkataraman et al. | Apr 2019 | B2 |
10306120 | Duparre | May 2019 | B2 |
10311649 | McMohan et al. | Jun 2019 | B2 |
10334241 | Duparre et al. | Jun 2019 | B2 |
10366472 | Lelescu et al. | Jul 2019 | B2 |
10375302 | Nayar et al. | Aug 2019 | B2 |
10375319 | Venkataraman et al. | Aug 2019 | B2 |
10380752 | Ciurea et al. | Aug 2019 | B2 |
10382665 | Sa et al. | Aug 2019 | B2 |
10390005 | Nisenzon et al. | Aug 2019 | B2 |
10412314 | McMahon et al. | Sep 2019 | B2 |
10430682 | Venkataraman et al. | Oct 2019 | B2 |
10455168 | McMahon | Oct 2019 | B2 |
10455218 | Venkataraman et al. | Oct 2019 | B2 |
10462362 | Lelescu et al. | Oct 2019 | B2 |
10540806 | Yang et al. | Jan 2020 | B2 |
10542208 | Lelescu et al. | Jan 2020 | B2 |
10547772 | Molina | Jan 2020 | B2 |
10560684 | Mullis | Feb 2020 | B2 |
10574905 | Srikanth et al. | Feb 2020 | B2 |
10638099 | Mullis et al. | Apr 2020 | B2 |
10674138 | Venkataraman et al. | Jun 2020 | B2 |
10694114 | Venkataraman et al. | Jun 2020 | B2 |
10708492 | Venkataraman et al. | Jul 2020 | B2 |
10735635 | Duparre | Aug 2020 | B2 |
10767981 | Venkataraman et al. | Sep 2020 | B2 |
10839485 | Lelescu et al. | Nov 2020 | B2 |
10909707 | Ciurea et al. | Feb 2021 | B2 |
10958892 | Mullis | Mar 2021 | B2 |
10984276 | Venkataraman et al. | Apr 2021 | B2 |
11022725 | Duparre et al. | Jun 2021 | B2 |
11120260 | Guglielmo | Sep 2021 | B2 |
11272161 | Mullis | Mar 2022 | B2 |
11315321 | Lucas et al. | Apr 2022 | B2 |
11412158 | Venkataraman et al. | Aug 2022 | B2 |
11423513 | Lelescu et al. | Aug 2022 | B2 |
11486698 | Venkataraman et al. | Nov 2022 | B2 |
11525906 | Kadambi | Dec 2022 | B2 |
11570423 | Mullis | Jan 2023 | B2 |
11729365 | Venkataraman et al. | Aug 2023 | B2 |
11792538 | Venkataraman et al. | Oct 2023 | B2 |
20010005225 | Clark et al. | Jun 2001 | A1 |
20010019621 | Hanna et al. | Sep 2001 | A1 |
20010028038 | Hamaguchi et al. | Oct 2001 | A1 |
20010038387 | Tomooka et al. | Nov 2001 | A1 |
20020012056 | Trevino et al. | Jan 2002 | A1 |
20020015536 | Warren et al. | Feb 2002 | A1 |
20020027608 | Johnson et al. | Mar 2002 | A1 |
20020028014 | Ono | Mar 2002 | A1 |
20020039438 | Mori et al. | Apr 2002 | A1 |
20020057845 | Fossum et al. | May 2002 | A1 |
20020061131 | Sawhney et al. | May 2002 | A1 |
20020063807 | Margulis | May 2002 | A1 |
20020075450 | Aratani et al. | Jun 2002 | A1 |
20020087403 | Meyers et al. | Jul 2002 | A1 |
20020089596 | Yasuo | Jul 2002 | A1 |
20020094027 | Sato et al. | Jul 2002 | A1 |
20020101528 | Lee et al. | Aug 2002 | A1 |
20020113867 | Takigawa et al. | Aug 2002 | A1 |
20020113888 | Sonoda et al. | Aug 2002 | A1 |
20020118113 | Oku et al. | Aug 2002 | A1 |
20020120634 | Min et al. | Aug 2002 | A1 |
20020122113 | Foote | Sep 2002 | A1 |
20020163054 | Suda | Nov 2002 | A1 |
20020167537 | Trajkovic | Nov 2002 | A1 |
20020171666 | Endo et al. | Nov 2002 | A1 |
20020177054 | Saitoh et al. | Nov 2002 | A1 |
20020190991 | Efran et al. | Dec 2002 | A1 |
20020195548 | Dowski, Jr. et al. | Dec 2002 | A1 |
20030025227 | Daniell | Feb 2003 | A1 |
20030026474 | Yano | Feb 2003 | A1 |
20030086079 | Barth et al. | May 2003 | A1 |
20030124763 | Fan et al. | Jul 2003 | A1 |
20030140347 | Varsa | Jul 2003 | A1 |
20030156189 | Utsumi et al. | Aug 2003 | A1 |
20030179418 | Wengender et al. | Sep 2003 | A1 |
20030188659 | Merry et al. | Oct 2003 | A1 |
20030190072 | Adkins et al. | Oct 2003 | A1 |
20030198377 | Ng | Oct 2003 | A1 |
20030211405 | Venkataraman | Nov 2003 | A1 |
20030231179 | Suzuki | Dec 2003 | A1 |
20040003409 | Berstis | Jan 2004 | A1 |
20040008271 | Hagimori et al. | Jan 2004 | A1 |
20040012689 | Tinnerino et al. | Jan 2004 | A1 |
20040027358 | Nakao | Feb 2004 | A1 |
20040047274 | Amanai | Mar 2004 | A1 |
20040050104 | Ghosh et al. | Mar 2004 | A1 |
20040056966 | Schechner et al. | Mar 2004 | A1 |
20040061787 | Liu et al. | Apr 2004 | A1 |
20040066454 | Otani et al. | Apr 2004 | A1 |
20040071367 | Irani et al. | Apr 2004 | A1 |
20040075654 | Hsiao et al. | Apr 2004 | A1 |
20040096119 | Williams et al. | May 2004 | A1 |
20040100570 | Shizukuishi | May 2004 | A1 |
20040105021 | Hu | Jun 2004 | A1 |
20040114807 | Lelescu et al. | Jun 2004 | A1 |
20040141659 | Zhang | Jul 2004 | A1 |
20040151401 | Sawhney et al. | Aug 2004 | A1 |
20040165090 | Ning | Aug 2004 | A1 |
20040169617 | Yelton et al. | Sep 2004 | A1 |
20040170340 | Tipping et al. | Sep 2004 | A1 |
20040174439 | Upton | Sep 2004 | A1 |
20040179008 | Gordon et al. | Sep 2004 | A1 |
20040179834 | Szajewski et al. | Sep 2004 | A1 |
20040196379 | Chen et al. | Oct 2004 | A1 |
20040207600 | Zhang et al. | Oct 2004 | A1 |
20040207836 | Chhibber et al. | Oct 2004 | A1 |
20040212734 | Macinnis et al. | Oct 2004 | A1 |
20040213449 | Safaee-Rad et al. | Oct 2004 | A1 |
20040218809 | Blake et al. | Nov 2004 | A1 |
20040223051 | Peleg et al. | Nov 2004 | A1 |
20040234873 | Venkataraman | Nov 2004 | A1 |
20040239782 | Equitz et al. | Dec 2004 | A1 |
20040239885 | Jaynes et al. | Dec 2004 | A1 |
20040240052 | Minefuji et al. | Dec 2004 | A1 |
20040251509 | Choi | Dec 2004 | A1 |
20040264806 | Herley | Dec 2004 | A1 |
20050006477 | Patel | Jan 2005 | A1 |
20050007461 | Chou et al. | Jan 2005 | A1 |
20050009313 | Suzuki et al. | Jan 2005 | A1 |
20050010621 | Pinto et al. | Jan 2005 | A1 |
20050012035 | Miller | Jan 2005 | A1 |
20050036778 | DeMonte | Feb 2005 | A1 |
20050047678 | Jones et al. | Mar 2005 | A1 |
20050048690 | Yamamoto | Mar 2005 | A1 |
20050068436 | Fraenkel et al. | Mar 2005 | A1 |
20050083531 | Millerd et al. | Apr 2005 | A1 |
20050084179 | Hanna et al. | Apr 2005 | A1 |
20050128509 | Tokkonen et al. | Jun 2005 | A1 |
20050128595 | Shimizu | Jun 2005 | A1 |
20050132098 | Sonoda et al. | Jun 2005 | A1 |
20050134698 | Schroeder et al. | Jun 2005 | A1 |
20050134699 | Nagashima | Jun 2005 | A1 |
20050134712 | Gruhlke et al. | Jun 2005 | A1 |
20050147277 | Higaki et al. | Jul 2005 | A1 |
20050151759 | Gonzalez-Banos et al. | Jul 2005 | A1 |
20050168924 | Wu et al. | Aug 2005 | A1 |
20050175257 | Kuroki | Aug 2005 | A1 |
20050185711 | Pfister et al. | Aug 2005 | A1 |
20050205785 | Hornback et al. | Sep 2005 | A1 |
20050219264 | Shum et al. | Oct 2005 | A1 |
20050219363 | Kohler et al. | Oct 2005 | A1 |
20050224843 | Boemler | Oct 2005 | A1 |
20050225654 | Feldman et al. | Oct 2005 | A1 |
20050265633 | Piacentino et al. | Dec 2005 | A1 |
20050275946 | Choo et al. | Dec 2005 | A1 |
20050286612 | Takanashi | Dec 2005 | A1 |
20050286756 | Hong et al. | Dec 2005 | A1 |
20060002635 | Nestares et al. | Jan 2006 | A1 |
20060007331 | Izumi et al. | Jan 2006 | A1 |
20060013318 | Webb et al. | Jan 2006 | A1 |
20060018509 | Miyoshi | Jan 2006 | A1 |
20060023197 | Joel | Feb 2006 | A1 |
20060023314 | Boettiger et al. | Feb 2006 | A1 |
20060028476 | Sobel et al. | Feb 2006 | A1 |
20060029270 | Berestov et al. | Feb 2006 | A1 |
20060029271 | Miyoshi et al. | Feb 2006 | A1 |
20060033005 | Jerdev et al. | Feb 2006 | A1 |
20060034003 | Zalevsky | Feb 2006 | A1 |
20060034531 | Poon et al. | Feb 2006 | A1 |
20060035415 | Wood | Feb 2006 | A1 |
20060038879 | Kremen | Feb 2006 | A1 |
20060038891 | Okutomi et al. | Feb 2006 | A1 |
20060039611 | Rother et al. | Feb 2006 | A1 |
20060046204 | Ono et al. | Mar 2006 | A1 |
20060049930 | Zruya et al. | Mar 2006 | A1 |
20060050980 | Kohashi et al. | Mar 2006 | A1 |
20060054780 | Garrood et al. | Mar 2006 | A1 |
20060054782 | Olsen et al. | Mar 2006 | A1 |
20060055811 | Frtiz et al. | Mar 2006 | A1 |
20060069478 | Iwama | Mar 2006 | A1 |
20060072029 | Miyatake et al. | Apr 2006 | A1 |
20060087747 | Ohzawa et al. | Apr 2006 | A1 |
20060098888 | Morishita | May 2006 | A1 |
20060103754 | Wenstrand et al. | May 2006 | A1 |
20060119597 | Oshino | Jun 2006 | A1 |
20060125936 | Gruhike et al. | Jun 2006 | A1 |
20060138322 | Costello et al. | Jun 2006 | A1 |
20060139475 | Esch et al. | Jun 2006 | A1 |
20060152803 | Provitola | Jul 2006 | A1 |
20060157640 | Perlman et al. | Jul 2006 | A1 |
20060159369 | Young | Jul 2006 | A1 |
20060176566 | Boettiger et al. | Aug 2006 | A1 |
20060187322 | Janson et al. | Aug 2006 | A1 |
20060187338 | May et al. | Aug 2006 | A1 |
20060197937 | Bamji et al. | Sep 2006 | A1 |
20060203100 | Ajito et al. | Sep 2006 | A1 |
20060203113 | Wada et al. | Sep 2006 | A1 |
20060210146 | Gu | Sep 2006 | A1 |
20060210186 | Berkner | Sep 2006 | A1 |
20060214085 | Olsen et al. | Sep 2006 | A1 |
20060221250 | Rossbach et al. | Oct 2006 | A1 |
20060239549 | Kelly et al. | Oct 2006 | A1 |
20060243889 | Farnworth et al. | Nov 2006 | A1 |
20060251410 | Trutna | Nov 2006 | A1 |
20060274174 | Tewinkle | Dec 2006 | A1 |
20060278948 | Yamaguchi et al. | Dec 2006 | A1 |
20060279648 | Senba et al. | Dec 2006 | A1 |
20060289772 | Johnson et al. | Dec 2006 | A1 |
20070002159 | Olsen et al. | Jan 2007 | A1 |
20070008575 | Yu et al. | Jan 2007 | A1 |
20070009150 | Suwa | Jan 2007 | A1 |
20070024614 | Tam et al. | Feb 2007 | A1 |
20070030356 | Yea et al. | Feb 2007 | A1 |
20070035707 | Margulis | Feb 2007 | A1 |
20070036427 | Nakamura et al. | Feb 2007 | A1 |
20070040828 | Zalevsky et al. | Feb 2007 | A1 |
20070040922 | McKee et al. | Feb 2007 | A1 |
20070041391 | Lin et al. | Feb 2007 | A1 |
20070052825 | Cho | Mar 2007 | A1 |
20070083114 | Yang et al. | Apr 2007 | A1 |
20070085917 | Kobayashi | Apr 2007 | A1 |
20070092245 | Bazakos et al. | Apr 2007 | A1 |
20070102622 | Olsen et al. | May 2007 | A1 |
20070116447 | Ye | May 2007 | A1 |
20070126898 | Feldman et al. | Jun 2007 | A1 |
20070127831 | Venkataraman | Jun 2007 | A1 |
20070139333 | Sato et al. | Jun 2007 | A1 |
20070140685 | Wu | Jun 2007 | A1 |
20070146503 | Shiraki | Jun 2007 | A1 |
20070146511 | Kinoshita et al. | Jun 2007 | A1 |
20070153335 | Hosaka | Jul 2007 | A1 |
20070158427 | Zhu et al. | Jul 2007 | A1 |
20070159541 | Sparks et al. | Jul 2007 | A1 |
20070160310 | Tanida et al. | Jul 2007 | A1 |
20070165931 | Higaki | Jul 2007 | A1 |
20070166447 | Ur-Rehman et al. | Jul 2007 | A1 |
20070171290 | Kroger | Jul 2007 | A1 |
20070177004 | Kolehmainen et al. | Aug 2007 | A1 |
20070182843 | Shimamura et al. | Aug 2007 | A1 |
20070201859 | Sarrat | Aug 2007 | A1 |
20070206241 | Smith et al. | Sep 2007 | A1 |
20070211164 | Olsen et al. | Sep 2007 | A1 |
20070216765 | Wong et al. | Sep 2007 | A1 |
20070225600 | Weibrecht et al. | Sep 2007 | A1 |
20070228256 | Mentzer et al. | Oct 2007 | A1 |
20070236595 | Pan et al. | Oct 2007 | A1 |
20070242141 | Ciurea | Oct 2007 | A1 |
20070247517 | Zhang et al. | Oct 2007 | A1 |
20070257184 | Olsen et al. | Nov 2007 | A1 |
20070258006 | Olsen et al. | Nov 2007 | A1 |
20070258706 | Raskar et al. | Nov 2007 | A1 |
20070263113 | Baek et al. | Nov 2007 | A1 |
20070263114 | Gurevich et al. | Nov 2007 | A1 |
20070268374 | Robinson | Nov 2007 | A1 |
20070296721 | Chang et al. | Dec 2007 | A1 |
20070296832 | Ota et al. | Dec 2007 | A1 |
20070296835 | Olsen et al. | Dec 2007 | A1 |
20070296847 | Chang et al. | Dec 2007 | A1 |
20070297696 | Hamza et al. | Dec 2007 | A1 |
20080006859 | Mionetto | Jan 2008 | A1 |
20080019611 | Larkin et al. | Jan 2008 | A1 |
20080024683 | Damera-Venkata et al. | Jan 2008 | A1 |
20080025649 | Liu et al. | Jan 2008 | A1 |
20080029714 | Olsen et al. | Feb 2008 | A1 |
20080030592 | Border et al. | Feb 2008 | A1 |
20080030597 | Olsen et al. | Feb 2008 | A1 |
20080043095 | Vetro et al. | Feb 2008 | A1 |
20080043096 | Vetro et al. | Feb 2008 | A1 |
20080054518 | Ra et al. | Mar 2008 | A1 |
20080056302 | Erdal et al. | Mar 2008 | A1 |
20080062164 | Bassi et al. | Mar 2008 | A1 |
20080079805 | Takagi et al. | Apr 2008 | A1 |
20080080028 | Bakin et al. | Apr 2008 | A1 |
20080084486 | Enge et al. | Apr 2008 | A1 |
20080088793 | Sverdrup et al. | Apr 2008 | A1 |
20080095523 | Schilling-Benz et al. | Apr 2008 | A1 |
20080099804 | Venezia et al. | May 2008 | A1 |
20080106620 | Sawachi | May 2008 | A1 |
20080112059 | Choi et al. | May 2008 | A1 |
20080112635 | Kondo et al. | May 2008 | A1 |
20080117289 | Schowengerdt et al. | May 2008 | A1 |
20080118241 | TeKolste et al. | May 2008 | A1 |
20080131019 | Ng | Jun 2008 | A1 |
20080131107 | Ueno | Jun 2008 | A1 |
20080151097 | Chen et al. | Jun 2008 | A1 |
20080152215 | Horie et al. | Jun 2008 | A1 |
20080152296 | Oh et al. | Jun 2008 | A1 |
20080156991 | Hu et al. | Jul 2008 | A1 |
20080158259 | Kempf et al. | Jul 2008 | A1 |
20080158375 | Kakkori et al. | Jul 2008 | A1 |
20080158698 | Chang et al. | Jul 2008 | A1 |
20080165257 | Boettiger | Jul 2008 | A1 |
20080174670 | Olsen et al. | Jul 2008 | A1 |
20080187305 | Raskar et al. | Aug 2008 | A1 |
20080193026 | Horie et al. | Aug 2008 | A1 |
20080208506 | Kuwata | Aug 2008 | A1 |
20080211737 | Kim et al. | Sep 2008 | A1 |
20080218610 | Chapman et al. | Sep 2008 | A1 |
20080218611 | Parulski et al. | Sep 2008 | A1 |
20080218612 | Border et al. | Sep 2008 | A1 |
20080218613 | Janson et al. | Sep 2008 | A1 |
20080219654 | Border et al. | Sep 2008 | A1 |
20080239116 | Smith | Oct 2008 | A1 |
20080240598 | Hasegawa | Oct 2008 | A1 |
20080247638 | Tanida et al. | Oct 2008 | A1 |
20080247653 | Moussavi et al. | Oct 2008 | A1 |
20080272416 | Yun | Nov 2008 | A1 |
20080273751 | Yuan et al. | Nov 2008 | A1 |
20080278591 | Barna et al. | Nov 2008 | A1 |
20080278610 | Boettiger | Nov 2008 | A1 |
20080284880 | Numata | Nov 2008 | A1 |
20080291295 | Kato et al. | Nov 2008 | A1 |
20080298674 | Baker et al. | Dec 2008 | A1 |
20080310501 | Ward et al. | Dec 2008 | A1 |
20090027543 | Kanehiro | Jan 2009 | A1 |
20090050946 | Duparre et al. | Feb 2009 | A1 |
20090052743 | Techmer | Feb 2009 | A1 |
20090060281 | Tanida et al. | Mar 2009 | A1 |
20090066693 | Carson | Mar 2009 | A1 |
20090079862 | Subbotin | Mar 2009 | A1 |
20090086074 | Li et al. | Apr 2009 | A1 |
20090091645 | Trimeche et al. | Apr 2009 | A1 |
20090091806 | Inuiya | Apr 2009 | A1 |
20090092363 | Daum et al. | Apr 2009 | A1 |
20090096050 | Park | Apr 2009 | A1 |
20090102956 | Georgiev | Apr 2009 | A1 |
20090103792 | Rahn et al. | Apr 2009 | A1 |
20090109306 | Shan et al. | Apr 2009 | A1 |
20090127430 | Hirasawa et al. | May 2009 | A1 |
20090128644 | Camp, Jr. et al. | May 2009 | A1 |
20090128833 | Yahav | May 2009 | A1 |
20090129667 | Ho et al. | May 2009 | A1 |
20090140131 | Utagawa | Jun 2009 | A1 |
20090141933 | Wagg | Jun 2009 | A1 |
20090147919 | Goto et al. | Jun 2009 | A1 |
20090152664 | Klem et al. | Jun 2009 | A1 |
20090167922 | Perlman et al. | Jul 2009 | A1 |
20090167923 | Safaee-Rad et al. | Jul 2009 | A1 |
20090167934 | Gupta | Jul 2009 | A1 |
20090175349 | Ye et al. | Jul 2009 | A1 |
20090179142 | Duparre et al. | Jul 2009 | A1 |
20090180021 | Kikuchi et al. | Jul 2009 | A1 |
20090200622 | Tai et al. | Aug 2009 | A1 |
20090201371 | Matsuda et al. | Aug 2009 | A1 |
20090207235 | Francini et al. | Aug 2009 | A1 |
20090219435 | Yuan | Sep 2009 | A1 |
20090225203 | Tanida et al. | Sep 2009 | A1 |
20090237520 | Kaneko et al. | Sep 2009 | A1 |
20090245573 | Saptharishi et al. | Oct 2009 | A1 |
20090256947 | Ciurea et al. | Oct 2009 | A1 |
20090263017 | Tanbakuchi | Oct 2009 | A1 |
20090268192 | Koenck et al. | Oct 2009 | A1 |
20090268970 | Babacan et al. | Oct 2009 | A1 |
20090268983 | Stone et al. | Oct 2009 | A1 |
20090273663 | Yoshida | Nov 2009 | A1 |
20090274387 | Jin | Nov 2009 | A1 |
20090279800 | Uetani et al. | Nov 2009 | A1 |
20090284651 | Srinivasan | Nov 2009 | A1 |
20090290811 | Imai | Nov 2009 | A1 |
20090297056 | Lelescu et al. | Dec 2009 | A1 |
20090302205 | Olsen et al. | Dec 2009 | A9 |
20090315982 | Schmidt et al. | Dec 2009 | A1 |
20090317061 | Jung et al. | Dec 2009 | A1 |
20090322876 | Lee et al. | Dec 2009 | A1 |
20090323195 | Hembree et al. | Dec 2009 | A1 |
20090323206 | Oliver et al. | Dec 2009 | A1 |
20090324118 | Maslov et al. | Dec 2009 | A1 |
20100002126 | Wenstrand et al. | Jan 2010 | A1 |
20100002313 | Duparre et al. | Jan 2010 | A1 |
20100002314 | Duparre | Jan 2010 | A1 |
20100007714 | Kim et al. | Jan 2010 | A1 |
20100013927 | Nixon | Jan 2010 | A1 |
20100044815 | Chang | Feb 2010 | A1 |
20100045809 | Packard | Feb 2010 | A1 |
20100053342 | Hwang et al. | Mar 2010 | A1 |
20100053347 | Agarwala et al. | Mar 2010 | A1 |
20100053415 | Yun | Mar 2010 | A1 |
20100053600 | Tanida et al. | Mar 2010 | A1 |
20100060746 | Olsen et al. | Mar 2010 | A9 |
20100073463 | Momonoi et al. | Mar 2010 | A1 |
20100074532 | Gordon et al. | Mar 2010 | A1 |
20100085351 | Deb et al. | Apr 2010 | A1 |
20100085425 | Tan | Apr 2010 | A1 |
20100086227 | Sun et al. | Apr 2010 | A1 |
20100091389 | Henriksen et al. | Apr 2010 | A1 |
20100097491 | Farina et al. | Apr 2010 | A1 |
20100103175 | Okutomi et al. | Apr 2010 | A1 |
20100103259 | Tanida et al. | Apr 2010 | A1 |
20100103308 | Butterfield et al. | Apr 2010 | A1 |
20100111444 | Coffman | May 2010 | A1 |
20100118127 | Nam et al. | May 2010 | A1 |
20100128145 | Pitts et al. | May 2010 | A1 |
20100129048 | Pitts et al. | May 2010 | A1 |
20100133230 | Henriksen et al. | Jun 2010 | A1 |
20100133418 | Sargent et al. | Jun 2010 | A1 |
20100141802 | Knight et al. | Jun 2010 | A1 |
20100142828 | Chang et al. | Jun 2010 | A1 |
20100142839 | Lakus-Becker | Jun 2010 | A1 |
20100157073 | Kondo et al. | Jun 2010 | A1 |
20100165152 | Lim | Jul 2010 | A1 |
20100166410 | Chang | Jul 2010 | A1 |
20100171866 | Brady et al. | Jul 2010 | A1 |
20100177411 | Hegde et al. | Jul 2010 | A1 |
20100182406 | Benitez | Jul 2010 | A1 |
20100194860 | Mentz et al. | Aug 2010 | A1 |
20100194901 | van Hoorebeke et al. | Aug 2010 | A1 |
20100195716 | Klein Gunnewiek et al. | Aug 2010 | A1 |
20100201809 | Oyama et al. | Aug 2010 | A1 |
20100201834 | Maruyama et al. | Aug 2010 | A1 |
20100202054 | Niederer | Aug 2010 | A1 |
20100202683 | Robinson | Aug 2010 | A1 |
20100208100 | Olsen et al. | Aug 2010 | A9 |
20100214423 | Ogawa | Aug 2010 | A1 |
20100220212 | Perlman et al. | Sep 2010 | A1 |
20100223237 | Mishra et al. | Sep 2010 | A1 |
20100225740 | Jung et al. | Sep 2010 | A1 |
20100231285 | Boomer et al. | Sep 2010 | A1 |
20100238327 | Griffith et al. | Sep 2010 | A1 |
20100244165 | Lake et al. | Sep 2010 | A1 |
20100245684 | Xiao et al. | Sep 2010 | A1 |
20100254627 | Panahpour Tehrani et al. | Oct 2010 | A1 |
20100259610 | Petersen | Oct 2010 | A1 |
20100265346 | Tizuka | Oct 2010 | A1 |
20100265381 | Yamamoto et al. | Oct 2010 | A1 |
20100265385 | Knight et al. | Oct 2010 | A1 |
20100277629 | Tanaka | Nov 2010 | A1 |
20100281070 | Chan et al. | Nov 2010 | A1 |
20100289941 | Ito et al. | Nov 2010 | A1 |
20100290483 | Park et al. | Nov 2010 | A1 |
20100302423 | Adams, Jr. et al. | Dec 2010 | A1 |
20100309292 | Ho et al. | Dec 2010 | A1 |
20100309368 | Choi et al. | Dec 2010 | A1 |
20100321595 | Chiu | Dec 2010 | A1 |
20100321640 | Yeh et al. | Dec 2010 | A1 |
20100328456 | Alakarhu | Dec 2010 | A1 |
20100329556 | Mitarai et al. | Dec 2010 | A1 |
20100329582 | Albu et al. | Dec 2010 | A1 |
20110001037 | Tewinkle | Jan 2011 | A1 |
20110018973 | Takayama | Jan 2011 | A1 |
20110019048 | Raynor et al. | Jan 2011 | A1 |
20110019243 | Constant, Jr. et al. | Jan 2011 | A1 |
20110031381 | Tay et al. | Feb 2011 | A1 |
20110032341 | Ignatov et al. | Feb 2011 | A1 |
20110032370 | Ludwig | Feb 2011 | A1 |
20110033129 | Robinson | Feb 2011 | A1 |
20110038536 | Gong | Feb 2011 | A1 |
20110043604 | Peleg et al. | Feb 2011 | A1 |
20110043613 | Rohaly et al. | Feb 2011 | A1 |
20110043661 | Podoleanu | Feb 2011 | A1 |
20110043665 | Ogasahara | Feb 2011 | A1 |
20110043668 | McKinnon et al. | Feb 2011 | A1 |
20110044502 | Liu et al. | Feb 2011 | A1 |
20110051255 | Lee et al. | Mar 2011 | A1 |
20110055729 | Mason et al. | Mar 2011 | A1 |
20110064327 | Dagher et al. | Mar 2011 | A1 |
20110069189 | Venkataraman et al. | Mar 2011 | A1 |
20110080487 | Venkataraman et al. | Apr 2011 | A1 |
20110085028 | Samadani et al. | Apr 2011 | A1 |
20110090217 | Mashitani et al. | Apr 2011 | A1 |
20110108708 | Olsen et al. | May 2011 | A1 |
20110115886 | Nguyen et al. | May 2011 | A1 |
20110121421 | Charbon et al. | May 2011 | A1 |
20110122308 | Duparre | May 2011 | A1 |
20110128393 | Tavi et al. | Jun 2011 | A1 |
20110128412 | Milnes et al. | Jun 2011 | A1 |
20110129165 | Lim et al. | Jun 2011 | A1 |
20110141309 | Nagashima et al. | Jun 2011 | A1 |
20110142138 | Tian et al. | Jun 2011 | A1 |
20110149408 | Hahgholt et al. | Jun 2011 | A1 |
20110149409 | Haugholt et al. | Jun 2011 | A1 |
20110150321 | Cheong et al. | Jun 2011 | A1 |
20110153248 | Gu et al. | Jun 2011 | A1 |
20110157321 | Nakajima et al. | Jun 2011 | A1 |
20110157451 | Chang | Jun 2011 | A1 |
20110169921 | Lee et al. | Jul 2011 | A1 |
20110169994 | DiFrancesco et al. | Jul 2011 | A1 |
20110176020 | Chang | Jul 2011 | A1 |
20110181797 | Galstian et al. | Jul 2011 | A1 |
20110193944 | Lian et al. | Aug 2011 | A1 |
20110199458 | Hayasaka et al. | Aug 2011 | A1 |
20110200319 | Kravitz et al. | Aug 2011 | A1 |
20110206291 | Kashani et al. | Aug 2011 | A1 |
20110207074 | Hall-Holt et al. | Aug 2011 | A1 |
20110211068 | Yokota | Sep 2011 | A1 |
20110211077 | Nayar et al. | Sep 2011 | A1 |
20110211824 | Georgiev et al. | Sep 2011 | A1 |
20110221599 | Högasten | Sep 2011 | A1 |
20110221658 | Haddick et al. | Sep 2011 | A1 |
20110221939 | Jerdev | Sep 2011 | A1 |
20110221950 | Oostra et al. | Sep 2011 | A1 |
20110222757 | Yeatman, Jr. et al. | Sep 2011 | A1 |
20110228142 | Brueckner et al. | Sep 2011 | A1 |
20110228144 | Tian et al. | Sep 2011 | A1 |
20110234825 | Liu et al. | Sep 2011 | A1 |
20110234841 | Akeley et al. | Sep 2011 | A1 |
20110241234 | Duparre | Oct 2011 | A1 |
20110242342 | Goma et al. | Oct 2011 | A1 |
20110242355 | Goma et al. | Oct 2011 | A1 |
20110242356 | Aleksic et al. | Oct 2011 | A1 |
20110243428 | Das Gupta et al. | Oct 2011 | A1 |
20110255592 | Sung et al. | Oct 2011 | A1 |
20110255745 | Hodder et al. | Oct 2011 | A1 |
20110261993 | Weiming et al. | Oct 2011 | A1 |
20110267264 | Mccarthy et al. | Nov 2011 | A1 |
20110267348 | Lin et al. | Nov 2011 | A1 |
20110273531 | Ito et al. | Nov 2011 | A1 |
20110274175 | Sumitomo | Nov 2011 | A1 |
20110274366 | Tardif | Nov 2011 | A1 |
20110279705 | Kuang et al. | Nov 2011 | A1 |
20110279721 | McMahon | Nov 2011 | A1 |
20110285701 | Chen et al. | Nov 2011 | A1 |
20110285866 | Bhrugumalla et al. | Nov 2011 | A1 |
20110285910 | Bamji et al. | Nov 2011 | A1 |
20110292216 | Fergus et al. | Dec 2011 | A1 |
20110298898 | Jung et al. | Dec 2011 | A1 |
20110298917 | Yanagita | Dec 2011 | A1 |
20110300929 | Tardif et al. | Dec 2011 | A1 |
20110310980 | Mathew | Dec 2011 | A1 |
20110316968 | Taguchi et al. | Dec 2011 | A1 |
20110317766 | Lim et al. | Dec 2011 | A1 |
20120012748 | Pain et al. | Jan 2012 | A1 |
20120013748 | Stanwood et al. | Jan 2012 | A1 |
20120014456 | Martinez Bauza et al. | Jan 2012 | A1 |
20120019530 | Baker | Jan 2012 | A1 |
20120019700 | Gaber | Jan 2012 | A1 |
20120023456 | Sun et al. | Jan 2012 | A1 |
20120026297 | Sato | Feb 2012 | A1 |
20120026342 | Yu et al. | Feb 2012 | A1 |
20120026366 | Golan et al. | Feb 2012 | A1 |
20120026451 | Nystrom | Feb 2012 | A1 |
20120026478 | Chen et al. | Feb 2012 | A1 |
20120038745 | Yu et al. | Feb 2012 | A1 |
20120039525 | Tian et al. | Feb 2012 | A1 |
20120044249 | Mashitani et al. | Feb 2012 | A1 |
20120044372 | Côtéet al. | Feb 2012 | A1 |
20120051624 | Ando | Mar 2012 | A1 |
20120056982 | Katz et al. | Mar 2012 | A1 |
20120057040 | Park et al. | Mar 2012 | A1 |
20120062697 | Treado et al. | Mar 2012 | A1 |
20120062702 | Jiang et al. | Mar 2012 | A1 |
20120062756 | Tian et al. | Mar 2012 | A1 |
20120069235 | Imai | Mar 2012 | A1 |
20120081519 | Goma et al. | Apr 2012 | A1 |
20120086803 | Malzbender et al. | Apr 2012 | A1 |
20120105590 | Fukumoto et al. | May 2012 | A1 |
20120105654 | Kwatra et al. | May 2012 | A1 |
20120105691 | Waqas et al. | May 2012 | A1 |
20120113232 | Joblove | May 2012 | A1 |
20120113318 | Galstian et al. | May 2012 | A1 |
20120113413 | Miahczylowicz-Wolski et al. | May 2012 | A1 |
20120114224 | Xu et al. | May 2012 | A1 |
20120120264 | Lee et al. | May 2012 | A1 |
20120127275 | Von Zitzewitz et al. | May 2012 | A1 |
20120147139 | Li et al. | Jun 2012 | A1 |
20120147205 | Lelescu et al. | Jun 2012 | A1 |
20120153153 | Chang et al. | Jun 2012 | A1 |
20120154551 | Inoue | Jun 2012 | A1 |
20120155830 | Sasaki et al. | Jun 2012 | A1 |
20120163672 | Mckinnon | Jun 2012 | A1 |
20120163725 | Fukuhara | Jun 2012 | A1 |
20120169433 | Mullins et al. | Jul 2012 | A1 |
20120170134 | Bolis et al. | Jul 2012 | A1 |
20120176479 | Mayhew et al. | Jul 2012 | A1 |
20120176481 | Lukk et al. | Jul 2012 | A1 |
20120188235 | Wu et al. | Jul 2012 | A1 |
20120188341 | Klein Gunnewiek et al. | Jul 2012 | A1 |
20120188389 | Lin et al. | Jul 2012 | A1 |
20120188420 | Black et al. | Jul 2012 | A1 |
20120188634 | Kubala et al. | Jul 2012 | A1 |
20120198677 | Duparre | Aug 2012 | A1 |
20120200669 | Lai et al. | Aug 2012 | A1 |
20120200726 | Bugnariu | Aug 2012 | A1 |
20120200734 | Tang | Aug 2012 | A1 |
20120206582 | DiCarlo et al. | Aug 2012 | A1 |
20120219236 | Ali et al. | Aug 2012 | A1 |
20120224083 | Jovanovski et al. | Sep 2012 | A1 |
20120229602 | Chen et al. | Sep 2012 | A1 |
20120229628 | Ishiyama et al. | Sep 2012 | A1 |
20120237114 | Park et al. | Sep 2012 | A1 |
20120249550 | Akeley et al. | Oct 2012 | A1 |
20120249750 | Izzat et al. | Oct 2012 | A1 |
20120249836 | Ali et al. | Oct 2012 | A1 |
20120249853 | Krolczyk et al. | Oct 2012 | A1 |
20120250990 | Bocirnea | Oct 2012 | A1 |
20120262601 | Choi et al. | Oct 2012 | A1 |
20120262607 | Shimura et al. | Oct 2012 | A1 |
20120268574 | Gidon et al. | Oct 2012 | A1 |
20120274626 | Hsieh | Nov 2012 | A1 |
20120287291 | McMahon | Nov 2012 | A1 |
20120290257 | Hodge et al. | Nov 2012 | A1 |
20120293489 | Chen et al. | Nov 2012 | A1 |
20120293624 | Chen et al. | Nov 2012 | A1 |
20120293695 | Tanaka | Nov 2012 | A1 |
20120307093 | Miyoshi | Dec 2012 | A1 |
20120307099 | Yahata | Dec 2012 | A1 |
20120314033 | Lee et al. | Dec 2012 | A1 |
20120314937 | Kim et al. | Dec 2012 | A1 |
20120327222 | Ng et al. | Dec 2012 | A1 |
20130002828 | Ding et al. | Jan 2013 | A1 |
20130003184 | Duparre | Jan 2013 | A1 |
20130010073 | Do et al. | Jan 2013 | A1 |
20130016245 | Yuba | Jan 2013 | A1 |
20130016885 | Tsujimoto | Jan 2013 | A1 |
20130022111 | Chen et al. | Jan 2013 | A1 |
20130027580 | Olsen et al. | Jan 2013 | A1 |
20130033579 | Wajs | Feb 2013 | A1 |
20130033585 | Li et al. | Feb 2013 | A1 |
20130038696 | Ding et al. | Feb 2013 | A1 |
20130047396 | Au et al. | Feb 2013 | A1 |
20130050504 | Safaee-Rad et al. | Feb 2013 | A1 |
20130050526 | Keelan | Feb 2013 | A1 |
20130057710 | McMahon | Mar 2013 | A1 |
20130070060 | Chatterjee et al. | Mar 2013 | A1 |
20130076967 | Brunner et al. | Mar 2013 | A1 |
20130077859 | Stauder et al. | Mar 2013 | A1 |
20130077880 | Venkataraman et al. | Mar 2013 | A1 |
20130077882 | Venkataraman et al. | Mar 2013 | A1 |
20130083172 | Baba | Apr 2013 | A1 |
20130088489 | Schmeitz et al. | Apr 2013 | A1 |
20130088637 | Duparre | Apr 2013 | A1 |
20130093842 | Yahata | Apr 2013 | A1 |
20130100254 | Morioka et al. | Apr 2013 | A1 |
20130107061 | Kumar et al. | May 2013 | A1 |
20130113888 | Koguchi | May 2013 | A1 |
20130113899 | Morohoshi et al. | May 2013 | A1 |
20130113939 | Strandemar | May 2013 | A1 |
20130120536 | Song et al. | May 2013 | A1 |
20130120605 | Georgiev et al. | May 2013 | A1 |
20130121559 | Hu et al. | May 2013 | A1 |
20130127988 | Wang et al. | May 2013 | A1 |
20130128068 | Georgiev et al. | May 2013 | A1 |
20130128069 | Georgiev et al. | May 2013 | A1 |
20130128087 | Georgiev et al. | May 2013 | A1 |
20130128121 | Agarwala et al. | May 2013 | A1 |
20130135315 | Bares et al. | May 2013 | A1 |
20130135448 | Nagumo et al. | May 2013 | A1 |
20130147979 | McMahon et al. | Jun 2013 | A1 |
20130155050 | Rastogi et al. | Jun 2013 | A1 |
20130162641 | Zhang et al. | Jun 2013 | A1 |
20130169754 | Aronsson et al. | Jul 2013 | A1 |
20130176394 | Tian et al. | Jul 2013 | A1 |
20130208138 | Li et al. | Aug 2013 | A1 |
20130215108 | McMahon et al. | Aug 2013 | A1 |
20130215231 | Hiramoto et al. | Aug 2013 | A1 |
20130222556 | Shimada | Aug 2013 | A1 |
20130222656 | Kaneko | Aug 2013 | A1 |
20130223759 | Nishiyama | Aug 2013 | A1 |
20130229540 | Farina et al. | Sep 2013 | A1 |
20130230237 | Schlosser et al. | Sep 2013 | A1 |
20130250123 | Zhang et al. | Sep 2013 | A1 |
20130250150 | Malone et al. | Sep 2013 | A1 |
20130258067 | Zhang et al. | Oct 2013 | A1 |
20130259317 | Gaddy | Oct 2013 | A1 |
20130265459 | Duparre et al. | Oct 2013 | A1 |
20130274596 | Azizian et al. | Oct 2013 | A1 |
20130274923 | By | Oct 2013 | A1 |
20130286236 | Mankowski | Oct 2013 | A1 |
20130293760 | Nisenzon et al. | Nov 2013 | A1 |
20130308197 | Duparre | Nov 2013 | A1 |
20130321581 | El-Ghoroury et al. | Dec 2013 | A1 |
20130321589 | Kirk et al. | Dec 2013 | A1 |
20130335598 | Gustavsson et al. | Dec 2013 | A1 |
20130342641 | Morioka et al. | Dec 2013 | A1 |
20140002674 | Duparre et al. | Jan 2014 | A1 |
20140002675 | Duparre et al. | Jan 2014 | A1 |
20140009586 | McNamer et al. | Jan 2014 | A1 |
20140013273 | Ng | Jan 2014 | A1 |
20140037137 | Broaddus et al. | Feb 2014 | A1 |
20140037140 | Benhimane et al. | Feb 2014 | A1 |
20140043507 | Wang et al. | Feb 2014 | A1 |
20140059462 | Wernersson | Feb 2014 | A1 |
20140076336 | Clayton et al. | Mar 2014 | A1 |
20140078333 | Miao | Mar 2014 | A1 |
20140079336 | Venkataraman et al. | Mar 2014 | A1 |
20140081454 | Nuyujukian et al. | Mar 2014 | A1 |
20140085502 | Lin et al. | Mar 2014 | A1 |
20140092281 | Nisenzon et al. | Apr 2014 | A1 |
20140098266 | Nayar et al. | Apr 2014 | A1 |
20140098267 | Tian et al. | Apr 2014 | A1 |
20140104490 | Hsieh et al. | Apr 2014 | A1 |
20140118493 | Sali et al. | May 2014 | A1 |
20140118584 | Lee et al. | May 2014 | A1 |
20140125771 | Grossmann et al. | May 2014 | A1 |
20140132734 | Zhuang et al. | May 2014 | A1 |
20140132810 | McMahon | May 2014 | A1 |
20140139642 | Ni et al. | May 2014 | A1 |
20140139643 | Hogasten et al. | May 2014 | A1 |
20140140626 | Cho et al. | May 2014 | A1 |
20140146132 | Bagnato et al. | May 2014 | A1 |
20140146201 | Knight et al. | May 2014 | A1 |
20140168424 | Attar et al. | Jun 2014 | A1 |
20140176592 | Wilburn et al. | Jun 2014 | A1 |
20140183334 | Wang et al. | Jul 2014 | A1 |
20140186045 | Poddar et al. | Jul 2014 | A1 |
20140192154 | Jeong et al. | Jul 2014 | A1 |
20140192253 | Laroia | Jul 2014 | A1 |
20140198188 | Izawa | Jul 2014 | A1 |
20140204183 | Lee et al. | Jul 2014 | A1 |
20140218546 | McMahon | Aug 2014 | A1 |
20140232822 | Venkataraman et al. | Aug 2014 | A1 |
20140240528 | Venkataraman et al. | Aug 2014 | A1 |
20140240529 | Venkataraman et al. | Aug 2014 | A1 |
20140253738 | Mullis | Sep 2014 | A1 |
20140267243 | Venkataraman et al. | Sep 2014 | A1 |
20140267286 | Duparre | Sep 2014 | A1 |
20140267633 | Venkataraman et al. | Sep 2014 | A1 |
20140267762 | Mullis et al. | Sep 2014 | A1 |
20140267829 | McMahon et al. | Sep 2014 | A1 |
20140267890 | Lelescu et al. | Sep 2014 | A1 |
20140285675 | Mullis | Sep 2014 | A1 |
20140300706 | Song | Oct 2014 | A1 |
20140313315 | Shoham et al. | Oct 2014 | A1 |
20140321712 | Ciurea et al. | Oct 2014 | A1 |
20140333731 | Venkataraman et al. | Nov 2014 | A1 |
20140333764 | Venkataraman et al. | Nov 2014 | A1 |
20140333787 | Venkataraman et al. | Nov 2014 | A1 |
20140340539 | Venkataraman et al. | Nov 2014 | A1 |
20140347509 | Venkataraman et al. | Nov 2014 | A1 |
20140347748 | Duparre | Nov 2014 | A1 |
20140354773 | Venkataraman et al. | Dec 2014 | A1 |
20140354843 | Venkataraman et al. | Dec 2014 | A1 |
20140354844 | Venkataraman et al. | Dec 2014 | A1 |
20140354853 | Venkataraman et al. | Dec 2014 | A1 |
20140354854 | Venkataraman et al. | Dec 2014 | A1 |
20140354855 | Venkataraman et al. | Dec 2014 | A1 |
20140355870 | Venkataraman et al. | Dec 2014 | A1 |
20140368662 | Venkataraman et al. | Dec 2014 | A1 |
20140368683 | Venkataraman et al. | Dec 2014 | A1 |
20140368684 | Venkataraman et al. | Dec 2014 | A1 |
20140368685 | Venkataraman et al. | Dec 2014 | A1 |
20140368686 | Duparre | Dec 2014 | A1 |
20140369612 | Venkataraman et al. | Dec 2014 | A1 |
20140369615 | Venkataraman et al. | Dec 2014 | A1 |
20140376825 | Venkataraman et al. | Dec 2014 | A1 |
20140376826 | Venkataraman et al. | Dec 2014 | A1 |
20150002734 | Lee | Jan 2015 | A1 |
20150003752 | Venkataraman et al. | Jan 2015 | A1 |
20150003753 | Venkataraman et al. | Jan 2015 | A1 |
20150009353 | Venkataraman et al. | Jan 2015 | A1 |
20150009354 | Venkataraman et al. | Jan 2015 | A1 |
20150009362 | Venkataraman et al. | Jan 2015 | A1 |
20150015669 | Venkataraman et al. | Jan 2015 | A1 |
20150035992 | Mullis | Feb 2015 | A1 |
20150036014 | Lelescu et al. | Feb 2015 | A1 |
20150036015 | Lelescu et al. | Feb 2015 | A1 |
20150042766 | Ciurea et al. | Feb 2015 | A1 |
20150042767 | Ciurea et al. | Feb 2015 | A1 |
20150042833 | Lelescu et al. | Feb 2015 | A1 |
20150049915 | Ciurea et al. | Feb 2015 | A1 |
20150049916 | Ciurea et al. | Feb 2015 | A1 |
20150049917 | Ciurea et al. | Feb 2015 | A1 |
20150055884 | Venkataraman et al. | Feb 2015 | A1 |
20150085073 | Bruls et al. | Mar 2015 | A1 |
20150085174 | Shabtay et al. | Mar 2015 | A1 |
20150091900 | Yang et al. | Apr 2015 | A1 |
20150098079 | Montgomery et al. | Apr 2015 | A1 |
20150104076 | Hayasaka | Apr 2015 | A1 |
20150104101 | Bryant et al. | Apr 2015 | A1 |
20150122411 | Rodda et al. | May 2015 | A1 |
20150124059 | Georgiev et al. | May 2015 | A1 |
20150124113 | Rodda et al. | May 2015 | A1 |
20150124151 | Rodda et al. | May 2015 | A1 |
20150138346 | Venkataraman et al. | May 2015 | A1 |
20150146029 | Venkataraman et al. | May 2015 | A1 |
20150146030 | Venkataraman et al. | May 2015 | A1 |
20150161798 | Venkataraman et al. | Jun 2015 | A1 |
20150199793 | Venkataraman et al. | Jul 2015 | A1 |
20150199841 | Venkataraman et al. | Jul 2015 | A1 |
20150235476 | McMahon et al. | Aug 2015 | A1 |
20150237329 | Venkataraman et al. | Aug 2015 | A1 |
20150243480 | Yamada | Aug 2015 | A1 |
20150244927 | Laroia et al. | Aug 2015 | A1 |
20150245013 | Venkataraman et al. | Aug 2015 | A1 |
20150248744 | Hayasaka et al. | Sep 2015 | A1 |
20150254868 | Srikanth et al. | Sep 2015 | A1 |
20150264337 | Venkataraman et al. | Sep 2015 | A1 |
20150296137 | Duparre et al. | Oct 2015 | A1 |
20150312455 | Venkataraman et al. | Oct 2015 | A1 |
20150326852 | Duparre et al. | Nov 2015 | A1 |
20150332468 | Hayasaka et al. | Nov 2015 | A1 |
20150373261 | Rodda et al. | Dec 2015 | A1 |
20160037097 | Duparre | Feb 2016 | A1 |
20160044252 | Molina | Feb 2016 | A1 |
20160044257 | Venkataraman et al. | Feb 2016 | A1 |
20160057332 | Ciurea et al. | Feb 2016 | A1 |
20160065934 | Kaza et al. | Mar 2016 | A1 |
20160163051 | Mullis | Jun 2016 | A1 |
20160165106 | Duparre | Jun 2016 | A1 |
20160165134 | Lelescu et al. | Jun 2016 | A1 |
20160165147 | Nisenzon et al. | Jun 2016 | A1 |
20160165212 | Mullis | Jun 2016 | A1 |
20160191768 | Shin et al. | Jun 2016 | A1 |
20160195733 | Lelescu et al. | Jul 2016 | A1 |
20160198096 | McMahon et al. | Jul 2016 | A1 |
20160227195 | Venkataraman et al. | Aug 2016 | A1 |
20160249001 | McMahon | Aug 2016 | A1 |
20160255333 | Nisenzon et al. | Sep 2016 | A1 |
20160266284 | Duparre et al. | Sep 2016 | A1 |
20160267665 | Venkataraman et al. | Sep 2016 | A1 |
20160267672 | Ciurea et al. | Sep 2016 | A1 |
20160269626 | McMahon | Sep 2016 | A1 |
20160269627 | McMahon | Sep 2016 | A1 |
20160269650 | Venkataraman et al. | Sep 2016 | A1 |
20160269651 | Venkataraman et al. | Sep 2016 | A1 |
20160269664 | Duparre | Sep 2016 | A1 |
20160316140 | Nayar et al. | Oct 2016 | A1 |
20170006233 | Venkataraman et al. | Jan 2017 | A1 |
20170048468 | Pain et al. | Feb 2017 | A1 |
20170053382 | Lelescu et al. | Feb 2017 | A1 |
20170054901 | Venkataraman et al. | Feb 2017 | A1 |
20170070672 | Rodda et al. | Mar 2017 | A1 |
20170070673 | Lelescu et al. | Mar 2017 | A1 |
20170078568 | Venkataraman et al. | Mar 2017 | A1 |
20170085845 | Venkataraman et al. | Mar 2017 | A1 |
20170094243 | Venkataraman et al. | Mar 2017 | A1 |
20170099465 | Mullis et al. | Apr 2017 | A1 |
20170163862 | Molina | Jun 2017 | A1 |
20170178363 | Venkataraman et al. | Jun 2017 | A1 |
20170187933 | Duparre | Jun 2017 | A1 |
20170188011 | Panescu et al. | Jun 2017 | A1 |
20170244960 | Ciurea et al. | Aug 2017 | A1 |
20170257562 | Venkataraman et al. | Sep 2017 | A1 |
20170365104 | McMahon et al. | Dec 2017 | A1 |
20180007284 | Venkataraman et al. | Jan 2018 | A1 |
20180013945 | Ciurea et al. | Jan 2018 | A1 |
20180024330 | Laroia | Jan 2018 | A1 |
20180035057 | McMahon et al. | Feb 2018 | A1 |
20180040135 | Mullis | Feb 2018 | A1 |
20180048830 | Venkataraman et al. | Feb 2018 | A1 |
20180048879 | Venkataraman et al. | Feb 2018 | A1 |
20180081090 | Duparre et al. | Mar 2018 | A1 |
20180097993 | Nayar et al. | Apr 2018 | A1 |
20180109782 | Duparre et al. | Apr 2018 | A1 |
20180124311 | Lelescu et al. | May 2018 | A1 |
20180139382 | Venkataraman et al. | May 2018 | A1 |
20180197035 | Venkataraman et al. | Jul 2018 | A1 |
20180211402 | Ciurea et al. | Jul 2018 | A1 |
20180227511 | McMahon | Aug 2018 | A1 |
20180240265 | Yang et al. | Aug 2018 | A1 |
20180270473 | Mullis | Sep 2018 | A1 |
20180302554 | Lelescu et al. | Oct 2018 | A1 |
20180330182 | Venkataraman et al. | Nov 2018 | A1 |
20190037116 | Molina | Jan 2019 | A1 |
20190037150 | Srikanth et al. | Jan 2019 | A1 |
20190043253 | Lucas et al. | Feb 2019 | A1 |
20190063905 | Venkataraman et al. | Feb 2019 | A1 |
20190089947 | Venkataraman et al. | Mar 2019 | A1 |
20190098209 | Venkataraman et al. | Mar 2019 | A1 |
20190109998 | Venkataraman et al. | Apr 2019 | A1 |
20190215496 | Mullis et al. | Jul 2019 | A1 |
20190230348 | Ciurea et al. | Jul 2019 | A1 |
20190235138 | Duparre et al. | Aug 2019 | A1 |
20190268586 | Mullis | Aug 2019 | A1 |
20190289176 | Duparre | Sep 2019 | A1 |
20190347768 | Lelescu et al. | Nov 2019 | A1 |
20190356863 | Venkataraman et al. | Nov 2019 | A1 |
20190362515 | Ciurea et al. | Nov 2019 | A1 |
20190364263 | Jannard et al. | Nov 2019 | A1 |
20200026948 | Venkataraman et al. | Jan 2020 | A1 |
20200252597 | Mullis | Aug 2020 | A1 |
20200389604 | Venkataraman et al. | Dec 2020 | A1 |
20210063141 | Venkataraman et al. | Mar 2021 | A1 |
20210133927 | Lelescu et al. | May 2021 | A1 |
20210150748 | Ciurea et al. | May 2021 | A1 |
20210281816 | Mullis | Sep 2021 | A1 |
20210312207 | Venkataraman et al. | Oct 2021 | A1 |
20220239890 | Mullis | Jul 2022 | A1 |
20220385848 | Venkataraman et al. | Dec 2022 | A1 |
20220414829 | Lelescu et al. | Dec 2022 | A1 |
20230152087 | Venkataraman et al. | May 2023 | A1 |
Number | Date | Country |
---|---|---|
107077743 | Aug 2017 | CA |
1619358 | May 2005 | CN |
1669332 | Sep 2005 | CN |
1839394 | Sep 2006 | CN |
1985524 | Jun 2007 | CN |
101010619 | Aug 2007 | CN |
101046882 | Oct 2007 | CN |
101064780 | Oct 2007 | CN |
101102388 | Jan 2008 | CN |
101147392 | Mar 2008 | CN |
201043890 | Apr 2008 | CN |
101212566 | Jul 2008 | CN |
101312540 | Nov 2008 | CN |
101427372 | May 2009 | CN |
101593350 | Dec 2009 | CN |
101606086 | Dec 2009 | CN |
101883291 | Nov 2010 | CN |
102037717 | Apr 2011 | CN |
102184720 | Sep 2011 | CN |
102375199 | Mar 2012 | CN |
103004180 | Mar 2013 | CN |
104081414 | Oct 2014 | CN |
104508681 | Apr 2015 | CN |
104662589 | May 2015 | CN |
104685513 | Jun 2015 | CN |
104685860 | Jun 2015 | CN |
104081414 | Aug 2017 | CN |
104662589 | Aug 2017 | CN |
107230236 | Oct 2017 | CN |
107346061 | Nov 2017 | CN |
104685513 | Apr 2018 | CN |
104335246 | Sep 2018 | CN |
107346061 | Apr 2020 | CN |
107230236 | Dec 2020 | CN |
602011041799.1 | Sep 2017 | DE |
0677821 | Oct 1995 | EP |
0840502 | May 1998 | EP |
1201407 | May 2002 | EP |
1355274 | Oct 2003 | EP |
1418766 | May 2004 | EP |
1734766 | Dec 2006 | EP |
1243945 | Jan 2009 | EP |
2026563 | Feb 2009 | EP |
2104334 | Sep 2009 | EP |
2244484 | Oct 2010 | EP |
0957642 | Apr 2011 | EP |
2336816 | Jun 2011 | EP |
2339532 | Jun 2011 | EP |
2381418 | Oct 2011 | EP |
2502115 | Sep 2012 | EP |
2569935 | Mar 2013 | EP |
2652678 | Oct 2013 | EP |
2761534 | Aug 2014 | EP |
2777245 | Sep 2014 | EP |
2867718 | May 2015 | EP |
2873028 | May 2015 | EP |
2888698 | Jul 2015 | EP |
2888720 | Jul 2015 | EP |
2901671 | Aug 2015 | EP |
2973476 | Jan 2016 | EP |
3066690 | Sep 2016 | EP |
2569935 | Dec 2016 | EP |
3201877 | Aug 2017 | EP |
2652678 | Sep 2017 | EP |
3201877 | Mar 2018 | EP |
2817955 | Apr 2018 | EP |
3328048 | May 2018 | EP |
3075140 | Jun 2018 | EP |
3201877 | Dec 2018 | EP |
3467776 | Apr 2019 | EP |
2761534 | Nov 2020 | EP |
2888720 | Mar 2021 | EP |
3328048 | Apr 2021 | EP |
3869797 | Aug 2021 | EP |
3876510 | Sep 2021 | EP |
3869797 | Jul 2023 | EP |
2482022 | Jan 2012 | GB |
2708CHENP2014 | Aug 2015 | IN |
361194 | Mar 2021 | IN |
59-025483 | Feb 1984 | JP |
64-037177 | Feb 1989 | JP |
02-285772 | Nov 1990 | JP |
06129851 | May 1994 | JP |
07-015457 | Jan 1995 | JP |
H0756112 | Mar 1995 | JP |
09171075 | Jun 1997 | JP |
09181913 | Jul 1997 | JP |
10253351 | Sep 1998 | JP |
11142609 | May 1999 | JP |
11223708 | Aug 1999 | JP |
11325889 | Nov 1999 | JP |
2000209503 | Jul 2000 | JP |
2001008235 | Jan 2001 | JP |
2001194114 | Jul 2001 | JP |
2001264033 | Sep 2001 | JP |
2001277260 | Oct 2001 | JP |
2001337263 | Dec 2001 | JP |
2002195910 | Jul 2002 | JP |
2002205310 | Jul 2002 | JP |
2002209226 | Jul 2002 | JP |
2002250607 | Sep 2002 | JP |
2002252338 | Sep 2002 | JP |
2003094445 | Apr 2003 | JP |
2003139910 | May 2003 | JP |
2003163938 | Jun 2003 | JP |
2003298920 | Oct 2003 | JP |
2004221585 | Aug 2004 | JP |
2005116022 | Apr 2005 | JP |
2005181460 | Jul 2005 | JP |
2005295381 | Oct 2005 | JP |
2005303694 | Oct 2005 | JP |
2005341569 | Dec 2005 | JP |
2005354124 | Dec 2005 | JP |
2006033228 | Feb 2006 | JP |
2006033493 | Feb 2006 | JP |
2006047944 | Feb 2006 | JP |
2006258930 | Sep 2006 | JP |
2007520107 | Jul 2007 | JP |
2007259136 | Oct 2007 | JP |
2008039852 | Feb 2008 | JP |
2008055908 | Mar 2008 | JP |
2008507874 | Mar 2008 | JP |
2008172735 | Jul 2008 | JP |
2008258885 | Oct 2008 | JP |
2009064421 | Mar 2009 | JP |
2009132010 | Jun 2009 | JP |
2009300268 | Dec 2009 | JP |
2010139288 | Jun 2010 | JP |
2011017764 | Jan 2011 | JP |
2011030184 | Feb 2011 | JP |
2011109484 | Jun 2011 | JP |
2011523538 | Aug 2011 | JP |
2011203238 | Oct 2011 | JP |
2012504805 | Feb 2012 | JP |
2013509022 | Mar 2013 | JP |
2013526801 | Jun 2013 | JP |
2014521117 | Aug 2014 | JP |
2014535191 | Dec 2014 | JP |
2015522178 | Aug 2015 | JP |
2015534734 | Dec 2015 | JP |
5848754 | Jan 2016 | JP |
2016524125 | Aug 2016 | JP |
6140709 | May 2017 | JP |
2017163550 | Sep 2017 | JP |
2017163587 | Sep 2017 | JP |
2017531976 | Oct 2017 | JP |
6546613 | Jul 2019 | JP |
2019-220957 | Dec 2019 | JP |
6630891 | Dec 2019 | JP |
2020017999 | Jan 2020 | JP |
6767543 | Sep 2020 | JP |
6767558 | Sep 2020 | JP |
1020110097647 | Aug 2011 | KR |
20170063827 | Jun 2017 | KR |
101824672 | Feb 2018 | KR |
101843994 | Mar 2018 | KR |
10-2002165 | Jul 2019 | KR |
10-2111181 | May 2020 | KR |
191151 | Jul 2013 | SG |
11201500910R | Oct 2015 | SG |
200828994 | Jul 2008 | TW |
200939739 | Sep 2009 | TW |
201228382 | Jul 2012 | TW |
1535292 | May 2016 | TW |
1994020875 | Sep 1994 | WO |
2005057922 | Jun 2005 | WO |
2006039906 | Apr 2006 | WO |
2006039906 | Apr 2006 | WO |
2007013250 | Feb 2007 | WO |
2007052191 | May 2007 | WO |
2007083579 | Jul 2007 | WO |
2007134137 | Nov 2007 | WO |
2008045198 | Apr 2008 | WO |
2008050904 | May 2008 | WO |
2008108271 | Sep 2008 | WO |
2008108926 | Sep 2008 | WO |
2008150817 | Dec 2008 | WO |
2009073950 | Jun 2009 | WO |
2009151903 | Dec 2009 | WO |
2009157273 | Dec 2009 | WO |
2010037512 | Apr 2010 | WO |
2011008443 | Jan 2011 | WO |
2011026527 | Mar 2011 | WO |
2011046607 | Apr 2011 | WO |
2011052064 | May 2011 | WO |
2011055655 | May 2011 | WO |
2011063347 | May 2011 | WO |
2011105814 | Sep 2011 | WO |
2011116203 | Sep 2011 | WO |
2011063347 | Oct 2011 | WO |
2011143501 | Nov 2011 | WO |
2012057619 | May 2012 | WO |
2012057620 | May 2012 | WO |
2012057621 | May 2012 | WO |
2012057622 | May 2012 | WO |
2012057623 | May 2012 | WO |
2012057620 | Jun 2012 | WO |
2012074361 | Jun 2012 | WO |
2012078126 | Jun 2012 | WO |
2012082904 | Jun 2012 | WO |
2012155119 | Nov 2012 | WO |
2013003276 | Jan 2013 | WO |
2013043751 | Mar 2013 | WO |
2013043761 | Mar 2013 | WO |
2013049699 | Apr 2013 | WO |
2013055960 | Apr 2013 | WO |
2013068759 | May 2013 | WO |
2013119706 | Aug 2013 | WO |
2013126578 | Aug 2013 | WO |
2013166215 | Nov 2013 | WO |
2014004134 | Jan 2014 | WO |
2014005123 | Jan 2014 | WO |
2014031795 | Feb 2014 | WO |
2014052974 | Apr 2014 | WO |
2014032020 | May 2014 | WO |
2014078443 | May 2014 | WO |
2014130849 | Aug 2014 | WO |
2014133974 | Sep 2014 | WO |
2014138695 | Sep 2014 | WO |
2014138697 | Sep 2014 | WO |
2014144157 | Sep 2014 | WO |
2014145856 | Sep 2014 | WO |
2014149403 | Sep 2014 | WO |
2014149902 | Sep 2014 | WO |
2014150856 | Sep 2014 | WO |
2014153098 | Sep 2014 | WO |
2014159721 | Oct 2014 | WO |
2014159779 | Oct 2014 | WO |
2014160142 | Oct 2014 | WO |
2014164550 | Oct 2014 | WO |
2014164909 | Oct 2014 | WO |
2014165244 | Oct 2014 | WO |
2014133974 | Apr 2015 | WO |
2015048694 | Apr 2015 | WO |
2015070105 | May 2015 | WO |
2015074078 | May 2015 | WO |
2015081279 | Jun 2015 | WO |
2015134996 | Sep 2015 | WO |
2015183824 | Dec 2015 | WO |
2016054089 | Apr 2016 | WO |
Entry |
---|
Extended European Search Report for EP Application No. 11781313.9, Completed Oct. 1, 2013, Mailed Oct. 8, 2013, 6 pages. |
Extended European Search Report for EP Application No. 13810429.4, Completed Jan. 7, 2016, Mailed Jan. 15, 2016, 6 Pgs. |
Extended European Search Report for European Application EP12782935.6, completed Aug. 28, 2014, mailed Sep. 4, 2014, 7 Pgs. |
Extended European Search Report for European Application EP12804266.0, Report Completed Jan. 27, 2015, Mailed Feb. 3, 2015, 7 Pgs. |
Extended European Search Report for European Application EP12835041.0, Report Completed Jan. 28, 2015, Mailed Feb. 4, 2015, 6 Pgs. |
Extended European Search Report for European Application EP13751714.0, completed Aug. 5, 2015, mailed Aug. 18, 2015, 8 Pgs. |
Extended European Search Report for European Application EP13810229.8, Report Completed Apr. 14, 2016, Mailed Apr. 21, 2016, 7 pgs. |
Extended European Search Report for European Application No. 10832330.4, completed Sep. 26, 2013, Mailed Oct. 4, 2013, 7 pgs. |
Extended European Search Report for European Application No. 11848308.0, Search completed Jan. 13, 2016, Mailed Jan. 22, 2016, 10 Pgs. |
Extended European Search Report for European Application No. 13830945.5, Search completed Jun. 28, 2016, Mailed Jul. 7, 2016, 14 Pgs. |
Extended European Search Report for European Application No. 13841613.6, Search completed Jul. 18, 2016, Mailed Jul. 26, 2016, 8 Pgs. |
Extended European Search Report for European Application No. 14763087.5, Search completed Dec. 7, 2016, Mailed Dec. 19, 2016, 9 pgs. |
Extended European Search Report for European Application No. 14860103.2, Search completed Feb. 23, 2017, Mailed Mar. 3, 2017, 7 Pgs. |
Extended European Search Report for European Application No. 14865463.5, Search completed May 30, 2017, Mailed Jun. 8, 2017, 6 Pgs. |
Extended European Search Report for European Application No. 15847754.7, Search completed Jan. 25, 2018, Mailed Feb. 9, 2018, 8 Pgs. |
Extended European Search Report for European Application No. 18151530.5, Completed Mar. 28, 2018, Mailed Apr. 20, 2018, 11 pages. |
Extended European Search Report for European Application No. 18205326.4, Search completed Jan. 8, 2019 , Mailed Jan. 18, 2019, 9 Pgs. |
Extended European Search Report for European Application No. 21169308.0, Search completed Aug. 2, 2021, Mailed Aug. 9, 2021, 9 Pgs. |
Extended Search Report for European Application No. 21155002.5, Search completed Jun. 7, 2021 , Mailed Jun. 11, 2021, 14 Pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2009/044687, Completed Jul. 30, 2010, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/056151, Report Issued Mar. 25, 2014, 9 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/056166, Report Issued Mar. 25, 2014, Report Mailed Apr. 3, 2014, 8 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/058093, Report Issued Sep. 18, 2013, Mailed Oct. 22, 2013, 40 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/059813, Search Completed Apr. 15, 2014, 7 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2013/059991, Issued Mar. 17, 2015, Mailed Mar. 26, 2015, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2015/032467, Report issued Nov. 29, 2016, Mailed Dec. 8, 2016, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US10/057661, issued May 22, 2012, mailed May 31, 2012, 10 pages. |
International Preliminary Report on Patentability for International Application PCT/US11/036349, Report Issued Nov. 13, 2012, Mailed Nov. 22, 2012, 9 pages. |
International Preliminary Report on Patentability for International Application PCT/US13/56065, Issued Feb. 24, 2015, Mailed Mar. 5, 2015, 4 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2011/064921, issued Jun. 18, 2013, mailed Jun. 27, 2013, 14 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/024987, Mailed Aug. 12, 2014, 13 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/027146, completed Aug. 26, 2014, Mailed Sep. 4, 2014, 10 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/039155, completed Nov. 4, 2014, Mailed Nov. 13, 2014, 10 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/046002, issued Dec. 31, 2014, Mailed Jan. 8, 2015, 6 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/048772, issued Dec. 31, 2014, Mailed Jan. 8, 2015, 8 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/056502, Issued Feb. 24, 2015, Mailed Mar. 5, 2015, 7 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/069932, issued May 19, 2015, Mailed May 28, 2015, 12 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/017766, issued Aug. 25, 2015, Mailed Sep. 3, 2015, 8 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/018084, issued Aug. 25, 2015, Mailed Sep. 3, 2015, 11 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/018116, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 12 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/021439, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/022118, issued Sep. 8, 2015, Mailed Sep. 17, 2015, 4 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/022123, issued Sep. 8, 2015, Mailed Sep. 17, 2015, 4 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/022774, issued Sep. 22, 2015, Mailed Oct. 1, 2015, 5 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/023762, issued Mar. 2, 2015, Mailed Mar. 9, 2015, 10 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/024407, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 8 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/024903, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 12 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/024947, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 7 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/025100, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 4 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/025904, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 5 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/028447, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 7 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/029052, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/030692, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 6 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/064693, issued May 10, 2016, Mailed May 19, 2016, 14 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/066229, issued May 24, 2016, Mailed Jun. 2, 2016, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/067740, issued May 31, 2016, Mailed Jun. 9, 2016, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2015/019529, issued Sep. 13, 2016, Mailed Sep. 22, 2016, 9 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US2015/053013, issued Apr. 4, 2017, Mailed Apr. 13, 2017, 8 Pgs. |
International Preliminary Report on Patentability for International Application PCT/US13/62720, Issued Mar. 31, 2015, Mailed Apr. 9, 2015, 8 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US13/46002, completed Nov. 13, 2013, Mailed Nov. 29, 2013, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US13/56065, Completed Nov. 25, 2013, Mailed Nov. 26, 2013, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US13/59991, Completed Feb. 6, 2014, Mailed Feb. 26, 2014, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2012/056166, Report Completed Nov. 10, 2012, Mailed Nov. 20, 2012, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/024987, Completed Mar. 27, 2013, Mailed Apr. 15, 2013, 14 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/027146, completed Apr. 2, 2013, 11 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/039155, completed Jul. 1, 2013, Mailed Jul. 11, 2013, 11 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/048772, Completed Oct. 21, 2013, Mailed Nov. 8, 2013, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/056502, Completed Feb. 18, 2014, Mailed Mar. 19, 2014, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/069932, Completed Mar. 14, 2014, Mailed Apr. 14, 2014, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2015/019529, completed May 5, 2015, Mailed Jun. 8, 2015, 11 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2015/032467, Search completed Jul. 27, 2015, Mailed Aug. 19, 2015, 10 Pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2015/053013, completed Dec. 1, 2015, Mailed Dec. 30, 2015, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US11/36349, mailed Aug. 22, 2011, 11 pgs. |
International Search Report and Written Opinion for International Application PCT/US13/62720, completed Mar. 25, 2014, Mailed Apr. 21, 2014, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US14/17766, completed May 28, 2014, Mailed Jun. 18, 2014, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US14/18084, completed May 23, 2014, Mailed Jun. 10, 2014, 12 pgs. |
International Search Report and Written Opinion for International Application PCT/US14/18116, Report completed May 13, 2014, 12 pgs. |
International Search Report and Written Opinion for International Application PCT/US14/21439, completed Jun. 5, 2014, Mailed Jun. 20, 2014, 10 Pgs. |
International Search Report and Written Opinion for International Application PCT/US14/22118, completed Jun. 9, 2014, Mailed, Jun. 25, 2014, 5 pgs. |
International Search Report and Written Opinion for International Application PCT/US14/22774 report completed Jun. 9, 2014, Mailed Jul. 14, 2014, 6 Pgs. |
International Search Report and Written Opinion for International Application PCT/US14/24407, report completed Jun. 11, 2014, Mailed Jul. 8, 2014, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US14/25100, report completed Jul. 7, 2014, Mailed Aug. 7, 2014, 5 Pgs. |
International Search Report and Written Opinion for International Application PCT/US14/25904 report completed Jun. 10, 2014, Mailed Jul. 10, 2014, 6 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2009/044687, completed Jan. 5, 2010, mailed Jan. 13, 2010, 9 pgs. |
International Search Report and Written Opinion for International Application PCT/US2010/057661, completed Mar. 9, 2011, 14 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/064921, completed Feb. 25, 2011, mailed Mar. 6, 2012, 17 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/037670, Mailed Jul. 18, 2012, Completed Jul. 5, 2012, 9 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/044014, completed Oct. 12, 2012, 15 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/056151, completed Nov. 14, 2012, 10 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/058093, Report completed Nov. 15, 2012, 12 pgs. |
International Search Report and Written Opinion for International Application PCT/US2012/059813, completed Dec. 17, 2012, 8 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/022123, completed Jun. 9, 2014, Mailed Jun. 25, 2014, 5 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/023762, Completed May 30, 2014, Mailed Jul. 3, 2014, 6 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/024903, completed Jun. 12, 2014, Mailed, Jun. 27, 2014, 13 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/024947, Completed Jul. 8, 2014, Mailed Aug. 5, 2014, 8 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/028447, completed Jun. 30, 2014, Mailed Jul. 21, 2014, 8 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/029052, completed Jun. 30, 2014, Mailed Jul. 24, 2014, 10 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/030692, completed Jul. 28, 2014, Mailed Aug. 27, 2014, 7 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/064693, Completed Mar. 7, 2015, Mailed Apr. 2, 2015, 15 pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/066229, Completed Mar. 6, 2015, Mailed Mar. 19, 2015, 9 Pgs. |
International Search Report and Written Opinion for International Application PCT/US2014/067740, Completed Jan. 29, 2015, mailed Mar. 3, 2015, 10 pgs. |
Office Action for U.S. Appl. No. 12/952,106, dated Aug. 16, 2012, 12 pgs. |
Supplementary European Search Report for EP Application No. 13831768.0, Search completed May 18, 2016, Mailed May 30, 2016, 13 Pgs. |
Supplementary European Search Report for European Application 09763194.9, completed Nov. 7, 2011, mailed Nov. 29, 2011, 9 pgs. |
“Exchangeable image file format for digital still cameras: Exif Version 2.2”, Japan Electronics and Information Technology Industries Association, Prepared by Technical Standardization Committee on AV & IT Storage Systems and Equipment, JEITA CP-3451, Apr. 2002, Retrieved from: http://www.exif.org/Exif2-2.PDF, 154 pgs. |
“File Formats Version 6”, Alias Systems, 2004, 40 pgs. |
“Light fields and computational photography”, Stanford Computer Graphics Laboratory, Retrieved from: http://graphics.stanford.edu/projects/lightfield/, Earliest publication online: Feb. 10, 1997, 3 pgs. |
Aufderheide et al., “A MEMS-based Smart Sensor System for Estimation of Camera Pose for Computer Vision Applications”, Research and Innovation Conference 2011, Jul. 29, 2011, pp. 1-10. |
Baker et al., “Limits on Super-Resolution and How to Break Them”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2002, vol. 24, No. 9, pp. 1167-1183. |
Barron et al., “Intrinsic Scene Properties from a Single RGB-D Image”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, OR, USA, pp. 17-24. |
Bennett et al., “Multispectral Bilateral Video Fusion”, 2007 IEEE Transactions on Image Processing, May 2007, published Apr. 16, 2007, vol. 16, No. 5, pp. 1185-1194. |
Bennett et al., “Multispectral Video Fusion”, Computer Graphics (ACM SIGGRAPH Proceedings), Jul. 25, 2006, published Jul. 30, 2006, 1 pg. |
Bertalmio et al., “Image Inpainting”, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000, ACM Pres/Addison-Wesley Publishing Co., pp. 417-424. |
Bertero et al., “Super-resolution in computational imaging”, Micron, Jan. 1, 2003, vol. 34, Issues 6-7, 17 pgs. |
Bishop et al., “Full-Resolution Depth Map Estimation from an Aliased Plenoptic Light Field”, ACCV Nov. 8, 2010, Part II, LNCS 6493, pp. 186-200. |
Bishop et al., “Light Field Superresolution”, Computational Photography (ICCP), 2009 IEEE International Conference, Conference Date April 16-17, published Jan. 26, 2009, 9 pgs. |
Bishop et al., “The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution”, IEEE Transactions on Pattern Analysis and Machine Intelligence, May 2012, vol. 34, No. 5, published Aug. 18, 2011, pp. 972-986. |
Borman, “Topics in Multiframe Superresolution Restoration”, Thesis of Sean Borman, Apr. 2004, 282 pgs. |
Borman et al., “Image Sequence Processing”, Dekker Encyclopedia of Optical Engineering, Oct. 14, 2002, 81 pgs. |
Borman et al., “Block-Matching Sub-Pixel Motion Estimation from Noisy, Under-Sampled Frames—An Empirical Performance Evaluation”, Proc SPIE, Dec. 28, 1998, vol. 3653, 10 pgs. |
Borman et al., “Image Resampling and Constraint Formulation for Multi-Frame Super-Resolution Restoration”, Proc. SPIE, published Jul. 1, 2003, vol. 5016, 12 pgs. |
Borman et al., “Linear models for multi-frame super-resolution restoration under non-affine registration and spatially varying PSF”, Proc. SPIE, May 21, 2004, vol. 5299, 12 pgs. |
Borman et al., “Nonlinear Prediction Methods for Estimation of Clique Weighting Parameters in NonGaussian Image Models”, Proc. SPIE, Sep. 22, 1998, vol. 3459, 9 pgs. |
Borman et al., “Simultaneous Multi-Frame MAP Super-Resolution Video Enhancement Using Spatio-Temporal Priors”, Image Processing, 1999, ICIP 99 Proceedings, vol. 3, pp. 469-473. |
Borman et al., “Super-Resolution from Image Sequences—A Review”, Circuits & Systems, 1998, pp. 374-378. |
Bose et al., “Superresolution and Noise Filtering Using Moving Least Squares”, IEEE Transactions on Image Processing, Aug. 2006, vol. 15, Issue 8, published Jul. 17, 2006, pp. 2239-2248. |
Boye et al., “Comparison of Subpixel Image Registration Algorithms”, Proc. of SPIE—IS&T Electronic Imaging, Feb. 3, 2009, vol. 7246, pp. 72460X-1-72460X-9; doi: 10.1117/12.810369. |
Bruckner et al., “Artificial compound eye applying hyperacuity”, Optics Express, Dec. 11, 2006, vol. 14, No. 25, pp. 12076-12084. |
Bruckner et al., “Driving microoptical imaging systems towards miniature camera applications”, Proc. SPIE, Micro-Optics, May 13, 2010, 11 pgs. |
Bruckner et al., “Thin wafer-level camera lenses inspired by insect compound eyes”, Optics Express, Nov. 22, 2010, vol. 18, No. 24, pp. 24379-24394. |
Bryan et al., “Perspective Distortion from Interpersonal Distance Is an Implicit Visual Cue for Social Judgments of Faces”, PLOS One, vol. 7, Issue 9, Sep. 26, 2012, e45301, doi: 10.1371/journal.pone.0045301, 9 pages. |
Capel, “Image Mosaicing and Super-resolution”, Retrieved on Nov. 10, 2012, Retrieved from the Internet at URL :< http://citeseerx.ist.psu.edu/viewdoc/download?doi=1 0.1.1.226.2643&rep=rep1 &type=pdf>, 2001, 269 pgs. |
Carroll et al., “Image Warps for Artistic Perspective Manipulation”, ACM Transactions on Graphics (TOG), vol. 29, No. 4, Jul. 26, 2010, Article No. 127, 9 pgs. |
Chan et al., “Extending the Depth of Field in a Compound-Eye Imaging System with Super-Resolution Reconstruction”, Proceedings—International Conference on Pattern Recognition, Jan. 1, 2006, vol. 3, pp. 623-626. |
Chan et al., “Investigation of Computational Compound-Eye Imaging System with Super-Resolution Reconstruction”, IEEE, ISASSP, Jun. 19, 2006, pp. 1177-1180. |
Chan et al., “Super-resolution reconstruction in a computational compound-eye imaging system”, Multidim Syst Sign Process, published online Feb. 23, 2007, vol. 18, pp. 83-101. |
Chen et al., “Image Matting with Local and Nonlocal Smooth Priors”, CVPR '13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23, 2013, pp. 1902-1907. |
Chen et al., “Interactive deformation of light fields”, Symposium on Interactive 3D Graphics, 2005, pp. 139-146. |
Chen et al., “KNN matting”, 2012 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 16-21, 2012, Providence, RI, USA, pp. 869-876. |
Chen et al., “KNN Matting”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2013, vol. 35, No. 9, pp. 2175-2188. |
Collins et al., “An Active Camera System for Acquiring Multi-View Video”, IEEE 2002 International Conference on Image Processing, Date of Conference: Sep. 22-25, 2002, Rochester, NY, 4 pgs. |
Cooper et al., “The perceptual basis of common photographic practice”, Journal of Vision, vol. 12, No. 5, Article 8, May 25, 2012, pp. 1-14. |
Crabb et al., “Real-time foreground segmentation via range and color imaging”, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, Jun. 23-28, 2008, pp. 1-5. |
Debevec et al., “Recovering High Dynamic Range Radiance Maps from Photographs”, Computer Graphics (ACM SIGGRAPH Proceedings), Aug. 16, 1997, 10 pgs. |
Do, Minh N., “Immersive Visual Communication with Depth”, Presented at Microsoft Research, Jun. 15, 2011, Retrieved from: http://minhdo.ece.illinois.edu/talks/ImmersiveComm.pdf, 42 pgs. |
Do et al., “Immersive Visual Communication”, IEEE Signal Processing Magazine, vol. 28, Issue 1, Jan. 2011, DOI: 10.1109/MSP.2010.939075, Retrieved from: http://minhdo.ece.illinois.edu/publications/ImmerComm_SPM.pdf, pp. 58-66. |
Drouin et al., “Fast Multiple-Baseline Stereo with Occlusion”, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05), Ottawa, Ontario, Canada, Jun. 13-16, 2005, pp. 540-547. |
Drouin et al., “Geo-Consistency for Wide Multi-Camera Stereo”, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, Jun. 20-25, 2005, pp. 351-358. |
Drouin et al., “Improving Border Localization of Multi-Baseline Stereo Using Border-Cut”, International Journal of Computer Vision, Jul. 5, 2006, vol. 83, Issue 3, 8 pgs. |
Drulea et al., “Motion Estimation Using the Correlation Transform”, IEEE Transactions on Image Processing, Aug. 2013, vol. 22, No. 8, pp. 3260-3270, first published May 14, 2013. |
Duparre et al., “Artificial apposition compound eye fabricated by micro-optics technology”, Applied Optics, Aug. 1, 2004, vol. 43, No. 22, pp. 4303-4310. |
Duparre et al., “Artificial compound eye zoom camera”, Bioinspiration & Biomimetics, Nov. 21, 2008, vol. 3, pp. 1-6. |
Duparre et al., “Artificial compound eyes—different concepts and their application to ultra flat image acquisition sensors”, MOEMS and Miniaturized Systems IV, Proc. SPIE 5346, Jan. 24, 2004, pp. 89-100. |
Duparre et al., “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence”, Optics Express, Dec. 26, 2005, vol. 13, No. 26, pp. 10539-10551. |
Duparre et al., “Micro-optical artificial compound eyes”, Bioinspiration & Biomimetics, Apr. 6, 2006, vol. 1, pp. R1-R16. |
Duparre et al., “Microoptical artificial compound eyes—from design to experimental verification of two different concepts”, Proc. of SPIE, Optical Design and Engineering II, vol. 5962, Oct. 17, 2005, pp. 59622A-1-59622A-12. |
Duparre et al., “Microoptical Artificial Compound Eyes—Two Different Concepts for Compact Imaging Systems”, 11th Microoptics Conference, Oct. 30-Nov. 2, 2005, 2 pgs. |
Duparre et al., “Microoptical telescope compound eye”, Optics Express, Feb. 7, 2005, vol. 13, No. 3, pp. 889-903. |
Duparre et al., “Micro-optically fabricated artificial apposition compound eye”, Electronic Imaging—Science and Technology, Prod. SPIE 5301, Jan. 2004, pp. 25-33. |
Duparre et al., “Novel Optics/Micro-Optics for Miniature Imaging Systems”, Proc. of SPIE, Apr. 21, 2006, vol. 6196, pp. 619607-1-619607-15. |
Duparre et al., “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices”, Optical Systems Design, Proc. SPIE 5249, Sep. 2003, pp. 408-418. |
Duparre et al., “Thin compound-eye camera”, Applied Optics, May 20, 2005, vol. 44, No. 15, pp. 2949-2956. |
Duparre et al., “Ultra-Thin Camera Based on Artificial Apposition Compound Eyes”, 10th Microoptics Conference, Sep. 1-3, 2004, 2 pgs. |
Eng et al., “Gaze correction for 3D tele-immersive communication system”, IVMSP Workshop, 2013 IEEE 11th. IEEE, Jun. 10, 2013. |
Fanaswala, “Regularized Super-Resolution of Multi-View Images”, Retrieved on Nov. 10, 2012 (Nov. 10, 2012). Retrieved from the Internet at URL :< http://www.site.uottawa.ca/-edubois/theses/Fanaswala_thesis.pdf>, 2009, 163 pgs. |
Fang et al., “Volume Morphing Methods for Landmark Based 3D Image Deformation”, SPIE vol. 2710, Proc. 1996 SPIE Intl Symposium on Medical Imaging, Newport Beach, CA, Feb. 10, 1996, pp. 404-415. |
Farrell et al., “Resolution and Light Sensitivity Tradeoff with Pixel Size”, Proceedings of the SPIE Electronic Imaging 2006 Conference, Feb. 2, 2006, vol. 6069, 8 pgs. |
Farsiu et al., “Advances and Challenges in Super-Resolution”, International Journal of Imaging Systems and Technology, Aug. 12, 2004, vol. 14, pp. 47-57. |
Farsiu et al., “Fast and Robust Multiframe Super Resolution”, IEEE Transactions on Image Processing, Oct. 2004, published Sep. 3, 2004, vol. 13, No. 10, pp. 1327-1344. |
Farsiu et al., “Multiframe Demosaicing and Super-Resolution of Color Images”, IEEE Transactions on Image Processing, Jan. 2006, vol. 15, No. 1, date of publication Dec. 12, 2005, pp. 141-159. |
Fecker et al., “Depth Map Compression for Unstructured Lumigraph Rendering”, Proc. SPIE 6077, Proceedings Visual Communications and Image Processing 2006, Jan. 18, 2006, p. 60770B-1-60770B-8. |
Feris et al., “Multi-Flash Stereopsis: Depth Edge Preserving Stereo with Small Baseline Illumination”, IEEE Trans on PAMI, 2006, 31 pgs. |
Fife et al., “A 3D Multi-Aperture Image Sensor Architecture”, Custom Integrated Circuits Conference, 2006, CICC '06, IEEE, pp. 281-284. |
Fife et al., “A 3MPixel Multi-Aperture Image Sensor with 0.7Mu Pixels in 0.11Mu CMOS”, ISSCC 2008, Session 2, Image Sensors & Technology, 2008, pp. 48-50. |
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 191-198. |
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 49-58. |
Gastal et al., “Shared Sampling for Real-Time Alpha Matting”, Computer Graphics Forum, Eurographics 2010, vol. 29, Issue 2, May 2010, pp. 575-584. |
Georgeiv et al., “Light Field Camera Design for Integral View Photography”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs. |
Georgiev et al., “Light-Field Capture by Multiplexing in the Frequency Domain”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs. |
Goldman et al., “Video Object Annotation, Navigation, and Composition”, In Proceedings of UIST 2008, Oct. 19-22, 2008, Monterey Ca, USA, pp. 3-12. |
Gortler et al., “The Lumigraph”, In Proceedings of SIGGRAPH 1996, published Aug. 1, 1996, pp. 43-54. |
Gupta et al., “Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, OR, USA, pp. 564-571. |
Hacohen et al., “Non-Rigid Dense Correspondence with Applications for Image Enhancement”, ACM Transactions on Graphics, vol. 30, No. 4, Aug. 7, 2011, 9 pgs. |
Hamilton, “Jpeg File Interchange Format, Version 1.02”, Sep. 1, 1992, 9 pgs. |
Hardie, “A Fast Image Super-Algorithm Using an Adaptive Wiener Filter”, IEEE Transactions on Image Processing, Dec. 2007, published Nov. 19, 2007, vol. 16, No. 12, pp. 2953-2964. |
Hasinoff et al., “Search-and-Replace Editing for Personal Photo Collections”, 2010 International Conference: Computational Photography (ICCP) Mar. 2010, pp. 1-8. |
Hernandez-Lopez et al., “Detecting objects using color and depth segmentation with Kinect sensor”, Procedia Technology, vol. 3, Jan. 1, 2012, pp. 196-204, XP055307680, ISSN: 2212-0173, DOI: 10.1016/j.protcy.2012.03.021. |
Holoeye Photonics AG, “LC 2012 Spatial Light Modulator (transmissive)”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918151716/http://holoeye.com/spatial-light-modulators/lc-2012-spatial-light-modulator/ on Oct. 20, 2017, 3 pages. |
Holoeye Photonics AG, “Spatial Light Modulators”, Oct. 2, 2013, Brochure retrieved from https://web.archive.org/web/20131002061028/http://holoeye.com/wp-content/uploads/Spatial_Light_Modulators.pdf on Oct. 13, 2017, 4 pgs. |
Holoeye Photonics AG, “Spatial Light Modulators”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918113140/http://holoeye.com/spatial-light-modulators/ on Oct. 13, 2017, 4 pages. |
Horisaki et al., “Irregular Lens Arrangement Design to Improve Imaging Performance of Compound-Eye Imaging Systems”, Applied Physics Express, Jan. 29, 2010, vol. 3, pp. 022501-1-022501-3. |
Horisaki et al., “Superposition Imaging for Three-Dimensionally Space-Invariant Point Spread Functions”, Applied Physics Express, Oct. 13, 2011, vol. 4, pp. 112501-1-112501-3. |
Horn et al., “LightShop: Interactive Light Field Manipulation and Rendering”, In Proceedings of 13D, Jan. 1, 2007, pp. 121-128. |
Isaksen et al., “Dynamically Reparameterized Light Fields”, In Proceedings of SIGGRAPH 2000, pp. 297-306. |
Izadi et al., “KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera”, UIST'11, Oct. 16-19, 2011, Santa Barbara, CA, pp. 559-568. |
Janoch et al., “A category-level 3-D object dataset: Putting the Kinect to work”, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Nov. 6-13, 2011, Barcelona, Spain, pp. 1168-1174. |
Jarabo et al., “Efficient Propagation of Light Field Edits”, In Proceedings of SIACG 2011, pp. 75-80. |
Jiang et al., “Panoramic 3D Reconstruction Using Rotational Stereo Camera with Simple Epipolar Constraints”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), Jun. 17-22, 2006, vol. 1, New York, NY, USA, pp. 371-378. |
Joshi, Neel S., “Color Calibration for Arrays of Inexpensive Image Sensors”, Master's with Distinction in Research Report, Stanford University, Department of Computer Science, Mar. 2004, 30 pgs. |
Joshi et al., “Synthetic Aperture Tracking: Tracking Through Occlusions”, I CCV IEEE 11th International Conference on Computer Vision; Publication [online]. Oct. 2007 [retrieved Jul. 28, 2014]. Retrieved from the Internet: < URL: http:I/ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4409032&isnumber=4408819>; pp. 1-8. |
Kang et al., “Handling Occlusions in Dense Multi-view Stereo”, Computer Vision and Pattern Recognition, 2001, vol. 1, pp. 1-103-1-110. |
Kim, “Scene Reconstruction from a Light Field”, Master Thesis, Sep. 1, 2010 (Sep. 1, 2010), pp. 1-72. |
Kim et al., “Scene reconstruction from high spatio-angular resolution light fields”, ACM Transactions on Graphics (TOG)—SIGGRAPH 2013 Conference Proceedings, vol. 32 Issue 4, Article 73, Jul. 21, 2013, 11 pages. |
Kitamura et al., “Reconstruction of a high-resolution image on a compound-eye image-capturing system”, Applied Optics, Mar. 10, 2004, vol. 43, No. 8, pp. 1719-1727. |
Konolige, Kurt, “Projected Texture Stereo”, 2010 IEEE International Conference on Robotics and Automation, May 3-7, 2010, p. 148-155. |
Krishnamurthy et al., “Compression and Transmission of Depth Maps for Image-Based Rendering”, Image Processing, 2001, pp. 828-831. |
Kubota et al., “Reconstructing Dense Light Field From Array of Multifocus Images for Novel View Synthesis”, IEEE Transactions on Image Processing, vol. 16, No. 1, Jan. 2007, pp. 269-279. |
Kutulakos et al., “Occluding Contour Detection Using Affine Invariants and Purposive Viewpoint Control”, Computer Vision and Pattern Recognition, Proceedings CVPR 94, Seattle, Washington, Jun. 21-23, 1994, 8 pgs. |
Lai et al., “A Large-Scale Hierarchical Multi-View RGB-D Object Dataset”, Proceedings—IEEE International Conference on Robotics and Automation, Conference Date May 9-13, 2011, 8 pgs., DOI:10.1109/ICRA.201135980382. |
Lane et al., “A Survey of Mobile Phone Sensing”, IEEE Communications Magazine, vol. 48, Issue 9, Sep. 2010, pp. 140-150. |
Lee et al., “Automatic Upright Adjustment of Photographs”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 877-884. |
Lee et al., “Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module”, ETRI Journal, vol. 31, No. 6, Dec. 2009, pp. 695-702. |
Lee et al., “Nonlocal matting”, CVPR 2011, Jun. 20-25, 2011, pp. 2193-2200. |
Lensvector, “How LensVector Autofocus Works”, 2010, printed Nov. 2, 2012 from http://www.lensvector.com/overview.html, 1 pg. |
Levin et al., “A Closed Form Solution to Natural Image Matting”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006, vol. 1, pp. 61-68. |
Levin et al., “Spectral Matting”, 2007 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 17-22, 2007, Minneapolis, MN, USA, pp. 1-8. |
Levoy, “Light Fields and Computational Imaging”, IEEE Computer Society, Sep. 1, 2006, vol. 39, Issue No. 8, pp. 46-55. |
Levoy et al., “Light Field Rendering”, Proc. ADM SIGGRAPH '96, pp. 1-12. |
Li et al., “A Hybrid Camera for Motion Deblurring and Depth Map Super-Resolution”, Jun. 23-28, 2008, IEEE Conference on Computer Vision and Pattern Recognition, 8 pgs. Retrieved from www.eecis.udel.edu/˜jye/lab_research/08/deblur-feng.pdf on Feb. 5, 2014. |
Li et al., “Fusing Images With Different Focuses Using Support Vector Machines”, IEEE Transactions on Neural Networks, vol. 15, No. 6, Nov. 8, 2004, pp. 1555-1561. |
Lim, Jongwoo, “Optimized Projection Pattern Supplementing Stereo Systems”, 2009 IEEE International Conference on Robotics and Automation, May 12-17, 2009, pp. 2823-2829. |
Liu et al., “Virtual View Reconstruction Using Temporal Information”, 2012 IEEE International Conference on Multimedia and Expo, 2012, pp. 115-120. |
Lo et al., “Stereoscopic 3D Copy & Paste”, ACM Transactions on Graphics, vol. 29, No. 6, Article 147, Dec. 2010, pp. 147:1-147:10. |
Martinez et al., “Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis”, Analytical Chemistry (American Chemical Society), vol. 80, No. 10, May 15, 2008, pp. 3699-3707. |
McGuire et al., “Defocus video matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2005, vol. 24, Issue 3, Jul. 2005, pp. 567-576. |
Merkle et al., “Adaptation and optimization of coding algorithms for mobile 3DTV”, Mobile3DTV Project No. 216503, Nov. 2008, 55 pgs. |
Mitra et al., “Light Field Denoising, Light Field Superresolution and Stereo Camera Based Refocussing using a GMM Light Field Patch Prior”, Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on Jun. 16-21, 2012, pp. 22-28. |
Moreno-Noguer et al., “Active Refocusing of Images and Videos”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Jul. 2007, 10 pages. |
Muehlebach, “Camera Auto Exposure Control for VSLAM Applications”, Studies on Mechatronics, Swiss Federal Institute of Technology Zurich, Autumn Term 2010 course, 67 pgs. |
Nayar, “Computational Cameras: Redefining the Image”, IEEE Computer Society, Aug. 14, 2006, pp. 30-38. |
Ng, “Digital Light Field Photography”, Thesis, Jul. 2006, 203 pgs. |
Ng et al., “Light Field Photography with a Hand-held Plenoptic Camera”, Stanford Tech Report CTSR Feb. 2005, Apr. 20, 2005, pp. 1-11. |
Ng et al., “Super-Resolution Image Restoration from Blurred Low-Resolution Images”, Journal of Mathematical Imaging and Vision, 2005, vol. 23, pp. 367-378. |
Nguyen et al., “Error Analysis for Image-Based Rendering with Depth Information”, IEEE Transactions on Image Processing, vol. 18, Issue 4, Apr. 2009, pp. 703-716. |
Nguyen et al., “Image-Based Rendering with Depth Information Using the Propagation Algorithm”, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, vol. 5, Mar. 23-23, 2005, pp. II-589-II-592. |
Nishihara, H.K., “PRISM: A Practical Real-Time Imaging Stereo Matcher”, Massachusetts Institute of Technology, A.I. Memo 780, May 1984, 32 pgs. |
Nitta et al., “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method”, Applied Optics, May 1, 2006, vol. 45, No. 13, pp. 2893-2900. |
Nomura et al., “Scene Collages and Flexible Camera Arrays”, Proceedings of Eurographics Symposium on Rendering, Jun. 2007, 12 pgs. |
Park et al., “Multispectral Imaging Using Multiplexed Illumination”, 2007 IEEE 11th International Conference on Computer Vision, Oct. 14-21, 2007, Rio de Janeiro, Brazil, pp. 1-8. |
Park et al., “Super-Resolution Image Reconstruction”, IEEE Signal Processing Magazine, May 2003, pp. 21-36. |
Parkkinen et al., “Characteristic Spectra of Munsell Colors”, Journal of the Optical Society of America A, vol. 6, Issue 2, Feb. 1989, pp. 318-322. |
Perwass et al., “Single Lens 3D-Camera with Extended Depth-of-Field”, printed from www.raytrix.de, Jan. 22, 2012, 15 pgs. |
Pham et al., “Robust Super-Resolution without Regularization”, Journal of Physics: Conference Series 124, Jul. 2008, pp. 1-19. |
Philips 3D Solutions, “3D Interface Specifications, White Paper”, Feb. 15, 2008, 2005-2008 Philips Electronics Nederland B.V., Philips 3D Solutions retrieved from www.philips.com/3dsolutions, 29 pgs., Feb. 15, 2008. |
Polight, “Designing Imaging Products Using Reflowable Autofocus Lenses”, printed Nov. 2, 2012 from http://www.polight.no/tunable-polymer-autofocus-lens-html-11.html, 1 pg. |
Pouydebasque et al., “Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers”, Sensors and Actuators A: Physical, vol. 172, Issue 1, Dec. 2011, pp. 280-286. |
Protter et al., “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction”, IEEE Transactions on Image Processing, Dec. 2, 2008, vol. 18, No. 1, pp. 36-51. |
Radtke et al., “Laser lithographic fabrication and characterization of a spherical artificial compound eye”, Optics Express, Mar. 19, 2007, vol. 15, No. 6, pp. 3067-3077. |
Rajan et al., “Simultaneous Estimation of Super Resolved Scene and Depth Map from Low Resolution Defocused Observations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 9, Sep. 8, 2003, pp. 1-16. |
Rander et al., “Virtualized Reality: Constructing Time-Varying Virtual Worlds From Real World Events”, Proc. of IEEE Visualization '97, Phoenix, Arizona, Oct. 19-24, 1997, pp. 277-283, 552. |
Rhemann et al., “Fast Cost-Volume Filtering for Visual Correspondence and Beyond”, IEEE Trans. Pattern Anal. Mach. Intell, 2013, vol. 35, No. 2, pp. 504-511. |
Rhemann et al., “A perceptually motivated online benchmark for image matting”, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 20-25, 2009, Miami, FL, USA, pp. 1826-1833. |
Robert et al., “Dense Depth Map Reconstruction :A Minimization and Regularization Approach which Preserves Discontinuities”, European Conference on Computer Vision (ECCV), pp. 439-451, (1996). |
Robertson et al., “Dynamic Range Improvement Through Multiple Exposures”, In Proc. of the Int. Conf. on Image Processing, 1999, 5 pgs. |
Robertson et al., “Estimation-theoretic approach to dynamic range enhancement using multiple exposures”, Journal of Electronic Imaging, Apr. 2003, vol. 12, No. 2, pp. 219-228. |
Roy et al., “Non-Uniform Hierarchical Pyramid Stereo for Large Images”, Computer and Robot Vision, 2002, pp. 208-215. |
Sauer et al., “Parallel Computation of Sequential Pixel Updates in Statistical Tomographic Reconstruction”, ICIP 1995 Proceedings of the 1995 International Conference on Image Processing, Date of Conference: Oct. 23-26, 1995, pp. 93-96. |
Scharstein et al., “High-Accuracy Stereo Depth Maps Using Structured Light”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), Jun. 2003, vol. 1, pp. 195-202. |
Seitz et al., “Plenoptic Image Editing”, International Journal of Computer Vision 48, Conference Date Jan. 7, 1998, 29 pgs, DOI: 10.1109/ICCV.1998.710696 Source: DBLP Conference: Computer Vision, Sixth International Conference. |
Shotton et al., “Real-time human pose recognition in parts from single depth images”, CVPR 2011, Jun. 20-25, 2011, Colorado Springs, CO, USA, pp. 1297-1304. |
Shum et al., “A Review of Image-based Rendering Techniques”, in Visual Communications and Image Processing 2000, May 2000, vol. 4067, pp. 2-13. |
Shum et al., “Pop-Up Light Field: An Interactive Image-Based Modeling and Rendering System”, Apr. 2004, ACM Transactions on Graphics, vol. 23, No. 2, pp. 143-162. Retrieved from http://131.107.65.14/en-us/um/people/jiansun/papers/PopupLightField_TOG.pdf on Feb. 5, 2014. |
Silberman et al., “Indoor segmentation and support inference from RGBD images”, ECCV'12 Proceedings of the 12th European conference on Computer Vision, vol. Part V, Oct. 7-13, 2012, Florence, Italy, pp. 746-760. |
Stober, “Stanford researchers developing 3-D camera with 12,616 lenses”, Stanford Report, Mar. 19, 2008, Retrieved from: http://news.stanford.edu/news/2008/march19/camera-031908.html, 5 pgs. |
Stollberg et al., “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects”, Optics Express, Aug. 31, 2009, vol. 17, No. 18, pp. 15747-15759. |
Sun et al., “Image Super-Resolution Using Gradient Profile Prior”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, 8 pgs.; DOI: 10.1109/CVPR.2008.4587659. |
Taguchi et al., “Rendering-Oriented Decoding for a Distributed Multiview Coding System Using a Coset Code”, Hindawi Publishing Corporation, EURASIP Journal on Image and Video Processing, vol. 2009, Article ID 251081, Online: Apr. 22, 2009, 12 pages. |
Takeda et al., “Super-resolution Without Explicit Subpixel Motion Estimation”, IEEE Transaction on Image Processing, Sep. 2009, vol. 18, No. 9, pp. 1958-1975. |
Tallon et al., “Upsampling and Denoising of Depth Maps Via Joint-Segmentation”, 20th European Signal Processing Conference, Aug. 27-31, 2012, 5 pgs. |
Tanida et al., “Color imaging with an integrated compound imaging system”, Optics Express, Sep. 8, 2003, vol. 11, No. 18, pp. 2109-2117. |
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification”, Applied Optics, Apr. 10, 2001, vol. 40, No. 11, pp. 1806-1813. |
Tao et al., “Depth from Combining Defocus and Correspondence Using Light-Field Cameras”, ICCV '13 Proceedings of the 2013 IEEE International Conference on Computer Vision, Dec. 1, 2013, pp. 673-680. |
Taylor, “Virtual camera movement: The way of the future?”, American Cinematographer vol. 77, No. 9, Sep. 1996, 93-100. |
Tseng et al., “Automatic 3-D depth recovery from a single urban-scene image”, 2012 Visual Communications and Image Processing, Nov. 27-30, 2012, San Diego, CA, USA, pp. 1-6. |
Vaish et al., “Reconstructing Occluded Surfaces Using Synthetic Apertures: Stereo, Focus and Robust Measures”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 2, Jun. 17-22, 2006, pp. 2331-2338. |
Vaish et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform”, IEEE Workshop on A3DISS, CVPR, 2005, 8 pgs. |
Vaish et al., “Using Plane + Parallax for Calibrating Dense Camera Arrays”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004, 8 pgs. |
Van Der Wal et al., “The Acadia Vision Processor”, Proceedings Fifth IEEE International Workshop on Computer Architectures for Machine Perception, Sep. 13, 2000, Padova, Italy, pp. 31-40. |
Veilleux, “CCD Gain Lab: The Theory”, University of Maryland, College Park-Observational Astronomy (ASTR 310), Oct. 19, 2006, pp. 1-5 (online], [retrieved on May 13, 2014]. Retrieved from the Internet <URL: http://www.astro.umd.edu/˜veilleux/ASTR310/fall06/ccd_theory.pdf, 5 pgs. |
Venkataraman et al., “PiCam: An Ultra-Thin High Performance Monolithic Camera Array”, ACM Transactions on Graphics (TOG), ACM, US, vol. 32, No. 6, 1 Nov. 1, 2013, pp. 1-13. |
Vetro et al., “Coding Approaches for End-To-End 3D TV Systems”, Mitsubishi Electric Research Laboratories, Inc., TR2004-137, Dec. 2004, 6 pgs. |
Viola et al., “Robust Real-time Object Detection”, Cambridge Research Laboratory, Technical Report Series, Compaq, CRL 2001/01, Feb. 2001, Printed from: http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-2001-1.pdf, 30 pgs. |
Vuong et al., “A New Auto Exposure and Auto White-Balance Algorithm to Detect High Dynamic Range Conditions Using CMOS Technology”, Proceedings of the World Congress on Engineering and Computer Science 2008, WCECS 2008, Oct. 22-24, 2008. |
Wang, “Calculation of Image Position, Size and Orientation Using First Order Properties”, Dec. 29, 2010, OPTI521 Tutorial, 10 pgs. |
Wang et al., “Automatic Natural Video Matting with Depth”, 15th Pacific Conference on Computer Graphics and Applications, PG '07, Oct. 29-Nov. 2, 2007, Maui, HI, USA, pp. 469-472. |
Wang et al., “Image and Video Matting: A Survey”, Foundations and Trends, Computer Graphics and Vision, vol. 3, No. 2, 2007, pp. 91-175. |
Wang et al., “Soft scissors: an interactive tool for realtime high quality matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Article 9, Jul. 2007, 6 pages, published Aug. 5, 2007. |
Wetzstein et al., “Computational Plenoptic Imaging”, Computer Graphics Forum, 2011, vol. 30, No. 8, pp. 2397-2426. |
Wheeler et al., “Super-Resolution Image Synthesis Using Projections Onto Convex Sets in the Frequency Domain”, Proc. SPIE, Mar. 11, 2005, vol. 5674, 12 pgs. |
Wieringa et al., “Remote Non-invasive Stereoscopic Imaging of Blood Vessels: First In-vivo Results of a New Multispectral Contrast Enhancement Technology”, Annals of Biomedical Engineering, vol. 34, No. 12, Dec. 2006, pp. 1870-1878, Published online Oct. 12, 2006. |
Wikipedia, “Polarizing Filter (Photography)”, retrieved from http://en.wikipedia.org/wiki/Polarizing_filter_(photography) on Dec. 12, 2012, last modified on Sep. 26, 2012, 5 pgs. |
Wilburn, “High Performance Imaging Using Arrays of Inexpensive Cameras”, Thesis of Bennett Wilburn, Dec. 2004, 128 pgs. |
Wilburn et al., “High Performance Imaging Using Large Camera Arrays”, ACM Transactions on Graphics, Jul. 2005, vol. 24, No. 3, pp. 1-12. |
Wilburn et al., “High-Speed Videography Using a Dense Camera Array”, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., vol. 2, Jun. 27-Jul. 2, 2004, pp. 294-301. |
Wilburn et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002, SPIE Electronic Imaging, 2002, 8 pgs. |
Wippermann et al., “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective”, Proceedings of SPIE, Optical Design and Engineering II, Oct. 15, 2005, 59622C-1-59622C-11. |
Wu et al., “A virtual view synthesis algorithm based on image inpainting”, 2012 Third International Conference on Networking and Distributed Computing, Hangzhou, China, Oct. 21-24, 2012, pp. 153-156. |
Xu, “Real-Time Realistic Rendering and High Dynamic Range Image Display and Compression”, Dissertation, School of Computer Science in the College of Engineering and Computer Science at the University of Central Florida, Orlando, Florida, Fall Term 2005, 192 pgs. |
Yang et al., “A Real-Time Distributed Light Field Camera”, Eurographics Workshop on Rendering (2002), published Jul. 26, 2002, pp. 1-10. |
Yang et al., “Superresolution Using Preconditioned Conjugate Gradient Method”, Proceedings of SPIE—The International Society for Optical Engineering, Jul. 2002, 8 pgs. |
Yokochi et al., “Extrinsic Camera Parameter Estimation Based-on Feature Tracking and GPS Data”, 2006, Nara Institute of Science and Technology, Graduate School of Information Science, LNCS 3851, pp. 369-378. |
Zhang et al., “A Self-Reconfigurable Camera Array”, Eurographics Symposium on Rendering, published Aug. 8, 2004, 12 pgs. |
Zhang et al., “Depth estimation, spatially variant image registration, and super-resolution using a multi-lenslet camera”, Proceedings of SPIE, vol. 7705, Apr. 23, 2010, pp. 770505-770505-8, XP055113797 ISSN: 0277-786X, DOI: 10.1117/12.852171. |
Zheng et al., “Balloon Motion Estimation Using Two Frames”, Proceedings of the Asilomar Conference on Signals, Systems and Computers, IEEE, Comp. Soc. Press, US, vol.2 of 02, Nov. 4, 1991, pp. 1057-1061. |
Zhu et al., “Fusion of Time-of-Flight Depth and Stereo for High Accuracy Depth Maps”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, Anchorage, AK, USA, pp. 1-8. |
Zomet et al., “Robust Super-Resolution”, IEEE, 2001, pp. 1-6. |
Takeda et al., “Robust Kernel Regression for Restoration and Reconstruction of Images from Sparse Noisy Data”, 2006 International Conference on Image Processing, Atlanta, GA, USA, 2006, pp. 1257-1260, doi: 10.1109/ICIP.2006.312573. |
Extended European Search Report for European Application No. 23177057.9, Search completed Dec. 4, 2023, Mailed Dec. 15, 2023 14 Pgs. |
Debevec et al., “Modeling and Rendering Architecture from Photographs: a Hybrid Geometry- and Image-Based Approach”, Computer Graphics Proceedings. Siggraph '96, Jan. 19, 1996, pp. 11-20, XP093106889, New York, US DOI: 10.1145/237170.237191 ISBN: 978-0-89791-746-9 Retrieved from the Internet: URL: https ://www2.eecs.berkeley.edu/Pubs/TechRpts/1996/CSD-96-893.pdf> [retrieved on Nov. 28, 2023]. |
Extended European Search Report for European Application No. 23185907.5, Search completed Feb. 12, 2024, Mailed Feb. 23, 2024, 9 Pgs. |
Extended European Search Report for European Application No. 23206157.2, Search completed Jan. 26, 2024, Mailed Feb. 12, 2024, 10 Pgs. |
Number | Date | Country | |
---|---|---|---|
20240040270 A1 | Feb 2024 | US |
Number | Date | Country | |
---|---|---|---|
61281662 | Nov 2009 | US | |
61263339 | Nov 2009 | US | |
61054694 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18461318 | Sep 2023 | US |
Child | 18486859 | US | |
Parent | 17817829 | Aug 2022 | US |
Child | 18461318 | US | |
Parent | 16907016 | Jun 2020 | US |
Child | 17817829 | US | |
Parent | 16529522 | Aug 2019 | US |
Child | 16907016 | US | |
Parent | 16199566 | Nov 2018 | US |
Child | 16529522 | US | |
Parent | 15687882 | Aug 2017 | US |
Child | 16199566 | US | |
Parent | 14943009 | Nov 2015 | US |
Child | 15687882 | US | |
Parent | 14704920 | May 2015 | US |
Child | 14943009 | US | |
Parent | 14459288 | Aug 2014 | US |
Child | 14704920 | US | |
Parent | 12952134 | Nov 2010 | US |
Child | 14459288 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12935504 | US | |
Child | 12952134 | US |