The present disclosure relates to a capturing system, an aerospace vehicle, and a plate-like body.
It is known that remains of space missions, such as artificial satellites which were launched in the past and either completed their missions or malfunctioned, fragments thereof, or the upper stage of a rocket, are currently present as space debris (hereinafter referred to as “debris”) on orbit around the earth. Such debris may collide with and damage operational space stations and artificial satellites. Therefore, various techniques of deorbiting and burning the debris in the atmosphere or collecting the debris have been proposed.
For example, a technique has been proposed where, in order to attach a conductive tether device to debris and decelerate debris by an electromagnetic force acting on the tether, a mothership is brought close to debris, and debris is captured by a robot arm provided on the mothership (Japanese Patent Laid-Open No. 2004-98959). Moreover, in recent years, a technique has been proposed where, in order to release and deploy a tether in space, a mothership is brought close to debris, a harpoon that contains the tether is deployed from a debris capturing device provided on the mothership to the debris, and the harpoon penetrates into the debris (Japanese Patent Laid-Open No. 2016-68730).
However, in the capturing technique using the robot arm described in Japanese Patent Laid-Open No. 2004-98959, the robot arm has a complicated mechanism, and therefore, the mass and the size of the device increase so that the cost for development, manufacturing, or launch becomes very high. In the capturing technique using the harpoon described in Japanese Patent Laid-Open No. 2016-68730, a harpoon ejecting mechanism is required, which increases the cost. Furthermore, when the ejection of the harpoon has failed once, the ejection cannot be redone, and therefore, there is a possibility that the success rate of the mission decreases.
The present disclosure has been made in view of such circumstances. The objective of the present disclosure is to increase the success rate of missions at a low cost for a capturing system which captures a target object in space.
In order to achieve the objective, a capturing system according to the present disclosure captures a target object in space and has: a plate-like body which is attached to the target object and attracted with a magnetic force; and an aerospace vehicle that has a magnetic force generating portion which generates the magnetic force attracting the plate-like body. An aerospace vehicle according to the present disclosure has a magnetic force generating portion generating a magnetic force that enables the capturing of a target object in space by attracting a plate-like body, which is attached to the target object and attracted with a magnetic force that is generated by the magnetic force generating portion. Furthermore, a plate-like body according to the present disclosure is attached to a target object in space prior to being launched into space, and enables the aerospace vehicle to capture the target object by being attracted with the magnetic force generated by the magnetic force generating portion of the aerospace vehicle.
When such a configuration is employed, a target object in space can be captured by attaching a plate-like body, which is attracted with a magnetic force, to the target object prior to launch, and then attracting the plate-like body with the magnetic force generated by the magnetic force generating portion of the aerospace vehicle. The plate-like body which is attached to the target object prior to launch has no electrical or mechanical structures, and the mechanism of the magnetic force generating portion of the aerospace vehicle is relatively simple. Therefore, the development or manufacturing cost can be markedly reduced.
The capturing system according to the present disclosure can employ a magnetic force generating portion that has a plate-like member and a magnetic portion placed on the surface of the plate-like member. Herein, two or more of the magnetic portions can be placed at a predetermined interval along the peripheral edge of the plate-like member.
As the magnetic portion, a permanent magnet can be employed. Thus, the magnetic force generating portion can be constructed for a relatively low cost. Moreover, an electromagnet that generates a magnetic force by applying an electric current may be employed as the magnetic portion. Thus, when the attraction between the magnetic force generating portion and the plate-like body is undesirable, for example, the electric current applied to the electromagnet is stopped to temporarily eliminate the magnetic force, whereby the undesired attraction can be resolved. Thereafter, by restarting the current application to the electromagnet as necessary, the attraction between the magnetic force generating portion and the plate-like body can be resumed.
The capturing system according to the present disclosure can employ an aerospace vehicle that has a body and a rod-shaped member that may be deployed and retracted from the body. In such a case, the magnetic force generating portion can be attached to the tip of the rod-shaped member.
When such a configuration is employed, the magnetic force generating portion is attached to the tip of the rod-shaped member that may be deployed and retracted from the body of the aerospace vehicle. Therefore, in capturing a target object, the rod-shaped member is deployed from the body of the aerospace vehicle to the plate-like body of the target object so that the magnetic force generating portion can be brought close to the plate-like body. On the other hand, when the aerospace vehicle travels in space, the rod-shaped member can be retracted into the body. Therefore, interference between portions other than the plate-like body of the target object (e.g., antennas, nozzles, or solar cells) and the rod-shaped member can be prevented. Moreover, by first contacting the target object with the tip (i.e., the magnetic force generating portion) of the rod-shaped member placed on the aerospace vehicle, the load of the entire aerospace vehicle will be prevented from being applied on the target object. Therefore, the influence on the target object can be minimized.
In the capturing system according to the present disclosure, the plate-like body can have a portion containing magnetic materials, such as iron, nickel, permalloy, steel, and others.
According to the present disclosure, for the capturing system which captures a target object in space, such as debris, the success rate of a mission thereof can be increased at a low cost.
Hereinafter, an embodiment of the present disclosure is described with reference to the drawings.
First, the configuration of a capturing system 1 according to the embodiment of the present disclosure is described with reference to
The capturing system 1 according to this embodiment is one for capturing a target object (for example, debris) T in space, which has a plate-like body 10 attached to the target object T and an aerospace vehicle 20 having a magnetic force generating portion 23 (described later) generating magnetic a force that attracts the plate-like body 10, as illustrated in
As illustrated in
The plate-like body 10 in this embodiment has a central portion 11 containing aluminum and a peripheral portion 12 containing iron, as illustrated in
In the central portion 11 of the plate-like body 10, markers 13 can be placed for approach navigation of the aerospace vehicle 20. The markers 13 are configured in a certain geometric pattern. For example, three or more circles can be arranged in a predetermined pattern. The markers 13 contain materials (for example, glass beads, a mirror, etc.) capable of reflecting light emitted from the aerospace vehicle 20 towards the aerospace vehicle 20. In order to specify the position and the movement of the plate-like body 10, preferably at least three markers 13 are placed. Moreover, in order to prevent damage to the plate-like body 10 during magnetic attraction, specific surface processing can be applied to the plate-like body 10.
The aerospace vehicle 20 is configured so as to be attached to a rocket, launched into space, and then separated from the rocket to be able to autonomously move in space. The aerospace vehicle 20 has a body 21 with an approximately rectangular parallelepiped shape and a rod-shaped member 22 with an approximately cylindrical shape that is both deployable and retractable from the body 21, as illustrated in
The magnetic force generating portion 23, which generates the magnetic force attracting the plate-like body 10 on the target object T, is attached to the tip of the rod-shaped member 22 of the aerospace vehicle 20. The magnetic force generating portion 23 has a plate-like member 23a with a circular shape as viewed in a plan view and magnetic portions 23b placed on the surface of the plate-like member 23a as illustrated in
The aerospace vehicle 20 can facilitate proximity navigation by recognizing the markers 13 or the like attached to the central portion of the plate-like body 10 with a camera 24 or the like of the aerospace vehicle 20, as illustrated in
In the aerospace vehicle 20, the area of each magnetic portion 23b, the position and number of the magnetic portions 23b, and the like can be altered as appropriate. For example, instead of placing magnetic portions 23b having a relatively large area as illustrated in
Next, a method for capturing the target object T using the capturing system 1 according to the embodiment of the present disclosure is described.
First, the aerospace vehicle 20 is moved towards the target object T. Herein, the aerospace vehicle 20 searches for the plate-like body 10 attached to the target object T while performing imaging with the camera 24. The search of the plate-like body 10 is completed by reflecting light emitted from a light projector off of the surface of the markers 13 attached to the surface of the plate-like body 10, capturing the light with the camera 24, and then recognizing the light with a computing device, for example. By recognizing the relative position and the relative attitude of the target object T from, for example, information obtained by recognizing the pattern of the markers 13 on the surface of the plate-like body 10, the aerospace vehicle 20 can move so as to approach the target object T.
Subsequently, when the distance between the target object T and the aerospace vehicle 20 reaches a value equal to or smaller than a predetermined value, the rod-shaped member 22 of the aerospace vehicle 20 is deployed from the body 21 to the plate-like body 10 of the target object T. Then, the plate-like body 10 attached to the target object T prior to launch is attracted with magnetic force generated by the magnetic force generating portion 23 attached to the tip of the rod-shaped member 22 of the aerospace vehicle 20. Then, the rod-shaped member 22 of the aerospace vehicle 20 is retracted toward the body 21, whereby the target object T is brought close to the aerospace vehicle 20 to be captured.
In the capturing system 1 according to the embodiment described above, the plate-like body 10 to be attracted with magnetic force is attached to the target object T in space prior to launch, and then the plate-like body 10 is attracted with magnetic force generated by the magnetic force generating portion 23 of the aerospace vehicle 20, whereby the target object T can be captured. The plate-like body 10 attached to the target object T prior to launch has no electrical and mechanical structures, and the mechanism of the magnetic force generating portion 23 of the aerospace vehicle 20 is also relatively simple. Therefore, the development and manufacturing cost can be markedly reduced.
In the capturing system 1 according to the embodiment described above, permanent magnets are employed as the magnetic portion 23b, and therefore, the magnetic force generating portion 23 can be constructed for a relatively low cost.
Moreover, in the capturing system 1 according to the embodiment described above, the magnetic force generating portion 23 is attached to the tip of the rod-shaped member 22 which may be deployed and retracted from the body 21 of the aerospace vehicle 20. Therefore, when capturing the target object T, the magnetic force generating portion 23 can be brought close to the plate-like body 10 by deploying the rod-shaped member 22 from the body 21 of the aerospace vehicle 20 to the plate-like body 10 of the target object T. On the other hand, when the aerospace vehicle 20 travels in the space, the rod-shaped member 22 can be retracted into the body 21. Therefore, interference between portions other than the plate-like body 10 of the target object T (e.g., antennas, nozzles, or solar cells) and the rod-shaped member 22 can be prevented. Moreover, by first contacting the target object T with the tip (i.e., magnetic force generating portion 23) of the rod-shaped member 22 placed on the aerospace vehicle 20, the load of the entire aerospace vehicle 20 will be prevented from being applied on the target object T. Therefore, the influence on the target object T can be minimized.
This embodiment describes an example in which a permanent magnet is employed as the magnetic portion 23b comprising the magnetic force generating portion 23, but an electromagnet that generates a magnetic force by applying a current can also be employed in place of the permanent magnet. Thus, when the attraction between the magnetic force generating portion 23 and the plate-like body 10 is undesirable, for example, the electric current applied to the electromagnet is stopped to temporarily eliminate the magnetic force, whereby the undesired attraction can be resolved. Thereafter, by restarting the current application to the electromagnet as necessary, the attraction between the magnetic force generating portion 23 and the plate-like body 10 can be resumed.
Moreover, by combining an electromagnet and a permanent magnet, the magnetic force of the permanent magnet can be eliminated by applying a current on the electromagnet. Thus, continuous power is not required in the attraction state and, when the attraction between the magnetic force generating portion 23 and the plate-like body 10 is undesirable, an appropriate electric current is applied to the electromagnet temporarily to eliminate the magnetic force, whereby the undesired attraction can be resolved. Thereafter, by restarting the nominal current application to the electromagnet as necessary, the attraction between the magnetic force generating portion 23 and the plate-like body 10 can be resumed.
Moreover, in this embodiment, the planar shape of the plate-like body 10 to be attached to the target object T is set to a circular shape, but the planar shape of the plate-like body 10 is not limited to a circular shape and may be polygonal (triangular, square, hexagonal, and the like), for example. The planar shape of the plate-like member 23a of the magnetic force generating portion 23 on the aerospace vehicle 20 is also not limited to a circular shape and can be set to a polygonal shape, for example. Moreover, the shape of the aerospace vehicle 20 is also not limited to an approximately rectangular parallelepiped shape and can be set to an approximately columnar shape, for example.
The present disclosure is not limited to the embodiment described above and embodiments obtained by adding design changes to the embodiment described above as appropriate by a person skilled in the art are also included in the scope of the present disclosure insofar as the embodiments have the features of the present disclosure. More specifically, the elements of the embodiment described above and the arrangement, materials, conditions, shapes, sizes, and the like thereof are not necessarily limited to those described as examples and can be altered as appropriate. Moreover, the elements of the embodiment described above can be combined as long as the combination is technically allowed and those obtained by combining the elements are also included in the scope of the present disclosure insofar as the combinations include the features of the present disclosure.
Clause 1
A capturing system that captures a target object in space, and has:
a plate-like body that is attached to the target object and attracted with magnetic force, and
an aerospace vehicle that has a magnetic force generating portion which generates the magnetic force attracting the plate-like body.
Clause 2
The capturing system according to clause 1, wherein the magnetic force generating portion has a plate-like member and a magnetic portion provided on the surface of the plate-like member.
Clause 3
The capturing system according to clause 2, wherein two or more of the magnetic portions are placed at a predetermined interval along the peripheral edge of the plate-like member.
Clause 4
The capturing system according to clause 2 or 3, wherein the magnetic portion is a permanent magnet.
Clause 5
The capturing system according to clause 2 or 3, wherein the magnetic portion is an electromagnet that generates a magnetic force by applying a current.
Clause 6
The capturing system according to any one of clauses 1 to 5, wherein:
the aerospace vehicle has a body and a rod-shaped member that may be deployed and retracted from the body, and
the magnetic force generating portion is attached to the tip of the rod-shaped member.
Clause 7
The capturing system according to any one of clauses 1 to 6, wherein the plate-like body has a portion containing magnetic materials.
Clause 8
The capturing system according to clause 7, wherein the magnetic material is iron, nickel, permalloy, or steel.
Clause 9
An aerospace vehicle that has a magnetic force generating portion generating a magnetic force and enables capturing of a target object in space by attracting a plate-like body, which is attached to the target object and attracted with a magnetic force, with the magnetic force generated by the magnetic force generating portion.
Clause 10
A plate-like body that is attached to a target object in space prior to being launched into space and enables the aerospace vehicle to capture the target object by being attracted with a magnetic force generated in the magnetic force generating portion of the aerospace vehicle.
1: Capturing system
10: Plate-like body
11: Central portion
12: Peripheral portion (Portion containing magnetic materials)
13: Marker
20: Aerospace vehicle
21: Body
22: Rod-shaped member
23: Magnetic force generating portion
23
a: Plate-like member
23
b: Magnetic portion
24: Camera
T: Target object
Number | Date | Country | Kind |
---|---|---|---|
2017-025747 | Feb 2017 | JP | national |