The present invention relates to a carafe for dispensing a consumable liquid such as wine, that has a cooling element that can be inserted into the carafe to cool the liquid contents of the carafe, and, more particularly, to a wine carafe that has a cooling element having a tube filled with a temperature reducing or cooling agent, such as ice, which cooling element can be inserted into the carafe to directly contact and chill the wine contained therein.
It is known that there are certain liquids, such as white wine, that are intended to be served to a person in a cooled or chilled state for the best flavor and enjoyment. Unfortunately, one of the problems with serving the wine chilled is that the carafe containing the wine generally sits on a table to be accessible to the persons and therefore is not being refrigerated so that the wine eventually warms up to ambient temperature and is no longer served at the proper chilled temperature. Alternatively, the wine carafe can be returned to a refrigerated location each time wine is poured and which is inconvenient to the consumers.
There have been various devices and systems to adjust and maintain wine to be served at a desired, chilled temperature for availability to the wine drinkers, however, many suffer from the lack of good heat conductivity between the cooling agent, and the wine, such that the cooling effect of the cooling agent is very inefficient. Other devices require large containers or cooling devices that are complex and/or bulky and are simply not suitable for use at a table where the wine is being served.
Further devices are known that chill the wine while the wine is in a carafe but require that the chilling device be removed from the wine carafe in order to pour the wine from that carafe. Such devices are likewise, particularly inconvenient for use e.g. at a dinner table.
It would therefore be advantageous to have a device or system to retain the wine at a chilled temperature that is easy to use, provides good efficiency in the use of the cooling effect of the wine and can be inserted and retained in a carafe of wine at the table where the wine is being served, so that chilled wine is can be poured from the carafe without removing the chilling element.
Accordingly, the present invention relates to a cooling element and method of installing such cooling element into a carafe in order to chill the liquid contents of the carafe. With the present invention the cooling element comprises an elongated hollow tube that can be filled with a cooling agent, such as ice, and that can be introduced through the upper, open end of a carafe such that the hollow tube can directly contact the liquid contents contained within the carafe.
The cooling element includes a cylindrical outer flange at its upper end. The internal diameter of the cylindrical outer flange is larger than the outer diameter of the elongated hollow tube, and thereby forms and defines an annular recess intermediate the cylindrical outer flange and the elongated hollow tube, which is adapted for reception of the upper open end of the carafe. When the cooling element is fastened onto a carafe, the upper, open end of the carafe enters the annular recess such that the cooling element is retained atop of the carafe.
As such, with the elongated tube directly contacting the liquid within the carafe, there is only a single thickness of material between the cooling agent and the liquid contents of the carafe. In accordance with the present invention, the elongated tube is constructed of a material having a high thermal conductivity, particularly a conductive metal, and, more particularly a non-corrosive, high thermally conductive metal such as stainless steel.
There is a channel formed in the cylindrical outer flange and, as the cooling element is inserted into the upper, open end of the carafe, the spout of the carafe enters into and progresses along that channel while the cooling element is being seated on the upper end of the carafe. A passageway is defined between the channel, the elongated tube and the carafe for the liquid contents of the carafe to reach and be poured from the spout for consumption.
An external, flexible sleeve is positioned so as to surround and releasably engage, the upper, open end of the carafe and the cylindrical outer flange thereby forming a seal therebetween and also serving to aid in the securement of the cooling element onto the carafe, even during the tilting of the carafe to access the contents thereof. With this feature, the liquid contents can be easily poured from the carafe without removing the cooling element from the carafe.
These and other features and advantages of the present invention will become more readily apparent during the following detailed description taken in conjunction with the drawings herein.
Referring now to
The cooling element 10 includes an elongated, hollow tube 22 that, as can be seen, extends downwardly through the upper, open end 16 of the carafe 12 so as to be in direct contact with any liquid contained within the reservoir 18. The elongated, hollow tube 22 is constructed of a material having a high thermal conductance, preferably a metal and, more preferably, a non-corrosive metal having a high thermal conductivity such as stainless steel.
The upper end 24 of the elongated hollow tube 22 is open such that ice can be loaded into the interior of the hollow tube 22 for cooling purposes. Accordingly, there is only a single thickness of a material between the cooling agent contained within the hollow tube 22 and the liquid contained within the reservoir 18 so that the conductance of thermal values is optimized, particularly so, since the material of the hollow tube 22 has a high thermal conductivity. When the cooling agent has been loaded into the elongated, hollow tube, a cap 26 can be snapped onto the upper end 24 to cover the upper end 24, and is adapted to establish and maintain fluid tight engagement therewith. As can be seen, there is a curved indentation 28 in the cap 26 so that the spout 20 remains uncovered.
The cooling element 10 also has a cylindrical outer flange 30 that has an inner diameter that is larger than the outer diameter of the hollow tube 22, thereby forming an annular recess 32 between the hollow tube 22 and the cylindrical outer flange 30. In the installation of the present cooling element 10 to a carafe 12, the upper, outer end 16 of the carafe 12 fits into the annular recess 32 such that the upper, open end 16 of the carafe 12 is sandwiched therebetween and the cooling element 10 is able to be firmly affixed to the carafe 12, so that, as will be seen herein, the tilting of the carafe 12 to pour the contained liquid, such as wine, from the reservoir 18 does not dislodge the cooling element 10 from the carafe 12, or release the cooling agent into the liquid.
There is a channel 34 that is formed in a vertical orientation in the cylindrical outer flange 30 and, as can be seen in
Referring further to
Turning next to
In
Referring further to
Finally, in
In
In
Those skilled in the art will readily recognize numerous adaptations and modifications which can be made to the wine aerator of the present invention which will result in an improved cooling element and method of installing the same onto a carafe for chilling wine, yet all of which will fall within the scope and spirit of the present invention as defined in the following claims Accordingly, the invention is to be limited only by the following claims and their equivalents.