Carbamate Linked Macrolides Useful For The Treatment Of Microbial Infections

Information

  • Patent Application
  • 20080249033
  • Publication Number
    20080249033
  • Date Filed
    May 03, 2005
    19 years ago
  • Date Published
    October 09, 2008
    16 years ago
Abstract
The present invention relates to 14- or 15-membered macrolides substituted at the 4″ position of formula (I)
Description
FIELD OF THE INVENTION

The present invention relates to novel semi-synthetic macrolides having antimicrobial activity, in particular antibacterial activity. More particularly, the invention relates to 14- and 15-membered macrolides substituted at the 4″ position, to processes for their preparation, to compositions containing them and to their use in medicine.


BACKGROUND OF THE INVENTION

Macrolide antibacterial agents are known to be useful in the treatment or prevention of bacterial infections. However, the emergence of macrolide-resistant bacterial strains has resulted in the need to develop new macrolide compounds. For example, EP 0 895 999 describes derivatives modified at the 4″ position of the macrolide ring having antibacterial activity.


According to the present invention, we have now found novel 14- and 15-membered macrolides substituted at the 4″ position which also have antimicrobial activity.


SUMMARY OF THE INVENTION

Thus, the present invention provides compounds of general formula (I)







wherein


A is a bivalent radical selected from —C(O)—, —C(O)NH—, —NHC(O)—, —N(R7)—CH2—, —CH2—N(R7)—, —CH(NR8R9)— and —C(═NR10)—;


R1 is —OC(O)N(R7)(CH2)dXR11;


R2 is hydrogen or a hydroxyl protecting group;


R3 is hydrogen, C1-4alkyl, or C3-6alkenyl optionally substituted by 9 to 10 membered fused bicyclic heteroaryl;


R4 is hydroxy, C2-6alkenyloxy optionally substituted by 9 to 10 membered fused bicyclic heteroaryl, or C1-6alkoxy optionally substituted by C1-6alkoxy or —O(CH2)eNR7R12, R5 is hydroxy, or


R4 and R5 taken together with the intervening atoms form a cyclic group having the following structure:







wherein Y is a bivalent radical selected from —CH2—, —CH(CN)—, —O—, —N(R13)— and —CH(SR13)—;


R6 is hydrogen or fluorine;


R7 is hydrogen or C1-6alkyl;


R8 and R9 are each independently hydrogen, C1-6alkyl, —C(═NR10)NR14R15 or —C(O)R14, or


R8 and R9 together form ═CH(CR14R15)faryl, ═CH(CR14R15)fheterocyclyl, ═CR14R15 or ═C(R14)C(O)OR14, wherein the alkyl, aryl and heterocyclyl groups are optionally substituted by up to three groups independently selected from R16;


R10 is —OR17, C1-6alkyl, —(CH2)garyl, —(CH2)gheterocyclyl or —(CH2)hO(CH2)iOR7, wherein each R10 group is optionally substituted by up to three groups independently selected from R16;


R11 is a heterocyclic group having the following structure:







R12 is hydrogen or C1-6alkyl;


R13 is hydrogen or C1-4alkyl substituted by a group selected from optionally substituted phenyl, optionally substituted 5 or 6 membered heteroaryl and optionally substituted 9 to 10 membered fused bicyclic heteroaryl;


R14 and R15 are each independently hydrogen or C1-6alkyl;


R16 is halogen, cyano, nitro, trifluoromethyl, azido, —C(O)R21, —C(O)OR21, —OC(O)R21, —OC(O)OR21, —NR22C(O)R23, —C(O)NR22R23, —NR22R23, hydroxy, C1-6alkyl, —S(O)kC1-6alkyl, C1-6alkoxy, —(CH2)maryl or —(CH2)mheteroaryl, wherein the alkoxy group is optionally substituted by up to three groups independently selected from —NR14R15, halogen and —OR14, and the aryl and heteroaryl groups are optionally substituted by up to five groups independently selected from halogen, cyano, nitro, trifluoromethyl, azido, —C(O)R24, —C(O)OR24, —OC(O)OR24, —NR25C(O)R26, —C(O)NR25R26, —NR25R26, hydroxy, C1-6alkyl and C1-6alkoxy;


R17 is hydrogen, C1-6alkyl, C3-7cycloalkyl, C3-6alkenyl or a 5 or 6 membered heterocyclic group, wherein the alkyl, cycloalkyl, alkenyl and heterocyclic groups are optionally substituted by up to three substituents independently selected from optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered heteroaryl, —OR27, —S(O)nR27, —NR27R28, —CONR27R28, halogen and cyano;


R18 is hydrogen, —C(O)OR29, —C(O)NHR29, —C(O)CH2NO2, or —C(O)CH2SO2R7;


R19 is hydrogen, C1-4alkyl optionally substituted by hydroxy, cyano, NH2, —NH(C1-4alkyl) or —N(C1-4alkyl)2; C2-4alkenyl optionally substituted by hydroxy, cyano, NH2, —NH(C1-4alkyl) or —N(C1-4alkyl)2; C1-4alkoxy, C3-7cycloalkyl, —NH2, —NH(C1-4alkyl) or —N(C1-4alkyl)2; (C1-4alkyl)OC(O)N(C1-4alkyl) or optionally substituted phenyl or benzyl;


R20 is halogen, C1-4alkyl, C1-4thioalkyl, C1-4alkoxy, —NH2, —NH(C1-4alkyl) or —N(C1-4alkyl)2;


R21 is hydrogen, C1-10alkyl, —(CH2)paryl or —(CH2)pheteroaryl;


R22 and R23 are each independently hydrogen, —OR14, C1-6alkyl, —(CH2)qaryl or —(CH2)qheterocyclyl;


R24 is hydrogen, C1-10alkyl, —(CH2)raryl or —(CH2)rheteroaryl;


R25 and R26 are each independently hydrogen, —OR14, C1-6alkyl, —(CH2)saryl or —(CH2)sheterocyclyl;


R27 and R28 are each independently hydrogen, C1-4alkyl or C1-4alkoxyC1-4alkyl;


R29 is hydrogen or C1-6alkyl optionally substituted by up to three groups independently selected from halogen, C1-4alkoxy, —OC(O)C1-6alkyl and —OC(O)OC1-6alkyl, or —(CH2)qheterocyclyl, —(CH2)qheteroaryl, —(CH2)qaryl, —(CH2)qC3-7cycloalkyl;


R30 is hydrogen, C1-4alkyl, C3-7cycloalkyl, optionally substituted phenyl or benzyl, acetyl or benzoyl;


R31 is hydrogen or R20, or R31 and R19 are linked to form the bivalent radical —O(CH2)2—, —(CH2)t—; —NR7(CH2)a—, —OCH2NR7—, —SCH2NR7—, —CH2NR7CH2—, —CH2OCH2—, —CH2SCH2—, —(CH2)aNR7—;


R32 is hydrogen, or R32 and R19 are linked to form the bivalent radical selected from the group —S(CH2)b—, —N(R7)(CH2)b—, —O(CH2)b—;


R33 is C1-8alkyl, C2-6alkenyl or C2-6alkynyl;

    • X is —U(CH2)vB(CH2)vD-, —U(CH2)vB—R33—, —U(CH2)vB(CH2)vD(CH2)vE-, —U(CH2)vB(CH2)vD-R33


or X is a group selected from:







U, B, D and E are independently a divalent radical selected from —N(R30)—, —O—, —S(O)z—, —N(R30)C(O)—, —C(O)N(R30)— and —N[C(O)R30]—;


W is —C(R31) or a nitrogen atom;


a is 1 or 2


b is an integer from 1 to 3;


d is an integer from 1 to 5;


e is an integer from 2 to 4;


f, g, h, m, p, q, r and s are each independently integers from 0 to 4;


i is an integer from 1 to 6;


j, k, n and z are each independently integers from 0 to 2;


t is 2 or 3;


v is an integer independently selected for each occurrence from 1 to 8;


and pharmaceutically acceptable derivatives thereof.







DETAILED DESCRIPTION OF THE INVENTION

The term “pharmaceutically acceptable” as used herein means a compound which is suitable for pharmaceutical use. Salts and solvates of compounds of the invention which are suitable for use in medicine are those wherein the counterion or associated solvent is pharmaceutically acceptable. However, salts and solvates having non-pharmaceutically acceptable counterions or associated solvents are within the scope of the present invention, for example, for use as intermediates in the preparation of other compounds of the invention and their pharmaceutically acceptable salts and solvates.


The term “pharmaceutically acceptable derivative” as used herein means any pharmaceutically acceptable salt, solvate or prodrug, e.g. ester, of a compound of the invention, which upon administration to the recipient is capable of providing (directly or indirectly) a compound of the invention, or an active metabolite or residue thereof. Such derivatives are recognizable to those skilled in the art, without undue experimentation. Nevertheless, reference is made to the teaching of Burger's Medicinal Chemistry and Drug Discovery, 5th Edition, Vol 1: Principles and Practice, which is incorporated herein by reference to the extent of teaching such derivatives. Preferred pharmaceutically acceptable derivatives are salts, solvates, esters, carbamates and phosphate esters. Particularly preferred pharmaceutically acceptable derivatives are salts, solvates and esters. Most preferred pharmaceutically acceptable derivatives are salts and esters.


The compounds of the present invention may be in the form of and/or may be administered as a pharmaceutically acceptable salt. For a review on suitable salts see Berge et al., J. Pharm. Sci., 1977, 66, 1-19.


Typically, a pharmaceutical acceptable salt may be readily prepared by using a desired acid or base as appropriate. The salt may precipitate from solution and be collected by filtration or may be recovered by evaporation of the solvent. For example, an aqueous solution of an acid such as hydrochloric acid may be added to an aqueous suspension of a compound of formula (I) and the resulting mixture evaporated to dryness (lyophilised) to obtain the acid addition salt as a solid. Alternatively, a compound of formula (I) may be dissolved in a suitable solvent, for example an alcohol such as isopropanol, and the acid may be added in the same solvent or another suitable solvent. The resulting acid addition salt may then be precipitated directly, or by addition of a less polar solvent such as diisopropyl ether or hexane, and isolated by filtration.


Suitable addition salts are formed from inorganic or organic acids which form non-toxic salts and examples are hydrochloride, hydrobromide, hydroiodide, sulphate, bisulphate, nitrate, phosphate, hydrogen phosphate, acetate, trifluoroacetate, maleate, malate, fumarate, lactate, tartrate, citrate, formate, gluconate, succinate, pyruvate, oxalate, oxaloacetate, trifluoroacetate, saccharate, benzoate, alkyl or aryl sulphonates (eg methanesulphonate, ethanesulphonate, benzenesulphonate or p-toluenesulphonate) and isethionate. Representative examples include trifluoroacetate and formate salts, for example the bis or tris trifluoroacetate salts and the mono or diformate salts, in particular the tris or bis trifluoroacetate salt and the monoformate salt.


Pharmaceutically acceptable base salts include ammonium salts, alkali metal salts such as those of sodium and potassium, alkaline earth metal salts such as those of calcium and magnesium and salts with organic bases, including salts of primary, secondary and tertiary amines, such as isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexyl amine and N-methyl-D-glucamine.


Compounds of the invention may have both a basic and an acidic centre may therefore be in the form of zwitterions.


Those skilled in the art of organic chemistry will appreciate that many organic compounds can form complexes with solvents in which they are reacted or from which they are precipitated or crystallized. These complexes are known as “solvates”. For example, a complex with water is known as a “hydrate”. Solvates of the compound of the invention are within the scope of the invention. The salts of the compound of formula (I) may form solvates (e.g. hydrates) and the invention also includes all such solvates.


The term “prodrug” as used herein means a compound which is converted within the body, e.g. by hydrolysis in the blood, into its active form that has medical effects. Pharmaceutically acceptable prodrugs are described in T. Higuchi and V. Stella, “Prodrugs as Novel Delivery Systems”, Vol. 14 of the A.C.S. Symposium Series, Edward B. Roche, ed., “Bioreversible Carriers in Drug Design”, American Pharmaceutical Association and Pergamon Press, 1987, and in D. Fleisher, S. Ramon and H. Barbra “Improved oral drug delivery: solubility limitations overcome by the use of prodrugs”, Advanced Drug Delivery Reviews (1996) 19(2) 115-130, each of which are incorporated herein by reference.


Prodrugs are any covalently bonded carriers that release a compound of structure (I) in vivo when such prodrug is administered to a patient. Prodrugs are generally prepared by modifying functional groups in a way such that the modification is cleaved, either by routine manipulation or in vivo, yielding the parent compound. Prodrugs include, for example, compounds of this invention wherein hydroxy, amine or sulfhydryl groups are bonded to any group that, when administered to a patient, cleaves to form the hydroxy, amine or sulfhydryl groups. Thus, representative examples of prodrugs include (but are not limited to) acetate, formate and benzoate derivatives of alcohol, sulfhydryl and amine functional groups of the compounds of structure (a). Further, in the case of a carboxylic acid (—COOH), esters may be employed, such as methyl esters, ethyl esters, and the like. Esters may be active in their own right and/or be hydrolysable under in vivo conditions in the human body. Suitable pharmaceutically acceptable in vivo hydrolysable ester groups include those which break down readily in the human body to leave the parent acid or its salt.


References hereinafter to a compound according to the invention include both compounds of formula (I) and their pharmaceutically acceptable derivatives.


With regard to stereoisomers, the compounds of structure (I) have more than one asymmetric carbon atom. In the general formula (I) as drawn, the solid wedge shaped bond indicates that the bond is above the plane of the paper. The broken bond indicates that the bond is below the plane of the paper.


It will be appreciated that the substituents on the macrolide may also have one or more asymmetric carbon atoms. Thus, the compounds of structure (I) may occur as individual enantiomers or diastereomers. All such isomeric forms are included within the present invention, including mixtures thereof.


Where a compound of the invention contains an alkenyl group, cis (Z) and trans (E) isomerism may also occur. The present invention includes the individual stereoisomers of the compound of the invention and, where appropriate, the individual tautomeric forms thereof, together with mixtures thereof.


Separation of diastereoisomers or cis and trans isomers may be achieved by conventional techniques, e.g. by fractional crystallisation, chromatography or HPLC A stereoisomeric mixture of the agent may also be prepared from a corresponding optically pure intermediate or by resolution, such as HPLC, of the corresponding mixture using a suitable chiral support or by fractional crystallisation of the diastereoisomeric salts formed by reaction of the corresponding mixture with a suitable optically active acid or base, as appropriate.


The compounds of structure (I) may be in crystalline or amorphous form. Furthermore, some of the crystalline forms of the compounds of structure (I) may exist as polymorphs, which are included in the present invention.


Compounds wherein R2 represents a hydroxyl protecting group are in general intermediates for the preparation of other compounds of formula (I).


When the group OR2 is a protected hydroxyl group this is conveniently an ether or an acyloxy group. Examples of particularly suitable ether groups include those in which R2 is a trialkylsilyl (i.e. trimethylsilyl). When the group OR2 represents an acyloxy group, then examples of suitable groups R2 include acetyl or benzoyl.


R6 is hydrogen or fluorine. However, it will be appreciated that when A is —C(O)NH— or —CH2—N(R7)—, R6 is hydrogen.


When R11 is a heterocyclic group having the following structure:







said heterocyclic is linked in the 6 or 7 position to the X group as above defined. When present, the R20 group or groups may be attached at any position on the ring. In one embodiment, an R20 group is attached at the 6 or 7 position.


When R11 is a heterocyclic group having the following structure:







wherein W is —C(R31)— where R31 is R20 or R31 and R19 are linked to form the bivalent radical —O(CH2)2—, —(CH2)t—; —NR7(CH2)a—, —OCH2NR7—, —SCH2NR7—, —CH2NR7CH2—, —CH2OCH2—, —CH2SCH2—, —(CH2)aNR7—, said heterocyclic is linked in the (ii) or (iii) position to the X group as above defined.


When R11 is a heterocyclic group having the following structure:







said heterocyclic is linked in the 6 or 7 position to the X group as defined above.


When R11 is a heterocyclic group having the following structure:







said heterocyclic is linked in the 7 or 8 position to the X group as above defined.


When R11 is a heterocyclic group having the following structure:







wherein W is —C(R31)— where R31 is R20 or R31 and R19 are linked to form the bivalent radical —O(CH2)2—, —(CH2)t—; —NR7(CH2)a—, —OCH2NR7—, —SCH2NR7—, —CH2NR7CH2—, —CH2OCH2—, —CH2SCH2—, —(CH2)aNR7—, said heterocyclic is linked in the (i), (ii) or (iii) position to the X group as above defined. In one embodiment, the heterocyclic is linked to the (i) position. In another embodiment, the heterocyclic is linked in the (ii) or (iii) position.


When R11 is a heterocyclic group having the following structure:







said heterocyclic is linked in the 2 or 3 position to the X group as above defined. In one embodiment, the heterocyclic is linked in the 2 or 3 position. In another embodiment, the heterocyclic is linked in the 4 position.


The term “alkyl” as used herein as a group or a part of a group refers to a straight or branched hydrocarbon chain containing the specified number of carbon atoms. For example, C1-10 alkyl means a straight or branched alkyl containing at least 1, and at most 10, carbon atoms. Examples of “alkyl” as used herein include, but are not limited to, methyl, ethyl, n-propyl, n-butyl, n-pentyl, isobutyl, isopropyl, t-butyl, hexyl, heptyl, octyl, nonyl and decyl. A C1-4alkyl group is preferred, for example methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or t-butyl.


The term “C3-7cycloalkyl” group as used herein refers to a non-aromatic monocyclic hydrocarbon ring of 3 to 7 carbon atoms such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.


The term “alkoxy” as used herein refers to a straight or branched chain alkoxy group containing the specified number of carbon atoms. For example, C1-6 alkoxy means a straight or branched alkoxy containing at least 1, and at most 6, carbon atoms. Examples of “alkoxy” as used herein include, but are not limited to, methoxy, ethoxy, propoxy, prop-2-oxy, butoxy, but-2-oxy, 2-methylprop-1-oxy, 2-methylprop-2-oxy, pentoxy and hexyloxy. A C1-4 alkoxy group is preferred, for example methoxy, ethoxy, propoxy, prop-2-oxy, butoxy, but-2-oxy or 2-methylprop-2-oxy.


The term “alkenyl” as used herein as a group or a part of a group refers to a straight or branched hydrocarbon chain containing the specified number of carbon atoms and containing at least one double bond. For example, the term “C2-6 alkenyl” means a straight or branched alkenyl containing at least 2, and at most 6, carbon atoms and containing at least one double bond. Examples of “alkenyl” as used herein include, but are not limited to, ethenyl, 2-propenyl, 3-butenyl, 2-butenyl, 2-pentenyl, 3-pentenyl, 3-methyl-2-butenyl, 3-methylbut-2-enyl, 3-hexenyl and 1,1-dimethylbut-2-enyl. It will be appreciated that in groups of the form —O—C2-6 alkenyl, the double bond is preferably not adjacent to the oxygen.


The term “alkynyl” as used herein as a group or a part of a group refers to a straight or branched hydrocarbon chain containing the specified number of carbon atoms and containing at least one triple bond. For example, the term “C2-6 alkynyl” means a straight or branched alkynyl containing at least 2, and at most 6, carbon atoms and containing at least one triple bond. Examples of “alkynyl” as used herein include, but are not limited to, ethynyl, 2-propynyl, 3-butynyl, 2-butynyl, 2-pentynyl, 3-pentynyl, 3-methyl-2-butynyl, 3-methylbut-2-ynyl, 3-hexynyl and 1,1-dimethylbut-2-ynyl. It will be appreciated that in groups of the form —O—C2-6alkynyl, the triple bond is preferably not adjacent to the oxygen.


The term “aryl” as used herein refers to an aromatic carbocyclic moiety such as phenyl, biphenyl or naphthyl.


The term “heteroaryl” as used herein, unless otherwise defined, refers to an aromatic heterocycle of 5 to 10 members, having at least one heteroatom selected from nitrogen, oxygen and sulfur, and containing at least 1 carbon atom, including both mono and bicyclic ring systems. Examples of heteroaryl rings include, but are not limited to, furanyl, thiophenyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, oxadiazolyl, tetrazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrazinyl, pyrimidinyl, triazinyl, quinolinyl, isoquinolinyl, 1,2,3,4-tetrahydroisoquinolinyl, benzofuranyl, benzimidazolyl, benzothienyl, benzoxazolyl, 1,3-benzodioxazolyl, indolyl, benzothiazolyl, furylpyridine, oxazolopyridyl and benzothiophenyl.


The term “5 or 6 membered heteroaryl” as used herein as a group or a part of a group refers to a monocyclic 5 or 6 membered aromatic heterocycle containing at least one heteroatom independently selected from oxygen, nitrogen and sulfur. Examples include, but are not limited to, furanyl, thiophenyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, oxadiazolyl, tetrazolyl, pyridyl, pyridazinyl, pyrazinyl, pyrimidinyl and triazinyl.


The term “9 to 10 membered fused bicyclic heteroaryl” as used herein as a group or a part of a group refers to quinolinyl, isoquinolinyl, 1,2,3,4-tetrahydroisoquinolinyl, benzofuranyl, benzimidazolyl, benzothienyl, benzoxazolyl, 1,3-benzodioxazolyl, indolyl, benzothiazolyl, furylpyridine, oxazolopyridyl or benzothiophenyl.


The term “heterocyclyl” as used herein, unless otherwise defined, refers to a monocyclic or bicyclic three- to ten-membered saturated or non-aromatic, unsaturated hydrocarbon ring containing at least one heteroatom selected from oxygen, nitrogen and sulfur. Preferably, the heterocyclyl ring has five or six ring atoms. Examples of heterocyclyl groups include, but are not limited to, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, imidazolidinyl, pyrazolidinyl, piperidyl, piperazinyl, morpholino, tetrahydropyranyl and thiomorpholino.


The term “5 or 6 membered heterocyclic group” as used herein as a group or part of a group refers to a monocyclic 5 or 6 membered saturated hydrocarbon ring containing at least one heteroatom independently selected from oxygen, nitrogen and sulfur. Examples of such heterocyclyl groups include, but are not limited to, pyrrolidinyl, tetrahydrofuranyl, tetrahydrothiophenyl, imidazolidinyl, pyrazolidinyl, piperidyl, piperazinyl, morpholino, tetrahydropyranyl and thiomorpholino.


The term “halogen” refers to a fluorine, chlorine, bromine or iodine atom.


The terms “optionally substituted phenyl”, “optionally substituted phenyl or benzyl”, “optionally substituted 5 or 6 membered heteroaryl”, “optionally substituted 9 to 10 membered fused bicyclic heteroaryl” or “optionally substituted 5 or 6 membered heterocyclic group” as used herein refer to a group which is substituted by 1 to 3 groups selected from halogen, C1-4alkyl, C1-4alkoxy, hydroxy, nitro, cyano, amino, C1-4 alkylamino or diC1-4alkylamino, phenyl and 5 or 6 membered heteroaryl.


In one embodiment, A is —C(O)—, —C(O)NH—, —NHC(O)—, —N(R7)—CH2—, —CH2—N(R7)— or —CH(NR8R9)—. In another embodiment, A is —C(O)—, —C(O)NH—, —NHC(O)—, —CH2—N(R7)—, —CH(NR8R9)— or —C(═NR10)—. In a further embodiment, A is —C(O)—, —C(O)NH—, —NHC(O)—, —CH2—NR7— or —CH(NR8R9)—. Representative examples of A include —C(O)— and —N(R7)—CH2—.


A representative example of R2 is hydrogen.


Representative examples of R3 include hydrogen and C1-4alkyl, in particular hydrogen and methyl.


In one embodiment, R4 is hydroxy or C1-6alkoxy, in particular hydroxy or methoxy. Preferably, R4 is hydroxy. In another embodiment, R5 is hydroxy. Alternatively, R4 and R5 taken together with the intervening atoms form a cyclic group having the following structure:







wherein Y is a bivalent radical selected from —O— and —N(R13)—.


A representative example of R6 is hydrogen.


A representative example of R7 is C1-6alkyl, for example C1-4alkyl, in particular methyl.


Representative examples of R11 include heterocyclic groups having the following structures:







wherein the heterocyclic is linked in the 6 or 7 position to the X group as above defined, and heterocyclic groups having the following structure:







wherein W is —C(R31) and R31 and R19 are linked to form the bivalent radical —(CH2)t—, and the heterocylic is linked in the (ii) or (iii) position to the X group as above defined. In particular representative example of R11 represents heterocyclic group having the following structure:







A representative example of R13 is hydrogen.


In one embodiment, R18 is —C(O)OR29, —C(O)NHR29, —C(O)CH2NO2, or —C(O)CH2SO2R7. A representative example of R18 is —C(O)OR29. On preferred R18 is —C(O)OR29 wherein R29 is hydrogen.


Representative examples of R19 include C1-4alkyl, in particular ethyl, and C3-7 cycloalkyl, in particular cyclopropyl.


In one embodiment, R20 is halogen, in particular chlorine or fluorine, or methoxy.


In one embodiment, R30 is hydrogen or C1-4alkyl. A representative example of R30 is hydrogen or methyl.


A representative example of R31 is hydrogen, or R31 and R19 are linked to form the bivalent radical —(CH2)t—.


A representative example of X is —U(CH2)vB(CH2)vD-, —U(CH2)vB—R33—, —U(CH2)vB(CH2)vD(CH2)vE- or —U(CH2)vB(CH2)vD-R33—. In one embodiment, a preferred example of X is —U(CH2)vB(CH2)vD- or —U(CH2)vB—R33— wherein U is —O—, B is —O—, and D is —O— or —N—.


Representative examples of U, B, D and E include the divalent radicals —N(R30)—, —O—, S(O)z—, —N(R30)C(O)— and —C(O)N(R30)—.


A representative example of R33 is C1-8 alkyl or or C2-6 alkynyl.


A representative example of d is 1 to 4, for example 2 to 4. A particularly preferred example of d is 2 or 3.


A representative example of v is 1 to 4, for example 2 or 3. A particularly preferred example is when each v independently is 2.


In one particularly preferred embodiment, X is —O(CH2)2O(CH2)2O—, —O(CH2)2O(CH2)2N—, or —U(CH2)vO—R33— where R33 is C1-8 alkyl or or C2-6 alkynyl.


In one embodiment, j is 0 to 2. A representative example of j is 0 or 1.


A representative example of t is 3.


A representative example of z is 0.


Particularly preferred compounds of the invention are:


4″-O-2-{2-[2-(3-Carboxy-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6-ylamino)-ethoxy]-ethoxy}-ethylcarbamoyl-6-O-methyl erythromacin A,


4″-O-2-{2-[2-(3-Carboxy-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6-ylamino)-ethoxy]-ethoxy}-ethylcarbamoyl-azithromycin,


4″-(2-{2-[3-(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-prop-2-ynyloxy]-ethoxy}-ethylcarbamoyl)-azithromycin,


4−-(2-{2-[3-(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-propoxy]-ethoxy}-ethylcarbamoyl)-azithromycin,


4″-(2-{2-[3-(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-propoxy]-ethoxy}-ethylcarbamoyl)-6-O-methyl-erythromycin A,


or pharmaceutically acceptable derivatives thereof.


Further particularly preferred compounds of the invention are:


4″-(2-{2-[3-(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-prop-2-ynyloxy]-ethoxy}-ethylcarbamoyl)-6-O-methyl erythromycin A,


4″-O-(2-{2-[2-(3-Carboxy-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6-ylamino)-ethoxy]-ethoxy}-ethylcarbamoyl)-9-ethyloximino-6-O-methyl-erythromycin A,


4″-O-(2-{2-[2-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinolin-7-ylamino)-ethoxy]-ethoxy}-ethylcarbamoyl)-9-ethyloximino-6-O-methyl-erythromycin A,


4″-O-(3-{2-[2-(3-Carboxy-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6-ylamino)-ethoxy]-ethoxy}-propylcarbamoyl)-azithromycin,


4″-O-(2-{[2-({2-[(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-7-quinolinyl)oxy]ethyl}oxy)ethyl]oxy}ethylcarbamoyl)-6-O-methyl-erythromycin A,


4″-O-(2-{[2-({2-[(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-7-quinolinyl)oxy]ethyl}oxy)ethyl]oxy}ethylcarbamoyl)-azithromycin,


4″-O-(2-{[2-({2-[(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-6-quinolinyl)oxy]ethyl}oxy)ethyl]oxy}ethylcarbamoyl)-6-O-methyl-erythromycin A,


4″-O-(2-{[2-({2-[(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-6-quinolinyl)oxy]ethyl}oxy)ethyl]oxy}ethylcarbamoyl)-azithromycin,


4″-O-(2-{[2-({2-[3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-6-quinolinyl]ethyl}oxy)ethyl]oxy}ethylcarbamoyl)-azithromycin


or pharmaceutically acceptable derivatives thereof.


Compounds according to the invention also exhibit a broad spectrum of antimicrobial activity, in particular antibacterial activity, against a wide range of clinical pathogenic microorganisms. Using a standard microtiter broth serial dilution test, compounds of the invention have been found to exhibit useful levels of activity against a wide range of pathogenic microorganisms. In particular, the compounds of the invention may be active against strains of Staphylococcus aureus, Streptopococcus pneumoniae, Moraxella catarrhalis, Streptococcus pyogenes, Haemophilus influenzae, Enterococcus faecalis, Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella pneumophila. The compounds of the invention may also be active against resistant strains, for example erythromycin resistant strains. In particular, the compounds of the invention may be active against erythromycin resistant strains of Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus aureus.


The compounds of the invention may therefore be used for treating a variety of diseases caused by pathogenic microorganisms, in particular bacteria, in human beings and animals. It will be appreciated that reference to treatment includes acute treatment or prophylaxis as well as the alleviation of established symptoms.


Thus, according to another aspect of the present invention we provide a compound of formula (I) or a pharmaceutically acceptable derivative thereof for use in therapy.


According to a further aspect of the invention we provide a compound of formula (I) or a pharmaceutically acceptable derivative thereof for use in the therapy or prophylaxis of systemic or topical microbial infections in a human or animal subject.


According to a further aspect of the invention we provide the use of a compound of formula (I) or a pharmaceutically acceptable derivative thereof in the manufacture of a medicament for use in the treatment or prophylaxis of systemic or topical microbial infections in a human or animal body.


According to a yet further aspect of the invention we provide a method of treatment of the human or non-human animal body to combat microbial infections comprising administration to a body in need of such treatment of an effective amount of a compound of formula (I) or a pharmaceutically acceptable derivative thereof.


While it is possible that, for use in therapy, a compound of the invention may be administered as the raw chemical it is preferable to present the active ingredient as a pharmaceutical formulation e.g. when the agent is in admixture with a suitable pharmaceutical excipient, diluent or carrier selected with regard to the intended route of administration and standard pharmaceutical practice.


Accordingly, in one aspect, the present invention provides a pharmaceutical composition or formulation comprising at least one compound of the invention or a pharmaceutically acceptable derivative thereof in association with a pharmaceutically acceptable excipient, diluent and/or carrier. The excipient, diluent and/or carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.


In another aspect, the invention provides a pharmaceutical composition comprising, as active ingredient, at least one compound of the invention or a pharmaceutically acceptable derivative thereof in association with a pharmaceutically acceptable excipient, diluent and/or carrier for use in therapy, and in particular, in the treatment of human or animal subjects suffering from a condition susceptible to amelioration by an antimicrobial compound.


In another aspect, the invention provides a pharmaceutical composition comprising a therapeutically effective amount of the compounds of the present invention and a pharmaceutically acceptable excipient, diluent and/or carrier (including combinations thereof).


There is further provided by the present invention a process of preparing a pharmaceutical composition, which process comprises mixing at least one compound of the invention or a pharmaceutically acceptable derivative thereof, together with a pharmaceutically acceptable excipient, diluent and/or carrier.


The compounds of the invention may be formulated for administration in any convenient way for use in human or veterinary medicine and the invention therefore includes within its scope pharmaceutical compositions comprising a compound of the invention adapted for use in human or veterinary medicine. Such compositions may be presented for use in a conventional manner with the aid of one or more suitable excipients, diluents and/or carriers. Acceptable excipients, diluents and carriers for therapetic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985). The choice of pharmaceutical excipient, diluent and/or carrier can be selected with regard to the intended route of administration and standard pharmaceutical practice. The pharmaceutical compositions may comprise as—or in addition to—the excipient, diluent and/or carrier any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s).


Preservatives, stabilisers, dyes and even flavouring agents may be provided in the pharmaceutical composition. Examples of preservatives include sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid. Antioxidants and suspending agents may be also used.


For some embodiments, the agents of the present invention may also be used in combination with a cyclodextrin. Cyclodextrins are known to form inclusion and non-inclusion complexes with drug molecules. Formation of a drug-cyclodextrin complex may modify the solubility, dissolution rate, bioavailability and/or stability property of a drug molecule. Drug-cyclodextrin complexes are generally useful for most dosage forms and administration routes. As an alternative to direct complexation with the drug the cyclodextrin may be used as an auxiliary additive, e. g. as a carrier, diluent or solubiliser. Alpha-, beta- and gamma-cyclodextrins are most commonly used and suitable examples are described in WO 91/11172, WO 94/02518 and WO 98/55148.


The compounds of the invention may be milled using known milling procedures such as wet milling to obtain a particle size appropriate for tablet formation and for other formulation types. Finely divided (nanoparticulate) preparations of the compounds of the invention may be prepared by processes known in the art, for example see International Patent Application No. WO 02/00196 (SmithKline Beecham).


The routes for administration (delivery) include, but are not limited to, one or more of: oral (e. g. as a tablet, capsule, or as an ingestable solution), topical, mucosal (e. g. as a nasal spray or aerosol for inhalation), nasal, parenteral (e. g. by an injectable form), gastrointestinal, intraspinal, intraperitoneal, intramuscular, intravenous, intrauterine, intraocular, intradermal, intracranial, intratracheal, intravaginal, intracerebroventricular, intracerebral, subcutaneous, ophthalmic (including intravitreal or intracameral), transdermal, rectal, buccal, epidural and sublingual.


There may be different composition/formulation requirements depending on the different delivery systems. By way of example, the pharmaceutical composition of the present invention may be formulated to be delivered using a mini-pump or by a mucosal route, for example, as a nasal spray or aerosol for inhalation or ingestable solution, or parenterally in which the composition is formulated by an injectable form, for delivery, by, for example, an intravenous, intramuscular or subcutaneous route. Alternatively, the formulation may be designed to be delivered by both routes.


Where the agent is to be delivered mucosally through the gastrointestinal mucosa, it should be able to remain stable during transit though the gastrointestinal tract; for example, it should be resistant to proteolytic degradation, stable at acid pH and resistant to the detergent effects of bile.


Where appropriate, the pharmaceutical compositions can be administered by inhalation, in the form of a suppository or pessary, topically in the form of a lotion, solution, cream, ointment or dusting powder, by use of a skin patch, orally in the form of tablets containing excipients such as starch or lactose, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or colouring agents, or they can be injected parenterally, for example intravenously, intramuscularly or subcutaneously. For parenteral administration, the compositions may be best used in the form of a sterile aqueous solution, which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood. For buccal or sublingual administration the compositions may be administered in the form of tablets or lozenges, which can be formulated in a conventional manner.


It is to be understood that not all of the compounds need be administered by the same route. Likewise, if the composition comprises more than one active component, then those components may be administered by different routes.


The compositions of the invention include those in a form especially formulated for parenteral, oral, buccal, rectal, topical, implant, ophthalmic, nasal or genito-urinary use. For some applications, the agents of the present invention are delivered systemically (such as orally, buccally, sublingually), more preferably orally. Hence, preferably the agent is in a form that is suitable for oral delivery.


If the compound of the present invention is administered parenterally, then examples of such administration include one or more of: intravenously, intraarterially, intraperitoneally, intrathecally, intraventricularly, intraurethrally, intrasternally, intracranially, intramuscularly or subcutaneously administering the agent; and/or by using infusion techniques.


For parenteral administration, the compound is best used in the form of a sterile aqueous solution which may contain other substances, for example, enough salts or glucose to make the solution isotonic with blood. The aqueous solutions should be suitably buffered (preferably to a pH of from 3 to 9), if necessary. The preparation of suitable parenteral formulations under sterile conditions is readily accomplished by standard pharmaceutical techniques well-known to those skilled in the art.


The compounds according to the invention may be formulated for use in human or veterinary medicine by injection (e.g. by intravenous bolus injection or infusion or via intramuscular, subcutaneous or intrathecal routes) and may be presented in unit dose form, in ampoules, or other unit-dose, containers, or in multi-dose containers, if necessary with an added preservative. The compositions for injection may be in the form of suspensions, solutions, or emulsions, in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilising, solubilising and/or dispersing agents. Alternatively the active ingredient may be in sterile powder form for reconstitution with a suitable vehicle, e.g. sterile, pyrogen-free water, before use.


The compounds of the invention can be administered (e. g. orally or topically) in the form of tablets, capsules, ovules, elixirs, solutions or suspensions, which may contain flavouring or colouring agents, for immediate-, delayed-, modified-, sustained-, pulsed-or controlled-release applications.


The compounds of the invention may also be presented for human or veterinary use in a form suitable for oral or buccal administration, for example in the form of solutions, gels, syrups, mouth washes or suspensions, or a dry powder for constitution with water or other suitable vehicle before use, optionally with flavouring and colouring agents. Solid compositions such as tablets, capsules, lozenges, pastilles, pills, boluses, powder, pastes, granules, bullets or premix preparations may also be used. Solid and liquid compositions for oral use may be prepared according to methods well known in the art. Such compositions may also contain one or more pharmaceutically acceptable carriers and excipients which may be in solid or liquid form.


The tablets may contain excipients such as nicrocrystalline cellulose, lactose, sodium citrate, calcium carbonate, dibasic calcium phosphate and glycine, disintegrants such as starch (preferably corn, potato or tapioca starch), sodium starch glycollate, croscarmellose sodium and certain complex silicates, and granulation binders such as polyvinylpyrrolidone, hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose (HPC), sucrose, gelatin and acacia.


Additionally, lubricating agents such as magnesium stearate, stearic acid, glyceryl behenate and talc may be included.


Solid compositions of a similar type may also be employed as fillers in gelatin capsules. Preferred excipients in this regard include lactose, starch, a cellulose, milk sugar or high molecular weight polyethylene glycols. For aqueous suspensions and/or elixirs, the agent may be combined with various sweetening or flavouring agents, colouring matter or dyes, with emulsifying and/or suspending agents and with diluents such as water, ethanol, propylene glycol and glycerin, and combinations thereof.


The compounds of the invention may also be administered orally in veterinary medicine in the form of a liquid drench such as a solution, suspension or dispersion of the active ingredient together with a pharmaceutically acceptable carrier or excipient.


The compounds of the invention may also, for example, be formulated as suppositories e.g. containing conventional suppository bases for use in human or veterinary medicine or as pessaries e.g. containing conventional pessary bases.


The compounds according to the invention may be formulated for topical administration, for use in human and veterinary medicine, in the form of ointments, creams, gels, hydrogels, lotions, solutions, shampoos, powders (including spray or dusting powders), pessaries, tampons, sprays, dips, aerosols, drops (e.g. eye ear or nose drops) or pour-ons.


For application topically to the skin, the agent of the present invention can be formulated as a suitable ointment containing the active compound suspended or dissolved in, for example, a mixture with one or more of the following: mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax and water.


Alternatively, it can be formulated as a suitable lotion or cream, suspended or dissolved in, for example, a mixture of one or more of the following: mineral oil, sorbitan monostearate, a polyethylene glycol, liquid paraffin, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.


The compounds may also be dermally or transdermally administered, for example, by use of a skin patch.


For ophthalmic use, the compounds can be formulated as micronised suspensions in isotonic, pH adjusted, sterile saline, or, preferably, as solutions in isotonic, pH adjusted, sterile saline, optionally in combination with a preservative such as a benzylalkonium chloride. Alternatively, they may be formulated in an ointment such as petrolatum.


As indicated, the compound of the present invention can be administered intranasally or by inhalation and is conveniently delivered in the form of a dry powder inhaler or an aerosol spray presentation from a pressurised container, pump, spray or nebuliser with the use of a suitable propellant, e. g. dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, a hydrofluoroalkane such as 1,1,1,2-tetrafluoroethane (HFA 134AT″″) or 1,1,1,2,3,3,3-heptafluoropropane (HFA 227EA), carbon dioxide or other suitable gas. In the case of a pressurised aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount. The pressurised container, pump, spray or nebuliser may contain a solution or suspension of the active compound, e. g. using a mixture of ethanol and the propellant as the solvent, which may additionally contain a lubricant, e. g. sorbitan trioleate.


Capsules and cartridges (made, for example, from gelatin) for use in an inhaler or insufflator may be formulated to contain a powder mix of the compound and a suitable powder base such as lactose or starch.


For topical administration by inhalation the compounds according to the invention may be delivered for use in human or veterinary medicine via a nebuliser.


The compounds of the invention may also be used in combination with other therapeutic agents. The invention thus provides, in a further aspect, a combination comprising a compound of the invention or a pharmaceutically acceptable derivative thereof together with a further therapeutic agent.


When a compound of the invention or a pharmaceutically acceptable derivative thereof is used in combination with a second therapeutic agent active against the same disease state the dose of each compound may differ from that when the compound is used alone. Appropriate doses will be readily appreciated by those skilled in the art. It will be appreciated that the amount of a compound of the invention required for use in treatment will vary with the nature of the condition being treated and the age and the condition of the patient and will be ultimately at the discretion of the attendant physician or veterinarian. The compounds of the present invention may for example be used for topical administration with other active ingredients such as corticosteroids or antifungals as appropriate.


The combinations referred to above may conveniently be presented for use in the form of a pharmaceutical formulation and thus pharmaceutical formulations comprising a combination as defined above together with a pharmaceutically acceptable carrier or excipient comprise a further aspect of the invention. The individual components of such combinations may be administered either sequentially or simultaneously in separate or combined pharmaceutical formulations by any convenient route.


When administration is sequential, either the compound of the invention or the second therapeutic agent may be administered first. When administration is simultaneous, the combination may be administered either in the same or different pharmaceutical composition.


When combined in the same formulation it will be appreciated that the two compounds must be stable and compatible with each other and the other components of the formulation. When formulated separately they may be provided in any convenient formulation, conveniently in such manner as are known for such compounds in the art.


The compositions may contain from 0.01-99% of the active material. For topical administration, for example, the composition will generally contain from 0.01-10%, more preferably 0.01-1% of the active material.


Typically, a physician will determine the actual dosage which will be most suitable for an individual subject. The specific dose level and frequency of dosage for any particular individual may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the individual undergoing therapy.


For oral and parenteral administration to humans, the daily dosage level of the agent may be in single or divided doses.


For systemic administration the daily dose as employed for adult human treatment it will range from 2-100 mg/kg body weight, preferably 5-60mg/kg body weight, which may be administered in 1 to 4 daily doses, for example, depending on the route of administration and the condition of the patient. When the composition comprises dosage units, each unit will preferably contain 200 mg to 1 g of active ingredient. The duration of treatment will be dictated by the rate of response rather than by arbitrary numbers of days.


Compounds of general formula (I) and salts thereof may be prepared by the general methods outlined hereinafter, said methods constituting a further aspect of the invention. In the following description, the groups R1 to R33, A, B, D, E, X, Y, U, W, a, b, d, e, f, g, h, i, j, k, m, n, p, q, r, s, t, v and z have the meaning defined for the compounds of formula (1) unless otherwise stated.


The group XaR11a is XR11 as defined for formula (I) or a group convertible to XR11. Conversion of a group XaR11a to a XR11 group typically arises if a protecting group is needed during the reactions described below. A comprehensive discussion of the ways in which such groups may be protected and methods for cleaving the resulting protected derivatives is given by for example T. W. Greene and P. G. M Wuts in Protective Groups in Organic Synthesis 2nd ed., John Wiley & Son, Inc 1991 and by P. J. Kocienski in Protecting Groups, Georg Thieme Verlag 1994 which are incorporated herein by reference. Examples of suitable amino protecting groups include acyl type protecting groups (e.g. formyl, trifluoroacetyl and acetyl), aromatic urethane type protecting groups (e.g. benzyloxycarbonyl (Cbz) and substituted Cbz, and 9-fluorenylmethoxycarbonyl (Fmoc)), aliphatic urethane protecting groups (e.g. t-butyloxycarbonyl (Boc), isopropyloxycarbonyl and cyclohexyloxycarbonyl) and alkyl type protecting groups (e.g. benzyl, trityl and chlorotrityl). Examples of suitable oxygen protecting groups may include for example alkyl silyl groups, such as trimethylsilyl or tert-butyldimethylsilyl; alkyl ethers such as tetrahydropyranyl or tert-butyl; or esters such as acetate. Hydroxy groups may be protected by reaction of for example acetic anhydride, benzoic anhydride or a trialkylsilyl chloride in an aprotic solvent. Examples of aprotic solvents are dichloromethane, N,N-dimethylformamide, dimethylsulfoxide, tetrahydrofuran and the like.


Compounds of formula (1) may be prepared by reaction of a suitable activated compound of formula (II) wherein R is optionally a hydroxy protecting group and R34 is an activating group such as imidazolyl or halogen, with a suitable protected derivative of the amine (III), followed where necessary by subsequent removal of the hydroxy protecting group R2 and conversion of the XaR11a to a XR11 group.







The reaction is preferably carried out in a suitable aprotic solvent such as N,N-dimethylformamide in the presence of an organic base such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and like.


In a further embodiment of the invention, compounds of formula (I) wherein d is an integer from 1 to 5 and U is a group selected from —N(R30)—, —O— and —S— may be prepared by reaction of compounds of formula (IV),







wherein d is an integer from 1 to 5 and L is a suitable leaving group, with XaR11a (V) in which U is a group selected from —N(R30)—, —O— and —S—. The reaction is preferably carried out in a solvent such as a halohydrocarbon (e.g. dichloromethane), an ether (e.g. tetrahydrofuran or dimethoxyethane), acetonitrile or ethyl acetate and the like, dimethylsulfoxide, N,N-dimethylformamide or 1-methyl-pyrrolidone and in the presence of a base, followed, if desired, by removal of the hydroxyl protecting group R2 and conversion of the XaR11a group to XR11. Examples of the bases which may be used include organic bases such as diisopropylethylamine, triethylamine and 1,8-diazabicyclo[5.4.0]undec-7-ene, and inorganic bases such as potassium hydroxide, cesium hydroxide, tetraalkylammonium hydroxide, sodium hydride, potassium hydride and the like. Suitable leaving groups for this reaction include halide (e.g. chloride, bromide or iodide) or a sulfonyloxy group (e.g. tosyloxy or methanesulfonyloxy).


Compounds of formula (IV) may be prepared by reaction of a compound of formula (II), wherein R2 is a hydroxyl protecting group, with a suitable protected derivative of the amine HN(R7)(CH2)dL (VI), wherein L is a suitable leaving group as above defined. The reaction is carried out using the conditions described above for the reaction of a compound of formula (II) with amine (III).


Compound of formula R11aL (VII), wherein L is a suitable leaving group such as chlorine, fluorine or bromine, and R31 and R19 are linked to form the bivalent radical —O(CH2)2—, —(CH2)t—; —NR7(CH2)a—, —OCH2NR7—, —SCH2NR7—, —CH2NR7CH2—, —CH2OCH2—, —CH2SCH2— or —(CH2)aNR7— are known compounds or they may be prepared by analogous methods to those known in the art. Thus, they can be prepared according to the procedures described in US 2002/0025959 A1.


Compounds of formula (III) wherein X is —U(CH2)vB(CH2)vD-, U(CH2)vB—R33—, or X is a group selected from:







may be prepared by reaction of XaR11a (V), wherein X has the meaning defined above with acrylonitrile followed by reduction of the nitrile to the amine.


Compound of formula R11aL (VII), wherein L is a suitable leaving group such as chlorine, fluorine or bromine, and R32 and R19 are linked to form the bivalent radical selected from the group —S(CH2)b—, —N(R7)(CH2)b— or —O(CH2)b— are known compounds or they may be prepared by analogous methods to those known in the art. Thus, they can be prepared according to the procedures described in Arch. Pharm. Pharm. Med. Chem. 330, 63 (1997).


Compounds of formula (I) may be converted into other compounds of formula (I). Thus compounds of formula (I) wherein B is —S(O)z— and z is 1 or 2 may be prepared by oxidation of the corresponding compound of formula (I) wherein z is 0. The oxidation is preferably carried out using a peracid, e.g. peroxybenzoic acid, followed by treatment with a phosphine, such as triphenylphosphine. The reaction is suitably carried out in an organic solvent such as methylene chloride. Compounds of formula (I) wherein U or B is —N(R30)— and R30 is C1-4alkyl can be prepared from compounds wherein R30 is hydrogen by reductive alkylation.


Compounds of formula (II) wherein A is —C(O)NH— or —NHC(O)—, R4 or R5 are hydroxy, R3 is hydrogen and R6 is hydrogen are known compounds or they may be prepared by analogous methods to those known in the art. Thus they can be prepared according to the procedures described in EP 507595 and EP 503932.


Compounds of formula (II), wherein A is —C(O)NH— or —NHC(O)—, R4 or R5 are hydroxy and R3 is C1-4alkyl or C3-6alkenyl optionally substituted by 9 to 10 membered fused bicyclic heteroaryl and R6 is hydrogen are known compounds or they may be prepared by analogous methods to those known in the art. Thus they can be prepared according to the procedures described in WO 9951616 and WO 0063223.


Compounds of formula (II), wherein A is —C(O)NH—, R4 and R5 taken together with the intervening atoms form a cyclic group having the following structure:







R3 is C1-4alkyl, or C3-6alkenyl optionally substituted by 9 to 10 membered fused bicyclic heteroaryl and R6 is hydrogen are known compounds or they may be prepared by analogous methods to those known in the art. Thus they can be prepared according to the procedures described in U.S. Pat. No. 6,262,030.


Compounds of formula (II), wherein A is —C(O)—, —C(O)NH—, —NHC(O)—, —N(R7)—CH2—, —CH2—N(R7)— or —CH(NR8R9)—, R4 or R5 are hydroxy or R4 and R5 taken together with the intervening atoms form a cyclic group having the following structure:







wherein Y is a bivalent radical selected from —O— and —N(R13)—, and R3 is C1-4alkyl, or C3-6alkenyl optionally substituted by 9 to 10 membered fused bicyclic heteroaryl are known compounds or they may be prepared by analogous methods to those known in the art. Thus they can be prepared according to the procedures described in EP 307177, EP 248279, WO 0078773, WO 9742204.


Compounds of formula (II), wherein A is —C(O)NH—, —NHC(O)—, —N(CH3)—CH2— or —CH2—N(CH3)—, R4 or R5 are hydroxy or R4 and R5 taken together with the intervening atoms form a cyclic group having the following structure:







and R6 is hydrogen are known compounds or they may be prepared by analogous methods to those known in the art. Thus they can be prepared according to the procedures described in EP 508699, J. Chem. Res. Synop (1988 pages 152-153), and U.S. Pat. No. 6,262,030 herein incorporated by reference in their entireties.


Compounds of formula (II), wherein A is —C(═NR10)—, R4 or R5 are hydroxy or R4 and R5 taken together with the intervening atoms form a cyclic group having the following structure:







and R6 is hydrogen, are known compounds or they may be prepared by analogous methods to those known in the art. Thus they can be prepared according to the procedures described in EP 284203.


Compounds of formula (II), wherein A is —C(O)—, R4 and R5 taken together with the intervening atoms form a cyclic group having the following structure:







R6 is hydrogen and R3 is C1-4 alkyl may be prepared by decarboxylation of a compound of formula (XI), wherein R35 is hydroxy protecting group followed, if required, by removal of the protecting group R2 or R35.







The decarboxylation may be carried out in the presence of a lithium salt such as lithium chloride, preferably in an organic solvent such as dimethylsulfoxide.


Compounds of formula (II), wherein A is —C(O)—, R4 and R5 taken together with the intervening atoms form a cyclic group having the following structure:







and R3 is C1-4 alkyl may be prepared according to the procedures described in WO 02/50091 and WO 02/50092.


The following abbreviations are used in the text: DBU for 1,8-diazabicyclo[5.4.0]undec-7-ene, DCM for dichloromethane, DMAP for 4-dimethylaminopyridine, DMF for N,N-dimethylformamide, DMSO for dimethyl sulfoxide, EDC.HCl for 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, EtOAc for ethyl acetate, KOtBu for potassium tert-butoxide, MeOH for methanol, TEA for triethylamine, 1,1′-CDI for 1,1′-carbonyldiimidazole and THF for tetrahydrofuran.


In order that the invention may be more fully understood the following examples are given by way of illustration only.


EXAMPLES

2-O-Acetyl-6-O methyl-erythromycin A may be prepared by the procedure described by W. R. Baker et al. in J. Org. Chem. 1988, 53, 2340, 2-O-acetyl-azithromycin and 2-O-acetyl-azithromycin-11,12-carbonate may be prepared by the procedures described by S. Djokic et al. in J. Chem. Res. (S) 1988, 152 and 11-O-methyl-azithromycin may be prepared by the procedure described by G. Kobrehel et al. in J. Antibiotics 45; 1992, 527-532. 9(E)-Ethoxyimino-erythromycin A may be prepared by the procedures described in EP 1 167 375. 1,4-Dihydro-6-iodo-4-oxo-quinoline-3-carboxylic acid ethyl ester may be prepared by the procedure described in WO 99/32450. All references contained in this application are herein incorporated by reference in their entireties.


Intermediate 1
7-{2-[2-(2-Carboxy-ethoxy)-ethoxy]-ethylamino}-1,2,3,6-tetrahydro-6-oxo-[1,3]-oxazino-[3,2a]-quinoline-5-carboxylic acid






a) 3-(2,4-Dichlorophenyl)-3-oxo-propionic acid ethyl ester

Synthesis of Intermediate 1a was done by standard procedure starting from 2,4-dichloroacetophenone, diethylcarbonate (25 eq ) and NaH (2 eq ) at 80° C. for 60 minutes.


MS (ES+) m/z: [MH]+=262


b) 2-[Bis(methylthio)methylene]-3-(2,4-dichlorophenyl)-3-oxo-propionic acid ethyl ester

To a mixture of Intermediate 1a (15.7 g) and Cs2CO3 (2.5 eq) in THF (230 mL) was added CS2 (4.6 eq) with stirring at −10° C. After 5 minutes CH3I (2.5 eq) was added in one portion and reaction was stirred at room temperature overnight. The reaction was diluted with ether (50 mL) and filtered. Filtrate was concentrated in vacuo.


MS (ES+) m/z: [MH]+=366


c) 7-Chloro-1,2,3,6-tetrahydro-6-oxo-[1,3]oxazino[3,2a]quinoline-5-carboxylic acid ethyl ester

A mixture of Intermediate 1b (18.08 g), 3-amino-1-propanole (1.2 eq) and K2CO3 (2.4 eq) in dioxane (500 mL) was stirred at room temperature for 1 hour and refluxed overnight. The reaction mixture was filtrated and filtrate was concentrated to dryness under reduced pressure. The crude product was precipitated from MeOH affording the title compound (2.6 g).


MS (ES+) m/z: [MH]+=308


d) 7-Chloro-1,2,3,6-tetrahydro-6-oxo-[1,3]oxazino[3,2a]quinoline-5-carboxylic acid

To a solution of Intermediate 1c (1.4 g) in THF (15 mL) solution of NaOH (4.6 eq) in water (15 mL) was added and the reaction mixture was stirred at 80° C. overnight. THF was evaporated, HCl (0.6 M) was added to reach pH value about 4 and extracted with 3×10 mL of DCM. The organic layers were washed with brine, dried over Na2SO4, filtered and DCM was evaporated under reduced pressure affording the title compound (1.16 g).


MS (ES+) m/z: [MH]+=280


e) 7-[2-(2-Hydroxy-ethoxy)-ethylamino]-1,2,3,6-tetrahydro-6-oxo-[1,3]oxazino[3,2a]-quinoline-5-carboxylic acid

Intermediate 1d (1 g) was dilluted in 5 mL of methyl-pyrrolidone, 1.8 mL (5 eq) of 2-(2-aminoetoxy)ethanol was added and stirred at 110° C. for 24 hours. To the reaction mixture was added EtOAc, pH adjusted to 6 and extracted with 3×15 mL of H2O The organic layers were washed with brine, dried over Na2SO4, filtered and EtOAc was evaporated under reduced pressure affording the title compound (600 mg).


MS (ES+) m/z: [MH]+=349


f) 7-2-[2-(3-Amino-propoxy)-ethoxyl-ethylamino}-1,2,3,6-tetrahydro-6-oxo-[1,31-oxazino-[3,2a]-quinoline-5-carboxylic acid

Intermediate 1e (600 mg) was diluted in 7.4 mL of C3H3N, 0.515 mL of DBU was added and the mixture stirred at 80° C. for 24 hours. C3H3N was evaporated under reduced pressure, residue dissolved in EtOAc, pH was adjusted to 3 and extracted with 3×15 mL of H2O. EtOAc was evaporated under reduced pressure affording 650 mg of cyano derivative. According to the procedure for Intermediate 7, cyano group was reduced to amino group affording the title compound.


MS (ES+) m/z: [MH]+=406


Intermediate 2
1-Cyclopropyl-6-fluoro-7-chloro-4-oxo-1,4-dihydro-quinoline-3-(2-nitroacetyl)






A mixture of 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (1 g, 3.55 mmol) and of 1,1-carbonyldiimidazole (2.88 g, 17.75 mmol) in 15 ml CCl3 was heated to reflux over the night. the mixture was cooled and the solvent was removed under reduced pressure. To the resudue a small amount of diethyl ether was added and the resulting solid was collected by filtration and washed with diethyl ether to give a imidazolide intermediate in a quantitative yield.


To the mixture of NaH (0.26 g, 0.0108 mol, 60% disperse oil) and of nitromethane (0.58 m,l 0.0108 mol) in 20 ml of anhydrous THF a solution of imidazolide intermediate (0.9 g, 0.289 mmol) in 20 ml of anhydrous THF was added dropwise and heated to reflux for 18 h. The mixture was cooled and 20 ml of H2O was slowly added and neutralized by HCl, and then extracted with CH2Cl2. The organic layer was washed with H2O and brine, dried by anhydrous Na2SO4 and evaporated. The product was precipitated and filtrated off yielding 0.4 g of title compound. (90.6% pure compound according to LC-MS).


MS (ES+) m/z: [MH]+=325.1


Intermediate 3
1-Cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-quinoline-3-(2-nitroacetyl)






A mixture of 1-cyclopropyl-6,7-difluoro-8-methoxy4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (1 g, 3.38 mmol) and 1,1-carbonyldiimidazole (2.19 g, 13.54 mmol) in 15 ml CCl3 was heated to reflux over the night. The mixture was cooled and the solvent was removed under reduced pressure. To the resudue a small amount of diethyl ether was added and the resulting solid was collected by filtration and washed with diethyl ether to give a imidazolide intermediate in a quantitative yield.


To the mixture of NaH (0.28 g, 0.0116 mmol, 60% disperse oil) and nitromethane (0.62 ml, 0.01158 mol) in 20 ml of anhydrous THF a solution of imidazolide intermediate (1 g, 2.89 mmol) in 20 ml of anhydrous THF was added dropwise and heated to reflux for 18 h. The mixture was cooled and 20 ml of H2O was slowly added and neutralized by HCl, and then extracted with CH2Cl2. The organic layer was washed with H2O and brine, dried by anhydrous Na2SO4 and evaporated. The product was precipitated and filtrated off yielding 0.56 g of title product. (93.46% pure compound according to LC-MS).


MS (ES+) m/z: [MH]+=339.1


Intermediate 4
7-[2-(2-Cyano-ethoxy)-ethylamino]-1-cyclopropyl-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-quinoline-3-(2-nitroacetyl)






To a solution of Intermediate 3 (250 mg) in DMSO (15 ml) ethanolamine (0.425 ml) was added and the reaction mixture was stirred at 90° C. for 1.5 hours. pH Value of mixture was adjusted to 4.5 and product was precipitated. After filtration, 190 mg of 1-cyclopropyl-6-fluoro-7-(2-hydroxy-ethylamino)-8-methoxy-4-oxo-1,4-dihydro-quinoline-3-(2-nitroacetyl) was obtained. A solution of 1-cyclopropyl-6-fluoro-7-(2-hydroxy-ethylamino)-8-methoxy-4-oxo-1,4-dihydro-quinoline-3-(2-nitroacetyl) (180 mg) in acrylonitrile and DBU was stirred at 80° C. under N2 for 5 hours. CH3CN was evaporated under reduced pressure yielding oily title product.


Intermediate 5
6-[3-Piperazin-1-yl)-propyl]-1-ethyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid ethyl ester






a) 4-Prop-2-ynyl-piperazine-1-carboxylic acid tert-butyl ester

To the degassed solution of piperazine-1-carboxylic acid tert-butyl ester (1.0 g, 5.37 mmol) in acetonitrile (10 ml) were added Na2CO3 (1.708 g, 16.11 mmol ) and mixture was stirred for 20 min. The suspension was heated to 50° C. and 3-bromo-propyne (0.9 mL, 8.055 mmol) was added. The solvent was evaporated and the residue was extracted with Et-Ac and water (2×50 mL). Organic layer was washed with NaCl and NaHCO3 (2×50 ml). The organic layer was dried over K2CO3 and evaporated in vacuum yielding (0.70 g) oil title intermediate.


MS (ES+) m/z: [MH]+=225.1


b) 6-[3-(4-tert-Butoxycarbinyl-piperazin-1-yl)-prop-1-ynyl]-1-ethyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid ethyl ester

1-Ethyl-6-iodo-4-oxo-1,4-dihydr-quinoline-3-carboxylic acid ethyl ester (0.7 g, 3.125 mmol), copper (I) iodide (42.47 mg, 0.223 mmol) and triethylamine (10,809 mL, 78.05 mmol) were suspended in dry acetonitrile (20 ml). The suspension was heated to 50° C. and N2 bubbled through. After 20 min, dichlorobis (triphenylposphine) palladium (II) (46.96 mg, 0.0669 mmol) and Intermediate 5a (0.7 g 3.125 mmol) were added and dark red suspension was heated at 50° C. for 3 hours. The solvent was evaporated and the residue was extracted with EtOAc and water (2×50 mL). Organic layer was washed with NaCl and NaHCO3 (2×50 mL), dried over K2CO3 and evaporated in vacuum yielding (1.24 g) oil red title-product.


MS (ES+) m/z: [MH]+=468.3


c) 6-[3-Piperazin-1-yl)-propyl]-1-ethyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid ethyl ester

To the solution of Intermediate 5b (1.2 g, 2.57 mmol) in DCM (1.2 mL) was added CF3COOH (1.2 mL) and mixture was stirred at room temp. for 48 h. To the reaction mixture was added water (pH=1.2) and layers were separated (pH=9.6). The organic layer was dried over K2CO3 and evaporated in vacuum yielding (1.7 g) oil red title product.


MS (ES+) m/z: [MH]+=368.3


Intermediate 6
1-Cyclopropyl-6-fluoro-7-[2-(2-hydroxy-ethoxy)-ethylamino]-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (A) and 7-Chloro-1-cyclopropyl-6-[2-(2-hydroxy-ethoxy)-ethyl amino]-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (B)






To a mixture of 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (10 g, 0.035 mol) in 1-methyl-2-pirolidone (70 mL) 2-(2-amino-ethoxy)-ethanol (18 mL, 0.18 mol, 5 eq.) was added, the reaction mixture was stirred at 110° C. for 24 hours. Then was diluted with water (200 mL) and CH2Cl2 (60 mL) and pH was adjusted to 10. The aqueous layer was extracted with CH2Cl2 (5×50 mL) and then pH was adjusted to 6.7. After 10 minutes first product precipitated. Filtrated off yielding 2.7 g of crude 7-chloro-1-cyclopropyl-6-[2-(2-hydroxy-ethoxy)-ethylamino]-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid. (according to LC-MS 100% pure Intermediate 6B) Over night second product precipitated. Filtrated off yielding 7.7 g of yellow product (according to LC-MS a mixture of Intermediate 6A and Intermediate 6B in a 1:1 ratio).


Intermediate 7
6-{2-[2-(3-Amino-propoxy)ethoxyl]ethylamino}-1-cyclopropyl-7-chloro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (A) and 6-{2-[2-(3-Amino-propoxy)ethoxy]ethylamino}-1-cyclopropyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (B)






Intermediate 6B (2 g, 5.45 mmol) was dilluted in 25 mL of acrylonitrile, DBU (2.0 mL) was added and stirred at 80° C. for 24 hours. Acrylonitrile was evaporated under reduced presure, residue was dissolved in DCM, pH was adjusted to pH 3 and extracted with 3×20 mL H2O. The organic layers were washed with brine, dried over Na2SO4, filtered and DCM was evaporated under reduced pressure affording 1.9 g of 6-{2-[2-(2-cyano-ethoxy)ethoxy]ethylamino}-1-cyclopropyl-7-chloro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid.


High pressure reactor was filled with a mixture of 6-{2-[2-(2-cyano-ethoxy)ethoxy]ethylamino}-1-cyclopropyl-7-chloro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (1.9 g), 70 mL of acetic acid (96%) and 0.63 g of PtO2 by pressure of H2 at 5.0 bar and stirred for 24 hours. The reaction mixture was filtrated through celite and the acetic acid was evaporated in vacuum. Crude product was precipitated from CH2Cl2-diisopropyl ether yielding of tittle compounds. LC-MS showed a mixture of chloro and dechloro derivatives.


Intermediate 8
1-Cyclopropyl-6-fluoro-7-chloro-4-oxo-1,4-dihydro-3-[(2-methanesulfonyl)acetyl]-quinoline






A mixture of 1-cyclopropyl-6-fluoro-7-chloro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (2 g, 0.0071 mol) and 1,1′-carbonyldiimidazole (5.76 g, 0.035 mol) in 15 mL CHCl3 was heated to reflux for 17 hours. The solvent was removed by reduced pressure. To the residue ether was added and then stirred at room temperature for 30 min. The solid was filtered and dried affording 1.64 g of 3-imidazolide derivative. Imidazolide derivative (1 g, 0.003 mol) was dissolved in 40 mL acetonitrile, then methanesulphonylacetone (2 g, 0.015 mol) and K2CO3 were added and the mixture was heated to reflux for 21 hours. The solvent was removed under reduced pressure and 120 mL of H2O was added. The solution was acidified by 2N HCl (pH˜3) and extracted with EtOAc. The organic layer was dried and concentrated to give a crude solid product. The crude product was purified by column chromatography (DCM-EtOH—NH4OH=90:9:1.5) to give pure product 1-cyclopropyl-6-fluoro-7-chloro-4-oxo-1,4-dihydro-3-[(2-methanesulfonyl)acetyl]-quinoline.


MS (ES+) m/z: [MH]+=358.1



1H NMR (500 MHz, DMSO) 88.58, 8.37, 8.13, 5.22, 3.78, 3.13, 1.31 and 1.16


Intermediate 9
9-(2-hydroxy-ethylamino)-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid






a) 9-Bromo-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid ethyl ester

To the solution of 1-Oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid ethyl ester (7.5 g, 29 mmol) in glacial acetic acid (120 mL) was added bromine (1.6 ml, 32 mmol). The mixture was stirred over night at room temperature, and new portion of bromine (1.6 mL, 32 mmol) was added. After 24 h, reaction mixture was diluted with 100 mL of H2O and pH was adjusted to 2.9. Precipitate was filtered and dried. The crude product was precipitated from CH2Cl2/Diisoprophylether and dried in vacuum drier yielding 13.07 g of the crude title product.


MS (ES+) m/z: [MH]+=338.0


b) 9-(Benzhydrylidene-amino)-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid ethyl ester

Tris(dibenzylideneacetone)dipalladium chloroform complex (50 mg, 0.05 mmol), rac-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (100 mg, 0.16 mmol), Intermediate 9a (3 g, 8.9 mmol) and benzophenone imine (1.2 ml) were diluted in THF (45 ml). The air of atmosphere was replaced with N2, and Cs2CO3 (2.5 g) was added. The mixture was stirred under reflux. Another two portions of Tris(dibenzylideneacetone)dipalladium chloroform complex (50 mg, 0.05 mmol), rac-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (100 mg, 0.16 mmol), benzophenone imine (1.2 ml) and Cs2CO3 (2.5 g) was added every 2.5 h. The mixture was stirred under reflux over night and then cooled to room temperature and filtered. HPLC/MS indicated the presents of product 9b.


MS (ES+) m/z: [MH]+=437.3


c) 9-Amino-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline2-carboxylic acid ethyl ester

To the mixture of Intermediate 9b 5% HCl was added dropwise until appearance of precipitate. Precipitate was filtered and dried in vacuum drier yielding 2 g of the crude title product.


MS (ES+) m/z: [MH]+273.2



13C-NMR (125 MHz, DMSO) δ: 13.81, 19.90, 25.57, 51.37, 59.24, 108.39, 115.66, 124.99, 128.06, 129.06, 129.91, 130.51, 133.95, 147.54, 163.98, 171.63.


d) 9-(2-Benzyloxy-ethylamino)-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid ethyl ester

To the solution of Intermediate 9c (200 mg, 0.73 mmol) in MeOH (75 mL), benzyloxyacetaldehide (110 mg, 0.73 mmol), NaBH3CN (137 mg, 2.2 mmol) and AcOH (250 μl) was added. Reaction mixture was stirred for 20 minutes and evaporated in vacuum. Oil product was purified by column chromatography in system CH2Cl2-(MeOH—NH4OH=9:1.5)=9:(1.5) yielding 159 mg of the title product.


MS (ES+) m/z: [MH]+=407.2


e) 9-(2-hydroxy-ethylamino)-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid

To the solution of Intermediate 9d (159 mg, 0.39 mmol) in EtOH (41.6 mL) cyclohexene (12.8 mL) and 10% Pd/C (243 mg) were added. The mixture was stirred under refiux over night, filtered through celite and evaporated in vacuum yielding 80 mg of the title product.


Intermediate 10
6-2-[2-(2-Cyano-ethoxy)-ethoxy]-ethoxy}-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolone-3-carboxylic acid






Mixture of 50 mL diethylene glycol and 50 mL DMSO was prepared and heated on 70° C. Into mixture 8 g of KO-t-Bu portionwise was added. Then, 5 g of fluoro-chloro quinolonic acid (17.8 mmol) was added portionwise. The temperature was increased to 105° C. After 5 hours, the 25 mL of H2O was added and the mixture was extracted with 2×20 mL of DCM. Water layer was adjusted to pH 4. The obtained precipitate was filtered off and dried under reduced pressure affording 500 mg of 7-chloro-1-cyclopropyl-6-[2-(2-hydroxy-ethoxy)-ethoxy]-4-oxo-1,4-dihydro-quinolone-3-carboxylic acid.


7-Chloro-1-cyclopropyl-6-[2-(2-hydroxy-ethoxy)-ethoxy]-4-oxo-1,4-dihydro-quinolone-3-carboxylic acid (500 mg) was dissolved in 12.5 mL of acrylonitrile, then 1 mL of DBU was added and the mixture stirred for 24 hours at 80° C. Acrylonitrile was evaporated under reduced pressure, residue was dissolved in 300 mL of 2-propanol and the pH of the mixture was adjusted to pH 3.5. The precipitate was obtained after 12 hours, filtered off and washed with water (pH 3.5).


Intermediate 11
1-Oxo-9-(3-piperazin-1-yl)-prop-1-ynyl)-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid ethyl ester






a) 4-Prop-2-ynyl-piperazine1-carboxylic acid tert-butyl ester

To the degassed solution of piperazine-1-carboxylic acid tert-butyl ester (0.5 g, 2.69 mmol) in acetonitrile (5 mL) was added Na2CO3 (0.854 g, 8.05 mmol ) and mixture was stirred for 20 min. The suspension was heated to 50° C. and 3-bromo-propyne (448.65 μl, 4.03 mmol) was added. The solvent was evaporated and the residue was extracted with EtOAc and water. Organic layer was washed with NaCl and NaHCO3 (2×20 ml), dried over K2CO3 and evaporated in vacuum yielding 0.45 g of the title product as yellowish oil.


MS (ES+) m/z: [MH]+=247.2


b) 9-[3-(4-tert-Butoxycarbinyl-piperazin-1-yl)-prop-1-ynyl]-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid ethyl ester

Intermediate 13 (0.2 g, 0.524 mmol), copper (I) iodide (9.98 mg, 0.0524 mmol) and triethylamine (2.54 ml, 18.34 mmol) were suspended in dry acetonitrile (10 mL). The suspension was heated to 50° C. and N2 bubbled through. After 20 min, dichlorobis (triphenylposphine) palladium (II) (11.03 mg, 0.0157 mmol) and Intermediate 11a (0.164 g 0.733 mmol) were added and dark red suspension was heated for 3 hours at 50° C. The solvent was evaporated and the residue was extracted with EtOAc and water (2×20 ml). Organic layer was washed with NaCl and NaHCO3 (2×20 ml), dried over K2CO3 and evaporated in vacuum yielding 0.34 g of the title product as red oil.


c) 1-Oxo-9-(3-piperazin-1-yl)-prop-1-ynyl)-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid ethyl ester

To the solution of Intermediate 11b (0.34 g, 0.71 mmol) in DCM (3.4 mL) was added CF3COOH (3.4 mL) and mixture was stirred for 48 hours at room temp. To the reaction mixture was added water (pH 1.2) and layers were separated (pH 9.6). The organic layer was dried over K2CO3 and evaporated in vacuum yielding 0.22 g of the title product as red oil.


MS (ES+) m/z: [MH]+=380.2


Intermediate 12
10-Amino-1-Oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid ethyl ester






a) 10-Nitro-1-Oxo-6.7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid ethyl ester

1-Oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid ethyl ester (1.0 g) was placed in round bottom flask and to that, mixture of H2SO4/HNO3 (1:1) was added and stirred for 3 hours at 0° C. The reaction mixture was poured on ice and precipitate was filtered off affording 900 mg of title product (LCMS: 95%).


b) 10-Amino-1-Oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid ethyl ester

Intermediate 12a (900 mg)was diluted in 35 nL of acetic acid and to this mixture 800 mg of 10% Pd/C was added and stirred for 15 h at room temperature and at 30 Ba. The reaction mixture was filtered to remove catalyst and then acetic acid was evaporated under reduced pressure affording 700 mg of the title product. (LC/S: 95%).


Intermediate 13
9-Iodo-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid ethyl ester






To a 0° C. cooled trifluoromethansulfonic acid (3 mL, 33.31 mmol) 1-Oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid ethyl ester (1.53 g, 5.95 mmol) was added and to that solution N-Iodosuccinimide (1.6 g, 714 mmol) was added. The mixture was allowed to warm from 0° C. to room temperature while stirring. Reaction mixture was poured in ice and precipitate was filtered off affording 1 g of the title product (LC/MS: 57%).


Intermediate 14
6-Amino-1-ethyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid ethyl ester






a) 6-(Benzhydrylidene-amino)-1-ethyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid ethyl ester

A Pyrex tube was charged with sodium tert-butoxide (1.4 mmol), Pd2(dba)3 (0.00125 mmol), and BINAP (0.00375 mmol). The Pyrex tube was fitted with a septum and after the air atmosphere was replaced with argon, toluene (4 mL), 1-ethyl-6-iodo-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid ethyl ester (1.0 mmol), and benzophenone imine (1.2 mmol) were added by syringe. The reaction was sealed and heated to 80° C. with stirring until starting material was consumed as judged by GC analysis. The reaction mixture was cooled to room temperature, diluted with ether (40 mL), filtered, and concentrated. The crude reaction mixture was then recrystallized from MeOH to furnish the desired product in 90% yield.


b) 6-Amino-1-ethyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid ethyl ester






Method A: Transamination with Hydroxylamine


To a solution of the imine adduct in MeOH (0.1 M) at RT was added NaOAc (2.4 eq) and hydroxylamine hydrochloride (1.8 eq). Oxime formation was usually complete in 15 to 30 minutes. The solution was then partitioned between 0.1 M NaOH and CH2Cl2. The organic layer was dried over anhydrous Na2SO4 and concentrated in vacuo. The product was purified by chromatography on silica gel.


Method B: Hydrogenolysis


A solution of the imine adduct, ammonium formate (15 eq) and 5% Pd/C (10 mol %) were heated to 60° C. in MeOH (0.2 M in imine). After 2 hours reduction was usually complete. The solution was cooled to room temperature and diluted with CH2Cl2 (5×volume of MeOH) to be passed through a plug of celite. The organic solution was washed with 0.1 M NaOH, dried over anhydrous Na2SO4 and concentrated in vacuo. The product was purified by chromatography on silica gel.


Method C: Acidic Hydrolysis


To a solution of the imine adduct in TBF (0.3 M) was added aqueous 2.0 M HCl (added 5% by volume of THF). After 5-20 minutes hydrolysis was complete and the reaction mixture was partitioned between 0.5 M HCl and 2:1 hexane/EtOAc. The aqueous layer was separated and made alkaline. The product aniline was extracted with CH2Cl2, dried over anhydrous Na2SO4 and concentrated in vacuo.


Intermediate 15
[2-(2-Hydroxy-ethoxy)-ethyl]-carbamic acid tert-butyl ester






To the solution of dioxane (40 mL), H2O (20 mL) and NaOH (20 mL; 1 M) was added 2-(2-aminoetoxy) ethanol. The reaction mixture was cooled to 0° C. and di-t-Bu dicarbonate (4.8 g) was added. The mixture was stirred for 30 min at 0° C., and then the stirring was continued for 2 hours at room temperature. In next 3 hours two portion of di-t-Bu dicarbonate (2×0.22 g) were added. The mixture was stirred over night at room temperature and then concentrated (20-30 mL). EtOAc (60 mL) was added to the solution and pH was adjusted to 2.5. Aqueous layer was extracted with EtOAc (3×20 mL). Organic layers was washed with H2O (3×30 mL), dried over K2CO3 and evaporated in vacuum to give 3.7 g of the title product as oil.


Intermediate 16
7-Chloro-1-cyclopropyl-6-(2-hydroxy-ethoxy)-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (A) and 1-Cyclopropyl-6-fluoro-7-(2-hydroxy-ethoxy)-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (B)

To a mixture of DMSO (5 mL) and ethyleneglycol (6 mL), KOtBu (1.6 g, 14.23 mmol) was added portionwise over 10 min, and then heated to 90° C. To the mixture, 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (1.0 g) was added portionwise over 20 min, the temperature was increased to 105° C. and the mixture was stirred for 6 h. Water (30 mL) was added to the reaction solution and the pH of the solution was adjusted to pH=5. The resulting solution was left in the refrigerator overnight. The precipitate obtained was filtered, washed with cold water, and dried affording a 2:1 mixture of Intermediate 16A and Intermediate 16B (1.0 g).


Part of the crude product (700 mg) was dissolved in EtOH (15 mL) by heating to the reflux. The resulting solution was cooled to 30° C. and a first precipitation occurred. The precipitate was filtered, washed with cold EtOH and dried under reduced pressure. Intermediate 16A (204 mg) was obtained as a white solid;



1H-NMR (500 MHz, DMSO-d6) δ: 15.06 (s, 111), 8.71 (s, 1H), 8.40 (s, 1H), 7.86 (s, 1H), 4.97 (t, 1H), 4.25 (t, 2H), 3.87 (m, 1H), 3.82 (q, 2H), 1.32 (m, 2H), 1.20 (m, 2H); 13C-NMR (75 MHz, DMSO-d6) δ: 176.61, 165.67, 152.47, 147.54, 135.34, 129.48, 124.95, 120.02, 106.90, 106.66, 71.22, 59.15, 35.99, 7.46;


Intermediate 17
7-Chloro-6-[2-(2-cyano-ethoxy)-ethoxy]-1-cyclopropyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid

To a suspension of Intermediate 16A (2 g) in acrylonitrile (40 mL) was added DBU (2.3 mL). The reaction mixture was stirred at 80° C. for 24 h. The acrylonitrile was evaporated under reduced pressure. Isopropanol (30 mL) was added to the residue and the pH of the solution was adjusted to pH=5 by adding 2M HCl, during which the product precipitated. The precipitate was filtered, washed with water, and dried affording Intermediate 17 (1.7 g) as a white solid.


MS (ES+) m/z: [MH]+=377.0



1H-NMR (500 MHz, DMSO-d6) δ: 8.68 (s, 1H), 8.38 (s, 1H), 7.84 (s, 1H), 4.38 (t, 2H), 3.91 (t, 2H), 3.86 (m, 1H), 3.75 (t, 2H), 2.79 (t, 2H), 1.32 (m, 2H), 1.20 (m, 2H); 13C-NMR (75 MHz, DMSO-d6) δ: 176.63, 165.65, 152.18, 147.61, 135.50, 129.44, 124.97, 120.04, 119.11, 106.96, 106.80, 69.02, 68.30, 65.49, 35.99, 18.06, 7.46;


Intermediate 18
6-{2-[2-(2-amino-ethoxy)-ethoxy]-ethylamino}-1-cyclopropyl-7-chloro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (A) and 7-{2-[2-(2-amino-ethoxy)-ethoxy]-ethylamino}-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (B)






A mixture of 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (5 g, 0.018 mol), 2,2′-(ethylenedioxy)bis-(ethylamine) (26 mL, 0.18 mol, 10 eq.) in 1-methyl-2-pyrrolidone was heated at 110° C. for 24 hours. Reaction mixture was diluted with water (70 mL) pH was adjusted to 11 and extracted with CH2Cl2 (9×40 mL). Water layer was then acified to pH 6.8 with H2SO4, extracted with CH2Cl2 (50 mL) and evaporated. 2-Propanol was added (200 mL) and stirred at 82° C. for 30 minutes. The reaction mixture was then filtered and 2-propanol was evaporated in vacuum yielding 8 g of oily product, according to LC-MS 50% of chloro derivative (A) and 30% of fluoro derivative. Product was purified by column chromatography (eluent CH2Cl2-2-propanol=1:1) yielding pure chloro derivative (A).


MS (ES+) m/z: [MN]+=409.9 (A)


MS (ES+) m/z: [MH]+=393.4 (B)


Intermediate 19
3-(2-tert-butoxycarbonylethyl)-imidazolidine-1-carboxylic acid tert-butyl ester






a) 3-[2-(tert-butoxycarbonylmethyl-amino)-ethylamino]-propionic acid tert-butyl ester

To the solution of (2-amino-ethylamino)-acetic acid tert-butyl ester (1.0 mL, 6.32 mmol) in i-PrOH (50 mL) was added acrylic acid tert-butyl ester (309.1 μL, 2.11 mmol). The suspension was heated for 48 hours at 60° C. The solvent was evaporated and product was purificated by column chromatography (DCM-MeOH—NH3=90:3:0.5) yielded the title product as colorless oil (0.45 mg).


MS (ES+) m/z: [MH]+=289.2


b) 3-(2-tert-butoxycarbonylethyl)-imidazolidine-1-carboxylic acid tert-butyl ester

To the solution of Intermediate 19a (0.45 mg, 1.56 mmol) in chloroform (20 mL) were added HCOOH (0.218 mL, 5.78 mmol) and HCHO (0.24 mL, 8.69 mmol) and stirred at room temperature for 2 hours. To the reaction mixture was added water (pH 1.3) and layers were separated (pH 2.5). The organic layer was dried over K2CO3 and evaporated in vacuum yielding 034 g of oil colorless product.


MS (ES+) m/z: [M]+=301.2


Intermediate 20
6-[2-(2-Amino-ethoxy)-ethylamino]-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (A) and 7-[2-(2-Amino-ethoxy)-ethylamino]-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinoline 3-carboxylic acid (B)






To a solution of 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (0.55 g, 1.95 mmol) in 1-methyl-2-pyrrolidone (40 mL) bis-(2-aminoethyl)-ether dihydrochloride (2.1 g, 11.9 mmol, 6 eq.) and DBU (3.49 mL, 23.4 mmol, 12 eq.) added and the reaction mixture was stirred at 110° C. for 18 hours. The reaction mixture was then diluted with water (70 mL), pH was adjusted to 11 and extracted with CH2Cl2 (9×40 mL). Water layer was then acified with H2SO4 to pH 6.8, extracted with 50 mL of CH2Cl2 and then evaporated in vacuum. Crude product was diluted in 2-propanol (60 mL), stirred at 82° C. for 20 minutes and filtrated. Precipitate was pure salt (Na2SO4). 2-Propanol was evaporated in vacuum and product was purified by column chromatography (fraction, eluent: CH2Cl2-MeOH—NH3—CH3CN=4:4:2:1) yielding 0.5 g of title compounds as a mixture of chloro and fluoro derivatives in ratio 3:1


MS (ES+) m/z: [MM]+=365.8 (A) (75%)


MS (ES+) m/z: [MH]+=349.4 (B) (25%)


Intermediate 21
2′-O-Acetyl-4″-O-(1-imidazolyl-carbonyl)-azithromycin






To the solution of 5 g of 2′OAc-azithromycin in dry toluene (75 mL), 2 mL of Et3N and 1.12 g 1.1′ CDI (1.1 eq.) were added. Reaction mixture was stirred at room temperature for 24 hours and then another portion of 1.12 g 1.1′ CDI was added and the reaction mixture was stirred at room temperature for another 24 hours. Reaction mixture was extracted with saturated aqueous NaHCO3 (2×35 mL) and the aqueous layer was washed with toluene (2×20 mL). The combined organic layers were dried over K2CO3 and evaporated in vacuum giving 5.6 g of the title compound.


Intermediate 22
2′-O-Acetyl-4″-O-(1-imidazolyl-carbonyl)-6-O-methyl-erythromycin A






To a solution of 2′-O-acetyl-6-O-methyl-eryhromycin A (4 g) in dry toluene (70 mL) K2CO3 (2.09 g) and 1.1′ CDI were added and the reaction mixture was stirred at room temperature for 24 hours in N2 atmosphere. The reaction mixture was washed with aqueous NaHCO3 (2×35 mL) and water layer was extracted with toluene (2×20 mL). The combined organic layers were dried over K2CO3 and evaporateded in vacuum yielding 5.1 g of the title compound


Intermediate 23
6-[3-(2-Amino-ethoxy)-prop-1-ynyl]-1-ethyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid trifluoroacetate salt






a) (2-Hydroxy-ethyl)-carbamic acid tert-butyl ester

To a stirring solution of ethanolamine (1.96 mL, 32.7 mmol) in dioxane (40 mL) and water (20 mL) saturated solution of NaHCO3 (20 mL) was added. The solution was cooled in ice bath and di-t-butyl dicarbonate (8.0 g) was added portionwise. After 1 hour TLC showed no starting material. EtOAc (50 mL) and water (20 mL) were added, organic layer was separated and evaporated yielding 4.20 g of the oily title compound.


b) (2-Prop-2-ynyloxy-ethyl)-carbamic acid tert-butyl ester

To a stirring solution of Intermediate 23a (1.16 g) in TMF (30 mL) at room temperature t-butylammonium iodide (0.15 g), sodium iodide (0.15 g) and propargyl bromide (80% in toluene, 1.20 mL) were added. KOH (0.40 g) was added portionwise during 30 minutes and the suspension was stirred at room temperature for 24 hours. The solvent was evaporated, EtOAc (30 mL) and water (30 mL) were added, organic layer was washed with 10% Na2S2O5 solution and evaporated yielding 1.21 g of the title compound.


c) 6-[3-(2-tert-Butoxycarbonylamino-ethoxy)-prop-1-ynyl]-1-ethyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid

CuI (55 mg) and triethylamine (14.06 mL) were added into a solution of 1-ethyl-6-iodo-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (1.0 g) in MeCN (20 mL). The mixture has been stirring at room temperature for 20 minutes. Pd(PPh3)2Cl2 (61 mg) and Intermediate 23b (0.70 g) were added and the mixture has been stirring at 50° C. for 4 hours. The solvents were evaporated, EtOAc (30 mL) and water (30 mL) were added, organic layer was washed with water (30 mL) and brine (30 ml) and evaporated yielding 1.0 g of the title compound.


MS (ES+) m/z: [MH]+=415.24


d) 6-[3-(2-Amino-ethoxy)-prop-1-ynyl]-1-ethyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid trifluoroacetate salt

Trifluoroacetic acid (0.386 mL) was added into solution of Intermediate 23c (0.42 g) in MeCN (5 mL) at room temperature. The solution has been stirring at room temperature for 48 hours and evaporated yielding 0.80 g of the title compound.


Intermediate 24
6-{3-[2-(2-tert.-buthoxycarbonylamino-ethoxy)-ethoxyl-prop-1-ynyl]-1-ethyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid






1-Ethyl-6-iodo-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid (2 g, 5.8 mmol) was diluted in MeCN (25 mL). CuI (0.11 g, 0.58 mmol, 0.1 eq.) and Et3N (28.2 ml, 0.2 mol, 35 eq.) were added and the reaction mixture was stirred at room temperature for 30 minutes and then heated to 50° C. Bis-(triphenylphosphin)-palladium(II)-chloride (0.123 g, 0.17 mmol, 0.03 eq.) and [2-(2-prop-2-ynyloxy)-ethyl]-carbamic acid tert.-butyl ester (1.7 g, 6.9 mmol, 1.2 eq.) were added and the reaction mixture was stirred for another 4 hours at 50° C. Catalyst was filtered and acetonitrile evaporated in vacuum. Product was diluted in EtOAc (50 mL) and extracted with water (50 mL). Water layer was extracted with 2×100 mL of EtOAc. Combined organic layers were washed with brine (100 mL) dried over K2CO3 and evaporated in vacuum yielding 3 g of oily title compound.


MS (ES+) m/z: [MH]+=459


Intermediate 25
6-{3-[2-(2-amino-ethoxy)-ethoxy]-prop-1-ynyl}-1-ethyl-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid






Intermediate 24 (3 g, 6.5 mmol) was diluted in CH2Cl2 (50 mL). CF3COOH (3 mL, 39 mmol, 6 eq.) was added and the reaction mixture was stirred at room temperature for 24 hours. Solvent was evaporated in vacuum yielding 4 g of oily product, which was used without purification.


MS (ES+) m/z: [MH]+=359


Intermediate 26
2′-O-Acetyl-4″-O-(1-imidazolyl-carbonyl)-9-ethyloximino-6-O-methyl-erythromycin A






Using the procedure for Intermediate 22 the title compound was prepared (900 mg) starting from 2′-O-acetyl-9-ethyloximino-6-O-methyl-erythromycin A (900 mg, 1.08 mmol) and 1,1′-CDI (193 mg, 1.1 equiv.)


Intermediate 27
4″-O-(1-Imidazolyl-carbonyl)-6-O-methyl-erythromycin A

6-O-Methyl-erythromycin A (30 g, 40.1 mmol) in tetrahydrofuran (100 mL) was treated portionwise with 1,1′-carbonyldiimidazole (16 g, 97 mmol) with ice bath cooling. After 1 h the cooling bath was removed. After a futher 48 h, tetrahydrofuran (100 mL) and water (200 mL) were added causing slow precipitation of the title compound, which was collected by filtration and dried to give the title compound (24.7 g). Extraction of the mother liquors with ether gave a further 8.5 g of material which was precipitated from tetrahydrofuran solution with water to give a further portion of the title compound (3.92 g, total 28.64 g); ESMS m/z 842.7 [M+H]+.


Intermediate 28
6-[2-({2-[(2-Aminoethyl)oxy]ethyl}oxy)ethyl]-1-ethyl-4-oxo-1,4-dihydro-3-quinolinecarboxylic acid hydrochloride






a) 1-Ethyl-6-[2-({2-[(2-hydroxyethyl)oxy]ethyl}oxy)ethyl]-4-oxo-1,4-dihydro-3-quinolinecarboxylic acid ethyl ester

To a stirred mixture of 1,4-dihydro-6-iodo-4-oxo-quinoline-3-carboxylic acid ethyl ester (8.55 g, 23.0 mmol), triethylamine (4.82 mL, 34.6 mmol), and 2-{[2-(ethenyloxy)ethyl]oxy}ethanol (6.29 mL, 46.1 mmol) in toluene (25 mL) was added 10% palladium on charcoal (0.245 g) and the mixture heated to 100° C. After 3 h the solvent was removed in vacuo to give a residue which was taken up in ethyl acetate and filtered through celite. The filtrate was washed with an aqueous solution of sodium dihydrogen phosphate, dried (Na2SO4), filtered, and concentrated in vacuo to give a mixture containing 1-ethyl-6-[2-({2-[(2-hydroxyethyl)oxy]ethyl}oxy)ethenyl]-4-oxo-1,4-dihydro-3-quinolinecarboxylic acid ethyl ester as a brown oil (12.13 g).


MS (ES+) m/z: [MH]+=376.3


A solution of this material in ethyl acetate (50 mL), and dichloromethane (100 mL) was hydrogenated over 10% palladium on charcoal (2 g) at atmospheric pressure, with additional 10% Pd/C (5 g) added during the course of the reaction. After 72 h the catalyst was removed by filtration, and the filtrate concentrated in vacuo to give a residue which was purified by flash chromatography (silica gel, 0-7% methanolic ammonia [2M] in dichloromethane) to give a mixture (4.21 g) which was taken up dichloromethane (140 mL) and hydrogenated over 10% Pd/C (2 g) at atmospheric pressure for 14 h. Further 10% Pd/C (2.6 g) was then added and the mixture hydrogenated at 45 p.s.i. for 29 h. The mixture was then filtered and concentrated in vacuo to give a residue which was purified by flash chromatography (silica gel, 0-6% methanolic ammonia [2M] in dichloromethane) to give a mixture which was taken up in ethyl acetate, washed with an aqueous solution of sodium dihydrogen phosphate, dried (Na2SO4), filtered, and concentrated in vacuo to give the title compound as a yellow/brown oil (2.15 g).


MS (ES+) m/z: [MH]+=378.2.


b) 6-(10,10-Dioxido-3,6,9-trioxa-10-thiaundec-1-yl)-1-ethyl-4-oxo-1,4-dihydro-3-quinolinecarboxylic acid ethyl ester

A solution of Intermediate 28a (1.58 g, 4.17 mmol) in dichloromethane (30 mL) at 0° C. was treated with triethylamine (0.99 mL, 7.10 mmol), followed by methanesulfonyl chloride (0.42 mL, 5.43 mmol), and the mixture stirred for 2 h. Saturated sodium hydrogen carbonate solution (20 mL) was then added and the organic solvent removed in vacuo. The aqueous mixture was adjusted to pH 11 by the addition of an aqueous solution of sodium carbonate, then extracted with ethyl acetate. The organic layers were combined, dried (Na2SO4), filtered, and concentrated in vacuo to give the title compound as a pale yellow gum (2.04 g).


MS (ES+) m/z: [MH]+=456.3.


c) 6-[2-({2-[(2-Azidoethyl)oxy]ethyl}oxy)ethyl]-1-ethyl-4-oxo-1,4-dihydro-3-quinolinecarboxylic acid ethyl ester

A solution of Intermediate 28b (1.90 g, 4.17 mmol) in dichloromethane (20 mL) was treated with 1,1,3,3-tetramethylguanidinium azide (1.95 g, 12.3 mmol) and stirred at room temperature for 21 h, then at reflux for 27 h. Additional 1,1,3,3-tetramethylguanidinium azide (0.30 g, 1.90 mmol) was added, and the mixture heated at reflux for a further 8 h. The mixture was concentrated in vacuo to give a residue which was taken up in ethyl acetate, washed with water, dried (Na2SO4), filtered, and concentrated in vacuo to give a residue which was purified by flash chromatography (silica gel, 0-6% methanolic ammonia [2M] in dichloromethane) to give the title compound as a colourless gum (1.49 g).


MS (ES+) m/z: [MH]+=403.3.


d) 6-[2-({2-[(2-Azidoethyl)oxy]ethyl}oxy)ethyl]-1-ethyl-4-oxo-1,4-dihydro-3-quinolinecarboxylic acid

A solution of Intermediate 28c (1.47 g, 3.64 mmol) in 1,4-dioxane (20 mL) was treated with 2 N aqueous sodium hydroxide (3.64 mL). After 20 h the mixture was concentrated in vacuo to give a residue which was taken up in water, and treated with excess solid carbon dioxide. The resulting precipitate was removed by filtration and dried in vacuo to give the title compound as a cream solid (1.09 g).


MS (ES+) m/z: [MH]+=375.2.


e) 6-[2-({2-[(2-Aminoethyl)oxy]ethyl}oxy)ethyl]-1-ethyl-4-oxo-1,4-dihydro-3-quinolinecarboxylic acid hydrochloride

A solution of Intermediate 28d (1.07 g, 2.87 mmol) in tetrahydrofuran (30 mL) was treated with triphenylphosphine (1.50 g, 5.73 mmol) and stirred for 20 min. Water (2 mL) was added and stirring continued for 21 h. The solvent was then removed in vacuo to give a residue which was taken up in hydrochloric acid (2 N) and washed with ethyl acetate. The aqueous solution was concentrated in vacuo to give a residue which was taken up in water and the solution lyophilised to give the title compound as a cream solid (0.63 g).


MS (ES+) m/z: [MH]+=349.3.


Intermediate 29
6-{[2-[(2-[(2-aminoethyl}oxy]ethyl}oxy)ethyl]oxy}-1-ethyl-4-oxo-1,4-dihydro-3-quinolinecarboxylic acid formate






a) Ethyl 4-oxo-6-[(phenylmethyl)oxy]-1,4-dihydro-3-quinolinecarboxylate

p-Benzyloxy aniline hydrochloride (25 g) was shaken with 1M NaOH (120 mL) and diethyl ether (200 mL). The organic layer was washed with brine, dried (MgSO4) and evaporated to a solid (21.3 g). This material was heated with ethoxymethylene malonate (27.9 g) at 130° C. for 1.5 h using a Dean and Stark condenser. Dowtherm (100 mL) was added and the mixture heated to 250° C. using a Dean and Stark condenser for 70 min. The mixture was cooled and treated with petroleum ether (bp 60-80° C.) to precipitate a brown solid. This was slurried in dichloromethane, the pale yellow solid was filtered and dried to give the title compound (11.06 g).



1H-NMR (400 Mz, DMSO-d6) δ: 1.28 (3H, t, J=7.2 Hz), 4.21 (2H, q, J=7.2 Hz), 5.21 (2H, s), 7.3 (1H, m), 7.4 (3H, m), 7.4 (2H, m), 7.59 (1H, d, J=8.8 Hz), 7.66 (1H, d, J=2.8 Hz), 8.49 (1H, s) and 12.3 (1H, br).


b) Ethyl 1-ethyl-4-oxo-6-[(phenylmethyl)oxy]-1,4-dihydro-3-quinolinecarboxylate

Intermediate 29a (11.0 g) and potassium carbonate (7.14 g) in DMF (100 mL) was treated with ethyl iodide (10.88 mL). The mixture was stirred under argon and heated to 60° C. After 2.5 h the mixture was cooled and filtered. The filtrate was evaporated to low volume and ethyl acetate added. The insoluble solid was washed with water then dissolved in dichloromethane (200 mL) and washed with more water. After drying (MgSO4) and evaporation the title compound was obtained as a yellow solid, 9.0 g. The ethyl acetate soluble material was purified by chromatography (silica gel, 0-40% ethyl acetate in petroleum ether [bp 40-60° C.]) to give a further 2.5 g of the title compound.



1H-NMR (400 MHz, CDCl3) δ: 1.43 (3H, t, J=7.0 Hz), 1.54 (3H, t, J=7.2 Hz), 4.25 (2H, q, J=7.2 Hz), 4.41 (2H, q, J=7.0 Hz), 5.19 (2H, s), 7.4 (7H, m), 8.08 (1H, d, J=2.8 Hz) and 8.46 (1H, s).


c) Ethyl 1-ethyl-4-oxo-6-hydroxy-1,4-dihydro-3-quinolinecarboxylate

Intermediate 29b (10.0 g) suspended in ethanol (500 mL) was hydrogenated over 10% palladium on charcoal (2.5 g of 50% aqueous paste) for 16 h. The resultant mixture was filtered and the insoluble material extracted with 4:1 dichloromethane /methanol (2×250 mL). The combined filtrates were evaporated to dryness and slurried in dichloromethane to give the title compound as a white solid (4.9 g).



1H-NMR (400 MHz, CDCl3+CD3OD) δ: 1.41 (3H, t, J=7.1 Hz), 1.56 (3H, t, J=7.2 Hz), 4.4 (4H, m), 7.31 (1H, dd, J=2.9, 9.1 Hz), 7.57 (1H, d, J=9.1 Hz), 7.81 (1H, d, J=2.9 Hz) and 8.58 (1H, s).


d) Ethyl 1-ethyl-6-{[2-({2-[(2-hydroxyethyl)oxy]ethyl}oxy)ethyl]oxy}-4-oxo-1,4-dihydro-quinoline-3-carboxylate

A stirred solution of Intermediate 29c (1.00 g, 3.8 mmol), triethylene glycol (2.55 mL, 19.1 mmol), and triphenylphosphine (1.30 g, 5.0 mmol) in tetrahydrofuran (20 mL) was cooled in an ice-bath under argon. Diisopropyl azodicarboxylate (0.98 mL, 5.0 mmol) was added and the mixture allowed to warm to room temperature. Additional triphenylphosphine (0.70 g, 2.7 mmol) and diisopropyl azodicarboxylate (0.5 mL, 2.5 mmol) were added after 19 h and again after 23 h. Stirring was continued for a further 1.5 h then the mixture concentrated in vacuo to give a residue which was purified by flash chromatography (silica gel, 0-8% methanol in dichloromethane). The resulting residue was further purified by flash chromatography (silica gel, 0-20% methanol in ethyl acetate) to give the title compound as a pale yellow oil (0.57 g).


MS (ES+) m/z: [MH]+=394.1.


e) 1-Ethyl-6-[2-({2-[(2-Aminoethyl)oxy]ethyl}oxy)ethyl]-4-oxo-1,4-dihydro-3-quinoline carboxylic acid formate

A stirred solution of Intermediate 29d (0.91 g, 2.31 mmol) in dichloromethane (20 mL) at 0° C. was treated with triethylamine (0.62 mL, 4.48 mmol), followed by methanesulfonyl chloride (0.23 mL, 3.01 mmol). After 1 h 1,1,3,3-tetramethylguanidinium azide (1.08 g, 6.84 mmol) was added and the mixture stirred at room temperature for 1 h. The mixture was heated at reflux for 115 h during which time additional 1,1,3,3-tetramethylguanidinium azide (0.52 g, 3.27 mmol) was added. The mixture was then concentrated in vacuo to give a residue which was taken up in ethyl acetate, washed with water, dried (Na2SO4), filtered, and concentrated in vacuo to give a residue which was purified by flash chromatography (silica gel, 0-7% methanol in dichloromethane) to give a mixture of ethyl 1-ethyl-6-{[2-({2-[(2-chloroethyl)oxy]ethyl}oxy)ethyl]oxy}-4-oxo-1,4-dihydro-quinoline-3-carboxylate and ethyl 1-ethyl-6-{[2-({2-[(2-azidoethyl)oxy]ethyl}oxy)ethyl]oxy}-4-oxo-1,4-dihydro-quinoline-3-carboxylate as a yellow oil (0.80 g).


MS (ES+) m/z: [MH]+=419.2.


A solution of this material (0.78 g) in 1,4-dioxane (20 mL) was treated with 2 N aqueous sodium hydroxide (2.80 mL). After 22 h the mixture was concentrated in vacuo to give a residue which was taken up in water and washed with diethyl ether. The aqueous solution was then treated with excess solid carbon dioxide and the resulting precipitate removed by filtration and dried in vacuo to give a mixture of 1-ethyl-6-{[2-({2-[(2-chloroethyl)oxy]ethyl}oxy)ethyl]oxy}-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid and 1-ethyl-6-{[2-({2-[(2-azidoethyl)oxy]ethyl}oxy)ethyl]oxy}-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid as a white solid (0.540 g).


MS (ES+) m/z: [MH]+=391.2.


A solution of this material (0.271 g) in tetrahydrofuran (12 mL) was treated with triphenylphosphine (0.364 g, 1.39 mmol), followed by water (1 mL) and stirred for 30 min. The mixture was heated to 40° C. for 70 h then water (1 mL) added. After stirring at 40° C. for a further 28 h the solvent was removed in vacuo to give a residue which was suspended in ethyl acetate. The resulting precipitate was removed by filtration and dried in vacuo to give a residue which was purified by preparative reverse phase HPLC (MeCN/H2O/0.1% HCO2H) to give the title compound as a white solid (0.081 g).


MS (ES+) m/z: [MH]+=365.3.


Intermediate 30
7-{[2-({2-[(2-aminoethyl)oxyl]ethyl}oxy)ethyl]oxy}-1-ethyl-4-oxo-1,4-dihydro-3-quinolinecarboxylic acid






a) Ethyl 7-benzyloxy-1-ethyl-4-oxo-1,4-dihydro-quinoline-3-carboxylate

A mixture of ethyl 7-benzyloxy-4-oxo-1,4-dihydro-quinoline-3-carboxylate (0.97 g, 3 mmol) and potassium carbonate (0.56 g, 4 mmol) in DMF was stirred for 1 h at 50° C. under argon followed by addition of iodoethane (0.9 g, 12 mmol). After stirring at 50° C. for a further 14 h the mixture was cooled and the DMF evaporated. The residue was treated with water and cooled in ice. The resultant crystalline product was filtered and dried under vacuum overnight to yield the title compound as a white powder.



1H-NMR (400 MHz, CDCl3) δ: 1.42 (3H, t, J=7.2 Hz), 1.45 (3H, t, J=7.2 Hz), 4.14 (2H, q, J=7.2 Hz), 4.39 (2H, q, J=7.1 Hz), 5.20 (2H, s), 6.86 (1H, d, J=2.2 Hz), 7.11 (1H, dd, J=9.0 & 2.2 Hz), 7.3-7.5 (5H, m), 8.42 (1H, s), 8.47 (1H, d, J=9.0 Hz).


b) Ethyl 1-ethyl-7-hydroxy-4-oxo-1,4-dihydro-quinoline-3-carboxylate

A solution of Intermediate 30a (1.0 g, 2.8 mmol) in methanol (10 mL) was hydrogenated in the presence of 10% palladium on charcoal (0.05 g) at 1 atmosphere and room temperature. After 14 h another 0.05 g of catalyst was added. After a further 24 h the mixture was filtered and the methanol evaporated to yield the title compound as a pale yellow solid.



1H-NMR (400 MHz, DMSO-d6) δ: 1.28 (3H, t, J=7.1 Hz), 1.36 (3H, t, J=7.1 Hz), 4.20 (2H, q, J=7.1 Hz), 4.28 (2H, q, J=7.1 Hz), 6.92 (1H, dd, J=8.8 & 2.1 Hz), 6.97 (1H, d, J=2.1 Hz), 8.08 (1H, d, J=8.8 Hz), 8.57 (1H, s), 10.52 (1H, br. s).


c) Ethyl 1-ethyl-7-{[2-({2-[(2-hydroxyethyl)oxy]ethyl}oxy)ethyl]oxy}-4-oxo-1,4-dihydro-quinoline-3-carboxylate

A stirred solution of Intermediate 30b (0.97 g, 3.7 mmol), triethylene glycol (2.47 mL, 18.5 mmol), and triphenylphosphine (1.26 g, 4.8 mmol) in tetrahydrofuran (20 mL) was cooled in an ice-bath under argon. Diisopropyl azodicarboxylate (0.90 mL, 4.6 mmol) was added and the mixture allowed to warm to room temperature. After stirring for 22.5 h the mixture was filtered, and the precipitate washed with diethyl ether. The filtrate was concentrated in vacuo to give the title compound as a white solid (0.92 g).


MS (ES+) m/z: [MH]+=394.1.


d) 7-{[2-({2-[(2-aminoethyl)oxy]ethyl}oxy)ethyl]oxy}-1-ethyl-4-oxo-1,4-dihydro-3-quinolinecarboxylic acid

A stirred solution of Intermediate 30c (0.90 g, 2.27 mmol) in dichloromethane (20 mL) at 0° C. was treated with triethylamine (0.54 mL, 3.86 mmol), followed by methanesulfonyl chloride (0.23 mL, 2.96 mmol). After 2.5 h 1,1,3,3-tetramethylguanidinium azide (1.07 g, 6.74 mmol) was added and the mixture stirred at room temperature for 19 h, then at reflux for 72 h. Additional 1,1,3,3-tetramethylguanidinium azide (0.18 g, 1.14 mmol) was added, and the mixture heated at reflux for a further 21 h. The mixture was concentrated in vacuo to give a residue which was taken up in ethyl acetate, washed with water, dried (Na2SO4), filtered, and concentrated in vacuo to give a residue which was purified by flash chromatography (silica gel, 0-8% methanol in dichloromethane) to give a mixture of ethyl 1-ethyl-7-{[2-({2-[(2-chloroethyl)oxy]ethyl}oxy)ethyl]oxy}-4-oxo-1,4-dihydro-quinoline-3-carboxylate and ethyl 1-ethyl-7-{[2-({2-[(2-azidoethyl)oxy]ethyl}oxy)ethyl]oxy}-4-oxo-1,4-dihydro-quinoline-3-carboxylate as a oil (0.772 g).


MS (ES+)m/z: [MH]+=419.1.


A solution of this material (0.732 g) in 1,4-dioxane (20 mL) was treated with 2 N aqueous sodium hydroxide (2.62 mL). After 18 h the mixture was concentrated in vacuo to give a residue which was taken up in water, extracted with diethyl ether, and the aqueous solution then treated with excess solid carbon dioxide. The resulting precipitate was removed by filtration and dried in vacuo to give a mixture of 1-ethyl-7-{[2-({2-[(2-chloroethyl)oxy]ethyl}oxy)ethyl]oxy}-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid and 1-ethyl-7-{[2-({2-[(2-azidoethyl)oxy]ethyl}oxy)ethyl]oxy}-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid as a white solid (0.573 g).


MS (ES+) m/z: [MH]+=391.0.


A solution of this material (0.284 g) in tetrahydrofuran (12 mL) was treated with triphenylphosphine (0.382 g, 1.45 mmol), followed by water (1 mL) and stirred for 4 h. The mixture was then heated to 40° C. and stirring continued for a further 114 h. The solvent was then removed in vacuo to give a residue which was suspended in ethyl acetate. The resulting precipitate was removed by filtration and dried in vacuo to give the title compound as a white solid (0.151 g).


MS (ES+) m/z: [MH]+=365.1.


Example 1
4″-O-2-{2-[2-(3-Carboxy-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6-ylamino)-ethoxy]-ethoxy}-ethylcarbamoyl-6-O-methyl erythromycin A






To a DMF (15 mL, 4 Å) solution of Intermediate 18A (0.2 g, 0.49 mmol) solution of Intermediate 22 (0.86 g, 0.98 mmol, 2 eq.) in DMF (25 mL) was added. Then, DBU (0.22 ml, 1.47 mmol, 3 eq.) was added and the reaction mixture was stirred at 40° C. for 20 hours. The reaction mixture was diluted with water (100 mL) and extracted with EtOAc (3×40 mL). Organic layer was washed with brine (2×30 mL), dried over K2CO3 and evaporated in vacuum. MeOH (70 mL) was added and the reaction mixture was stirred at 55° C. for 24 hours. Evaporation of MeOH yielded product which was purified by column chromatography (eluent: CH2Cl2-MeOH—NH3=90:9:1.5) yielding 0.223 g of the title compound.


Example 2
4″-O-2-{2-[2-(3-Carboxy-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6-ylamino)-ethoxy]-ethoxy}-ethylcarbamoyl-azithromycin






To a DMF (10 mL, 4 Å) solution of Intermediate 18A (0.2 g, 0.49 mmol) solution of Intermediate 21 (0.86 g, 0.98 mmol, 2 eq.) in DMF (10 mL) was added. Then, DBU (0.22 mL, 1.5 mmol, 3 eq.) was added and the reaction mixture was stirred at room temperature for 20 hours. The reaction mixture was diluted with water (60 mL) and extracted with EtOAc (3×30 mL). Organic layer was washed with brine (3×30 mL), dried over K2CO3 and evaporated in vacuum. MeOH (60 mL) was added and the reaction mixture was stirred at 55° C. for 24 hours. Evaporation of MeOH yielded product which was precipitated from EtOAc/n-hexane and then purified by column chromatography (eluent: CH2Cl2-MeOH—NH3=90:9:1.5) yielding 0.151 g of the title product.


MS (ES+) m/z: [MH]+=1183.8


Example 3
4″-(2-{2-[3-(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-prop-2-ynyloxy]-ethoxy}-ethylcarbamoyl)-azithromycin






To a DMF (20 ml, 4 Å) solution of Intermediate 25 (0.2 g, 0.55 mmol) solution of Intermediate 21 (1 g, 1.1 mmol, 2 eq.) was added. Then DBU (0.33 mL, 2.22 mmol, 4 eq.) was added and the reaction mixture was stirred at 40° C. for 24 hours. The reaction mixture was diluted with water (80 mL) and extracted with EtOAc (2×40 mL). Organic layer was washed with water (2×50 mL), brine (2×50 mL), dried over K2CO3 and evaporated in vacuum. MeOH (40 mL) was added and the reaction mixture was stirred at 55° C. for 24 hours. Evaporation of MeOH yielded product which was first twice precipitated from EtOAc/n-hexane and then purified by column chromatography (sp column, 10 g, eluent: CH2Cl2-MeOH—NH3=90:9:1.5 and 90:15:1.5) yielding 0.04 g of the title product.


MS (ES+) n/z: [MH]+=1133.6


Example 4
4,1-(2-{2-[3-(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-propoxy]-ethoxy}-ethylcarbamoyl)-azithromycin






A high pressure reactor was filled with Example 3 (35 mg, 0.031 mmol), EtOH (15 mL) and hydrogenated in the presence of Pd/C (18 mg, 10%) by pressure of H2 at 5 bar for 24 hours. Catalyst was filtered off and product precipitated from CH2Cl2/EtOAc/n-hexane yielding 18 mg of white product.


MS (ES+) m/z: [MH]+=1138.3


Example 5
4″-(2-{2-[3-(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-propoxy]-ethoxy}-ethylcarbamoyl)-6-O-methyl-erythromycin A






a) 4″-(2-{2-[3-(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-prop-2-ynyloxy]-ethoxy}-ethylcarbamoyl)-6-O-methyl erythromycin A






Starting from Intermediate 22 (0.74 g, 0.84 mmol) and Intermediate 25 (0.15 g, 0.42 mmol) the title compound (0.21 g) was obtained according to the method of Example 3.


MS (ES+) m/z: [MH]+=1132.3.


b) 4″-(2-{2-[3-(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-propoxy]-ethoxy}-ethylcarbamoyl)-6-O-methyl-erythromycin A

Starting from Example 5a (0.21 g, 0.185 mmol) according the procedure of Example 4 the title compound (0.20 g) was obtained.


MS (ES+) m/z: [MH]+=1136.4.


Example 6
4″-O-(2-{2-[2-(3-Carboxy-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6-ylamino)-ethoxy]-ethoxy}-ethylcarbamoyl)-9-ethyloximino-6-O-methyl-erythromycin A (A), and 4″-O-(2-{2-[2-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinolin-7-ylamino)-ethoxy]-ethoxy-ethylcarbamoyl)-9-ethyloximino-6-O-methyl-erythromycin A (B)









Using the procedure of Example 1, Intermediate 26 (0.9 g, 0.98 mmol) and mixture of Intermediates 18 A and B (0.2 g, 0.49 mmol) gave the mixture of chloro and fluoro title compounds (270 mg).


HPLC/MS (ES) m/z: [MH]+=1226.4 (Example 6A)

    • [MH]+=1210.5 (Example 6B)


Column chromatography (eluent: DCM-MeOH—NH3=90:5:0.5) yielded 70 mg of the title compound (A).


Example 7
4″-O-(3-{2-[2-(3-Carboxy-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6-ylamino)-ethoxy]-ethoxy}-propylcarbamoyl)-azithromycin









Using the procedure of Example 1, Intermediate 21 (2.1 g, 2.4 mmol) and mixture of Intermediates 7 A and B (0.5 g, 3.6 mmol) gave the mixture of chloro and de-chloro title compounds (75 mg).


Mixture of chloro and de-chloro carbamates (75 mg) was dissolved in MeOH (15 mL), 10% Pd/C (35 mg) was added and the mixture was stirred under H2 at 4 bar for 24 hours. The chatalist was filtered off and the solvent evaporated under reduced pressure. Precipitation from EtOAc:n-hexan yielded the title compound (31 mg).


HPLC/MS (ES) m/z: [MH]+=1164.5.


Example 8
4″-O-(2-{2-[3-(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-propoxy]-ethoxy}-ethylcarbamoyl)-6-O-methyl-erythromycin A acetate salt

To a solution of Example 5b (0.08 g, 0.07 mmol) in EtOAc (0.6 mL) acetic acid (0.005 mL, 0.09 mmol, 1.2 eq.) was added under stirring in an ice bath. The titled product (70 mg) was precipitated by addition of diisopropylether (4 mL) and n-hexane (15 mL).


Example 9
4″-O-(2-{[2-({2-[(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-7-quinolinyl)oxy]ethyl}oxy)ethyl]oxy}ethylcarbamoyl)-6-O-methyl-erythromycin A






A stirred mixture of Intermediate 27 (0.269 g, 0.32 mmol) and Intermediate 30 (0.059 g, 0.16 mmol) in N,N-dimethylformamide (1 mL) was treated with DBU (0.30 mL, 2.0 mmol). The mixture was stirred at room temperature for 18 h then diluted with acetonitrile (0.7 mL) and purified by preparative reverse phase HPLC (MeCN/H2O/0.1% HCO2H) to give a residue which was taken up in water, treated with 0.880 ammonia solution, then lyophilised to give the title compound as a white solid (0.151 g).


MS (ES+) m/z: [MH]+=1138.7.


Example 10
4″-O-(2-{[2-({2-[(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-7-quinolinyl)oxy]ethyl}oxy)ethyl]oxy}ethylcarbamoyl)-azithromycin






A stirred mixture of Intermediate 21 (0.354 g, 0.40 mmol) and Intermediate 30 (0.076 g, 0.21 mmol) in N,N-dimethylformamide (1 mL) was treated with DBU (0.42 mL, 2.8 mmol). The mixture was stirred at room temperature for 3 h then concentrated in vacuo to give a residue which was taken up in water, acidified with solid carbon dioxide, and washed with ethyl acetate. The organic extracts were combined, dried (Na2SO4), filtered and concentrated in vacuo to give a white solid (0.427 g). A portion of this solid (0.248 g) was taken up in methanol (20 mL) and heated at 40° C. for 24 h, then 50° C. for a further 3.5 h. The mixture was concentrated in vacuo to give a residue which was purified by preparative reverse phase HPLC (MeCN/H2O/0.1% HCO2H) to give a residue which was taken up in water, treated with 0.880 ammonia solution, then lyophilised to give the title compound as a white solid (0.154 g).


MS (ES+) m/z: [MH]+=1139.6.


Example 11
4″-O-(2-{[2-({2-[(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-6-quinolinyl)oxy]ethyl}oxy)ethyl]oxy}ethylcarbamoyl)-6-O-methyl-erythromycin A






A stirred mixture of Intermediate 27 (0.211 g, 0.25 mmol) and Intermediate 29 (0.050 g, 0.12 mmol) in N,N-dimethylformamide (1 mL) was treated with DBU (0.26 mL, 1.71 mmol). The mixture was stirred at room temperature for 18 h then concentrated in vacuo to give a residue which was purified by preparative reverse phase HPLC (MeCN/H2O/0.1% HCO2H). The resulting residue was further purified by flash chromatography (silica gel, 0-15% methanolic ammonia in dichloromethane) to give, after lyophilisation from water/0.880 ammonia, the title compound as a white solid (0.065 g).


MS (ES+) m/z: [MH]+=1139.0.


Example 12
4″-O-(2-{[2-({2-[(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-6-quinolinyl)oxy]ethyl}oxy)ethyl]oxy}ethylcarbamoyl)-azithromycin






A stirred mixture of Intermediate 21 (0.283 g, 0.32 mmol) and Intermediate 29 (0.063 g, 0.15 mmol) in N,N-dimethylformamide (1 mL) was treated with DBU (0.32 mL, 2.15 mmol). The mixture was stirred at room temperature for 18 h then concentrated in vacuo to give a residue which was purified by preparative reverse phase HPLC (MeCN/H2O/0.1% HCO2H) to give a residue which was taken up in water, treated with 0.880 ammonia solution, then lyophilised. The resulting residue was taken up in methanol (10 mL) and heated at 40° C. for 5 h, then 50° C. for a further 18 h. The mixture was concentrated in vacuo to give a residue which was purified by preparative reverse phase HPLC (MeCN/H2O/0.1% HCO2H) to give, after lyophilisation from water/0.880 ammonia, the title compound as a pale yellow solid (0.023 g).


MS (ES+) m/z: [MH]+=1140.0.


Example 13
4″-O-(2-{[2-({2-[3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-6-quinolinyl]ethyl}oxy)ethyl]oxy}ethylcarbamoyl)-azithromycin






A stirred mixture of Intermediate 21 (0.301 g, 0.34 mmol) and Intermediate 28 (0.059 g, 0.15 mmol) in N,N-dimethylformamide (1 mL) was treated with DBU (0.25 mL, 1.67 mmol). The mixture was stirred at room temperature for 20 h then taken up in water, acidified with solid carbon dioxide, and washed with ethyl acetate. The organic extracts were combined, dried (Na2SO4), filtered and concentrated in vacuo to give a white solid (0.378 g). A portion of this solid (0.195 g) was taken up in methanol (15 mL) and heated at 50° C. for 22 h. The mixture was concentrated in vacuo to give a residue which was purified by preparative reverse phase HPLC (MeCN/H2O/0.1% HCO2H) to give a residue which was taken up in water, treated with 0.880 ammonia solution, then lyophilised to give the title compound as a white solid (0.141 g).


MS (ES+) m/z: [MH]+=1124.1.


Biological Data

The MIC (μg/ml) of test compounds against various organisms was determined including: S. aureus Smith ATCC 0329, S. pneumoniae 0541, S. pyogenes 0542, E. faecalis ATCC 0004, H. influenzae ATCC 0529, M. catarrhalis ATCC 0324.


Examples 1, 2, 3 and 4 have an MIC≦0.125 μg/ml against S. aureus Smith ATCC 0329, S. pneumoniae 0541, S. pyogenes 0542 and E. faecalis ATCC 0004.


Examples 1 and 2 have an MIC≦2 μg/ml and examples 3 and 4 have an MIC≦0.125 μg/ml against H. influenzae ATCC 0529 and an MIC≦0.5 μg/ml against M. catarrhalis ATCC 0324.


Examples 1 and 2 have an MIC≦0.125 μg/ml against erythromycin resistant strains of Streptococcus pneumoniae and Streptococcus pyogenes.


The application of which this description and claims forms part may be used as a basis for priority in respect of any subsequent application. The claims of such subsequent application may be directed to any feature or combination of features described herein. They may take the form of product, composition, process, or use claims and may include, by way of example and without limitation, the following claims:

Claims
  • 1. A compound of formula (I)
  • 2. A compound according to claim 1 wherein A is —C(O)— or —N(R7)—CH2—.
  • 3. A compound according to claim 1 wherein d is 2 or 3.
  • 4. A compound according to claim 1 wherein v is 2.
  • 5. A compound according to claim 1 wherein R11 is a heterocyclic group of the following formula:
  • 6. (canceled)
  • 7. A compound selected from: 4″-O-2-{2-[2-(3-Carboxy-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6-ylamino)-ethoxy]-ethoxy}-ethylcarbamoyl-6-O-methyl erythromycin A,4″-O-2-{2-[2-(3-Carboxy-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6-ylamino)-ethoxy]-ethoxy}-ethylcarbamoyl-azithromycin,4″-(2-{2-[3-(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-prop-2-ynyloxy]-ethoxy}-ethylcarbamoyl) -azithromycin,4″-(2-{2-[3-(3-Carboxy-1-ethyl4-oxo-1,4-dihydro-quinolin-6-yl)-propoxy]-ethoxy}-ethylcarbamoyl)-azithromycin,4″-(2-{2-[3-(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-propoxy]-ethoxy}-ethylcarbamoyl)-6-O-methyl-erythromycin A,4″-(2-{2-[3-(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-prop-2-ynyloxy]-ethoxy}-ethylcarbamoyl)-6-O-methyl erythromycin A,4″-O-(2-{2-[2-(3-Carboxy-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6-ylamino)-ethoxy]-ethoxy}-ethylcarbamoyl)-9-ethyloximino-6-O-methyl-erythromycin A,4″-O-(2-{2-[2-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinolin-7-ylamino)-ethoxy]-ethoxy}-ethylcarbamoyl)-9-ethyloximino-6-O-methyl-erythromycin A,4″-O-(3-{2-[2-(3-Carboxy-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6-ylamino)-ethoxy]-ethoxy}-propylcarbamoyl)-azithromycin,4″-O-(2-{[2-({2-[(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-7-quinolinyl)oxy]ethyl}-oxy)ethyl]oxy}ethylcarbamoyl)-6-O-methyl-erythromycin A,4−-O-(2-{[2-((2-[(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-7-quinolinyl)oxy]ethyl}-oxy)ethyl]oxy}ethylcarbamoyl)-azithromycin,4″-O-(2-{[2-((2-[(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-6-quinolinyl)oxy]ethyl}-oxy)ethyl]oxy}ethylcarbamoyl)-6-O-methyl-erythromycin A,4′-O-(2-{[2-({2-[(3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-6-quinolinyl)oxy]ethyl}-oxy)ethyl]oxy}ethylcarbamoyl)-azithromycin, and4″-O-(2-{[2-({2-[3-Carboxy-1-ethyl-4-oxo-1,4-dihydro-6-quinolinyl]ethyl}-oxy)ethyl]oxy}ethylcarbamoyl)-azithromycin,or a pharmaceutically acceptable derivative thereof.
  • 8. A process for the preparation of a compound as claimed in claim 1 which comprises: a) reacting a suitable activated compound of formula (II) wherein R34 is an activating group such as imidazolyl or halogen
  • 9.-11. (canceled)
  • 12. A method for the treatment of the human or non-human animal body to combat microbial infection comprising administration to a body in need of such treatment of an effective amount of a compound as claimed in claim 1.
  • 13. A pharmaceutical composition comprising at least one compound as claimed in claim 1 in association with a pharmaceutically acceptable excipient, diluent and/or carrier.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB2005/001203 5/3/2005 WO 00 6/30/2007
Provisional Applications (2)
Number Date Country
60569377 May 2004 US
60582106 Jun 2004 US