1. Field of the Disclosure
The instant disclosure relates to, amongst other things, a car type model having metal axles arranged between a metal inner structure and a resin chassis, wherein the metal inner structure and the resin chassis are configured to receive the metal axles and keep the metal axles in positions.
2. Description of Related Art
Conventionally, a car type model (a minicar) is broadly popular as a toy for children or as ornaments which can be endured to see by adults. The ornamental minicar is a commercial product for a user who wants to take a look and enjoy beauty of the minicar and wants to keep at least a shape of a desirable car at a hand. For this reason, it is demanded to finely fabricate the minicar in order to be intimate an authentic car as greatly as possible. Therefore, there are offered minicars for ornamental purpose which really reproduces authentic cars from exterior decors to interior decors.
However, the common car type model is made of a resin, and thus the common car type may be easily damaged and exhibit poor feeling. Further, the resin car body cannot protect the wheel axle which arranged within the resin car body from being damaged, and thus the wheel axle cannot be positioned firmly and may be bent.
According to one example embodiment of the instant disclosure, a car type model includes an inner structure formed of a metal, a chassis formed of a resin and a wheel axle formed of a metal. The chassis is attached to the inner structure, and the wheel axle is arranged between the chassis and the inner structure. The inner structure and the chassis are configured to receive the wheel axle and keep the wheel axle in a position.
According to another example embodiment of the instant disclosure, a car type model includes a chassis formed of a resin and comprising at least one slot, a wheel axle received in the slot; and an inner structure formed of a metal and attached to the chassis. The inner structure covers the slot of the chassis such that the wheel axle is kept in the slot of the chassis.
In order to further understanding of the instant disclosure, the following embodiments are provided along with illustrations to facilitate appreciation of the instant disclosure; however, the appended drawings are merely provided for reference and illustration, and do not limit the scope of the instant disclosure.
The following disclosure provides for many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to explain certain aspects of the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed or disposed in direct contact, and may also include embodiments in which additional features are formed or disposed between the first and second features, such that the first and second features are not in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
As used herein, spatially relative terms, such as “beneath,” “below,” “above,” “over,” “on,” “upper,” “lower,” “left,” “right,” “vertical,” “horizontal,” “side” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly. It should be understood that when an element is referred to as being “connected to” or “coupled to” another element, it may be directly connected to or coupled to the other element, or intervening elements may be present.
Present disclosure provides a car type model having a metal inner structure. The metal inner structure is configured to support wheel axles and protect the wheel axles from being bent or deformed. Further, the metal inner structure holds the wheel axles in position and allows the wheel axles to rotate freely. Moreover, the metal inner structure can increase the weight of the car type model such that the car type model car exhibits the massive feeling.
Referring to
As show in
The front wheel axle 41 with the front wheels 410 may be received in the front slots 310 and the rear wheel axle 42 with the rear wheels 420 may be received in the rear slot 320. That is, a position of the front wheel axle 41 may be defined by the front slots 310, and a position of the rear wheel axle 42 may be defined by the rear slot 320.
In some embodiments of the present disclosure, the screw holes 131 and 132 are formed to align with a central line longitudinally extending the chassis 30.
The inner structure 20 includes a pair of the retainer 25 positioned close to a rear end 204 of the inner structure 20 and protruded from a lower surface 24 of the inner structure 20. The lower surface 24 of the inner structure 20 may face the chassis 30 when the inner structure 20 and the chassis 30 are attached to each other. In some embodiments of the present disclosure, each of the retainers 25 has a flat lower surface 250. In some embodiments of the present disclosure, the positions of the retainers 25 of the inner structure 20 correspond to the position of the slot 320 of the chassis 30. Thus, when the inner structure 20 and the chassis 30 are attached to each other, the lower surfaces 250 of the retainers 25 of the inner structure 20 may face the chassis 30 and cover the slot 320 of the front retainers 31.
In some embodiments of the present disclosure, the screw holes 121, 122, 133 and 134 are formed to align with a central line longitudinally extending the inner structure 20.
In some embodiments of the present disclosure, the slot 210 of the inner structure 20 and the slot 310 of the chassis 30 are configured to fit the wheel axle 41, and the wheel axle 41 is fixed and cannot rotate freely when the wheel axle 41 is arranged between the inner structure 20 and chassis 30. The wheel 410 may rotatably connects the end of the wheel axle 41, and thus the wheel 410 may rotate freely while the wheel axle 41 is fixed between the inner structure 20 and chassis 30.
In some embodiments of the present disclosure, the slot 320 of the chassis 30 is configured to fit the wheel axle 42, and the wheel axle 42 is fixed and cannot rotate freely when the wheel axle 42 is arranged between the inner structure 20 and chassis 30. The wheel 420 may rotatably connects the end of the wheel axle 42, and thus the wheel 420 may rotate freely while the wheel axle 42 is fixed between the inner structure 20 and chassis 30.
Referring to
As show in
The front wheel axle 81 with the front wheels 810 may be received in the front slots 710 and the rear wheel axle 82 with the rear wheels 820 may be received in the rear slot 720. That is, a position of the front wheel axle 81 may be defined by the front slots 710, and a position of the rear wheel axle 82 may be defined by the rear slot 720.
In some embodiments of the present disclosure, the screw holes 531 and 532 are formed to align with a central line longitudinally extending the chassis 70.
The inner structure 60 includes a pair of the retainer 65 positioned close to a rear end 604 of the inner structure 60 and protruded from a lower surface 64 of the inner structure 60. The lower surface 64 of the inner structure 60 may face the chassis 70 when the inner structure 60 and the chassis 70 are attached to each other. In some embodiments of the present disclosure, each of the retainers 65 has a slot 650. In some embodiments of the present disclosure, the positions of the slots 650 of the retainers 65 of the inner structure 60 are correspond to the position of the slot 720 of the chassis 70. Thus, when the inner structure 60 and the chassis 70 are attached to each other, the slots 650 of the retainers 65 of the inner structure 60 may align with the slot 720 of the chassis 70.
In some embodiments of the present disclosure, the screw holes 521, 522, 533 and 534 are formed to align with a central line longitudinally extending the inner structure 60.
In some embodiments of the present disclosure, the slot 710 of the chassis 70 is configured to fit the wheel axle 81, and the wheel axle 81 is fixed and cannot rotate freely when the wheel axle 81 is arranged between the inner structure 60 and chassis 70. The wheel 810 may rotatably connects the end of the wheel axle 81, and thus the wheel 810 may rotate freely while the wheel axle 81 is fixed between the inner structure 60 and chassis 70.
In some embodiments of the present disclosure, the slot 650 of the inner structure 60 and the slot 720 of the chassis 70 are configured to fit the wheel axle 82, and the wheel axle 82 is fixed and cannot rotate freely when the wheel axle 82 is arranged between the inner structure 60 and chassis 70. The wheel 820 may rotatably connects the end of the wheel axle 82, and thus the wheel 820 may rotate freely while the wheel axle 82 is fixed between the inner structure 60 and chassis 70.
It will be further appreciated that the foregoing apparatus may be used for positioning the wheel axles and protecting the wheel axles from being bent or deformed. Further, the wheel axles are configured to rotate freely. Moreover, the inner structure formed of the metal can increase the weight of the car type model, and thus the car type model car can exhibit the massive feeling. In addition, since the chassis is made of the resin, a fine relief pattern could be easily formed at the lower surface of the chassis by the molding process.
As used herein, the singular terms “a,” “an,” and “the” may include a plurality of referents unless the context clearly dictates otherwise.
As used herein, the terms “approximately,” “substantially,” “substantial” and “about” are used to describe and account for small variations. When used in conjunction with an event or circumstance, the terms can refer to instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation. For example, when used in conjunction with a numerical value, the terms can refer to a range of variation of less than or equal to ±10% of that numerical value, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%. For example, two numerical values can be deemed to be “substantially” the same or equal if the difference between the values is less than or equal to ±10% of an average of the values, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%. For example, “substantially” parallel can refer to a range of angular variation relative to 0° that is less than or equal to ±10°, such as less than or equal to ±5°, less than or equal to ±4°, less than or equal to ±3°, less than or equal to ±2°, less than or equal to ±1°, less than or equal to ±0.5°, less than or equal to ±0.1°, or less than or equal to ±0.05°. For example, “substantially” perpendicular can refer to a range of angular variation relative to 90° that is less than or equal to ±10°, such as less than or equal to ±5°, less than or equal to ±4°, less than or equal to ±3°, less than or equal to ±2°, less than or equal to ±1°, less than or equal to ±0.5°, less than or equal to ±0.1°, or less than or equal to ±0.05°.
Additionally, amounts, ratios, and other numerical values are sometimes presented herein in a range format. It is to be understood that such range format is used for convenience and brevity and should be understood flexibly to include numerical values explicitly specified as limits of a range, but also to include all individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range were explicitly specified.
While the present disclosure has been described and illustrated with reference to specific embodiments thereof, these descriptions and illustrations do not limit the present disclosure. It should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the present disclosure as defined by the appended claims. The illustrations may not be necessarily drawn to scale. There may be distinctions between the artistic renditions in the present disclosure and the actual apparatus due to manufacturing processes and tolerances. There may be other embodiments of the present disclosure which are not specifically illustrated. The specification and drawings are to be regarded as illustrative rather than restrictive. Modifications may be made to adapt a particular situation, material, composition of matter, method, or process to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the claims appended hereto. While the methods disclosed herein are described with reference to particular operations performed in a particular order, it will be understood that these operations may be combined, sub-divided, or re-ordered to form an equivalent method without departing from the teachings of the present disclosure. Accordingly, unless specifically indicated herein, the order and grouping of the operations are not limitations on the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202011145633.3 | Oct 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3711989 | Nielsen | Jan 1973 | A |
4466215 | Hanazato | Aug 1984 | A |
4533336 | Dixon | Aug 1985 | A |
4986789 | Hang | Jan 1991 | A |
5120254 | Daniels | Jun 1992 | A |
5919077 | Gondcaille | Jul 1999 | A |
7568962 | Amadio | Aug 2009 | B2 |
9636602 | Sarno | May 2017 | B1 |
10335699 | Kwan | Jul 2019 | B2 |
10709994 | Kwan | Jul 2020 | B2 |
20050250415 | Barthold | Nov 2005 | A1 |
20050250416 | Barthold | Nov 2005 | A1 |
20050287925 | Proch | Dec 2005 | A1 |
20060076735 | Proch | Apr 2006 | A1 |
20070202773 | Yuen | Aug 2007 | A1 |
20110014850 | Kennedy | Jan 2011 | A1 |
20110263181 | Kreidler | Oct 2011 | A1 |
20120276809 | Verbera | Nov 2012 | A1 |
20140065927 | Su | Mar 2014 | A1 |
20170014724 | Kwan | Jan 2017 | A1 |
20190160386 | Kwan | May 2019 | A1 |
20210129036 | Dragusin | May 2021 | A1 |
Number | Date | Country |
---|---|---|
204488950 | Jul 2015 | CN |
3903411 | Sep 1990 | DE |
3488908 | May 2019 | EP |
3488908 | May 2020 | EP |
1040369 | Aug 1966 | GB |
2302039 | Jan 1997 | GB |
1184013 | Jan 2014 | HK |
56-59093 | Dec 2014 | JP |
6313863 | Mar 2018 | JP |
2019-97582 | Jun 2019 | JP |
6535069 | Jun 2019 | JP |
2006041653 | Apr 2006 | WO |
Entry |
---|
First Examination Report dated Apr. 5, 2022 by IP Australia for counterpart Australian Patent Application No. 2021203453. |
European Search Report dated Nov. 19, 2021 from the European Patent Office (EPO). |
DE3903411A1 dated Sep. 20, 1990 English Translation. |
HK 1184013 A2 dated Jan. 10, 2014 English Translation. |
JP 6313863 B2 _ English Abstract. |
JP 6535069 B2 _ English Abstract. |
Office Action in counterpart Japanese application JP Patent Application No. 2020-2143 98 dated Dec. 27, 2021 including Summary English Translation. |
Number | Date | Country | |
---|---|---|---|
20220126214 A1 | Apr 2022 | US |