Carbide material by electromagnetic processing

Abstract
A method for the manufacture of a structure from a carbide of a group IIa, group IIIa, group IVa, group IVb, group Vb, group VIb, group VIIb or group VIIIb carbon reactive element including the steps of: mixing the element with the carbon; and heating the carbon and the element to melt the element so that it reacts with the carbon to form the carbide; wherein, the carbon and element are heated by means of electromagnetic radiation having a frequency below the infrared spectrum. The method does not waste energy by unnecessary heating of the furnace or surrounding mold. The mold itself may be more stable because it is only heated by hot contained material and not by other sources of heat. Resulting formed products are not a sintered product and may approach one hundred percent of theoretical density. The carbon may be in the form of a powder that is mixed with the element or may be a porous carbon structure such as a graphite fiber mat or sheet into which the carbon reactive element is melted. When a powder is used, it is usually a graphite powder. The preferred carbides prepared in accordance with the present invention are refractory carbides. Examples of preferred carbon reactive elements for use in accordance with the present invention are boron, chromium, hafnium, iron, molybdenum, niobium, silicon, tantalum, titanium, tungsten, vanadium, and zirconium. A preferred group IIIa element for use in accordance with the present invention is boron. The most preferred element of group IVa), is silicon. Silicon carbide is hard, high melting, almost chemically inert, and has excellent dielectric properties.
Description


BACKGROUND OF THE INVENTION

[0001] This invention relates to carbides, particularly carbides of group IIa, IIIa, IVa, IVb, Vb, VIb, VIIb and VIIb carbon reactive elements and to their method of preparation.


[0002] Carbides may generally be defined as compounds of carbon with metals, transition metals or silicon. Carbides usually have high melting points and are not readily volatilized. They are usually produced by heating appropriate mixtures to high temperatures in electric furnaces.


[0003] The largest group of carbides is the acetyledic group, including the carbides of beryllium, calcium, strontium, sodium, potassium, copper, silver, gold, and nickel. The acetylides, the most important of which is calcium carbide, form acetylene by reaction with water or acids. Another group, consisting of aluminum, beryllium, and manganese carbides, is termed the methanides. These yield methane on reaction with water or acids.


[0004] Important metallic carbides include iron carbide, or cementite, the hardening constituent in steel; tungsten carbide, from which are made hard tools for the machining of tough metals; and boron carbide, a material almost as hard as diamond. An important nonmetallic carbide is silicon carbide, or carborundum, which is used as an abrasive.


[0005] Refractory carbides, i.e. carbides that melt above 1,400° C. and are chemically stable are important for the manufacture of high performance materials. Such carbides are usually formed from group IIIa, IVa, IVb, VIb, VIb and VIIIb elements. Examples of refractory carbides and their approximate melting points include: boron carbide 2350° C., chromium carbide 1980° C., hafnium carbide 3890° C., iron carbide 1837° C., molybdenum carbide 2692° C., niobium carbide 3500° C., silicon carbide 2700° C., tantalum carbide 3880° C., titanium carbide 3140° C., tungsten carbide 2870° C., vanadium carbide 2810° C., and zirconium carbide 3540° C. Aluminum carbide 1400° C. is also often included within this group even though it may decompose to methane upon exposure to water.


[0006] Such refractory carbides have found broad utility due to their high melting points, strength, close crystal structure, electrical properties as insulators or semiconductors and chemical resistance. Silicon carbide is the most commonly used refractory carbide due to inexpensive materials needed for preparation (silicon and carbon) exceptional hardness, chemical resistance and heat resistance. Silicon carbide is thus most commonly used as an abrasive but has also been used in heat insulating materials, electrical insulating materials, reflective materials and to form heat resistant parts, e.g. in turbines. Boron carbide is one of the hardest materials known to man rivaling the hardness of diamond. Boron carbide may thus be found in high performance abrasives. Iron carbide is used as a hardener in steel and tungsten carbide is used as a hard surface on tools. Germanium carbide has been used in infrared transparent materials and in photoreceptors.


[0007] Carbides are generally prepared by four methods including: a) preparation in melt; b) preparation by carburization of powdered metal, metal hydrides or oxides with solid carbon; c) reduction of halides with a hydrogen hydrocarbon gas mixture and d) chemical separation from carbon-saturated ferroalloys or metal baths.


[0008] Despite the many advantages of carbide materials, until now the carbides and especially shaped parts from them have been very difficult to manufacture. Most of the chemically resistant refractory carbides are made by reaction of carbon with certain members of the group IIIa, IVa, IVb, Vb, VIb, and VIIIb elements, either as nascent metals or as their oxides according to the equations M+C→MC or MO+ 2C→MC+CO. Such reactions usually occur at very high temperatures in very hot furnaces.


[0009] When carbides are made by bulk processing of powdered materials. e.g. electrical resistance heating of a mixture of carbon and silica in a pile around a carbon resistance core, the carbide (silicon carbide) is randomly formed around the core in a large porous structure which permits gas to escape. The silicon carbide must then be separated, in the form of relatively small crystals, from unreacted carbon and silica. Preparation of defined parts by this method is virtually impossible.


[0010] Attempts to form carbides into particular shapes at the time of their preparation have met with only limited success. It is difficult to form a specific shape at such temperatures by means of a mold and huge quantities of energy are wasted heating both the mold and furnace. Formed shapes thus often do not meet required tolerances and subsequent machining of such hard materials is difficult and extremely expensive.


[0011] It has therefore been found to actually be more cost effective to form carbide materials in bulk, comminute the carbide to micron size powders and then sinter the powders to obtain the desired formed product.







BRIEF DESCRIPTION OF THE INVENTION

[0012] In accordance with the invention there is therefore provided an entirely new method for forming carbide shapes at the time of preparation of the carbide. The method does not waste energy by unnecessary heating of the furnace or surrounding mold. The mold itself may be more stable because it is only heated by hot contained material and not by other sources of heat. Resulting formed products are not a sintered product and may approach one hundred percent of theoretical density.


[0013] In accordance with the invention a method is provided for the manufacture of a structure from a carbide of a group IIa, group IIIa, group IVa, group IVb, group Vb, group VIb, group VIIb or group VIIIb carbon reactive element. The method includes the steps of:


[0014] mixing the carbon reactive element in the form of a powder with the carbon; and


[0015] heating the carbon and the element to melt the element so that it reacts with the carbon to form the carbide; wherein, the carbon and element are heated by means of electromagnetic radiation having a frequency below the infrared spectrum.


[0016] The carbon may be in the form of a powder that is mixed with the element or may be a porous carbon structure such as a graphite fiber mat or sheet into which the carbon reactive element is melted. When a powder is used, it is usually a graphite powder.


[0017] The preferred carbides prepared in accordance with the present invention are refractory carbides made from elements of the group IIIa, IVa, IVb, Vb, VIb or VIIIb elements of the periodic table of elements. Examples of preferred carbon reactive elements for use in accordance with the present invention are boron, chromium, hafnium, iron, molybdenum, niobium, silicon, tantalum, titanium, tungsten, vanadium, and zirconium. It is possible to use carbon reactive elements in combination to make a mixed carbide structure. A preferred group IIIa element for use in accordance with the present invention is boron. Boron is especially preferred since boron carbide is almost as hard as diamond and is unaffected by moisture, or usual aqueous acids and alkalis.


[0018] The most preferred element of group IVa (excluding carbon which forms the carbon carbide “diamond”), is silicon. Silicon carbide is hard, high melting, almost chemically inert, and has excellent dielectric properties. Furthermore, the elements from which it is made are among the most abundant on earth. Silicon is the second most abundant element after oxygen and makes up about 25.7% of the earth's crust. Carbon is widely distributed in nature in carbonates, e.g. limestone, carbon dioxide, hydrocarbons and all living matter. Silicon may be in the form of a powder. Such silicon powders usually have an average particle size of less than 100 microns, preferably less than ten microns and in some circumstances less than one micron.


[0019] In forming carbides in accordance with the present invention, heating of the carbon and carbon reactive element by electromagnetic radiation usually occurs in an inert environment for from 1 to 30 minutes. The inert environment may be a vacuum or a non-reactive gas. A vacuum has particular advantages since in a vacuum there is no heat loss by convection and surrounding atmosphere does not have to be heated. The use of an inert gas has its own advantages since its presence provides a partial pressure which helps prevent evaporation or sublimation of carbon or the carbon reactive element. Preferred non-reactive gases are argon and helium but nitrogen may also be used in some circumstances.


[0020] Heating of the carbon and carbon reactive element is done either by applying a low frequency electromagnetic radiation at a frequency between about 50 and about 200 kilohertz or by applying microwave electromagnetic radiation at a frequency between about 3×109 and about 3×1011 hertz. When microwaves are used, the frequency is frequently selected from of 915, 2450, 5800 and 22,125 megacycles per second, because such frequencies are commonly produced by commercially available equipment. The microwaves usually have a wavelength between about 0.1 and about 30 centimeters and are usually applied at a power of from about 2 to about 100 kilowatts. Microwaves are applied at sufficient power to heat the carbon and carbon reactive element to reaction temperature. When non-conductive carbon reactive elements such as silicon are used, the needed temperature results only from the heating of the carbon. The reaction temperature varies for various carbides but is easily determined by variation of applied power. Low frequency electromagnetic radiation is applied at a power of from about 1.5 to about 10 kilowatts for from about five to about 30 minutes. Again, power requirements and reaction temperature are readily determined for a particular carbide by increasing power until reaction occurs.


[0021] The following example serves to illustrate and not limit the present invention. Unless otherwise indicated, all parts and percentages are by weight.


[0022] Silicon carbide was made by induction heating of a mixture of carbon and silicon. In particular silicon and carbon were induction heated in a 6 inch diameter by 6 inch high quartz vacuum chamber placed on the coil of a 7.5 kW output induction power supply. The coil was constructed from eight turns of ¼ inch diameter copper tubing in either a pancake or spiral helical form. The coil had a {fraction (9/16)} inch inside diameter and a 3¾ inch outside diameter.


[0023] A 3 inch by 3 inch by 0.060 inch thick piece of premium nuclear grade graphite foil having a minimum of 99.8 percent graphite was dried in an oven at about 300° F. to remove moisture. The dried graphite foil was placed within the quartz chamber on a 4.5 inch by 3 inch by ½ inch thick alumina refractory brick coated with boron nitride powder. Fifteen grams of 99+ percent pure silicon powder was then placed on the graphite. Another alumina refractory brick coated with boron nitride powder was then placed on top of the graphite foil. The lid was placed on the chamber and a vacuum of about 50 Torr was drawn using a ⅓ hp mechanical vacuum pump.


[0024] A current having a frequency of 136 kHz was then passed through the coil at a voltage increasing from 70 to 323 volts over a time period of 11 minutes. 323 volts were then held for 4 minutes and the power was shut off. As a result, the silicon-graphite combination was heated from 70° F. to about 2700° F. in 11 minutes resulting in a ramp of about 240° F. per minute followed by a hold of 4 minutes at between 2,600° F. and 2850° F. The product was then allowed to cool to ambient temperature.


[0025] The resulting product comprised about 50% by volume silicon carbide crystals and about 50% by volume of silicon that filled in essentially all available pores. The product had a density of almost 100% of theoretical.


Claims
  • 1. A method for the manufacture of a structure from a carbide of a group Ia, group IIIa, group IVa, group IVb, group Vb, group VIb, group VIb or group VIIb carbon reactive element which comprises: mixing the carbon reactive in the form of a powder with the carbon; and heating the carbon and the element to melt the element so that it reacts with the carbon to form the carbide; wherein, the carbon and element are heated by means of electromagnetic radiation having a frequency below the infrared spectrum.
  • 2. The method of claim 1 wherein the carbon is in the form of a powder.
  • 3. The method of claim 1 wherein the element is a group IIIa, IVa, IVb, Vb, VIb or VIIIb element.
  • 4. The method of claim 1 wherein the element is selected from the group consisting of aluminum, boron, chromium, hafnium, iron, molybdenum, niobium, silicon, tantalum, titanium, tungsten, vanadium, and zirconium.
  • 5. The method of claim 1 wherein the element is a group III metal selected from the group consisting of aluminum and boron.
  • 6. The method of claim 1 wherein the element is boron.
  • 7. The method of claim 1 wherein the element is silicon.
  • 8. The method of claim 1 wherein the heating occurs in an inert environment for from 1 to 30 minutes.
  • 9. The method of claim 8 wherein the inert environment comprises a vacuum.
  • 10. The method of claim 8 wherein the inert environment comprises a non-reactive gas.
  • 11. The method of claim 10 wherein the non-reactive gas is selected from the group consisting of nitrogen, helium, and argon.
  • 12. The method of claim 1 wherein the carbon is porous carbon structure comprises carbon fibers and the element is mixed with the carbon by melting the element so that it fills the pores in the carbon structure.
  • 13. The method of claim 1 wherein the porous carbon structure comprises a carbon fiber sheet.
  • 14. The method of claim 1 wherein the element is a silicon powder having an average particle size of less than 100 microns.
  • 15. The method of claim 14 wherein the silicon powder has an average particle size of less than 10 microns.
  • 16. The method of claim 15 wherein the silicon powder has an average particle size of less than 1 micron.
  • 17. The method of claim 1 wherein the induction heating is done by applying low frequency electromagnetic radiation at a frequency between about 50 and about 200 kilohertz.
  • 18. The method of claim 1 wherein the induction heating is done by applying microwave electromagnetic radiation at a frequency between about 1×109 and about 3×1011 hertz.
  • 19. The method of claim 18 wherein the frequency is selected from the group consisting of 915, 2450, 5800 and 22,125 megacycles per second.
  • 20. The method of claim 18 wherein the microwaves have a wavelength between about 0.1 and about 30 centimeters.
  • 21. The method of claim 18 wherein the microwaves are applied at a power of from about 10 to about 100 kilowatts.
  • 22. The method of claim 17 wherein the low frequency electromagnetic radiation is applied at a power of from about 1.5 to about 10 kilowatts for from about five to about 30 minutes.
  • 23. A silicon carbide article made in accordance with the method of claim 1.
  • 24. A titanium carbide article made in accordance with the method of claim 1.
  • 25. A boron carbide article made in accordance with the method of claim 1.
  • 26. A silicon carbide article made in accordance with the method of claim 7.
  • 27. A silicon carbide sheet made in accordance with the method of claim 8.
  • 28. A silicon carbide sheet made in accordance with the method of claim 21.
  • 29. A silicon carbide sheet made in accordance with the method of claim 22.
  • 30. A silicon-silicon carbide composite made in accordance with the method of claim 1.
  • 31. A substrate for a computer memory storage device comprising a polished composite of claim 30.
Divisions (1)
Number Date Country
Parent 09227686 Jan 1999 US
Child 09811889 Mar 2001 US