This invention relates generally to carbide stud-style devices for improving stability and traction, and more particularly to a device for improving stability and traction of footwear and other terrain engaging elements suitable for traversing rivers, snow, ice, or other slippery surfaces and wheeled or tracked vehicles.
Examples of footwear suitable for outdoor use over adverse terrain such as snow, ice, mud, rocks, etc., are well known. Accessory devices for such footwear are also known. Hobnails, screws and studs are examples of such accessory devices. Each of these accessory devices include significant limitations of use. Hobnails have been inserted into the soles of shoes or boots to prevent wear and improve traction. Hobnails are typically short nails which tend to quickly wear on rock surfaces and are often inadvertently removed during use in mud, moss, rocks and ice. Metal screws have also been used to improve traction in footwear. In a typical application, one or more metal screws are secured into a shoe sole. Metal screws typically wear relatively quickly and, once worn, tend to slide on surfaces leading to a decrease in traction across certain flat surfaces such as concrete floors, etc. Other examples of footwear suitable for outdoor use in water and rocks include felt and treaded rubber soles.
Tire studs, which may include carbide or porcelain studs, have been used to improve the traction of vehicles. In a typical application, a single generally cylindrical carbide element is secured within an aluminum housing. Porcelain studs are relatively brittle and may be damaged by ground impact. One limitation of tires studs in the propensity of the carbide or porcelain stud element to round over. In certain applications, the rounded-over element may lead to an decrease in traction, such as on concrete floors or other flat surfaces.
U.S. Pat. No. 5,897,177 to Bergstrom discloses a stud having a multifaceted surface for use on a tread element. The stud includes a body portion including a head and an elongated shank portion extending from the head. A mound of shard-like particles of a hard and durable material is bound together on and to the head of the stud such that the mound of particles has a multifaceted surface include multiple points which can engage the terrain. One limitation of the studs according to Bergstrom is the tendency of the particles to fracture during use due to the relatively few contact points defined by the sharp edges of the particles. The carbide fractures are typically uncontrolled and relatively large portions of the particles may be shed during a fracture. Because of the tendency of shedding relatively large particle portions, Bergstrom's device is believed to wear relatively quickly leading to poor economy of use. Additionally, the sharp edges of these studs may have a tendency to catch or snag on certain surfaces, such as carpet, which may lead to a tripping hazard. Furthermore, the relatively few contact points result in high contact forces which may be damaging to certain floors, such as wood and tile floors.
Accordingly, despite the attempts to develop improved devices for improving traction on adverse surfaces, there remains a need for an improved stud-style carbide traction device.
In response to the difficulties and problems discussed above, an improved stud device for improving stability and motive traction under a variety of different terrains and environments is disclosed. A stud device according to the present invention includes head and shank portions with the shank portion being adapted to secure the device into a terrain engaging element, such as footwear, tires, flexible vehicle tracks, horse shoes, etc. A plurality of generally equally sized carbide pellets are provided on the upper surface of the stud device in a stacked and layered orientation. During use, as upper carbide particles wear and become dislodged, an underlying carbide particle is revealed for subsequent contact with adverse terrain.
An object of the present invention is the provision of a traction stud for attachment to a terrain engaging element, such as footwear, which continues to provide traction over the life of the stud.
The present invention will be more fully understood and further advantages will become apparent when reference is made to the following detailed description of the invention and the accompanying drawings wherein like numerals represent like elements, and in which:
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications of the inventive features illustrated herein, and any additional applications of the principles of the invention as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
Reference throughout this specification to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
The present invention generally relates to a stud having an impressioned surface defined by multiple carbide pellets that can penetrate terrain and thereby provide improved traction. The carbide pellets are provided in multiple layers across an engaging surface of the stud. The impressioned stud surface of the present invention offers numerous advantages over conventional studs having a single or multifaceted carbide points. For example, instead of a single traction point, the impressioned stud surface of the present invention provides multiple traction points which improve the stud's grip on the terrain. The multiple traction points also allow the forces acting on the stud to be distributed across multiple contact points. This reduces the magnitude of the forces that are acting on the individual points and makes the stud of the present invention more resistant to wear. In addition, as the impressioned surface of the stud wears, it continues to present underlying pellets thereby ensuring that that stud continues to provide excellent traction over time. The stud of the present invention can be used to improve the traction of any type of tread element or other terrain engaging element and is particularly well suited for use on the treads of shoes, boots or other footwear. Human and other animal use is envisioned. For example, use of the studs of the present invention to secure a horse shoe is envisioned. Additionally, the stud of the present invention may be utilized on tires or endless tracks of vehicles such as snowmobiles, construction equipment, excavating equipment and snow removal equipment.
Head 14 may be provided with one or more edges for engaging a boot sole or other element into which the stud 10 is secured. For example, in the embodiment of
Those of ordinary skill in the art would appreciate a variety of different welding or brazing approaches to securing the pellets 16 to head 14. One preferred approach is disclosed herein. A process of welding tungsten-carbide to mild steel, forged steel, and stainless steel, or other known material, with a brazing mixture may be used to secure pellets 16 to head 14. In one embodiment, the brazing mixture may comprise either approximately 60% powdered brass or 60% powdered bronze and 40% flux and enough water to form a paste. Distilled water is recommended so as to minimize contaminates in the brazing mixture. It is preferable to use brass for brazing the pellets 16 to the underlying metal because brass provides a stronger bond than bronze. A person skilled in the art would understand that the type of flux to be used depends on the type of brazing metal used. For instance, a typical flux for brass is Superior Flux 609LB, which may be purchased at any welding shop. Other types of flux are specific to bronze and silver. It is recognized that all appropriate brazing metals and the corresponding flux may be used.
After the metal parts have been cleaned, the paste may be applied to all surfaces that are to be bonded to the pellets 16, in this case, the paste should be applied to the head 14 of the stud 10. The pellets 16 may be poured over the paste, the metal piece including the paste may be dipped into the pellets 16, the pellets 16 may be placed onto the paste, or the pellets 16 may be positioned onto the paste into a predetermined configuration. For best results, pellets with a mesh size of between 16 and 32 are preferable. Although greater, or even smaller, mesh sizes may be practicable, mesh pellets 16 within the range of 16 to 32 have been found particularly useful in cutting through moss, snow, ice and mud.
The flux mix is then air dried or oven cured at approximately 100 degrees Fahrenheit, until all moisture has dissipated. The four ingredients (metal, brass, carbide pellets 16, and paste) may be heated together at a temperature range from 1800 degrees Fahrenheit to 2000 degrees Fahrenheit, and a temperature range of 1400 degrees Fahrenheit to 1900 degrees Fahrenheit for bronze or silver. When the paste begins to separate, the brass/bronze mixture begins bonding the metal to the carbide pellets 16. Ideally, this process should not exceed three minutes. It is recognized, however, that many factors affect the ideal heat and time frame for bonding. For instance, it is recognized that changes in brazing metals, humidity, altitude, and size and number of parts may affect the heating temperature and the heating time.
Once the pellets 16 have bonded to the head 14 or washer 32, stud 10 is cooled to room temperature, preferably away from contaminates. As shown in
In contrast to crushed, cut, or ragged pieces with sharp edges, a smooth pellet 16 may bond to many more pellets 16 because of the smooth surfaces and/or symmetrical shape. Higher bonding ratios increase overall wear and strength of the bond. It is noted that contaminates and oxidation may prevent the pellets 16 from bonding to the head 14 or washer 32. As used herein, the term “carbide” is broadly defined to include carbides, ceramics, silicon nitrides, cermets, another other known highly wear resistant materials such as HSS and cobalt. As used herein, the term “pellet” is broadly defined to include smooth or relatively smooth small rounded or spherical bodies capable of being stacked into layers.
In order to provide the stud 10 with multiple traction or gripping points, a multilayered mound of pellets 16 or particles or chips is attached to the upper surface of the stud 10. The pellets 16 which form the mound define an impressioned surface which includes a plurality of rounded surfaces which can engage the terrain thereby giving the stud 10 increased gripping ability as compared to conventional single point studs. Specifically, the mound comprises a plurality of pellets or chips 16 of a tough wear resistant material such as carbide which are brazed or soldered together and to the upper surface of the stud 10 with a suitable binding material. Furthermore, the mound preferably comprises several layers of pellets 16 extending across the terrain engaging surface of stud 10. The impressioned surface which is provided by the mound of pellets 16 gives the stud 10 improved wear characteristics as compared to conventional single point studs or multifaceted studs which tend to shed relatively large portions of carbide. In particular, as opposed to the magnitude of the forces caused by the engagement of the stud with the terrain being applied on a single point or relatively few points of a multifaceted surface, the rounded pellets 16 allows the forces to be divided between multiple engagement surface thereby allowing the stud 10 to be more resistant to wear than conventional studs. The impressioned surface also enables the stud 10 to maintain a plurality of carbide contact surface even as it wears over time. Specifically, as the individual pellets 16 which form an upper layer wear or break off, the underlying layers of pellets 16 are exposed.
It is understood that the above-described arrangements are only illustrative of the application of the principles of the present invention. The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
For example, although the specification describes the use of a paste as a mixture, or filler, it is envisioned that powder may also be used. The distinct advantage of a powder form is the wide spectrum of available alloys. Similarly, the use of a coils or spools of wire, lengths of rod and filler metal strips is envisioned. Additionally, filler preforms may be used. Preforms are manufactured by forming bulk wire and strip into special shapes, which may be produced to form simple to intricate shapes and sizes. There are many advantages to preforms including the ability for alloy pre-placement in an automated setting. Automation increases overall production rate and allows the use of unskilled labor, both of which save time and money. Preforms also help minimize and standardize costs. Hand feeding filler metal may use up to 50% more alloy than actually necessary. Preforms are measured amounts of alloy ensuring the exact volume required is used every time. Aesthetically, preforms help improve a part's appearance. Preforms are designed to surround the joint providing a smooth look with only a thin line of alloy visible. Since the correct amount of alloy fills the joint area, this usually results in a reduction of rejected parts. Finally, the use of flux-coated forms. Some filler metal forms are available with a flux-coating. The advantage to these types of forms is that the final fluxing step is eliminated. The final cleaning step is easier as well with less contaminants going out with the rinsing water.
It is further envisioned that many other types of brazing metals may be used to braze the pellets 16 to the underlying head 14 or associated washer 32. Examples of brazing metals that may be used include, but are not limited to aluminum, gold, silver, nickel and ceramic to name a few. The shank may be threaded, barbed, studded, or ridged. The stud may be permanent in the boot, or it may be permanent to a strap-on or clip-on tread. The head may include a wall enclosing an area on the top, or it may be flat or convex or concave. It is further envisioned that the studs referenced to above may be compatible with any type of shoe, or traction device, including tires or tracked vehicles.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application claims the benefit of priority pursuant to 35 USC §119 of U.S. provisional application Ser. No. 60/554,484, filed Mar. 19, 2004, and incorporated in its entirety by reference herein.
Number | Date | Country | |
---|---|---|---|
60554484 | Mar 2004 | US |