Capturing and processing of images including occlusions focused on an image sensor by a lens stack array

Information

  • Patent Grant
  • 12022207
  • Patent Number
    12,022,207
  • Date Filed
    Friday, October 13, 2023
    a year ago
  • Date Issued
    Tuesday, June 25, 2024
    7 months ago
Abstract
Systems and methods for implementing array cameras configured to perform super-resolution processing to generate higher resolution super-resolved images using a plurality of captured images and lens stack arrays that can be utilized in array cameras are disclosed. An imaging device in accordance with one embodiment of the invention includes at least one imager array, and each imager in the array comprises a plurality of light sensing elements and a lens stack including at least one lens surface, where the lens stack is configured to form an image on the light sensing elements, control circuitry configured to capture images formed on the light sensing elements of each of the imagers, and a super-resolution processing module configured to generate at least one higher resolution super-resolved image using a plurality of the captured images.
Description
FIELD OF THE INVENTION

The present invention is related to an image sensor including a plurality of heterogeneous imagers, more specifically to an image sensor with a plurality of wafer-level imagers having custom filters, sensors and optics of varying configurations.


BACKGROUND

Image sensors are used in cameras and other imaging devices to capture images. In a typical imaging device, light enters through an opening (aperture) at one end of the imaging device and is directed to an image sensor by an optical element such as a lens. In most imaging devices, one or more layers of optical elements are placed between the aperture and the image sensor to focus light onto the image sensor. The image sensor consists of pixels that generate signals upon receiving light via the optical element. Commonly used image sensors include CCD (charge-coupled device) image sensors and CMOS (complementary metal-oxide-semiconductor) sensors.


Filters are often employed in the image sensor to selectively transmit lights of certain wavelengths onto pixels. A Bayer filter mosaic is often formed on the image sensor. The Bayer filter is a color filter array that arranges one of the RGB color filters on each of the color pixels. The Bayer filter pattern includes 50% green filters, 25% red filters and 25% blue filters. Since each pixel generates a signal representing strength of a color component in the light and not the full range of colors, demosaicing is performed to interpolate a set of red, green and blue values for each image pixel.


The image sensors are subject to various performance constraints. The performance constraints for the image sensors include, among others, dynamic range, signal to noise (SNR) ratio and low light sensitivity. The dynamic range is defined as the ratio of the maximum possible signal that can be captured by a pixel to the total noise signal. Typically, the well capacity of an image sensor limits the maximum possible signal that can be captured by the image sensor. The maximum possible signal in turn is dependent on the strength of the incident illumination and the duration of exposure (e.g., integration time, and shutter width). The dynamic range can be expressed as a dimensionless quantity in decibels (dB) as:










D

R

=


full


well


capacity


RMS


noise






equation



(
1
)









Typically, the noise level in the captured image influences the floor of the dynamic range. Thus, for an 8 bit image, the best case would be 48 dB assuming the RMS noise level is 1 bit. In reality, however, the RMS noise levels are higher than 1 bit, and this further reduces the dynamic range.


The signal to noise ratio (SNR) of a captured image is, to a great extent, a measure of image quality. In general, as more light is captured by the pixel, the higher the SNR. The SNR of a captured image is usually related to the light gathering capability of the pixel.


Generally, Bayer filter sensors have low light sensitivity. At low light levels, each pixel's light gathering capability is constrained by the low signal levels incident upon each pixel. In addition, the color filters over the pixel further constrain the signal reaching the pixel. IR (Infrared) filters also reduce the photo-response from near-IR signals, which can carry valuable information.


These performance constraints of image sensors are greatly magnified in cameras designed for mobile systems due to the nature of design constraints. Pixels for mobile cameras are typically much smaller than the pixels of digital still cameras (DSC). Due to limits in light gathering ability, reduced SNR, limits in the dynamic range, and reduced sensitivity to low light scenes, the cameras in mobile cameras show poor performance.


SUMMARY

Camera arrays, imaging devices including a camera array and/or a method for capturing an image that employ a plurality of imagers where each imager includes a plurality of sensor elements, and lens stack arrays that can be utilized in camera arrays in accordance with embodiments of the invention are disclosed. The plurality of imagers can include at least a first imager and a second imager, where the first imager and the second imager may have the same imaging characteristics or different imaging characteristics.


In one embodiment, the first imaging characteristics and the second imager have different imaging characteristics. The imaging characteristics may include, among others, the size of the imager, the type of pixels included in the imager, the shape of the imager, filters associated with the imager, exposure time of the imager, aperture size associated with the imager, the configuration of the optical element associated with the imager, gain of the imager, the resolution of the imager, and operational timing of the imager.


In one embodiment, the first imager includes a filter for transmitting a light spectrum. The second imager also includes the same type of filter for transmitting the same light spectrum as the first imager but captures an image that is sub-pixel phase shifted from an image captured by the first imager. The images from the first imager and the second imager are combined using a super-resolution process to obtain images of higher resolution.


In one embodiment, the first imager includes a first filter for transmitting a first light spectrum and the second imager includes a second filter for transmitting a second light spectrum. The images from the first and second imagers are then processed to obtain a higher quality image.


In one embodiment, lens elements are provided to direct and focus light onto the imagers. The lens elements form lens stacks that create optical channels, and each lens stack focuses light onto one imager. Because each lens element is associated with one imager, each lens element may be designed and configured for a narrow light spectrum. Further, the thickness of the lens element may be reduced, decreasing the overall thickness of the camera array. In such an embodiment, the lens elements may be made using any suitable fabrication technique, such as, for example using wafer level optics (WLO) technology, injection molding, and/or glass molding.


In one embodiment, the plurality of imagers include at least one near-IR imager dedicated to receiving near-IR (Infrared) spectrum. An image generated from the near-IR imager may be fused with images generated from other imagers with color filters to reduce noise and increase the quality of the images. In another such embodiment, imagers covering other spectrum ranges including far-IR and UV spectra may be included as well.


In one embodiment, the plurality of imagers may be associated with lens elements that provide a zooming capability. In one such embodiment, different imagers may be associated with lenses of different focal lengths to have different fields-of-views and provide different levels of zooming capability. Different fields-of-view can also be achieved using imagers having different sensor sizes/formats by means of different pixel sizes or different numbers of pixels/light sensing elements. A mechanism may be provided to provide smooth transition from one zoom level to another zoom level.


In one or more embodiments, the plurality of imagers is coordinated and operated to obtain at least one of a high dynamic range image, a panoramic image, a hyper-spectral image, distance to an object and a high frame rate video.


An imaging device in accordance with one embodiment of the invention includes at least one imager array, and each imager in the array comprises a plurality of light sensing elements and a lens stack including at least one lens surface, where the lens stack is configured to form an image on the light sensing elements, control circuitry configured to capture images formed on the light sensing elements of each of the imagers, and a super-resolution processing module configured to generate at least one higher resolution super-resolved image using a plurality of the captured images.


In a further embodiment of the invention, a spectral filter is provided within each imager and is configured to pass a specific spectral band of light, and spectral filters that pass different spectral bands are provided within at least two of the imagers.


In another embodiment of the invention, the spectral filter is selected from the group consisting of an organic color filter, an absorptive material, a dielectric coating, an interference filter, a multilayer coating, and combinations thereof.


In a still further embodiment of the invention, at least one of the imagers further comprises a polarizing filter.


In still another embodiment of the invention, the construction of the lens stack within an imager differs based upon the specific spectral band of light passed by the spectral filter within the imager such that chromatic aberrations are reduced.


In a yet further embodiment of the invention, the prescription of at least one surface of the lens stack within an imager is a function of the specific spectral band of light passed by the spectral filter within the imager.


In yet another embodiment of the invention, the at least one surface of the lens stack is configured so that the back focal length of each lens stack in the imager array are the same independent of the spectral band.


In a further embodiment again of the invention, a combination of high and low Abbe number materials is used in the construction of each of the lens stacks to reduce chromatic aberrations.


In another embodiment again of the invention, each lens stack includes at least one aperture stop positioned in front of the light sensing element, and the spectral filter is positioned in proximity to the aperture stop.


In a further additional embodiment of the invention, the at least one aperture stop is formed by a light blocking material selected from the group consisting of metal materials, oxide materials, black particle filled photoresists and combinations thereof.


In another additional embodiment of the invention, at least one lens surface in the optical stack of an imager differs based upon the specific spectral band of light passed by the spectral filter within the imager, and each lens surface is selected from the group consisting of diffractive, Fresnel, refractive and combinations thereof.


In a still yet further embodiment of the invention, the radii of curvature of the lens surfaces differ based upon the specific spectral band of light passed by the spectral filter within the imager.


In still yet another embodiment of the invention, the lens stacks of each of the imagers have the same back focal length.


In a still further embodiment again of the invention, the light sensing elements are disposed to detect an image in a backside imaging mode.


In still another embodiment again of the invention, a separate negative lens element is disposed in close proximity to the light sensing elements of an imager and in optical alignment with the lens stack of the imager so that the field curvature of the lens stack is corrected.


In a still further additional embodiment of the invention, a separate negative lens element is disposed in close proximity to the light sensing elements of an imager and in optical alignment with the lens stack of the imager so that the field curvature of the lens stack is corrected.


In still another additional embodiment of the invention, at least two of the imagers in the imager array have different fields of view so that different scene sizes can be captured by the imagers.


In a yet further embodiment again of the invention, the lens stacks of the at least two imagers have different focal lengths.


In yet another embodiment again of the invention, the light sensing elements in each of at least two imagers have different sizes.


In a yet further additional embodiment of the invention, the at least two imagers include different numbers of light sensing elements.


Yet another additional embodiment of the invention also includes a mechanical zoom mechanism within the lens stack of an imager for smoothly transitioning between different fields of view.


In a further additional embodiment of the invention again, at least one of the imagers is designed to image light in the near-infrared spectrum.


In another additional embodiment of the invention again, at least one imager is configured to take a measurement of the visible light spectrum, and wherein the control circuitry is configured to use said measurement to control the imaging characteristics of the other imagers in said imaging device.


In a still yet further additional embodiment of the invention, the imaging device includes at least two camera arrays.


In still yet another additional embodiment of the invention, the at least two camera arrays operate in conjunction during imaging to provide stereo images.


In a still yet further embodiment of the invention again, the at least two camera arrays are spatially separated one from the other in at least one plane.


In still yet another embodiment of the invention again, each of the camera arrays include a different combination of imagers each combination of imagers having different imaging characteristics.


In a yet further additional embodiment of the invention again, at least one camera array comprises an N×M array of imagers, where at least one of N and M is greater than 2, and each of said imagers comprising at least two light sensing elements.


In yet another additional embodiment of the invention again, the control circuitry is configured to control the imaging characteristics of each imager.


In another further embodiment of the invention, the controllable imaging characteristics include exposure time, gain, and black level offset.


In still another further embodiment of the invention, the control circuitry is configured to trigger each of said imagers in accordance with a desired sequence.


In yet another further embodiment of the invention, the control circuitry operates the imagers in a staggered sequence.


In another further additional embodiment of the invention, an initial master setting for the imaging characteristics of each imager is set by the control circuitry, predefined deviations from the initial master settings are also set by the control circuitry, and the deviations include functions selected from the group consisting of ISO settings, high dynamic range, gain settings, integration time settings, exposure settings, digital processing settings and combinations thereof.


In another further embodiment of the invention again, the camera arrays are fabricated using techniques consisting of wafer level optics techniques, injection molding, glass molding and combinations thereof.


In still yet another further embodiment of the invention, each of the plurality of imagers are optically separated from each other.


In still another further additional embodiment of the invention, each of the imagers is optically separated from the other imagers by at least two opaque surfaces located in front of the light sensing elements and having openings arranged in axial alignment with the lens stack of the imager.


In still another further embodiment of the invention again, the imagers are optically separated from each other by opaque walls disposed at the boundaries between the imagers.


In yet another further additional embodiment of the invention, the opaque walls are cavities between the imagers filled with light blocking material.


In yet another further embodiment of the invention again, the lens stack includes spacers, and the spacers are constructed from an opaque material.


In another further additional embodiment of the invention again, the lens stack includes spacers, and the spacers are coated with an opaque material.


In still yet another further additional embodiment of the invention, the control circuitry is configured to perform normalization of a captured low resolution image using a one dimensional space filling curve to describe a normalization plane.


In still yet another further embodiment of the invention again, the one dimensional space filling curve is expressed as the coefficients of a polynomial.


In yet another further additional embodiment of the invention again, the control circuitry is configured to capture multiple low resolution images using different imagers having different exposure times.


In still yet another further additional embodiment of the invention again, the light sensing elements of at least one of the imagers used to capture an image are high dynamic range light sensing elements.


In an additional embodiment of the invention, at least one of the imagers used to capture a low resolution image is configured to capture a near-IR low resolution image.


In an additional embodiment of the invention again, the super-resolution module is configured to generate a depth map for the super-resolution image.


In a number of embodiments of the invention, the super-resolution module is configured to select at least one distance as a focal plane and to apply blurring to pixels with depths that are not proximate a focal plane.


In a further embodiment of the invention, the super-resolution processing module is configured to perform temperature normalization with respect to the captured images.


In a still further embodiment of the invention, the point spread functions of the lens stacks vary with temperature, and the super-resolution processing module is configured to perform temperature normalization by selecting a point spread functions from temperature calibration data corresponding to the point spread functions of the lens stacks during the capture of the images.


In still another embodiment of the invention, the super-resolution processing module is configured to computationally correct color differences between the captured images.


In a yet further embodiment of the invention, the super-resolution processing module is configured to computationally correct geometric distortion differences between the captured images.


The features and advantages described in the specification are not all inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a plan view of a camera array with a plurality of imagers, according to one embodiment.



FIG. 2A is a perspective view of a camera array with lens elements, according to one embodiment.



FIG. 2B is a cross-sectional view of a camera array, according to one embodiment.



FIG. 2C is a cross-sectional view of a camera array with optical crosstalk suppression, according to one embodiment.



FIG. 2D is a cross-sectional view of a camera array with optical crosstalk suppression, according to a second embodiment.



FIG. 2E is a cross-sectional view of a camera array incorporating opaque spacers to provide optical crosstalk suppression, according to a further embodiment.



FIG. 2F is a cross-sectional view of a camera array incorporating spacers coated with opaque material to provide crosstalk suppression, according to another embodiment.



FIGS. 3A and 3B are sectional diagrams illustrating changes in the heights of lens elements depending on changes in the dimensions of imagers, according to one embodiment.



FIG. 3C is a diagram illustrating chief ray angles varying depending on differing dimensions of the lens elements.



FIG. 3D is a cross-sectional view of a camera array with field flattening, according to one embodiment.



FIG. 4 is a functional block diagram for an imaging device, according to one embodiment.



FIG. 5 is a functional block diagram of an image processing pipeline module, according to one embodiment.



FIGS. 6A through 6F are plan views of camera arrays having different layouts of heterogeneous imagers, according to embodiments.



FIG. 6G is a diagram conceptually illustrating the manner in which sampling diversity can depend upon object distance.



FIG. 6H is a is a cross sectional view of pixels of an imager in accordance with an embodiment of the invention



FIG. 6I is a diagram conceptually illustrating occlusion zones created when Red and Blue imagers are not symmetrically distributed about the central access of a camera array.



FIG. 6J is a diagram conceptually illustrating the manner in which the occlusion zones illustrated in FIG. 6I are eliminated by distributing Red and Blue imagers symmetrically about the central access of a camera array.



FIG. 7 is a flowchart illustrating a process of generating an enhanced image from lower resolution images captured by a plurality of imagers, according to one embodiment.



FIG. 7A seems to be a flowchart is a flow chart illustrating a process for constructing a normalization plane during calibration in accordance with an embodiment of the invention.



FIG. 7B conceptually illustrates the process for constructing a normalized plane during calibration in accordance with an embodiment of the invention illustrated in FIG. 7A.



FIG. 8A is a cross-sectional view of a camera array with optical zoom, according to one embodiment.



FIG. 8B is a cross-sectional view of a camera array with optical zoom, according to a second embodiment.



FIG. 8C is a cross-sectional view of a camera array with imagers having different fields-of-view, according to a further embodiment.





DETAILED DESCRIPTION

Embodiments of the invention are now described with reference to the figures where like reference numbers indicate identical or functionally similar elements. Also in the figures, the left most digits of each reference number corresponds to the figure in which the reference number is first used.


Many embodiments relate to using a distributed approach to capturing images using a plurality of imagers of different imaging characteristics. Each imager may be configured in such a manner that each imager captures an image that is shifted by a sub-pixel amount with respect to the image captured by other imagers having similar imaging characteristics. Each imager may also include separate optics with different filters and operate with different operating parameters (e.g., exposure time). Distinct images generated by the imagers are processed to obtain an enhanced image. In many embodiments, the separate optics incorporated into each imager are implemented using a lens stack array. The lens stack array can include one or more optical elements fabricated using wafer level optics (WLO) technology.


A sensor element or pixel refers to an individual light sensing element in an imager. The light sensing element can be, but is not limited to, traditional CIS (CMOS Image Sensor), CCD (charge-coupled device), high dynamic range pixel, multispectral pixel and various alternatives thereof.


A sensor refers to a two dimensional array of pixels used to capture an image formed on the sensor by the optics of the imager. The sensor elements of each sensor have similar physical properties and receive light through the same optical component. Further, the sensor elements in the each sensor may be associated with the same color filter.


A camera array refers to a collection of imagers designed to function as a unitary component. The camera array may be fabricated on a single chip for mounting or installing in various devices.


An array of camera arrays refers to an aggregation of two or more camera arrays. Two or more camera arrays may operate in conjunction to provide extended functionality over a single camera array, such as, for example, stereo resolution.


Image characteristics of an imager refer to any characteristics or parameters of the imager associated with capturing of images. The imaging characteristics may include, among others, the size of the imager, the type of pixels included in the imager, the shape of the imager, filters associated with the imager, the exposure time of the imager, aperture size associated with the imager, the configuration of the optical element associated with the imager (such as the number of elements, the shapes, profiles and sizes of the lens surfaces, including the radii of curvature, aspheric coefficients, focal lengths and FOVs of the objectives, color correction, F/#s, etc.), the gain of the imager, the resolution of the imager, and operational timing of the imager.


Structure of Camera Array



FIG. 1 is a plan view of a camera array 100 with imagers 1A through NM, according to one embodiment. The camera array 100 is fabricated on a semiconductor chip to include a plurality of imagers 1A through NM. Each of the imagers 1A through NM may include a plurality of pixels (e.g., 0.32 Mega pixels). In one embodiment, the imagers 1A through NM are arranged into a grid format as illustrated in FIG. 1. In other embodiments, the imagers are arranged in a non-grid format. For example, the imagers may be arranged in a circular pattern, zigzagged pattern or scattered pattern or an irregular pattern including sub-pixel offsets.


The camera array may include two or more types of heterogeneous imagers, each imager including two or more sensor elements or pixels. Each one of the imagers may have different imaging characteristics. Alternatively, there may be two or more different types of imagers where the same type of imager shares the same imaging characteristics.


In one embodiment, each imager 1A through NM has its own filter and/or optical element (e.g., lens). Specifically, each of the imagers 1A through NM or a group of imagers may be associated with spectral color filters to receive certain wavelengths of light. Example filters include a traditional filter used in the Bayer pattern (R, G, B or their complements C, M, Y), an IR-cut filter, a near-IR filter, a polarizing filter, and a custom filter to suit the needs of hyper-spectral imaging. Some imagers may have no filter to allow reception of both the entire visible spectra and near-IR, which increases the imager's signal-to-noise ratio. The number of distinct filters may be as large as the number of imagers in the camera array. Further, each of the imagers 1A through NM or a group of imagers may receive light through lenses having different optical characteristics (e.g., focal lengths) or apertures of different sizes.


In one embodiment, the camera array includes other related circuitry. The other circuitry may include, among others, circuitry to control imaging parameters and sensors to sense physical parameters. The control circuitry may control imaging parameters such as exposure times, gain, and black level offset. The sensor may include dark pixels to estimate dark current at the operating temperature. The dark current may be measured for on-the-fly compensation for any thermal creep that the substrate may suffer from. Alternatively, compensation of thermal effects associated with the optics, e.g., because of changes in refractive index of the lens material, may be accomplished by calibrating the PSF for different temperatures.


In one embodiment, the circuit for controlling imaging parameters may trigger each imager independently or in a synchronized manner. The start of the exposure periods for the various imagers in the camera array (analogous to opening a shutter) may be staggered in an overlapping manner so that the scenes are sampled sequentially while having several imagers being exposed to light at the same time. In a conventional video camera sampling a scene at N exposures per second, the exposure time per sample is limited to 1/N seconds. With a plurality of imagers, there is no such limit to the exposure time per sample because multiple imagers may be operated to capture images in a staggered manner.


Each imager can be operated independently. Entire or most operations associated with each individual imager may be individualized. In one embodiment, a master setting is programmed and deviation (i.e., offset or gain) from such master setting is configured for each imager. The deviations may reflect functions such as high dynamic range, gain settings, integration time settings, digital processing settings or combinations thereof. These deviations can be specified at a low level (e.g., deviation in the gain) or at a higher level (e.g., difference in the ISO number, which is then automatically translated to deltas for gain, integration time, or otherwise as specified by context/master control registers) for the particular camera array. By setting the master values and deviations from the master values, higher levels of control abstraction can be achieved to facilitate a simpler programming model for many operations. In one embodiment, the parameters for the imagers are arbitrarily fixed for a target application. In another embodiment, the parameters are configured to allow a high degree of flexibility and programmability.


In one embodiment, the camera array is designed as a drop-in replacement for existing camera image sensors used in cell phones and other mobile devices. For this purpose, the camera array may be designed to be physically compatible with conventional image sensors of approximately the same resolution although the achieved resolution of the camera array may exceed conventional image sensors in many photographic situations. Taking advantage of the increased performance, the camera array in accordance with embodiments of the invention may include fewer pixels to obtain equal or better quality images compared to conventional image sensors. Alternatively, the size of the pixels in the imager may be reduced compared to pixels in conventional image sensors while achieving comparable results.


In order to match the raw pixel count of a conventional image sensor without increasing silicon area, the logic overhead for the individual imagers is preferably constrained in the silicon area. In one embodiment, much of the pixel control logic is a single collection of functions common to all or most of the imagers with a smaller set of functions applicable to each imager. In this embodiment, the conventional external interface for the imager may be used because the data output does not increase significantly for the imagers.


In one embodiment, the camera array including the imagers replaces a conventional image sensor of M megapixels. The camera array includes N×N imagers, each sensor including pixels of







M

N
2


.





Each imager in the camera array also has the same aspect ratio as the conventional image sensor being replaced. Table 1 lists example configurations of camera arrays according to the present invention replacing conventional image sensor.










TABLE 1







Conventional Image
Camera array Including Imagers













Sensor

No. of
No. of

Super-















Total
Effective
Total
Horizontal
Vertical
Imager
Resolution
Effective


Mpixels
Resolution
Mpixels
Imagers
Imagers
Mpixels
Factor
Resolution





8
3.2
8
5
5
0.32
3.2
3.2




8
4
4
0.50
2.6
3.2




8
3
3
0.89
1.9
3.2


5
2.0
5
5
5
0.20
3.2
2.0




5
4
4
0.31
2.6
2.0




5
3
3
0.56
1.9
2.0


3
1.2
3
5
5
0.12
3.2
1.2




3
4
4
0.19
2.6
1.2




3
3
3
0.33
1.9
1.2









The Super-Resolution Factors in Table 1 are estimates and the Effective Resolution values may differ based on the actual Super-Resolution factors achieved by processing.


The number of imagers in the camera array may be determined based on, among other factors, (i) resolution, (ii) parallax, (iii) sensitivity, and (iv) dynamic range. A first factor for the size of imager is the resolution. From a resolution point of view, the preferred number of the imagers ranges from 2×2 to 6×6 because an array size of larger than 6×6 is likely to destroy frequency information that cannot be recreated by the super-resolution process. For example, 8 Megapixel resolution with 2×2 imager will require each imager to have 2 Megapixels. Similarly, 8 Megapixel resolution with a 5×5 array will require each imager to have 0.32 Megapixels. In many embodiments, the number of imagers in the array is determined based upon the requirements of a specific application.


A second factor that may constrain the number of imagers is the issue of parallax and occlusion. With respect to an object captured in an image, the portion of the background scene that is occluded from the view of the imager can be referred to as the “occlusion set.” When two imagers capture the object from two different locations, the occlusion set of each imager is different. Hence, there may be scene pixels captured by one imager but not the other. To resolve this issue of occlusion, it is desirable to include a certain minimal set of imagers for a given type of imager and to distribute the imagers symmetrically around the central axis of the camera array.


A third factor that may put a lower bound on the number of imagers is the issue of sensitivity in low light conditions. To improve low light sensitivity, imagers for detecting near-IR spectrum may be needed. The number of imagers in the camera array may need to be increased to accommodate such near-IR imagers.


A fourth factor in determining the size of the imager is dynamic range. To provide dynamic range in the camera array, it is advantageous to provide several imagers of the same filter type (chroma or luma). Each imager of the same filter type may then be operated with different exposures simultaneously. The images captured with different exposures may be processed to generate a high dynamic range image.


Based on these factors, the preferred number of imagers is 2×2 to 6×6. 4×4 and 5×5 configurations are more preferable than 2×2 and 3×3 configurations because the former are likely to provide sufficient number of imagers to resolve occlusion issues, increase sensitivity and increase the dynamic range. In addition, rectangular arrays can also be preferred. At the same time, the computational load required to recover resolution from these array sizes will be modest in comparison to that required in the 6×6 array. Arrays larger than 6×6 may, however, be used to provide additional features such as optical zooming and multispectral imaging. Although only square imagers are described here, as will be discussed in greater detail later, such imagers may have different x- and y-dimensions.


Another consideration is the number of imagers dedicated to luma sampling. By ensuring that the imagers in the array dedicated to near-IR sampling do not reduce the achieved resolution, the information from the near-IR images is added to the resolution captured by the luma imagers. For this purpose, at least 50% of the imagers may be used for sampling the luma and/or near-IR spectra. In one embodiment with 4×4 imagers, 4 imagers samples luma, 4 imagers samples near-IR, and the remaining 8 imagers sample two chroma (Red and Blue). In another embodiment with 5×5 imagers, 9 imagers sample luma, 8 imagers sample near-IR, and the remaining 8 imagers sample two chroma (Red and Blue). Further, the imagers with these filters may be arranged symmetrically within the camera array to address occlusion due to parallax. In a further embodiment with 5×5 imager, 17 imagers sample luma, 4 images sample Red, and 4 imagers sample Blue.


In one embodiment, the imagers in the camera array are spatially separated from each other by a predetermined distance. By increasing the spatial separation, the parallax between the images captured by the imagers may be increased. The increased parallax is advantageous where more accurate distance information is important. Separation between two imagers may also be increased to approximate the separation of a pair of human eyes. By approximating the separation of human eyes, a realistic stereoscopic 3D image may be provided to present the resulting image on an appropriate 3D display device.


In one embodiment, multiple camera arrays are provided at different locations on a device to overcome space constraints. One camera array may be designed to fit within a restricted space while another camera array may be placed in another restricted space of the device. For example, if a total of 20 imagers are required but the available space allows only a camera array of 1×10 imagers to be provided on either side of a device, two camera arrays each including 10 imagers may be placed on available space at both sides of the device. Each camera array may be fabricated on a substrate and be secured to a motherboard or other parts of a device. In addition, such imagers do not have to be homogenous in size, and may have different x- and y-dimensions. The images collected from multiple camera arrays may be processed to generate images of desired resolution and performance.


A design for a single imager may be applied to different camera arrays each including other types of imagers. Other variables in the camera array such as spatial distances, color filters and combination with the same or other sensors may be modified to produce a camera array with differing imaging characteristics. In this way, a diverse mix of camera arrays may be produced while maintaining the benefits from economies of scale.


Wafer Level Optics Integration


In one embodiment, the camera array employs wafer level optics (WLO) technology. Although in many embodiments, similar optical channels can be constructed using any of a variety of techniques including but not limited to injection molding, glass molding, and/or combinations of these techniques with other techniques including WLO techniques. WLO itself is a technology that encompasses a number of processes, including, for example, molding optics (such as arrays of lens modules and arrays of those lens arrays) on glass wafers, stacking of those wafers (including wafers having lenses replicated on either side of the substrate) with appropriate spacers, at either a wafer or die-level, followed by packaging of the optics directly with the imager into a monolithic integrated module.


The WLO procedure may involve, among other procedures, using a diamond-turned mold to create each polymer lens element on a glass substrate. More specifically, the process chain in WLO generally includes producing a diamond turned lens master (both on an individual and array level), then producing a negative mold for replication of that master (also called a stamp or tool), and then finally forming a polymer replica on a glass substrate, which has been structured with appropriate supporting optical elements, such as, for example, apertures, light blocking materials, filters, etc.



FIG. 2A is a perspective view of a camera array assembly 200 with wafer level optics 210 and a sensor array 230, according to one embodiment. The wafer level optics 210 includes a plurality of lens elements 220, each lens element 220 covering one of twenty-five imagers 240 in the sensor array 230. Note that the camera array assembly 200 has an array of smaller lens elements occupy much less space compared to a single large lens covering the entire sensor array 230. It should also be noted that each of the lenses may be of a different type. For example, each substrate level may contain lenses that are diffractive, refractive, Fresnel, or a combination thereof. It should be further noted that in the context of the camera array, that a lens element 220 may comprise one or multiple separate optical lens elements axially arranged with respect to each another. Finally, it should be noted that, for most lens materials there will be a thermal induced variance in the refractive index of the material, which must be corrected to obtain good image quality. A temperature normalization procedure will be described in greater detail in the sections to follow. FIG. 2B is a sectional view of a camera array assembly 250, according to one embodiment. The camera assembly 250 includes a top lens wafer 262, a bottom lens wafer 268, a substrate 278 with multiple sensors and associated light sensing elements formed thereon and spacers 258, 264 and 270. The camera array assembly 250 is packaged within an encapsulation 254. An optional top spacer 258 may be placed between the encapsulation 254 and the top lens wafer 262; however, it is not essential to the construction of the camera assembly 250. Optical elements 288 are formed on the top lens wafer 262. Although these optical elements 288 are shown as being identical in FIG. 2B, it should be understood that different types, sizes, and shapes of elements may be used. A middle spacer 264 is placed between the top lens wafer 262 and a bottom lens wafer 268. Another set of optical elements 286 is formed on the bottom lens wafer 268. A bottom spacer 270 is placed between the bottom lens wafer 268 and the substrate 278. Through-silicon vias 274 are also provided to paths for transmitting signal from the imagers. The top lens wafer 262 may be partially coated with light blocking materials 284 (see discussion below) to block of light. The portions of the top lens wafer 262 not coated with the blocking materials 284 serve as aperture stops through which light passes to the bottom lens wafer 268 and the light sensing elements. Although only a single aperture stop is shown in the embodiment provided in FIG. 2B, it should be understood that additional aperture stops may be formed from opaque layers disposed on any and all of the substrate faces in the camera assembly to improve stray light performance and reduced optical crosstalk. A fuller discussion of optical crosstalk suppression is provided below. In addition, although the above embodiment is shown with spacers 258, 264 and 270 the spacer function can also be directly implemented by modifying the lens structures (or substrates) so that the lenses can be directly interconnected. In such an embodiment, the lens height can be extended, and the lens glued directly to the upper substrates thereby eliminating the need for spacer layers.


In the embodiment of FIG. 2B, filters 282 are formed on the bottom lens wafer 268. Light blocking materials 280 may also be coated on the bottom lens 268 to function as an optical isolator. A light blocking material 280 may also be coated on the substrate 278 to protect the sensor electronics from incident radiation. Spacers 283 can also be placed between the bottom lens wafer 268 and the substrate 278 and between the lens wafers 262, 268. In many embodiments, the spacers 283 are similar to the spacers 264 and 270. In a number of embodiments, each layer of spacers is implemented using a single plate. Although not illustrated in FIG. 2B, many embodiments of the invention also include spacers between each optical channel located on top of the top lens wafer 262 that are similar to, or implemented in single layer with, the spacer 258 shown at the edge of the lens stack array. As is discussed further below the spacers can be constructed from and/or coated in light blocking materials to isolate the optical channels formed by the wafer level optics. For the purposes of this application, suitable light blocking materials may include any opaque material, such as, for example, a metal material like Ti and Cr, or an oxide of these materials like black chromium (chrome and chrome oxide), or dark silicon, or a black particle filled photoresist like a black matrix polymer (PSK2000 from Brewer Science). The bottom surface of the substrate is covered with a backside redistribution layer (“RDL”) and solder balls 276. In one embodiment, the camera array assembly 250 includes 5×5 array of imagers. The camera array 250 has a width W of 7.2 mm, and a length of 8.6 mm. Each imager in the camera array may have a width S of 1.4 mm. The total height t1 of the optical components is approximately 1.26 mm and the total height t2 the camera array assembly is less than 2 mm. Other heights t1 and t2 are possible for different lens designs.


Optical Crosstalk Suppression


As discussed above, the camera array assembly 250 is composed of multiple imagers, each of which, as shown in FIGS. 2A and 2B, have a corresponding optical pathway or channel that directs light from the scene through the top lens wafer 262, the middle spacer 264, bottom lens wafer 268, the bottom spacer 270 and onto a plurality of light sensing elements that form a sensor 240 disposed on the substrate 278. It is important to final image quality that the light impinging on any particular sensor come only from its designated optical pathway or channel. Optical crosstalk can be considered to occur when light that is incident on the top of one imager is also received by light sensing elements of another imager within the array. Any crosstalk between optical channels from, for example, diffraction and/or scattering of light from elements within the camera, can introduce artifacts in the image data. In particular, crosstalk between optical channels means that an imager will sense the flux from a source on the imager that is inconsistent with the reconstructed position of the image of that detector and the position of the image. This results in both a loss of image data, and the introduction of overlapping noise that cannot be distinguished from real image data. Accordingly, all optical channels of the camera array should be optically isolated so that a ray of light from one lens or optical channel cannot cross from one optical channel to the other. In one embodiment, shown in FIG. 2C, opaque spacers 281 or vertical opaque walls 282 are disposed between each of the optical channels 284. Although opaque spacers do provide a level of optical crosstalk suppression, vertical opaque walls are preferable because in such an embodiment both the space between substrates and the relevant sections of the substrates themselves are rendered non-transparent.


The optical crosstalk suppressing vertical opaque walls may be made using any suitable technique that provides for the introduction of an opaque surface or material between the optical channels 284 of the camera array assembly 286. In one embodiment, the vertical opaque walls are formed by fully or partially introducing grooves into the lens stack 288 of the camera array assembly 286. It is preferable not to cut the grooves fully through the lens stack to preserve the mechanical integrity of the camera array assembly. Such grooves may be introduced by any suitable technique, such as, for example, by dicing into the front or backside of the lens array stack 286 using a wafer dicer (disk/blade), or by laser cutting, or water-jet cutting. Once the grooves are formed, they are filled with a light blocking material. Alternatively, the inner side walls of the grooves may be coated with a light blocking material and the remainder of the groove filled with another material with low shrinkage properties. As discussed above, a light blocking material is any opaque material, such as, for example, a metal material, a metal oxide, dark silicon, or a black particle filled photoresist like a black matrix polymer.


In another embodiment, shown schematically in FIG. 2D, optical crosstalk suppression is achieved by creating a virtual opaque wall formed by a series of stacked apertures. In this embodiment, a series of aperture stops are formed on the various substrate levels 290 of the camera array assembly 292 by coating the substrates with opaque layers 294 provided with a narrow opening or aperture 296. If enough of these apertures are formed, it is possible to mimic the optical isolation provided by a vertical opaque wall. In such a system, a vertical wall would be the mathematical limit of stacking apertures one on top of each other. Preferably, as many apertures as possible, separated from each other by sufficient space, are provided so that such a virtual opaque wall is created. For any camera array assembly, the number and placement of opaque layers needed to form such a virtual vertical opaque wall can be determined through a ray tracing analysis.


In a further embodiment shown schematically in FIG. 2E, optical crosstalk suppression is achieved using spacers 295 constructed from opaque materials. In another further embodiment shown schematically in FIG. 2F, optical crosstalk suppression is achieved using spacers 296 coated with an opaque coating 297. The embodiments illustrated in FIGS. 2E and 2F include stacked apertures 294 similar to the stacked apertures 294 illustrated in FIG. 2D. In several embodiments, optical crosstalk suppression is achieved without using stacked apertures. In many embodiments, any of a variety of light blocking materials can be used in the construction or coating of spacers to achieve optical isolation.


Lens Properties



FIGS. 3A and 3B are diagrams illustrating changes in the height t of a lens element pursuant to changes in dimensions in an x-y plane. A lens element 320 in FIG. 3B is scaled by 1/n compared to a lens element 310 in FIG. 3A. Note that during scaling it is important to keep the same F #so image properties don't change. As the diameter L/n of the lens element 320 is smaller than the diameter L by a factor of n, the height t/n of the lens element 320 is also smaller than the height t of the lens element 310 by a factor of n. Hence, by using an array of smaller lens elements, the height of the camera array assembly can be reduced significantly. The reduced height of the camera array assembly may be used to design less aggressive lenses having better optical properties such as improved chief ray angle, reduced distortion, and improved color aberration.



FIG. 3C illustrates improving a chief ray angle (CRA) by reducing the thickness of the camera array assembly. CRA1 is the chief ray angle for a single lens covering an entire camera array. Although the chief ray angle can be reduced by increasing the distance between the camera array and the lens, the thickness constraints impose constraints on increasing the distance. Hence, the CRA1 for camera array having a single lens element is large, resulting in reduced optical performance. CRA2 is the chief ray angle for an imager in the camera array that is scaled in thickness as well as other dimensions. The CRA2 remains the same as the CRA1 of the conventional camera array and results in no improvement in the chief ray angle. By modifying the distance between the imager and the lens element as illustrated in FIG. 3C, however, the chief ray angle CRA3 in the camera array assembly may be reduced compared to CRA1 or CRA2, resulting in better optical performance. As described above, the camera arrays according to the present invention has reduced thickness requirements, and therefore, the distance of the lens element and the camera array may be increased to improve the chief ray angle. This relaxed CRA, in turn, results in a lower F #and improved Modulation Transfer Function (MTF).


Specifically, one of the issues raised in camera design is how to correct for field curvature. An image projected through a lens is not planar, but has an inherently curved surface. One way to correct this field curvature is to position a thick negative lens element 312 close to or directly on the imager surface 314. The negative lens element planarizes the various angled beams of light 316 from the image, thereby addressing the field curvature problem. Such field flattened images provide superior image performance, allow for the manufacture of array cameras with relaxed TTL requirements, and deliver very homogeneous MTF. However, one problem with this approach is that this field flattening approach intrinsically requires a high CRA. This makes the technique unsuitable for most cameras; however, camera arrays in accordance with embodiments of the invention allow for the use of backside imaging (BSI). Positioning the image sensor behind the substrate relaxes the CRA angle requirement, thereby allowing for the use of the negative lens element field flattening approach shown in FIG. 3D.


Another advantage of the array camera relates to chromatic aberrations. Specifically, in a conventional polychromatic lens, the lens has to be corrected for chromatic aberrations, because the focal length through the lens is different for different wavelengths of light. As a result, it is necessary to compromise the performance of the lens for some of the color wavelengths to get acceptable overall color performance. By making each optical channel narrow spectral band, color aberration is reduced and/or prevented, and each lens may be optimized to a specific color wavelength. For example, an imager receiving visible or near-IR spectrum may have a lens element specifically optimized for this spectral band of light. For imagers detecting other light spectrum, the lens element may be constructed with different properties, such as radii of curvature, so that a constant focal length across all wavelengths of light is achieved so that, in turn, the focal plane is the same for different spectral bands of light. The matching of the focal plane across different wavelengths of light increases the sharpness of image captured at the imager and reduces longitudinal chromatic aberration. Because each lens element may be designed to direct a narrow band of light, the concomitant lack of color aberration means that the lens elements can be subject to less rigorous design constraints, yet produce better or equivalent performance compared to a conventional lens element covering a wide light spectrum. In particular, there is no need to undertake costly aberration balancing correction. What is more, simple lenses generally have better MTF and lower F #(higher sensitivity). It should be noted that although the lenses used in these array cameras have much smaller color aberrations when compared to conventional polychromatic lenses, each lens is still designed to focus a certain wavelength-bandwidth. Accordingly, in one embodiment each of these “monochromatic” lenses can be optimally color corrected by using combinations of high and low Abbe number materials (different optical dispersions).


Light of different wavelengths having different focal lengths (longitudinal color aberration) is not the only type of aberration that occurs in polychromatic optical systems. The refractive index of a lens is dependent on the wavelength of light passing through the lens. As a result, a lens will impart different magnification to colors of different wavelengths. For example, the red wavelength band might have a slightly smaller magnification than green, and green may in turn have a slightly smaller magnification than blue. If the images obtained from these different wavelengths of light are then overlaid without correction, the image will lose resolution because the different colors will not overlap correctly. Based on the properties of the material, the differential lateral distortions of the color magnification can be determined and then corrected. Correction can be accomplished by restricting the profiles of the lenses so that each color has the same magnification, but this reduces the possible degrees of freedom available for lens manufacture, and reduces the ability to optimize MTF. Accordingly, lateral distortion can be permitted optically, and then corrected after imaging computationally. The electronic correction of the lateral color of the lens can actually provide improvements to system performance above and beyond simply correcting for the original distortion, because such correction directly improves the resolution of the system in terms of polychromatic MTF. In particular, lateral color aberrations in a lens can be seen as a color dependent distortion of the lens. By mapping all differently distorted single color images of an object back to the same rectangle, perfect overlap can be achieved in the full color image resulting in the polychromatic MTF being the same as the monochromatic one (not only due to the individual color channel color-blur correction, but also as a result of the exact superposition of the different colors).


Yet another advantage to using many lenses, each optimized for use with a narrow band of light, is that the there is no restriction on the type of lens that may be used. In particular, the array camera allows for the use of diffractive, refractive, Fresnel lenses, or combinations of these types of lenses. Diffractive lenses are attractive because they allow for the creation of complex wavefronts with an essentially flat optical element, and they are also relatively simple to manufacture. In conventional cameras it is not possible to use diffractive lenses because having a single imager means that the lens must be able to efficiently transmit a wide spectrum of light, and while diffractive lenses are very efficient at transmitting narrow wavelength bands of light, there is a steep drop-off in performance for wavelengths of light outside of this optimized range. Because each array of the current camera may be focused on a narrow wavelength of light, the narrow optimized wavelength band of these diffractive lenses is not a limiting factor.


Other advantages of smaller lens elements include, among others, reduced cost, reduced amount of materials, and the reduction in the manufacturing steps. By providing n2 lenses that are 1/n the size in x and y dimension (and thus 1/n thickness), the wafer size for producing the lens element may also be reduced. This reduces the cost and the amount of materials considerably. Further, the number of lens substrates is reduced, which results in a reduced number of manufacturing steps and reduced attendant yield costs. The placement accuracy required to register the lens array to the imagers is typically no more stringent than in the case of a conventional imager because the pixel size for the camera array according to the present invention may be substantially the same as a conventional image sensor. In addition, monochromatic aberrations scale with lens diameter. Because array cameras are able to use smaller lenses, any aberrations that exist are smaller so it is possible to use lenses with simpler profiles. This results in a system that is simultaneously better and less costly to fabricate. Smaller sized lenses also have a lower volume, which results in lower sag or shrinkage during manufacture. Shrinkage is bad for replication because it deforms the desired lens profile, and results in the need for the fabricator to precompensate for the predicted level of sag so that the final lens shape will be correct. This precompensation is difficult to control. With lower sag/shrinkage it is not necessary to have these tight fabrication controls, again lowering the overall cost of the manufacture of the lenses.


In one embodiment, the WLO fabrication process includes: (i) incorporating lens element stops by plating the lens element stops onto the substrate before lens molding, and (ii) etching holes in the substrate and performing two-sided molding of lenses through the substrate. The etching of holes in the substrate is advantageous because index mismatch is not caused between plastic and substrate. In this way, light absorbing substrate that forms natural stops for all lens elements (similar to painting lens edges black) may be used.


In one embodiment, filters are part of the imager. In another embodiment, filters are part of a WLO subsystem. In an embodiment including a filter, it is preferred to dispose the filter (whether CFA, IR and/or VIS) into or close to the aperture stop surface and not at the imager sensor surface, because when positioned at a distance from the imager sensor small defects in those filter layers are averaged out over all entrance pupil positions, and are therefore less visible.


Imaging System and Processing Pipeline



FIG. 4 is a functional block diagram illustrating an imaging system 400, according to one embodiment. The imaging system 400 may include, among other components, the camera array 410, an image processing pipeline module 420 and a controller 440. The camera array 410 includes two or more imagers, as described above in detail with reference to FIGS. 1 and 2. Images 412 are captured by the two or more imagers in the camera array 410.


The controller 440 is hardware, software, firmware or a combination thereof for controlling various operation parameters of the camera array 410. The controller 440 receives inputs 446 from a user or other external components and sends operation signals 442 to control the camera array 410. The controller 440 may also send information 444 to the image processing pipeline module 420 to assist processing of the images 412.


The image processing pipeline module 420 is hardware, firmware, software or a combination for processing the images received from the camera array 410. The image processing pipeline module 420 processes multiple images 412, for example, as described below in detail with reference to FIG. 5. The processed image 422 is then sent for display, storage, transmittal or further processing.



FIG. 5 is a functional block diagram illustrating the image processing pipeline module 420, according to one embodiment. The image processing pipeline module 420 may include, among other components, an upstream pipeline processing module 510, an image pixel correlation module 514, a parallax confirmation and measurement module 518, a parallax compensation module 522, a super-resolution module 526, an address conversion module 530, an address and phase offset calibration module 554, and a downstream color processing module 564.


The address and phase offset calibration module 554 is a storage device for storing calibration data produced during camera array characterization in the manufacturing process or a subsequent recalibration process. In several embodiments, the calibration data can indicate mapping between the addresses of physical pixels 572 in the imagers and the logical addresses 546, 548 of an image. In other embodiments, a variety of calibration data appropriate to a specific application can be utilized in the address and phase offset calibration module.


The address conversion module 530 performs normalization based on the calibration data stored in the address and phase offset calibration module 554. Specifically, the address conversion module 530 converts “physical” addresses of the individual pixels in the image to “logical” addresses 548 of the individual pixels in the imagers or vice versa. In order for super-resolution processing to produce an image of enhanced resolution, the phase difference between corresponding pixels in the individual imagers needs to be resolved. The super-resolution process may assume that for each pixel in the resulting image the set of input pixels from each of the imager is consistently mapped and that the phase offset of the image captured by each imager is already known with respect to the position of the pixel in the resulting image. Alternatively, the pixel offsets can be estimated prior to the superresolution process. The address conversion module 530 resolves such phase differences by converting the physical addresses in the images 412 into logical addresses 548 of the resulting image for subsequent processing.


The images 412 captured by the imagers 540 are provided to the upstream pipeline processing module 510. The upstream pipe processing module 510 may perform one or more of normalization of the color planes, Black Level calculation and adjustments, fixed noise compensation, optical PSF (point spread function) deconvolution, noise reduction, lateral color correction and crosstalk reduction.


In one embodiment, the upstream pipeline processing module also performs temperature normalization. Temperature normalization corrects for changes in the refractive index of the optical components through which the imagers receive light that result from changes in the temperature of the camera during use. In several embodiments, the temperature normalization process involves determining the temperature of the camera array by measuring the dark current of one or an average of a number of the camera array's imagers. Using this measurement, a refractive index normalization is performed by picking the correct point spread function from temperature calibration data. Different point spread functions may be obtained during a temperature dependent refractive index characterization of the camera during manufacture, and stored in the imaging system for use in the temperature normalization process.


After the image is processed by the upstream pipeline processing module 510, an image pixel correlation module 514 performs calculation to account for parallax that becomes more apparent as objects being captured approach the camera array. Specifically, the image pixel correlation module 514 aligns portions of images captured by different imagers to compensate for the parallax. In one embodiment, the image pixel correlation module 514 compares the difference between the average values of neighboring pixels with a threshold and flags the potential presence of parallax when the difference exceeds the threshold. The threshold may change dynamically as a function of the operating conditions of the camera array. Further, the neighborhood calculations may also be adaptive and reflect the particular operating conditions of the selected imagers.


The image is then processed by the parallax confirmation and measurement module 518 to detect and meter the parallax. In one embodiment, parallax detection is accomplished by a running pixel correlation monitor. This operation takes place in logical pixel space across the imagers with similar integration time conditions. When the scene is at practical infinity, the data from the imagers is highly correlated and subject only to noise-based variations. When an object is close enough to the camera, however, a parallax effect is introduced that changes the correlation between the imagers. Due to the spatial layout of the imagers, the nature of the parallax-induced change is consistent across all imagers. Within the limits of the measurement accuracy, the correlation difference between any pair of imagers dictates the difference between any other pair of imagers and the differences across the other imagers. This redundancy of information enables highly accurate parallax confirmation and measurement by performing the same or similar calculations on other pairs of imagers. If parallax is present in the other pairs, the parallax should occur at roughly the same physical location of the scene taking into account the positions of the imagers. The measurement of the parallax may be accomplished at the same time by keeping track of the various pair-wise measurements and calculating an “actual” parallax difference as a least squares (or similar statistic) fit to the sample data. Other methods for detecting the parallax may include detecting and tracking vertical and horizontal high-frequency image elements from frame-to-frame.


The parallax compensation module 522 processes images including objects close enough to the camera array to induce parallax differences larger than the accuracy of the phase offset information required by super resolution process. The parallax compensation module 522 uses the scan-line based parallax information generated in the parallax detection and measurement module 518 to further adjust mapping between physical pixel addresses and logical pixel addresses before the super-resolution process. There are two cases that occur during this processing. In a more common case, addressing and offsetting adjustment are required when the input pixels have shifted positions relative to the image-wise-corresponding pixels in other imagers. In this case, no further processing with respect to parallax is required before performing super-resolution. In a less common case, a pixel or group of pixels are shifted in such a way that exposes the occlusion set. In this case, the parallax compensation process generates tagged pixel data indicating that the pixels of the occlusion set should not be considered in the super-resolution process.


After the parallax change has been accurately determined for a particular imager, the parallax information 524 is sent to the address conversion module 530. The address conversion module 530 uses the parallax information 524 along with the calibration data 558 from the address and phase offset calibration module 554 to determine the appropriate X and Y offsets to be applied to logical pixel address calculations. The address conversion module 530 also determines the associated sub-pixel offset for a particular imager pixel with respect to pixels in the resulting image 428 produced by the super-resolution process. The address conversion module 530 takes into account the parallax information 524 and provides logical addresses 546 accounting for the parallax.


After performing the parallax compensation, the image is processed by the super-resolution module 526 to obtain a high resolution synthesized image 422 from low resolution images, as described below in detail. The synthesized image 422 may then be fed to the downstream color processing module 564 to perform one or more of the following operations: focus recover, white balance, color correction, gamma correction, RGB to YUV correction, edge-aware sharpening, contrast enhancement and compression.


The image processing pipeline module 420 may include components for additional processing of the image. For example, the image processing pipeline module 420 may include a correction module for correcting abnormalities in images caused by a single pixel defect or a cluster of pixel defects. The correction module may be embodied on the same chip as the camera array, as a component separate from the camera array or as a part of the super-resolution module 526.


Super-Resolution Processing


In one embodiment, the super-resolution module 526 generates a higher resolution synthesized image by processing low resolution images captured by the imagers 540. The overall image quality of the synthesized image is higher than images captured from any one of the imagers individually. In other words, the individual imagers operate synergistically, each contributing to higher quality images using their ability to capture a narrow part of the spectrum without sub-sampling. The image formation associated with the super-resolution techniques may be expressed as follows:

yk=Wk·x+nk,∀k=1 . . . p  equation (2)

where Wk represents the contribution of the HR scene (x) (via blurring, motion, and sub-sampling) to each of the LR images (yk) captured on each of the k imagers and nk is the noise contribution.


Imager Configurations



FIGS. 6A through 6F illustrate various configurations of imagers for obtaining a high resolution image through a super-resolution process, according to embodiments of the present invention. In FIGS. 6A through 6F, “R” represents an imager having a red filter, “G” represents a imager having a green filter, “B” represents an imager having a blue filter, “P” represents a polychromatic imager having sensitivity across the entire visible spectra and near-IR spectrum, and “I” represents an imager having a near-IR filter. The polychromatic imager may sample image from all parts of the visible spectra and the near-IR region (i.e., from 650 nm to 800 nm). In the embodiment of FIG. 6A, the center columns and rows of the imagers include polychromatic imagers. The remaining areas of the camera array are filled with imagers having green filters, blue filters, and red filters. The embodiment of FIG. 6A does not include any imagers for detecting near-IR spectrum alone.


The embodiment of FIG. 6B has a configuration similar to conventional Bayer filter mapping. This embodiment does not include any polychromatic imagers or near-IR imagers. As described above in detail with reference to FIG. 1, the embodiment of FIG. 6B is different from conventional Bayer filter configuration in that each color filter is mapped to each imager instead of being mapped to an individual pixel.



FIG. 6C illustrates an embodiment where the polychromatic imagers form a symmetric checkerboard pattern. FIG. 6D illustrates an embodiment where four near-IR imagers are provided. FIG. 6E illustrates an embodiment with irregular mapping of imagers. FIG. 6F illustrates an embodiment where a 5×5 sensor array is organized into 17 imagers having green filters, four imagers having red filters, and four imagers having blue filters. The sensors are distributed symmetrically around the central axis of the imaging array. As is discussed further below, distributing the imagers in this way prevents pixels that can be imaged by a sensor from being occluded from sensors capturing other wavelengths of light. The embodiments of FIGS. 6A through 6F are merely illustrative and various other layouts of imagers can also be used.


The use of polychromatic imagers and near-IR imagers is advantageous because these sensors may capture high quality images in low lighting conditions. The images captured by the polychromatic imager or the near-IR imager are used to denoise the images obtained from regular color imagers. However, as discussed above, these polychromatic lenses require that an associated color correction technique be used to address color aberrations inherent in a single lens trying to capture all wavelengths of light and deliver it to the same focal plane. Any conventional color correction technique may be utilized with the proposed array cameras.


Imager Layout


The premise of increasing resolution by aggregating multiple low resolution images relies upon the different low resolution images representing slightly different viewpoints of the same scene. If the LR images are all shifted by integer units of a pixel, then each image contains essentially the same information. Therefore, there is no new information in the LR images that can be used to create a HR image. In camera arrays according to embodiments of the invention, the layout of the imagers in the array may be preset and controlled so that each imager in a row or a column captures an image that is shifted a fixed sub-pixel distance relative to the images captured by its neighboring imagers. Ideally, the images captured by each imager are spatially offset from the other imagers in such a way as to provide uniform sampling of the scene or the light field and the uniformity of sampling is such that the LR images captured by each of the imagers yields non-redundant information about the sampled scene (light field). Such non-redundant information about the scene can be utilized by subsequent signal processing processes to synthesize a single HR image.


A sub-pixel shift between the images captured by two imagers is not, however, sufficient to ensure uniformity of sampling. The uniformity of sampling or sampling diversity of two imagers is a function of object distance. The sampled space by pixels of a pair of imagers is illustrated in FIG. 6G. A first set of rays (610) map to pixels of imager A, while a second set of rays (620) map to pixels of imager B. Conceptually, two adjacent rays from a given imager define the part of the object space that is sampled by a specific pixel in that imager. At distance z1 from the camera plane, there is sufficient sampling diversity since the rays of the pixels of imager A are partially offset from the rays of the pixels of imager B. As the distance decreases there are specific distances (z2, z3, z4) where there is no sampling diversity between imager A and imager B. The lack of sampling diversity between the two imagers quite simply implies that there is no additional information in the scene captured by imager B as compared to that captured by imager A. As is discussed further below, an increased number of imagers in an array camera can mitigate the impact of object distances at which pair of imagers' sample space fully overlap. When a pair of imagers lack sampling diversity, the other imagers in the array provide the necessary sampling diversity to achieve resolution enhancement. Consequently, the ability of an imager system utilizing a 2×2 array of imagers to achieve superresolution is typically more limited than camera systems in accordance with embodiments of the invention that use a larger camera array.


Referring back to the camera array structures illustrated in FIGS. 2A-2D the wafer level optics includes a plurality of lens elements, where each lens element covers one of the sensors in the array. The physical layout of pixels in a single imager of a camera array in accordance with an embodiment of the invention is illustrated in FIG. 6H. The imager is an array of pixels 650 overlaid with color filters 652 and microlenses 654. The microlenses that sit on top of the color filters are used to focus light on the active area of each underlying pixel. The microlenses can be thought of as sampling the continuous light field in object space sampled by the main lens. Whereas the main lens samples the scene radiance light field, the micro-lenses sample the sensor irradiance light field.


The main lens associated with each imager maps the points in the object space to points in the image space such at that the mapping is bijective (onto-to-one and onto). Each microlens samples a finite extent of the sensor irradiance light field. The sensor irradiance light field is continuous and is the result of a bijective mapping from the object space. Thus, the microlens sampling of a finite extent of the sensor irradiance light field is also a sampling of a corresponding finite extent of the scene radiance light field in object space.


Moving the microlens by a small amount δ laterally along the plain of the imager pixels changes the sampled object space at a certain distance zk by a correspondingly appropriate factor 6. With an n×n (n>2) array camera, we can choose a baseline microlens shift can be determined by the main lens profile (for example, the chief ray angle) for a baseline imager. For each of the other imagers that sample the same wavelength as the baseline imager, the microlenses of each of the pixels in the imager are shifted by a sub-pixel amount to sample a different part of the scene radiance light field. Thus for a set of imagers arranged in an n×n grid, the sub-pixel shift for a imager that images the same wavelengths as the baseline imager (1,1) at a grid location (i,j) (1≤i,j≤n) is governed by (δx, δy) where,









(

i
-
1

)

n

×
pixelsize

<

δ
x




i
n

×
pixelsize










(

j
-
1

)

n

×
pixelsize

<

δ
y




j
n

×
pixelsize





Many camera arrays in accordance with embodiments of the invention include significantly more Green imagers than Red and Blue imagers. For example, the array camera illustrated in FIG. 6F includes 17 Green imagers, 4 Red imagers, and 4 Blue imagers. For the purpose of calculating the sub-pixel shifts, the Green imagers can be treated as an n×n grid. Whereas the Red imagers and the Blue imagers can each be treated as a 2×2 grid for the purpose of calculating the sub-pixel shifts.


The sub-pixel shifts discussed above are determined relative to a baseline imager located at the corner of the grid, many embodiments of the invention utilize radial sub-pixel shifts from a baseline imager located at the center of the sensor array. In several embodiments, the radial sub-pixel shifts are chosen so the sub-pixel shifts are evenly distributed to enable the greatest sampling diversity.


The constraints on microlens sub-pixel shifts defined above achieve the highest increases in diversity and can enable the greatest increases in resolution through superresolution processing. Sub-pixel shifts that do not satisfy the constraints, but still provide an increase in sampling diversity can also be used to enable some increase in resolution through superresolution processing. Therefore, embodiments of the invention are not limited to microlens shifts that result in the greatest increases in diversity and in many instances utilize a variety of different microlens shift configurations that provide at least some increase in sampling diversity and that are satisfactory for the requirements of a specific application.


Symmetry of Imager Placement in Camera Array


An issue of separating the spectral sensing elements into different imagers is parallax caused by the physical separation of the imagers. By ensuring that the imagers are symmetrically placed, at least two imagers can capture the pixels around the edge of a foreground object. In this way, the pixels around the edge of a foreground object may be aggregated to increase resolution as well as avoiding any occlusions. In the absence of a symmetrical distribution, a pixel around the edge of a foreground object that is visible to a first imager, for example a Red imager, may be occluded to a second imager that captures different wavelengths, for example a blue imager. Accordingly, color information for the pixel cannot be accurately reconstructed. By symmetrically distributing the sensors, the likelihood that a foreground object will occlude pixels is significantly reduced.


Pixel occlusion caused by an asymmetric distribution of Red and Blue imagers in a simple array is illustrated in FIG. 6I. A pair of Red imagers 672 is located on the left hand side of the camera array 670 and a pair of Blue imagers 674 is located on the right hand side of the camera array. A foreground object 676 is present and the Red imagers 672 are capable of imaging regions beyond the foreground object on the left hand side of the foreground object. However, the foreground object occludes the Red imagers from imaging these regions. Therefore, the array camera is incapable of reconstructing color information for these regions.


An array that includes a symmetric distribution of Red and Blue imagers in accordance with an embodiment of the invention is illustrated in FIG. 6J. The camera array 780 includes a pair of Red imagers 782 symmetrically distributed around the central axis of the camera array and a pair of Blue imagers 784 symmetrically distributed around the central axis of the camera array. Due to the even distribution, a Red imager and a Blue imager are both able to image beyond the foreground object 786 on the left hand side of the foreground object and a Red imager and a Blue imager are both able to image beyond the foreground object on the right hand side of the foreground object.


The symmetrical arrangement of the simple embodiment illustrated in FIG. 6J can be generalized to array cameras including Red, Green, Blue imagers and/or additional polychromatic or near-IR cameras. By distributing each of the different types of imagers symmetrically around the central axis of the camera array, the effects of parallax introduced by foreground objects can be significantly reduced and color artifacts that would otherwise be introduced, avoided.


The effects of parallax on the sampling of color can also be reduced by using parallax information in polychromatic imagers to improve the accuracy of the sampling of color from the color filtered imagers.


Use of Near-IR Imagers to Obtain Improved High Resolution Images


In one embodiment, near-IR imagers are used to determine relative luminance differences compared to a visible spectra imager. Objects have differing material reflectivity results in differences in the images captured by the visible spectra and the near-IR spectra. At low lighting conditions, the near-IR imager exhibits a higher signal to noise ratios. Therefore, the signals from the near-IR sensor may be used to enhance the luminance image. The transferring of details from the near-IR image to the luminance image may be performed before aggregating spectral images from different imagers through the super-resolution process. In this way, edge information about the scene may be improved to construct edge-preserving images that can be used effectively in the super-resolution process. The advantage of using near-IR imagers is apparent from equation (2) where any improvement in the estimate for the noise (i.e., n) leads to a better estimate of the original HR scene (x).


Generation of High Resolution Images



FIG. 7 is a flowchart illustrating a process of generating an HR image from LR images captured by a plurality of imagers, according to one embodiment. First, luma images, near-IR images and chroma images are captured 710 by imagers in the camera array. Then normalization is performed 714 on the captured images. The images can be normalized in a variety of ways including but not limited to normalizing the color planes of the images, performing temperature compensation, and mapping physical addresses of the imagers to logical addresses in the enhanced image. In other embodiments, a variety of normalization process appropriate to the specific imagers and imaging applications. Parallax compensation is then performed 720 to resolve any differences in the field-of-views of the imagers due to spatial separations between the imagers. Super-resolution processing is then performed 724 to obtain super-resolved luma images, super-resolved near-IR images, and super-resolved chroma images.


Then it is determined 728 if the lighting condition is better than a preset parameter. If the lighting condition is better than the parameter, the process proceeds to normalize 730 a super-resolved near-IR image with respect to a super-resolved luma image. A focus recovery is then performed 742. In one embodiment, the focus recovery is performed 742 using PSF (point spread function) deblurring per each color channel. Then the super-resolution is processed 746 based on near-IR images and the luma images. A synthesized image is then constructed 750.


If it is determined 728 that the lighting condition is not better than the preset parameter, the super-resolved near-IR images and luma images are aligned 734. Then the super-resolved luma images are denoised 738 using the near-IR super-resolved images. Then the process proceeds to performing focus recovery 742 and repeats the same process as when the lighting condition is better than the preset parameter. Then the process terminates.


Normalization of Color Planes


The relative response of each of the Red, Green, Blue imagers across the imaging planes varies. The variance can be the result of many factors including the optical alignment of the lens and asymmetrical sensor light path geometry. For a given lens and imager, the variance can be compensated for by calibration and normalization. Without compensation, the variance can give rise to artifacts such as color shading.


A process for normalizing a imager with respect to a baseline imager, which is typically a Green imager located in the center of the camera array, in accordance with an embodiment of the invention is discussed below with reference to the normalization of a Red imager with respect to a baseline Green imager. A similar process can be used to normalize Blue imagers with respect to a baseline Green imager. In many embodiments, the process is applied to normalize each Red and Blue imager in a camera array.


A normalization surface can be calibrated by first capturing a scene with flat reflectance, and calculating a color ratio surface to serve as the basis for normalization. An ideal normalization surface is uniform and can be described as:

Color Ratio G/R=G(i,j)/R(i,j)=K=Gcenter/Rcenter

where (i,j) describe the pixel position, K is a constant, and Gcenter, and Rcenter, describe the pixel value at the center position.


The output pixel values of the calibration scene contain the ideal pixel values plus noise plus black level offset, and can be described as follows:

SR(i,j)=R(i,j)+Noise R(i,j)+black offset
SG(i,j)=G(i,j)+Noise G(i,j)+black offset

where SR, and SG are the output pixel values from each imager.


A process for calibrating the sensor in accordance with an embodiment of the invention is illustrated in FIG. 7A. The process 760 includes removing (762) the black level offset from the sensor pixel values, and low pass filtering (764) the image planes to reduce noise. The normalization plane is calculated (766) and several embodiments are calculated as follows:

Norm R=G(i,j)/(R(i,j)×(Gcenter/Rcenter))

where Gcenter, and Rcenter, are the pixel values at the center position.


Following the calculation of the normalization plane, an averaging filter can be applied (768) and the values of the Norm R plane are stored (770).


The cost of carrying all of the normalization data for each of the sensors in a sensor array can be quite high. Therefore, many embodiments scan the Norm R plane using a space filling curve to form a one dimensional array. The resultant one dimensional array can be modeled in a variety of different ways including being modeled as a polynomial with suitable order. In several embodiments, the polynomials of the fitted polynomial are stored (810) as parameters that are used during calibration to reconstruct the two dimensional normalization plane. The construction of a space filling curve in accordance with several embodiments of the invention is discussed further below.


In several embodiments, a space filling curve is used to form a one dimensional array describing a normalization plane. A space filling curve, which is constructed using a spiral scan, is illustrated in FIG. 7B. A space filling curve 780 can be constructed by starting at the center of the normalization plane 781 and traversing a four sided square outwards. Each side of the square expands by two pixels compared to the previous square such that every pixel will be traversed exactly once. In the illustrated embodiment, each position 782 which is marked with an ‘X’ corresponds to a valid pixel position. The imager may not have a square geometry, so the scan path may traverse empty space (indicated as dashed lines). For each position traversed, if it is a valid pixel position, a new data entry is added to the one dimensional data array. Otherwise, the traversing continues without adding a new value to the data array. In many embodiments, the one dimensional data array can be efficiently approximated using a 6th order polynomial that can be represented using the seven coefficients of the polynomial. Given that calibration data is typically required for each Red and Blue imager, expressing the normalization planes as coefficients of a polynomial represents a significant reduction in storage requirements. In many embodiments, higher or lower order polynomials, other functions, and/or other compressed representations are utilized to represent the normalization plane in accordance with the requirements of a specific application.


The data value along each side exhibits a fixed geometric relationship. The optical path to the focal point of the lens is shorter for the cells near the center line. The base sensitivity can be thought of as a one dimensional center cut of the calibration surface and approximated by a low order polynomial. The sensitivity polynomial can be either stored as a machine constant (i.e., common to all devices with the same design), or stored along with the scan polynomial to provide additional flexibility. Accordingly, many embodiments of the invention adjust the pixel value based upon the distance factor as follows. For each side scan, one of the coordinates will be a constant, i.e., constant cy′ for horizontal scan and constant ‘x’ for vertical scan. For each pixel in the side scan, the sensitivity factor is adjusted towards the constant ‘x’ or y distance.


By way of example, for a horizontal scan the base value can be found by evaluating the sensitivity polynomial based on the distance y from the center. In many embodiments, a suitable polynomial is a fourth order polynomial. Although other polynomials and/or other functions can be utilized in accordance with the requirements of a specific application. For each pixel in the scan path, the distance from the surface origin is used to find the corresponding sensitivity from the polynomial in the same manner. The pixel value is multiplied by an adjustment factor and then stored in the scanned data array. This adjustment factor is calculated by dividing the base value with the current sensitivity value. For the vertical scan a similar method can be applied. Although the example uses a polynomial based sensitivity adjustment, other sensitivity functions and/or adjustments can be utilized depending upon the requirements of a specific application in accordance with various embodiments of the invention.


Once calibration data has been obtained for an imager, the calibration data can be used in the normalization of pixel information captured by the imager. The process typically involves retrieving the stored calibration data, removing the black offset from the captured image and multiplying the resultant values with the normalization plane. When the normalization plane is expressed as a polynomial in the manner outlined above, the polynomial is used to generate a one-dimensional array and an inverse scan of the one-dimensional array is used to form the two dimensional normalization plane. Where a sensitivity adjustment was applied during calibration, an adjustment factor is calculated that is the reciprocal of the adjustment factor applied during the calibration scan and the adjustment factor is applied to the values in the one dimensional array during the inverse scan. When other space filling curves, representations of the resulting one dimensional data array, and/or sensitivity adjustments are performed during the calibration process, the normalization process is adjusted accordingly.


As can be readily appreciated, calibration and normalization processes in accordance with embodiments of the invention can be applied to each of the Red and Blue imagers in the camera array. In many embodiments, a Green imager located in the center of the camera array is used when performing the calibration. In other embodiments, a different Green imager and/or multiple Green imagers can be utilized in the calibration of the Red and Blue imagers in the camera array.


Image Fusion of Color Images with Near-IR Images


The spectral response of CMOS imagers is typically very good in the near-IR regions covering 650 nm to 800 nm and reasonably good between 800 nm and 1000 nm. Although near-IR images having no chroma information, information in this spectral region is useful in low lighting conditions because the near-IR images are relatively free of noise. Hence, the near-IR images may be used to denoise color images under the low lighting conditions.


In one embodiment, an image from a near-IR imager is fused with another image from a visible light imager. Before proceeding with the fusion, a registration is performed between the near-IR image and the visible light image to resolve differences in viewpoints. The registration process may be performed in an offline, one-time, processing step. After the registration is performed, the luminance information on the near-IR image is interpolated to grid points that correspond to each grid point on the visible light image.


After the pixel correspondence between the near-IR image and the visible light image is established, a denoising and detail transfer process may be performed. The denoising process allows transfer of signal information from the near-IR image to the visible light image to improve the overall SNR of the fusion image. The detail transfer ensures that edges in the near-IR image and the visible light image are preserved and accentuated to improve the overall visibility of objects in the fused image.


In one embodiment, a near-IR flash may serve as a near-IR light source during capturing of an image by the near-IR imagers. Using the near-IR flash is advantageous, among other reasons, because (i) the harsh lighting on objects of interest may be prevented, (ii) ambient color of the object may be preserved, and (iii) red-eye effect may be prevented.


In one embodiment, a visible light filter that allows only near-IR rays to pass through is used to further optimize the optics for near-IR imaging. The visible light filter improves the near-IR optics transfer function because the light filter results in sharper details in the near-IR image. The details may then be transferred to the visible light images using a dual bilateral filter as described, for example, in Eric P. Bennett et al., “Multispectral Video Fusion,” Computer Graphics (ACM SIGGRAPH Proceedings) (Jul. 25, 2006), which is incorporated by reference herein in its entirety.


Dynamic Range Determination by Differing Exposures at Imagers


An auto-exposure (AE) algorithm is important to obtaining an appropriate exposure for the scene to be captured. The design of the AE algorithm affects the dynamic range of captured images. The AE algorithm determines an exposure value that allows the acquired image to fall in the linear region of the camera array's sensitivity range. The linear region is preferred because a good signal-to-noise ratio is obtained in this region. If the exposure is too low, the picture becomes under-saturated while if the exposure is too high the picture becomes over-saturated. In conventional cameras, an iterative process is taken to reduce the difference between measured picture brightness and previously defined brightness below a threshold. This iterative process requires a large amount of time for convergence, and sometimes results in an unacceptable shutter delay.


In one embodiment, the picture brightness of images captured by a plurality of imagers is independently measured. Specifically, a plurality of imagers are set to capturing images with different exposures to reduce the time for computing the adequate exposure. For example, in a camera array with 5×5 imagers where 8 luma imagers and 9 near-IR imagers are provided, each of the imagers may be set with different exposures. The near-IR imagers are used to capture low-light aspects of the scene and the luma imagers are used to capture the high illumination aspects of the scene. This results in a total of 17 possible exposures. If exposure for each imager is offset from an adjacent imager by a factor of 2, for example, a maximum dynamic range of 217 or 102 dB can be captured. This maximum dynamic range is considerably higher than the typical 48 dB attainable in a conventional camera with 8 bit image outputs.


At each time instant, the responses (under-exposed, over-exposed or optimal) from each of the multiple imagers are analyzed based on how many exposures are needed at the subsequent time instant. The ability to query multiple exposures simultaneously in the range of possible exposures accelerates the search compared to the case where only one exposure is tested at once. By reducing the processing time for determining the adequate exposure, shutter delays and shot-to-shot lags may be reduced.


In one embodiment, the HDR image is synthesized from multiple exposures by combining the images after linearizing the imager response for each exposure. The images from the imagers may be registered before combining to account for the difference in the viewpoints of the imagers.


In one embodiment, at least one imager includes HDR pixels to generate HDR images. HDR pixels are specialized pixels that capture high dynamic range scenes. Although HDR pixels show superior performances compared to other pixels, HDR pixels show poor performance at low lighting conditions in comparison with near-IR imagers. To improve performance at low lighting conditions, signals from the near-IR imagers may be used in conjunction with the signal from the HDR imager to attain better quality images across different lighting conditions.


In one embodiment, an HDR image is obtained by processing images captured by multiple imagers by processing, as disclosed, for example, in Paul Debevec et al., “Recovering High Dynamic Range Radiance Maps from Photographs,” Computer Graphics (ACM SIGGRAPH Proceedings), (Aug. 16, 1997), which is incorporated by reference herein in its entirety. The ability to capture multiple exposures simultaneously using the imager is advantageous because artifacts caused by motion of objects in the scene can be mitigated or eliminated.


Hyperspectral Imaging by Multiple Imagers


In one embodiment, a multi-spectral image is rendered by multiple imagers to facilitate the segmentation or recognition of objects in a scene. Because the spectral reflectance coefficients vary smoothly in most real world objects, the spectral reflectance coefficients may be estimated by capturing the scene in multiple spectral dimensions using imagers with different color filters and analyzing the captured images using Principal Components Analysis (PCA).


In one embodiment, half of the imagers in the camera array are devoted to sampling in the basic spectral dimensions (R, G, and B) and the other half of the imagers are devoted to sampling in a shifted basic spectral dimensions (R′, G′, and B′). The shifted basic spectral dimensions are shifted from the basic spectral dimensions by a certain wavelength (e.g., 10 nm).


In one embodiment, pixel correspondence and non-linear interpolation is performed to account for the sub-pixel shifted views of the scene. Then the spectral reflectance coefficients of the scene are synthesized using a set of orthogonal spectral basis functions as disclosed, for example, in J. P. S. Parkkinen, J. Hallikainen and T. Jaaskelainen, “Characteristic Spectra of Munsell Colors,” J. Opt. Soc. Am., A 6:318 (August 1989), which is incorporated by reference herein in its entirety. The basis functions are eigenvectors derived by PCA of a correlation matrix and the correlation matrix is derived from a database storing spectral reflectance coefficients measured by, for example, Munsell color chips (a total of 1257) representing the spectral distribution of a wide range of real world materials to reconstruct the spectrum at each point in the scene.


At first glance, capturing different spectral images of the scene through different imagers in the camera array appears to trade resolution for higher dimensional spectral sampling. However, some of the lost resolution may be recovered. The multiple imagers sample the scene over different spectral dimensions where each sampling grid of each imager is offset by a sub-pixel shift from the others. In one embodiment, no two sampling grid of the imager overlap. That is, the superposition of all the sampling grids from all the imagers forms a dense, possibly non-uniform, montage of points. Scattered data interpolation methods may be used to determine the spectral density at each sample point in this non-uniform montage for each spectral image, as described, for example, in Shiaofen Fang et al., “Volume Morphing Methods for Landmark Based 3D Image Deformation” by SPIE vol. 2710, proc. 1996 SPIE Intl Symposium on Medical Imaging, page 404-415, Newport Beach, CA (February 1996), which is incorporated by reference herein in its entirety. In this way, a certain amount of resolution lost in the process of sampling the scene using different spectral filters may be recovered.


As described above, image segmentation and object recognition are facilitated by determining the spectral reflectance coefficients of the object. The situation often arises in security applications wherein a network of cameras is used to track an object as it moves from the operational zone of one camera to another. Each zone may have its own unique lighting conditions (fluorescent, incandescent, D65, etc.) that may cause the object to have a different appearance in each image captured by different cameras. If these cameras capture the images in a hyper-spectral mode, all images may be converted to the same illuminant to enhance object recognition performance.


In one embodiment, camera arrays with multiple imagers are used for providing medical diagnostic images. Full spectral digitized images of diagnostic samples contribute to accurate diagnosis because doctors and medical personnel can place higher confidence in the resulting diagnosis. The imagers in the camera arrays may be provided with color filters to provide full spectral data. Such camera array may be installed on cell phones to capture and transmit diagnostic information to remote locations as described, for example, in Andres W. Martinez et al., “Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis,” Analytical Chemistry (American Chemical Society) (Apr. 11, 2008), which is incorporated by reference herein in its entirety. Further, the camera arrays including multiple imagers may provide images with a large depth of field to enhance the reliability of image capture of wounds, rashes, and other symptoms.


In one embodiment, a small imager (including, for example, 20-500 pixels) with a narrow spectral bandpass filters is used to produce a signature of the ambient and local light sources in a scene. By using the small imager, the exposure and white balance characteristics may be determined more accurately at a faster speed. The spectral bandpass filters may be ordinary color filters or diffractive elements of a bandpass width adequate to allow the number of camera arrays to cover the visible spectrum of about 400 nm. These imagers may run at a much higher frame rate and obtain data (which may or may not be used for its pictorial content) for processing into information to control the exposure and white balance of other larger imagers in the same camera array. The small imagers may also be interspersed within the camera array.


Optical Zoom Implemented Using Multiple Imagers


In one embodiment, a subset of imagers in the camera array includes telephoto lenses. The subset of imagers may have other imaging characteristics that are the same as imagers with non-telephoto lenses. Images from this subset of imagers are combined and super-resolution processed to form a super-resolution telephoto image. In another embodiment, the camera array includes two or more subsets of imagers equipped with lenses of more than two magnifications to provide differing zoom magnifications.


Embodiments of the camera arrays may achieve its final resolution by aggregating images through super-resolution. Taking an example of providing 5×5 imagers with a 3× optical zoom feature, if 17 imagers are used to sample the luma (G) and 8 imagers are used to sample the chroma (R and B), 17 luma imagers allow a resolution that is four times higher than what is achieved by any single imager in the set of 17 imagers. If the number of the imagers is increased from 5×5 to 6×6, an addition of 11 extra imagers becomes available. In comparison with the 8 Megapixel conventional image sensor fitted with a 3× zoom lens, a resolution that is 60% of the conventional image sensor is achieved when 8 of the additional 11 imagers are dedicated to sampling luma (G) and the remaining 3 imagers are dedicated to chroma (R and B) and near-IR sampling at 3× zoom. This considerably reduces the chroma sampling (or near-IR sampling) to luma sampling ratio. The reduced chroma to luma sampling ratio is somewhat offset by using the super-resolved luma image at 3× zoom as a recognition prior on the chroma (and near-IR) image to resample the chroma image at a higher resolution.


With 6×6 imagers, a resolution equivalent to the resolution of conventional image sensor is achieved at 1× zoom. At 3× zoom, a resolution equivalent to about 60% of conventional image sensor outfitted with a 3× zoom lens is obtained by the same imagers. Also, there is a decrease in luma resolution at 3× zoom compared with conventional image sensors with resolution at 3× zoom. The decreased luma resolution, however, is offset by the fact that the optics of conventional image sensor has reduced efficiency at 3× zoom due to crosstalk and optical aberrations.


The zoom operation achieved by multiple imagers has the following advantages. First, the quality of the achieved zoom is considerably higher than what is achieved in the conventional image sensor due to the fact that the lens elements may be tailored for each change in focal length. In conventional image sensors, optical aberrations and field curvature must be corrected across the whole operating range of the lens, which is considerably harder in a zoom lens with moving elements than in a fixed lens element where only aberrations for a fixed focal length need to be corrected. Additionally, the fixed lens in the imagers has a fixed chief ray angle for a given height, which is not the case with conventional image sensor with a moving zoom lens. Second, the imagers allow simulation of zoom lenses without significantly increasing the optical track height. The reduced height allows implementation of thin modules even for camera arrays with zooming capability.


The overhead required to support a certain level of optical zoom in camera arrays according to some embodiments is tabulated in Table 2.












TABLE 2









No. of Luma
No. of Chroma



No. of
Imagers at
Imagers at



Imagers in
different
different



Camera
Zoom levels
Zoom Levels















array












25
17
0
0
8
0
0



36
16
0
8
8
0
4









In one embodiment, the pixels in the images are mapped onto an output image with a size and resolution corresponding to the amount of zoom desired in order to provide a smooth zoom capability from the widest-angle view to the greatest-magnification view. Assuming that the higher magnification lenses have the same center of view as the lower magnification lenses, the image information available is such that a center area of the image has a higher resolution available than the outer area. In the case of three or more distinct magnifications, nested regions of different resolution may be provided with resolution increasing toward the center.


An image with the most telephoto effect has a resolution determined by the super-resolution ability of the imagers equipped with the telephoto lenses. An image with the widest field of view can be formatted in at least one of two following ways. First, the wide field image may be formatted as an image with a uniform resolution where the resolution is determined by the super-resolution capability of the set of imagers having the wider-angle lenses. Second, the wide field image is formatted as a higher resolution image where the resolution of the central part of the image is determined by the super-resolution capability of the set of imagers equipped with telephoto lenses. In the lower resolution regions, information from the reduced number of pixels per image area is interpolated smoothly across the larger number of “digital” pixels. In such an image, the pixel information may be processed and interpolated so that the transition from higher to lower resolution regions occurs smoothly.


In one embodiment, zooming is achieved by inducing a barrel-like distortion into some, or all, of the array lens so that a disproportionate number of the pixels are dedicated to the central part of each image. In this embodiment, every image has to be processed to remove the barrel distortion. To generate a wide-angle image, pixels closer to the center are sub-sampled relative to outer pixels are super-sampled. As zooming is performed, the pixels at the periphery of the imagers are progressively discarded and the sampling of the pixels nearer the center of the imager is increased.


In one embodiment, mipmap filters are built to allow images to be rendered at a zoom scale that is between the specific zoom range of the optical elements (e.g., 1× and 3× zoom scales of the camera array). Mipmaps are a precalculated optimized set of images that accompany a baseline image. A set of images associated with the 3× zoom luma image can be created from a baseline scale at 3× down to 1×. Each image in this set is a version of the baseline 3× zoom image but at a reduced level of detail. Rendering an image at a desired zoom level is achieved using the mipmap by (i) taking the image at 1× zoom, and computing the coverage of the scene for the desired zoom level (i.e., what pixels in the baseline image needs to be rendered at the requested scale to produce the output image), (ii) for each pixel in the coverage set, determine if the pixel is in the image covered by the 3× zoom luma image, (iii) if the pixel is available in the 3× zoom luma image, then choose the two closest mipmap images and interpolate (using smoothing filter) the corresponding pixels from the two mipmap images to produce the output image, and (iv) if the pixel is unavailable in the 3× zoom luma image, then choose the pixel from the baseline 1× luma image and scale up to the desired scale to produce the output pixel. By using mipmaps, smooth optical zoom may be simulated at any point between two given discrete levels (i.e., 1× zoom and 3× zoom).


In one embodiment, zooming is achieved by realizing different Fields Of View (FOV)s by electronically switching between different optical channels having different sensor sizes, but fixed Effective Focal Lengths (EFL)s. In one such embodiment, shown schematically in FIG. 8A, variable FOVs are achieved by creating optical channels on the same substrate that have different imager sizes 800 and 802 at the same fixed EFL 804. Using this structure, it would be possible to create an arbitrary number of zoom magnifications by including image sensors with larger or smaller numbers of pixels. This technique is particularly simple to incorporate into WLO array cameras as these variable zoom sensor arrays 800 and 802 can be fabricated directly onto the base camera array substrate without any further modification to the design of the array camera assembly itself.


In another embodiment, as shown in FIG. 8B, different FOVs are achieved by engineering different EFLs 805 into specific optical channels of the camera array 806 while maintaining a fixed imager size 808. Implementing different EFLs on the same substrate stacks, i.e., substrate stacks with constant thicknesses and spacings, is more complicated, because the distance of the principal plane and with it the entrance pupil and consequently the aperture stop 810 with respect to the image sensor 814 needs to be changed in order to change the focal length of the optical channel. In the current embodiment, this is accomplished by the introduction of “dummy substrates” 816, 818 and 820 into the stack 806, such that each zoom channel 822, 824 and 826 has an associated aperture stop 828, 830 and 832 disposed on a different substrate or a different face of a substrate, such that different EFLs can be achieved. As shown, while the distribution and positioning of the lenses (834, 836 and 838) and the aperture stops (828, 830 and 832) on the particular substrate or substrate face is entirely dependent on the desired EFL, in all cases the substrate thicknesses and distances remain fixed. Alternatively, in such an embodiment, each of the substrates could be provided with lenses, but in different distributions in order to allow for different EFLs. Such a structure would allow for higher image quality, but at higher cost.


In another further embodiment, as shown in FIG. 8C, different FOVs can also be achieved by engineering different EFLs 805 using “dummy” substrates in a manner similar to that illustrated in FIG. 8B, with the exception that all of the substrates have lenses elements on them in each optical channel. The lens elements, however, have different prescriptions in order to allow different EFLs. Accordingly, any of a variety of configurations of optics and sensor size, and/or light sensing element size can be utilized with an array camera in accordance with embodiments of the invention to achieve different FOVs.


Capturing Video Images


In one embodiment, the camera array generates high frame image sequences. The imagers in the camera array can operate independently to capture images. Compared to conventional image sensors, the camera array may capture images at the frame rate up to N time (where N is the number of imagers). Further, the frame period for each imager may overlap to improve operations under low-light conditions. To increase the resolution, a subset of imagers may operate in a synchronized manner to produce images of higher resolution. In this case, the maximum frame rate is reduced by the number of imagers operating in a synchronized manner. The high-speed video frame rates can enables slow-motion video playback at a normal video rate.


In one example, two luma imagers (green imagers or near-IR imagers), two blue imagers and two green imagers are used to obtain high-definition 1080p images. Using permutations of four luma imagers (two green imagers and two near-IR imagers or three green imagers and one near-IR imager) together with one blue imager and one red imager, the chroma imagers can be upsampled to achieve 120 frames/sec for 1080p video. For higher frame rate imaging devices, the number of frame rates can be scaled up linearly. For Standard-Definition (480p) operation, a frame rate of 240 frames/sec may be achieved using the same camera array.


Conventional imaging devices with a high-resolution image sensor (e.g., 8 Megapixels) use binning or skipping to capture lower resolution images (e.g., 1080p30, 720p30 and 480p30). In binning, rows and columns in the captured images are interpolated in the charge, voltage or pixel domains in order to achieve the target video resolutions while reducing the noise. In skipping, rows and columns are skipped in order to reduce the power consumption of the sensor. Both of these techniques result in reduced image quality.


In one embodiment, the imagers in the camera arrays are selectively activated to capture a video image. For example, 9 imagers (including one near-IR imager) may be used to obtain 1080p (1920×1080 pixels) images while 6 imagers (including one near-IR imager) may be used to obtain 720p (1280×720 pixels) images or 4 imagers (including one near-IR imager) may be used to obtain 480p (720×480 pixels) images. Because there is an accurate one-to-one pixel correspondence between the imager and the target video images, the resolution achieved is higher than traditional approaches. Further, since only a subset of the imagers is activated to capture the images, significant power savings can also be achieved. For example, 60% reduction in power consumption is achieved in 1080p and 80% of power consumption is achieved in 480p.


Using the near-IR imager to capture video images is advantageous because the information from the near-IR imager may be used to denoise each video image. In this way, the camera arrays of embodiments exhibit excellent low-light sensitivity and can operate in extremely low-light conditions. In one embodiment, super-resolution processing is performed on images from multiple imagers to obtain higher resolution video imagers. The noise-reduction characteristics of the super-resolution process along with fusion of images from the near-IR imager results in a very low-noise images.


In one embodiment, high-dynamic-range (HDR) video capture is enabled by activating more imagers. For example, in a 5×5 camera array operating in 1080p video capture mode, there are only 9 cameras active. A subset of the 16 cameras may be overexposed and underexposed by a stop in sets of two or four to achieve a video output with a very high dynamic range.


Other Applications for Multiple Imagers


In one embodiment, the multiple imagers are used for estimating distance to an object in a scene. Since information regarding the distance to each point in an image is available in the camera array along with the extent in x and y coordinates of an image element, the size of an image element may be determined. Further, the absolute size and shape of physical items may be measured without other reference information. For example, a picture of a foot can be taken and the resulting information may be used to accurately estimate the size of an appropriate shoe.


In one embodiment, reduction in depth of field is simulated in images captured by the camera array using distance information. The camera arrays according to the present invention produce images with greatly increased depth of field. The long depth of field, however, may not be desirable in some applications. In such case, a particular distance or several distances may be selected as the “in best focus” distance(s) for the image and based on the distance (z) information from parallax information, the image can be blurred pixel-by-pixel using, for example, a simple Gaussian blur. In one embodiment, the depth map obtained from the camera array is utilized to enable a tone mapping algorithm to perform the mapping using the depth information to guide the level, thereby emphasizing or exaggerating the 3D effect.


In one embodiment, apertures of different sizes are provided to obtain aperture diversity. The aperture size has a direct relationship with the depth of field. In miniature cameras, however, the aperture is generally made as large as possible to allow as much light to reach the camera array. Different imagers may receive light through apertures of different sizes. For imagers to produce a large depth of field, the aperture may be reduced whereas other imagers may have large apertures to maximize the light received. By fusing the images from sensor images of different aperture sizes, images with large depth of field may be obtained without sacrificing the quality of the image.


In one embodiment, the camera array according to the present invention refocuses based on images captured from offsets in viewpoints. Unlike a conventional plenoptic camera, the images obtained from the camera array of the present invention do not suffer from the extreme loss of resolution. The camera array according to the present invention, however, produces sparse data points for refocusing compared to the plenoptic camera. In order to overcome the sparse data points, interpolation may be performed to refocus data from the spare data points.


In one embodiment, each imager in the camera array has a different centroid. That is, the optics of each imager are designed and arranged so that the fields of view for each imager slightly overlap but for the most part constitute distinct tiles of a larger field of view. The images from each of the tiles are panoramically stitched together to render a single high-resolution image.


In one embodiment, camera arrays may be formed on separate substrates and mounted on the same motherboard with spatial separation. The lens elements on each imager may be arranged so that the corner of the field of view slightly encompasses a line perpendicular to the substrate. Thus, if four imagers are mounted on the motherboard with each imager rotated 90 degrees with respect to another imager, the fields of view will be four slightly overlapping tiles. This allows a single design of WLO lens array and imager chip to be used to capture different tiles of a panoramic image.


In one embodiment, one or more sets of imagers are arranged to capture images that are stitched to produce panoramic images with overlapping fields of view while another imager or sets of imagers have a field of view that encompasses the tiled image generated. This embodiment provides different effective resolution for imagers with different characteristics. For example, it may be desirable to have more luminance resolution than chrominance resolution. Hence, several sets of imagers may detect luminance with their fields of view panoramically stitched. Fewer imagers may be used to detect chrominance with the field of view encompassing the stitched field of view of the luminance imagers.


In one embodiment, the camera array with multiple imagers is mounted on a flexible motherboard such that the motherboard can be manually bent to change the aspect ratio of the image. For example, a set of imagers can be mounted in a horizontal line on a flexible motherboard so that in the quiescent state of the motherboard, the fields of view of all of the imagers are approximately the same. If there are four imagers, an image with double the resolution of each individual imager is obtained so that details in the subject image that are half the dimension of details that can be resolved by an individual imager. If the motherboard is bent so that it forms part of a vertical cylinder, the imagers point outward. With a partial bend, the width of the subject image is doubled while the detail that can be resolved is reduced because each point in the subject image is in the field of view of two rather than four imagers. At the maximum bend, the subject image is four times wider while the detail that can be resolved in the subject is further reduced.


Offline Reconstruction and Processing


The images processed by the imaging system 400 may be previewed before or concurrently with saving of the image data on a storage medium such as a flash device or a hard disk. In one embodiment, the images or video data includes rich light field data sets and other useful image information that were originally captured by the camera array. Other traditional file formats could also be used. The stored images or video may be played back or transmitted to other devices over various wired or wireless communication methods.


In one embodiment, tools are provided for users by a remote server. The remote server may function both as a repository and an offline processing engine for the images or video. Additionally, applets mashed as part of popular photo-sharing communities such as Flikr, Picasaweb, Facebook etc. may allow images to be manipulated interactively, either individually or collaboratively. Further, software plug-ins into image editing programs may be provided to process images generated by the imaging device 400 on computing devices such as desktops and laptops.


Various modules described herein may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, application specific integrated circuits (ASICs), or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus. Furthermore, the computers referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.


While particular embodiments and applications of the present invention have been illustrated and described herein, it is to be understood that the invention is not limited to the precise construction and components disclosed herein and that various modifications, changes, and variations may be made in the arrangement, operation, and details of the methods and apparatuses of the present invention without departing from the spirit and scope of the invention as it is defined in the appended claims.

Claims
  • 1. An image enhancement method, comprising: normalizing a set of images using calibration data stored in a storage device using an address conversion module, where: the set of images comprises a plurality of images captured from different viewpoints; andthe plurality of images include different occlusions sets, where the occlusion set of a first image is the portion of a scene visible in a second image that is occluded in the first image;detecting and measuring parallax using a parallax confirmation and measurement module, where detecting and measuring parallax comprises determining the parallax that yields a best match between pixels from images in the set of normalized images by: performing redundant pair-wise measurements between pixels from different images in the set of images to determine pixel similarity at different parallax shifts; andkeeping track of various pair-wise measurements and calculating a parallax difference that yields the best match between pixels from images in the set of normalized images;generating a depth map using a parallax compensation module based upon the measured parallax, where the parallax compensation module identifies pixels in the set of normalized images having calculated parallax differences that should not be considered in the generation of the depth map;processing at least one image from the set of images based upon the depth map using an image processing pipeline module; anddisplaying the at least one processed image on a display device.
  • 2. The method of claim 1, further comprising capturing the set of images using an imaging device comprising a camera array.
  • 3. The method of claim 2, wherein: the calibration data indicates mappings between addresses of physical pixels in imagers and logical addresses within an image; andthe address conversion module resolves offsets between the set of images by converting addresses of physical pixels in imagers to logical addresses.
  • 4. The method of claim 1, wherein calculating the parallax difference that yields the best match between pixels from images in the set of normalized images comprises determining the parallax difference that provides the best least squares fit.
  • 5. The method of claim 1, wherein processing at least one image from the set of images based upon the depth map using an image processing pipeline module comprises: aligning portions of images in the set of images to compensate for parallax using the parallax compensation module based upon the measured parallax and the stored calibration data; andobtaining a higher resolution image having a resolution that is higher than the resolutions of the images in the set of images using a super-resolution module.
  • 6. The method of claim 5, wherein obtaining the higher resolution image comprises: fusing the aligned image portions using the super-resolution module; andperforming super-resolution processing on the fused image portions to synthesize a super-resolution image using the super-resolution module.
  • 7. The method of claim 1, wherein processing at least one image from the set of images based upon the depth map using an image processing pipeline module comprises selecting at least one distance as a focal plane and applying blurring to pixels in the at least one image that the depth map indicates are not proximate the focal plane.
  • 8. The method of claim 1, further comprising estimating distance to an object visible in the set of images using the parallax confirmation and measurement module.
  • 9. The method of claim 1, wherein the different parallax shifts considered when performing the redundant pair-wise measurements between pixels from different images in the set of images include parallax shifts having sub-pixel offsets.
  • 10. The method of claim 1, wherein: the set of images includes: images captured using the same imaging characteristics; andimages captured using different imaging characteristics;the redundant pair-wise measurements between pixels from different images in the set of images are pair-wise measurements between pixels from images in the set of images captured using the same imaging characteristics.
  • 11. A method for synthesizing an image from a set of images captured from different viewpoints, comprising: normalizing, using at least one processor, a set of images using calibration data stored in a storage device, where: the set of images comprises a plurality of images that are captured from different viewpoints; andthe plurality of images include different occlusions sets, where the occlusion set of a first image is the portion of a scene visible in a second image that is occluded in the first image;detecting and measuring parallax using the at least one processor, where detecting and measuring parallax comprises determining the parallax that yields the best match between pixels from images in the set of normalized images by: performing redundant pair-wise measurements between pixels from different images in the set of images to determine similarity of neighborhoods of pixels at different parallax shifts; andkeeping track of various pair-wise measurements and calculating a parallax difference that yields the best match between pixels from images in the set of normalized images;generating, using the at least one processor, a depth map based upon the measured parallax, where generating the depth map comprises identifying pixels in the set of normalized images having calculated parallax differences that should not be considered;synthesizing an image, using the at least one processor, based upon at least one image from the set of images and the depth map; anddisplaying the synthesized image on a display device.
  • 12. The method of claim 11, further comprising capturing the set of images using an imaging device comprising a camera array.
  • 13. The method of claim 12, wherein: the calibration data indicates mappings between addresses of physical pixels in imagers and logical addresses within an image; andthe at least one processor resolves offsets between the set of images by converting addresses of physical pixels in imagers to logical addresses.
  • 14. The method of claim 11, wherein calculating the parallax difference that yields the best match between pixels from images in the set of normalized images comprises determining the parallax difference that provides the best least squares fit.
  • 15. The method of claim 11, wherein synthesizing the synthesized image comprises: aligning portions of different images in the set of images to compensate for parallax based upon the measured parallax and the stored calibration data; andobtaining a higher resolution image having a resolution that is higher than the resolutions of the images in the set of images.
  • 16. The method of claim 15, wherein obtaining the higher resolution image comprises fusing the aligned image portions.
  • 17. The method of claim 16, wherein obtaining the higher resolution image comprises performing super-resolution processing on the fused image portions to synthesize a super-resolution image.
  • 18. The method of claim 11, wherein synthesizing the synthesized image comprises selecting at least one distance as a focal plane and applying blurring to pixels in the at least one image that the depth map indicates are not proximate the focal plane.
  • 19. The method of claim 11, further comprising estimating distance to an object visible in the set of images.
  • 20. The method of claim 11, wherein the different parallax shifts considered when performing the redundant pair-wise measurements between pixels from different images in the set of images include parallax shifts having sub-pixel offsets.
  • 21. The method of claim 11, wherein: the set of images includes: images captured using the same imaging characteristics; andimages captured using different imaging characteristics;the redundant pair-wise measurements between pixels from different images in the set of images are pair-wise measurements between pixels from images in the set of images captured using the same imaging characteristics.
  • 22. A method of synthesizing an image using a set of images captured using a camera array, comprising: capturing a set of images using an imaging device comprising a camera array, where: the set of images comprises a plurality of images that are captured from different viewpoints; andthe plurality of images include different occlusions sets, where the occlusion set of a first image is the portion of a scene visible in a second image that is occluded in the first image;normalizing, using at least one processor, the set of images using calibration data stored in a storage device;detecting and measuring parallax using the at least one processor, where detecting and measuring parallax comprises determining the parallax that yields the best match between pixels from images in the set of normalized images by: performing redundant pair-wise measurements between pixels from different pairs of images in the set of images to determine similarity of neighborhoods of pixels at different parallax shifts, wherein the different parallax shifts considered when performing the redundant pair-wise measurements include parallax shifts having sub-pixel offsets; andkeeping track of various pair-wise measurements and calculating a parallax difference that yields the best match between pixels from images in the set of normalized images;generating, using the at least one processor, a depth map based upon the measured parallax, where generating the depth map comprises identifying pixels in the set of normalized images having calculated parallax differences that should not be considered;synthesizing an image, using the at least one processor, based upon at least one image from the set of images and the depth map; anddisplaying the synthesized image on a display device.
  • 23. The method of claim 22, wherein: the calibration data indicates mappings between addresses of physical pixels in imagers and logical addresses within an image; andthe at least one processor resolves offsets between the set of images by converting addresses of physical pixels in imagers to logical addresses.
  • 24. The method of claim 22, wherein calculating the parallax difference that yields the best match between pixels from images in the set of normalized images comprises determining the parallax difference that provides the best least squares fit.
  • 25. The method of claim 22, wherein synthesizing the synthesized image comprises: aligning portions of different images in the set of images to compensate for parallax based upon the measured parallax and the stored calibration data; andobtaining a higher resolution image having a resolution that is higher than the resolutions of the images in the set of images.
  • 26. The method of claim 25, wherein obtaining the higher resolution image comprises fusing the aligned image portions.
  • 27. The method of claim 26, wherein obtaining the higher resolution image comprises performing super-resolution processing on the fused image portions to synthesize a super-resolution image.
  • 28. The method of claim 22, wherein synthesizing the synthesized image comprises selecting at least one distance as a focal plane and applying blurring to pixels in the at least one image that the depth map indicates are not proximate the focal plane.
  • 29. The method of claim 22, further comprising estimating distance to an object visible in the set of images.
  • 30. The method of claim 23, wherein: the set of images includes: images captured using the same imaging characteristics; andimages captured using different imaging characteristics;the redundant pair-wise measurements between pixels from different images in the set of images are pair-wise measurements between pixels from images in the set of images captured using the same imaging characteristics.
RELATED APPLICATIONS

The current application is a continuation of U.S. Non-Provisional patent application Ser. No. 18/461,318 entitled “Capturing and Processing of Images Including Occlusions Focused on an Image Sensor by a Lens Stack Array”, filed Sep. 5, 2023, which is a continuation of U.S. Non-Provisional patent application Ser. No. 17/817,829 entitled “Capturing and Processing of Images Including Occlusions Focused on an Image Sensor by a Lens Stack Array”, filed Aug. 5, 2022, and issued on Oct. 17, 2023 as U.S. Pat. No. 11,792,538, which is a continuation of U.S. Non-Provisional patent application Ser. No. 16/907,016 entitled “Capturing and Processing of Images Including Occlusions Focused on an Image Sensor by a Lens Stack Array”, filed Jun. 19, 2020, and issued on Aug. 9, 2022 as U.S. Pat. No. 11,412,158, which is a continuation of U.S. Non-Provisional patent application Ser. No. 16/529,522 entitled “Capturing and Processing of Images Including Occlusions Focused on an Image Sensor by a Lens Stack Array”, filed Aug. 1, 2019, and issued on Jun. 23, 2020 as U.S. Pat. No. 10,694,114, which is a continuation of U.S. Non-Provisional patent application Ser. No. 16/199,566 entitled “Capturing and Processing of Images Including Occlusions Focused on an Image Sensor by a Lens Stack Array”, filed Nov. 26, 2018, and issued on Aug. 6, 2019 as U.S. Pat. No. 10,375,319, which is a continuation of U.S. Non-Provisional patent application Ser. No. 15/687,882 entitled “Capturing and Processing of Images Including Occlusions Focused on an Image Sensor by a Lens Stack Array”, filed Aug. 28, 2017, and issued on Nov. 27, 2018 as Patent No. which is a continuation of U.S. Non-Provisional patent application Ser. No. 14/943,009 entitled “Capturing and Processing of Images Using Camera Array Incorporating Bayer Cameras Having Different Fields of View”, filed Nov. 16, 2015 and issued on Aug. 29, 2017 as U.S. Pat. No. 9,749,547, which is a continuation of U.S. Non-Provisional patent application Ser. No. 14/704,920, entitled “Capturing and Processing of Images Including Occlusions Focused on an Image Sensor by a Lens Stack Array”, filed May 5, 2015 and issued on Nov. 17, 2015 as U.S. Pat. No. 9,188,765, which application is a continuation of U.S. Non-Provisional patent application Ser. No. 14/459,288, entitled “Systems and Methods for Normalizing Image Data Captured by Camera Arrays”, filed Aug. 13, 2014 and issued on Jun. 2, 2015 as U.S. Pat. No. 9,049,381, which application is a continuation of U.S. Non-Provisional patent application Ser. No. 12/952,134, entitled “Capturing and Processing of Images Using Monolithic Camera Array with Heterogeneous Imagers”, filed Nov. 22, 2010 and issued on Oct. 21, 2014 as U.S. Pat. No. 8,866,920, which claims priority to U.S. Provisional Patent Application 61/281,662 filed Nov. 20, 2009 and U.S. Provisional Patent Application 61/263,339 filed Nov. 20, 2009, the disclosures of which are hereby incorporated by reference in their entirety. U.S. Non-Provisional patent application Ser. No. 12/952,134 also claims priority as a Continuation-In-Part application to U.S. patent application Ser. No. 12/935,504, entitled “Capturing and Processing of Images Using Monolithic Camera Array With Heterogeneous Imagers”, filed Sep. 29, 2010 and issued on Dec. 2, 2014 as U.S. Pat. No. 8,902,321, which is a national stage application of Patent Cooperation Treaty Application PCT/US2009/044687 filed May 20, 2009, and claims priority to U.S. Provisional Patent Application 61/054,694, filed May 20, 2008, the disclosures of which are hereby incorporated by reference in their entirety.

US Referenced Citations (1207)
Number Name Date Kind
4124798 Thompson Nov 1978 A
4198646 Alexander et al. Apr 1980 A
4323925 Abell et al. Apr 1982 A
4460449 Montalbano Jul 1984 A
4467365 Murayama et al. Aug 1984 A
4652909 Glenn Mar 1987 A
4888645 Mitchell et al. Dec 1989 A
4899060 Lischke Feb 1990 A
4962425 Rea Oct 1990 A
5005083 Grage et al. Apr 1991 A
5070414 Tsutsumi Dec 1991 A
5144448 Hornbaker et al. Sep 1992 A
5157499 Oguma et al. Oct 1992 A
5325449 Burt et al. Jun 1994 A
5327125 Iwase et al. Jul 1994 A
5463464 Ladewski Oct 1995 A
5488674 Burt et al. Jan 1996 A
5629524 Stettner et al. May 1997 A
5638461 Fridge Jun 1997 A
5757425 Barton et al. May 1998 A
5793900 Nourbakhsh et al. Aug 1998 A
5801919 Griencewic Sep 1998 A
5808350 Jack et al. Sep 1998 A
5832312 Rieger et al. Nov 1998 A
5833507 Woodgate et al. Nov 1998 A
5880691 Fossum et al. Mar 1999 A
5911008 Niikura et al. Jun 1999 A
5933190 Dierickx et al. Aug 1999 A
5963664 Kumar et al. Oct 1999 A
5973844 Burger Oct 1999 A
6002743 Telymonde Dec 1999 A
6005607 Uomori et al. Dec 1999 A
6034690 Gallery et al. Mar 2000 A
6069351 Mack May 2000 A
6069365 Chow et al. May 2000 A
6095989 Hay et al. Aug 2000 A
6097394 Levoy et al. Aug 2000 A
6124974 Burger Sep 2000 A
6130786 Osawa et al. Oct 2000 A
6137100 Fossum et al. Oct 2000 A
6137535 Meyers Oct 2000 A
6141048 Meyers Oct 2000 A
6160909 Melen Dec 2000 A
6163414 Kikuchi et al. Dec 2000 A
6172352 Liu Jan 2001 B1
6175379 Uomori et al. Jan 2001 B1
6205241 Melen Mar 2001 B1
6239909 Hayashi et al. May 2001 B1
6292713 Jouppi et al. Sep 2001 B1
6340994 Margulis et al. Jan 2002 B1
6358862 Ireland et al. Mar 2002 B1
6373518 Sogawa Apr 2002 B1
6419638 Hay et al. Jul 2002 B1
6443579 Myers Sep 2002 B1
6445815 Sato Sep 2002 B1
6476805 Shume et al. Nov 2002 B1
6477260 Shimomura Nov 2002 B1
6483949 Yokoyama et al. Nov 2002 B1
6502097 Chan et al. Dec 2002 B1
6525302 Dowski, Jr. et al. Feb 2003 B2
6552742 Seta Apr 2003 B1
6563537 Kawamura et al. May 2003 B1
6571466 Glenn et al. Jun 2003 B1
6603513 Berezin Aug 2003 B1
6611289 Yu et al. Aug 2003 B1
6627896 Hashimoto et al. Sep 2003 B1
6628330 Lin Sep 2003 B1
6628845 Stone et al. Sep 2003 B1
6635941 Suda Oct 2003 B2
6639596 Shum et al. Oct 2003 B1
6647142 Beardsley Nov 2003 B1
6657218 Noda Dec 2003 B2
6671399 Berestov Dec 2003 B1
6674892 Melen Jan 2004 B1
6750904 Lambert Jun 2004 B1
6765617 Tangen et al. Jul 2004 B1
6771833 Edgar Aug 2004 B1
6774941 Boisvert et al. Aug 2004 B1
6788338 Dinev et al. Sep 2004 B1
6795253 Shinohara Sep 2004 B2
6801653 Wu et al. Oct 2004 B1
6819328 Moriwaki et al. Nov 2004 B1
6819358 Kagle et al. Nov 2004 B1
6833863 Clemens Dec 2004 B1
6879735 Portniaguine et al. Apr 2005 B1
6897454 Sasaki et al. May 2005 B2
6903770 Kobayashi et al. Jun 2005 B1
6909121 Nishikawa Jun 2005 B2
6917702 Beardsley Jul 2005 B2
6927922 George et al. Aug 2005 B2
6958862 Joseph Oct 2005 B1
6985175 Iwai et al. Jan 2006 B2
7015954 Foote et al. Mar 2006 B1
7085409 Sawhney et al. Aug 2006 B2
7161614 Yamashita et al. Jan 2007 B1
7199348 Olsen et al. Apr 2007 B2
7206449 Raskar et al. Apr 2007 B2
7215364 Wachtel et al. May 2007 B2
7235785 Hornback et al. Jun 2007 B2
7245761 Swaminathan et al. Jul 2007 B2
7262799 Suda Aug 2007 B2
7292735 Blake et al. Nov 2007 B2
7295697 Satoh Nov 2007 B1
7333651 Kim et al. Feb 2008 B1
7369165 Bosco et al. May 2008 B2
7391572 Jacobowitz et al. Jun 2008 B2
7408725 Sato Aug 2008 B2
7425984 Chen et al. Sep 2008 B2
7430312 Gu Sep 2008 B2
7471765 Jaffray et al. Dec 2008 B2
7496293 Shamir et al. Feb 2009 B2
7564019 Olsen et al. Jul 2009 B2
7599547 Sun et al. Oct 2009 B2
7606484 Richards et al. Oct 2009 B1
7620265 Wolff et al. Nov 2009 B1
7633511 Shum et al. Dec 2009 B2
7639435 Chiang Dec 2009 B2
7639838 Nims Dec 2009 B2
7646549 Zalevsky et al. Jan 2010 B2
7657090 Omatsu et al. Feb 2010 B2
7667824 Moran Feb 2010 B1
7675080 Boettiger Mar 2010 B2
7675681 Tomikawa et al. Mar 2010 B2
7706634 Schmitt et al. Apr 2010 B2
7723662 Levoy et al. May 2010 B2
7738013 Galambos et al. Jun 2010 B2
7741620 Doering et al. Jun 2010 B2
7782364 Smith Aug 2010 B2
7826153 Hong Nov 2010 B2
7840067 Shen et al. Nov 2010 B2
7912673 Hébert et al. Mar 2011 B2
7924321 Nayar et al. Apr 2011 B2
7956871 Fainstain et al. Jun 2011 B2
7965314 Miller et al. Jun 2011 B1
7973834 Yang Jul 2011 B2
7986018 Rennie Jul 2011 B2
7990447 Honda et al. Aug 2011 B2
8000498 Shih et al. Aug 2011 B2
8013904 Tan et al. Sep 2011 B2
8027531 Wilburn et al. Sep 2011 B2
8044994 Vetro et al. Oct 2011 B2
8055466 Bryll Nov 2011 B2
8077245 Adamo et al. Dec 2011 B2
8089515 Chebil et al. Jan 2012 B2
8098297 Crisan et al. Jan 2012 B2
8098304 Pinto et al. Jan 2012 B2
8106949 Tan et al. Jan 2012 B2
8111910 Tanaka Feb 2012 B2
8126279 Marcellin et al. Feb 2012 B2
8130120 Kawabata et al. Mar 2012 B2
8131097 Lelescu et al. Mar 2012 B2
8149323 Li et al. Apr 2012 B2
8164629 Zhang Apr 2012 B1
8169486 Corcoran et al. May 2012 B2
8180145 Wu et al. May 2012 B2
8189065 Georgiev et al. May 2012 B2
8189089 Georgiev et al. May 2012 B1
8194296 Compton et al. Jun 2012 B2
8212914 Chiu Jul 2012 B2
8213711 Tam Jul 2012 B2
8231814 Duparre Jul 2012 B2
8242426 Ward et al. Aug 2012 B2
8244027 Takahashi Aug 2012 B2
8244058 Intwala et al. Aug 2012 B1
8254668 Mashitani et al. Aug 2012 B2
8279325 Pitts et al. Oct 2012 B2
8280194 Wong et al. Oct 2012 B2
8284240 Saint-Pierre et al. Oct 2012 B2
8289409 Chang Oct 2012 B2
8289440 Pitts et al. Oct 2012 B2
8290358 Georgiev Oct 2012 B1
8294099 Blackwell, Jr. Oct 2012 B2
8294754 Jung et al. Oct 2012 B2
8300085 Yang et al. Oct 2012 B2
8305456 McMahon Nov 2012 B1
8315476 Georgiev et al. Nov 2012 B1
8345144 Georgiev et al. Jan 2013 B1
8360574 Ishak et al. Jan 2013 B2
8400555 Georgiev et al. Mar 2013 B1
8406562 Bassi et al. Mar 2013 B2
8411146 Twede Apr 2013 B2
8416282 Lablans Apr 2013 B2
8421846 Nelson et al. Apr 2013 B2
8446492 Nakano et al. May 2013 B2
8456517 Spektor et al. Jun 2013 B2
8493496 Freedman et al. Jul 2013 B2
8514291 Chang Aug 2013 B2
8514491 Duparre Aug 2013 B2
8541730 Inuiya Sep 2013 B2
8542933 Venkataraman et al. Sep 2013 B2
8553093 Wong et al. Oct 2013 B2
8559705 Ng Oct 2013 B2
8559756 Georgiev et al. Oct 2013 B2
8565547 Strandemar Oct 2013 B2
8576302 Yoshikawa Nov 2013 B2
8577183 Robinson Nov 2013 B2
8581995 Lin et al. Nov 2013 B2
8587679 Knee Nov 2013 B2
8619082 Ciurea et al. Dec 2013 B1
8648918 Kauker et al. Feb 2014 B2
8648919 Mantzel et al. Feb 2014 B2
8655052 Spooner et al. Feb 2014 B2
8682107 Yoon et al. Mar 2014 B2
8687087 Pertsel et al. Apr 2014 B2
8692893 McMahon Apr 2014 B2
8754941 Sarwari et al. Jun 2014 B1
8773536 Zhang Jul 2014 B1
8780113 Ciurea et al. Jul 2014 B1
8804255 Duparre Aug 2014 B2
8823813 Mantzel et al. Sep 2014 B2
8830375 Ludwig Sep 2014 B2
8831367 Venkataraman et al. Sep 2014 B2
8831377 Pitts et al. Sep 2014 B2
8836793 Kriesel et al. Sep 2014 B1
8842201 Tajiri Sep 2014 B2
8854462 Herbin et al. Oct 2014 B2
8861089 Duparre Oct 2014 B2
8866912 Mullis Oct 2014 B2
8866920 Venkataraman et al. Oct 2014 B2
8866951 Keelan Oct 2014 B2
8878950 Lelescu et al. Nov 2014 B2
8885059 Venkataraman et al. Nov 2014 B1
8885922 Ito et al. Nov 2014 B2
8896594 Xiong et al. Nov 2014 B2
8896719 Venkataraman et al. Nov 2014 B1
8902321 Venkataraman et al. Dec 2014 B2
8928793 McMahon Jan 2015 B2
8977038 Tian et al. Mar 2015 B2
9001226 Ng et al. Apr 2015 B1
9019426 Han et al. Apr 2015 B2
9025894 Venkataraman et al. May 2015 B2
9025895 Venkataraman et al. May 2015 B2
9030528 Pesach et al. May 2015 B2
9031335 Venkataraman et al. May 2015 B2
9031342 Venkataraman May 2015 B2
9031343 Venkataraman May 2015 B2
9036928 Venkataraman May 2015 B2
9036931 Venkataraman et al. May 2015 B2
9041823 Venkataraman et al. May 2015 B2
9041824 Lelescu et al. May 2015 B2
9041829 Venkataraman et al. May 2015 B2
9042667 Venkataraman et al. May 2015 B2
9047684 Lelescu et al. Jun 2015 B2
9049367 Venkataraman et al. Jun 2015 B2
9055233 Venkataraman et al. Jun 2015 B2
9060120 Venkataraman et al. Jun 2015 B2
9060124 Venkataraman et al. Jun 2015 B2
9077893 Venkataraman et al. Jul 2015 B2
9094661 Venkataraman et al. Jul 2015 B2
9100586 McMahon et al. Aug 2015 B2
9100635 Duparre et al. Aug 2015 B2
9123117 Ciurea et al. Sep 2015 B2
9123118 Ciurea et al. Sep 2015 B2
9124815 Venkataraman et al. Sep 2015 B2
9124831 Mullis Sep 2015 B2
9124864 Mullis Sep 2015 B2
9128228 Duparre Sep 2015 B2
9129183 Venkataraman et al. Sep 2015 B2
9129377 Ciurea et al. Sep 2015 B2
9143711 McMahon Sep 2015 B2
9147254 Florian et al. Sep 2015 B2
9185276 Rodda et al. Nov 2015 B2
9188765 Venkataraman et al. Nov 2015 B2
9191580 Venkataraman et al. Nov 2015 B2
9197821 McMahon Nov 2015 B2
9210392 Nisenzon et al. Dec 2015 B2
9214013 Venkataraman et al. Dec 2015 B2
9235898 Venkataraman et al. Jan 2016 B2
9235900 Ciurea et al. Jan 2016 B2
9240049 Ciurea et al. Jan 2016 B2
9253380 Venkataraman et al. Feb 2016 B2
9253397 Lee et al. Feb 2016 B2
9256974 Hines Feb 2016 B1
9264592 Rodda et al. Feb 2016 B2
9264610 Duparre Feb 2016 B2
9361662 Lelescu et al. Jun 2016 B2
9374512 Venkataraman et al. Jun 2016 B2
9412206 McMahon et al. Aug 2016 B2
9413953 Maeda Aug 2016 B2
9426343 Rodda et al. Aug 2016 B2
9426361 Venkataraman et al. Aug 2016 B2
9438888 Venkataraman et al. Sep 2016 B2
9445003 Lelescu et al. Sep 2016 B1
9456134 Venkataraman et al. Sep 2016 B2
9456196 Kim et al. Sep 2016 B2
9462164 Venkataraman et al. Oct 2016 B2
9485496 Venkataraman et al. Nov 2016 B2
9497370 Venkataraman et al. Nov 2016 B2
9497429 Mullis et al. Nov 2016 B2
9516222 Duparre et al. Dec 2016 B2
9519972 Venkataraman Dec 2016 B2
9521319 Rodda et al. Dec 2016 B2
9521416 McMahon et al. Dec 2016 B1
9536166 Venkataraman et al. Jan 2017 B2
9576369 Venkataraman et al. Feb 2017 B2
9578237 Duparre et al. Feb 2017 B2
9578259 Molina Feb 2017 B2
9602805 Venkataraman et al. Mar 2017 B2
9633442 Venkataraman et al. Apr 2017 B2
9635274 Lin et al. Apr 2017 B2
9638883 Duparre May 2017 B1
9661310 Deng et al. May 2017 B2
9706132 Nisenzon et al. Jul 2017 B2
9712759 Venkataraman et al. Jul 2017 B2
9733486 Lelescu et al. Aug 2017 B2
9741118 Mullis Aug 2017 B2
9743051 Venkataraman et al. Aug 2017 B2
9749547 Venkataraman et al. Aug 2017 B2
9749568 McMahon Aug 2017 B2
9754422 McMahon et al. Sep 2017 B2
9766380 Duparre et al. Sep 2017 B2
9769365 Jannard Sep 2017 B1
9774789 Ciurea et al. Sep 2017 B2
9774831 Venkataraman et al. Sep 2017 B2
9787911 McMahon et al. Oct 2017 B2
9794476 Nayar et al. Oct 2017 B2
9800856 Venkataraman et al. Oct 2017 B2
9800859 Venkataraman et al. Oct 2017 B2
9807382 Duparre et al. Oct 2017 B2
9811753 Venkataraman et al. Nov 2017 B2
9813616 Lelescu et al. Nov 2017 B2
9813617 Venkataraman et al. Nov 2017 B2
9826212 Newton et al. Nov 2017 B2
9858673 Ciurea et al. Jan 2018 B2
9864921 Venkataraman et al. Jan 2018 B2
9888194 Duparre Feb 2018 B2
9898856 Yang et al. Feb 2018 B2
9917998 Venkataraman et al. Mar 2018 B2
9924092 Rodda et al. Mar 2018 B2
9936148 McMahon Apr 2018 B2
9955070 Lelescu et al. Apr 2018 B2
9986224 Mullis May 2018 B2
10009538 Venkataraman et al. Jun 2018 B2
10019816 Venkataraman et al. Jul 2018 B2
10027901 Venkataraman et al. Jul 2018 B2
10089740 Srikanth Oct 2018 B2
10091405 Molina Oct 2018 B2
10119808 Venkataraman Nov 2018 B2
10122993 Venkataraman et al. Nov 2018 B2
10127682 Mullis Nov 2018 B2
10142560 Venkataraman et al. Nov 2018 B2
10182216 Mullis et al. Jan 2019 B2
10187560 Chen et al. Jan 2019 B2
10225543 Mullis Mar 2019 B2
10250871 Ciurea et al. Apr 2019 B2
10261219 Duparre et al. Apr 2019 B2
10275676 Venkataraman et al. Apr 2019 B2
10306120 Duparre May 2019 B2
10311649 McMohan et al. Jun 2019 B2
10334241 Duparre et al. Jun 2019 B2
10366472 Lelescu et al. Jul 2019 B2
10375302 Nayar et al. Aug 2019 B2
10375319 Venkataraman et al. Aug 2019 B2
10380752 Ciurea et al. Aug 2019 B2
10382665 Sa et al. Aug 2019 B2
10390005 Nisenzon et al. Aug 2019 B2
10412314 McMahon et al. Sep 2019 B2
10430682 Venkataraman et al. Oct 2019 B2
10455168 McMahon Oct 2019 B2
10455218 Venkataraman et al. Oct 2019 B2
10462362 Lelescu et al. Oct 2019 B2
10540806 Yang et al. Jan 2020 B2
10542208 Lelescu et al. Jan 2020 B2
10547772 Molina Jan 2020 B2
10560684 Mullis Feb 2020 B2
10574905 Srikanth et al. Feb 2020 B2
10638099 Mullis et al. Apr 2020 B2
10674138 Venkataraman et al. Jun 2020 B2
10694114 Venkataraman et al. Jun 2020 B2
10708492 Venkataraman et al. Jul 2020 B2
10735635 Duparre Aug 2020 B2
10767981 Venkataraman et al. Sep 2020 B2
10839485 Lelescu et al. Nov 2020 B2
10909707 Ciurea et al. Feb 2021 B2
10958892 Mullis Mar 2021 B2
10984276 Venkataraman et al. Apr 2021 B2
11022725 Duparre et al. Jun 2021 B2
11120260 Guglielmo Sep 2021 B2
11272161 Mullis Mar 2022 B2
11315321 Lucas et al. Apr 2022 B2
11412158 Venkataraman et al. Aug 2022 B2
11423513 Lelescu et al. Aug 2022 B2
11486698 Venkataraman et al. Nov 2022 B2
11525906 Kadambi Dec 2022 B2
11570423 Mullis Jan 2023 B2
11729365 Venkataraman et al. Aug 2023 B2
11792538 Venkataraman et al. Oct 2023 B2
20010005225 Clark et al. Jun 2001 A1
20010019621 Hanna et al. Sep 2001 A1
20010028038 Hamaguchi et al. Oct 2001 A1
20010038387 Tomooka et al. Nov 2001 A1
20020012056 Trevino et al. Jan 2002 A1
20020015536 Warren et al. Feb 2002 A1
20020027608 Johnson et al. Mar 2002 A1
20020028014 Ono Mar 2002 A1
20020039438 Mori et al. Apr 2002 A1
20020057845 Fossum et al. May 2002 A1
20020061131 Sawhney et al. May 2002 A1
20020063807 Margulis May 2002 A1
20020075450 Aratani et al. Jun 2002 A1
20020087403 Meyers et al. Jul 2002 A1
20020089596 Yasuo Jul 2002 A1
20020094027 Sato et al. Jul 2002 A1
20020101528 Lee et al. Aug 2002 A1
20020113867 Takigawa et al. Aug 2002 A1
20020113888 Sonoda et al. Aug 2002 A1
20020118113 Oku et al. Aug 2002 A1
20020120634 Min et al. Aug 2002 A1
20020122113 Foote Sep 2002 A1
20020163054 Suda Nov 2002 A1
20020167537 Trajkovic Nov 2002 A1
20020171666 Endo et al. Nov 2002 A1
20020177054 Saitoh et al. Nov 2002 A1
20020190991 Efran et al. Dec 2002 A1
20020195548 Dowski, Jr. et al. Dec 2002 A1
20030025227 Daniell Feb 2003 A1
20030026474 Yano Feb 2003 A1
20030086079 Barth et al. May 2003 A1
20030124763 Fan et al. Jul 2003 A1
20030140347 Varsa Jul 2003 A1
20030156189 Utsumi et al. Aug 2003 A1
20030179418 Wengender et al. Sep 2003 A1
20030188659 Merry et al. Oct 2003 A1
20030190072 Adkins et al. Oct 2003 A1
20030198377 Ng Oct 2003 A1
20030211405 Venkataraman Nov 2003 A1
20030231179 Suzuki Dec 2003 A1
20040003409 Berstis Jan 2004 A1
20040008271 Hagimori et al. Jan 2004 A1
20040012689 Tinnerino et al. Jan 2004 A1
20040027358 Nakao Feb 2004 A1
20040047274 Amanai Mar 2004 A1
20040050104 Ghosh et al. Mar 2004 A1
20040056966 Schechner et al. Mar 2004 A1
20040061787 Liu et al. Apr 2004 A1
20040066454 Otani et al. Apr 2004 A1
20040071367 Irani et al. Apr 2004 A1
20040075654 Hsiao et al. Apr 2004 A1
20040096119 Williams et al. May 2004 A1
20040100570 Shizukuishi May 2004 A1
20040105021 Hu Jun 2004 A1
20040114807 Lelescu et al. Jun 2004 A1
20040141659 Zhang Jul 2004 A1
20040151401 Sawhney et al. Aug 2004 A1
20040165090 Ning Aug 2004 A1
20040169617 Yelton et al. Sep 2004 A1
20040170340 Tipping et al. Sep 2004 A1
20040174439 Upton Sep 2004 A1
20040179008 Gordon et al. Sep 2004 A1
20040179834 Szajewski et al. Sep 2004 A1
20040196379 Chen et al. Oct 2004 A1
20040207600 Zhang et al. Oct 2004 A1
20040207836 Chhibber et al. Oct 2004 A1
20040212734 Macinnis et al. Oct 2004 A1
20040213449 Safaee-Rad et al. Oct 2004 A1
20040218809 Blake et al. Nov 2004 A1
20040223051 Peleg et al. Nov 2004 A1
20040234873 Venkataraman Nov 2004 A1
20040239782 Equitz et al. Dec 2004 A1
20040239885 Jaynes et al. Dec 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20040251509 Choi Dec 2004 A1
20040264806 Herley Dec 2004 A1
20050006477 Patel Jan 2005 A1
20050007461 Chou et al. Jan 2005 A1
20050009313 Suzuki et al. Jan 2005 A1
20050010621 Pinto et al. Jan 2005 A1
20050012035 Miller Jan 2005 A1
20050036778 DeMonte Feb 2005 A1
20050047678 Jones et al. Mar 2005 A1
20050048690 Yamamoto Mar 2005 A1
20050068436 Fraenkel et al. Mar 2005 A1
20050083531 Millerd et al. Apr 2005 A1
20050084179 Hanna et al. Apr 2005 A1
20050128509 Tokkonen et al. Jun 2005 A1
20050128595 Shimizu Jun 2005 A1
20050132098 Sonoda et al. Jun 2005 A1
20050134698 Schroeder et al. Jun 2005 A1
20050134699 Nagashima Jun 2005 A1
20050134712 Gruhlke et al. Jun 2005 A1
20050147277 Higaki et al. Jul 2005 A1
20050151759 Gonzalez-Banos et al. Jul 2005 A1
20050168924 Wu et al. Aug 2005 A1
20050175257 Kuroki Aug 2005 A1
20050185711 Pfister et al. Aug 2005 A1
20050205785 Hornback et al. Sep 2005 A1
20050219264 Shum et al. Oct 2005 A1
20050219363 Kohler et al. Oct 2005 A1
20050224843 Boemler Oct 2005 A1
20050225654 Feldman et al. Oct 2005 A1
20050265633 Piacentino et al. Dec 2005 A1
20050275946 Choo et al. Dec 2005 A1
20050286612 Takanashi Dec 2005 A1
20050286756 Hong et al. Dec 2005 A1
20060002635 Nestares et al. Jan 2006 A1
20060007331 Izumi et al. Jan 2006 A1
20060013318 Webb et al. Jan 2006 A1
20060018509 Miyoshi Jan 2006 A1
20060023197 Joel Feb 2006 A1
20060023314 Boettiger et al. Feb 2006 A1
20060028476 Sobel et al. Feb 2006 A1
20060029270 Berestov et al. Feb 2006 A1
20060029271 Miyoshi et al. Feb 2006 A1
20060033005 Jerdev et al. Feb 2006 A1
20060034003 Zalevsky Feb 2006 A1
20060034531 Poon et al. Feb 2006 A1
20060035415 Wood Feb 2006 A1
20060038879 Kremen Feb 2006 A1
20060038891 Okutomi et al. Feb 2006 A1
20060039611 Rother et al. Feb 2006 A1
20060046204 Ono et al. Mar 2006 A1
20060049930 Zruya et al. Mar 2006 A1
20060050980 Kohashi et al. Mar 2006 A1
20060054780 Garrood et al. Mar 2006 A1
20060054782 Olsen et al. Mar 2006 A1
20060055811 Frtiz et al. Mar 2006 A1
20060069478 Iwama Mar 2006 A1
20060072029 Miyatake et al. Apr 2006 A1
20060087747 Ohzawa et al. Apr 2006 A1
20060098888 Morishita May 2006 A1
20060103754 Wenstrand et al. May 2006 A1
20060119597 Oshino Jun 2006 A1
20060125936 Gruhike et al. Jun 2006 A1
20060138322 Costello et al. Jun 2006 A1
20060139475 Esch et al. Jun 2006 A1
20060152803 Provitola Jul 2006 A1
20060157640 Perlman et al. Jul 2006 A1
20060159369 Young Jul 2006 A1
20060176566 Boettiger et al. Aug 2006 A1
20060187322 Janson et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060197937 Bamji et al. Sep 2006 A1
20060203100 Ajito et al. Sep 2006 A1
20060203113 Wada et al. Sep 2006 A1
20060210146 Gu Sep 2006 A1
20060210186 Berkner Sep 2006 A1
20060214085 Olsen et al. Sep 2006 A1
20060221250 Rossbach et al. Oct 2006 A1
20060239549 Kelly et al. Oct 2006 A1
20060243889 Farnworth et al. Nov 2006 A1
20060251410 Trutna Nov 2006 A1
20060274174 Tewinkle Dec 2006 A1
20060278948 Yamaguchi et al. Dec 2006 A1
20060279648 Senba et al. Dec 2006 A1
20060289772 Johnson et al. Dec 2006 A1
20070002159 Olsen et al. Jan 2007 A1
20070008575 Yu et al. Jan 2007 A1
20070009150 Suwa Jan 2007 A1
20070024614 Tam et al. Feb 2007 A1
20070030356 Yea et al. Feb 2007 A1
20070035707 Margulis Feb 2007 A1
20070036427 Nakamura et al. Feb 2007 A1
20070040828 Zalevsky et al. Feb 2007 A1
20070040922 McKee et al. Feb 2007 A1
20070041391 Lin et al. Feb 2007 A1
20070052825 Cho Mar 2007 A1
20070083114 Yang et al. Apr 2007 A1
20070085917 Kobayashi Apr 2007 A1
20070092245 Bazakos et al. Apr 2007 A1
20070102622 Olsen et al. May 2007 A1
20070116447 Ye May 2007 A1
20070126898 Feldman et al. Jun 2007 A1
20070127831 Venkataraman Jun 2007 A1
20070139333 Sato et al. Jun 2007 A1
20070140685 Wu Jun 2007 A1
20070146503 Shiraki Jun 2007 A1
20070146511 Kinoshita et al. Jun 2007 A1
20070153335 Hosaka Jul 2007 A1
20070158427 Zhu et al. Jul 2007 A1
20070159541 Sparks et al. Jul 2007 A1
20070160310 Tanida et al. Jul 2007 A1
20070165931 Higaki Jul 2007 A1
20070166447 Ur-Rehman et al. Jul 2007 A1
20070171290 Kroger Jul 2007 A1
20070177004 Kolehmainen et al. Aug 2007 A1
20070182843 Shimamura et al. Aug 2007 A1
20070201859 Sarrat Aug 2007 A1
20070206241 Smith et al. Sep 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20070216765 Wong et al. Sep 2007 A1
20070225600 Weibrecht et al. Sep 2007 A1
20070228256 Mentzer et al. Oct 2007 A1
20070236595 Pan et al. Oct 2007 A1
20070242141 Ciurea Oct 2007 A1
20070247517 Zhang et al. Oct 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070258006 Olsen et al. Nov 2007 A1
20070258706 Raskar et al. Nov 2007 A1
20070263113 Baek et al. Nov 2007 A1
20070263114 Gurevich et al. Nov 2007 A1
20070268374 Robinson Nov 2007 A1
20070296721 Chang et al. Dec 2007 A1
20070296832 Ota et al. Dec 2007 A1
20070296835 Olsen et al. Dec 2007 A1
20070296847 Chang et al. Dec 2007 A1
20070297696 Hamza et al. Dec 2007 A1
20080006859 Mionetto Jan 2008 A1
20080019611 Larkin et al. Jan 2008 A1
20080024683 Damera-Venkata et al. Jan 2008 A1
20080025649 Liu et al. Jan 2008 A1
20080029714 Olsen et al. Feb 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030597 Olsen et al. Feb 2008 A1
20080043095 Vetro et al. Feb 2008 A1
20080043096 Vetro et al. Feb 2008 A1
20080054518 Ra et al. Mar 2008 A1
20080056302 Erdal et al. Mar 2008 A1
20080062164 Bassi et al. Mar 2008 A1
20080079805 Takagi et al. Apr 2008 A1
20080080028 Bakin et al. Apr 2008 A1
20080084486 Enge et al. Apr 2008 A1
20080088793 Sverdrup et al. Apr 2008 A1
20080095523 Schilling-Benz et al. Apr 2008 A1
20080099804 Venezia et al. May 2008 A1
20080106620 Sawachi May 2008 A1
20080112059 Choi et al. May 2008 A1
20080112635 Kondo et al. May 2008 A1
20080117289 Schowengerdt et al. May 2008 A1
20080118241 TeKolste et al. May 2008 A1
20080131019 Ng Jun 2008 A1
20080131107 Ueno Jun 2008 A1
20080151097 Chen et al. Jun 2008 A1
20080152215 Horie et al. Jun 2008 A1
20080152296 Oh et al. Jun 2008 A1
20080156991 Hu et al. Jul 2008 A1
20080158259 Kempf et al. Jul 2008 A1
20080158375 Kakkori et al. Jul 2008 A1
20080158698 Chang et al. Jul 2008 A1
20080165257 Boettiger Jul 2008 A1
20080174670 Olsen et al. Jul 2008 A1
20080187305 Raskar et al. Aug 2008 A1
20080193026 Horie et al. Aug 2008 A1
20080208506 Kuwata Aug 2008 A1
20080211737 Kim et al. Sep 2008 A1
20080218610 Chapman et al. Sep 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Janson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20080239116 Smith Oct 2008 A1
20080240598 Hasegawa Oct 2008 A1
20080247638 Tanida et al. Oct 2008 A1
20080247653 Moussavi et al. Oct 2008 A1
20080272416 Yun Nov 2008 A1
20080273751 Yuan et al. Nov 2008 A1
20080278591 Barna et al. Nov 2008 A1
20080278610 Boettiger Nov 2008 A1
20080284880 Numata Nov 2008 A1
20080291295 Kato et al. Nov 2008 A1
20080298674 Baker et al. Dec 2008 A1
20080310501 Ward et al. Dec 2008 A1
20090027543 Kanehiro Jan 2009 A1
20090050946 Duparre et al. Feb 2009 A1
20090052743 Techmer Feb 2009 A1
20090060281 Tanida et al. Mar 2009 A1
20090066693 Carson Mar 2009 A1
20090079862 Subbotin Mar 2009 A1
20090086074 Li et al. Apr 2009 A1
20090091645 Trimeche et al. Apr 2009 A1
20090091806 Inuiya Apr 2009 A1
20090092363 Daum et al. Apr 2009 A1
20090096050 Park Apr 2009 A1
20090102956 Georgiev Apr 2009 A1
20090103792 Rahn et al. Apr 2009 A1
20090109306 Shan et al. Apr 2009 A1
20090127430 Hirasawa et al. May 2009 A1
20090128644 Camp, Jr. et al. May 2009 A1
20090128833 Yahav May 2009 A1
20090129667 Ho et al. May 2009 A1
20090140131 Utagawa Jun 2009 A1
20090141933 Wagg Jun 2009 A1
20090147919 Goto et al. Jun 2009 A1
20090152664 Klem et al. Jun 2009 A1
20090167922 Perlman et al. Jul 2009 A1
20090167923 Safaee-Rad et al. Jul 2009 A1
20090167934 Gupta Jul 2009 A1
20090175349 Ye et al. Jul 2009 A1
20090179142 Duparre et al. Jul 2009 A1
20090180021 Kikuchi et al. Jul 2009 A1
20090200622 Tai et al. Aug 2009 A1
20090201371 Matsuda et al. Aug 2009 A1
20090207235 Francini et al. Aug 2009 A1
20090219435 Yuan Sep 2009 A1
20090225203 Tanida et al. Sep 2009 A1
20090237520 Kaneko et al. Sep 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090256947 Ciurea et al. Oct 2009 A1
20090263017 Tanbakuchi Oct 2009 A1
20090268192 Koenck et al. Oct 2009 A1
20090268970 Babacan et al. Oct 2009 A1
20090268983 Stone et al. Oct 2009 A1
20090273663 Yoshida Nov 2009 A1
20090274387 Jin Nov 2009 A1
20090279800 Uetani et al. Nov 2009 A1
20090284651 Srinivasan Nov 2009 A1
20090290811 Imai Nov 2009 A1
20090297056 Lelescu et al. Dec 2009 A1
20090302205 Olsen et al. Dec 2009 A9
20090315982 Schmidt et al. Dec 2009 A1
20090317061 Jung et al. Dec 2009 A1
20090322876 Lee et al. Dec 2009 A1
20090323195 Hembree et al. Dec 2009 A1
20090323206 Oliver et al. Dec 2009 A1
20090324118 Maslov et al. Dec 2009 A1
20100002126 Wenstrand et al. Jan 2010 A1
20100002313 Duparre et al. Jan 2010 A1
20100002314 Duparre Jan 2010 A1
20100007714 Kim et al. Jan 2010 A1
20100013927 Nixon Jan 2010 A1
20100044815 Chang Feb 2010 A1
20100045809 Packard Feb 2010 A1
20100053342 Hwang et al. Mar 2010 A1
20100053347 Agarwala et al. Mar 2010 A1
20100053415 Yun Mar 2010 A1
20100053600 Tanida et al. Mar 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100073463 Momonoi et al. Mar 2010 A1
20100074532 Gordon et al. Mar 2010 A1
20100085351 Deb et al. Apr 2010 A1
20100085425 Tan Apr 2010 A1
20100086227 Sun et al. Apr 2010 A1
20100091389 Henriksen et al. Apr 2010 A1
20100097491 Farina et al. Apr 2010 A1
20100103175 Okutomi et al. Apr 2010 A1
20100103259 Tanida et al. Apr 2010 A1
20100103308 Butterfield et al. Apr 2010 A1
20100111444 Coffman May 2010 A1
20100118127 Nam et al. May 2010 A1
20100128145 Pitts et al. May 2010 A1
20100129048 Pitts et al. May 2010 A1
20100133230 Henriksen et al. Jun 2010 A1
20100133418 Sargent et al. Jun 2010 A1
20100141802 Knight et al. Jun 2010 A1
20100142828 Chang et al. Jun 2010 A1
20100142839 Lakus-Becker Jun 2010 A1
20100157073 Kondo et al. Jun 2010 A1
20100165152 Lim Jul 2010 A1
20100166410 Chang Jul 2010 A1
20100171866 Brady et al. Jul 2010 A1
20100177411 Hegde et al. Jul 2010 A1
20100182406 Benitez Jul 2010 A1
20100194860 Mentz et al. Aug 2010 A1
20100194901 van Hoorebeke et al. Aug 2010 A1
20100195716 Klein Gunnewiek et al. Aug 2010 A1
20100201809 Oyama et al. Aug 2010 A1
20100201834 Maruyama et al. Aug 2010 A1
20100202054 Niederer Aug 2010 A1
20100202683 Robinson Aug 2010 A1
20100208100 Olsen et al. Aug 2010 A9
20100214423 Ogawa Aug 2010 A1
20100220212 Perlman et al. Sep 2010 A1
20100223237 Mishra et al. Sep 2010 A1
20100225740 Jung et al. Sep 2010 A1
20100231285 Boomer et al. Sep 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100244165 Lake et al. Sep 2010 A1
20100245684 Xiao et al. Sep 2010 A1
20100254627 Panahpour Tehrani et al. Oct 2010 A1
20100259610 Petersen Oct 2010 A1
20100265346 Tizuka Oct 2010 A1
20100265381 Yamamoto et al. Oct 2010 A1
20100265385 Knight et al. Oct 2010 A1
20100277629 Tanaka Nov 2010 A1
20100281070 Chan et al. Nov 2010 A1
20100289941 Ito et al. Nov 2010 A1
20100290483 Park et al. Nov 2010 A1
20100302423 Adams, Jr. et al. Dec 2010 A1
20100309292 Ho et al. Dec 2010 A1
20100309368 Choi et al. Dec 2010 A1
20100321595 Chiu Dec 2010 A1
20100321640 Yeh et al. Dec 2010 A1
20100328456 Alakarhu Dec 2010 A1
20100329556 Mitarai et al. Dec 2010 A1
20100329582 Albu et al. Dec 2010 A1
20110001037 Tewinkle Jan 2011 A1
20110018973 Takayama Jan 2011 A1
20110019048 Raynor et al. Jan 2011 A1
20110019243 Constant, Jr. et al. Jan 2011 A1
20110031381 Tay et al. Feb 2011 A1
20110032341 Ignatov et al. Feb 2011 A1
20110032370 Ludwig Feb 2011 A1
20110033129 Robinson Feb 2011 A1
20110038536 Gong Feb 2011 A1
20110043604 Peleg et al. Feb 2011 A1
20110043613 Rohaly et al. Feb 2011 A1
20110043661 Podoleanu Feb 2011 A1
20110043665 Ogasahara Feb 2011 A1
20110043668 McKinnon et al. Feb 2011 A1
20110044502 Liu et al. Feb 2011 A1
20110051255 Lee et al. Mar 2011 A1
20110055729 Mason et al. Mar 2011 A1
20110064327 Dagher et al. Mar 2011 A1
20110069189 Venkataraman et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110085028 Samadani et al. Apr 2011 A1
20110090217 Mashitani et al. Apr 2011 A1
20110108708 Olsen et al. May 2011 A1
20110115886 Nguyen et al. May 2011 A1
20110121421 Charbon et al. May 2011 A1
20110122308 Duparre May 2011 A1
20110128393 Tavi et al. Jun 2011 A1
20110128412 Milnes et al. Jun 2011 A1
20110129165 Lim et al. Jun 2011 A1
20110141309 Nagashima et al. Jun 2011 A1
20110142138 Tian et al. Jun 2011 A1
20110149408 Hahgholt et al. Jun 2011 A1
20110149409 Haugholt et al. Jun 2011 A1
20110150321 Cheong et al. Jun 2011 A1
20110153248 Gu et al. Jun 2011 A1
20110157321 Nakajima et al. Jun 2011 A1
20110157451 Chang Jun 2011 A1
20110169921 Lee et al. Jul 2011 A1
20110169994 DiFrancesco et al. Jul 2011 A1
20110176020 Chang Jul 2011 A1
20110181797 Galstian et al. Jul 2011 A1
20110193944 Lian et al. Aug 2011 A1
20110199458 Hayasaka et al. Aug 2011 A1
20110200319 Kravitz et al. Aug 2011 A1
20110206291 Kashani et al. Aug 2011 A1
20110207074 Hall-Holt et al. Aug 2011 A1
20110211068 Yokota Sep 2011 A1
20110211077 Nayar et al. Sep 2011 A1
20110211824 Georgiev et al. Sep 2011 A1
20110221599 Högasten Sep 2011 A1
20110221658 Haddick et al. Sep 2011 A1
20110221939 Jerdev Sep 2011 A1
20110221950 Oostra et al. Sep 2011 A1
20110222757 Yeatman, Jr. et al. Sep 2011 A1
20110228142 Brueckner et al. Sep 2011 A1
20110228144 Tian et al. Sep 2011 A1
20110234825 Liu et al. Sep 2011 A1
20110234841 Akeley et al. Sep 2011 A1
20110241234 Duparre Oct 2011 A1
20110242342 Goma et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110242356 Aleksic et al. Oct 2011 A1
20110243428 Das Gupta et al. Oct 2011 A1
20110255592 Sung et al. Oct 2011 A1
20110255745 Hodder et al. Oct 2011 A1
20110261993 Weiming et al. Oct 2011 A1
20110267264 Mccarthy et al. Nov 2011 A1
20110267348 Lin et al. Nov 2011 A1
20110273531 Ito et al. Nov 2011 A1
20110274175 Sumitomo Nov 2011 A1
20110274366 Tardif Nov 2011 A1
20110279705 Kuang et al. Nov 2011 A1
20110279721 McMahon Nov 2011 A1
20110285701 Chen et al. Nov 2011 A1
20110285866 Bhrugumalla et al. Nov 2011 A1
20110285910 Bamji et al. Nov 2011 A1
20110292216 Fergus et al. Dec 2011 A1
20110298898 Jung et al. Dec 2011 A1
20110298917 Yanagita Dec 2011 A1
20110300929 Tardif et al. Dec 2011 A1
20110310980 Mathew Dec 2011 A1
20110316968 Taguchi et al. Dec 2011 A1
20110317766 Lim et al. Dec 2011 A1
20120012748 Pain et al. Jan 2012 A1
20120013748 Stanwood et al. Jan 2012 A1
20120014456 Martinez Bauza et al. Jan 2012 A1
20120019530 Baker Jan 2012 A1
20120019700 Gaber Jan 2012 A1
20120023456 Sun et al. Jan 2012 A1
20120026297 Sato Feb 2012 A1
20120026342 Yu et al. Feb 2012 A1
20120026366 Golan et al. Feb 2012 A1
20120026451 Nystrom Feb 2012 A1
20120026478 Chen et al. Feb 2012 A1
20120038745 Yu et al. Feb 2012 A1
20120039525 Tian et al. Feb 2012 A1
20120044249 Mashitani et al. Feb 2012 A1
20120044372 Côtéet al. Feb 2012 A1
20120051624 Ando Mar 2012 A1
20120056982 Katz et al. Mar 2012 A1
20120057040 Park et al. Mar 2012 A1
20120062697 Treado et al. Mar 2012 A1
20120062702 Jiang et al. Mar 2012 A1
20120062756 Tian et al. Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120081519 Goma et al. Apr 2012 A1
20120086803 Malzbender et al. Apr 2012 A1
20120105590 Fukumoto et al. May 2012 A1
20120105654 Kwatra et al. May 2012 A1
20120105691 Waqas et al. May 2012 A1
20120113232 Joblove May 2012 A1
20120113318 Galstian et al. May 2012 A1
20120113413 Miahczylowicz-Wolski et al. May 2012 A1
20120114224 Xu et al. May 2012 A1
20120120264 Lee et al. May 2012 A1
20120127275 Von Zitzewitz et al. May 2012 A1
20120147139 Li et al. Jun 2012 A1
20120147205 Lelescu et al. Jun 2012 A1
20120153153 Chang et al. Jun 2012 A1
20120154551 Inoue Jun 2012 A1
20120155830 Sasaki et al. Jun 2012 A1
20120163672 Mckinnon Jun 2012 A1
20120163725 Fukuhara Jun 2012 A1
20120169433 Mullins et al. Jul 2012 A1
20120170134 Bolis et al. Jul 2012 A1
20120176479 Mayhew et al. Jul 2012 A1
20120176481 Lukk et al. Jul 2012 A1
20120188235 Wu et al. Jul 2012 A1
20120188341 Klein Gunnewiek et al. Jul 2012 A1
20120188389 Lin et al. Jul 2012 A1
20120188420 Black et al. Jul 2012 A1
20120188634 Kubala et al. Jul 2012 A1
20120198677 Duparre Aug 2012 A1
20120200669 Lai et al. Aug 2012 A1
20120200726 Bugnariu Aug 2012 A1
20120200734 Tang Aug 2012 A1
20120206582 DiCarlo et al. Aug 2012 A1
20120219236 Ali et al. Aug 2012 A1
20120224083 Jovanovski et al. Sep 2012 A1
20120229602 Chen et al. Sep 2012 A1
20120229628 Ishiyama et al. Sep 2012 A1
20120237114 Park et al. Sep 2012 A1
20120249550 Akeley et al. Oct 2012 A1
20120249750 Izzat et al. Oct 2012 A1
20120249836 Ali et al. Oct 2012 A1
20120249853 Krolczyk et al. Oct 2012 A1
20120250990 Bocirnea Oct 2012 A1
20120262601 Choi et al. Oct 2012 A1
20120262607 Shimura et al. Oct 2012 A1
20120268574 Gidon et al. Oct 2012 A1
20120274626 Hsieh Nov 2012 A1
20120287291 McMahon Nov 2012 A1
20120290257 Hodge et al. Nov 2012 A1
20120293489 Chen et al. Nov 2012 A1
20120293624 Chen et al. Nov 2012 A1
20120293695 Tanaka Nov 2012 A1
20120307093 Miyoshi Dec 2012 A1
20120307099 Yahata Dec 2012 A1
20120314033 Lee et al. Dec 2012 A1
20120314937 Kim et al. Dec 2012 A1
20120327222 Ng et al. Dec 2012 A1
20130002828 Ding et al. Jan 2013 A1
20130003184 Duparre Jan 2013 A1
20130010073 Do et al. Jan 2013 A1
20130016245 Yuba Jan 2013 A1
20130016885 Tsujimoto Jan 2013 A1
20130022111 Chen et al. Jan 2013 A1
20130027580 Olsen et al. Jan 2013 A1
20130033579 Wajs Feb 2013 A1
20130033585 Li et al. Feb 2013 A1
20130038696 Ding et al. Feb 2013 A1
20130047396 Au et al. Feb 2013 A1
20130050504 Safaee-Rad et al. Feb 2013 A1
20130050526 Keelan Feb 2013 A1
20130057710 McMahon Mar 2013 A1
20130070060 Chatterjee et al. Mar 2013 A1
20130076967 Brunner et al. Mar 2013 A1
20130077859 Stauder et al. Mar 2013 A1
20130077880 Venkataraman et al. Mar 2013 A1
20130077882 Venkataraman et al. Mar 2013 A1
20130083172 Baba Apr 2013 A1
20130088489 Schmeitz et al. Apr 2013 A1
20130088637 Duparre Apr 2013 A1
20130093842 Yahata Apr 2013 A1
20130100254 Morioka et al. Apr 2013 A1
20130107061 Kumar et al. May 2013 A1
20130113888 Koguchi May 2013 A1
20130113899 Morohoshi et al. May 2013 A1
20130113939 Strandemar May 2013 A1
20130120536 Song et al. May 2013 A1
20130120605 Georgiev et al. May 2013 A1
20130121559 Hu et al. May 2013 A1
20130127988 Wang et al. May 2013 A1
20130128068 Georgiev et al. May 2013 A1
20130128069 Georgiev et al. May 2013 A1
20130128087 Georgiev et al. May 2013 A1
20130128121 Agarwala et al. May 2013 A1
20130135315 Bares et al. May 2013 A1
20130135448 Nagumo et al. May 2013 A1
20130147979 McMahon et al. Jun 2013 A1
20130155050 Rastogi et al. Jun 2013 A1
20130162641 Zhang et al. Jun 2013 A1
20130169754 Aronsson et al. Jul 2013 A1
20130176394 Tian et al. Jul 2013 A1
20130208138 Li et al. Aug 2013 A1
20130215108 McMahon et al. Aug 2013 A1
20130215231 Hiramoto et al. Aug 2013 A1
20130222556 Shimada Aug 2013 A1
20130222656 Kaneko Aug 2013 A1
20130223759 Nishiyama Aug 2013 A1
20130229540 Farina et al. Sep 2013 A1
20130230237 Schlosser et al. Sep 2013 A1
20130250123 Zhang et al. Sep 2013 A1
20130250150 Malone et al. Sep 2013 A1
20130258067 Zhang et al. Oct 2013 A1
20130259317 Gaddy Oct 2013 A1
20130265459 Duparre et al. Oct 2013 A1
20130274596 Azizian et al. Oct 2013 A1
20130274923 By Oct 2013 A1
20130286236 Mankowski Oct 2013 A1
20130293760 Nisenzon et al. Nov 2013 A1
20130308197 Duparre Nov 2013 A1
20130321581 El-Ghoroury et al. Dec 2013 A1
20130321589 Kirk et al. Dec 2013 A1
20130335598 Gustavsson et al. Dec 2013 A1
20130342641 Morioka et al. Dec 2013 A1
20140002674 Duparre et al. Jan 2014 A1
20140002675 Duparre et al. Jan 2014 A1
20140009586 McNamer et al. Jan 2014 A1
20140013273 Ng Jan 2014 A1
20140037137 Broaddus et al. Feb 2014 A1
20140037140 Benhimane et al. Feb 2014 A1
20140043507 Wang et al. Feb 2014 A1
20140059462 Wernersson Feb 2014 A1
20140076336 Clayton et al. Mar 2014 A1
20140078333 Miao Mar 2014 A1
20140079336 Venkataraman et al. Mar 2014 A1
20140081454 Nuyujukian et al. Mar 2014 A1
20140085502 Lin et al. Mar 2014 A1
20140092281 Nisenzon et al. Apr 2014 A1
20140098266 Nayar et al. Apr 2014 A1
20140098267 Tian et al. Apr 2014 A1
20140104490 Hsieh et al. Apr 2014 A1
20140118493 Sali et al. May 2014 A1
20140118584 Lee et al. May 2014 A1
20140125771 Grossmann et al. May 2014 A1
20140132734 Zhuang et al. May 2014 A1
20140132810 McMahon May 2014 A1
20140139642 Ni et al. May 2014 A1
20140139643 Hogasten et al. May 2014 A1
20140140626 Cho et al. May 2014 A1
20140146132 Bagnato et al. May 2014 A1
20140146201 Knight et al. May 2014 A1
20140168424 Attar et al. Jun 2014 A1
20140176592 Wilburn et al. Jun 2014 A1
20140183334 Wang et al. Jul 2014 A1
20140186045 Poddar et al. Jul 2014 A1
20140192154 Jeong et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140198188 Izawa Jul 2014 A1
20140204183 Lee et al. Jul 2014 A1
20140218546 McMahon Aug 2014 A1
20140232822 Venkataraman et al. Aug 2014 A1
20140240528 Venkataraman et al. Aug 2014 A1
20140240529 Venkataraman et al. Aug 2014 A1
20140253738 Mullis Sep 2014 A1
20140267243 Venkataraman et al. Sep 2014 A1
20140267286 Duparre Sep 2014 A1
20140267633 Venkataraman et al. Sep 2014 A1
20140267762 Mullis et al. Sep 2014 A1
20140267829 McMahon et al. Sep 2014 A1
20140267890 Lelescu et al. Sep 2014 A1
20140285675 Mullis Sep 2014 A1
20140300706 Song Oct 2014 A1
20140313315 Shoham et al. Oct 2014 A1
20140321712 Ciurea et al. Oct 2014 A1
20140333731 Venkataraman et al. Nov 2014 A1
20140333764 Venkataraman et al. Nov 2014 A1
20140333787 Venkataraman et al. Nov 2014 A1
20140340539 Venkataraman et al. Nov 2014 A1
20140347509 Venkataraman et al. Nov 2014 A1
20140347748 Duparre Nov 2014 A1
20140354773 Venkataraman et al. Dec 2014 A1
20140354843 Venkataraman et al. Dec 2014 A1
20140354844 Venkataraman et al. Dec 2014 A1
20140354853 Venkataraman et al. Dec 2014 A1
20140354854 Venkataraman et al. Dec 2014 A1
20140354855 Venkataraman et al. Dec 2014 A1
20140355870 Venkataraman et al. Dec 2014 A1
20140368662 Venkataraman et al. Dec 2014 A1
20140368683 Venkataraman et al. Dec 2014 A1
20140368684 Venkataraman et al. Dec 2014 A1
20140368685 Venkataraman et al. Dec 2014 A1
20140368686 Duparre Dec 2014 A1
20140369612 Venkataraman et al. Dec 2014 A1
20140369615 Venkataraman et al. Dec 2014 A1
20140376825 Venkataraman et al. Dec 2014 A1
20140376826 Venkataraman et al. Dec 2014 A1
20150002734 Lee Jan 2015 A1
20150003752 Venkataraman et al. Jan 2015 A1
20150003753 Venkataraman et al. Jan 2015 A1
20150009353 Venkataraman et al. Jan 2015 A1
20150009354 Venkataraman et al. Jan 2015 A1
20150009362 Venkataraman et al. Jan 2015 A1
20150015669 Venkataraman et al. Jan 2015 A1
20150035992 Mullis Feb 2015 A1
20150036014 Lelescu et al. Feb 2015 A1
20150036015 Lelescu et al. Feb 2015 A1
20150042766 Ciurea et al. Feb 2015 A1
20150042767 Ciurea et al. Feb 2015 A1
20150042833 Lelescu et al. Feb 2015 A1
20150049915 Ciurea et al. Feb 2015 A1
20150049916 Ciurea et al. Feb 2015 A1
20150049917 Ciurea et al. Feb 2015 A1
20150055884 Venkataraman et al. Feb 2015 A1
20150085073 Bruls et al. Mar 2015 A1
20150085174 Shabtay et al. Mar 2015 A1
20150091900 Yang et al. Apr 2015 A1
20150098079 Montgomery et al. Apr 2015 A1
20150104076 Hayasaka Apr 2015 A1
20150104101 Bryant et al. Apr 2015 A1
20150122411 Rodda et al. May 2015 A1
20150124059 Georgiev et al. May 2015 A1
20150124113 Rodda et al. May 2015 A1
20150124151 Rodda et al. May 2015 A1
20150138346 Venkataraman et al. May 2015 A1
20150146029 Venkataraman et al. May 2015 A1
20150146030 Venkataraman et al. May 2015 A1
20150161798 Venkataraman et al. Jun 2015 A1
20150199793 Venkataraman et al. Jul 2015 A1
20150199841 Venkataraman et al. Jul 2015 A1
20150235476 McMahon et al. Aug 2015 A1
20150237329 Venkataraman et al. Aug 2015 A1
20150243480 Yamada Aug 2015 A1
20150244927 Laroia et al. Aug 2015 A1
20150245013 Venkataraman et al. Aug 2015 A1
20150248744 Hayasaka et al. Sep 2015 A1
20150254868 Srikanth et al. Sep 2015 A1
20150264337 Venkataraman et al. Sep 2015 A1
20150296137 Duparre et al. Oct 2015 A1
20150312455 Venkataraman et al. Oct 2015 A1
20150326852 Duparre et al. Nov 2015 A1
20150332468 Hayasaka et al. Nov 2015 A1
20150373261 Rodda et al. Dec 2015 A1
20160037097 Duparre Feb 2016 A1
20160044252 Molina Feb 2016 A1
20160044257 Venkataraman et al. Feb 2016 A1
20160057332 Ciurea et al. Feb 2016 A1
20160065934 Kaza et al. Mar 2016 A1
20160163051 Mullis Jun 2016 A1
20160165106 Duparre Jun 2016 A1
20160165134 Lelescu et al. Jun 2016 A1
20160165147 Nisenzon et al. Jun 2016 A1
20160165212 Mullis Jun 2016 A1
20160191768 Shin et al. Jun 2016 A1
20160195733 Lelescu et al. Jul 2016 A1
20160198096 McMahon et al. Jul 2016 A1
20160227195 Venkataraman et al. Aug 2016 A1
20160249001 McMahon Aug 2016 A1
20160255333 Nisenzon et al. Sep 2016 A1
20160266284 Duparre et al. Sep 2016 A1
20160267665 Venkataraman et al. Sep 2016 A1
20160267672 Ciurea et al. Sep 2016 A1
20160269626 McMahon Sep 2016 A1
20160269627 McMahon Sep 2016 A1
20160269650 Venkataraman et al. Sep 2016 A1
20160269651 Venkataraman et al. Sep 2016 A1
20160269664 Duparre Sep 2016 A1
20160316140 Nayar et al. Oct 2016 A1
20170006233 Venkataraman et al. Jan 2017 A1
20170048468 Pain et al. Feb 2017 A1
20170053382 Lelescu et al. Feb 2017 A1
20170054901 Venkataraman et al. Feb 2017 A1
20170070672 Rodda et al. Mar 2017 A1
20170070673 Lelescu et al. Mar 2017 A1
20170078568 Venkataraman et al. Mar 2017 A1
20170085845 Venkataraman et al. Mar 2017 A1
20170094243 Venkataraman et al. Mar 2017 A1
20170099465 Mullis et al. Apr 2017 A1
20170163862 Molina Jun 2017 A1
20170178363 Venkataraman et al. Jun 2017 A1
20170187933 Duparre Jun 2017 A1
20170188011 Panescu et al. Jun 2017 A1
20170244960 Ciurea et al. Aug 2017 A1
20170257562 Venkataraman et al. Sep 2017 A1
20170365104 McMahon et al. Dec 2017 A1
20180007284 Venkataraman et al. Jan 2018 A1
20180013945 Ciurea et al. Jan 2018 A1
20180024330 Laroia Jan 2018 A1
20180035057 McMahon et al. Feb 2018 A1
20180040135 Mullis Feb 2018 A1
20180048830 Venkataraman et al. Feb 2018 A1
20180048879 Venkataraman et al. Feb 2018 A1
20180081090 Duparre et al. Mar 2018 A1
20180097993 Nayar et al. Apr 2018 A1
20180109782 Duparre et al. Apr 2018 A1
20180124311 Lelescu et al. May 2018 A1
20180139382 Venkataraman et al. May 2018 A1
20180197035 Venkataraman et al. Jul 2018 A1
20180211402 Ciurea et al. Jul 2018 A1
20180227511 McMahon Aug 2018 A1
20180240265 Yang et al. Aug 2018 A1
20180270473 Mullis Sep 2018 A1
20180302554 Lelescu et al. Oct 2018 A1
20180330182 Venkataraman et al. Nov 2018 A1
20190037116 Molina Jan 2019 A1
20190037150 Srikanth et al. Jan 2019 A1
20190043253 Lucas et al. Feb 2019 A1
20190063905 Venkataraman et al. Feb 2019 A1
20190089947 Venkataraman et al. Mar 2019 A1
20190098209 Venkataraman et al. Mar 2019 A1
20190109998 Venkataraman et al. Apr 2019 A1
20190215496 Mullis et al. Jul 2019 A1
20190230348 Ciurea et al. Jul 2019 A1
20190235138 Duparre et al. Aug 2019 A1
20190268586 Mullis Aug 2019 A1
20190289176 Duparre Sep 2019 A1
20190347768 Lelescu et al. Nov 2019 A1
20190356863 Venkataraman et al. Nov 2019 A1
20190362515 Ciurea et al. Nov 2019 A1
20190364263 Jannard et al. Nov 2019 A1
20200026948 Venkataraman et al. Jan 2020 A1
20200252597 Mullis Aug 2020 A1
20200389604 Venkataraman et al. Dec 2020 A1
20210063141 Venkataraman et al. Mar 2021 A1
20210133927 Lelescu et al. May 2021 A1
20210150748 Ciurea et al. May 2021 A1
20210281816 Mullis Sep 2021 A1
20210312207 Venkataraman et al. Oct 2021 A1
20220239890 Mullis Jul 2022 A1
20220385848 Venkataraman et al. Dec 2022 A1
20220414829 Lelescu et al. Dec 2022 A1
20230152087 Venkataraman et al. May 2023 A1
Foreign Referenced Citations (240)
Number Date Country
107077743 Aug 2017 CA
1619358 May 2005 CN
1669332 Sep 2005 CN
1839394 Sep 2006 CN
1985524 Jun 2007 CN
101010619 Aug 2007 CN
101046882 Oct 2007 CN
101064780 Oct 2007 CN
101102388 Jan 2008 CN
101147392 Mar 2008 CN
201043890 Apr 2008 CN
101212566 Jul 2008 CN
101312540 Nov 2008 CN
101427372 May 2009 CN
101593350 Dec 2009 CN
101606086 Dec 2009 CN
101883291 Nov 2010 CN
102037717 Apr 2011 CN
102184720 Sep 2011 CN
102375199 Mar 2012 CN
103004180 Mar 2013 CN
104081414 Oct 2014 CN
104508681 Apr 2015 CN
104662589 May 2015 CN
104685513 Jun 2015 CN
104685860 Jun 2015 CN
104081414 Aug 2017 CN
104662589 Aug 2017 CN
107230236 Oct 2017 CN
107346061 Nov 2017 CN
104685513 Apr 2018 CN
104335246 Sep 2018 CN
107346061 Apr 2020 CN
107230236 Dec 2020 CN
602011041799.1 Sep 2017 DE
0677821 Oct 1995 EP
0840502 May 1998 EP
1201407 May 2002 EP
1355274 Oct 2003 EP
1418766 May 2004 EP
1734766 Dec 2006 EP
1243945 Jan 2009 EP
2026563 Feb 2009 EP
2104334 Sep 2009 EP
2244484 Oct 2010 EP
0957642 Apr 2011 EP
2336816 Jun 2011 EP
2339532 Jun 2011 EP
2381418 Oct 2011 EP
2502115 Sep 2012 EP
2569935 Mar 2013 EP
2652678 Oct 2013 EP
2761534 Aug 2014 EP
2777245 Sep 2014 EP
2867718 May 2015 EP
2873028 May 2015 EP
2888698 Jul 2015 EP
2888720 Jul 2015 EP
2901671 Aug 2015 EP
2973476 Jan 2016 EP
3066690 Sep 2016 EP
2569935 Dec 2016 EP
3201877 Aug 2017 EP
2652678 Sep 2017 EP
3201877 Mar 2018 EP
2817955 Apr 2018 EP
3328048 May 2018 EP
3075140 Jun 2018 EP
3201877 Dec 2018 EP
3467776 Apr 2019 EP
2761534 Nov 2020 EP
2888720 Mar 2021 EP
3328048 Apr 2021 EP
3869797 Aug 2021 EP
3876510 Sep 2021 EP
3869797 Jul 2023 EP
2482022 Jan 2012 GB
2708CHENP2014 Aug 2015 IN
361194 Mar 2021 IN
59-025483 Feb 1984 JP
64-037177 Feb 1989 JP
02-285772 Nov 1990 JP
06129851 May 1994 JP
07-015457 Jan 1995 JP
H0756112 Mar 1995 JP
09171075 Jun 1997 JP
09181913 Jul 1997 JP
10253351 Sep 1998 JP
11142609 May 1999 JP
11223708 Aug 1999 JP
11325889 Nov 1999 JP
2000209503 Jul 2000 JP
2001008235 Jan 2001 JP
2001194114 Jul 2001 JP
2001264033 Sep 2001 JP
2001277260 Oct 2001 JP
2001337263 Dec 2001 JP
2002195910 Jul 2002 JP
2002205310 Jul 2002 JP
2002209226 Jul 2002 JP
2002250607 Sep 2002 JP
2002252338 Sep 2002 JP
2003094445 Apr 2003 JP
2003139910 May 2003 JP
2003163938 Jun 2003 JP
2003298920 Oct 2003 JP
2004221585 Aug 2004 JP
2005116022 Apr 2005 JP
2005181460 Jul 2005 JP
2005295381 Oct 2005 JP
2005303694 Oct 2005 JP
2005341569 Dec 2005 JP
2005354124 Dec 2005 JP
2006033228 Feb 2006 JP
2006033493 Feb 2006 JP
2006047944 Feb 2006 JP
2006258930 Sep 2006 JP
2007520107 Jul 2007 JP
2007259136 Oct 2007 JP
2008039852 Feb 2008 JP
2008055908 Mar 2008 JP
2008507874 Mar 2008 JP
2008172735 Jul 2008 JP
2008258885 Oct 2008 JP
2009064421 Mar 2009 JP
2009132010 Jun 2009 JP
2009300268 Dec 2009 JP
2010139288 Jun 2010 JP
2011017764 Jan 2011 JP
2011030184 Feb 2011 JP
2011109484 Jun 2011 JP
2011523538 Aug 2011 JP
2011203238 Oct 2011 JP
2012504805 Feb 2012 JP
2013509022 Mar 2013 JP
2013526801 Jun 2013 JP
2014521117 Aug 2014 JP
2014535191 Dec 2014 JP
2015522178 Aug 2015 JP
2015534734 Dec 2015 JP
5848754 Jan 2016 JP
2016524125 Aug 2016 JP
6140709 May 2017 JP
2017163550 Sep 2017 JP
2017163587 Sep 2017 JP
2017531976 Oct 2017 JP
6546613 Jul 2019 JP
2019-220957 Dec 2019 JP
6630891 Dec 2019 JP
2020017999 Jan 2020 JP
6767543 Sep 2020 JP
6767558 Sep 2020 JP
1020110097647 Aug 2011 KR
20170063827 Jun 2017 KR
101824672 Feb 2018 KR
101843994 Mar 2018 KR
10-2002165 Jul 2019 KR
10-2111181 May 2020 KR
191151 Jul 2013 SG
11201500910R Oct 2015 SG
200828994 Jul 2008 TW
200939739 Sep 2009 TW
201228382 Jul 2012 TW
1535292 May 2016 TW
1994020875 Sep 1994 WO
2005057922 Jun 2005 WO
2006039906 Apr 2006 WO
2006039906 Apr 2006 WO
2007013250 Feb 2007 WO
2007052191 May 2007 WO
2007083579 Jul 2007 WO
2007134137 Nov 2007 WO
2008045198 Apr 2008 WO
2008050904 May 2008 WO
2008108271 Sep 2008 WO
2008108926 Sep 2008 WO
2008150817 Dec 2008 WO
2009073950 Jun 2009 WO
2009151903 Dec 2009 WO
2009157273 Dec 2009 WO
2010037512 Apr 2010 WO
2011008443 Jan 2011 WO
2011026527 Mar 2011 WO
2011046607 Apr 2011 WO
2011052064 May 2011 WO
2011055655 May 2011 WO
2011063347 May 2011 WO
2011105814 Sep 2011 WO
2011116203 Sep 2011 WO
2011063347 Oct 2011 WO
2011143501 Nov 2011 WO
2012057619 May 2012 WO
2012057620 May 2012 WO
2012057621 May 2012 WO
2012057622 May 2012 WO
2012057623 May 2012 WO
2012057620 Jun 2012 WO
2012074361 Jun 2012 WO
2012078126 Jun 2012 WO
2012082904 Jun 2012 WO
2012155119 Nov 2012 WO
2013003276 Jan 2013 WO
2013043751 Mar 2013 WO
2013043761 Mar 2013 WO
2013049699 Apr 2013 WO
2013055960 Apr 2013 WO
2013068759 May 2013 WO
2013119706 Aug 2013 WO
2013126578 Aug 2013 WO
2013166215 Nov 2013 WO
2014004134 Jan 2014 WO
2014005123 Jan 2014 WO
2014031795 Feb 2014 WO
2014052974 Apr 2014 WO
2014032020 May 2014 WO
2014078443 May 2014 WO
2014130849 Aug 2014 WO
2014133974 Sep 2014 WO
2014138695 Sep 2014 WO
2014138697 Sep 2014 WO
2014144157 Sep 2014 WO
2014145856 Sep 2014 WO
2014149403 Sep 2014 WO
2014149902 Sep 2014 WO
2014150856 Sep 2014 WO
2014153098 Sep 2014 WO
2014159721 Oct 2014 WO
2014159779 Oct 2014 WO
2014160142 Oct 2014 WO
2014164550 Oct 2014 WO
2014164909 Oct 2014 WO
2014165244 Oct 2014 WO
2014133974 Apr 2015 WO
2015048694 Apr 2015 WO
2015070105 May 2015 WO
2015074078 May 2015 WO
2015081279 Jun 2015 WO
2015134996 Sep 2015 WO
2015183824 Dec 2015 WO
2016054089 Apr 2016 WO
Non-Patent Literature Citations (311)
Entry
Extended European Search Report for EP Application No. 11781313.9, Completed Oct. 1, 2013, Mailed Oct. 8, 2013, 6 pages.
Extended European Search Report for EP Application No. 13810429.4, Completed Jan. 7, 2016, Mailed Jan. 15, 2016, 6 Pgs.
Extended European Search Report for European Application EP12782935.6, completed Aug. 28, 2014, mailed Sep. 4, 2014, 7 Pgs.
Extended European Search Report for European Application EP12804266.0, Report Completed Jan. 27, 2015, Mailed Feb. 3, 2015, 7 Pgs.
Extended European Search Report for European Application EP12835041.0, Report Completed Jan. 28, 2015, Mailed Feb. 4, 2015, 6 Pgs.
Extended European Search Report for European Application EP13751714.0, completed Aug. 5, 2015, mailed Aug. 18, 2015, 8 Pgs.
Extended European Search Report for European Application EP13810229.8, Report Completed Apr. 14, 2016, Mailed Apr. 21, 2016, 7 pgs.
Extended European Search Report for European Application No. 10832330.4, completed Sep. 26, 2013, Mailed Oct. 4, 2013, 7 pgs.
Extended European Search Report for European Application No. 11848308.0, Search completed Jan. 13, 2016, Mailed Jan. 22, 2016, 10 Pgs.
Extended European Search Report for European Application No. 13830945.5, Search completed Jun. 28, 2016, Mailed Jul. 7, 2016, 14 Pgs.
Extended European Search Report for European Application No. 13841613.6, Search completed Jul. 18, 2016, Mailed Jul. 26, 2016, 8 Pgs.
Extended European Search Report for European Application No. 14763087.5, Search completed Dec. 7, 2016, Mailed Dec. 19, 2016, 9 pgs.
Extended European Search Report for European Application No. 14860103.2, Search completed Feb. 23, 2017, Mailed Mar. 3, 2017, 7 Pgs.
Extended European Search Report for European Application No. 14865463.5, Search completed May 30, 2017, Mailed Jun. 8, 2017, 6 Pgs.
Extended European Search Report for European Application No. 15847754.7, Search completed Jan. 25, 2018, Mailed Feb. 9, 2018, 8 Pgs.
Extended European Search Report for European Application No. 18151530.5, Completed Mar. 28, 2018, Mailed Apr. 20, 2018, 11 pages.
Extended European Search Report for European Application No. 18205326.4, Search completed Jan. 8, 2019 , Mailed Jan. 18, 2019, 9 Pgs.
Extended European Search Report for European Application No. 21169308.0, Search completed Aug. 2, 2021, Mailed Aug. 9, 2021, 9 Pgs.
Extended Search Report for European Application No. 21155002.5, Search completed Jun. 7, 2021 , Mailed Jun. 11, 2021, 14 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2009/044687, Completed Jul. 30, 2010, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/056151, Report Issued Mar. 25, 2014, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/056166, Report Issued Mar. 25, 2014, Report Mailed Apr. 3, 2014, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/058093, Report Issued Sep. 18, 2013, Mailed Oct. 22, 2013, 40 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/059813, Search Completed Apr. 15, 2014, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/059991, Issued Mar. 17, 2015, Mailed Mar. 26, 2015, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/US2015/032467, Report issued Nov. 29, 2016, Mailed Dec. 8, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US10/057661, issued May 22, 2012, mailed May 31, 2012, 10 pages.
International Preliminary Report on Patentability for International Application PCT/US11/036349, Report Issued Nov. 13, 2012, Mailed Nov. 22, 2012, 9 pages.
International Preliminary Report on Patentability for International Application PCT/US13/56065, Issued Feb. 24, 2015, Mailed Mar. 5, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2011/064921, issued Jun. 18, 2013, mailed Jun. 27, 2013, 14 pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/024987, Mailed Aug. 12, 2014, 13 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/027146, completed Aug. 26, 2014, Mailed Sep. 4, 2014, 10 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/039155, completed Nov. 4, 2014, Mailed Nov. 13, 2014, 10 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/046002, issued Dec. 31, 2014, Mailed Jan. 8, 2015, 6 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/048772, issued Dec. 31, 2014, Mailed Jan. 8, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/056502, Issued Feb. 24, 2015, Mailed Mar. 5, 2015, 7 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/069932, issued May 19, 2015, Mailed May 28, 2015, 12 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/017766, issued Aug. 25, 2015, Mailed Sep. 3, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/018084, issued Aug. 25, 2015, Mailed Sep. 3, 2015, 11 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/018116, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 12 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/021439, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/022118, issued Sep. 8, 2015, Mailed Sep. 17, 2015, 4 pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/022123, issued Sep. 8, 2015, Mailed Sep. 17, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/022774, issued Sep. 22, 2015, Mailed Oct. 1, 2015, 5 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/023762, issued Mar. 2, 2015, Mailed Mar. 9, 2015, 10 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/024407, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/024903, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 12 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/024947, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 7 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/025100, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/025904, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 5 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/028447, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 7 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/029052, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/030692, issued Sep. 15, 2015, Mailed Sep. 24, 2015, 6 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/064693, issued May 10, 2016, Mailed May 19, 2016, 14 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/066229, issued May 24, 2016, Mailed Jun. 2, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/067740, issued May 31, 2016, Mailed Jun. 9, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2015/019529, issued Sep. 13, 2016, Mailed Sep. 22, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2015/053013, issued Apr. 4, 2017, Mailed Apr. 13, 2017, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US13/62720, Issued Mar. 31, 2015, Mailed Apr. 9, 2015, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/46002, completed Nov. 13, 2013, Mailed Nov. 29, 2013, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/56065, Completed Nov. 25, 2013, Mailed Nov. 26, 2013, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/59991, Completed Feb. 6, 2014, Mailed Feb. 26, 2014, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2012/056166, Report Completed Nov. 10, 2012, Mailed Nov. 20, 2012, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/024987, Completed Mar. 27, 2013, Mailed Apr. 15, 2013, 14 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/027146, completed Apr. 2, 2013, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/039155, completed Jul. 1, 2013, Mailed Jul. 11, 2013, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/048772, Completed Oct. 21, 2013, Mailed Nov. 8, 2013, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/056502, Completed Feb. 18, 2014, Mailed Mar. 19, 2014, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/069932, Completed Mar. 14, 2014, Mailed Apr. 14, 2014, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2015/019529, completed May 5, 2015, Mailed Jun. 8, 2015, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2015/032467, Search completed Jul. 27, 2015, Mailed Aug. 19, 2015, 10 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2015/053013, completed Dec. 1, 2015, Mailed Dec. 30, 2015, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US11/36349, mailed Aug. 22, 2011, 11 pgs.
International Search Report and Written Opinion for International Application PCT/US13/62720, completed Mar. 25, 2014, Mailed Apr. 21, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/17766, completed May 28, 2014, Mailed Jun. 18, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/18084, completed May 23, 2014, Mailed Jun. 10, 2014, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US14/18116, Report completed May 13, 2014, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US14/21439, completed Jun. 5, 2014, Mailed Jun. 20, 2014, 10 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/22118, completed Jun. 9, 2014, Mailed, Jun. 25, 2014, 5 pgs.
International Search Report and Written Opinion for International Application PCT/US14/22774 report completed Jun. 9, 2014, Mailed Jul. 14, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/24407, report completed Jun. 11, 2014, Mailed Jul. 8, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/25100, report completed Jul. 7, 2014, Mailed Aug. 7, 2014, 5 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/25904 report completed Jun. 10, 2014, Mailed Jul. 10, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US2009/044687, completed Jan. 5, 2010, mailed Jan. 13, 2010, 9 pgs.
International Search Report and Written Opinion for International Application PCT/US2010/057661, completed Mar. 9, 2011, 14 pgs.
International Search Report and Written Opinion for International Application PCT/US2011/064921, completed Feb. 25, 2011, mailed Mar. 6, 2012, 17 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/037670, Mailed Jul. 18, 2012, Completed Jul. 5, 2012, 9 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/044014, completed Oct. 12, 2012, 15 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/056151, completed Nov. 14, 2012, 10 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/058093, Report completed Nov. 15, 2012, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/059813, completed Dec. 17, 2012, 8 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/022123, completed Jun. 9, 2014, Mailed Jun. 25, 2014, 5 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/023762, Completed May 30, 2014, Mailed Jul. 3, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/024903, completed Jun. 12, 2014, Mailed, Jun. 27, 2014, 13 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/024947, Completed Jul. 8, 2014, Mailed Aug. 5, 2014, 8 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/028447, completed Jun. 30, 2014, Mailed Jul. 21, 2014, 8 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/029052, completed Jun. 30, 2014, Mailed Jul. 24, 2014, 10 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/030692, completed Jul. 28, 2014, Mailed Aug. 27, 2014, 7 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/064693, Completed Mar. 7, 2015, Mailed Apr. 2, 2015, 15 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/066229, Completed Mar. 6, 2015, Mailed Mar. 19, 2015, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/067740, Completed Jan. 29, 2015, mailed Mar. 3, 2015, 10 pgs.
Office Action for U.S. Appl. No. 12/952,106, dated Aug. 16, 2012, 12 pgs.
Supplementary European Search Report for EP Application No. 13831768.0, Search completed May 18, 2016, Mailed May 30, 2016, 13 Pgs.
Supplementary European Search Report for European Application 09763194.9, completed Nov. 7, 2011, mailed Nov. 29, 2011, 9 pgs.
“Exchangeable image file format for digital still cameras: Exif Version 2.2”, Japan Electronics and Information Technology Industries Association, Prepared by Technical Standardization Committee on AV & IT Storage Systems and Equipment, JEITA CP-3451, Apr. 2002, Retrieved from: http://www.exif.org/Exif2-2.PDF, 154 pgs.
“File Formats Version 6”, Alias Systems, 2004, 40 pgs.
“Light fields and computational photography”, Stanford Computer Graphics Laboratory, Retrieved from: http://graphics.stanford.edu/projects/lightfield/, Earliest publication online: Feb. 10, 1997, 3 pgs.
Aufderheide et al., “A MEMS-based Smart Sensor System for Estimation of Camera Pose for Computer Vision Applications”, Research and Innovation Conference 2011, Jul. 29, 2011, pp. 1-10.
Baker et al., “Limits on Super-Resolution and How to Break Them”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2002, vol. 24, No. 9, pp. 1167-1183.
Barron et al., “Intrinsic Scene Properties from a Single RGB-D Image”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, OR, USA, pp. 17-24.
Bennett et al., “Multispectral Bilateral Video Fusion”, 2007 IEEE Transactions on Image Processing, May 2007, published Apr. 16, 2007, vol. 16, No. 5, pp. 1185-1194.
Bennett et al., “Multispectral Video Fusion”, Computer Graphics (ACM SIGGRAPH Proceedings), Jul. 25, 2006, published Jul. 30, 2006, 1 pg.
Bertalmio et al., “Image Inpainting”, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000, ACM Pres/Addison-Wesley Publishing Co., pp. 417-424.
Bertero et al., “Super-resolution in computational imaging”, Micron, Jan. 1, 2003, vol. 34, Issues 6-7, 17 pgs.
Bishop et al., “Full-Resolution Depth Map Estimation from an Aliased Plenoptic Light Field”, ACCV Nov. 8, 2010, Part II, LNCS 6493, pp. 186-200.
Bishop et al., “Light Field Superresolution”, Computational Photography (ICCP), 2009 IEEE International Conference, Conference Date April 16-17, published Jan. 26, 2009, 9 pgs.
Bishop et al., “The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution”, IEEE Transactions on Pattern Analysis and Machine Intelligence, May 2012, vol. 34, No. 5, published Aug. 18, 2011, pp. 972-986.
Borman, “Topics in Multiframe Superresolution Restoration”, Thesis of Sean Borman, Apr. 2004, 282 pgs.
Borman et al., “Image Sequence Processing”, Dekker Encyclopedia of Optical Engineering, Oct. 14, 2002, 81 pgs.
Borman et al., “Block-Matching Sub-Pixel Motion Estimation from Noisy, Under-Sampled Frames—An Empirical Performance Evaluation”, Proc SPIE, Dec. 28, 1998, vol. 3653, 10 pgs.
Borman et al., “Image Resampling and Constraint Formulation for Multi-Frame Super-Resolution Restoration”, Proc. SPIE, published Jul. 1, 2003, vol. 5016, 12 pgs.
Borman et al., “Linear models for multi-frame super-resolution restoration under non-affine registration and spatially varying PSF”, Proc. SPIE, May 21, 2004, vol. 5299, 12 pgs.
Borman et al., “Nonlinear Prediction Methods for Estimation of Clique Weighting Parameters in NonGaussian Image Models”, Proc. SPIE, Sep. 22, 1998, vol. 3459, 9 pgs.
Borman et al., “Simultaneous Multi-Frame MAP Super-Resolution Video Enhancement Using Spatio-Temporal Priors”, Image Processing, 1999, ICIP 99 Proceedings, vol. 3, pp. 469-473.
Borman et al., “Super-Resolution from Image Sequences—A Review”, Circuits & Systems, 1998, pp. 374-378.
Bose et al., “Superresolution and Noise Filtering Using Moving Least Squares”, IEEE Transactions on Image Processing, Aug. 2006, vol. 15, Issue 8, published Jul. 17, 2006, pp. 2239-2248.
Boye et al., “Comparison of Subpixel Image Registration Algorithms”, Proc. of SPIE—IS&T Electronic Imaging, Feb. 3, 2009, vol. 7246, pp. 72460X-1-72460X-9; doi: 10.1117/12.810369.
Bruckner et al., “Artificial compound eye applying hyperacuity”, Optics Express, Dec. 11, 2006, vol. 14, No. 25, pp. 12076-12084.
Bruckner et al., “Driving microoptical imaging systems towards miniature camera applications”, Proc. SPIE, Micro-Optics, May 13, 2010, 11 pgs.
Bruckner et al., “Thin wafer-level camera lenses inspired by insect compound eyes”, Optics Express, Nov. 22, 2010, vol. 18, No. 24, pp. 24379-24394.
Bryan et al., “Perspective Distortion from Interpersonal Distance Is an Implicit Visual Cue for Social Judgments of Faces”, PLOS One, vol. 7, Issue 9, Sep. 26, 2012, e45301, doi: 10.1371/journal.pone.0045301, 9 pages.
Capel, “Image Mosaicing and Super-resolution”, Retrieved on Nov. 10, 2012, Retrieved from the Internet at URL :< http://citeseerx.ist.psu.edu/viewdoc/download?doi=1 0.1.1.226.2643&rep=rep1 &type=pdf>, 2001, 269 pgs.
Carroll et al., “Image Warps for Artistic Perspective Manipulation”, ACM Transactions on Graphics (TOG), vol. 29, No. 4, Jul. 26, 2010, Article No. 127, 9 pgs.
Chan et al., “Extending the Depth of Field in a Compound-Eye Imaging System with Super-Resolution Reconstruction”, Proceedings—International Conference on Pattern Recognition, Jan. 1, 2006, vol. 3, pp. 623-626.
Chan et al., “Investigation of Computational Compound-Eye Imaging System with Super-Resolution Reconstruction”, IEEE, ISASSP, Jun. 19, 2006, pp. 1177-1180.
Chan et al., “Super-resolution reconstruction in a computational compound-eye imaging system”, Multidim Syst Sign Process, published online Feb. 23, 2007, vol. 18, pp. 83-101.
Chen et al., “Image Matting with Local and Nonlocal Smooth Priors”, CVPR '13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23, 2013, pp. 1902-1907.
Chen et al., “Interactive deformation of light fields”, Symposium on Interactive 3D Graphics, 2005, pp. 139-146.
Chen et al., “KNN matting”, 2012 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 16-21, 2012, Providence, RI, USA, pp. 869-876.
Chen et al., “KNN Matting”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2013, vol. 35, No. 9, pp. 2175-2188.
Collins et al., “An Active Camera System for Acquiring Multi-View Video”, IEEE 2002 International Conference on Image Processing, Date of Conference: Sep. 22-25, 2002, Rochester, NY, 4 pgs.
Cooper et al., “The perceptual basis of common photographic practice”, Journal of Vision, vol. 12, No. 5, Article 8, May 25, 2012, pp. 1-14.
Crabb et al., “Real-time foreground segmentation via range and color imaging”, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, Jun. 23-28, 2008, pp. 1-5.
Debevec et al., “Recovering High Dynamic Range Radiance Maps from Photographs”, Computer Graphics (ACM SIGGRAPH Proceedings), Aug. 16, 1997, 10 pgs.
Do, Minh N., “Immersive Visual Communication with Depth”, Presented at Microsoft Research, Jun. 15, 2011, Retrieved from: http://minhdo.ece.illinois.edu/talks/ImmersiveComm.pdf, 42 pgs.
Do et al., “Immersive Visual Communication”, IEEE Signal Processing Magazine, vol. 28, Issue 1, Jan. 2011, DOI: 10.1109/MSP.2010.939075, Retrieved from: http://minhdo.ece.illinois.edu/publications/ImmerComm_SPM.pdf, pp. 58-66.
Drouin et al., “Fast Multiple-Baseline Stereo with Occlusion”, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05), Ottawa, Ontario, Canada, Jun. 13-16, 2005, pp. 540-547.
Drouin et al., “Geo-Consistency for Wide Multi-Camera Stereo”, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, Jun. 20-25, 2005, pp. 351-358.
Drouin et al., “Improving Border Localization of Multi-Baseline Stereo Using Border-Cut”, International Journal of Computer Vision, Jul. 5, 2006, vol. 83, Issue 3, 8 pgs.
Drulea et al., “Motion Estimation Using the Correlation Transform”, IEEE Transactions on Image Processing, Aug. 2013, vol. 22, No. 8, pp. 3260-3270, first published May 14, 2013.
Duparre et al., “Artificial apposition compound eye fabricated by micro-optics technology”, Applied Optics, Aug. 1, 2004, vol. 43, No. 22, pp. 4303-4310.
Duparre et al., “Artificial compound eye zoom camera”, Bioinspiration & Biomimetics, Nov. 21, 2008, vol. 3, pp. 1-6.
Duparre et al., “Artificial compound eyes—different concepts and their application to ultra flat image acquisition sensors”, MOEMS and Miniaturized Systems IV, Proc. SPIE 5346, Jan. 24, 2004, pp. 89-100.
Duparre et al., “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence”, Optics Express, Dec. 26, 2005, vol. 13, No. 26, pp. 10539-10551.
Duparre et al., “Micro-optical artificial compound eyes”, Bioinspiration & Biomimetics, Apr. 6, 2006, vol. 1, pp. R1-R16.
Duparre et al., “Microoptical artificial compound eyes—from design to experimental verification of two different concepts”, Proc. of SPIE, Optical Design and Engineering II, vol. 5962, Oct. 17, 2005, pp. 59622A-1-59622A-12.
Duparre et al., “Microoptical Artificial Compound Eyes—Two Different Concepts for Compact Imaging Systems”, 11th Microoptics Conference, Oct. 30-Nov. 2, 2005, 2 pgs.
Duparre et al., “Microoptical telescope compound eye”, Optics Express, Feb. 7, 2005, vol. 13, No. 3, pp. 889-903.
Duparre et al., “Micro-optically fabricated artificial apposition compound eye”, Electronic Imaging—Science and Technology, Prod. SPIE 5301, Jan. 2004, pp. 25-33.
Duparre et al., “Novel Optics/Micro-Optics for Miniature Imaging Systems”, Proc. of SPIE, Apr. 21, 2006, vol. 6196, pp. 619607-1-619607-15.
Duparre et al., “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices”, Optical Systems Design, Proc. SPIE 5249, Sep. 2003, pp. 408-418.
Duparre et al., “Thin compound-eye camera”, Applied Optics, May 20, 2005, vol. 44, No. 15, pp. 2949-2956.
Duparre et al., “Ultra-Thin Camera Based on Artificial Apposition Compound Eyes”, 10th Microoptics Conference, Sep. 1-3, 2004, 2 pgs.
Eng et al., “Gaze correction for 3D tele-immersive communication system”, IVMSP Workshop, 2013 IEEE 11th. IEEE, Jun. 10, 2013.
Fanaswala, “Regularized Super-Resolution of Multi-View Images”, Retrieved on Nov. 10, 2012 (Nov. 10, 2012). Retrieved from the Internet at URL :< http://www.site.uottawa.ca/-edubois/theses/Fanaswala_thesis.pdf>, 2009, 163 pgs.
Fang et al., “Volume Morphing Methods for Landmark Based 3D Image Deformation”, SPIE vol. 2710, Proc. 1996 SPIE Intl Symposium on Medical Imaging, Newport Beach, CA, Feb. 10, 1996, pp. 404-415.
Farrell et al., “Resolution and Light Sensitivity Tradeoff with Pixel Size”, Proceedings of the SPIE Electronic Imaging 2006 Conference, Feb. 2, 2006, vol. 6069, 8 pgs.
Farsiu et al., “Advances and Challenges in Super-Resolution”, International Journal of Imaging Systems and Technology, Aug. 12, 2004, vol. 14, pp. 47-57.
Farsiu et al., “Fast and Robust Multiframe Super Resolution”, IEEE Transactions on Image Processing, Oct. 2004, published Sep. 3, 2004, vol. 13, No. 10, pp. 1327-1344.
Farsiu et al., “Multiframe Demosaicing and Super-Resolution of Color Images”, IEEE Transactions on Image Processing, Jan. 2006, vol. 15, No. 1, date of publication Dec. 12, 2005, pp. 141-159.
Fecker et al., “Depth Map Compression for Unstructured Lumigraph Rendering”, Proc. SPIE 6077, Proceedings Visual Communications and Image Processing 2006, Jan. 18, 2006, p. 60770B-1-60770B-8.
Feris et al., “Multi-Flash Stereopsis: Depth Edge Preserving Stereo with Small Baseline Illumination”, IEEE Trans on PAMI, 2006, 31 pgs.
Fife et al., “A 3D Multi-Aperture Image Sensor Architecture”, Custom Integrated Circuits Conference, 2006, CICC '06, IEEE, pp. 281-284.
Fife et al., “A 3MPixel Multi-Aperture Image Sensor with 0.7Mu Pixels in 0.11Mu CMOS”, ISSCC 2008, Session 2, Image Sensors & Technology, 2008, pp. 48-50.
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 191-198.
Fischer et al., “Optical System Design”, 2nd Edition, SPIE Press, Feb. 14, 2008, pp. 49-58.
Gastal et al., “Shared Sampling for Real-Time Alpha Matting”, Computer Graphics Forum, Eurographics 2010, vol. 29, Issue 2, May 2010, pp. 575-584.
Georgeiv et al., “Light Field Camera Design for Integral View Photography”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs.
Georgiev et al., “Light-Field Capture by Multiplexing in the Frequency Domain”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs.
Goldman et al., “Video Object Annotation, Navigation, and Composition”, In Proceedings of UIST 2008, Oct. 19-22, 2008, Monterey Ca, USA, pp. 3-12.
Gortler et al., “The Lumigraph”, In Proceedings of SIGGRAPH 1996, published Aug. 1, 1996, pp. 43-54.
Gupta et al., “Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2013, Portland, OR, USA, pp. 564-571.
Hacohen et al., “Non-Rigid Dense Correspondence with Applications for Image Enhancement”, ACM Transactions on Graphics, vol. 30, No. 4, Aug. 7, 2011, 9 pgs.
Hamilton, “Jpeg File Interchange Format, Version 1.02”, Sep. 1, 1992, 9 pgs.
Hardie, “A Fast Image Super-Algorithm Using an Adaptive Wiener Filter”, IEEE Transactions on Image Processing, Dec. 2007, published Nov. 19, 2007, vol. 16, No. 12, pp. 2953-2964.
Hasinoff et al., “Search-and-Replace Editing for Personal Photo Collections”, 2010 International Conference: Computational Photography (ICCP) Mar. 2010, pp. 1-8.
Hernandez-Lopez et al., “Detecting objects using color and depth segmentation with Kinect sensor”, Procedia Technology, vol. 3, Jan. 1, 2012, pp. 196-204, XP055307680, ISSN: 2212-0173, DOI: 10.1016/j.protcy.2012.03.021.
Holoeye Photonics AG, “LC 2012 Spatial Light Modulator (transmissive)”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918151716/http://holoeye.com/spatial-light-modulators/lc-2012-spatial-light-modulator/ on Oct. 20, 2017, 3 pages.
Holoeye Photonics AG, “Spatial Light Modulators”, Oct. 2, 2013, Brochure retrieved from https://web.archive.org/web/20131002061028/http://holoeye.com/wp-content/uploads/Spatial_Light_Modulators.pdf on Oct. 13, 2017, 4 pgs.
Holoeye Photonics AG, “Spatial Light Modulators”, Sep. 18, 2013, retrieved from https://web.archive.org/web/20130918113140/http://holoeye.com/spatial-light-modulators/ on Oct. 13, 2017, 4 pages.
Horisaki et al., “Irregular Lens Arrangement Design to Improve Imaging Performance of Compound-Eye Imaging Systems”, Applied Physics Express, Jan. 29, 2010, vol. 3, pp. 022501-1-022501-3.
Horisaki et al., “Superposition Imaging for Three-Dimensionally Space-Invariant Point Spread Functions”, Applied Physics Express, Oct. 13, 2011, vol. 4, pp. 112501-1-112501-3.
Horn et al., “LightShop: Interactive Light Field Manipulation and Rendering”, In Proceedings of 13D, Jan. 1, 2007, pp. 121-128.
Isaksen et al., “Dynamically Reparameterized Light Fields”, In Proceedings of SIGGRAPH 2000, pp. 297-306.
Izadi et al., “KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera”, UIST'11, Oct. 16-19, 2011, Santa Barbara, CA, pp. 559-568.
Janoch et al., “A category-level 3-D object dataset: Putting the Kinect to work”, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Nov. 6-13, 2011, Barcelona, Spain, pp. 1168-1174.
Jarabo et al., “Efficient Propagation of Light Field Edits”, In Proceedings of SIACG 2011, pp. 75-80.
Jiang et al., “Panoramic 3D Reconstruction Using Rotational Stereo Camera with Simple Epipolar Constraints”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), Jun. 17-22, 2006, vol. 1, New York, NY, USA, pp. 371-378.
Joshi, Neel S., “Color Calibration for Arrays of Inexpensive Image Sensors”, Master's with Distinction in Research Report, Stanford University, Department of Computer Science, Mar. 2004, 30 pgs.
Joshi et al., “Synthetic Aperture Tracking: Tracking Through Occlusions”, I CCV IEEE 11th International Conference on Computer Vision; Publication [online]. Oct. 2007 [retrieved Jul. 28, 2014]. Retrieved from the Internet: < URL: http:I/ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4409032&isnumber=4408819>; pp. 1-8.
Kang et al., “Handling Occlusions in Dense Multi-view Stereo”, Computer Vision and Pattern Recognition, 2001, vol. 1, pp. 1-103-1-110.
Kim, “Scene Reconstruction from a Light Field”, Master Thesis, Sep. 1, 2010 (Sep. 1, 2010), pp. 1-72.
Kim et al., “Scene reconstruction from high spatio-angular resolution light fields”, ACM Transactions on Graphics (TOG)—SIGGRAPH 2013 Conference Proceedings, vol. 32 Issue 4, Article 73, Jul. 21, 2013, 11 pages.
Kitamura et al., “Reconstruction of a high-resolution image on a compound-eye image-capturing system”, Applied Optics, Mar. 10, 2004, vol. 43, No. 8, pp. 1719-1727.
Konolige, Kurt, “Projected Texture Stereo”, 2010 IEEE International Conference on Robotics and Automation, May 3-7, 2010, p. 148-155.
Krishnamurthy et al., “Compression and Transmission of Depth Maps for Image-Based Rendering”, Image Processing, 2001, pp. 828-831.
Kubota et al., “Reconstructing Dense Light Field From Array of Multifocus Images for Novel View Synthesis”, IEEE Transactions on Image Processing, vol. 16, No. 1, Jan. 2007, pp. 269-279.
Kutulakos et al., “Occluding Contour Detection Using Affine Invariants and Purposive Viewpoint Control”, Computer Vision and Pattern Recognition, Proceedings CVPR 94, Seattle, Washington, Jun. 21-23, 1994, 8 pgs.
Lai et al., “A Large-Scale Hierarchical Multi-View RGB-D Object Dataset”, Proceedings—IEEE International Conference on Robotics and Automation, Conference Date May 9-13, 2011, 8 pgs., DOI:10.1109/ICRA.201135980382.
Lane et al., “A Survey of Mobile Phone Sensing”, IEEE Communications Magazine, vol. 48, Issue 9, Sep. 2010, pp. 140-150.
Lee et al., “Automatic Upright Adjustment of Photographs”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 877-884.
Lee et al., “Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module”, ETRI Journal, vol. 31, No. 6, Dec. 2009, pp. 695-702.
Lee et al., “Nonlocal matting”, CVPR 2011, Jun. 20-25, 2011, pp. 2193-2200.
Lensvector, “How LensVector Autofocus Works”, 2010, printed Nov. 2, 2012 from http://www.lensvector.com/overview.html, 1 pg.
Levin et al., “A Closed Form Solution to Natural Image Matting”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006, vol. 1, pp. 61-68.
Levin et al., “Spectral Matting”, 2007 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 17-22, 2007, Minneapolis, MN, USA, pp. 1-8.
Levoy, “Light Fields and Computational Imaging”, IEEE Computer Society, Sep. 1, 2006, vol. 39, Issue No. 8, pp. 46-55.
Levoy et al., “Light Field Rendering”, Proc. ADM SIGGRAPH '96, pp. 1-12.
Li et al., “A Hybrid Camera for Motion Deblurring and Depth Map Super-Resolution”, Jun. 23-28, 2008, IEEE Conference on Computer Vision and Pattern Recognition, 8 pgs. Retrieved from www.eecis.udel.edu/˜jye/lab_research/08/deblur-feng.pdf on Feb. 5, 2014.
Li et al., “Fusing Images With Different Focuses Using Support Vector Machines”, IEEE Transactions on Neural Networks, vol. 15, No. 6, Nov. 8, 2004, pp. 1555-1561.
Lim, Jongwoo, “Optimized Projection Pattern Supplementing Stereo Systems”, 2009 IEEE International Conference on Robotics and Automation, May 12-17, 2009, pp. 2823-2829.
Liu et al., “Virtual View Reconstruction Using Temporal Information”, 2012 IEEE International Conference on Multimedia and Expo, 2012, pp. 115-120.
Lo et al., “Stereoscopic 3D Copy & Paste”, ACM Transactions on Graphics, vol. 29, No. 6, Article 147, Dec. 2010, pp. 147:1-147:10.
Martinez et al., “Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis”, Analytical Chemistry (American Chemical Society), vol. 80, No. 10, May 15, 2008, pp. 3699-3707.
McGuire et al., “Defocus video matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2005, vol. 24, Issue 3, Jul. 2005, pp. 567-576.
Merkle et al., “Adaptation and optimization of coding algorithms for mobile 3DTV”, Mobile3DTV Project No. 216503, Nov. 2008, 55 pgs.
Mitra et al., “Light Field Denoising, Light Field Superresolution and Stereo Camera Based Refocussing using a GMM Light Field Patch Prior”, Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on Jun. 16-21, 2012, pp. 22-28.
Moreno-Noguer et al., “Active Refocusing of Images and Videos”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Jul. 2007, 10 pages.
Muehlebach, “Camera Auto Exposure Control for VSLAM Applications”, Studies on Mechatronics, Swiss Federal Institute of Technology Zurich, Autumn Term 2010 course, 67 pgs.
Nayar, “Computational Cameras: Redefining the Image”, IEEE Computer Society, Aug. 14, 2006, pp. 30-38.
Ng, “Digital Light Field Photography”, Thesis, Jul. 2006, 203 pgs.
Ng et al., “Light Field Photography with a Hand-held Plenoptic Camera”, Stanford Tech Report CTSR Feb. 2005, Apr. 20, 2005, pp. 1-11.
Ng et al., “Super-Resolution Image Restoration from Blurred Low-Resolution Images”, Journal of Mathematical Imaging and Vision, 2005, vol. 23, pp. 367-378.
Nguyen et al., “Error Analysis for Image-Based Rendering with Depth Information”, IEEE Transactions on Image Processing, vol. 18, Issue 4, Apr. 2009, pp. 703-716.
Nguyen et al., “Image-Based Rendering with Depth Information Using the Propagation Algorithm”, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, vol. 5, Mar. 23-23, 2005, pp. II-589-II-592.
Nishihara, H.K., “PRISM: A Practical Real-Time Imaging Stereo Matcher”, Massachusetts Institute of Technology, A.I. Memo 780, May 1984, 32 pgs.
Nitta et al., “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method”, Applied Optics, May 1, 2006, vol. 45, No. 13, pp. 2893-2900.
Nomura et al., “Scene Collages and Flexible Camera Arrays”, Proceedings of Eurographics Symposium on Rendering, Jun. 2007, 12 pgs.
Park et al., “Multispectral Imaging Using Multiplexed Illumination”, 2007 IEEE 11th International Conference on Computer Vision, Oct. 14-21, 2007, Rio de Janeiro, Brazil, pp. 1-8.
Park et al., “Super-Resolution Image Reconstruction”, IEEE Signal Processing Magazine, May 2003, pp. 21-36.
Parkkinen et al., “Characteristic Spectra of Munsell Colors”, Journal of the Optical Society of America A, vol. 6, Issue 2, Feb. 1989, pp. 318-322.
Perwass et al., “Single Lens 3D-Camera with Extended Depth-of-Field”, printed from www.raytrix.de, Jan. 22, 2012, 15 pgs.
Pham et al., “Robust Super-Resolution without Regularization”, Journal of Physics: Conference Series 124, Jul. 2008, pp. 1-19.
Philips 3D Solutions, “3D Interface Specifications, White Paper”, Feb. 15, 2008, 2005-2008 Philips Electronics Nederland B.V., Philips 3D Solutions retrieved from www.philips.com/3dsolutions, 29 pgs., Feb. 15, 2008.
Polight, “Designing Imaging Products Using Reflowable Autofocus Lenses”, printed Nov. 2, 2012 from http://www.polight.no/tunable-polymer-autofocus-lens-html-11.html, 1 pg.
Pouydebasque et al., “Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers”, Sensors and Actuators A: Physical, vol. 172, Issue 1, Dec. 2011, pp. 280-286.
Protter et al., “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction”, IEEE Transactions on Image Processing, Dec. 2, 2008, vol. 18, No. 1, pp. 36-51.
Radtke et al., “Laser lithographic fabrication and characterization of a spherical artificial compound eye”, Optics Express, Mar. 19, 2007, vol. 15, No. 6, pp. 3067-3077.
Rajan et al., “Simultaneous Estimation of Super Resolved Scene and Depth Map from Low Resolution Defocused Observations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 9, Sep. 8, 2003, pp. 1-16.
Rander et al., “Virtualized Reality: Constructing Time-Varying Virtual Worlds From Real World Events”, Proc. of IEEE Visualization '97, Phoenix, Arizona, Oct. 19-24, 1997, pp. 277-283, 552.
Rhemann et al., “Fast Cost-Volume Filtering for Visual Correspondence and Beyond”, IEEE Trans. Pattern Anal. Mach. Intell, 2013, vol. 35, No. 2, pp. 504-511.
Rhemann et al., “A perceptually motivated online benchmark for image matting”, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 20-25, 2009, Miami, FL, USA, pp. 1826-1833.
Robert et al., “Dense Depth Map Reconstruction :A Minimization and Regularization Approach which Preserves Discontinuities”, European Conference on Computer Vision (ECCV), pp. 439-451, (1996).
Robertson et al., “Dynamic Range Improvement Through Multiple Exposures”, In Proc. of the Int. Conf. on Image Processing, 1999, 5 pgs.
Robertson et al., “Estimation-theoretic approach to dynamic range enhancement using multiple exposures”, Journal of Electronic Imaging, Apr. 2003, vol. 12, No. 2, pp. 219-228.
Roy et al., “Non-Uniform Hierarchical Pyramid Stereo for Large Images”, Computer and Robot Vision, 2002, pp. 208-215.
Sauer et al., “Parallel Computation of Sequential Pixel Updates in Statistical Tomographic Reconstruction”, ICIP 1995 Proceedings of the 1995 International Conference on Image Processing, Date of Conference: Oct. 23-26, 1995, pp. 93-96.
Scharstein et al., “High-Accuracy Stereo Depth Maps Using Structured Light”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), Jun. 2003, vol. 1, pp. 195-202.
Seitz et al., “Plenoptic Image Editing”, International Journal of Computer Vision 48, Conference Date Jan. 7, 1998, 29 pgs, DOI: 10.1109/ICCV.1998.710696 Source: DBLP Conference: Computer Vision, Sixth International Conference.
Shotton et al., “Real-time human pose recognition in parts from single depth images”, CVPR 2011, Jun. 20-25, 2011, Colorado Springs, CO, USA, pp. 1297-1304.
Shum et al., “A Review of Image-based Rendering Techniques”, in Visual Communications and Image Processing 2000, May 2000, vol. 4067, pp. 2-13.
Shum et al., “Pop-Up Light Field: An Interactive Image-Based Modeling and Rendering System”, Apr. 2004, ACM Transactions on Graphics, vol. 23, No. 2, pp. 143-162. Retrieved from http://131.107.65.14/en-us/um/people/jiansun/papers/PopupLightField_TOG.pdf on Feb. 5, 2014.
Silberman et al., “Indoor segmentation and support inference from RGBD images”, ECCV'12 Proceedings of the 12th European conference on Computer Vision, vol. Part V, Oct. 7-13, 2012, Florence, Italy, pp. 746-760.
Stober, “Stanford researchers developing 3-D camera with 12,616 lenses”, Stanford Report, Mar. 19, 2008, Retrieved from: http://news.stanford.edu/news/2008/march19/camera-031908.html, 5 pgs.
Stollberg et al., “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects”, Optics Express, Aug. 31, 2009, vol. 17, No. 18, pp. 15747-15759.
Sun et al., “Image Super-Resolution Using Gradient Profile Prior”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, 8 pgs.; DOI: 10.1109/CVPR.2008.4587659.
Taguchi et al., “Rendering-Oriented Decoding for a Distributed Multiview Coding System Using a Coset Code”, Hindawi Publishing Corporation, EURASIP Journal on Image and Video Processing, vol. 2009, Article ID 251081, Online: Apr. 22, 2009, 12 pages.
Takeda et al., “Super-resolution Without Explicit Subpixel Motion Estimation”, IEEE Transaction on Image Processing, Sep. 2009, vol. 18, No. 9, pp. 1958-1975.
Tallon et al., “Upsampling and Denoising of Depth Maps Via Joint-Segmentation”, 20th European Signal Processing Conference, Aug. 27-31, 2012, 5 pgs.
Tanida et al., “Color imaging with an integrated compound imaging system”, Optics Express, Sep. 8, 2003, vol. 11, No. 18, pp. 2109-2117.
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification”, Applied Optics, Apr. 10, 2001, vol. 40, No. 11, pp. 1806-1813.
Tao et al., “Depth from Combining Defocus and Correspondence Using Light-Field Cameras”, ICCV '13 Proceedings of the 2013 IEEE International Conference on Computer Vision, Dec. 1, 2013, pp. 673-680.
Taylor, “Virtual camera movement: The way of the future?”, American Cinematographer vol. 77, No. 9, Sep. 1996, 93-100.
Tseng et al., “Automatic 3-D depth recovery from a single urban-scene image”, 2012 Visual Communications and Image Processing, Nov. 27-30, 2012, San Diego, CA, USA, pp. 1-6.
Vaish et al., “Reconstructing Occluded Surfaces Using Synthetic Apertures: Stereo, Focus and Robust Measures”, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 2, Jun. 17-22, 2006, pp. 2331-2338.
Vaish et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform”, IEEE Workshop on A3DISS, CVPR, 2005, 8 pgs.
Vaish et al., “Using Plane + Parallax for Calibrating Dense Camera Arrays”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004, 8 pgs.
Van Der Wal et al., “The Acadia Vision Processor”, Proceedings Fifth IEEE International Workshop on Computer Architectures for Machine Perception, Sep. 13, 2000, Padova, Italy, pp. 31-40.
Veilleux, “CCD Gain Lab: The Theory”, University of Maryland, College Park-Observational Astronomy (ASTR 310), Oct. 19, 2006, pp. 1-5 (online], [retrieved on May 13, 2014]. Retrieved from the Internet <URL: http://www.astro.umd.edu/˜veilleux/ASTR310/fall06/ccd_theory.pdf, 5 pgs.
Venkataraman et al., “PiCam: An Ultra-Thin High Performance Monolithic Camera Array”, ACM Transactions on Graphics (TOG), ACM, US, vol. 32, No. 6, 1 Nov. 1, 2013, pp. 1-13.
Vetro et al., “Coding Approaches for End-To-End 3D TV Systems”, Mitsubishi Electric Research Laboratories, Inc., TR2004-137, Dec. 2004, 6 pgs.
Viola et al., “Robust Real-time Object Detection”, Cambridge Research Laboratory, Technical Report Series, Compaq, CRL 2001/01, Feb. 2001, Printed from: http://www.hpl.hp.com/techreports/Compaq-DEC/CRL-2001-1.pdf, 30 pgs.
Vuong et al., “A New Auto Exposure and Auto White-Balance Algorithm to Detect High Dynamic Range Conditions Using CMOS Technology”, Proceedings of the World Congress on Engineering and Computer Science 2008, WCECS 2008, Oct. 22-24, 2008.
Wang, “Calculation of Image Position, Size and Orientation Using First Order Properties”, Dec. 29, 2010, OPTI521 Tutorial, 10 pgs.
Wang et al., “Automatic Natural Video Matting with Depth”, 15th Pacific Conference on Computer Graphics and Applications, PG '07, Oct. 29-Nov. 2, 2007, Maui, HI, USA, pp. 469-472.
Wang et al., “Image and Video Matting: A Survey”, Foundations and Trends, Computer Graphics and Vision, vol. 3, No. 2, 2007, pp. 91-175.
Wang et al., “Soft scissors: an interactive tool for realtime high quality matting”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Article 9, Jul. 2007, 6 pages, published Aug. 5, 2007.
Wetzstein et al., “Computational Plenoptic Imaging”, Computer Graphics Forum, 2011, vol. 30, No. 8, pp. 2397-2426.
Wheeler et al., “Super-Resolution Image Synthesis Using Projections Onto Convex Sets in the Frequency Domain”, Proc. SPIE, Mar. 11, 2005, vol. 5674, 12 pgs.
Wieringa et al., “Remote Non-invasive Stereoscopic Imaging of Blood Vessels: First In-vivo Results of a New Multispectral Contrast Enhancement Technology”, Annals of Biomedical Engineering, vol. 34, No. 12, Dec. 2006, pp. 1870-1878, Published online Oct. 12, 2006.
Wikipedia, “Polarizing Filter (Photography)”, retrieved from http://en.wikipedia.org/wiki/Polarizing_filter_(photography) on Dec. 12, 2012, last modified on Sep. 26, 2012, 5 pgs.
Wilburn, “High Performance Imaging Using Arrays of Inexpensive Cameras”, Thesis of Bennett Wilburn, Dec. 2004, 128 pgs.
Wilburn et al., “High Performance Imaging Using Large Camera Arrays”, ACM Transactions on Graphics, Jul. 2005, vol. 24, No. 3, pp. 1-12.
Wilburn et al., “High-Speed Videography Using a Dense Camera Array”, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., vol. 2, Jun. 27-Jul. 2, 2004, pp. 294-301.
Wilburn et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002, SPIE Electronic Imaging, 2002, 8 pgs.
Wippermann et al., “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective”, Proceedings of SPIE, Optical Design and Engineering II, Oct. 15, 2005, 59622C-1-59622C-11.
Wu et al., “A virtual view synthesis algorithm based on image inpainting”, 2012 Third International Conference on Networking and Distributed Computing, Hangzhou, China, Oct. 21-24, 2012, pp. 153-156.
Xu, “Real-Time Realistic Rendering and High Dynamic Range Image Display and Compression”, Dissertation, School of Computer Science in the College of Engineering and Computer Science at the University of Central Florida, Orlando, Florida, Fall Term 2005, 192 pgs.
Yang et al., “A Real-Time Distributed Light Field Camera”, Eurographics Workshop on Rendering (2002), published Jul. 26, 2002, pp. 1-10.
Yang et al., “Superresolution Using Preconditioned Conjugate Gradient Method”, Proceedings of SPIE—The International Society for Optical Engineering, Jul. 2002, 8 pgs.
Yokochi et al., “Extrinsic Camera Parameter Estimation Based-on Feature Tracking and GPS Data”, 2006, Nara Institute of Science and Technology, Graduate School of Information Science, LNCS 3851, pp. 369-378.
Zhang et al., “A Self-Reconfigurable Camera Array”, Eurographics Symposium on Rendering, published Aug. 8, 2004, 12 pgs.
Zhang et al., “Depth estimation, spatially variant image registration, and super-resolution using a multi-lenslet camera”, Proceedings of SPIE, vol. 7705, Apr. 23, 2010, pp. 770505-770505-8, XP055113797 ISSN: 0277-786X, DOI: 10.1117/12.852171.
Zheng et al., “Balloon Motion Estimation Using Two Frames”, Proceedings of the Asilomar Conference on Signals, Systems and Computers, IEEE, Comp. Soc. Press, US, vol.2 of 02, Nov. 4, 1991, pp. 1057-1061.
Zhu et al., “Fusion of Time-of-Flight Depth and Stereo for High Accuracy Depth Maps”, 2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, 2008, Anchorage, AK, USA, pp. 1-8.
Zomet et al., “Robust Super-Resolution”, IEEE, 2001, pp. 1-6.
Takeda et al., “Robust Kernel Regression for Restoration and Reconstruction of Images from Sparse Noisy Data”, 2006 International Conference on Image Processing, Atlanta, GA, USA, 2006, pp. 1257-1260, doi: 10.1109/ICIP.2006.312573.
Extended European Search Report for European Application No. 23177057.9, Search completed Dec. 4, 2023, Mailed Dec. 15, 2023 14 Pgs.
Debevec et al., “Modeling and Rendering Architecture from Photographs: a Hybrid Geometry- and Image-Based Approach”, Computer Graphics Proceedings. Siggraph '96, Jan. 19, 1996, pp. 11-20, XP093106889, New York, US DOI: 10.1145/237170.237191 ISBN: 978-0-89791-746-9 Retrieved from the Internet: URL: https ://www2.eecs.berkeley.edu/Pubs/TechRpts/1996/CSD-96-893.pdf> [retrieved on Nov. 28, 2023].
Extended European Search Report for European Application No. 23185907.5, Search completed Feb. 12, 2024, Mailed Feb. 23, 2024, 9 Pgs.
Extended European Search Report for European Application No. 23206157.2, Search completed Jan. 26, 2024, Mailed Feb. 12, 2024, 10 Pgs.
Related Publications (1)
Number Date Country
20240040270 A1 Feb 2024 US
Provisional Applications (3)
Number Date Country
61281662 Nov 2009 US
61263339 Nov 2009 US
61054694 May 2008 US
Continuations (10)
Number Date Country
Parent 18461318 Sep 2023 US
Child 18486859 US
Parent 17817829 Aug 2022 US
Child 18461318 US
Parent 16907016 Jun 2020 US
Child 17817829 US
Parent 16529522 Aug 2019 US
Child 16907016 US
Parent 16199566 Nov 2018 US
Child 16529522 US
Parent 15687882 Aug 2017 US
Child 16199566 US
Parent 14943009 Nov 2015 US
Child 15687882 US
Parent 14704920 May 2015 US
Child 14943009 US
Parent 14459288 Aug 2014 US
Child 14704920 US
Parent 12952134 Nov 2010 US
Child 14459288 US
Continuation in Parts (1)
Number Date Country
Parent 12935504 US
Child 12952134 US